]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/buffer.c
ovl: add helper ovl_file_modified()
[thirdparty/kernel/linux.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
87 */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
90 {
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!folio_test_locked(folio));
96
97 head = folio_buffers(folio);
98 if (!head)
99 return;
100
101 if (folio_test_writeback(folio))
102 *writeback = true;
103
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114 }
115
116 /*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152 }
153
154 /*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * private_lock.
184 *
185 * Hack idea: for the blockdev mapping, private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take private_lock.
188 */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct folio *folio;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
205 goto out;
206
207 spin_lock(&bd_mapping->private_lock);
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
237 }
238 out_unlock:
239 spin_unlock(&bd_mapping->private_lock);
240 folio_put(folio);
241 out:
242 return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
252
253 BUG_ON(!buffer_async_read(bh));
254
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
261 folio_set_error(folio);
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
269 first = folio_buffers(folio);
270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(tmp))
276 folio_uptodate = 0;
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285 /*
286 * If all of the buffers are uptodate then we can set the page
287 * uptodate.
288 */
289 if (folio_uptodate)
290 folio_mark_uptodate(folio);
291 folio_unlock(folio);
292 return;
293
294 still_busy:
295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 return;
297 }
298
299 struct postprocess_bh_ctx {
300 struct work_struct work;
301 struct buffer_head *bh;
302 };
303
304 static void verify_bh(struct work_struct *work)
305 {
306 struct postprocess_bh_ctx *ctx =
307 container_of(work, struct postprocess_bh_ctx, work);
308 struct buffer_head *bh = ctx->bh;
309 bool valid;
310
311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312 end_buffer_async_read(bh, valid);
313 kfree(ctx);
314 }
315
316 static bool need_fsverity(struct buffer_head *bh)
317 {
318 struct folio *folio = bh->b_folio;
319 struct inode *inode = folio->mapping->host;
320
321 return fsverity_active(inode) &&
322 /* needed by ext4 */
323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325
326 static void decrypt_bh(struct work_struct *work)
327 {
328 struct postprocess_bh_ctx *ctx =
329 container_of(work, struct postprocess_bh_ctx, work);
330 struct buffer_head *bh = ctx->bh;
331 int err;
332
333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 bh_offset(bh));
335 if (err == 0 && need_fsverity(bh)) {
336 /*
337 * We use different work queues for decryption and for verity
338 * because verity may require reading metadata pages that need
339 * decryption, and we shouldn't recurse to the same workqueue.
340 */
341 INIT_WORK(&ctx->work, verify_bh);
342 fsverity_enqueue_verify_work(&ctx->work);
343 return;
344 }
345 end_buffer_async_read(bh, err == 0);
346 kfree(ctx);
347 }
348
349 /*
350 * I/O completion handler for block_read_full_folio() - pages
351 * which come unlocked at the end of I/O.
352 */
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355 struct inode *inode = bh->b_folio->mapping->host;
356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 bool verify = need_fsverity(bh);
358
359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 if (uptodate && (decrypt || verify)) {
361 struct postprocess_bh_ctx *ctx =
362 kmalloc(sizeof(*ctx), GFP_ATOMIC);
363
364 if (ctx) {
365 ctx->bh = bh;
366 if (decrypt) {
367 INIT_WORK(&ctx->work, decrypt_bh);
368 fscrypt_enqueue_decrypt_work(&ctx->work);
369 } else {
370 INIT_WORK(&ctx->work, verify_bh);
371 fsverity_enqueue_verify_work(&ctx->work);
372 }
373 return;
374 }
375 uptodate = 0;
376 }
377 end_buffer_async_read(bh, uptodate);
378 }
379
380 /*
381 * Completion handler for block_write_full_page() - pages which are unlocked
382 * during I/O, and which have PageWriteback cleared upon I/O completion.
383 */
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386 unsigned long flags;
387 struct buffer_head *first;
388 struct buffer_head *tmp;
389 struct folio *folio;
390
391 BUG_ON(!buffer_async_write(bh));
392
393 folio = bh->b_folio;
394 if (uptodate) {
395 set_buffer_uptodate(bh);
396 } else {
397 buffer_io_error(bh, ", lost async page write");
398 mark_buffer_write_io_error(bh);
399 clear_buffer_uptodate(bh);
400 folio_set_error(folio);
401 }
402
403 first = folio_buffers(folio);
404 spin_lock_irqsave(&first->b_uptodate_lock, flags);
405
406 clear_buffer_async_write(bh);
407 unlock_buffer(bh);
408 tmp = bh->b_this_page;
409 while (tmp != bh) {
410 if (buffer_async_write(tmp)) {
411 BUG_ON(!buffer_locked(tmp));
412 goto still_busy;
413 }
414 tmp = tmp->b_this_page;
415 }
416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417 folio_end_writeback(folio);
418 return;
419
420 still_busy:
421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422 return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425
426 /*
427 * If a page's buffers are under async readin (end_buffer_async_read
428 * completion) then there is a possibility that another thread of
429 * control could lock one of the buffers after it has completed
430 * but while some of the other buffers have not completed. This
431 * locked buffer would confuse end_buffer_async_read() into not unlocking
432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
433 * that this buffer is not under async I/O.
434 *
435 * The page comes unlocked when it has no locked buffer_async buffers
436 * left.
437 *
438 * PageLocked prevents anyone starting new async I/O reads any of
439 * the buffers.
440 *
441 * PageWriteback is used to prevent simultaneous writeout of the same
442 * page.
443 *
444 * PageLocked prevents anyone from starting writeback of a page which is
445 * under read I/O (PageWriteback is only ever set against a locked page).
446 */
447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449 bh->b_end_io = end_buffer_async_read_io;
450 set_buffer_async_read(bh);
451 }
452
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 bh_end_io_t *handler)
455 {
456 bh->b_end_io = handler;
457 set_buffer_async_write(bh);
458 }
459
460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462 mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465
466
467 /*
468 * fs/buffer.c contains helper functions for buffer-backed address space's
469 * fsync functions. A common requirement for buffer-based filesystems is
470 * that certain data from the backing blockdev needs to be written out for
471 * a successful fsync(). For example, ext2 indirect blocks need to be
472 * written back and waited upon before fsync() returns.
473 *
474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476 * management of a list of dependent buffers at ->i_mapping->private_list.
477 *
478 * Locking is a little subtle: try_to_free_buffers() will remove buffers
479 * from their controlling inode's queue when they are being freed. But
480 * try_to_free_buffers() will be operating against the *blockdev* mapping
481 * at the time, not against the S_ISREG file which depends on those buffers.
482 * So the locking for private_list is via the private_lock in the address_space
483 * which backs the buffers. Which is different from the address_space
484 * against which the buffers are listed. So for a particular address_space,
485 * mapping->private_lock does *not* protect mapping->private_list! In fact,
486 * mapping->private_list will always be protected by the backing blockdev's
487 * ->private_lock.
488 *
489 * Which introduces a requirement: all buffers on an address_space's
490 * ->private_list must be from the same address_space: the blockdev's.
491 *
492 * address_spaces which do not place buffers at ->private_list via these
493 * utility functions are free to use private_lock and private_list for
494 * whatever they want. The only requirement is that list_empty(private_list)
495 * be true at clear_inode() time.
496 *
497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
498 * filesystems should do that. invalidate_inode_buffers() should just go
499 * BUG_ON(!list_empty).
500 *
501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
502 * take an address_space, not an inode. And it should be called
503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504 * queued up.
505 *
506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507 * list if it is already on a list. Because if the buffer is on a list,
508 * it *must* already be on the right one. If not, the filesystem is being
509 * silly. This will save a ton of locking. But first we have to ensure
510 * that buffers are taken *off* the old inode's list when they are freed
511 * (presumably in truncate). That requires careful auditing of all
512 * filesystems (do it inside bforget()). It could also be done by bringing
513 * b_inode back.
514 */
515
516 /*
517 * The buffer's backing address_space's private_lock must be held
518 */
519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521 list_del_init(&bh->b_assoc_buffers);
522 WARN_ON(!bh->b_assoc_map);
523 bh->b_assoc_map = NULL;
524 }
525
526 int inode_has_buffers(struct inode *inode)
527 {
528 return !list_empty(&inode->i_data.private_list);
529 }
530
531 /*
532 * osync is designed to support O_SYNC io. It waits synchronously for
533 * all already-submitted IO to complete, but does not queue any new
534 * writes to the disk.
535 *
536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537 * as you dirty the buffers, and then use osync_inode_buffers to wait for
538 * completion. Any other dirty buffers which are not yet queued for
539 * write will not be flushed to disk by the osync.
540 */
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543 struct buffer_head *bh;
544 struct list_head *p;
545 int err = 0;
546
547 spin_lock(lock);
548 repeat:
549 list_for_each_prev(p, list) {
550 bh = BH_ENTRY(p);
551 if (buffer_locked(bh)) {
552 get_bh(bh);
553 spin_unlock(lock);
554 wait_on_buffer(bh);
555 if (!buffer_uptodate(bh))
556 err = -EIO;
557 brelse(bh);
558 spin_lock(lock);
559 goto repeat;
560 }
561 }
562 spin_unlock(lock);
563 return err;
564 }
565
566 /**
567 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
568 * @mapping: the mapping which wants those buffers written
569 *
570 * Starts I/O against the buffers at mapping->private_list, and waits upon
571 * that I/O.
572 *
573 * Basically, this is a convenience function for fsync().
574 * @mapping is a file or directory which needs those buffers to be written for
575 * a successful fsync().
576 */
577 int sync_mapping_buffers(struct address_space *mapping)
578 {
579 struct address_space *buffer_mapping = mapping->private_data;
580
581 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
582 return 0;
583
584 return fsync_buffers_list(&buffer_mapping->private_lock,
585 &mapping->private_list);
586 }
587 EXPORT_SYMBOL(sync_mapping_buffers);
588
589 /**
590 * generic_buffers_fsync_noflush - generic buffer fsync implementation
591 * for simple filesystems with no inode lock
592 *
593 * @file: file to synchronize
594 * @start: start offset in bytes
595 * @end: end offset in bytes (inclusive)
596 * @datasync: only synchronize essential metadata if true
597 *
598 * This is a generic implementation of the fsync method for simple
599 * filesystems which track all non-inode metadata in the buffers list
600 * hanging off the address_space structure.
601 */
602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
603 bool datasync)
604 {
605 struct inode *inode = file->f_mapping->host;
606 int err;
607 int ret;
608
609 err = file_write_and_wait_range(file, start, end);
610 if (err)
611 return err;
612
613 ret = sync_mapping_buffers(inode->i_mapping);
614 if (!(inode->i_state & I_DIRTY_ALL))
615 goto out;
616 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
617 goto out;
618
619 err = sync_inode_metadata(inode, 1);
620 if (ret == 0)
621 ret = err;
622
623 out:
624 /* check and advance again to catch errors after syncing out buffers */
625 err = file_check_and_advance_wb_err(file);
626 if (ret == 0)
627 ret = err;
628 return ret;
629 }
630 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
631
632 /**
633 * generic_buffers_fsync - generic buffer fsync implementation
634 * for simple filesystems with no inode lock
635 *
636 * @file: file to synchronize
637 * @start: start offset in bytes
638 * @end: end offset in bytes (inclusive)
639 * @datasync: only synchronize essential metadata if true
640 *
641 * This is a generic implementation of the fsync method for simple
642 * filesystems which track all non-inode metadata in the buffers list
643 * hanging off the address_space structure. This also makes sure that
644 * a device cache flush operation is called at the end.
645 */
646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
647 bool datasync)
648 {
649 struct inode *inode = file->f_mapping->host;
650 int ret;
651
652 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
653 if (!ret)
654 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655 return ret;
656 }
657 EXPORT_SYMBOL(generic_buffers_fsync);
658
659 /*
660 * Called when we've recently written block `bblock', and it is known that
661 * `bblock' was for a buffer_boundary() buffer. This means that the block at
662 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
663 * dirty, schedule it for IO. So that indirects merge nicely with their data.
664 */
665 void write_boundary_block(struct block_device *bdev,
666 sector_t bblock, unsigned blocksize)
667 {
668 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
669 if (bh) {
670 if (buffer_dirty(bh))
671 write_dirty_buffer(bh, 0);
672 put_bh(bh);
673 }
674 }
675
676 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
677 {
678 struct address_space *mapping = inode->i_mapping;
679 struct address_space *buffer_mapping = bh->b_folio->mapping;
680
681 mark_buffer_dirty(bh);
682 if (!mapping->private_data) {
683 mapping->private_data = buffer_mapping;
684 } else {
685 BUG_ON(mapping->private_data != buffer_mapping);
686 }
687 if (!bh->b_assoc_map) {
688 spin_lock(&buffer_mapping->private_lock);
689 list_move_tail(&bh->b_assoc_buffers,
690 &mapping->private_list);
691 bh->b_assoc_map = mapping;
692 spin_unlock(&buffer_mapping->private_lock);
693 }
694 }
695 EXPORT_SYMBOL(mark_buffer_dirty_inode);
696
697 /*
698 * Add a page to the dirty page list.
699 *
700 * It is a sad fact of life that this function is called from several places
701 * deeply under spinlocking. It may not sleep.
702 *
703 * If the page has buffers, the uptodate buffers are set dirty, to preserve
704 * dirty-state coherency between the page and the buffers. It the page does
705 * not have buffers then when they are later attached they will all be set
706 * dirty.
707 *
708 * The buffers are dirtied before the page is dirtied. There's a small race
709 * window in which a writepage caller may see the page cleanness but not the
710 * buffer dirtiness. That's fine. If this code were to set the page dirty
711 * before the buffers, a concurrent writepage caller could clear the page dirty
712 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
713 * page on the dirty page list.
714 *
715 * We use private_lock to lock against try_to_free_buffers while using the
716 * page's buffer list. Also use this to protect against clean buffers being
717 * added to the page after it was set dirty.
718 *
719 * FIXME: may need to call ->reservepage here as well. That's rather up to the
720 * address_space though.
721 */
722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
723 {
724 struct buffer_head *head;
725 bool newly_dirty;
726
727 spin_lock(&mapping->private_lock);
728 head = folio_buffers(folio);
729 if (head) {
730 struct buffer_head *bh = head;
731
732 do {
733 set_buffer_dirty(bh);
734 bh = bh->b_this_page;
735 } while (bh != head);
736 }
737 /*
738 * Lock out page's memcg migration to keep PageDirty
739 * synchronized with per-memcg dirty page counters.
740 */
741 folio_memcg_lock(folio);
742 newly_dirty = !folio_test_set_dirty(folio);
743 spin_unlock(&mapping->private_lock);
744
745 if (newly_dirty)
746 __folio_mark_dirty(folio, mapping, 1);
747
748 folio_memcg_unlock(folio);
749
750 if (newly_dirty)
751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752
753 return newly_dirty;
754 }
755 EXPORT_SYMBOL(block_dirty_folio);
756
757 /*
758 * Write out and wait upon a list of buffers.
759 *
760 * We have conflicting pressures: we want to make sure that all
761 * initially dirty buffers get waited on, but that any subsequently
762 * dirtied buffers don't. After all, we don't want fsync to last
763 * forever if somebody is actively writing to the file.
764 *
765 * Do this in two main stages: first we copy dirty buffers to a
766 * temporary inode list, queueing the writes as we go. Then we clean
767 * up, waiting for those writes to complete.
768 *
769 * During this second stage, any subsequent updates to the file may end
770 * up refiling the buffer on the original inode's dirty list again, so
771 * there is a chance we will end up with a buffer queued for write but
772 * not yet completed on that list. So, as a final cleanup we go through
773 * the osync code to catch these locked, dirty buffers without requeuing
774 * any newly dirty buffers for write.
775 */
776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777 {
778 struct buffer_head *bh;
779 struct list_head tmp;
780 struct address_space *mapping;
781 int err = 0, err2;
782 struct blk_plug plug;
783
784 INIT_LIST_HEAD(&tmp);
785 blk_start_plug(&plug);
786
787 spin_lock(lock);
788 while (!list_empty(list)) {
789 bh = BH_ENTRY(list->next);
790 mapping = bh->b_assoc_map;
791 __remove_assoc_queue(bh);
792 /* Avoid race with mark_buffer_dirty_inode() which does
793 * a lockless check and we rely on seeing the dirty bit */
794 smp_mb();
795 if (buffer_dirty(bh) || buffer_locked(bh)) {
796 list_add(&bh->b_assoc_buffers, &tmp);
797 bh->b_assoc_map = mapping;
798 if (buffer_dirty(bh)) {
799 get_bh(bh);
800 spin_unlock(lock);
801 /*
802 * Ensure any pending I/O completes so that
803 * write_dirty_buffer() actually writes the
804 * current contents - it is a noop if I/O is
805 * still in flight on potentially older
806 * contents.
807 */
808 write_dirty_buffer(bh, REQ_SYNC);
809
810 /*
811 * Kick off IO for the previous mapping. Note
812 * that we will not run the very last mapping,
813 * wait_on_buffer() will do that for us
814 * through sync_buffer().
815 */
816 brelse(bh);
817 spin_lock(lock);
818 }
819 }
820 }
821
822 spin_unlock(lock);
823 blk_finish_plug(&plug);
824 spin_lock(lock);
825
826 while (!list_empty(&tmp)) {
827 bh = BH_ENTRY(tmp.prev);
828 get_bh(bh);
829 mapping = bh->b_assoc_map;
830 __remove_assoc_queue(bh);
831 /* Avoid race with mark_buffer_dirty_inode() which does
832 * a lockless check and we rely on seeing the dirty bit */
833 smp_mb();
834 if (buffer_dirty(bh)) {
835 list_add(&bh->b_assoc_buffers,
836 &mapping->private_list);
837 bh->b_assoc_map = mapping;
838 }
839 spin_unlock(lock);
840 wait_on_buffer(bh);
841 if (!buffer_uptodate(bh))
842 err = -EIO;
843 brelse(bh);
844 spin_lock(lock);
845 }
846
847 spin_unlock(lock);
848 err2 = osync_buffers_list(lock, list);
849 if (err)
850 return err;
851 else
852 return err2;
853 }
854
855 /*
856 * Invalidate any and all dirty buffers on a given inode. We are
857 * probably unmounting the fs, but that doesn't mean we have already
858 * done a sync(). Just drop the buffers from the inode list.
859 *
860 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
861 * assumes that all the buffers are against the blockdev. Not true
862 * for reiserfs.
863 */
864 void invalidate_inode_buffers(struct inode *inode)
865 {
866 if (inode_has_buffers(inode)) {
867 struct address_space *mapping = &inode->i_data;
868 struct list_head *list = &mapping->private_list;
869 struct address_space *buffer_mapping = mapping->private_data;
870
871 spin_lock(&buffer_mapping->private_lock);
872 while (!list_empty(list))
873 __remove_assoc_queue(BH_ENTRY(list->next));
874 spin_unlock(&buffer_mapping->private_lock);
875 }
876 }
877 EXPORT_SYMBOL(invalidate_inode_buffers);
878
879 /*
880 * Remove any clean buffers from the inode's buffer list. This is called
881 * when we're trying to free the inode itself. Those buffers can pin it.
882 *
883 * Returns true if all buffers were removed.
884 */
885 int remove_inode_buffers(struct inode *inode)
886 {
887 int ret = 1;
888
889 if (inode_has_buffers(inode)) {
890 struct address_space *mapping = &inode->i_data;
891 struct list_head *list = &mapping->private_list;
892 struct address_space *buffer_mapping = mapping->private_data;
893
894 spin_lock(&buffer_mapping->private_lock);
895 while (!list_empty(list)) {
896 struct buffer_head *bh = BH_ENTRY(list->next);
897 if (buffer_dirty(bh)) {
898 ret = 0;
899 break;
900 }
901 __remove_assoc_queue(bh);
902 }
903 spin_unlock(&buffer_mapping->private_lock);
904 }
905 return ret;
906 }
907
908 /*
909 * Create the appropriate buffers when given a folio for data area and
910 * the size of each buffer.. Use the bh->b_this_page linked list to
911 * follow the buffers created. Return NULL if unable to create more
912 * buffers.
913 *
914 * The retry flag is used to differentiate async IO (paging, swapping)
915 * which may not fail from ordinary buffer allocations.
916 */
917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918 bool retry)
919 {
920 struct buffer_head *bh, *head;
921 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
922 long offset;
923 struct mem_cgroup *memcg, *old_memcg;
924
925 if (retry)
926 gfp |= __GFP_NOFAIL;
927
928 /* The folio lock pins the memcg */
929 memcg = folio_memcg(folio);
930 old_memcg = set_active_memcg(memcg);
931
932 head = NULL;
933 offset = folio_size(folio);
934 while ((offset -= size) >= 0) {
935 bh = alloc_buffer_head(gfp);
936 if (!bh)
937 goto no_grow;
938
939 bh->b_this_page = head;
940 bh->b_blocknr = -1;
941 head = bh;
942
943 bh->b_size = size;
944
945 /* Link the buffer to its folio */
946 folio_set_bh(bh, folio, offset);
947 }
948 out:
949 set_active_memcg(old_memcg);
950 return head;
951 /*
952 * In case anything failed, we just free everything we got.
953 */
954 no_grow:
955 if (head) {
956 do {
957 bh = head;
958 head = head->b_this_page;
959 free_buffer_head(bh);
960 } while (head);
961 }
962
963 goto out;
964 }
965 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
966
967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
968 bool retry)
969 {
970 return folio_alloc_buffers(page_folio(page), size, retry);
971 }
972 EXPORT_SYMBOL_GPL(alloc_page_buffers);
973
974 static inline void link_dev_buffers(struct folio *folio,
975 struct buffer_head *head)
976 {
977 struct buffer_head *bh, *tail;
978
979 bh = head;
980 do {
981 tail = bh;
982 bh = bh->b_this_page;
983 } while (bh);
984 tail->b_this_page = head;
985 folio_attach_private(folio, head);
986 }
987
988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989 {
990 sector_t retval = ~((sector_t)0);
991 loff_t sz = bdev_nr_bytes(bdev);
992
993 if (sz) {
994 unsigned int sizebits = blksize_bits(size);
995 retval = (sz >> sizebits);
996 }
997 return retval;
998 }
999
1000 /*
1001 * Initialise the state of a blockdev folio's buffers.
1002 */
1003 static sector_t folio_init_buffers(struct folio *folio,
1004 struct block_device *bdev, sector_t block, int size)
1005 {
1006 struct buffer_head *head = folio_buffers(folio);
1007 struct buffer_head *bh = head;
1008 bool uptodate = folio_test_uptodate(folio);
1009 sector_t end_block = blkdev_max_block(bdev, size);
1010
1011 do {
1012 if (!buffer_mapped(bh)) {
1013 bh->b_end_io = NULL;
1014 bh->b_private = NULL;
1015 bh->b_bdev = bdev;
1016 bh->b_blocknr = block;
1017 if (uptodate)
1018 set_buffer_uptodate(bh);
1019 if (block < end_block)
1020 set_buffer_mapped(bh);
1021 }
1022 block++;
1023 bh = bh->b_this_page;
1024 } while (bh != head);
1025
1026 /*
1027 * Caller needs to validate requested block against end of device.
1028 */
1029 return end_block;
1030 }
1031
1032 /*
1033 * Create the page-cache page that contains the requested block.
1034 *
1035 * This is used purely for blockdev mappings.
1036 */
1037 static int
1038 grow_dev_page(struct block_device *bdev, sector_t block,
1039 pgoff_t index, int size, int sizebits, gfp_t gfp)
1040 {
1041 struct inode *inode = bdev->bd_inode;
1042 struct folio *folio;
1043 struct buffer_head *bh;
1044 sector_t end_block;
1045 int ret = 0;
1046 gfp_t gfp_mask;
1047
1048 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1049
1050 /*
1051 * XXX: __getblk_slow() can not really deal with failure and
1052 * will endlessly loop on improvised global reclaim. Prefer
1053 * looping in the allocator rather than here, at least that
1054 * code knows what it's doing.
1055 */
1056 gfp_mask |= __GFP_NOFAIL;
1057
1058 folio = __filemap_get_folio(inode->i_mapping, index,
1059 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1060
1061 bh = folio_buffers(folio);
1062 if (bh) {
1063 if (bh->b_size == size) {
1064 end_block = folio_init_buffers(folio, bdev,
1065 (sector_t)index << sizebits, size);
1066 goto done;
1067 }
1068 if (!try_to_free_buffers(folio))
1069 goto failed;
1070 }
1071
1072 bh = folio_alloc_buffers(folio, size, true);
1073
1074 /*
1075 * Link the folio to the buffers and initialise them. Take the
1076 * lock to be atomic wrt __find_get_block(), which does not
1077 * run under the folio lock.
1078 */
1079 spin_lock(&inode->i_mapping->private_lock);
1080 link_dev_buffers(folio, bh);
1081 end_block = folio_init_buffers(folio, bdev,
1082 (sector_t)index << sizebits, size);
1083 spin_unlock(&inode->i_mapping->private_lock);
1084 done:
1085 ret = (block < end_block) ? 1 : -ENXIO;
1086 failed:
1087 folio_unlock(folio);
1088 folio_put(folio);
1089 return ret;
1090 }
1091
1092 /*
1093 * Create buffers for the specified block device block's page. If
1094 * that page was dirty, the buffers are set dirty also.
1095 */
1096 static int
1097 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1098 {
1099 pgoff_t index;
1100 int sizebits;
1101
1102 sizebits = PAGE_SHIFT - __ffs(size);
1103 index = block >> sizebits;
1104
1105 /*
1106 * Check for a block which wants to lie outside our maximum possible
1107 * pagecache index. (this comparison is done using sector_t types).
1108 */
1109 if (unlikely(index != block >> sizebits)) {
1110 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1111 "device %pg\n",
1112 __func__, (unsigned long long)block,
1113 bdev);
1114 return -EIO;
1115 }
1116
1117 /* Create a page with the proper size buffers.. */
1118 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1119 }
1120
1121 static struct buffer_head *
1122 __getblk_slow(struct block_device *bdev, sector_t block,
1123 unsigned size, gfp_t gfp)
1124 {
1125 /* Size must be multiple of hard sectorsize */
1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1127 (size < 512 || size > PAGE_SIZE))) {
1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1129 size);
1130 printk(KERN_ERR "logical block size: %d\n",
1131 bdev_logical_block_size(bdev));
1132
1133 dump_stack();
1134 return NULL;
1135 }
1136
1137 for (;;) {
1138 struct buffer_head *bh;
1139 int ret;
1140
1141 bh = __find_get_block(bdev, block, size);
1142 if (bh)
1143 return bh;
1144
1145 ret = grow_buffers(bdev, block, size, gfp);
1146 if (ret < 0)
1147 return NULL;
1148 }
1149 }
1150
1151 /*
1152 * The relationship between dirty buffers and dirty pages:
1153 *
1154 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1155 * the page is tagged dirty in the page cache.
1156 *
1157 * At all times, the dirtiness of the buffers represents the dirtiness of
1158 * subsections of the page. If the page has buffers, the page dirty bit is
1159 * merely a hint about the true dirty state.
1160 *
1161 * When a page is set dirty in its entirety, all its buffers are marked dirty
1162 * (if the page has buffers).
1163 *
1164 * When a buffer is marked dirty, its page is dirtied, but the page's other
1165 * buffers are not.
1166 *
1167 * Also. When blockdev buffers are explicitly read with bread(), they
1168 * individually become uptodate. But their backing page remains not
1169 * uptodate - even if all of its buffers are uptodate. A subsequent
1170 * block_read_full_folio() against that folio will discover all the uptodate
1171 * buffers, will set the folio uptodate and will perform no I/O.
1172 */
1173
1174 /**
1175 * mark_buffer_dirty - mark a buffer_head as needing writeout
1176 * @bh: the buffer_head to mark dirty
1177 *
1178 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1179 * its backing page dirty, then tag the page as dirty in the page cache
1180 * and then attach the address_space's inode to its superblock's dirty
1181 * inode list.
1182 *
1183 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1184 * i_pages lock and mapping->host->i_lock.
1185 */
1186 void mark_buffer_dirty(struct buffer_head *bh)
1187 {
1188 WARN_ON_ONCE(!buffer_uptodate(bh));
1189
1190 trace_block_dirty_buffer(bh);
1191
1192 /*
1193 * Very *carefully* optimize the it-is-already-dirty case.
1194 *
1195 * Don't let the final "is it dirty" escape to before we
1196 * perhaps modified the buffer.
1197 */
1198 if (buffer_dirty(bh)) {
1199 smp_mb();
1200 if (buffer_dirty(bh))
1201 return;
1202 }
1203
1204 if (!test_set_buffer_dirty(bh)) {
1205 struct folio *folio = bh->b_folio;
1206 struct address_space *mapping = NULL;
1207
1208 folio_memcg_lock(folio);
1209 if (!folio_test_set_dirty(folio)) {
1210 mapping = folio->mapping;
1211 if (mapping)
1212 __folio_mark_dirty(folio, mapping, 0);
1213 }
1214 folio_memcg_unlock(folio);
1215 if (mapping)
1216 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1217 }
1218 }
1219 EXPORT_SYMBOL(mark_buffer_dirty);
1220
1221 void mark_buffer_write_io_error(struct buffer_head *bh)
1222 {
1223 set_buffer_write_io_error(bh);
1224 /* FIXME: do we need to set this in both places? */
1225 if (bh->b_folio && bh->b_folio->mapping)
1226 mapping_set_error(bh->b_folio->mapping, -EIO);
1227 if (bh->b_assoc_map) {
1228 mapping_set_error(bh->b_assoc_map, -EIO);
1229 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1230 }
1231 }
1232 EXPORT_SYMBOL(mark_buffer_write_io_error);
1233
1234 /*
1235 * Decrement a buffer_head's reference count. If all buffers against a page
1236 * have zero reference count, are clean and unlocked, and if the page is clean
1237 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1238 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1239 * a page but it ends up not being freed, and buffers may later be reattached).
1240 */
1241 void __brelse(struct buffer_head * buf)
1242 {
1243 if (atomic_read(&buf->b_count)) {
1244 put_bh(buf);
1245 return;
1246 }
1247 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1248 }
1249 EXPORT_SYMBOL(__brelse);
1250
1251 /*
1252 * bforget() is like brelse(), except it discards any
1253 * potentially dirty data.
1254 */
1255 void __bforget(struct buffer_head *bh)
1256 {
1257 clear_buffer_dirty(bh);
1258 if (bh->b_assoc_map) {
1259 struct address_space *buffer_mapping = bh->b_folio->mapping;
1260
1261 spin_lock(&buffer_mapping->private_lock);
1262 list_del_init(&bh->b_assoc_buffers);
1263 bh->b_assoc_map = NULL;
1264 spin_unlock(&buffer_mapping->private_lock);
1265 }
1266 __brelse(bh);
1267 }
1268 EXPORT_SYMBOL(__bforget);
1269
1270 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1271 {
1272 lock_buffer(bh);
1273 if (buffer_uptodate(bh)) {
1274 unlock_buffer(bh);
1275 return bh;
1276 } else {
1277 get_bh(bh);
1278 bh->b_end_io = end_buffer_read_sync;
1279 submit_bh(REQ_OP_READ, bh);
1280 wait_on_buffer(bh);
1281 if (buffer_uptodate(bh))
1282 return bh;
1283 }
1284 brelse(bh);
1285 return NULL;
1286 }
1287
1288 /*
1289 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1290 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1291 * refcount elevated by one when they're in an LRU. A buffer can only appear
1292 * once in a particular CPU's LRU. A single buffer can be present in multiple
1293 * CPU's LRUs at the same time.
1294 *
1295 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1296 * sb_find_get_block().
1297 *
1298 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1299 * a local interrupt disable for that.
1300 */
1301
1302 #define BH_LRU_SIZE 16
1303
1304 struct bh_lru {
1305 struct buffer_head *bhs[BH_LRU_SIZE];
1306 };
1307
1308 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1309
1310 #ifdef CONFIG_SMP
1311 #define bh_lru_lock() local_irq_disable()
1312 #define bh_lru_unlock() local_irq_enable()
1313 #else
1314 #define bh_lru_lock() preempt_disable()
1315 #define bh_lru_unlock() preempt_enable()
1316 #endif
1317
1318 static inline void check_irqs_on(void)
1319 {
1320 #ifdef irqs_disabled
1321 BUG_ON(irqs_disabled());
1322 #endif
1323 }
1324
1325 /*
1326 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1327 * inserted at the front, and the buffer_head at the back if any is evicted.
1328 * Or, if already in the LRU it is moved to the front.
1329 */
1330 static void bh_lru_install(struct buffer_head *bh)
1331 {
1332 struct buffer_head *evictee = bh;
1333 struct bh_lru *b;
1334 int i;
1335
1336 check_irqs_on();
1337 bh_lru_lock();
1338
1339 /*
1340 * the refcount of buffer_head in bh_lru prevents dropping the
1341 * attached page(i.e., try_to_free_buffers) so it could cause
1342 * failing page migration.
1343 * Skip putting upcoming bh into bh_lru until migration is done.
1344 */
1345 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1346 bh_lru_unlock();
1347 return;
1348 }
1349
1350 b = this_cpu_ptr(&bh_lrus);
1351 for (i = 0; i < BH_LRU_SIZE; i++) {
1352 swap(evictee, b->bhs[i]);
1353 if (evictee == bh) {
1354 bh_lru_unlock();
1355 return;
1356 }
1357 }
1358
1359 get_bh(bh);
1360 bh_lru_unlock();
1361 brelse(evictee);
1362 }
1363
1364 /*
1365 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1366 */
1367 static struct buffer_head *
1368 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1369 {
1370 struct buffer_head *ret = NULL;
1371 unsigned int i;
1372
1373 check_irqs_on();
1374 bh_lru_lock();
1375 if (cpu_is_isolated(smp_processor_id())) {
1376 bh_lru_unlock();
1377 return NULL;
1378 }
1379 for (i = 0; i < BH_LRU_SIZE; i++) {
1380 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1381
1382 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1383 bh->b_size == size) {
1384 if (i) {
1385 while (i) {
1386 __this_cpu_write(bh_lrus.bhs[i],
1387 __this_cpu_read(bh_lrus.bhs[i - 1]));
1388 i--;
1389 }
1390 __this_cpu_write(bh_lrus.bhs[0], bh);
1391 }
1392 get_bh(bh);
1393 ret = bh;
1394 break;
1395 }
1396 }
1397 bh_lru_unlock();
1398 return ret;
1399 }
1400
1401 /*
1402 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1403 * it in the LRU and mark it as accessed. If it is not present then return
1404 * NULL
1405 */
1406 struct buffer_head *
1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1408 {
1409 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1410
1411 if (bh == NULL) {
1412 /* __find_get_block_slow will mark the page accessed */
1413 bh = __find_get_block_slow(bdev, block);
1414 if (bh)
1415 bh_lru_install(bh);
1416 } else
1417 touch_buffer(bh);
1418
1419 return bh;
1420 }
1421 EXPORT_SYMBOL(__find_get_block);
1422
1423 /*
1424 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1425 * which corresponds to the passed block_device, block and size. The
1426 * returned buffer has its reference count incremented.
1427 *
1428 * __getblk_gfp() will lock up the machine if grow_dev_page's
1429 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1430 */
1431 struct buffer_head *
1432 __getblk_gfp(struct block_device *bdev, sector_t block,
1433 unsigned size, gfp_t gfp)
1434 {
1435 struct buffer_head *bh = __find_get_block(bdev, block, size);
1436
1437 might_sleep();
1438 if (bh == NULL)
1439 bh = __getblk_slow(bdev, block, size, gfp);
1440 return bh;
1441 }
1442 EXPORT_SYMBOL(__getblk_gfp);
1443
1444 /*
1445 * Do async read-ahead on a buffer..
1446 */
1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1448 {
1449 struct buffer_head *bh = __getblk(bdev, block, size);
1450 if (likely(bh)) {
1451 bh_readahead(bh, REQ_RAHEAD);
1452 brelse(bh);
1453 }
1454 }
1455 EXPORT_SYMBOL(__breadahead);
1456
1457 /**
1458 * __bread_gfp() - reads a specified block and returns the bh
1459 * @bdev: the block_device to read from
1460 * @block: number of block
1461 * @size: size (in bytes) to read
1462 * @gfp: page allocation flag
1463 *
1464 * Reads a specified block, and returns buffer head that contains it.
1465 * The page cache can be allocated from non-movable area
1466 * not to prevent page migration if you set gfp to zero.
1467 * It returns NULL if the block was unreadable.
1468 */
1469 struct buffer_head *
1470 __bread_gfp(struct block_device *bdev, sector_t block,
1471 unsigned size, gfp_t gfp)
1472 {
1473 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1474
1475 if (likely(bh) && !buffer_uptodate(bh))
1476 bh = __bread_slow(bh);
1477 return bh;
1478 }
1479 EXPORT_SYMBOL(__bread_gfp);
1480
1481 static void __invalidate_bh_lrus(struct bh_lru *b)
1482 {
1483 int i;
1484
1485 for (i = 0; i < BH_LRU_SIZE; i++) {
1486 brelse(b->bhs[i]);
1487 b->bhs[i] = NULL;
1488 }
1489 }
1490 /*
1491 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1492 * This doesn't race because it runs in each cpu either in irq
1493 * or with preempt disabled.
1494 */
1495 static void invalidate_bh_lru(void *arg)
1496 {
1497 struct bh_lru *b = &get_cpu_var(bh_lrus);
1498
1499 __invalidate_bh_lrus(b);
1500 put_cpu_var(bh_lrus);
1501 }
1502
1503 bool has_bh_in_lru(int cpu, void *dummy)
1504 {
1505 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1506 int i;
1507
1508 for (i = 0; i < BH_LRU_SIZE; i++) {
1509 if (b->bhs[i])
1510 return true;
1511 }
1512
1513 return false;
1514 }
1515
1516 void invalidate_bh_lrus(void)
1517 {
1518 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1521
1522 /*
1523 * It's called from workqueue context so we need a bh_lru_lock to close
1524 * the race with preemption/irq.
1525 */
1526 void invalidate_bh_lrus_cpu(void)
1527 {
1528 struct bh_lru *b;
1529
1530 bh_lru_lock();
1531 b = this_cpu_ptr(&bh_lrus);
1532 __invalidate_bh_lrus(b);
1533 bh_lru_unlock();
1534 }
1535
1536 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1537 unsigned long offset)
1538 {
1539 bh->b_folio = folio;
1540 BUG_ON(offset >= folio_size(folio));
1541 if (folio_test_highmem(folio))
1542 /*
1543 * This catches illegal uses and preserves the offset:
1544 */
1545 bh->b_data = (char *)(0 + offset);
1546 else
1547 bh->b_data = folio_address(folio) + offset;
1548 }
1549 EXPORT_SYMBOL(folio_set_bh);
1550
1551 /*
1552 * Called when truncating a buffer on a page completely.
1553 */
1554
1555 /* Bits that are cleared during an invalidate */
1556 #define BUFFER_FLAGS_DISCARD \
1557 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1558 1 << BH_Delay | 1 << BH_Unwritten)
1559
1560 static void discard_buffer(struct buffer_head * bh)
1561 {
1562 unsigned long b_state;
1563
1564 lock_buffer(bh);
1565 clear_buffer_dirty(bh);
1566 bh->b_bdev = NULL;
1567 b_state = READ_ONCE(bh->b_state);
1568 do {
1569 } while (!try_cmpxchg(&bh->b_state, &b_state,
1570 b_state & ~BUFFER_FLAGS_DISCARD));
1571 unlock_buffer(bh);
1572 }
1573
1574 /**
1575 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1576 * @folio: The folio which is affected.
1577 * @offset: start of the range to invalidate
1578 * @length: length of the range to invalidate
1579 *
1580 * block_invalidate_folio() is called when all or part of the folio has been
1581 * invalidated by a truncate operation.
1582 *
1583 * block_invalidate_folio() does not have to release all buffers, but it must
1584 * ensure that no dirty buffer is left outside @offset and that no I/O
1585 * is underway against any of the blocks which are outside the truncation
1586 * point. Because the caller is about to free (and possibly reuse) those
1587 * blocks on-disk.
1588 */
1589 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1590 {
1591 struct buffer_head *head, *bh, *next;
1592 size_t curr_off = 0;
1593 size_t stop = length + offset;
1594
1595 BUG_ON(!folio_test_locked(folio));
1596
1597 /*
1598 * Check for overflow
1599 */
1600 BUG_ON(stop > folio_size(folio) || stop < length);
1601
1602 head = folio_buffers(folio);
1603 if (!head)
1604 return;
1605
1606 bh = head;
1607 do {
1608 size_t next_off = curr_off + bh->b_size;
1609 next = bh->b_this_page;
1610
1611 /*
1612 * Are we still fully in range ?
1613 */
1614 if (next_off > stop)
1615 goto out;
1616
1617 /*
1618 * is this block fully invalidated?
1619 */
1620 if (offset <= curr_off)
1621 discard_buffer(bh);
1622 curr_off = next_off;
1623 bh = next;
1624 } while (bh != head);
1625
1626 /*
1627 * We release buffers only if the entire folio is being invalidated.
1628 * The get_block cached value has been unconditionally invalidated,
1629 * so real IO is not possible anymore.
1630 */
1631 if (length == folio_size(folio))
1632 filemap_release_folio(folio, 0);
1633 out:
1634 return;
1635 }
1636 EXPORT_SYMBOL(block_invalidate_folio);
1637
1638 /*
1639 * We attach and possibly dirty the buffers atomically wrt
1640 * block_dirty_folio() via private_lock. try_to_free_buffers
1641 * is already excluded via the folio lock.
1642 */
1643 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1644 unsigned long b_state)
1645 {
1646 struct buffer_head *bh, *head, *tail;
1647
1648 head = folio_alloc_buffers(folio, blocksize, true);
1649 bh = head;
1650 do {
1651 bh->b_state |= b_state;
1652 tail = bh;
1653 bh = bh->b_this_page;
1654 } while (bh);
1655 tail->b_this_page = head;
1656
1657 spin_lock(&folio->mapping->private_lock);
1658 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1659 bh = head;
1660 do {
1661 if (folio_test_dirty(folio))
1662 set_buffer_dirty(bh);
1663 if (folio_test_uptodate(folio))
1664 set_buffer_uptodate(bh);
1665 bh = bh->b_this_page;
1666 } while (bh != head);
1667 }
1668 folio_attach_private(folio, head);
1669 spin_unlock(&folio->mapping->private_lock);
1670 }
1671 EXPORT_SYMBOL(folio_create_empty_buffers);
1672
1673 void create_empty_buffers(struct page *page,
1674 unsigned long blocksize, unsigned long b_state)
1675 {
1676 folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1677 }
1678 EXPORT_SYMBOL(create_empty_buffers);
1679
1680 /**
1681 * clean_bdev_aliases: clean a range of buffers in block device
1682 * @bdev: Block device to clean buffers in
1683 * @block: Start of a range of blocks to clean
1684 * @len: Number of blocks to clean
1685 *
1686 * We are taking a range of blocks for data and we don't want writeback of any
1687 * buffer-cache aliases starting from return from this function and until the
1688 * moment when something will explicitly mark the buffer dirty (hopefully that
1689 * will not happen until we will free that block ;-) We don't even need to mark
1690 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1691 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1692 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1693 * would confuse anyone who might pick it with bread() afterwards...
1694 *
1695 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1696 * writeout I/O going on against recently-freed buffers. We don't wait on that
1697 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1698 * need to. That happens here.
1699 */
1700 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1701 {
1702 struct inode *bd_inode = bdev->bd_inode;
1703 struct address_space *bd_mapping = bd_inode->i_mapping;
1704 struct folio_batch fbatch;
1705 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1706 pgoff_t end;
1707 int i, count;
1708 struct buffer_head *bh;
1709 struct buffer_head *head;
1710
1711 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1712 folio_batch_init(&fbatch);
1713 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1714 count = folio_batch_count(&fbatch);
1715 for (i = 0; i < count; i++) {
1716 struct folio *folio = fbatch.folios[i];
1717
1718 if (!folio_buffers(folio))
1719 continue;
1720 /*
1721 * We use folio lock instead of bd_mapping->private_lock
1722 * to pin buffers here since we can afford to sleep and
1723 * it scales better than a global spinlock lock.
1724 */
1725 folio_lock(folio);
1726 /* Recheck when the folio is locked which pins bhs */
1727 head = folio_buffers(folio);
1728 if (!head)
1729 goto unlock_page;
1730 bh = head;
1731 do {
1732 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1733 goto next;
1734 if (bh->b_blocknr >= block + len)
1735 break;
1736 clear_buffer_dirty(bh);
1737 wait_on_buffer(bh);
1738 clear_buffer_req(bh);
1739 next:
1740 bh = bh->b_this_page;
1741 } while (bh != head);
1742 unlock_page:
1743 folio_unlock(folio);
1744 }
1745 folio_batch_release(&fbatch);
1746 cond_resched();
1747 /* End of range already reached? */
1748 if (index > end || !index)
1749 break;
1750 }
1751 }
1752 EXPORT_SYMBOL(clean_bdev_aliases);
1753
1754 /*
1755 * Size is a power-of-two in the range 512..PAGE_SIZE,
1756 * and the case we care about most is PAGE_SIZE.
1757 *
1758 * So this *could* possibly be written with those
1759 * constraints in mind (relevant mostly if some
1760 * architecture has a slow bit-scan instruction)
1761 */
1762 static inline int block_size_bits(unsigned int blocksize)
1763 {
1764 return ilog2(blocksize);
1765 }
1766
1767 static struct buffer_head *folio_create_buffers(struct folio *folio,
1768 struct inode *inode,
1769 unsigned int b_state)
1770 {
1771 BUG_ON(!folio_test_locked(folio));
1772
1773 if (!folio_buffers(folio))
1774 folio_create_empty_buffers(folio,
1775 1 << READ_ONCE(inode->i_blkbits),
1776 b_state);
1777 return folio_buffers(folio);
1778 }
1779
1780 /*
1781 * NOTE! All mapped/uptodate combinations are valid:
1782 *
1783 * Mapped Uptodate Meaning
1784 *
1785 * No No "unknown" - must do get_block()
1786 * No Yes "hole" - zero-filled
1787 * Yes No "allocated" - allocated on disk, not read in
1788 * Yes Yes "valid" - allocated and up-to-date in memory.
1789 *
1790 * "Dirty" is valid only with the last case (mapped+uptodate).
1791 */
1792
1793 /*
1794 * While block_write_full_page is writing back the dirty buffers under
1795 * the page lock, whoever dirtied the buffers may decide to clean them
1796 * again at any time. We handle that by only looking at the buffer
1797 * state inside lock_buffer().
1798 *
1799 * If block_write_full_page() is called for regular writeback
1800 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1801 * locked buffer. This only can happen if someone has written the buffer
1802 * directly, with submit_bh(). At the address_space level PageWriteback
1803 * prevents this contention from occurring.
1804 *
1805 * If block_write_full_page() is called with wbc->sync_mode ==
1806 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1807 * causes the writes to be flagged as synchronous writes.
1808 */
1809 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1810 get_block_t *get_block, struct writeback_control *wbc,
1811 bh_end_io_t *handler)
1812 {
1813 int err;
1814 sector_t block;
1815 sector_t last_block;
1816 struct buffer_head *bh, *head;
1817 unsigned int blocksize, bbits;
1818 int nr_underway = 0;
1819 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1820
1821 head = folio_create_buffers(folio, inode,
1822 (1 << BH_Dirty) | (1 << BH_Uptodate));
1823
1824 /*
1825 * Be very careful. We have no exclusion from block_dirty_folio
1826 * here, and the (potentially unmapped) buffers may become dirty at
1827 * any time. If a buffer becomes dirty here after we've inspected it
1828 * then we just miss that fact, and the folio stays dirty.
1829 *
1830 * Buffers outside i_size may be dirtied by block_dirty_folio;
1831 * handle that here by just cleaning them.
1832 */
1833
1834 bh = head;
1835 blocksize = bh->b_size;
1836 bbits = block_size_bits(blocksize);
1837
1838 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1839 last_block = (i_size_read(inode) - 1) >> bbits;
1840
1841 /*
1842 * Get all the dirty buffers mapped to disk addresses and
1843 * handle any aliases from the underlying blockdev's mapping.
1844 */
1845 do {
1846 if (block > last_block) {
1847 /*
1848 * mapped buffers outside i_size will occur, because
1849 * this folio can be outside i_size when there is a
1850 * truncate in progress.
1851 */
1852 /*
1853 * The buffer was zeroed by block_write_full_page()
1854 */
1855 clear_buffer_dirty(bh);
1856 set_buffer_uptodate(bh);
1857 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1858 buffer_dirty(bh)) {
1859 WARN_ON(bh->b_size != blocksize);
1860 err = get_block(inode, block, bh, 1);
1861 if (err)
1862 goto recover;
1863 clear_buffer_delay(bh);
1864 if (buffer_new(bh)) {
1865 /* blockdev mappings never come here */
1866 clear_buffer_new(bh);
1867 clean_bdev_bh_alias(bh);
1868 }
1869 }
1870 bh = bh->b_this_page;
1871 block++;
1872 } while (bh != head);
1873
1874 do {
1875 if (!buffer_mapped(bh))
1876 continue;
1877 /*
1878 * If it's a fully non-blocking write attempt and we cannot
1879 * lock the buffer then redirty the folio. Note that this can
1880 * potentially cause a busy-wait loop from writeback threads
1881 * and kswapd activity, but those code paths have their own
1882 * higher-level throttling.
1883 */
1884 if (wbc->sync_mode != WB_SYNC_NONE) {
1885 lock_buffer(bh);
1886 } else if (!trylock_buffer(bh)) {
1887 folio_redirty_for_writepage(wbc, folio);
1888 continue;
1889 }
1890 if (test_clear_buffer_dirty(bh)) {
1891 mark_buffer_async_write_endio(bh, handler);
1892 } else {
1893 unlock_buffer(bh);
1894 }
1895 } while ((bh = bh->b_this_page) != head);
1896
1897 /*
1898 * The folio and its buffers are protected by the writeback flag,
1899 * so we can drop the bh refcounts early.
1900 */
1901 BUG_ON(folio_test_writeback(folio));
1902 folio_start_writeback(folio);
1903
1904 do {
1905 struct buffer_head *next = bh->b_this_page;
1906 if (buffer_async_write(bh)) {
1907 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1908 nr_underway++;
1909 }
1910 bh = next;
1911 } while (bh != head);
1912 folio_unlock(folio);
1913
1914 err = 0;
1915 done:
1916 if (nr_underway == 0) {
1917 /*
1918 * The folio was marked dirty, but the buffers were
1919 * clean. Someone wrote them back by hand with
1920 * write_dirty_buffer/submit_bh. A rare case.
1921 */
1922 folio_end_writeback(folio);
1923
1924 /*
1925 * The folio and buffer_heads can be released at any time from
1926 * here on.
1927 */
1928 }
1929 return err;
1930
1931 recover:
1932 /*
1933 * ENOSPC, or some other error. We may already have added some
1934 * blocks to the file, so we need to write these out to avoid
1935 * exposing stale data.
1936 * The folio is currently locked and not marked for writeback
1937 */
1938 bh = head;
1939 /* Recovery: lock and submit the mapped buffers */
1940 do {
1941 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1942 !buffer_delay(bh)) {
1943 lock_buffer(bh);
1944 mark_buffer_async_write_endio(bh, handler);
1945 } else {
1946 /*
1947 * The buffer may have been set dirty during
1948 * attachment to a dirty folio.
1949 */
1950 clear_buffer_dirty(bh);
1951 }
1952 } while ((bh = bh->b_this_page) != head);
1953 folio_set_error(folio);
1954 BUG_ON(folio_test_writeback(folio));
1955 mapping_set_error(folio->mapping, err);
1956 folio_start_writeback(folio);
1957 do {
1958 struct buffer_head *next = bh->b_this_page;
1959 if (buffer_async_write(bh)) {
1960 clear_buffer_dirty(bh);
1961 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1962 nr_underway++;
1963 }
1964 bh = next;
1965 } while (bh != head);
1966 folio_unlock(folio);
1967 goto done;
1968 }
1969 EXPORT_SYMBOL(__block_write_full_folio);
1970
1971 /*
1972 * If a folio has any new buffers, zero them out here, and mark them uptodate
1973 * and dirty so they'll be written out (in order to prevent uninitialised
1974 * block data from leaking). And clear the new bit.
1975 */
1976 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1977 {
1978 size_t block_start, block_end;
1979 struct buffer_head *head, *bh;
1980
1981 BUG_ON(!folio_test_locked(folio));
1982 head = folio_buffers(folio);
1983 if (!head)
1984 return;
1985
1986 bh = head;
1987 block_start = 0;
1988 do {
1989 block_end = block_start + bh->b_size;
1990
1991 if (buffer_new(bh)) {
1992 if (block_end > from && block_start < to) {
1993 if (!folio_test_uptodate(folio)) {
1994 size_t start, xend;
1995
1996 start = max(from, block_start);
1997 xend = min(to, block_end);
1998
1999 folio_zero_segment(folio, start, xend);
2000 set_buffer_uptodate(bh);
2001 }
2002
2003 clear_buffer_new(bh);
2004 mark_buffer_dirty(bh);
2005 }
2006 }
2007
2008 block_start = block_end;
2009 bh = bh->b_this_page;
2010 } while (bh != head);
2011 }
2012 EXPORT_SYMBOL(folio_zero_new_buffers);
2013
2014 static int
2015 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2016 const struct iomap *iomap)
2017 {
2018 loff_t offset = block << inode->i_blkbits;
2019
2020 bh->b_bdev = iomap->bdev;
2021
2022 /*
2023 * Block points to offset in file we need to map, iomap contains
2024 * the offset at which the map starts. If the map ends before the
2025 * current block, then do not map the buffer and let the caller
2026 * handle it.
2027 */
2028 if (offset >= iomap->offset + iomap->length)
2029 return -EIO;
2030
2031 switch (iomap->type) {
2032 case IOMAP_HOLE:
2033 /*
2034 * If the buffer is not up to date or beyond the current EOF,
2035 * we need to mark it as new to ensure sub-block zeroing is
2036 * executed if necessary.
2037 */
2038 if (!buffer_uptodate(bh) ||
2039 (offset >= i_size_read(inode)))
2040 set_buffer_new(bh);
2041 return 0;
2042 case IOMAP_DELALLOC:
2043 if (!buffer_uptodate(bh) ||
2044 (offset >= i_size_read(inode)))
2045 set_buffer_new(bh);
2046 set_buffer_uptodate(bh);
2047 set_buffer_mapped(bh);
2048 set_buffer_delay(bh);
2049 return 0;
2050 case IOMAP_UNWRITTEN:
2051 /*
2052 * For unwritten regions, we always need to ensure that regions
2053 * in the block we are not writing to are zeroed. Mark the
2054 * buffer as new to ensure this.
2055 */
2056 set_buffer_new(bh);
2057 set_buffer_unwritten(bh);
2058 fallthrough;
2059 case IOMAP_MAPPED:
2060 if ((iomap->flags & IOMAP_F_NEW) ||
2061 offset >= i_size_read(inode)) {
2062 /*
2063 * This can happen if truncating the block device races
2064 * with the check in the caller as i_size updates on
2065 * block devices aren't synchronized by i_rwsem for
2066 * block devices.
2067 */
2068 if (S_ISBLK(inode->i_mode))
2069 return -EIO;
2070 set_buffer_new(bh);
2071 }
2072 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2073 inode->i_blkbits;
2074 set_buffer_mapped(bh);
2075 return 0;
2076 default:
2077 WARN_ON_ONCE(1);
2078 return -EIO;
2079 }
2080 }
2081
2082 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2083 get_block_t *get_block, const struct iomap *iomap)
2084 {
2085 unsigned from = pos & (PAGE_SIZE - 1);
2086 unsigned to = from + len;
2087 struct inode *inode = folio->mapping->host;
2088 unsigned block_start, block_end;
2089 sector_t block;
2090 int err = 0;
2091 unsigned blocksize, bbits;
2092 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2093
2094 BUG_ON(!folio_test_locked(folio));
2095 BUG_ON(from > PAGE_SIZE);
2096 BUG_ON(to > PAGE_SIZE);
2097 BUG_ON(from > to);
2098
2099 head = folio_create_buffers(folio, inode, 0);
2100 blocksize = head->b_size;
2101 bbits = block_size_bits(blocksize);
2102
2103 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2104
2105 for(bh = head, block_start = 0; bh != head || !block_start;
2106 block++, block_start=block_end, bh = bh->b_this_page) {
2107 block_end = block_start + blocksize;
2108 if (block_end <= from || block_start >= to) {
2109 if (folio_test_uptodate(folio)) {
2110 if (!buffer_uptodate(bh))
2111 set_buffer_uptodate(bh);
2112 }
2113 continue;
2114 }
2115 if (buffer_new(bh))
2116 clear_buffer_new(bh);
2117 if (!buffer_mapped(bh)) {
2118 WARN_ON(bh->b_size != blocksize);
2119 if (get_block)
2120 err = get_block(inode, block, bh, 1);
2121 else
2122 err = iomap_to_bh(inode, block, bh, iomap);
2123 if (err)
2124 break;
2125
2126 if (buffer_new(bh)) {
2127 clean_bdev_bh_alias(bh);
2128 if (folio_test_uptodate(folio)) {
2129 clear_buffer_new(bh);
2130 set_buffer_uptodate(bh);
2131 mark_buffer_dirty(bh);
2132 continue;
2133 }
2134 if (block_end > to || block_start < from)
2135 folio_zero_segments(folio,
2136 to, block_end,
2137 block_start, from);
2138 continue;
2139 }
2140 }
2141 if (folio_test_uptodate(folio)) {
2142 if (!buffer_uptodate(bh))
2143 set_buffer_uptodate(bh);
2144 continue;
2145 }
2146 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2147 !buffer_unwritten(bh) &&
2148 (block_start < from || block_end > to)) {
2149 bh_read_nowait(bh, 0);
2150 *wait_bh++=bh;
2151 }
2152 }
2153 /*
2154 * If we issued read requests - let them complete.
2155 */
2156 while(wait_bh > wait) {
2157 wait_on_buffer(*--wait_bh);
2158 if (!buffer_uptodate(*wait_bh))
2159 err = -EIO;
2160 }
2161 if (unlikely(err))
2162 folio_zero_new_buffers(folio, from, to);
2163 return err;
2164 }
2165
2166 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2167 get_block_t *get_block)
2168 {
2169 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2170 NULL);
2171 }
2172 EXPORT_SYMBOL(__block_write_begin);
2173
2174 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2175 {
2176 size_t block_start, block_end;
2177 bool partial = false;
2178 unsigned blocksize;
2179 struct buffer_head *bh, *head;
2180
2181 bh = head = folio_buffers(folio);
2182 blocksize = bh->b_size;
2183
2184 block_start = 0;
2185 do {
2186 block_end = block_start + blocksize;
2187 if (block_end <= from || block_start >= to) {
2188 if (!buffer_uptodate(bh))
2189 partial = true;
2190 } else {
2191 set_buffer_uptodate(bh);
2192 mark_buffer_dirty(bh);
2193 }
2194 if (buffer_new(bh))
2195 clear_buffer_new(bh);
2196
2197 block_start = block_end;
2198 bh = bh->b_this_page;
2199 } while (bh != head);
2200
2201 /*
2202 * If this is a partial write which happened to make all buffers
2203 * uptodate then we can optimize away a bogus read_folio() for
2204 * the next read(). Here we 'discover' whether the folio went
2205 * uptodate as a result of this (potentially partial) write.
2206 */
2207 if (!partial)
2208 folio_mark_uptodate(folio);
2209 }
2210
2211 /*
2212 * block_write_begin takes care of the basic task of block allocation and
2213 * bringing partial write blocks uptodate first.
2214 *
2215 * The filesystem needs to handle block truncation upon failure.
2216 */
2217 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2218 struct page **pagep, get_block_t *get_block)
2219 {
2220 pgoff_t index = pos >> PAGE_SHIFT;
2221 struct page *page;
2222 int status;
2223
2224 page = grab_cache_page_write_begin(mapping, index);
2225 if (!page)
2226 return -ENOMEM;
2227
2228 status = __block_write_begin(page, pos, len, get_block);
2229 if (unlikely(status)) {
2230 unlock_page(page);
2231 put_page(page);
2232 page = NULL;
2233 }
2234
2235 *pagep = page;
2236 return status;
2237 }
2238 EXPORT_SYMBOL(block_write_begin);
2239
2240 int block_write_end(struct file *file, struct address_space *mapping,
2241 loff_t pos, unsigned len, unsigned copied,
2242 struct page *page, void *fsdata)
2243 {
2244 struct folio *folio = page_folio(page);
2245 size_t start = pos - folio_pos(folio);
2246
2247 if (unlikely(copied < len)) {
2248 /*
2249 * The buffers that were written will now be uptodate, so
2250 * we don't have to worry about a read_folio reading them
2251 * and overwriting a partial write. However if we have
2252 * encountered a short write and only partially written
2253 * into a buffer, it will not be marked uptodate, so a
2254 * read_folio might come in and destroy our partial write.
2255 *
2256 * Do the simplest thing, and just treat any short write to a
2257 * non uptodate folio as a zero-length write, and force the
2258 * caller to redo the whole thing.
2259 */
2260 if (!folio_test_uptodate(folio))
2261 copied = 0;
2262
2263 folio_zero_new_buffers(folio, start+copied, start+len);
2264 }
2265 flush_dcache_folio(folio);
2266
2267 /* This could be a short (even 0-length) commit */
2268 __block_commit_write(folio, start, start + copied);
2269
2270 return copied;
2271 }
2272 EXPORT_SYMBOL(block_write_end);
2273
2274 int generic_write_end(struct file *file, struct address_space *mapping,
2275 loff_t pos, unsigned len, unsigned copied,
2276 struct page *page, void *fsdata)
2277 {
2278 struct inode *inode = mapping->host;
2279 loff_t old_size = inode->i_size;
2280 bool i_size_changed = false;
2281
2282 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2283
2284 /*
2285 * No need to use i_size_read() here, the i_size cannot change under us
2286 * because we hold i_rwsem.
2287 *
2288 * But it's important to update i_size while still holding page lock:
2289 * page writeout could otherwise come in and zero beyond i_size.
2290 */
2291 if (pos + copied > inode->i_size) {
2292 i_size_write(inode, pos + copied);
2293 i_size_changed = true;
2294 }
2295
2296 unlock_page(page);
2297 put_page(page);
2298
2299 if (old_size < pos)
2300 pagecache_isize_extended(inode, old_size, pos);
2301 /*
2302 * Don't mark the inode dirty under page lock. First, it unnecessarily
2303 * makes the holding time of page lock longer. Second, it forces lock
2304 * ordering of page lock and transaction start for journaling
2305 * filesystems.
2306 */
2307 if (i_size_changed)
2308 mark_inode_dirty(inode);
2309 return copied;
2310 }
2311 EXPORT_SYMBOL(generic_write_end);
2312
2313 /*
2314 * block_is_partially_uptodate checks whether buffers within a folio are
2315 * uptodate or not.
2316 *
2317 * Returns true if all buffers which correspond to the specified part
2318 * of the folio are uptodate.
2319 */
2320 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2321 {
2322 unsigned block_start, block_end, blocksize;
2323 unsigned to;
2324 struct buffer_head *bh, *head;
2325 bool ret = true;
2326
2327 head = folio_buffers(folio);
2328 if (!head)
2329 return false;
2330 blocksize = head->b_size;
2331 to = min_t(unsigned, folio_size(folio) - from, count);
2332 to = from + to;
2333 if (from < blocksize && to > folio_size(folio) - blocksize)
2334 return false;
2335
2336 bh = head;
2337 block_start = 0;
2338 do {
2339 block_end = block_start + blocksize;
2340 if (block_end > from && block_start < to) {
2341 if (!buffer_uptodate(bh)) {
2342 ret = false;
2343 break;
2344 }
2345 if (block_end >= to)
2346 break;
2347 }
2348 block_start = block_end;
2349 bh = bh->b_this_page;
2350 } while (bh != head);
2351
2352 return ret;
2353 }
2354 EXPORT_SYMBOL(block_is_partially_uptodate);
2355
2356 /*
2357 * Generic "read_folio" function for block devices that have the normal
2358 * get_block functionality. This is most of the block device filesystems.
2359 * Reads the folio asynchronously --- the unlock_buffer() and
2360 * set/clear_buffer_uptodate() functions propagate buffer state into the
2361 * folio once IO has completed.
2362 */
2363 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2364 {
2365 struct inode *inode = folio->mapping->host;
2366 sector_t iblock, lblock;
2367 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2368 unsigned int blocksize, bbits;
2369 int nr, i;
2370 int fully_mapped = 1;
2371 bool page_error = false;
2372 loff_t limit = i_size_read(inode);
2373
2374 /* This is needed for ext4. */
2375 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2376 limit = inode->i_sb->s_maxbytes;
2377
2378 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2379
2380 head = folio_create_buffers(folio, inode, 0);
2381 blocksize = head->b_size;
2382 bbits = block_size_bits(blocksize);
2383
2384 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2385 lblock = (limit+blocksize-1) >> bbits;
2386 bh = head;
2387 nr = 0;
2388 i = 0;
2389
2390 do {
2391 if (buffer_uptodate(bh))
2392 continue;
2393
2394 if (!buffer_mapped(bh)) {
2395 int err = 0;
2396
2397 fully_mapped = 0;
2398 if (iblock < lblock) {
2399 WARN_ON(bh->b_size != blocksize);
2400 err = get_block(inode, iblock, bh, 0);
2401 if (err) {
2402 folio_set_error(folio);
2403 page_error = true;
2404 }
2405 }
2406 if (!buffer_mapped(bh)) {
2407 folio_zero_range(folio, i * blocksize,
2408 blocksize);
2409 if (!err)
2410 set_buffer_uptodate(bh);
2411 continue;
2412 }
2413 /*
2414 * get_block() might have updated the buffer
2415 * synchronously
2416 */
2417 if (buffer_uptodate(bh))
2418 continue;
2419 }
2420 arr[nr++] = bh;
2421 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2422
2423 if (fully_mapped)
2424 folio_set_mappedtodisk(folio);
2425
2426 if (!nr) {
2427 /*
2428 * All buffers are uptodate - we can set the folio uptodate
2429 * as well. But not if get_block() returned an error.
2430 */
2431 if (!page_error)
2432 folio_mark_uptodate(folio);
2433 folio_unlock(folio);
2434 return 0;
2435 }
2436
2437 /* Stage two: lock the buffers */
2438 for (i = 0; i < nr; i++) {
2439 bh = arr[i];
2440 lock_buffer(bh);
2441 mark_buffer_async_read(bh);
2442 }
2443
2444 /*
2445 * Stage 3: start the IO. Check for uptodateness
2446 * inside the buffer lock in case another process reading
2447 * the underlying blockdev brought it uptodate (the sct fix).
2448 */
2449 for (i = 0; i < nr; i++) {
2450 bh = arr[i];
2451 if (buffer_uptodate(bh))
2452 end_buffer_async_read(bh, 1);
2453 else
2454 submit_bh(REQ_OP_READ, bh);
2455 }
2456 return 0;
2457 }
2458 EXPORT_SYMBOL(block_read_full_folio);
2459
2460 /* utility function for filesystems that need to do work on expanding
2461 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2462 * deal with the hole.
2463 */
2464 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2465 {
2466 struct address_space *mapping = inode->i_mapping;
2467 const struct address_space_operations *aops = mapping->a_ops;
2468 struct page *page;
2469 void *fsdata = NULL;
2470 int err;
2471
2472 err = inode_newsize_ok(inode, size);
2473 if (err)
2474 goto out;
2475
2476 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2477 if (err)
2478 goto out;
2479
2480 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2481 BUG_ON(err > 0);
2482
2483 out:
2484 return err;
2485 }
2486 EXPORT_SYMBOL(generic_cont_expand_simple);
2487
2488 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2489 loff_t pos, loff_t *bytes)
2490 {
2491 struct inode *inode = mapping->host;
2492 const struct address_space_operations *aops = mapping->a_ops;
2493 unsigned int blocksize = i_blocksize(inode);
2494 struct page *page;
2495 void *fsdata = NULL;
2496 pgoff_t index, curidx;
2497 loff_t curpos;
2498 unsigned zerofrom, offset, len;
2499 int err = 0;
2500
2501 index = pos >> PAGE_SHIFT;
2502 offset = pos & ~PAGE_MASK;
2503
2504 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2505 zerofrom = curpos & ~PAGE_MASK;
2506 if (zerofrom & (blocksize-1)) {
2507 *bytes |= (blocksize-1);
2508 (*bytes)++;
2509 }
2510 len = PAGE_SIZE - zerofrom;
2511
2512 err = aops->write_begin(file, mapping, curpos, len,
2513 &page, &fsdata);
2514 if (err)
2515 goto out;
2516 zero_user(page, zerofrom, len);
2517 err = aops->write_end(file, mapping, curpos, len, len,
2518 page, fsdata);
2519 if (err < 0)
2520 goto out;
2521 BUG_ON(err != len);
2522 err = 0;
2523
2524 balance_dirty_pages_ratelimited(mapping);
2525
2526 if (fatal_signal_pending(current)) {
2527 err = -EINTR;
2528 goto out;
2529 }
2530 }
2531
2532 /* page covers the boundary, find the boundary offset */
2533 if (index == curidx) {
2534 zerofrom = curpos & ~PAGE_MASK;
2535 /* if we will expand the thing last block will be filled */
2536 if (offset <= zerofrom) {
2537 goto out;
2538 }
2539 if (zerofrom & (blocksize-1)) {
2540 *bytes |= (blocksize-1);
2541 (*bytes)++;
2542 }
2543 len = offset - zerofrom;
2544
2545 err = aops->write_begin(file, mapping, curpos, len,
2546 &page, &fsdata);
2547 if (err)
2548 goto out;
2549 zero_user(page, zerofrom, len);
2550 err = aops->write_end(file, mapping, curpos, len, len,
2551 page, fsdata);
2552 if (err < 0)
2553 goto out;
2554 BUG_ON(err != len);
2555 err = 0;
2556 }
2557 out:
2558 return err;
2559 }
2560
2561 /*
2562 * For moronic filesystems that do not allow holes in file.
2563 * We may have to extend the file.
2564 */
2565 int cont_write_begin(struct file *file, struct address_space *mapping,
2566 loff_t pos, unsigned len,
2567 struct page **pagep, void **fsdata,
2568 get_block_t *get_block, loff_t *bytes)
2569 {
2570 struct inode *inode = mapping->host;
2571 unsigned int blocksize = i_blocksize(inode);
2572 unsigned int zerofrom;
2573 int err;
2574
2575 err = cont_expand_zero(file, mapping, pos, bytes);
2576 if (err)
2577 return err;
2578
2579 zerofrom = *bytes & ~PAGE_MASK;
2580 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2581 *bytes |= (blocksize-1);
2582 (*bytes)++;
2583 }
2584
2585 return block_write_begin(mapping, pos, len, pagep, get_block);
2586 }
2587 EXPORT_SYMBOL(cont_write_begin);
2588
2589 void block_commit_write(struct page *page, unsigned from, unsigned to)
2590 {
2591 struct folio *folio = page_folio(page);
2592 __block_commit_write(folio, from, to);
2593 }
2594 EXPORT_SYMBOL(block_commit_write);
2595
2596 /*
2597 * block_page_mkwrite() is not allowed to change the file size as it gets
2598 * called from a page fault handler when a page is first dirtied. Hence we must
2599 * be careful to check for EOF conditions here. We set the page up correctly
2600 * for a written page which means we get ENOSPC checking when writing into
2601 * holes and correct delalloc and unwritten extent mapping on filesystems that
2602 * support these features.
2603 *
2604 * We are not allowed to take the i_mutex here so we have to play games to
2605 * protect against truncate races as the page could now be beyond EOF. Because
2606 * truncate writes the inode size before removing pages, once we have the
2607 * page lock we can determine safely if the page is beyond EOF. If it is not
2608 * beyond EOF, then the page is guaranteed safe against truncation until we
2609 * unlock the page.
2610 *
2611 * Direct callers of this function should protect against filesystem freezing
2612 * using sb_start_pagefault() - sb_end_pagefault() functions.
2613 */
2614 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2615 get_block_t get_block)
2616 {
2617 struct folio *folio = page_folio(vmf->page);
2618 struct inode *inode = file_inode(vma->vm_file);
2619 unsigned long end;
2620 loff_t size;
2621 int ret;
2622
2623 folio_lock(folio);
2624 size = i_size_read(inode);
2625 if ((folio->mapping != inode->i_mapping) ||
2626 (folio_pos(folio) >= size)) {
2627 /* We overload EFAULT to mean page got truncated */
2628 ret = -EFAULT;
2629 goto out_unlock;
2630 }
2631
2632 end = folio_size(folio);
2633 /* folio is wholly or partially inside EOF */
2634 if (folio_pos(folio) + end > size)
2635 end = size - folio_pos(folio);
2636
2637 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2638 if (unlikely(ret))
2639 goto out_unlock;
2640
2641 __block_commit_write(folio, 0, end);
2642
2643 folio_mark_dirty(folio);
2644 folio_wait_stable(folio);
2645 return 0;
2646 out_unlock:
2647 folio_unlock(folio);
2648 return ret;
2649 }
2650 EXPORT_SYMBOL(block_page_mkwrite);
2651
2652 int block_truncate_page(struct address_space *mapping,
2653 loff_t from, get_block_t *get_block)
2654 {
2655 pgoff_t index = from >> PAGE_SHIFT;
2656 unsigned blocksize;
2657 sector_t iblock;
2658 size_t offset, length, pos;
2659 struct inode *inode = mapping->host;
2660 struct folio *folio;
2661 struct buffer_head *bh;
2662 int err = 0;
2663
2664 blocksize = i_blocksize(inode);
2665 length = from & (blocksize - 1);
2666
2667 /* Block boundary? Nothing to do */
2668 if (!length)
2669 return 0;
2670
2671 length = blocksize - length;
2672 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2673
2674 folio = filemap_grab_folio(mapping, index);
2675 if (IS_ERR(folio))
2676 return PTR_ERR(folio);
2677
2678 bh = folio_buffers(folio);
2679 if (!bh) {
2680 folio_create_empty_buffers(folio, blocksize, 0);
2681 bh = folio_buffers(folio);
2682 }
2683
2684 /* Find the buffer that contains "offset" */
2685 offset = offset_in_folio(folio, from);
2686 pos = blocksize;
2687 while (offset >= pos) {
2688 bh = bh->b_this_page;
2689 iblock++;
2690 pos += blocksize;
2691 }
2692
2693 if (!buffer_mapped(bh)) {
2694 WARN_ON(bh->b_size != blocksize);
2695 err = get_block(inode, iblock, bh, 0);
2696 if (err)
2697 goto unlock;
2698 /* unmapped? It's a hole - nothing to do */
2699 if (!buffer_mapped(bh))
2700 goto unlock;
2701 }
2702
2703 /* Ok, it's mapped. Make sure it's up-to-date */
2704 if (folio_test_uptodate(folio))
2705 set_buffer_uptodate(bh);
2706
2707 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708 err = bh_read(bh, 0);
2709 /* Uhhuh. Read error. Complain and punt. */
2710 if (err < 0)
2711 goto unlock;
2712 }
2713
2714 folio_zero_range(folio, offset, length);
2715 mark_buffer_dirty(bh);
2716
2717 unlock:
2718 folio_unlock(folio);
2719 folio_put(folio);
2720
2721 return err;
2722 }
2723 EXPORT_SYMBOL(block_truncate_page);
2724
2725 /*
2726 * The generic ->writepage function for buffer-backed address_spaces
2727 */
2728 int block_write_full_page(struct page *page, get_block_t *get_block,
2729 struct writeback_control *wbc)
2730 {
2731 struct folio *folio = page_folio(page);
2732 struct inode * const inode = folio->mapping->host;
2733 loff_t i_size = i_size_read(inode);
2734
2735 /* Is the folio fully inside i_size? */
2736 if (folio_pos(folio) + folio_size(folio) <= i_size)
2737 return __block_write_full_folio(inode, folio, get_block, wbc,
2738 end_buffer_async_write);
2739
2740 /* Is the folio fully outside i_size? (truncate in progress) */
2741 if (folio_pos(folio) >= i_size) {
2742 folio_unlock(folio);
2743 return 0; /* don't care */
2744 }
2745
2746 /*
2747 * The folio straddles i_size. It must be zeroed out on each and every
2748 * writepage invocation because it may be mmapped. "A file is mapped
2749 * in multiples of the page size. For a file that is not a multiple of
2750 * the page size, the remaining memory is zeroed when mapped, and
2751 * writes to that region are not written out to the file."
2752 */
2753 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2754 folio_size(folio));
2755 return __block_write_full_folio(inode, folio, get_block, wbc,
2756 end_buffer_async_write);
2757 }
2758 EXPORT_SYMBOL(block_write_full_page);
2759
2760 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2761 get_block_t *get_block)
2762 {
2763 struct inode *inode = mapping->host;
2764 struct buffer_head tmp = {
2765 .b_size = i_blocksize(inode),
2766 };
2767
2768 get_block(inode, block, &tmp, 0);
2769 return tmp.b_blocknr;
2770 }
2771 EXPORT_SYMBOL(generic_block_bmap);
2772
2773 static void end_bio_bh_io_sync(struct bio *bio)
2774 {
2775 struct buffer_head *bh = bio->bi_private;
2776
2777 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2778 set_bit(BH_Quiet, &bh->b_state);
2779
2780 bh->b_end_io(bh, !bio->bi_status);
2781 bio_put(bio);
2782 }
2783
2784 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2785 struct writeback_control *wbc)
2786 {
2787 const enum req_op op = opf & REQ_OP_MASK;
2788 struct bio *bio;
2789
2790 BUG_ON(!buffer_locked(bh));
2791 BUG_ON(!buffer_mapped(bh));
2792 BUG_ON(!bh->b_end_io);
2793 BUG_ON(buffer_delay(bh));
2794 BUG_ON(buffer_unwritten(bh));
2795
2796 /*
2797 * Only clear out a write error when rewriting
2798 */
2799 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2800 clear_buffer_write_io_error(bh);
2801
2802 if (buffer_meta(bh))
2803 opf |= REQ_META;
2804 if (buffer_prio(bh))
2805 opf |= REQ_PRIO;
2806
2807 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2808
2809 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2810
2811 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2812
2813 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2814
2815 bio->bi_end_io = end_bio_bh_io_sync;
2816 bio->bi_private = bh;
2817
2818 /* Take care of bh's that straddle the end of the device */
2819 guard_bio_eod(bio);
2820
2821 if (wbc) {
2822 wbc_init_bio(wbc, bio);
2823 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2824 }
2825
2826 submit_bio(bio);
2827 }
2828
2829 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2830 {
2831 submit_bh_wbc(opf, bh, NULL);
2832 }
2833 EXPORT_SYMBOL(submit_bh);
2834
2835 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2836 {
2837 lock_buffer(bh);
2838 if (!test_clear_buffer_dirty(bh)) {
2839 unlock_buffer(bh);
2840 return;
2841 }
2842 bh->b_end_io = end_buffer_write_sync;
2843 get_bh(bh);
2844 submit_bh(REQ_OP_WRITE | op_flags, bh);
2845 }
2846 EXPORT_SYMBOL(write_dirty_buffer);
2847
2848 /*
2849 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2850 * and then start new I/O and then wait upon it. The caller must have a ref on
2851 * the buffer_head.
2852 */
2853 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2854 {
2855 WARN_ON(atomic_read(&bh->b_count) < 1);
2856 lock_buffer(bh);
2857 if (test_clear_buffer_dirty(bh)) {
2858 /*
2859 * The bh should be mapped, but it might not be if the
2860 * device was hot-removed. Not much we can do but fail the I/O.
2861 */
2862 if (!buffer_mapped(bh)) {
2863 unlock_buffer(bh);
2864 return -EIO;
2865 }
2866
2867 get_bh(bh);
2868 bh->b_end_io = end_buffer_write_sync;
2869 submit_bh(REQ_OP_WRITE | op_flags, bh);
2870 wait_on_buffer(bh);
2871 if (!buffer_uptodate(bh))
2872 return -EIO;
2873 } else {
2874 unlock_buffer(bh);
2875 }
2876 return 0;
2877 }
2878 EXPORT_SYMBOL(__sync_dirty_buffer);
2879
2880 int sync_dirty_buffer(struct buffer_head *bh)
2881 {
2882 return __sync_dirty_buffer(bh, REQ_SYNC);
2883 }
2884 EXPORT_SYMBOL(sync_dirty_buffer);
2885
2886 /*
2887 * try_to_free_buffers() checks if all the buffers on this particular folio
2888 * are unused, and releases them if so.
2889 *
2890 * Exclusion against try_to_free_buffers may be obtained by either
2891 * locking the folio or by holding its mapping's private_lock.
2892 *
2893 * If the folio is dirty but all the buffers are clean then we need to
2894 * be sure to mark the folio clean as well. This is because the folio
2895 * may be against a block device, and a later reattachment of buffers
2896 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2897 * filesystem data on the same device.
2898 *
2899 * The same applies to regular filesystem folios: if all the buffers are
2900 * clean then we set the folio clean and proceed. To do that, we require
2901 * total exclusion from block_dirty_folio(). That is obtained with
2902 * private_lock.
2903 *
2904 * try_to_free_buffers() is non-blocking.
2905 */
2906 static inline int buffer_busy(struct buffer_head *bh)
2907 {
2908 return atomic_read(&bh->b_count) |
2909 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2910 }
2911
2912 static bool
2913 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2914 {
2915 struct buffer_head *head = folio_buffers(folio);
2916 struct buffer_head *bh;
2917
2918 bh = head;
2919 do {
2920 if (buffer_busy(bh))
2921 goto failed;
2922 bh = bh->b_this_page;
2923 } while (bh != head);
2924
2925 do {
2926 struct buffer_head *next = bh->b_this_page;
2927
2928 if (bh->b_assoc_map)
2929 __remove_assoc_queue(bh);
2930 bh = next;
2931 } while (bh != head);
2932 *buffers_to_free = head;
2933 folio_detach_private(folio);
2934 return true;
2935 failed:
2936 return false;
2937 }
2938
2939 bool try_to_free_buffers(struct folio *folio)
2940 {
2941 struct address_space * const mapping = folio->mapping;
2942 struct buffer_head *buffers_to_free = NULL;
2943 bool ret = 0;
2944
2945 BUG_ON(!folio_test_locked(folio));
2946 if (folio_test_writeback(folio))
2947 return false;
2948
2949 if (mapping == NULL) { /* can this still happen? */
2950 ret = drop_buffers(folio, &buffers_to_free);
2951 goto out;
2952 }
2953
2954 spin_lock(&mapping->private_lock);
2955 ret = drop_buffers(folio, &buffers_to_free);
2956
2957 /*
2958 * If the filesystem writes its buffers by hand (eg ext3)
2959 * then we can have clean buffers against a dirty folio. We
2960 * clean the folio here; otherwise the VM will never notice
2961 * that the filesystem did any IO at all.
2962 *
2963 * Also, during truncate, discard_buffer will have marked all
2964 * the folio's buffers clean. We discover that here and clean
2965 * the folio also.
2966 *
2967 * private_lock must be held over this entire operation in order
2968 * to synchronise against block_dirty_folio and prevent the
2969 * dirty bit from being lost.
2970 */
2971 if (ret)
2972 folio_cancel_dirty(folio);
2973 spin_unlock(&mapping->private_lock);
2974 out:
2975 if (buffers_to_free) {
2976 struct buffer_head *bh = buffers_to_free;
2977
2978 do {
2979 struct buffer_head *next = bh->b_this_page;
2980 free_buffer_head(bh);
2981 bh = next;
2982 } while (bh != buffers_to_free);
2983 }
2984 return ret;
2985 }
2986 EXPORT_SYMBOL(try_to_free_buffers);
2987
2988 /*
2989 * Buffer-head allocation
2990 */
2991 static struct kmem_cache *bh_cachep __read_mostly;
2992
2993 /*
2994 * Once the number of bh's in the machine exceeds this level, we start
2995 * stripping them in writeback.
2996 */
2997 static unsigned long max_buffer_heads;
2998
2999 int buffer_heads_over_limit;
3000
3001 struct bh_accounting {
3002 int nr; /* Number of live bh's */
3003 int ratelimit; /* Limit cacheline bouncing */
3004 };
3005
3006 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3007
3008 static void recalc_bh_state(void)
3009 {
3010 int i;
3011 int tot = 0;
3012
3013 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3014 return;
3015 __this_cpu_write(bh_accounting.ratelimit, 0);
3016 for_each_online_cpu(i)
3017 tot += per_cpu(bh_accounting, i).nr;
3018 buffer_heads_over_limit = (tot > max_buffer_heads);
3019 }
3020
3021 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3022 {
3023 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3024 if (ret) {
3025 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3026 spin_lock_init(&ret->b_uptodate_lock);
3027 preempt_disable();
3028 __this_cpu_inc(bh_accounting.nr);
3029 recalc_bh_state();
3030 preempt_enable();
3031 }
3032 return ret;
3033 }
3034 EXPORT_SYMBOL(alloc_buffer_head);
3035
3036 void free_buffer_head(struct buffer_head *bh)
3037 {
3038 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3039 kmem_cache_free(bh_cachep, bh);
3040 preempt_disable();
3041 __this_cpu_dec(bh_accounting.nr);
3042 recalc_bh_state();
3043 preempt_enable();
3044 }
3045 EXPORT_SYMBOL(free_buffer_head);
3046
3047 static int buffer_exit_cpu_dead(unsigned int cpu)
3048 {
3049 int i;
3050 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3051
3052 for (i = 0; i < BH_LRU_SIZE; i++) {
3053 brelse(b->bhs[i]);
3054 b->bhs[i] = NULL;
3055 }
3056 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3057 per_cpu(bh_accounting, cpu).nr = 0;
3058 return 0;
3059 }
3060
3061 /**
3062 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3063 * @bh: struct buffer_head
3064 *
3065 * Return true if the buffer is up-to-date and false,
3066 * with the buffer locked, if not.
3067 */
3068 int bh_uptodate_or_lock(struct buffer_head *bh)
3069 {
3070 if (!buffer_uptodate(bh)) {
3071 lock_buffer(bh);
3072 if (!buffer_uptodate(bh))
3073 return 0;
3074 unlock_buffer(bh);
3075 }
3076 return 1;
3077 }
3078 EXPORT_SYMBOL(bh_uptodate_or_lock);
3079
3080 /**
3081 * __bh_read - Submit read for a locked buffer
3082 * @bh: struct buffer_head
3083 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3084 * @wait: wait until reading finish
3085 *
3086 * Returns zero on success or don't wait, and -EIO on error.
3087 */
3088 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3089 {
3090 int ret = 0;
3091
3092 BUG_ON(!buffer_locked(bh));
3093
3094 get_bh(bh);
3095 bh->b_end_io = end_buffer_read_sync;
3096 submit_bh(REQ_OP_READ | op_flags, bh);
3097 if (wait) {
3098 wait_on_buffer(bh);
3099 if (!buffer_uptodate(bh))
3100 ret = -EIO;
3101 }
3102 return ret;
3103 }
3104 EXPORT_SYMBOL(__bh_read);
3105
3106 /**
3107 * __bh_read_batch - Submit read for a batch of unlocked buffers
3108 * @nr: entry number of the buffer batch
3109 * @bhs: a batch of struct buffer_head
3110 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3111 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3112 * buffer that cannot lock.
3113 *
3114 * Returns zero on success or don't wait, and -EIO on error.
3115 */
3116 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3117 blk_opf_t op_flags, bool force_lock)
3118 {
3119 int i;
3120
3121 for (i = 0; i < nr; i++) {
3122 struct buffer_head *bh = bhs[i];
3123
3124 if (buffer_uptodate(bh))
3125 continue;
3126
3127 if (force_lock)
3128 lock_buffer(bh);
3129 else
3130 if (!trylock_buffer(bh))
3131 continue;
3132
3133 if (buffer_uptodate(bh)) {
3134 unlock_buffer(bh);
3135 continue;
3136 }
3137
3138 bh->b_end_io = end_buffer_read_sync;
3139 get_bh(bh);
3140 submit_bh(REQ_OP_READ | op_flags, bh);
3141 }
3142 }
3143 EXPORT_SYMBOL(__bh_read_batch);
3144
3145 void __init buffer_init(void)
3146 {
3147 unsigned long nrpages;
3148 int ret;
3149
3150 bh_cachep = kmem_cache_create("buffer_head",
3151 sizeof(struct buffer_head), 0,
3152 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3153 SLAB_MEM_SPREAD),
3154 NULL);
3155
3156 /*
3157 * Limit the bh occupancy to 10% of ZONE_NORMAL
3158 */
3159 nrpages = (nr_free_buffer_pages() * 10) / 100;
3160 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3161 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3162 NULL, buffer_exit_cpu_dead);
3163 WARN_ON(ret < 0);
3164 }