]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/volumes.h
Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / fs / btrfs / volumes.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
8
9 #include <linux/bio.h>
10 #include <linux/sort.h>
11 #include <linux/btrfs.h>
12 #include "async-thread.h"
13
14 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
15
16 extern struct mutex uuid_mutex;
17
18 #define BTRFS_STRIPE_LEN SZ_64K
19
20 struct buffer_head;
21 struct btrfs_pending_bios {
22 struct bio *head;
23 struct bio *tail;
24 };
25
26 /*
27 * Use sequence counter to get consistent device stat data on
28 * 32-bit processors.
29 */
30 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
31 #include <linux/seqlock.h>
32 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
33 #define btrfs_device_data_ordered_init(device) \
34 seqcount_init(&device->data_seqcount)
35 #else
36 #define btrfs_device_data_ordered_init(device) do { } while (0)
37 #endif
38
39 #define BTRFS_DEV_STATE_WRITEABLE (0)
40 #define BTRFS_DEV_STATE_IN_FS_METADATA (1)
41 #define BTRFS_DEV_STATE_MISSING (2)
42 #define BTRFS_DEV_STATE_REPLACE_TGT (3)
43 #define BTRFS_DEV_STATE_FLUSH_SENT (4)
44
45 struct btrfs_device {
46 struct list_head dev_list;
47 struct list_head dev_alloc_list;
48 struct list_head post_commit_list; /* chunk mutex */
49 struct btrfs_fs_devices *fs_devices;
50 struct btrfs_fs_info *fs_info;
51
52 struct rcu_string *name;
53
54 u64 generation;
55
56 spinlock_t io_lock ____cacheline_aligned;
57 int running_pending;
58 /* regular prio bios */
59 struct btrfs_pending_bios pending_bios;
60 /* sync bios */
61 struct btrfs_pending_bios pending_sync_bios;
62
63 struct block_device *bdev;
64
65 /* the mode sent to blkdev_get */
66 fmode_t mode;
67
68 unsigned long dev_state;
69 blk_status_t last_flush_error;
70 int flush_bio_sent;
71
72 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
73 seqcount_t data_seqcount;
74 #endif
75
76 /* the internal btrfs device id */
77 u64 devid;
78
79 /* size of the device in memory */
80 u64 total_bytes;
81
82 /* size of the device on disk */
83 u64 disk_total_bytes;
84
85 /* bytes used */
86 u64 bytes_used;
87
88 /* optimal io alignment for this device */
89 u32 io_align;
90
91 /* optimal io width for this device */
92 u32 io_width;
93 /* type and info about this device */
94 u64 type;
95
96 /* minimal io size for this device */
97 u32 sector_size;
98
99 /* physical drive uuid (or lvm uuid) */
100 u8 uuid[BTRFS_UUID_SIZE];
101
102 /*
103 * size of the device on the current transaction
104 *
105 * This variant is update when committing the transaction,
106 * and protected by chunk mutex
107 */
108 u64 commit_total_bytes;
109
110 /* bytes used on the current transaction */
111 u64 commit_bytes_used;
112
113 /* for sending down flush barriers */
114 struct bio *flush_bio;
115 struct completion flush_wait;
116
117 /* per-device scrub information */
118 struct scrub_ctx *scrub_ctx;
119
120 struct btrfs_work work;
121
122 /* readahead state */
123 atomic_t reada_in_flight;
124 u64 reada_next;
125 struct reada_zone *reada_curr_zone;
126 struct radix_tree_root reada_zones;
127 struct radix_tree_root reada_extents;
128
129 /* disk I/O failure stats. For detailed description refer to
130 * enum btrfs_dev_stat_values in ioctl.h */
131 int dev_stats_valid;
132
133 /* Counter to record the change of device stats */
134 atomic_t dev_stats_ccnt;
135 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
136
137 struct extent_io_tree alloc_state;
138 };
139
140 /*
141 * If we read those variants at the context of their own lock, we needn't
142 * use the following helpers, reading them directly is safe.
143 */
144 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
145 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
146 static inline u64 \
147 btrfs_device_get_##name(const struct btrfs_device *dev) \
148 { \
149 u64 size; \
150 unsigned int seq; \
151 \
152 do { \
153 seq = read_seqcount_begin(&dev->data_seqcount); \
154 size = dev->name; \
155 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
156 return size; \
157 } \
158 \
159 static inline void \
160 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
161 { \
162 preempt_disable(); \
163 write_seqcount_begin(&dev->data_seqcount); \
164 dev->name = size; \
165 write_seqcount_end(&dev->data_seqcount); \
166 preempt_enable(); \
167 }
168 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
169 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
170 static inline u64 \
171 btrfs_device_get_##name(const struct btrfs_device *dev) \
172 { \
173 u64 size; \
174 \
175 preempt_disable(); \
176 size = dev->name; \
177 preempt_enable(); \
178 return size; \
179 } \
180 \
181 static inline void \
182 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
183 { \
184 preempt_disable(); \
185 dev->name = size; \
186 preempt_enable(); \
187 }
188 #else
189 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
190 static inline u64 \
191 btrfs_device_get_##name(const struct btrfs_device *dev) \
192 { \
193 return dev->name; \
194 } \
195 \
196 static inline void \
197 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
198 { \
199 dev->name = size; \
200 }
201 #endif
202
203 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
204 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
205 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
206
207 struct btrfs_fs_devices {
208 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
209 u8 metadata_uuid[BTRFS_FSID_SIZE];
210 bool fsid_change;
211 struct list_head fs_list;
212
213 u64 num_devices;
214 u64 open_devices;
215 u64 rw_devices;
216 u64 missing_devices;
217 u64 total_rw_bytes;
218 u64 total_devices;
219
220 /* Highest generation number of seen devices */
221 u64 latest_generation;
222
223 struct block_device *latest_bdev;
224
225 /* all of the devices in the FS, protected by a mutex
226 * so we can safely walk it to write out the supers without
227 * worrying about add/remove by the multi-device code.
228 * Scrubbing super can kick off supers writing by holding
229 * this mutex lock.
230 */
231 struct mutex device_list_mutex;
232 struct list_head devices;
233
234 /* devices not currently being allocated */
235 struct list_head alloc_list;
236
237 struct btrfs_fs_devices *seed;
238 int seeding;
239
240 int opened;
241
242 /* set when we find or add a device that doesn't have the
243 * nonrot flag set
244 */
245 int rotating;
246
247 struct btrfs_fs_info *fs_info;
248 /* sysfs kobjects */
249 struct kobject fsid_kobj;
250 struct kobject *device_dir_kobj;
251 struct completion kobj_unregister;
252 };
253
254 #define BTRFS_BIO_INLINE_CSUM_SIZE 64
255
256 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
257 - sizeof(struct btrfs_chunk)) \
258 / sizeof(struct btrfs_stripe) + 1)
259
260 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
261 - 2 * sizeof(struct btrfs_disk_key) \
262 - 2 * sizeof(struct btrfs_chunk)) \
263 / sizeof(struct btrfs_stripe) + 1)
264
265 /*
266 * we need the mirror number and stripe index to be passed around
267 * the call chain while we are processing end_io (especially errors).
268 * Really, what we need is a btrfs_bio structure that has this info
269 * and is properly sized with its stripe array, but we're not there
270 * quite yet. We have our own btrfs bioset, and all of the bios
271 * we allocate are actually btrfs_io_bios. We'll cram as much of
272 * struct btrfs_bio as we can into this over time.
273 */
274 struct btrfs_io_bio {
275 unsigned int mirror_num;
276 unsigned int stripe_index;
277 u64 logical;
278 u8 *csum;
279 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
280 struct bvec_iter iter;
281 /*
282 * This member must come last, bio_alloc_bioset will allocate enough
283 * bytes for entire btrfs_io_bio but relies on bio being last.
284 */
285 struct bio bio;
286 };
287
288 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
289 {
290 return container_of(bio, struct btrfs_io_bio, bio);
291 }
292
293 static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
294 {
295 if (io_bio->csum != io_bio->csum_inline) {
296 kfree(io_bio->csum);
297 io_bio->csum = NULL;
298 }
299 }
300
301 struct btrfs_bio_stripe {
302 struct btrfs_device *dev;
303 u64 physical;
304 u64 length; /* only used for discard mappings */
305 };
306
307 struct btrfs_bio {
308 refcount_t refs;
309 atomic_t stripes_pending;
310 struct btrfs_fs_info *fs_info;
311 u64 map_type; /* get from map_lookup->type */
312 bio_end_io_t *end_io;
313 struct bio *orig_bio;
314 unsigned long flags;
315 void *private;
316 atomic_t error;
317 int max_errors;
318 int num_stripes;
319 int mirror_num;
320 int num_tgtdevs;
321 int *tgtdev_map;
322 /*
323 * logical block numbers for the start of each stripe
324 * The last one or two are p/q. These are sorted,
325 * so raid_map[0] is the start of our full stripe
326 */
327 u64 *raid_map;
328 struct btrfs_bio_stripe stripes[];
329 };
330
331 struct btrfs_device_info {
332 struct btrfs_device *dev;
333 u64 dev_offset;
334 u64 max_avail;
335 u64 total_avail;
336 };
337
338 struct btrfs_raid_attr {
339 int sub_stripes; /* sub_stripes info for map */
340 int dev_stripes; /* stripes per dev */
341 int devs_max; /* max devs to use */
342 int devs_min; /* min devs needed */
343 int tolerated_failures; /* max tolerated fail devs */
344 int devs_increment; /* ndevs has to be a multiple of this */
345 int ncopies; /* how many copies to data has */
346 int nparity; /* number of stripes worth of bytes to store
347 * parity information */
348 int mindev_error; /* error code if min devs requisite is unmet */
349 const char raid_name[8]; /* name of the raid */
350 u64 bg_flag; /* block group flag of the raid */
351 };
352
353 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
354
355 struct map_lookup {
356 u64 type;
357 int io_align;
358 int io_width;
359 u64 stripe_len;
360 int num_stripes;
361 int sub_stripes;
362 int verified_stripes; /* For mount time dev extent verification */
363 struct btrfs_bio_stripe stripes[];
364 };
365
366 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
367 (sizeof(struct btrfs_bio_stripe) * (n)))
368
369 struct btrfs_balance_args;
370 struct btrfs_balance_progress;
371 struct btrfs_balance_control {
372 struct btrfs_balance_args data;
373 struct btrfs_balance_args meta;
374 struct btrfs_balance_args sys;
375
376 u64 flags;
377
378 struct btrfs_balance_progress stat;
379 };
380
381 enum btrfs_map_op {
382 BTRFS_MAP_READ,
383 BTRFS_MAP_WRITE,
384 BTRFS_MAP_DISCARD,
385 BTRFS_MAP_GET_READ_MIRRORS,
386 };
387
388 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
389 {
390 switch (bio_op(bio)) {
391 case REQ_OP_DISCARD:
392 return BTRFS_MAP_DISCARD;
393 case REQ_OP_WRITE:
394 return BTRFS_MAP_WRITE;
395 default:
396 WARN_ON_ONCE(1);
397 /* fall through */
398 case REQ_OP_READ:
399 return BTRFS_MAP_READ;
400 }
401 }
402
403 void btrfs_get_bbio(struct btrfs_bio *bbio);
404 void btrfs_put_bbio(struct btrfs_bio *bbio);
405 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
406 u64 logical, u64 *length,
407 struct btrfs_bio **bbio_ret, int mirror_num);
408 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
409 u64 logical, u64 *length,
410 struct btrfs_bio **bbio_ret);
411 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
412 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
413 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
414 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
415 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
416 void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
417 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
418 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
419 int mirror_num, int async_submit);
420 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
421 fmode_t flags, void *holder);
422 struct btrfs_device *btrfs_scan_one_device(const char *path,
423 fmode_t flags, void *holder);
424 int btrfs_forget_devices(const char *path);
425 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
426 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
427 void btrfs_assign_next_active_device(struct btrfs_device *device,
428 struct btrfs_device *this_dev);
429 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
430 u64 devid,
431 const char *devpath);
432 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
433 const u64 *devid,
434 const u8 *uuid);
435 void btrfs_free_device(struct btrfs_device *device);
436 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
437 const char *device_path, u64 devid);
438 void __exit btrfs_cleanup_fs_uuids(void);
439 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
440 int btrfs_grow_device(struct btrfs_trans_handle *trans,
441 struct btrfs_device *device, u64 new_size);
442 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
443 u64 devid, u8 *uuid, u8 *fsid, bool seed);
444 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
445 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
446 int btrfs_balance(struct btrfs_fs_info *fs_info,
447 struct btrfs_balance_control *bctl,
448 struct btrfs_ioctl_balance_args *bargs);
449 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
450 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
451 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
452 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
453 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
454 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
455 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
456 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
457 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
458 u64 search_start, u64 *start, u64 *max_avail);
459 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
460 u64 *start, u64 *max_avail);
461 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
462 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
463 struct btrfs_ioctl_get_dev_stats *stats);
464 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
465 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
466 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
467 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
468 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
469 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
470 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
471 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
472 u64 logical, u64 len);
473 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
474 u64 logical);
475 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
476 u64 chunk_offset, u64 chunk_size);
477 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
478 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
479 u64 logical, u64 length);
480
481 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
482 int index)
483 {
484 atomic_inc(dev->dev_stat_values + index);
485 /*
486 * This memory barrier orders stores updating statistics before stores
487 * updating dev_stats_ccnt.
488 *
489 * It pairs with smp_rmb() in btrfs_run_dev_stats().
490 */
491 smp_mb__before_atomic();
492 atomic_inc(&dev->dev_stats_ccnt);
493 }
494
495 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
496 int index)
497 {
498 return atomic_read(dev->dev_stat_values + index);
499 }
500
501 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
502 int index)
503 {
504 int ret;
505
506 ret = atomic_xchg(dev->dev_stat_values + index, 0);
507 /*
508 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
509 * - RMW operations that have a return value are fully ordered;
510 *
511 * This implicit memory barriers is paired with the smp_rmb in
512 * btrfs_run_dev_stats
513 */
514 atomic_inc(&dev->dev_stats_ccnt);
515 return ret;
516 }
517
518 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
519 int index, unsigned long val)
520 {
521 atomic_set(dev->dev_stat_values + index, val);
522 /*
523 * This memory barrier orders stores updating statistics before stores
524 * updating dev_stats_ccnt.
525 *
526 * It pairs with smp_rmb() in btrfs_run_dev_stats().
527 */
528 smp_mb__before_atomic();
529 atomic_inc(&dev->dev_stats_ccnt);
530 }
531
532 static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
533 int index)
534 {
535 btrfs_dev_stat_set(dev, index, 0);
536 }
537
538 /*
539 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
540 * can be used as index to access btrfs_raid_array[].
541 */
542 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
543 {
544 if (flags & BTRFS_BLOCK_GROUP_RAID10)
545 return BTRFS_RAID_RAID10;
546 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
547 return BTRFS_RAID_RAID1;
548 else if (flags & BTRFS_BLOCK_GROUP_DUP)
549 return BTRFS_RAID_DUP;
550 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
551 return BTRFS_RAID_RAID0;
552 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
553 return BTRFS_RAID_RAID5;
554 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
555 return BTRFS_RAID_RAID6;
556
557 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
558 }
559
560 const char *get_raid_name(enum btrfs_raid_types type);
561
562 void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
563
564 struct list_head *btrfs_get_fs_uuids(void);
565 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
566 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
567 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
568 struct btrfs_device *failing_dev);
569
570 int btrfs_bg_type_to_factor(u64 flags);
571 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
572
573 #endif