]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/zoned.c
Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
20
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES 4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27
28 /*
29 * Location of the first zone of superblock logging zone pairs.
30 *
31 * - primary superblock: 0B (zone 0)
32 * - first copy: 512G (zone starting at that offset)
33 * - second copy: 4T (zone starting at that offset)
34 */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
38
39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44
45 /*
46 * Minimum of active zones we need:
47 *
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
52 */
53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
54
55 /*
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
60 */
61 #define BTRFS_MAX_ZONE_SIZE SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE SZ_4M
63
64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68
69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
70 {
71 return (zone->cond == BLK_ZONE_COND_FULL) ||
72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73 }
74
75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76 {
77 struct blk_zone *zones = data;
78
79 memcpy(&zones[idx], zone, sizeof(*zone));
80
81 return 0;
82 }
83
84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 u64 *wp_ret)
86 {
87 bool empty[BTRFS_NR_SB_LOG_ZONES];
88 bool full[BTRFS_NR_SB_LOG_ZONES];
89 sector_t sector;
90 int i;
91
92 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
93 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
94 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
95 full[i] = sb_zone_is_full(&zones[i]);
96 }
97
98 /*
99 * Possible states of log buffer zones
100 *
101 * Empty[0] In use[0] Full[0]
102 * Empty[1] * 0 1
103 * In use[1] x x 1
104 * Full[1] 0 0 C
105 *
106 * Log position:
107 * *: Special case, no superblock is written
108 * 0: Use write pointer of zones[0]
109 * 1: Use write pointer of zones[1]
110 * C: Compare super blocks from zones[0] and zones[1], use the latest
111 * one determined by generation
112 * x: Invalid state
113 */
114
115 if (empty[0] && empty[1]) {
116 /* Special case to distinguish no superblock to read */
117 *wp_ret = zones[0].start << SECTOR_SHIFT;
118 return -ENOENT;
119 } else if (full[0] && full[1]) {
120 /* Compare two super blocks */
121 struct address_space *mapping = bdev->bd_inode->i_mapping;
122 struct page *page[BTRFS_NR_SB_LOG_ZONES];
123 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
124 int i;
125
126 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
127 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
128 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
129 BTRFS_SUPER_INFO_SIZE;
130
131 page[i] = read_cache_page_gfp(mapping,
132 bytenr >> PAGE_SHIFT, GFP_NOFS);
133 if (IS_ERR(page[i])) {
134 if (i == 1)
135 btrfs_release_disk_super(super[0]);
136 return PTR_ERR(page[i]);
137 }
138 super[i] = page_address(page[i]);
139 }
140
141 if (btrfs_super_generation(super[0]) >
142 btrfs_super_generation(super[1]))
143 sector = zones[1].start;
144 else
145 sector = zones[0].start;
146
147 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
148 btrfs_release_disk_super(super[i]);
149 } else if (!full[0] && (empty[1] || full[1])) {
150 sector = zones[0].wp;
151 } else if (full[0]) {
152 sector = zones[1].wp;
153 } else {
154 return -EUCLEAN;
155 }
156 *wp_ret = sector << SECTOR_SHIFT;
157 return 0;
158 }
159
160 /*
161 * Get the first zone number of the superblock mirror
162 */
163 static inline u32 sb_zone_number(int shift, int mirror)
164 {
165 u64 zone = U64_MAX;
166
167 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
168 switch (mirror) {
169 case 0: zone = 0; break;
170 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
171 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
172 }
173
174 ASSERT(zone <= U32_MAX);
175
176 return (u32)zone;
177 }
178
179 static inline sector_t zone_start_sector(u32 zone_number,
180 struct block_device *bdev)
181 {
182 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
183 }
184
185 static inline u64 zone_start_physical(u32 zone_number,
186 struct btrfs_zoned_device_info *zone_info)
187 {
188 return (u64)zone_number << zone_info->zone_size_shift;
189 }
190
191 /*
192 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
193 * device into static sized chunks and fake a conventional zone on each of
194 * them.
195 */
196 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
197 struct blk_zone *zones, unsigned int nr_zones)
198 {
199 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
200 sector_t bdev_size = bdev_nr_sectors(device->bdev);
201 unsigned int i;
202
203 pos >>= SECTOR_SHIFT;
204 for (i = 0; i < nr_zones; i++) {
205 zones[i].start = i * zone_sectors + pos;
206 zones[i].len = zone_sectors;
207 zones[i].capacity = zone_sectors;
208 zones[i].wp = zones[i].start + zone_sectors;
209 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
210 zones[i].cond = BLK_ZONE_COND_NOT_WP;
211
212 if (zones[i].wp >= bdev_size) {
213 i++;
214 break;
215 }
216 }
217
218 return i;
219 }
220
221 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
222 struct blk_zone *zones, unsigned int *nr_zones)
223 {
224 struct btrfs_zoned_device_info *zinfo = device->zone_info;
225 int ret;
226
227 if (!*nr_zones)
228 return 0;
229
230 if (!bdev_is_zoned(device->bdev)) {
231 ret = emulate_report_zones(device, pos, zones, *nr_zones);
232 *nr_zones = ret;
233 return 0;
234 }
235
236 /* Check cache */
237 if (zinfo->zone_cache) {
238 unsigned int i;
239 u32 zno;
240
241 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
242 zno = pos >> zinfo->zone_size_shift;
243 /*
244 * We cannot report zones beyond the zone end. So, it is OK to
245 * cap *nr_zones to at the end.
246 */
247 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
248
249 for (i = 0; i < *nr_zones; i++) {
250 struct blk_zone *zone_info;
251
252 zone_info = &zinfo->zone_cache[zno + i];
253 if (!zone_info->len)
254 break;
255 }
256
257 if (i == *nr_zones) {
258 /* Cache hit on all the zones */
259 memcpy(zones, zinfo->zone_cache + zno,
260 sizeof(*zinfo->zone_cache) * *nr_zones);
261 return 0;
262 }
263 }
264
265 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
266 copy_zone_info_cb, zones);
267 if (ret < 0) {
268 btrfs_err_in_rcu(device->fs_info,
269 "zoned: failed to read zone %llu on %s (devid %llu)",
270 pos, rcu_str_deref(device->name),
271 device->devid);
272 return ret;
273 }
274 *nr_zones = ret;
275 if (!ret)
276 return -EIO;
277
278 /* Populate cache */
279 if (zinfo->zone_cache) {
280 u32 zno = pos >> zinfo->zone_size_shift;
281
282 memcpy(zinfo->zone_cache + zno, zones,
283 sizeof(*zinfo->zone_cache) * *nr_zones);
284 }
285
286 return 0;
287 }
288
289 /* The emulated zone size is determined from the size of device extent */
290 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
291 {
292 struct btrfs_path *path;
293 struct btrfs_root *root = fs_info->dev_root;
294 struct btrfs_key key;
295 struct extent_buffer *leaf;
296 struct btrfs_dev_extent *dext;
297 int ret = 0;
298
299 key.objectid = 1;
300 key.type = BTRFS_DEV_EXTENT_KEY;
301 key.offset = 0;
302
303 path = btrfs_alloc_path();
304 if (!path)
305 return -ENOMEM;
306
307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
308 if (ret < 0)
309 goto out;
310
311 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
312 ret = btrfs_next_leaf(root, path);
313 if (ret < 0)
314 goto out;
315 /* No dev extents at all? Not good */
316 if (ret > 0) {
317 ret = -EUCLEAN;
318 goto out;
319 }
320 }
321
322 leaf = path->nodes[0];
323 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
324 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
325 ret = 0;
326
327 out:
328 btrfs_free_path(path);
329
330 return ret;
331 }
332
333 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
334 {
335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
336 struct btrfs_device *device;
337 int ret = 0;
338
339 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
340 if (!btrfs_fs_incompat(fs_info, ZONED))
341 return 0;
342
343 mutex_lock(&fs_devices->device_list_mutex);
344 list_for_each_entry(device, &fs_devices->devices, dev_list) {
345 /* We can skip reading of zone info for missing devices */
346 if (!device->bdev)
347 continue;
348
349 ret = btrfs_get_dev_zone_info(device, true);
350 if (ret)
351 break;
352 }
353 mutex_unlock(&fs_devices->device_list_mutex);
354
355 return ret;
356 }
357
358 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
359 {
360 struct btrfs_fs_info *fs_info = device->fs_info;
361 struct btrfs_zoned_device_info *zone_info = NULL;
362 struct block_device *bdev = device->bdev;
363 unsigned int max_active_zones;
364 unsigned int nactive;
365 sector_t nr_sectors;
366 sector_t sector = 0;
367 struct blk_zone *zones = NULL;
368 unsigned int i, nreported = 0, nr_zones;
369 sector_t zone_sectors;
370 char *model, *emulated;
371 int ret;
372
373 /*
374 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
375 * yet be set.
376 */
377 if (!btrfs_fs_incompat(fs_info, ZONED))
378 return 0;
379
380 if (device->zone_info)
381 return 0;
382
383 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
384 if (!zone_info)
385 return -ENOMEM;
386
387 device->zone_info = zone_info;
388
389 if (!bdev_is_zoned(bdev)) {
390 if (!fs_info->zone_size) {
391 ret = calculate_emulated_zone_size(fs_info);
392 if (ret)
393 goto out;
394 }
395
396 ASSERT(fs_info->zone_size);
397 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
398 } else {
399 zone_sectors = bdev_zone_sectors(bdev);
400 }
401
402 ASSERT(is_power_of_two_u64(zone_sectors));
403 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
404
405 /* We reject devices with a zone size larger than 8GB */
406 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
407 btrfs_err_in_rcu(fs_info,
408 "zoned: %s: zone size %llu larger than supported maximum %llu",
409 rcu_str_deref(device->name),
410 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
411 ret = -EINVAL;
412 goto out;
413 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
414 btrfs_err_in_rcu(fs_info,
415 "zoned: %s: zone size %llu smaller than supported minimum %u",
416 rcu_str_deref(device->name),
417 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
418 ret = -EINVAL;
419 goto out;
420 }
421
422 nr_sectors = bdev_nr_sectors(bdev);
423 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
424 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
425 if (!IS_ALIGNED(nr_sectors, zone_sectors))
426 zone_info->nr_zones++;
427
428 max_active_zones = bdev_max_active_zones(bdev);
429 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
430 btrfs_err_in_rcu(fs_info,
431 "zoned: %s: max active zones %u is too small, need at least %u active zones",
432 rcu_str_deref(device->name), max_active_zones,
433 BTRFS_MIN_ACTIVE_ZONES);
434 ret = -EINVAL;
435 goto out;
436 }
437 zone_info->max_active_zones = max_active_zones;
438
439 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
440 if (!zone_info->seq_zones) {
441 ret = -ENOMEM;
442 goto out;
443 }
444
445 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
446 if (!zone_info->empty_zones) {
447 ret = -ENOMEM;
448 goto out;
449 }
450
451 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452 if (!zone_info->active_zones) {
453 ret = -ENOMEM;
454 goto out;
455 }
456
457 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
458 if (!zones) {
459 ret = -ENOMEM;
460 goto out;
461 }
462
463 /*
464 * Enable zone cache only for a zoned device. On a non-zoned device, we
465 * fill the zone info with emulated CONVENTIONAL zones, so no need to
466 * use the cache.
467 */
468 if (populate_cache && bdev_is_zoned(device->bdev)) {
469 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
470 sizeof(struct blk_zone));
471 if (!zone_info->zone_cache) {
472 btrfs_err_in_rcu(device->fs_info,
473 "zoned: failed to allocate zone cache for %s",
474 rcu_str_deref(device->name));
475 ret = -ENOMEM;
476 goto out;
477 }
478 }
479
480 /* Get zones type */
481 nactive = 0;
482 while (sector < nr_sectors) {
483 nr_zones = BTRFS_REPORT_NR_ZONES;
484 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
485 &nr_zones);
486 if (ret)
487 goto out;
488
489 for (i = 0; i < nr_zones; i++) {
490 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
491 __set_bit(nreported, zone_info->seq_zones);
492 switch (zones[i].cond) {
493 case BLK_ZONE_COND_EMPTY:
494 __set_bit(nreported, zone_info->empty_zones);
495 break;
496 case BLK_ZONE_COND_IMP_OPEN:
497 case BLK_ZONE_COND_EXP_OPEN:
498 case BLK_ZONE_COND_CLOSED:
499 __set_bit(nreported, zone_info->active_zones);
500 nactive++;
501 break;
502 }
503 nreported++;
504 }
505 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
506 }
507
508 if (nreported != zone_info->nr_zones) {
509 btrfs_err_in_rcu(device->fs_info,
510 "inconsistent number of zones on %s (%u/%u)",
511 rcu_str_deref(device->name), nreported,
512 zone_info->nr_zones);
513 ret = -EIO;
514 goto out;
515 }
516
517 if (max_active_zones) {
518 if (nactive > max_active_zones) {
519 btrfs_err_in_rcu(device->fs_info,
520 "zoned: %u active zones on %s exceeds max_active_zones %u",
521 nactive, rcu_str_deref(device->name),
522 max_active_zones);
523 ret = -EIO;
524 goto out;
525 }
526 atomic_set(&zone_info->active_zones_left,
527 max_active_zones - nactive);
528 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
529 }
530
531 /* Validate superblock log */
532 nr_zones = BTRFS_NR_SB_LOG_ZONES;
533 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
534 u32 sb_zone;
535 u64 sb_wp;
536 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
537
538 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
539 if (sb_zone + 1 >= zone_info->nr_zones)
540 continue;
541
542 ret = btrfs_get_dev_zones(device,
543 zone_start_physical(sb_zone, zone_info),
544 &zone_info->sb_zones[sb_pos],
545 &nr_zones);
546 if (ret)
547 goto out;
548
549 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
550 btrfs_err_in_rcu(device->fs_info,
551 "zoned: failed to read super block log zone info at devid %llu zone %u",
552 device->devid, sb_zone);
553 ret = -EUCLEAN;
554 goto out;
555 }
556
557 /*
558 * If zones[0] is conventional, always use the beginning of the
559 * zone to record superblock. No need to validate in that case.
560 */
561 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
562 BLK_ZONE_TYPE_CONVENTIONAL)
563 continue;
564
565 ret = sb_write_pointer(device->bdev,
566 &zone_info->sb_zones[sb_pos], &sb_wp);
567 if (ret != -ENOENT && ret) {
568 btrfs_err_in_rcu(device->fs_info,
569 "zoned: super block log zone corrupted devid %llu zone %u",
570 device->devid, sb_zone);
571 ret = -EUCLEAN;
572 goto out;
573 }
574 }
575
576
577 kvfree(zones);
578
579 if (bdev_is_zoned(bdev)) {
580 model = "host-managed zoned";
581 emulated = "";
582 } else {
583 model = "regular";
584 emulated = "emulated ";
585 }
586
587 btrfs_info_in_rcu(fs_info,
588 "%s block device %s, %u %szones of %llu bytes",
589 model, rcu_str_deref(device->name), zone_info->nr_zones,
590 emulated, zone_info->zone_size);
591
592 return 0;
593
594 out:
595 kvfree(zones);
596 btrfs_destroy_dev_zone_info(device);
597 return ret;
598 }
599
600 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
601 {
602 struct btrfs_zoned_device_info *zone_info = device->zone_info;
603
604 if (!zone_info)
605 return;
606
607 bitmap_free(zone_info->active_zones);
608 bitmap_free(zone_info->seq_zones);
609 bitmap_free(zone_info->empty_zones);
610 vfree(zone_info->zone_cache);
611 kfree(zone_info);
612 device->zone_info = NULL;
613 }
614
615 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
616 {
617 struct btrfs_zoned_device_info *zone_info;
618
619 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
620 if (!zone_info)
621 return NULL;
622
623 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
624 if (!zone_info->seq_zones)
625 goto out;
626
627 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
628 zone_info->nr_zones);
629
630 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
631 if (!zone_info->empty_zones)
632 goto out;
633
634 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
635 zone_info->nr_zones);
636
637 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
638 if (!zone_info->active_zones)
639 goto out;
640
641 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
642 zone_info->nr_zones);
643 zone_info->zone_cache = NULL;
644
645 return zone_info;
646
647 out:
648 bitmap_free(zone_info->seq_zones);
649 bitmap_free(zone_info->empty_zones);
650 bitmap_free(zone_info->active_zones);
651 kfree(zone_info);
652 return NULL;
653 }
654
655 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
656 struct blk_zone *zone)
657 {
658 unsigned int nr_zones = 1;
659 int ret;
660
661 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
662 if (ret != 0 || !nr_zones)
663 return ret ? ret : -EIO;
664
665 return 0;
666 }
667
668 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
669 {
670 struct btrfs_device *device;
671
672 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
673 if (device->bdev && bdev_is_zoned(device->bdev)) {
674 btrfs_err(fs_info,
675 "zoned: mode not enabled but zoned device found: %pg",
676 device->bdev);
677 return -EINVAL;
678 }
679 }
680
681 return 0;
682 }
683
684 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
685 {
686 struct queue_limits *lim = &fs_info->limits;
687 struct btrfs_device *device;
688 u64 zone_size = 0;
689 int ret;
690
691 /*
692 * Host-Managed devices can't be used without the ZONED flag. With the
693 * ZONED all devices can be used, using zone emulation if required.
694 */
695 if (!btrfs_fs_incompat(fs_info, ZONED))
696 return btrfs_check_for_zoned_device(fs_info);
697
698 blk_set_stacking_limits(lim);
699
700 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
701 struct btrfs_zoned_device_info *zone_info = device->zone_info;
702
703 if (!device->bdev)
704 continue;
705
706 if (!zone_size) {
707 zone_size = zone_info->zone_size;
708 } else if (zone_info->zone_size != zone_size) {
709 btrfs_err(fs_info,
710 "zoned: unequal block device zone sizes: have %llu found %llu",
711 zone_info->zone_size, zone_size);
712 return -EINVAL;
713 }
714
715 /*
716 * With the zoned emulation, we can have non-zoned device on the
717 * zoned mode. In this case, we don't have a valid max zone
718 * append size.
719 */
720 if (bdev_is_zoned(device->bdev)) {
721 blk_stack_limits(lim,
722 &bdev_get_queue(device->bdev)->limits,
723 0);
724 }
725 }
726
727 /*
728 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
729 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
730 * check the alignment here.
731 */
732 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
733 btrfs_err(fs_info,
734 "zoned: zone size %llu not aligned to stripe %u",
735 zone_size, BTRFS_STRIPE_LEN);
736 return -EINVAL;
737 }
738
739 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
740 btrfs_err(fs_info, "zoned: mixed block groups not supported");
741 return -EINVAL;
742 }
743
744 fs_info->zone_size = zone_size;
745 /*
746 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
747 * Technically, we can have multiple pages per segment. But, since
748 * we add the pages one by one to a bio, and cannot increase the
749 * metadata reservation even if it increases the number of extents, it
750 * is safe to stick with the limit.
751 */
752 fs_info->max_zone_append_size = ALIGN_DOWN(
753 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
754 (u64)lim->max_sectors << SECTOR_SHIFT,
755 (u64)lim->max_segments << PAGE_SHIFT),
756 fs_info->sectorsize);
757 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
758 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
759 fs_info->max_extent_size = fs_info->max_zone_append_size;
760
761 /*
762 * Check mount options here, because we might change fs_info->zoned
763 * from fs_info->zone_size.
764 */
765 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
766 if (ret)
767 return ret;
768
769 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
770 return 0;
771 }
772
773 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
774 {
775 if (!btrfs_is_zoned(info))
776 return 0;
777
778 /*
779 * Space cache writing is not COWed. Disable that to avoid write errors
780 * in sequential zones.
781 */
782 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
783 btrfs_err(info, "zoned: space cache v1 is not supported");
784 return -EINVAL;
785 }
786
787 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
788 btrfs_err(info, "zoned: NODATACOW not supported");
789 return -EINVAL;
790 }
791
792 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
793 btrfs_info(info,
794 "zoned: async discard ignored and disabled for zoned mode");
795 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
796 }
797
798 return 0;
799 }
800
801 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
802 int rw, u64 *bytenr_ret)
803 {
804 u64 wp;
805 int ret;
806
807 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
808 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
809 return 0;
810 }
811
812 ret = sb_write_pointer(bdev, zones, &wp);
813 if (ret != -ENOENT && ret < 0)
814 return ret;
815
816 if (rw == WRITE) {
817 struct blk_zone *reset = NULL;
818
819 if (wp == zones[0].start << SECTOR_SHIFT)
820 reset = &zones[0];
821 else if (wp == zones[1].start << SECTOR_SHIFT)
822 reset = &zones[1];
823
824 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
825 unsigned int nofs_flags;
826
827 ASSERT(sb_zone_is_full(reset));
828
829 nofs_flags = memalloc_nofs_save();
830 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
831 reset->start, reset->len);
832 memalloc_nofs_restore(nofs_flags);
833 if (ret)
834 return ret;
835
836 reset->cond = BLK_ZONE_COND_EMPTY;
837 reset->wp = reset->start;
838 }
839 } else if (ret != -ENOENT) {
840 /*
841 * For READ, we want the previous one. Move write pointer to
842 * the end of a zone, if it is at the head of a zone.
843 */
844 u64 zone_end = 0;
845
846 if (wp == zones[0].start << SECTOR_SHIFT)
847 zone_end = zones[1].start + zones[1].capacity;
848 else if (wp == zones[1].start << SECTOR_SHIFT)
849 zone_end = zones[0].start + zones[0].capacity;
850 if (zone_end)
851 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852 BTRFS_SUPER_INFO_SIZE);
853
854 wp -= BTRFS_SUPER_INFO_SIZE;
855 }
856
857 *bytenr_ret = wp;
858 return 0;
859
860 }
861
862 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863 u64 *bytenr_ret)
864 {
865 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
866 sector_t zone_sectors;
867 u32 sb_zone;
868 int ret;
869 u8 zone_sectors_shift;
870 sector_t nr_sectors;
871 u32 nr_zones;
872
873 if (!bdev_is_zoned(bdev)) {
874 *bytenr_ret = btrfs_sb_offset(mirror);
875 return 0;
876 }
877
878 ASSERT(rw == READ || rw == WRITE);
879
880 zone_sectors = bdev_zone_sectors(bdev);
881 if (!is_power_of_2(zone_sectors))
882 return -EINVAL;
883 zone_sectors_shift = ilog2(zone_sectors);
884 nr_sectors = bdev_nr_sectors(bdev);
885 nr_zones = nr_sectors >> zone_sectors_shift;
886
887 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
888 if (sb_zone + 1 >= nr_zones)
889 return -ENOENT;
890
891 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
892 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
893 zones);
894 if (ret < 0)
895 return ret;
896 if (ret != BTRFS_NR_SB_LOG_ZONES)
897 return -EIO;
898
899 return sb_log_location(bdev, zones, rw, bytenr_ret);
900 }
901
902 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903 u64 *bytenr_ret)
904 {
905 struct btrfs_zoned_device_info *zinfo = device->zone_info;
906 u32 zone_num;
907
908 /*
909 * For a zoned filesystem on a non-zoned block device, use the same
910 * super block locations as regular filesystem. Doing so, the super
911 * block can always be retrieved and the zoned flag of the volume
912 * detected from the super block information.
913 */
914 if (!bdev_is_zoned(device->bdev)) {
915 *bytenr_ret = btrfs_sb_offset(mirror);
916 return 0;
917 }
918
919 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
920 if (zone_num + 1 >= zinfo->nr_zones)
921 return -ENOENT;
922
923 return sb_log_location(device->bdev,
924 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925 rw, bytenr_ret);
926 }
927
928 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929 int mirror)
930 {
931 u32 zone_num;
932
933 if (!zinfo)
934 return false;
935
936 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
937 if (zone_num + 1 >= zinfo->nr_zones)
938 return false;
939
940 if (!test_bit(zone_num, zinfo->seq_zones))
941 return false;
942
943 return true;
944 }
945
946 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
947 {
948 struct btrfs_zoned_device_info *zinfo = device->zone_info;
949 struct blk_zone *zone;
950 int i;
951
952 if (!is_sb_log_zone(zinfo, mirror))
953 return 0;
954
955 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
956 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957 /* Advance the next zone */
958 if (zone->cond == BLK_ZONE_COND_FULL) {
959 zone++;
960 continue;
961 }
962
963 if (zone->cond == BLK_ZONE_COND_EMPTY)
964 zone->cond = BLK_ZONE_COND_IMP_OPEN;
965
966 zone->wp += SUPER_INFO_SECTORS;
967
968 if (sb_zone_is_full(zone)) {
969 /*
970 * No room left to write new superblock. Since
971 * superblock is written with REQ_SYNC, it is safe to
972 * finish the zone now.
973 *
974 * If the write pointer is exactly at the capacity,
975 * explicit ZONE_FINISH is not necessary.
976 */
977 if (zone->wp != zone->start + zone->capacity) {
978 unsigned int nofs_flags;
979 int ret;
980
981 nofs_flags = memalloc_nofs_save();
982 ret = blkdev_zone_mgmt(device->bdev,
983 REQ_OP_ZONE_FINISH, zone->start,
984 zone->len);
985 memalloc_nofs_restore(nofs_flags);
986 if (ret)
987 return ret;
988 }
989
990 zone->wp = zone->start + zone->len;
991 zone->cond = BLK_ZONE_COND_FULL;
992 }
993 return 0;
994 }
995
996 /* All the zones are FULL. Should not reach here. */
997 ASSERT(0);
998 return -EIO;
999 }
1000
1001 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1002 {
1003 unsigned int nofs_flags;
1004 sector_t zone_sectors;
1005 sector_t nr_sectors;
1006 u8 zone_sectors_shift;
1007 u32 sb_zone;
1008 u32 nr_zones;
1009 int ret;
1010
1011 zone_sectors = bdev_zone_sectors(bdev);
1012 zone_sectors_shift = ilog2(zone_sectors);
1013 nr_sectors = bdev_nr_sectors(bdev);
1014 nr_zones = nr_sectors >> zone_sectors_shift;
1015
1016 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1017 if (sb_zone + 1 >= nr_zones)
1018 return -ENOENT;
1019
1020 nofs_flags = memalloc_nofs_save();
1021 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1022 zone_start_sector(sb_zone, bdev),
1023 zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1024 memalloc_nofs_restore(nofs_flags);
1025 return ret;
1026 }
1027
1028 /*
1029 * Find allocatable zones within a given region.
1030 *
1031 * @device: the device to allocate a region on
1032 * @hole_start: the position of the hole to allocate the region
1033 * @num_bytes: size of wanted region
1034 * @hole_end: the end of the hole
1035 * @return: position of allocatable zones
1036 *
1037 * Allocatable region should not contain any superblock locations.
1038 */
1039 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1040 u64 hole_end, u64 num_bytes)
1041 {
1042 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1043 const u8 shift = zinfo->zone_size_shift;
1044 u64 nzones = num_bytes >> shift;
1045 u64 pos = hole_start;
1046 u64 begin, end;
1047 bool have_sb;
1048 int i;
1049
1050 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1051 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1052
1053 while (pos < hole_end) {
1054 begin = pos >> shift;
1055 end = begin + nzones;
1056
1057 if (end > zinfo->nr_zones)
1058 return hole_end;
1059
1060 /* Check if zones in the region are all empty */
1061 if (btrfs_dev_is_sequential(device, pos) &&
1062 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1063 pos += zinfo->zone_size;
1064 continue;
1065 }
1066
1067 have_sb = false;
1068 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1069 u32 sb_zone;
1070 u64 sb_pos;
1071
1072 sb_zone = sb_zone_number(shift, i);
1073 if (!(end <= sb_zone ||
1074 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1075 have_sb = true;
1076 pos = zone_start_physical(
1077 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1078 break;
1079 }
1080
1081 /* We also need to exclude regular superblock positions */
1082 sb_pos = btrfs_sb_offset(i);
1083 if (!(pos + num_bytes <= sb_pos ||
1084 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1085 have_sb = true;
1086 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1087 zinfo->zone_size);
1088 break;
1089 }
1090 }
1091 if (!have_sb)
1092 break;
1093 }
1094
1095 return pos;
1096 }
1097
1098 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1099 {
1100 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1101 unsigned int zno = (pos >> zone_info->zone_size_shift);
1102
1103 /* We can use any number of zones */
1104 if (zone_info->max_active_zones == 0)
1105 return true;
1106
1107 if (!test_bit(zno, zone_info->active_zones)) {
1108 /* Active zone left? */
1109 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1110 return false;
1111 if (test_and_set_bit(zno, zone_info->active_zones)) {
1112 /* Someone already set the bit */
1113 atomic_inc(&zone_info->active_zones_left);
1114 }
1115 }
1116
1117 return true;
1118 }
1119
1120 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1121 {
1122 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1123 unsigned int zno = (pos >> zone_info->zone_size_shift);
1124
1125 /* We can use any number of zones */
1126 if (zone_info->max_active_zones == 0)
1127 return;
1128
1129 if (test_and_clear_bit(zno, zone_info->active_zones))
1130 atomic_inc(&zone_info->active_zones_left);
1131 }
1132
1133 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1134 u64 length, u64 *bytes)
1135 {
1136 unsigned int nofs_flags;
1137 int ret;
1138
1139 *bytes = 0;
1140 nofs_flags = memalloc_nofs_save();
1141 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1142 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1143 memalloc_nofs_restore(nofs_flags);
1144 if (ret)
1145 return ret;
1146
1147 *bytes = length;
1148 while (length) {
1149 btrfs_dev_set_zone_empty(device, physical);
1150 btrfs_dev_clear_active_zone(device, physical);
1151 physical += device->zone_info->zone_size;
1152 length -= device->zone_info->zone_size;
1153 }
1154
1155 return 0;
1156 }
1157
1158 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1159 {
1160 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1161 const u8 shift = zinfo->zone_size_shift;
1162 unsigned long begin = start >> shift;
1163 unsigned long nbits = size >> shift;
1164 u64 pos;
1165 int ret;
1166
1167 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1168 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1169
1170 if (begin + nbits > zinfo->nr_zones)
1171 return -ERANGE;
1172
1173 /* All the zones are conventional */
1174 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1175 return 0;
1176
1177 /* All the zones are sequential and empty */
1178 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1179 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1180 return 0;
1181
1182 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1183 u64 reset_bytes;
1184
1185 if (!btrfs_dev_is_sequential(device, pos) ||
1186 btrfs_dev_is_empty_zone(device, pos))
1187 continue;
1188
1189 /* Free regions should be empty */
1190 btrfs_warn_in_rcu(
1191 device->fs_info,
1192 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1193 rcu_str_deref(device->name), device->devid, pos >> shift);
1194 WARN_ON_ONCE(1);
1195
1196 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1197 &reset_bytes);
1198 if (ret)
1199 return ret;
1200 }
1201
1202 return 0;
1203 }
1204
1205 /*
1206 * Calculate an allocation pointer from the extent allocation information
1207 * for a block group consist of conventional zones. It is pointed to the
1208 * end of the highest addressed extent in the block group as an allocation
1209 * offset.
1210 */
1211 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1212 u64 *offset_ret, bool new)
1213 {
1214 struct btrfs_fs_info *fs_info = cache->fs_info;
1215 struct btrfs_root *root;
1216 struct btrfs_path *path;
1217 struct btrfs_key key;
1218 struct btrfs_key found_key;
1219 int ret;
1220 u64 length;
1221
1222 /*
1223 * Avoid tree lookups for a new block group, there's no use for it.
1224 * It must always be 0.
1225 *
1226 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1227 * For new a block group, this function is called from
1228 * btrfs_make_block_group() which is already taking the chunk mutex.
1229 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1230 * buffer locks to avoid deadlock.
1231 */
1232 if (new) {
1233 *offset_ret = 0;
1234 return 0;
1235 }
1236
1237 path = btrfs_alloc_path();
1238 if (!path)
1239 return -ENOMEM;
1240
1241 key.objectid = cache->start + cache->length;
1242 key.type = 0;
1243 key.offset = 0;
1244
1245 root = btrfs_extent_root(fs_info, key.objectid);
1246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1247 /* We should not find the exact match */
1248 if (!ret)
1249 ret = -EUCLEAN;
1250 if (ret < 0)
1251 goto out;
1252
1253 ret = btrfs_previous_extent_item(root, path, cache->start);
1254 if (ret) {
1255 if (ret == 1) {
1256 ret = 0;
1257 *offset_ret = 0;
1258 }
1259 goto out;
1260 }
1261
1262 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1263
1264 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1265 length = found_key.offset;
1266 else
1267 length = fs_info->nodesize;
1268
1269 if (!(found_key.objectid >= cache->start &&
1270 found_key.objectid + length <= cache->start + cache->length)) {
1271 ret = -EUCLEAN;
1272 goto out;
1273 }
1274 *offset_ret = found_key.objectid + length - cache->start;
1275 ret = 0;
1276
1277 out:
1278 btrfs_free_path(path);
1279 return ret;
1280 }
1281
1282 struct zone_info {
1283 u64 physical;
1284 u64 capacity;
1285 u64 alloc_offset;
1286 };
1287
1288 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1289 struct zone_info *info, unsigned long *active,
1290 struct btrfs_chunk_map *map)
1291 {
1292 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1293 struct btrfs_device *device = map->stripes[zone_idx].dev;
1294 int dev_replace_is_ongoing = 0;
1295 unsigned int nofs_flag;
1296 struct blk_zone zone;
1297 int ret;
1298
1299 info->physical = map->stripes[zone_idx].physical;
1300
1301 if (!device->bdev) {
1302 info->alloc_offset = WP_MISSING_DEV;
1303 return 0;
1304 }
1305
1306 /* Consider a zone as active if we can allow any number of active zones. */
1307 if (!device->zone_info->max_active_zones)
1308 __set_bit(zone_idx, active);
1309
1310 if (!btrfs_dev_is_sequential(device, info->physical)) {
1311 info->alloc_offset = WP_CONVENTIONAL;
1312 return 0;
1313 }
1314
1315 /* This zone will be used for allocation, so mark this zone non-empty. */
1316 btrfs_dev_clear_zone_empty(device, info->physical);
1317
1318 down_read(&dev_replace->rwsem);
1319 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1320 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1321 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1322 up_read(&dev_replace->rwsem);
1323
1324 /*
1325 * The group is mapped to a sequential zone. Get the zone write pointer
1326 * to determine the allocation offset within the zone.
1327 */
1328 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1329 nofs_flag = memalloc_nofs_save();
1330 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1331 memalloc_nofs_restore(nofs_flag);
1332 if (ret) {
1333 if (ret != -EIO && ret != -EOPNOTSUPP)
1334 return ret;
1335 info->alloc_offset = WP_MISSING_DEV;
1336 return 0;
1337 }
1338
1339 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1340 btrfs_err_in_rcu(fs_info,
1341 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1342 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1343 device->devid);
1344 return -EIO;
1345 }
1346
1347 info->capacity = (zone.capacity << SECTOR_SHIFT);
1348
1349 switch (zone.cond) {
1350 case BLK_ZONE_COND_OFFLINE:
1351 case BLK_ZONE_COND_READONLY:
1352 btrfs_err(fs_info,
1353 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1354 (info->physical >> device->zone_info->zone_size_shift),
1355 rcu_str_deref(device->name), device->devid);
1356 info->alloc_offset = WP_MISSING_DEV;
1357 break;
1358 case BLK_ZONE_COND_EMPTY:
1359 info->alloc_offset = 0;
1360 break;
1361 case BLK_ZONE_COND_FULL:
1362 info->alloc_offset = info->capacity;
1363 break;
1364 default:
1365 /* Partially used zone. */
1366 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1367 __set_bit(zone_idx, active);
1368 break;
1369 }
1370
1371 return 0;
1372 }
1373
1374 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1375 struct zone_info *info,
1376 unsigned long *active)
1377 {
1378 if (info->alloc_offset == WP_MISSING_DEV) {
1379 btrfs_err(bg->fs_info,
1380 "zoned: cannot recover write pointer for zone %llu",
1381 info->physical);
1382 return -EIO;
1383 }
1384
1385 bg->alloc_offset = info->alloc_offset;
1386 bg->zone_capacity = info->capacity;
1387 if (test_bit(0, active))
1388 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1389 return 0;
1390 }
1391
1392 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1393 struct btrfs_chunk_map *map,
1394 struct zone_info *zone_info,
1395 unsigned long *active)
1396 {
1397 struct btrfs_fs_info *fs_info = bg->fs_info;
1398
1399 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1400 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1401 return -EINVAL;
1402 }
1403
1404 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1405 btrfs_err(bg->fs_info,
1406 "zoned: cannot recover write pointer for zone %llu",
1407 zone_info[0].physical);
1408 return -EIO;
1409 }
1410 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1411 btrfs_err(bg->fs_info,
1412 "zoned: cannot recover write pointer for zone %llu",
1413 zone_info[1].physical);
1414 return -EIO;
1415 }
1416 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1417 btrfs_err(bg->fs_info,
1418 "zoned: write pointer offset mismatch of zones in DUP profile");
1419 return -EIO;
1420 }
1421
1422 if (test_bit(0, active) != test_bit(1, active)) {
1423 if (!btrfs_zone_activate(bg))
1424 return -EIO;
1425 } else if (test_bit(0, active)) {
1426 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1427 }
1428
1429 bg->alloc_offset = zone_info[0].alloc_offset;
1430 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1431 return 0;
1432 }
1433
1434 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1435 struct btrfs_chunk_map *map,
1436 struct zone_info *zone_info,
1437 unsigned long *active)
1438 {
1439 struct btrfs_fs_info *fs_info = bg->fs_info;
1440 int i;
1441
1442 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1443 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1444 btrfs_bg_type_to_raid_name(map->type));
1445 return -EINVAL;
1446 }
1447
1448 for (i = 0; i < map->num_stripes; i++) {
1449 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451 continue;
1452
1453 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454 !btrfs_test_opt(fs_info, DEGRADED)) {
1455 btrfs_err(fs_info,
1456 "zoned: write pointer offset mismatch of zones in %s profile",
1457 btrfs_bg_type_to_raid_name(map->type));
1458 return -EIO;
1459 }
1460 if (test_bit(0, active) != test_bit(i, active)) {
1461 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462 !btrfs_zone_activate(bg)) {
1463 return -EIO;
1464 }
1465 } else {
1466 if (test_bit(0, active))
1467 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1468 }
1469 /* In case a device is missing we have a cap of 0, so don't use it. */
1470 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1471 zone_info[1].capacity);
1472 }
1473
1474 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1475 bg->alloc_offset = zone_info[0].alloc_offset;
1476 else
1477 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1478
1479 return 0;
1480 }
1481
1482 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1483 struct btrfs_chunk_map *map,
1484 struct zone_info *zone_info,
1485 unsigned long *active)
1486 {
1487 struct btrfs_fs_info *fs_info = bg->fs_info;
1488
1489 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1490 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1491 btrfs_bg_type_to_raid_name(map->type));
1492 return -EINVAL;
1493 }
1494
1495 for (int i = 0; i < map->num_stripes; i++) {
1496 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1497 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1498 continue;
1499
1500 if (test_bit(0, active) != test_bit(i, active)) {
1501 if (!btrfs_zone_activate(bg))
1502 return -EIO;
1503 } else {
1504 if (test_bit(0, active))
1505 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1506 }
1507 bg->zone_capacity += zone_info[i].capacity;
1508 bg->alloc_offset += zone_info[i].alloc_offset;
1509 }
1510
1511 return 0;
1512 }
1513
1514 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1515 struct btrfs_chunk_map *map,
1516 struct zone_info *zone_info,
1517 unsigned long *active)
1518 {
1519 struct btrfs_fs_info *fs_info = bg->fs_info;
1520
1521 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1522 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1523 btrfs_bg_type_to_raid_name(map->type));
1524 return -EINVAL;
1525 }
1526
1527 for (int i = 0; i < map->num_stripes; i++) {
1528 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1529 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1530 continue;
1531
1532 if (test_bit(0, active) != test_bit(i, active)) {
1533 if (!btrfs_zone_activate(bg))
1534 return -EIO;
1535 } else {
1536 if (test_bit(0, active))
1537 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1538 }
1539
1540 if ((i % map->sub_stripes) == 0) {
1541 bg->zone_capacity += zone_info[i].capacity;
1542 bg->alloc_offset += zone_info[i].alloc_offset;
1543 }
1544 }
1545
1546 return 0;
1547 }
1548
1549 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1550 {
1551 struct btrfs_fs_info *fs_info = cache->fs_info;
1552 struct btrfs_chunk_map *map;
1553 u64 logical = cache->start;
1554 u64 length = cache->length;
1555 struct zone_info *zone_info = NULL;
1556 int ret;
1557 int i;
1558 unsigned long *active = NULL;
1559 u64 last_alloc = 0;
1560 u32 num_sequential = 0, num_conventional = 0;
1561
1562 if (!btrfs_is_zoned(fs_info))
1563 return 0;
1564
1565 /* Sanity check */
1566 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1567 btrfs_err(fs_info,
1568 "zoned: block group %llu len %llu unaligned to zone size %llu",
1569 logical, length, fs_info->zone_size);
1570 return -EIO;
1571 }
1572
1573 map = btrfs_find_chunk_map(fs_info, logical, length);
1574 if (!map)
1575 return -EINVAL;
1576
1577 cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS);
1578 if (!cache->physical_map) {
1579 ret = -ENOMEM;
1580 goto out;
1581 }
1582
1583 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1584 if (!zone_info) {
1585 ret = -ENOMEM;
1586 goto out;
1587 }
1588
1589 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1590 if (!active) {
1591 ret = -ENOMEM;
1592 goto out;
1593 }
1594
1595 for (i = 0; i < map->num_stripes; i++) {
1596 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1597 if (ret)
1598 goto out;
1599
1600 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1601 num_conventional++;
1602 else
1603 num_sequential++;
1604 }
1605
1606 if (num_sequential > 0)
1607 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1608
1609 if (num_conventional > 0) {
1610 /* Zone capacity is always zone size in emulation */
1611 cache->zone_capacity = cache->length;
1612 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1613 if (ret) {
1614 btrfs_err(fs_info,
1615 "zoned: failed to determine allocation offset of bg %llu",
1616 cache->start);
1617 goto out;
1618 } else if (map->num_stripes == num_conventional) {
1619 cache->alloc_offset = last_alloc;
1620 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1621 goto out;
1622 }
1623 }
1624
1625 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1626 case 0: /* single */
1627 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1628 break;
1629 case BTRFS_BLOCK_GROUP_DUP:
1630 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1631 break;
1632 case BTRFS_BLOCK_GROUP_RAID1:
1633 case BTRFS_BLOCK_GROUP_RAID1C3:
1634 case BTRFS_BLOCK_GROUP_RAID1C4:
1635 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1636 break;
1637 case BTRFS_BLOCK_GROUP_RAID0:
1638 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1639 break;
1640 case BTRFS_BLOCK_GROUP_RAID10:
1641 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1642 break;
1643 case BTRFS_BLOCK_GROUP_RAID5:
1644 case BTRFS_BLOCK_GROUP_RAID6:
1645 default:
1646 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1647 btrfs_bg_type_to_raid_name(map->type));
1648 ret = -EINVAL;
1649 goto out;
1650 }
1651
1652 out:
1653 /* Reject non SINGLE data profiles without RST */
1654 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1655 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1656 !fs_info->stripe_root) {
1657 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1658 btrfs_bg_type_to_raid_name(map->type));
1659 return -EINVAL;
1660 }
1661
1662 if (cache->alloc_offset > cache->zone_capacity) {
1663 btrfs_err(fs_info,
1664 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1665 cache->alloc_offset, cache->zone_capacity,
1666 cache->start);
1667 ret = -EIO;
1668 }
1669
1670 /* An extent is allocated after the write pointer */
1671 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1672 btrfs_err(fs_info,
1673 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1674 logical, last_alloc, cache->alloc_offset);
1675 ret = -EIO;
1676 }
1677
1678 if (!ret) {
1679 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1680 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1681 btrfs_get_block_group(cache);
1682 spin_lock(&fs_info->zone_active_bgs_lock);
1683 list_add_tail(&cache->active_bg_list,
1684 &fs_info->zone_active_bgs);
1685 spin_unlock(&fs_info->zone_active_bgs_lock);
1686 }
1687 } else {
1688 btrfs_free_chunk_map(cache->physical_map);
1689 cache->physical_map = NULL;
1690 }
1691 bitmap_free(active);
1692 kfree(zone_info);
1693 btrfs_free_chunk_map(map);
1694
1695 return ret;
1696 }
1697
1698 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1699 {
1700 u64 unusable, free;
1701
1702 if (!btrfs_is_zoned(cache->fs_info))
1703 return;
1704
1705 WARN_ON(cache->bytes_super != 0);
1706 unusable = (cache->alloc_offset - cache->used) +
1707 (cache->length - cache->zone_capacity);
1708 free = cache->zone_capacity - cache->alloc_offset;
1709
1710 /* We only need ->free_space in ALLOC_SEQ block groups */
1711 cache->cached = BTRFS_CACHE_FINISHED;
1712 cache->free_space_ctl->free_space = free;
1713 cache->zone_unusable = unusable;
1714 }
1715
1716 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1717 {
1718 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1719 struct btrfs_inode *inode = bbio->inode;
1720 struct btrfs_fs_info *fs_info = bbio->fs_info;
1721 struct btrfs_block_group *cache;
1722 bool ret = false;
1723
1724 if (!btrfs_is_zoned(fs_info))
1725 return false;
1726
1727 if (!inode || !is_data_inode(&inode->vfs_inode))
1728 return false;
1729
1730 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1731 return false;
1732
1733 /*
1734 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1735 * extent layout the relocation code has.
1736 * Furthermore we have set aside own block-group from which only the
1737 * relocation "process" can allocate and make sure only one process at a
1738 * time can add pages to an extent that gets relocated, so it's safe to
1739 * use regular REQ_OP_WRITE for this special case.
1740 */
1741 if (btrfs_is_data_reloc_root(inode->root))
1742 return false;
1743
1744 cache = btrfs_lookup_block_group(fs_info, start);
1745 ASSERT(cache);
1746 if (!cache)
1747 return false;
1748
1749 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1750 btrfs_put_block_group(cache);
1751
1752 return ret;
1753 }
1754
1755 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1756 {
1757 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1758 struct btrfs_ordered_sum *sum = bbio->sums;
1759
1760 if (physical < bbio->orig_physical)
1761 sum->logical -= bbio->orig_physical - physical;
1762 else
1763 sum->logical += physical - bbio->orig_physical;
1764 }
1765
1766 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1767 u64 logical)
1768 {
1769 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1770 struct extent_map *em;
1771
1772 ordered->disk_bytenr = logical;
1773
1774 write_lock(&em_tree->lock);
1775 em = search_extent_mapping(em_tree, ordered->file_offset,
1776 ordered->num_bytes);
1777 em->block_start = logical;
1778 free_extent_map(em);
1779 write_unlock(&em_tree->lock);
1780 }
1781
1782 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1783 u64 logical, u64 len)
1784 {
1785 struct btrfs_ordered_extent *new;
1786
1787 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1788 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1789 ordered->num_bytes, len, logical))
1790 return false;
1791
1792 new = btrfs_split_ordered_extent(ordered, len);
1793 if (IS_ERR(new))
1794 return false;
1795 new->disk_bytenr = logical;
1796 btrfs_finish_one_ordered(new);
1797 return true;
1798 }
1799
1800 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1801 {
1802 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1803 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1804 struct btrfs_ordered_sum *sum;
1805 u64 logical, len;
1806
1807 /*
1808 * Write to pre-allocated region is for the data relocation, and so
1809 * it should use WRITE operation. No split/rewrite are necessary.
1810 */
1811 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1812 return;
1813
1814 ASSERT(!list_empty(&ordered->list));
1815 /* The ordered->list can be empty in the above pre-alloc case. */
1816 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1817 logical = sum->logical;
1818 len = sum->len;
1819
1820 while (len < ordered->disk_num_bytes) {
1821 sum = list_next_entry(sum, list);
1822 if (sum->logical == logical + len) {
1823 len += sum->len;
1824 continue;
1825 }
1826 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1827 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1828 btrfs_err(fs_info, "failed to split ordered extent");
1829 goto out;
1830 }
1831 logical = sum->logical;
1832 len = sum->len;
1833 }
1834
1835 if (ordered->disk_bytenr != logical)
1836 btrfs_rewrite_logical_zoned(ordered, logical);
1837
1838 out:
1839 /*
1840 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1841 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1842 * addresses and don't contain actual checksums. We thus must free them
1843 * here so that we don't attempt to log the csums later.
1844 */
1845 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1846 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1847 while ((sum = list_first_entry_or_null(&ordered->list,
1848 typeof(*sum), list))) {
1849 list_del(&sum->list);
1850 kfree(sum);
1851 }
1852 }
1853 }
1854
1855 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1856 struct btrfs_block_group **active_bg)
1857 {
1858 const struct writeback_control *wbc = ctx->wbc;
1859 struct btrfs_block_group *block_group = ctx->zoned_bg;
1860 struct btrfs_fs_info *fs_info = block_group->fs_info;
1861
1862 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1863 return true;
1864
1865 if (fs_info->treelog_bg == block_group->start) {
1866 if (!btrfs_zone_activate(block_group)) {
1867 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1868
1869 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1870 return false;
1871 }
1872 } else if (*active_bg != block_group) {
1873 struct btrfs_block_group *tgt = *active_bg;
1874
1875 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1876 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1877
1878 if (tgt) {
1879 /*
1880 * If there is an unsent IO left in the allocated area,
1881 * we cannot wait for them as it may cause a deadlock.
1882 */
1883 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1884 if (wbc->sync_mode == WB_SYNC_NONE ||
1885 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1886 return false;
1887 }
1888
1889 /* Pivot active metadata/system block group. */
1890 btrfs_zoned_meta_io_unlock(fs_info);
1891 wait_eb_writebacks(tgt);
1892 do_zone_finish(tgt, true);
1893 btrfs_zoned_meta_io_lock(fs_info);
1894 if (*active_bg == tgt) {
1895 btrfs_put_block_group(tgt);
1896 *active_bg = NULL;
1897 }
1898 }
1899 if (!btrfs_zone_activate(block_group))
1900 return false;
1901 if (*active_bg != block_group) {
1902 ASSERT(*active_bg == NULL);
1903 *active_bg = block_group;
1904 btrfs_get_block_group(block_group);
1905 }
1906 }
1907
1908 return true;
1909 }
1910
1911 /*
1912 * Check if @ctx->eb is aligned to the write pointer.
1913 *
1914 * Return:
1915 * 0: @ctx->eb is at the write pointer. You can write it.
1916 * -EAGAIN: There is a hole. The caller should handle the case.
1917 * -EBUSY: There is a hole, but the caller can just bail out.
1918 */
1919 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1920 struct btrfs_eb_write_context *ctx)
1921 {
1922 const struct writeback_control *wbc = ctx->wbc;
1923 const struct extent_buffer *eb = ctx->eb;
1924 struct btrfs_block_group *block_group = ctx->zoned_bg;
1925
1926 if (!btrfs_is_zoned(fs_info))
1927 return 0;
1928
1929 if (block_group) {
1930 if (block_group->start > eb->start ||
1931 block_group->start + block_group->length <= eb->start) {
1932 btrfs_put_block_group(block_group);
1933 block_group = NULL;
1934 ctx->zoned_bg = NULL;
1935 }
1936 }
1937
1938 if (!block_group) {
1939 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1940 if (!block_group)
1941 return 0;
1942 ctx->zoned_bg = block_group;
1943 }
1944
1945 if (block_group->meta_write_pointer == eb->start) {
1946 struct btrfs_block_group **tgt;
1947
1948 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1949 return 0;
1950
1951 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1952 tgt = &fs_info->active_system_bg;
1953 else
1954 tgt = &fs_info->active_meta_bg;
1955 if (check_bg_is_active(ctx, tgt))
1956 return 0;
1957 }
1958
1959 /*
1960 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1961 * start writing this eb. In that case, we can just bail out.
1962 */
1963 if (block_group->meta_write_pointer > eb->start)
1964 return -EBUSY;
1965
1966 /* If for_sync, this hole will be filled with trasnsaction commit. */
1967 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1968 return -EAGAIN;
1969 return -EBUSY;
1970 }
1971
1972 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1973 {
1974 if (!btrfs_dev_is_sequential(device, physical))
1975 return -EOPNOTSUPP;
1976
1977 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1978 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1979 }
1980
1981 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1982 struct blk_zone *zone)
1983 {
1984 struct btrfs_io_context *bioc = NULL;
1985 u64 mapped_length = PAGE_SIZE;
1986 unsigned int nofs_flag;
1987 int nmirrors;
1988 int i, ret;
1989
1990 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1991 &mapped_length, &bioc, NULL, NULL);
1992 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1993 ret = -EIO;
1994 goto out_put_bioc;
1995 }
1996
1997 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1998 ret = -EINVAL;
1999 goto out_put_bioc;
2000 }
2001
2002 nofs_flag = memalloc_nofs_save();
2003 nmirrors = (int)bioc->num_stripes;
2004 for (i = 0; i < nmirrors; i++) {
2005 u64 physical = bioc->stripes[i].physical;
2006 struct btrfs_device *dev = bioc->stripes[i].dev;
2007
2008 /* Missing device */
2009 if (!dev->bdev)
2010 continue;
2011
2012 ret = btrfs_get_dev_zone(dev, physical, zone);
2013 /* Failing device */
2014 if (ret == -EIO || ret == -EOPNOTSUPP)
2015 continue;
2016 break;
2017 }
2018 memalloc_nofs_restore(nofs_flag);
2019 out_put_bioc:
2020 btrfs_put_bioc(bioc);
2021 return ret;
2022 }
2023
2024 /*
2025 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2026 * filling zeros between @physical_pos to a write pointer of dev-replace
2027 * source device.
2028 */
2029 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2030 u64 physical_start, u64 physical_pos)
2031 {
2032 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2033 struct blk_zone zone;
2034 u64 length;
2035 u64 wp;
2036 int ret;
2037
2038 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2039 return 0;
2040
2041 ret = read_zone_info(fs_info, logical, &zone);
2042 if (ret)
2043 return ret;
2044
2045 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2046
2047 if (physical_pos == wp)
2048 return 0;
2049
2050 if (physical_pos > wp)
2051 return -EUCLEAN;
2052
2053 length = wp - physical_pos;
2054 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2055 }
2056
2057 /*
2058 * Activate block group and underlying device zones
2059 *
2060 * @block_group: the block group to activate
2061 *
2062 * Return: true on success, false otherwise
2063 */
2064 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2065 {
2066 struct btrfs_fs_info *fs_info = block_group->fs_info;
2067 struct btrfs_chunk_map *map;
2068 struct btrfs_device *device;
2069 u64 physical;
2070 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2071 bool ret;
2072 int i;
2073
2074 if (!btrfs_is_zoned(block_group->fs_info))
2075 return true;
2076
2077 map = block_group->physical_map;
2078
2079 spin_lock(&fs_info->zone_active_bgs_lock);
2080 spin_lock(&block_group->lock);
2081 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2082 ret = true;
2083 goto out_unlock;
2084 }
2085
2086 /* No space left */
2087 if (btrfs_zoned_bg_is_full(block_group)) {
2088 ret = false;
2089 goto out_unlock;
2090 }
2091
2092 for (i = 0; i < map->num_stripes; i++) {
2093 struct btrfs_zoned_device_info *zinfo;
2094 int reserved = 0;
2095
2096 device = map->stripes[i].dev;
2097 physical = map->stripes[i].physical;
2098 zinfo = device->zone_info;
2099
2100 if (zinfo->max_active_zones == 0)
2101 continue;
2102
2103 if (is_data)
2104 reserved = zinfo->reserved_active_zones;
2105 /*
2106 * For the data block group, leave active zones for one
2107 * metadata block group and one system block group.
2108 */
2109 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2110 ret = false;
2111 goto out_unlock;
2112 }
2113
2114 if (!btrfs_dev_set_active_zone(device, physical)) {
2115 /* Cannot activate the zone */
2116 ret = false;
2117 goto out_unlock;
2118 }
2119 if (!is_data)
2120 zinfo->reserved_active_zones--;
2121 }
2122
2123 /* Successfully activated all the zones */
2124 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2125 spin_unlock(&block_group->lock);
2126
2127 /* For the active block group list */
2128 btrfs_get_block_group(block_group);
2129 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2130 spin_unlock(&fs_info->zone_active_bgs_lock);
2131
2132 return true;
2133
2134 out_unlock:
2135 spin_unlock(&block_group->lock);
2136 spin_unlock(&fs_info->zone_active_bgs_lock);
2137 return ret;
2138 }
2139
2140 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2141 {
2142 struct btrfs_fs_info *fs_info = block_group->fs_info;
2143 const u64 end = block_group->start + block_group->length;
2144 struct radix_tree_iter iter;
2145 struct extent_buffer *eb;
2146 void __rcu **slot;
2147
2148 rcu_read_lock();
2149 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2150 block_group->start >> fs_info->sectorsize_bits) {
2151 eb = radix_tree_deref_slot(slot);
2152 if (!eb)
2153 continue;
2154 if (radix_tree_deref_retry(eb)) {
2155 slot = radix_tree_iter_retry(&iter);
2156 continue;
2157 }
2158
2159 if (eb->start < block_group->start)
2160 continue;
2161 if (eb->start >= end)
2162 break;
2163
2164 slot = radix_tree_iter_resume(slot, &iter);
2165 rcu_read_unlock();
2166 wait_on_extent_buffer_writeback(eb);
2167 rcu_read_lock();
2168 }
2169 rcu_read_unlock();
2170 }
2171
2172 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2173 {
2174 struct btrfs_fs_info *fs_info = block_group->fs_info;
2175 struct btrfs_chunk_map *map;
2176 const bool is_metadata = (block_group->flags &
2177 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2178 int ret = 0;
2179 int i;
2180
2181 spin_lock(&block_group->lock);
2182 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2183 spin_unlock(&block_group->lock);
2184 return 0;
2185 }
2186
2187 /* Check if we have unwritten allocated space */
2188 if (is_metadata &&
2189 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2190 spin_unlock(&block_group->lock);
2191 return -EAGAIN;
2192 }
2193
2194 /*
2195 * If we are sure that the block group is full (= no more room left for
2196 * new allocation) and the IO for the last usable block is completed, we
2197 * don't need to wait for the other IOs. This holds because we ensure
2198 * the sequential IO submissions using the ZONE_APPEND command for data
2199 * and block_group->meta_write_pointer for metadata.
2200 */
2201 if (!fully_written) {
2202 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2203 spin_unlock(&block_group->lock);
2204 return -EAGAIN;
2205 }
2206 spin_unlock(&block_group->lock);
2207
2208 ret = btrfs_inc_block_group_ro(block_group, false);
2209 if (ret)
2210 return ret;
2211
2212 /* Ensure all writes in this block group finish */
2213 btrfs_wait_block_group_reservations(block_group);
2214 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2215 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2216 block_group->length);
2217 /* Wait for extent buffers to be written. */
2218 if (is_metadata)
2219 wait_eb_writebacks(block_group);
2220
2221 spin_lock(&block_group->lock);
2222
2223 /*
2224 * Bail out if someone already deactivated the block group, or
2225 * allocated space is left in the block group.
2226 */
2227 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2228 &block_group->runtime_flags)) {
2229 spin_unlock(&block_group->lock);
2230 btrfs_dec_block_group_ro(block_group);
2231 return 0;
2232 }
2233
2234 if (block_group->reserved ||
2235 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2236 &block_group->runtime_flags)) {
2237 spin_unlock(&block_group->lock);
2238 btrfs_dec_block_group_ro(block_group);
2239 return -EAGAIN;
2240 }
2241 }
2242
2243 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2244 block_group->alloc_offset = block_group->zone_capacity;
2245 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2246 block_group->meta_write_pointer = block_group->start +
2247 block_group->zone_capacity;
2248 block_group->free_space_ctl->free_space = 0;
2249 btrfs_clear_treelog_bg(block_group);
2250 btrfs_clear_data_reloc_bg(block_group);
2251 spin_unlock(&block_group->lock);
2252
2253 map = block_group->physical_map;
2254 for (i = 0; i < map->num_stripes; i++) {
2255 struct btrfs_device *device = map->stripes[i].dev;
2256 const u64 physical = map->stripes[i].physical;
2257 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2258 unsigned int nofs_flags;
2259
2260 if (zinfo->max_active_zones == 0)
2261 continue;
2262
2263 nofs_flags = memalloc_nofs_save();
2264 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2265 physical >> SECTOR_SHIFT,
2266 zinfo->zone_size >> SECTOR_SHIFT);
2267 memalloc_nofs_restore(nofs_flags);
2268
2269 if (ret)
2270 return ret;
2271
2272 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2273 zinfo->reserved_active_zones++;
2274 btrfs_dev_clear_active_zone(device, physical);
2275 }
2276
2277 if (!fully_written)
2278 btrfs_dec_block_group_ro(block_group);
2279
2280 spin_lock(&fs_info->zone_active_bgs_lock);
2281 ASSERT(!list_empty(&block_group->active_bg_list));
2282 list_del_init(&block_group->active_bg_list);
2283 spin_unlock(&fs_info->zone_active_bgs_lock);
2284
2285 /* For active_bg_list */
2286 btrfs_put_block_group(block_group);
2287
2288 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2289
2290 return 0;
2291 }
2292
2293 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2294 {
2295 if (!btrfs_is_zoned(block_group->fs_info))
2296 return 0;
2297
2298 return do_zone_finish(block_group, false);
2299 }
2300
2301 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2302 {
2303 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2304 struct btrfs_device *device;
2305 bool ret = false;
2306
2307 if (!btrfs_is_zoned(fs_info))
2308 return true;
2309
2310 /* Check if there is a device with active zones left */
2311 mutex_lock(&fs_info->chunk_mutex);
2312 spin_lock(&fs_info->zone_active_bgs_lock);
2313 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2314 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2315 int reserved = 0;
2316
2317 if (!device->bdev)
2318 continue;
2319
2320 if (!zinfo->max_active_zones) {
2321 ret = true;
2322 break;
2323 }
2324
2325 if (flags & BTRFS_BLOCK_GROUP_DATA)
2326 reserved = zinfo->reserved_active_zones;
2327
2328 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2329 case 0: /* single */
2330 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2331 break;
2332 case BTRFS_BLOCK_GROUP_DUP:
2333 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2334 break;
2335 }
2336 if (ret)
2337 break;
2338 }
2339 spin_unlock(&fs_info->zone_active_bgs_lock);
2340 mutex_unlock(&fs_info->chunk_mutex);
2341
2342 if (!ret)
2343 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2344
2345 return ret;
2346 }
2347
2348 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2349 {
2350 struct btrfs_block_group *block_group;
2351 u64 min_alloc_bytes;
2352
2353 if (!btrfs_is_zoned(fs_info))
2354 return;
2355
2356 block_group = btrfs_lookup_block_group(fs_info, logical);
2357 ASSERT(block_group);
2358
2359 /* No MIXED_BG on zoned btrfs. */
2360 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2361 min_alloc_bytes = fs_info->sectorsize;
2362 else
2363 min_alloc_bytes = fs_info->nodesize;
2364
2365 /* Bail out if we can allocate more data from this block group. */
2366 if (logical + length + min_alloc_bytes <=
2367 block_group->start + block_group->zone_capacity)
2368 goto out;
2369
2370 do_zone_finish(block_group, true);
2371
2372 out:
2373 btrfs_put_block_group(block_group);
2374 }
2375
2376 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2377 {
2378 struct btrfs_block_group *bg =
2379 container_of(work, struct btrfs_block_group, zone_finish_work);
2380
2381 wait_on_extent_buffer_writeback(bg->last_eb);
2382 free_extent_buffer(bg->last_eb);
2383 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2384 btrfs_put_block_group(bg);
2385 }
2386
2387 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2388 struct extent_buffer *eb)
2389 {
2390 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2391 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2392 return;
2393
2394 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2395 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2396 bg->start);
2397 return;
2398 }
2399
2400 /* For the work */
2401 btrfs_get_block_group(bg);
2402 atomic_inc(&eb->refs);
2403 bg->last_eb = eb;
2404 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2405 queue_work(system_unbound_wq, &bg->zone_finish_work);
2406 }
2407
2408 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2409 {
2410 struct btrfs_fs_info *fs_info = bg->fs_info;
2411
2412 spin_lock(&fs_info->relocation_bg_lock);
2413 if (fs_info->data_reloc_bg == bg->start)
2414 fs_info->data_reloc_bg = 0;
2415 spin_unlock(&fs_info->relocation_bg_lock);
2416 }
2417
2418 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2419 {
2420 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2421 struct btrfs_device *device;
2422
2423 if (!btrfs_is_zoned(fs_info))
2424 return;
2425
2426 mutex_lock(&fs_devices->device_list_mutex);
2427 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2428 if (device->zone_info) {
2429 vfree(device->zone_info->zone_cache);
2430 device->zone_info->zone_cache = NULL;
2431 }
2432 }
2433 mutex_unlock(&fs_devices->device_list_mutex);
2434 }
2435
2436 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2437 {
2438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2439 struct btrfs_device *device;
2440 u64 used = 0;
2441 u64 total = 0;
2442 u64 factor;
2443
2444 ASSERT(btrfs_is_zoned(fs_info));
2445
2446 if (fs_info->bg_reclaim_threshold == 0)
2447 return false;
2448
2449 mutex_lock(&fs_devices->device_list_mutex);
2450 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2451 if (!device->bdev)
2452 continue;
2453
2454 total += device->disk_total_bytes;
2455 used += device->bytes_used;
2456 }
2457 mutex_unlock(&fs_devices->device_list_mutex);
2458
2459 factor = div64_u64(used * 100, total);
2460 return factor >= fs_info->bg_reclaim_threshold;
2461 }
2462
2463 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2464 u64 length)
2465 {
2466 struct btrfs_block_group *block_group;
2467
2468 if (!btrfs_is_zoned(fs_info))
2469 return;
2470
2471 block_group = btrfs_lookup_block_group(fs_info, logical);
2472 /* It should be called on a previous data relocation block group. */
2473 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2474
2475 spin_lock(&block_group->lock);
2476 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2477 goto out;
2478
2479 /* All relocation extents are written. */
2480 if (block_group->start + block_group->alloc_offset == logical + length) {
2481 /*
2482 * Now, release this block group for further allocations and
2483 * zone finish.
2484 */
2485 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2486 &block_group->runtime_flags);
2487 }
2488
2489 out:
2490 spin_unlock(&block_group->lock);
2491 btrfs_put_block_group(block_group);
2492 }
2493
2494 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2495 {
2496 struct btrfs_block_group *block_group;
2497 struct btrfs_block_group *min_bg = NULL;
2498 u64 min_avail = U64_MAX;
2499 int ret;
2500
2501 spin_lock(&fs_info->zone_active_bgs_lock);
2502 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2503 active_bg_list) {
2504 u64 avail;
2505
2506 spin_lock(&block_group->lock);
2507 if (block_group->reserved || block_group->alloc_offset == 0 ||
2508 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2509 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2510 spin_unlock(&block_group->lock);
2511 continue;
2512 }
2513
2514 avail = block_group->zone_capacity - block_group->alloc_offset;
2515 if (min_avail > avail) {
2516 if (min_bg)
2517 btrfs_put_block_group(min_bg);
2518 min_bg = block_group;
2519 min_avail = avail;
2520 btrfs_get_block_group(min_bg);
2521 }
2522 spin_unlock(&block_group->lock);
2523 }
2524 spin_unlock(&fs_info->zone_active_bgs_lock);
2525
2526 if (!min_bg)
2527 return 0;
2528
2529 ret = btrfs_zone_finish(min_bg);
2530 btrfs_put_block_group(min_bg);
2531
2532 return ret < 0 ? ret : 1;
2533 }
2534
2535 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2536 struct btrfs_space_info *space_info,
2537 bool do_finish)
2538 {
2539 struct btrfs_block_group *bg;
2540 int index;
2541
2542 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2543 return 0;
2544
2545 for (;;) {
2546 int ret;
2547 bool need_finish = false;
2548
2549 down_read(&space_info->groups_sem);
2550 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2551 list_for_each_entry(bg, &space_info->block_groups[index],
2552 list) {
2553 if (!spin_trylock(&bg->lock))
2554 continue;
2555 if (btrfs_zoned_bg_is_full(bg) ||
2556 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2557 &bg->runtime_flags)) {
2558 spin_unlock(&bg->lock);
2559 continue;
2560 }
2561 spin_unlock(&bg->lock);
2562
2563 if (btrfs_zone_activate(bg)) {
2564 up_read(&space_info->groups_sem);
2565 return 1;
2566 }
2567
2568 need_finish = true;
2569 }
2570 }
2571 up_read(&space_info->groups_sem);
2572
2573 if (!do_finish || !need_finish)
2574 break;
2575
2576 ret = btrfs_zone_finish_one_bg(fs_info);
2577 if (ret == 0)
2578 break;
2579 if (ret < 0)
2580 return ret;
2581 }
2582
2583 return 0;
2584 }
2585
2586 /*
2587 * Reserve zones for one metadata block group, one tree-log block group, and one
2588 * system block group.
2589 */
2590 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2591 {
2592 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593 struct btrfs_block_group *block_group;
2594 struct btrfs_device *device;
2595 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2596 unsigned int metadata_reserve = 2;
2597 /* Reserve a zone for SINGLE system block group. */
2598 unsigned int system_reserve = 1;
2599
2600 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2601 return;
2602
2603 /*
2604 * This function is called from the mount context. So, there is no
2605 * parallel process touching the bits. No need for read_seqretry().
2606 */
2607 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2608 metadata_reserve = 4;
2609 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2610 system_reserve = 2;
2611
2612 /* Apply the reservation on all the devices. */
2613 mutex_lock(&fs_devices->device_list_mutex);
2614 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2615 if (!device->bdev)
2616 continue;
2617
2618 device->zone_info->reserved_active_zones =
2619 metadata_reserve + system_reserve;
2620 }
2621 mutex_unlock(&fs_devices->device_list_mutex);
2622
2623 /* Release reservation for currently active block groups. */
2624 spin_lock(&fs_info->zone_active_bgs_lock);
2625 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2626 struct btrfs_chunk_map *map = block_group->physical_map;
2627
2628 if (!(block_group->flags &
2629 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2630 continue;
2631
2632 for (int i = 0; i < map->num_stripes; i++)
2633 map->stripes[i].dev->zone_info->reserved_active_zones--;
2634 }
2635 spin_unlock(&fs_info->zone_active_bgs_lock);
2636 }