]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/buffer.c
Merge tag 'pm-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 trace_block_touch_buffer(bh);
63 mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 clear_bit_unlock(BH_Lock, &bh->b_state);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
85 */
86 void buffer_check_dirty_writeback(struct page *page,
87 bool *dirty, bool *writeback)
88 {
89 struct buffer_head *head, *bh;
90 *dirty = false;
91 *writeback = false;
92
93 BUG_ON(!PageLocked(page));
94
95 if (!page_has_buffers(page))
96 return;
97
98 if (PageWriteback(page))
99 *writeback = true;
100
101 head = page_buffers(page);
102 bh = head;
103 do {
104 if (buffer_locked(bh))
105 *writeback = true;
106
107 if (buffer_dirty(bh))
108 *dirty = true;
109
110 bh = bh->b_this_page;
111 } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151 }
152
153 /*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
156 */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct page *page;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 if (!page)
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 if (!page_has_buffers(page))
208 goto out_unlock;
209 head = page_buffers(page);
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237 out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 put_page(page);
240 out:
241 return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct page *page;
250 int page_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 page = bh->b_page;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 SetPageError(page);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = page_buffers(page);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 page_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
287 */
288 if (page_uptodate && !PageError(page))
289 SetPageUptodate(page);
290 unlock_page(page);
291 return;
292
293 still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296 }
297
298 struct decrypt_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305 struct decrypt_bh_ctx *ctx =
306 container_of(work, struct decrypt_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 int err;
309
310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 bh_offset(bh));
312 end_buffer_async_read(bh, err == 0);
313 kfree(ctx);
314 }
315
316 /*
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
319 */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 /* Decrypt if needed */
323 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
324 IS_ENCRYPTED(bh->b_page->mapping->host) &&
325 S_ISREG(bh->b_page->mapping->host->i_mode)) {
326 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
327
328 if (ctx) {
329 INIT_WORK(&ctx->work, decrypt_bh);
330 ctx->bh = bh;
331 fscrypt_enqueue_decrypt_work(&ctx->work);
332 return;
333 }
334 uptodate = 0;
335 }
336 end_buffer_async_read(bh, uptodate);
337 }
338
339 /*
340 * Completion handler for block_write_full_page() - pages which are unlocked
341 * during I/O, and which have PageWriteback cleared upon I/O completion.
342 */
343 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
344 {
345 unsigned long flags;
346 struct buffer_head *first;
347 struct buffer_head *tmp;
348 struct page *page;
349
350 BUG_ON(!buffer_async_write(bh));
351
352 page = bh->b_page;
353 if (uptodate) {
354 set_buffer_uptodate(bh);
355 } else {
356 buffer_io_error(bh, ", lost async page write");
357 mark_buffer_write_io_error(bh);
358 clear_buffer_uptodate(bh);
359 SetPageError(page);
360 }
361
362 first = page_buffers(page);
363 spin_lock_irqsave(&first->b_uptodate_lock, flags);
364
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
375 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
376 end_page_writeback(page);
377 return;
378
379 still_busy:
380 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
381 return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384
385 /*
386 * If a page's buffers are under async readin (end_buffer_async_read
387 * completion) then there is a possibility that another thread of
388 * control could lock one of the buffers after it has completed
389 * but while some of the other buffers have not completed. This
390 * locked buffer would confuse end_buffer_async_read() into not unlocking
391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
392 * that this buffer is not under async I/O.
393 *
394 * The page comes unlocked when it has no locked buffer_async buffers
395 * left.
396 *
397 * PageLocked prevents anyone starting new async I/O reads any of
398 * the buffers.
399 *
400 * PageWriteback is used to prevent simultaneous writeout of the same
401 * page.
402 *
403 * PageLocked prevents anyone from starting writeback of a page which is
404 * under read I/O (PageWriteback is only ever set against a locked page).
405 */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408 bh->b_end_io = end_buffer_async_read_io;
409 set_buffer_async_read(bh);
410 }
411
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 bh_end_io_t *handler)
414 {
415 bh->b_end_io = handler;
416 set_buffer_async_write(bh);
417 }
418
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421 mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426 /*
427 * fs/buffer.c contains helper functions for buffer-backed address space's
428 * fsync functions. A common requirement for buffer-based filesystems is
429 * that certain data from the backing blockdev needs to be written out for
430 * a successful fsync(). For example, ext2 indirect blocks need to be
431 * written back and waited upon before fsync() returns.
432 *
433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435 * management of a list of dependent buffers at ->i_mapping->private_list.
436 *
437 * Locking is a little subtle: try_to_free_buffers() will remove buffers
438 * from their controlling inode's queue when they are being freed. But
439 * try_to_free_buffers() will be operating against the *blockdev* mapping
440 * at the time, not against the S_ISREG file which depends on those buffers.
441 * So the locking for private_list is via the private_lock in the address_space
442 * which backs the buffers. Which is different from the address_space
443 * against which the buffers are listed. So for a particular address_space,
444 * mapping->private_lock does *not* protect mapping->private_list! In fact,
445 * mapping->private_list will always be protected by the backing blockdev's
446 * ->private_lock.
447 *
448 * Which introduces a requirement: all buffers on an address_space's
449 * ->private_list must be from the same address_space: the blockdev's.
450 *
451 * address_spaces which do not place buffers at ->private_list via these
452 * utility functions are free to use private_lock and private_list for
453 * whatever they want. The only requirement is that list_empty(private_list)
454 * be true at clear_inode() time.
455 *
456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
457 * filesystems should do that. invalidate_inode_buffers() should just go
458 * BUG_ON(!list_empty).
459 *
460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
461 * take an address_space, not an inode. And it should be called
462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463 * queued up.
464 *
465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466 * list if it is already on a list. Because if the buffer is on a list,
467 * it *must* already be on the right one. If not, the filesystem is being
468 * silly. This will save a ton of locking. But first we have to ensure
469 * that buffers are taken *off* the old inode's list when they are freed
470 * (presumably in truncate). That requires careful auditing of all
471 * filesystems (do it inside bforget()). It could also be done by bringing
472 * b_inode back.
473 */
474
475 /*
476 * The buffer's backing address_space's private_lock must be held
477 */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480 list_del_init(&bh->b_assoc_buffers);
481 WARN_ON(!bh->b_assoc_map);
482 bh->b_assoc_map = NULL;
483 }
484
485 int inode_has_buffers(struct inode *inode)
486 {
487 return !list_empty(&inode->i_data.private_list);
488 }
489
490 /*
491 * osync is designed to support O_SYNC io. It waits synchronously for
492 * all already-submitted IO to complete, but does not queue any new
493 * writes to the disk.
494 *
495 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
496 * you dirty the buffers, and then use osync_inode_buffers to wait for
497 * completion. Any other dirty buffers which are not yet queued for
498 * write will not be flushed to disk by the osync.
499 */
500 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
501 {
502 struct buffer_head *bh;
503 struct list_head *p;
504 int err = 0;
505
506 spin_lock(lock);
507 repeat:
508 list_for_each_prev(p, list) {
509 bh = BH_ENTRY(p);
510 if (buffer_locked(bh)) {
511 get_bh(bh);
512 spin_unlock(lock);
513 wait_on_buffer(bh);
514 if (!buffer_uptodate(bh))
515 err = -EIO;
516 brelse(bh);
517 spin_lock(lock);
518 goto repeat;
519 }
520 }
521 spin_unlock(lock);
522 return err;
523 }
524
525 void emergency_thaw_bdev(struct super_block *sb)
526 {
527 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
528 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
529 }
530
531 /**
532 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
533 * @mapping: the mapping which wants those buffers written
534 *
535 * Starts I/O against the buffers at mapping->private_list, and waits upon
536 * that I/O.
537 *
538 * Basically, this is a convenience function for fsync().
539 * @mapping is a file or directory which needs those buffers to be written for
540 * a successful fsync().
541 */
542 int sync_mapping_buffers(struct address_space *mapping)
543 {
544 struct address_space *buffer_mapping = mapping->private_data;
545
546 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
547 return 0;
548
549 return fsync_buffers_list(&buffer_mapping->private_lock,
550 &mapping->private_list);
551 }
552 EXPORT_SYMBOL(sync_mapping_buffers);
553
554 /*
555 * Called when we've recently written block `bblock', and it is known that
556 * `bblock' was for a buffer_boundary() buffer. This means that the block at
557 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
558 * dirty, schedule it for IO. So that indirects merge nicely with their data.
559 */
560 void write_boundary_block(struct block_device *bdev,
561 sector_t bblock, unsigned blocksize)
562 {
563 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
564 if (bh) {
565 if (buffer_dirty(bh))
566 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
567 put_bh(bh);
568 }
569 }
570
571 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
572 {
573 struct address_space *mapping = inode->i_mapping;
574 struct address_space *buffer_mapping = bh->b_page->mapping;
575
576 mark_buffer_dirty(bh);
577 if (!mapping->private_data) {
578 mapping->private_data = buffer_mapping;
579 } else {
580 BUG_ON(mapping->private_data != buffer_mapping);
581 }
582 if (!bh->b_assoc_map) {
583 spin_lock(&buffer_mapping->private_lock);
584 list_move_tail(&bh->b_assoc_buffers,
585 &mapping->private_list);
586 bh->b_assoc_map = mapping;
587 spin_unlock(&buffer_mapping->private_lock);
588 }
589 }
590 EXPORT_SYMBOL(mark_buffer_dirty_inode);
591
592 /*
593 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
594 * dirty.
595 *
596 * If warn is true, then emit a warning if the page is not uptodate and has
597 * not been truncated.
598 *
599 * The caller must hold lock_page_memcg().
600 */
601 void __set_page_dirty(struct page *page, struct address_space *mapping,
602 int warn)
603 {
604 unsigned long flags;
605
606 xa_lock_irqsave(&mapping->i_pages, flags);
607 if (page->mapping) { /* Race with truncate? */
608 WARN_ON_ONCE(warn && !PageUptodate(page));
609 account_page_dirtied(page, mapping);
610 __xa_set_mark(&mapping->i_pages, page_index(page),
611 PAGECACHE_TAG_DIRTY);
612 }
613 xa_unlock_irqrestore(&mapping->i_pages, flags);
614 }
615 EXPORT_SYMBOL_GPL(__set_page_dirty);
616
617 /*
618 * Add a page to the dirty page list.
619 *
620 * It is a sad fact of life that this function is called from several places
621 * deeply under spinlocking. It may not sleep.
622 *
623 * If the page has buffers, the uptodate buffers are set dirty, to preserve
624 * dirty-state coherency between the page and the buffers. It the page does
625 * not have buffers then when they are later attached they will all be set
626 * dirty.
627 *
628 * The buffers are dirtied before the page is dirtied. There's a small race
629 * window in which a writepage caller may see the page cleanness but not the
630 * buffer dirtiness. That's fine. If this code were to set the page dirty
631 * before the buffers, a concurrent writepage caller could clear the page dirty
632 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
633 * page on the dirty page list.
634 *
635 * We use private_lock to lock against try_to_free_buffers while using the
636 * page's buffer list. Also use this to protect against clean buffers being
637 * added to the page after it was set dirty.
638 *
639 * FIXME: may need to call ->reservepage here as well. That's rather up to the
640 * address_space though.
641 */
642 int __set_page_dirty_buffers(struct page *page)
643 {
644 int newly_dirty;
645 struct address_space *mapping = page_mapping(page);
646
647 if (unlikely(!mapping))
648 return !TestSetPageDirty(page);
649
650 spin_lock(&mapping->private_lock);
651 if (page_has_buffers(page)) {
652 struct buffer_head *head = page_buffers(page);
653 struct buffer_head *bh = head;
654
655 do {
656 set_buffer_dirty(bh);
657 bh = bh->b_this_page;
658 } while (bh != head);
659 }
660 /*
661 * Lock out page->mem_cgroup migration to keep PageDirty
662 * synchronized with per-memcg dirty page counters.
663 */
664 lock_page_memcg(page);
665 newly_dirty = !TestSetPageDirty(page);
666 spin_unlock(&mapping->private_lock);
667
668 if (newly_dirty)
669 __set_page_dirty(page, mapping, 1);
670
671 unlock_page_memcg(page);
672
673 if (newly_dirty)
674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675
676 return newly_dirty;
677 }
678 EXPORT_SYMBOL(__set_page_dirty_buffers);
679
680 /*
681 * Write out and wait upon a list of buffers.
682 *
683 * We have conflicting pressures: we want to make sure that all
684 * initially dirty buffers get waited on, but that any subsequently
685 * dirtied buffers don't. After all, we don't want fsync to last
686 * forever if somebody is actively writing to the file.
687 *
688 * Do this in two main stages: first we copy dirty buffers to a
689 * temporary inode list, queueing the writes as we go. Then we clean
690 * up, waiting for those writes to complete.
691 *
692 * During this second stage, any subsequent updates to the file may end
693 * up refiling the buffer on the original inode's dirty list again, so
694 * there is a chance we will end up with a buffer queued for write but
695 * not yet completed on that list. So, as a final cleanup we go through
696 * the osync code to catch these locked, dirty buffers without requeuing
697 * any newly dirty buffers for write.
698 */
699 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
700 {
701 struct buffer_head *bh;
702 struct list_head tmp;
703 struct address_space *mapping;
704 int err = 0, err2;
705 struct blk_plug plug;
706
707 INIT_LIST_HEAD(&tmp);
708 blk_start_plug(&plug);
709
710 spin_lock(lock);
711 while (!list_empty(list)) {
712 bh = BH_ENTRY(list->next);
713 mapping = bh->b_assoc_map;
714 __remove_assoc_queue(bh);
715 /* Avoid race with mark_buffer_dirty_inode() which does
716 * a lockless check and we rely on seeing the dirty bit */
717 smp_mb();
718 if (buffer_dirty(bh) || buffer_locked(bh)) {
719 list_add(&bh->b_assoc_buffers, &tmp);
720 bh->b_assoc_map = mapping;
721 if (buffer_dirty(bh)) {
722 get_bh(bh);
723 spin_unlock(lock);
724 /*
725 * Ensure any pending I/O completes so that
726 * write_dirty_buffer() actually writes the
727 * current contents - it is a noop if I/O is
728 * still in flight on potentially older
729 * contents.
730 */
731 write_dirty_buffer(bh, REQ_SYNC);
732
733 /*
734 * Kick off IO for the previous mapping. Note
735 * that we will not run the very last mapping,
736 * wait_on_buffer() will do that for us
737 * through sync_buffer().
738 */
739 brelse(bh);
740 spin_lock(lock);
741 }
742 }
743 }
744
745 spin_unlock(lock);
746 blk_finish_plug(&plug);
747 spin_lock(lock);
748
749 while (!list_empty(&tmp)) {
750 bh = BH_ENTRY(tmp.prev);
751 get_bh(bh);
752 mapping = bh->b_assoc_map;
753 __remove_assoc_queue(bh);
754 /* Avoid race with mark_buffer_dirty_inode() which does
755 * a lockless check and we rely on seeing the dirty bit */
756 smp_mb();
757 if (buffer_dirty(bh)) {
758 list_add(&bh->b_assoc_buffers,
759 &mapping->private_list);
760 bh->b_assoc_map = mapping;
761 }
762 spin_unlock(lock);
763 wait_on_buffer(bh);
764 if (!buffer_uptodate(bh))
765 err = -EIO;
766 brelse(bh);
767 spin_lock(lock);
768 }
769
770 spin_unlock(lock);
771 err2 = osync_buffers_list(lock, list);
772 if (err)
773 return err;
774 else
775 return err2;
776 }
777
778 /*
779 * Invalidate any and all dirty buffers on a given inode. We are
780 * probably unmounting the fs, but that doesn't mean we have already
781 * done a sync(). Just drop the buffers from the inode list.
782 *
783 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
784 * assumes that all the buffers are against the blockdev. Not true
785 * for reiserfs.
786 */
787 void invalidate_inode_buffers(struct inode *inode)
788 {
789 if (inode_has_buffers(inode)) {
790 struct address_space *mapping = &inode->i_data;
791 struct list_head *list = &mapping->private_list;
792 struct address_space *buffer_mapping = mapping->private_data;
793
794 spin_lock(&buffer_mapping->private_lock);
795 while (!list_empty(list))
796 __remove_assoc_queue(BH_ENTRY(list->next));
797 spin_unlock(&buffer_mapping->private_lock);
798 }
799 }
800 EXPORT_SYMBOL(invalidate_inode_buffers);
801
802 /*
803 * Remove any clean buffers from the inode's buffer list. This is called
804 * when we're trying to free the inode itself. Those buffers can pin it.
805 *
806 * Returns true if all buffers were removed.
807 */
808 int remove_inode_buffers(struct inode *inode)
809 {
810 int ret = 1;
811
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
815 struct address_space *buffer_mapping = mapping->private_data;
816
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list)) {
819 struct buffer_head *bh = BH_ENTRY(list->next);
820 if (buffer_dirty(bh)) {
821 ret = 0;
822 break;
823 }
824 __remove_assoc_queue(bh);
825 }
826 spin_unlock(&buffer_mapping->private_lock);
827 }
828 return ret;
829 }
830
831 /*
832 * Create the appropriate buffers when given a page for data area and
833 * the size of each buffer.. Use the bh->b_this_page linked list to
834 * follow the buffers created. Return NULL if unable to create more
835 * buffers.
836 *
837 * The retry flag is used to differentiate async IO (paging, swapping)
838 * which may not fail from ordinary buffer allocations.
839 */
840 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
841 bool retry)
842 {
843 struct buffer_head *bh, *head;
844 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
845 long offset;
846 struct mem_cgroup *memcg;
847
848 if (retry)
849 gfp |= __GFP_NOFAIL;
850
851 memcg = get_mem_cgroup_from_page(page);
852 memalloc_use_memcg(memcg);
853
854 head = NULL;
855 offset = PAGE_SIZE;
856 while ((offset -= size) >= 0) {
857 bh = alloc_buffer_head(gfp);
858 if (!bh)
859 goto no_grow;
860
861 bh->b_this_page = head;
862 bh->b_blocknr = -1;
863 head = bh;
864
865 bh->b_size = size;
866
867 /* Link the buffer to its page */
868 set_bh_page(bh, page, offset);
869 }
870 out:
871 memalloc_unuse_memcg();
872 mem_cgroup_put(memcg);
873 return head;
874 /*
875 * In case anything failed, we just free everything we got.
876 */
877 no_grow:
878 if (head) {
879 do {
880 bh = head;
881 head = head->b_this_page;
882 free_buffer_head(bh);
883 } while (head);
884 }
885
886 goto out;
887 }
888 EXPORT_SYMBOL_GPL(alloc_page_buffers);
889
890 static inline void
891 link_dev_buffers(struct page *page, struct buffer_head *head)
892 {
893 struct buffer_head *bh, *tail;
894
895 bh = head;
896 do {
897 tail = bh;
898 bh = bh->b_this_page;
899 } while (bh);
900 tail->b_this_page = head;
901 attach_page_private(page, head);
902 }
903
904 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
905 {
906 sector_t retval = ~((sector_t)0);
907 loff_t sz = i_size_read(bdev->bd_inode);
908
909 if (sz) {
910 unsigned int sizebits = blksize_bits(size);
911 retval = (sz >> sizebits);
912 }
913 return retval;
914 }
915
916 /*
917 * Initialise the state of a blockdev page's buffers.
918 */
919 static sector_t
920 init_page_buffers(struct page *page, struct block_device *bdev,
921 sector_t block, int size)
922 {
923 struct buffer_head *head = page_buffers(page);
924 struct buffer_head *bh = head;
925 int uptodate = PageUptodate(page);
926 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
927
928 do {
929 if (!buffer_mapped(bh)) {
930 bh->b_end_io = NULL;
931 bh->b_private = NULL;
932 bh->b_bdev = bdev;
933 bh->b_blocknr = block;
934 if (uptodate)
935 set_buffer_uptodate(bh);
936 if (block < end_block)
937 set_buffer_mapped(bh);
938 }
939 block++;
940 bh = bh->b_this_page;
941 } while (bh != head);
942
943 /*
944 * Caller needs to validate requested block against end of device.
945 */
946 return end_block;
947 }
948
949 /*
950 * Create the page-cache page that contains the requested block.
951 *
952 * This is used purely for blockdev mappings.
953 */
954 static int
955 grow_dev_page(struct block_device *bdev, sector_t block,
956 pgoff_t index, int size, int sizebits, gfp_t gfp)
957 {
958 struct inode *inode = bdev->bd_inode;
959 struct page *page;
960 struct buffer_head *bh;
961 sector_t end_block;
962 int ret = 0;
963 gfp_t gfp_mask;
964
965 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
966
967 /*
968 * XXX: __getblk_slow() can not really deal with failure and
969 * will endlessly loop on improvised global reclaim. Prefer
970 * looping in the allocator rather than here, at least that
971 * code knows what it's doing.
972 */
973 gfp_mask |= __GFP_NOFAIL;
974
975 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
976
977 BUG_ON(!PageLocked(page));
978
979 if (page_has_buffers(page)) {
980 bh = page_buffers(page);
981 if (bh->b_size == size) {
982 end_block = init_page_buffers(page, bdev,
983 (sector_t)index << sizebits,
984 size);
985 goto done;
986 }
987 if (!try_to_free_buffers(page))
988 goto failed;
989 }
990
991 /*
992 * Allocate some buffers for this page
993 */
994 bh = alloc_page_buffers(page, size, true);
995
996 /*
997 * Link the page to the buffers and initialise them. Take the
998 * lock to be atomic wrt __find_get_block(), which does not
999 * run under the page lock.
1000 */
1001 spin_lock(&inode->i_mapping->private_lock);
1002 link_dev_buffers(page, bh);
1003 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1004 size);
1005 spin_unlock(&inode->i_mapping->private_lock);
1006 done:
1007 ret = (block < end_block) ? 1 : -ENXIO;
1008 failed:
1009 unlock_page(page);
1010 put_page(page);
1011 return ret;
1012 }
1013
1014 /*
1015 * Create buffers for the specified block device block's page. If
1016 * that page was dirty, the buffers are set dirty also.
1017 */
1018 static int
1019 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1020 {
1021 pgoff_t index;
1022 int sizebits;
1023
1024 sizebits = -1;
1025 do {
1026 sizebits++;
1027 } while ((size << sizebits) < PAGE_SIZE);
1028
1029 index = block >> sizebits;
1030
1031 /*
1032 * Check for a block which wants to lie outside our maximum possible
1033 * pagecache index. (this comparison is done using sector_t types).
1034 */
1035 if (unlikely(index != block >> sizebits)) {
1036 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1037 "device %pg\n",
1038 __func__, (unsigned long long)block,
1039 bdev);
1040 return -EIO;
1041 }
1042
1043 /* Create a page with the proper size buffers.. */
1044 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1045 }
1046
1047 static struct buffer_head *
1048 __getblk_slow(struct block_device *bdev, sector_t block,
1049 unsigned size, gfp_t gfp)
1050 {
1051 /* Size must be multiple of hard sectorsize */
1052 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1053 (size < 512 || size > PAGE_SIZE))) {
1054 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1055 size);
1056 printk(KERN_ERR "logical block size: %d\n",
1057 bdev_logical_block_size(bdev));
1058
1059 dump_stack();
1060 return NULL;
1061 }
1062
1063 for (;;) {
1064 struct buffer_head *bh;
1065 int ret;
1066
1067 bh = __find_get_block(bdev, block, size);
1068 if (bh)
1069 return bh;
1070
1071 ret = grow_buffers(bdev, block, size, gfp);
1072 if (ret < 0)
1073 return NULL;
1074 }
1075 }
1076
1077 /*
1078 * The relationship between dirty buffers and dirty pages:
1079 *
1080 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1081 * the page is tagged dirty in the page cache.
1082 *
1083 * At all times, the dirtiness of the buffers represents the dirtiness of
1084 * subsections of the page. If the page has buffers, the page dirty bit is
1085 * merely a hint about the true dirty state.
1086 *
1087 * When a page is set dirty in its entirety, all its buffers are marked dirty
1088 * (if the page has buffers).
1089 *
1090 * When a buffer is marked dirty, its page is dirtied, but the page's other
1091 * buffers are not.
1092 *
1093 * Also. When blockdev buffers are explicitly read with bread(), they
1094 * individually become uptodate. But their backing page remains not
1095 * uptodate - even if all of its buffers are uptodate. A subsequent
1096 * block_read_full_page() against that page will discover all the uptodate
1097 * buffers, will set the page uptodate and will perform no I/O.
1098 */
1099
1100 /**
1101 * mark_buffer_dirty - mark a buffer_head as needing writeout
1102 * @bh: the buffer_head to mark dirty
1103 *
1104 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1105 * its backing page dirty, then tag the page as dirty in the page cache
1106 * and then attach the address_space's inode to its superblock's dirty
1107 * inode list.
1108 *
1109 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1110 * i_pages lock and mapping->host->i_lock.
1111 */
1112 void mark_buffer_dirty(struct buffer_head *bh)
1113 {
1114 WARN_ON_ONCE(!buffer_uptodate(bh));
1115
1116 trace_block_dirty_buffer(bh);
1117
1118 /*
1119 * Very *carefully* optimize the it-is-already-dirty case.
1120 *
1121 * Don't let the final "is it dirty" escape to before we
1122 * perhaps modified the buffer.
1123 */
1124 if (buffer_dirty(bh)) {
1125 smp_mb();
1126 if (buffer_dirty(bh))
1127 return;
1128 }
1129
1130 if (!test_set_buffer_dirty(bh)) {
1131 struct page *page = bh->b_page;
1132 struct address_space *mapping = NULL;
1133
1134 lock_page_memcg(page);
1135 if (!TestSetPageDirty(page)) {
1136 mapping = page_mapping(page);
1137 if (mapping)
1138 __set_page_dirty(page, mapping, 0);
1139 }
1140 unlock_page_memcg(page);
1141 if (mapping)
1142 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1143 }
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146
1147 void mark_buffer_write_io_error(struct buffer_head *bh)
1148 {
1149 struct super_block *sb;
1150
1151 set_buffer_write_io_error(bh);
1152 /* FIXME: do we need to set this in both places? */
1153 if (bh->b_page && bh->b_page->mapping)
1154 mapping_set_error(bh->b_page->mapping, -EIO);
1155 if (bh->b_assoc_map)
1156 mapping_set_error(bh->b_assoc_map, -EIO);
1157 rcu_read_lock();
1158 sb = READ_ONCE(bh->b_bdev->bd_super);
1159 if (sb)
1160 errseq_set(&sb->s_wb_err, -EIO);
1161 rcu_read_unlock();
1162 }
1163 EXPORT_SYMBOL(mark_buffer_write_io_error);
1164
1165 /*
1166 * Decrement a buffer_head's reference count. If all buffers against a page
1167 * have zero reference count, are clean and unlocked, and if the page is clean
1168 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1169 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1170 * a page but it ends up not being freed, and buffers may later be reattached).
1171 */
1172 void __brelse(struct buffer_head * buf)
1173 {
1174 if (atomic_read(&buf->b_count)) {
1175 put_bh(buf);
1176 return;
1177 }
1178 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1179 }
1180 EXPORT_SYMBOL(__brelse);
1181
1182 /*
1183 * bforget() is like brelse(), except it discards any
1184 * potentially dirty data.
1185 */
1186 void __bforget(struct buffer_head *bh)
1187 {
1188 clear_buffer_dirty(bh);
1189 if (bh->b_assoc_map) {
1190 struct address_space *buffer_mapping = bh->b_page->mapping;
1191
1192 spin_lock(&buffer_mapping->private_lock);
1193 list_del_init(&bh->b_assoc_buffers);
1194 bh->b_assoc_map = NULL;
1195 spin_unlock(&buffer_mapping->private_lock);
1196 }
1197 __brelse(bh);
1198 }
1199 EXPORT_SYMBOL(__bforget);
1200
1201 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1202 {
1203 lock_buffer(bh);
1204 if (buffer_uptodate(bh)) {
1205 unlock_buffer(bh);
1206 return bh;
1207 } else {
1208 get_bh(bh);
1209 bh->b_end_io = end_buffer_read_sync;
1210 submit_bh(REQ_OP_READ, 0, bh);
1211 wait_on_buffer(bh);
1212 if (buffer_uptodate(bh))
1213 return bh;
1214 }
1215 brelse(bh);
1216 return NULL;
1217 }
1218
1219 /*
1220 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1221 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1222 * refcount elevated by one when they're in an LRU. A buffer can only appear
1223 * once in a particular CPU's LRU. A single buffer can be present in multiple
1224 * CPU's LRUs at the same time.
1225 *
1226 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227 * sb_find_get_block().
1228 *
1229 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1230 * a local interrupt disable for that.
1231 */
1232
1233 #define BH_LRU_SIZE 16
1234
1235 struct bh_lru {
1236 struct buffer_head *bhs[BH_LRU_SIZE];
1237 };
1238
1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1240
1241 #ifdef CONFIG_SMP
1242 #define bh_lru_lock() local_irq_disable()
1243 #define bh_lru_unlock() local_irq_enable()
1244 #else
1245 #define bh_lru_lock() preempt_disable()
1246 #define bh_lru_unlock() preempt_enable()
1247 #endif
1248
1249 static inline void check_irqs_on(void)
1250 {
1251 #ifdef irqs_disabled
1252 BUG_ON(irqs_disabled());
1253 #endif
1254 }
1255
1256 /*
1257 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1258 * inserted at the front, and the buffer_head at the back if any is evicted.
1259 * Or, if already in the LRU it is moved to the front.
1260 */
1261 static void bh_lru_install(struct buffer_head *bh)
1262 {
1263 struct buffer_head *evictee = bh;
1264 struct bh_lru *b;
1265 int i;
1266
1267 check_irqs_on();
1268 bh_lru_lock();
1269
1270 b = this_cpu_ptr(&bh_lrus);
1271 for (i = 0; i < BH_LRU_SIZE; i++) {
1272 swap(evictee, b->bhs[i]);
1273 if (evictee == bh) {
1274 bh_lru_unlock();
1275 return;
1276 }
1277 }
1278
1279 get_bh(bh);
1280 bh_lru_unlock();
1281 brelse(evictee);
1282 }
1283
1284 /*
1285 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1286 */
1287 static struct buffer_head *
1288 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1289 {
1290 struct buffer_head *ret = NULL;
1291 unsigned int i;
1292
1293 check_irqs_on();
1294 bh_lru_lock();
1295 for (i = 0; i < BH_LRU_SIZE; i++) {
1296 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1297
1298 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1299 bh->b_size == size) {
1300 if (i) {
1301 while (i) {
1302 __this_cpu_write(bh_lrus.bhs[i],
1303 __this_cpu_read(bh_lrus.bhs[i - 1]));
1304 i--;
1305 }
1306 __this_cpu_write(bh_lrus.bhs[0], bh);
1307 }
1308 get_bh(bh);
1309 ret = bh;
1310 break;
1311 }
1312 }
1313 bh_lru_unlock();
1314 return ret;
1315 }
1316
1317 /*
1318 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1319 * it in the LRU and mark it as accessed. If it is not present then return
1320 * NULL
1321 */
1322 struct buffer_head *
1323 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1324 {
1325 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1326
1327 if (bh == NULL) {
1328 /* __find_get_block_slow will mark the page accessed */
1329 bh = __find_get_block_slow(bdev, block);
1330 if (bh)
1331 bh_lru_install(bh);
1332 } else
1333 touch_buffer(bh);
1334
1335 return bh;
1336 }
1337 EXPORT_SYMBOL(__find_get_block);
1338
1339 /*
1340 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1341 * which corresponds to the passed block_device, block and size. The
1342 * returned buffer has its reference count incremented.
1343 *
1344 * __getblk_gfp() will lock up the machine if grow_dev_page's
1345 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1346 */
1347 struct buffer_head *
1348 __getblk_gfp(struct block_device *bdev, sector_t block,
1349 unsigned size, gfp_t gfp)
1350 {
1351 struct buffer_head *bh = __find_get_block(bdev, block, size);
1352
1353 might_sleep();
1354 if (bh == NULL)
1355 bh = __getblk_slow(bdev, block, size, gfp);
1356 return bh;
1357 }
1358 EXPORT_SYMBOL(__getblk_gfp);
1359
1360 /*
1361 * Do async read-ahead on a buffer..
1362 */
1363 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365 struct buffer_head *bh = __getblk(bdev, block, size);
1366 if (likely(bh)) {
1367 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1368 brelse(bh);
1369 }
1370 }
1371 EXPORT_SYMBOL(__breadahead);
1372
1373 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1374 gfp_t gfp)
1375 {
1376 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1377 if (likely(bh)) {
1378 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1379 brelse(bh);
1380 }
1381 }
1382 EXPORT_SYMBOL(__breadahead_gfp);
1383
1384 /**
1385 * __bread_gfp() - reads a specified block and returns the bh
1386 * @bdev: the block_device to read from
1387 * @block: number of block
1388 * @size: size (in bytes) to read
1389 * @gfp: page allocation flag
1390 *
1391 * Reads a specified block, and returns buffer head that contains it.
1392 * The page cache can be allocated from non-movable area
1393 * not to prevent page migration if you set gfp to zero.
1394 * It returns NULL if the block was unreadable.
1395 */
1396 struct buffer_head *
1397 __bread_gfp(struct block_device *bdev, sector_t block,
1398 unsigned size, gfp_t gfp)
1399 {
1400 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1401
1402 if (likely(bh) && !buffer_uptodate(bh))
1403 bh = __bread_slow(bh);
1404 return bh;
1405 }
1406 EXPORT_SYMBOL(__bread_gfp);
1407
1408 /*
1409 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1410 * This doesn't race because it runs in each cpu either in irq
1411 * or with preempt disabled.
1412 */
1413 static void invalidate_bh_lru(void *arg)
1414 {
1415 struct bh_lru *b = &get_cpu_var(bh_lrus);
1416 int i;
1417
1418 for (i = 0; i < BH_LRU_SIZE; i++) {
1419 brelse(b->bhs[i]);
1420 b->bhs[i] = NULL;
1421 }
1422 put_cpu_var(bh_lrus);
1423 }
1424
1425 static bool has_bh_in_lru(int cpu, void *dummy)
1426 {
1427 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1428 int i;
1429
1430 for (i = 0; i < BH_LRU_SIZE; i++) {
1431 if (b->bhs[i])
1432 return true;
1433 }
1434
1435 return false;
1436 }
1437
1438 void invalidate_bh_lrus(void)
1439 {
1440 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443
1444 void set_bh_page(struct buffer_head *bh,
1445 struct page *page, unsigned long offset)
1446 {
1447 bh->b_page = page;
1448 BUG_ON(offset >= PAGE_SIZE);
1449 if (PageHighMem(page))
1450 /*
1451 * This catches illegal uses and preserves the offset:
1452 */
1453 bh->b_data = (char *)(0 + offset);
1454 else
1455 bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458
1459 /*
1460 * Called when truncating a buffer on a page completely.
1461 */
1462
1463 /* Bits that are cleared during an invalidate */
1464 #define BUFFER_FLAGS_DISCARD \
1465 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1466 1 << BH_Delay | 1 << BH_Unwritten)
1467
1468 static void discard_buffer(struct buffer_head * bh)
1469 {
1470 unsigned long b_state, b_state_old;
1471
1472 lock_buffer(bh);
1473 clear_buffer_dirty(bh);
1474 bh->b_bdev = NULL;
1475 b_state = bh->b_state;
1476 for (;;) {
1477 b_state_old = cmpxchg(&bh->b_state, b_state,
1478 (b_state & ~BUFFER_FLAGS_DISCARD));
1479 if (b_state_old == b_state)
1480 break;
1481 b_state = b_state_old;
1482 }
1483 unlock_buffer(bh);
1484 }
1485
1486 /**
1487 * block_invalidatepage - invalidate part or all of a buffer-backed page
1488 *
1489 * @page: the page which is affected
1490 * @offset: start of the range to invalidate
1491 * @length: length of the range to invalidate
1492 *
1493 * block_invalidatepage() is called when all or part of the page has become
1494 * invalidated by a truncate operation.
1495 *
1496 * block_invalidatepage() does not have to release all buffers, but it must
1497 * ensure that no dirty buffer is left outside @offset and that no I/O
1498 * is underway against any of the blocks which are outside the truncation
1499 * point. Because the caller is about to free (and possibly reuse) those
1500 * blocks on-disk.
1501 */
1502 void block_invalidatepage(struct page *page, unsigned int offset,
1503 unsigned int length)
1504 {
1505 struct buffer_head *head, *bh, *next;
1506 unsigned int curr_off = 0;
1507 unsigned int stop = length + offset;
1508
1509 BUG_ON(!PageLocked(page));
1510 if (!page_has_buffers(page))
1511 goto out;
1512
1513 /*
1514 * Check for overflow
1515 */
1516 BUG_ON(stop > PAGE_SIZE || stop < length);
1517
1518 head = page_buffers(page);
1519 bh = head;
1520 do {
1521 unsigned int next_off = curr_off + bh->b_size;
1522 next = bh->b_this_page;
1523
1524 /*
1525 * Are we still fully in range ?
1526 */
1527 if (next_off > stop)
1528 goto out;
1529
1530 /*
1531 * is this block fully invalidated?
1532 */
1533 if (offset <= curr_off)
1534 discard_buffer(bh);
1535 curr_off = next_off;
1536 bh = next;
1537 } while (bh != head);
1538
1539 /*
1540 * We release buffers only if the entire page is being invalidated.
1541 * The get_block cached value has been unconditionally invalidated,
1542 * so real IO is not possible anymore.
1543 */
1544 if (length == PAGE_SIZE)
1545 try_to_release_page(page, 0);
1546 out:
1547 return;
1548 }
1549 EXPORT_SYMBOL(block_invalidatepage);
1550
1551
1552 /*
1553 * We attach and possibly dirty the buffers atomically wrt
1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1555 * is already excluded via the page lock.
1556 */
1557 void create_empty_buffers(struct page *page,
1558 unsigned long blocksize, unsigned long b_state)
1559 {
1560 struct buffer_head *bh, *head, *tail;
1561
1562 head = alloc_page_buffers(page, blocksize, true);
1563 bh = head;
1564 do {
1565 bh->b_state |= b_state;
1566 tail = bh;
1567 bh = bh->b_this_page;
1568 } while (bh);
1569 tail->b_this_page = head;
1570
1571 spin_lock(&page->mapping->private_lock);
1572 if (PageUptodate(page) || PageDirty(page)) {
1573 bh = head;
1574 do {
1575 if (PageDirty(page))
1576 set_buffer_dirty(bh);
1577 if (PageUptodate(page))
1578 set_buffer_uptodate(bh);
1579 bh = bh->b_this_page;
1580 } while (bh != head);
1581 }
1582 attach_page_private(page, head);
1583 spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586
1587 /**
1588 * clean_bdev_aliases: clean a range of buffers in block device
1589 * @bdev: Block device to clean buffers in
1590 * @block: Start of a range of blocks to clean
1591 * @len: Number of blocks to clean
1592 *
1593 * We are taking a range of blocks for data and we don't want writeback of any
1594 * buffer-cache aliases starting from return from this function and until the
1595 * moment when something will explicitly mark the buffer dirty (hopefully that
1596 * will not happen until we will free that block ;-) We don't even need to mark
1597 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1598 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1599 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1600 * would confuse anyone who might pick it with bread() afterwards...
1601 *
1602 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1603 * writeout I/O going on against recently-freed buffers. We don't wait on that
1604 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1605 * need to. That happens here.
1606 */
1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1608 {
1609 struct inode *bd_inode = bdev->bd_inode;
1610 struct address_space *bd_mapping = bd_inode->i_mapping;
1611 struct pagevec pvec;
1612 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613 pgoff_t end;
1614 int i, count;
1615 struct buffer_head *bh;
1616 struct buffer_head *head;
1617
1618 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1619 pagevec_init(&pvec);
1620 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1621 count = pagevec_count(&pvec);
1622 for (i = 0; i < count; i++) {
1623 struct page *page = pvec.pages[i];
1624
1625 if (!page_has_buffers(page))
1626 continue;
1627 /*
1628 * We use page lock instead of bd_mapping->private_lock
1629 * to pin buffers here since we can afford to sleep and
1630 * it scales better than a global spinlock lock.
1631 */
1632 lock_page(page);
1633 /* Recheck when the page is locked which pins bhs */
1634 if (!page_has_buffers(page))
1635 goto unlock_page;
1636 head = page_buffers(page);
1637 bh = head;
1638 do {
1639 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1640 goto next;
1641 if (bh->b_blocknr >= block + len)
1642 break;
1643 clear_buffer_dirty(bh);
1644 wait_on_buffer(bh);
1645 clear_buffer_req(bh);
1646 next:
1647 bh = bh->b_this_page;
1648 } while (bh != head);
1649 unlock_page:
1650 unlock_page(page);
1651 }
1652 pagevec_release(&pvec);
1653 cond_resched();
1654 /* End of range already reached? */
1655 if (index > end || !index)
1656 break;
1657 }
1658 }
1659 EXPORT_SYMBOL(clean_bdev_aliases);
1660
1661 /*
1662 * Size is a power-of-two in the range 512..PAGE_SIZE,
1663 * and the case we care about most is PAGE_SIZE.
1664 *
1665 * So this *could* possibly be written with those
1666 * constraints in mind (relevant mostly if some
1667 * architecture has a slow bit-scan instruction)
1668 */
1669 static inline int block_size_bits(unsigned int blocksize)
1670 {
1671 return ilog2(blocksize);
1672 }
1673
1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1675 {
1676 BUG_ON(!PageLocked(page));
1677
1678 if (!page_has_buffers(page))
1679 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1680 b_state);
1681 return page_buffers(page);
1682 }
1683
1684 /*
1685 * NOTE! All mapped/uptodate combinations are valid:
1686 *
1687 * Mapped Uptodate Meaning
1688 *
1689 * No No "unknown" - must do get_block()
1690 * No Yes "hole" - zero-filled
1691 * Yes No "allocated" - allocated on disk, not read in
1692 * Yes Yes "valid" - allocated and up-to-date in memory.
1693 *
1694 * "Dirty" is valid only with the last case (mapped+uptodate).
1695 */
1696
1697 /*
1698 * While block_write_full_page is writing back the dirty buffers under
1699 * the page lock, whoever dirtied the buffers may decide to clean them
1700 * again at any time. We handle that by only looking at the buffer
1701 * state inside lock_buffer().
1702 *
1703 * If block_write_full_page() is called for regular writeback
1704 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705 * locked buffer. This only can happen if someone has written the buffer
1706 * directly, with submit_bh(). At the address_space level PageWriteback
1707 * prevents this contention from occurring.
1708 *
1709 * If block_write_full_page() is called with wbc->sync_mode ==
1710 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1711 * causes the writes to be flagged as synchronous writes.
1712 */
1713 int __block_write_full_page(struct inode *inode, struct page *page,
1714 get_block_t *get_block, struct writeback_control *wbc,
1715 bh_end_io_t *handler)
1716 {
1717 int err;
1718 sector_t block;
1719 sector_t last_block;
1720 struct buffer_head *bh, *head;
1721 unsigned int blocksize, bbits;
1722 int nr_underway = 0;
1723 int write_flags = wbc_to_write_flags(wbc);
1724
1725 head = create_page_buffers(page, inode,
1726 (1 << BH_Dirty)|(1 << BH_Uptodate));
1727
1728 /*
1729 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1730 * here, and the (potentially unmapped) buffers may become dirty at
1731 * any time. If a buffer becomes dirty here after we've inspected it
1732 * then we just miss that fact, and the page stays dirty.
1733 *
1734 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735 * handle that here by just cleaning them.
1736 */
1737
1738 bh = head;
1739 blocksize = bh->b_size;
1740 bbits = block_size_bits(blocksize);
1741
1742 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1743 last_block = (i_size_read(inode) - 1) >> bbits;
1744
1745 /*
1746 * Get all the dirty buffers mapped to disk addresses and
1747 * handle any aliases from the underlying blockdev's mapping.
1748 */
1749 do {
1750 if (block > last_block) {
1751 /*
1752 * mapped buffers outside i_size will occur, because
1753 * this page can be outside i_size when there is a
1754 * truncate in progress.
1755 */
1756 /*
1757 * The buffer was zeroed by block_write_full_page()
1758 */
1759 clear_buffer_dirty(bh);
1760 set_buffer_uptodate(bh);
1761 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1762 buffer_dirty(bh)) {
1763 WARN_ON(bh->b_size != blocksize);
1764 err = get_block(inode, block, bh, 1);
1765 if (err)
1766 goto recover;
1767 clear_buffer_delay(bh);
1768 if (buffer_new(bh)) {
1769 /* blockdev mappings never come here */
1770 clear_buffer_new(bh);
1771 clean_bdev_bh_alias(bh);
1772 }
1773 }
1774 bh = bh->b_this_page;
1775 block++;
1776 } while (bh != head);
1777
1778 do {
1779 if (!buffer_mapped(bh))
1780 continue;
1781 /*
1782 * If it's a fully non-blocking write attempt and we cannot
1783 * lock the buffer then redirty the page. Note that this can
1784 * potentially cause a busy-wait loop from writeback threads
1785 * and kswapd activity, but those code paths have their own
1786 * higher-level throttling.
1787 */
1788 if (wbc->sync_mode != WB_SYNC_NONE) {
1789 lock_buffer(bh);
1790 } else if (!trylock_buffer(bh)) {
1791 redirty_page_for_writepage(wbc, page);
1792 continue;
1793 }
1794 if (test_clear_buffer_dirty(bh)) {
1795 mark_buffer_async_write_endio(bh, handler);
1796 } else {
1797 unlock_buffer(bh);
1798 }
1799 } while ((bh = bh->b_this_page) != head);
1800
1801 /*
1802 * The page and its buffers are protected by PageWriteback(), so we can
1803 * drop the bh refcounts early.
1804 */
1805 BUG_ON(PageWriteback(page));
1806 set_page_writeback(page);
1807
1808 do {
1809 struct buffer_head *next = bh->b_this_page;
1810 if (buffer_async_write(bh)) {
1811 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1812 inode->i_write_hint, wbc);
1813 nr_underway++;
1814 }
1815 bh = next;
1816 } while (bh != head);
1817 unlock_page(page);
1818
1819 err = 0;
1820 done:
1821 if (nr_underway == 0) {
1822 /*
1823 * The page was marked dirty, but the buffers were
1824 * clean. Someone wrote them back by hand with
1825 * ll_rw_block/submit_bh. A rare case.
1826 */
1827 end_page_writeback(page);
1828
1829 /*
1830 * The page and buffer_heads can be released at any time from
1831 * here on.
1832 */
1833 }
1834 return err;
1835
1836 recover:
1837 /*
1838 * ENOSPC, or some other error. We may already have added some
1839 * blocks to the file, so we need to write these out to avoid
1840 * exposing stale data.
1841 * The page is currently locked and not marked for writeback
1842 */
1843 bh = head;
1844 /* Recovery: lock and submit the mapped buffers */
1845 do {
1846 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1847 !buffer_delay(bh)) {
1848 lock_buffer(bh);
1849 mark_buffer_async_write_endio(bh, handler);
1850 } else {
1851 /*
1852 * The buffer may have been set dirty during
1853 * attachment to a dirty page.
1854 */
1855 clear_buffer_dirty(bh);
1856 }
1857 } while ((bh = bh->b_this_page) != head);
1858 SetPageError(page);
1859 BUG_ON(PageWriteback(page));
1860 mapping_set_error(page->mapping, err);
1861 set_page_writeback(page);
1862 do {
1863 struct buffer_head *next = bh->b_this_page;
1864 if (buffer_async_write(bh)) {
1865 clear_buffer_dirty(bh);
1866 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1867 inode->i_write_hint, wbc);
1868 nr_underway++;
1869 }
1870 bh = next;
1871 } while (bh != head);
1872 unlock_page(page);
1873 goto done;
1874 }
1875 EXPORT_SYMBOL(__block_write_full_page);
1876
1877 /*
1878 * If a page has any new buffers, zero them out here, and mark them uptodate
1879 * and dirty so they'll be written out (in order to prevent uninitialised
1880 * block data from leaking). And clear the new bit.
1881 */
1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1883 {
1884 unsigned int block_start, block_end;
1885 struct buffer_head *head, *bh;
1886
1887 BUG_ON(!PageLocked(page));
1888 if (!page_has_buffers(page))
1889 return;
1890
1891 bh = head = page_buffers(page);
1892 block_start = 0;
1893 do {
1894 block_end = block_start + bh->b_size;
1895
1896 if (buffer_new(bh)) {
1897 if (block_end > from && block_start < to) {
1898 if (!PageUptodate(page)) {
1899 unsigned start, size;
1900
1901 start = max(from, block_start);
1902 size = min(to, block_end) - start;
1903
1904 zero_user(page, start, size);
1905 set_buffer_uptodate(bh);
1906 }
1907
1908 clear_buffer_new(bh);
1909 mark_buffer_dirty(bh);
1910 }
1911 }
1912
1913 block_start = block_end;
1914 bh = bh->b_this_page;
1915 } while (bh != head);
1916 }
1917 EXPORT_SYMBOL(page_zero_new_buffers);
1918
1919 static void
1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1921 struct iomap *iomap)
1922 {
1923 loff_t offset = block << inode->i_blkbits;
1924
1925 bh->b_bdev = iomap->bdev;
1926
1927 /*
1928 * Block points to offset in file we need to map, iomap contains
1929 * the offset at which the map starts. If the map ends before the
1930 * current block, then do not map the buffer and let the caller
1931 * handle it.
1932 */
1933 BUG_ON(offset >= iomap->offset + iomap->length);
1934
1935 switch (iomap->type) {
1936 case IOMAP_HOLE:
1937 /*
1938 * If the buffer is not up to date or beyond the current EOF,
1939 * we need to mark it as new to ensure sub-block zeroing is
1940 * executed if necessary.
1941 */
1942 if (!buffer_uptodate(bh) ||
1943 (offset >= i_size_read(inode)))
1944 set_buffer_new(bh);
1945 break;
1946 case IOMAP_DELALLOC:
1947 if (!buffer_uptodate(bh) ||
1948 (offset >= i_size_read(inode)))
1949 set_buffer_new(bh);
1950 set_buffer_uptodate(bh);
1951 set_buffer_mapped(bh);
1952 set_buffer_delay(bh);
1953 break;
1954 case IOMAP_UNWRITTEN:
1955 /*
1956 * For unwritten regions, we always need to ensure that regions
1957 * in the block we are not writing to are zeroed. Mark the
1958 * buffer as new to ensure this.
1959 */
1960 set_buffer_new(bh);
1961 set_buffer_unwritten(bh);
1962 /* FALLTHRU */
1963 case IOMAP_MAPPED:
1964 if ((iomap->flags & IOMAP_F_NEW) ||
1965 offset >= i_size_read(inode))
1966 set_buffer_new(bh);
1967 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1968 inode->i_blkbits;
1969 set_buffer_mapped(bh);
1970 break;
1971 }
1972 }
1973
1974 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1975 get_block_t *get_block, struct iomap *iomap)
1976 {
1977 unsigned from = pos & (PAGE_SIZE - 1);
1978 unsigned to = from + len;
1979 struct inode *inode = page->mapping->host;
1980 unsigned block_start, block_end;
1981 sector_t block;
1982 int err = 0;
1983 unsigned blocksize, bbits;
1984 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1985
1986 BUG_ON(!PageLocked(page));
1987 BUG_ON(from > PAGE_SIZE);
1988 BUG_ON(to > PAGE_SIZE);
1989 BUG_ON(from > to);
1990
1991 head = create_page_buffers(page, inode, 0);
1992 blocksize = head->b_size;
1993 bbits = block_size_bits(blocksize);
1994
1995 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1996
1997 for(bh = head, block_start = 0; bh != head || !block_start;
1998 block++, block_start=block_end, bh = bh->b_this_page) {
1999 block_end = block_start + blocksize;
2000 if (block_end <= from || block_start >= to) {
2001 if (PageUptodate(page)) {
2002 if (!buffer_uptodate(bh))
2003 set_buffer_uptodate(bh);
2004 }
2005 continue;
2006 }
2007 if (buffer_new(bh))
2008 clear_buffer_new(bh);
2009 if (!buffer_mapped(bh)) {
2010 WARN_ON(bh->b_size != blocksize);
2011 if (get_block) {
2012 err = get_block(inode, block, bh, 1);
2013 if (err)
2014 break;
2015 } else {
2016 iomap_to_bh(inode, block, bh, iomap);
2017 }
2018
2019 if (buffer_new(bh)) {
2020 clean_bdev_bh_alias(bh);
2021 if (PageUptodate(page)) {
2022 clear_buffer_new(bh);
2023 set_buffer_uptodate(bh);
2024 mark_buffer_dirty(bh);
2025 continue;
2026 }
2027 if (block_end > to || block_start < from)
2028 zero_user_segments(page,
2029 to, block_end,
2030 block_start, from);
2031 continue;
2032 }
2033 }
2034 if (PageUptodate(page)) {
2035 if (!buffer_uptodate(bh))
2036 set_buffer_uptodate(bh);
2037 continue;
2038 }
2039 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2040 !buffer_unwritten(bh) &&
2041 (block_start < from || block_end > to)) {
2042 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2043 *wait_bh++=bh;
2044 }
2045 }
2046 /*
2047 * If we issued read requests - let them complete.
2048 */
2049 while(wait_bh > wait) {
2050 wait_on_buffer(*--wait_bh);
2051 if (!buffer_uptodate(*wait_bh))
2052 err = -EIO;
2053 }
2054 if (unlikely(err))
2055 page_zero_new_buffers(page, from, to);
2056 return err;
2057 }
2058
2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2060 get_block_t *get_block)
2061 {
2062 return __block_write_begin_int(page, pos, len, get_block, NULL);
2063 }
2064 EXPORT_SYMBOL(__block_write_begin);
2065
2066 static int __block_commit_write(struct inode *inode, struct page *page,
2067 unsigned from, unsigned to)
2068 {
2069 unsigned block_start, block_end;
2070 int partial = 0;
2071 unsigned blocksize;
2072 struct buffer_head *bh, *head;
2073
2074 bh = head = page_buffers(page);
2075 blocksize = bh->b_size;
2076
2077 block_start = 0;
2078 do {
2079 block_end = block_start + blocksize;
2080 if (block_end <= from || block_start >= to) {
2081 if (!buffer_uptodate(bh))
2082 partial = 1;
2083 } else {
2084 set_buffer_uptodate(bh);
2085 mark_buffer_dirty(bh);
2086 }
2087 clear_buffer_new(bh);
2088
2089 block_start = block_end;
2090 bh = bh->b_this_page;
2091 } while (bh != head);
2092
2093 /*
2094 * If this is a partial write which happened to make all buffers
2095 * uptodate then we can optimize away a bogus readpage() for
2096 * the next read(). Here we 'discover' whether the page went
2097 * uptodate as a result of this (potentially partial) write.
2098 */
2099 if (!partial)
2100 SetPageUptodate(page);
2101 return 0;
2102 }
2103
2104 /*
2105 * block_write_begin takes care of the basic task of block allocation and
2106 * bringing partial write blocks uptodate first.
2107 *
2108 * The filesystem needs to handle block truncation upon failure.
2109 */
2110 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2111 unsigned flags, struct page **pagep, get_block_t *get_block)
2112 {
2113 pgoff_t index = pos >> PAGE_SHIFT;
2114 struct page *page;
2115 int status;
2116
2117 page = grab_cache_page_write_begin(mapping, index, flags);
2118 if (!page)
2119 return -ENOMEM;
2120
2121 status = __block_write_begin(page, pos, len, get_block);
2122 if (unlikely(status)) {
2123 unlock_page(page);
2124 put_page(page);
2125 page = NULL;
2126 }
2127
2128 *pagep = page;
2129 return status;
2130 }
2131 EXPORT_SYMBOL(block_write_begin);
2132
2133 int block_write_end(struct file *file, struct address_space *mapping,
2134 loff_t pos, unsigned len, unsigned copied,
2135 struct page *page, void *fsdata)
2136 {
2137 struct inode *inode = mapping->host;
2138 unsigned start;
2139
2140 start = pos & (PAGE_SIZE - 1);
2141
2142 if (unlikely(copied < len)) {
2143 /*
2144 * The buffers that were written will now be uptodate, so we
2145 * don't have to worry about a readpage reading them and
2146 * overwriting a partial write. However if we have encountered
2147 * a short write and only partially written into a buffer, it
2148 * will not be marked uptodate, so a readpage might come in and
2149 * destroy our partial write.
2150 *
2151 * Do the simplest thing, and just treat any short write to a
2152 * non uptodate page as a zero-length write, and force the
2153 * caller to redo the whole thing.
2154 */
2155 if (!PageUptodate(page))
2156 copied = 0;
2157
2158 page_zero_new_buffers(page, start+copied, start+len);
2159 }
2160 flush_dcache_page(page);
2161
2162 /* This could be a short (even 0-length) commit */
2163 __block_commit_write(inode, page, start, start+copied);
2164
2165 return copied;
2166 }
2167 EXPORT_SYMBOL(block_write_end);
2168
2169 int generic_write_end(struct file *file, struct address_space *mapping,
2170 loff_t pos, unsigned len, unsigned copied,
2171 struct page *page, void *fsdata)
2172 {
2173 struct inode *inode = mapping->host;
2174 loff_t old_size = inode->i_size;
2175 bool i_size_changed = false;
2176
2177 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2178
2179 /*
2180 * No need to use i_size_read() here, the i_size cannot change under us
2181 * because we hold i_rwsem.
2182 *
2183 * But it's important to update i_size while still holding page lock:
2184 * page writeout could otherwise come in and zero beyond i_size.
2185 */
2186 if (pos + copied > inode->i_size) {
2187 i_size_write(inode, pos + copied);
2188 i_size_changed = true;
2189 }
2190
2191 unlock_page(page);
2192 put_page(page);
2193
2194 if (old_size < pos)
2195 pagecache_isize_extended(inode, old_size, pos);
2196 /*
2197 * Don't mark the inode dirty under page lock. First, it unnecessarily
2198 * makes the holding time of page lock longer. Second, it forces lock
2199 * ordering of page lock and transaction start for journaling
2200 * filesystems.
2201 */
2202 if (i_size_changed)
2203 mark_inode_dirty(inode);
2204 return copied;
2205 }
2206 EXPORT_SYMBOL(generic_write_end);
2207
2208 /*
2209 * block_is_partially_uptodate checks whether buffers within a page are
2210 * uptodate or not.
2211 *
2212 * Returns true if all buffers which correspond to a file portion
2213 * we want to read are uptodate.
2214 */
2215 int block_is_partially_uptodate(struct page *page, unsigned long from,
2216 unsigned long count)
2217 {
2218 unsigned block_start, block_end, blocksize;
2219 unsigned to;
2220 struct buffer_head *bh, *head;
2221 int ret = 1;
2222
2223 if (!page_has_buffers(page))
2224 return 0;
2225
2226 head = page_buffers(page);
2227 blocksize = head->b_size;
2228 to = min_t(unsigned, PAGE_SIZE - from, count);
2229 to = from + to;
2230 if (from < blocksize && to > PAGE_SIZE - blocksize)
2231 return 0;
2232
2233 bh = head;
2234 block_start = 0;
2235 do {
2236 block_end = block_start + blocksize;
2237 if (block_end > from && block_start < to) {
2238 if (!buffer_uptodate(bh)) {
2239 ret = 0;
2240 break;
2241 }
2242 if (block_end >= to)
2243 break;
2244 }
2245 block_start = block_end;
2246 bh = bh->b_this_page;
2247 } while (bh != head);
2248
2249 return ret;
2250 }
2251 EXPORT_SYMBOL(block_is_partially_uptodate);
2252
2253 /*
2254 * Generic "read page" function for block devices that have the normal
2255 * get_block functionality. This is most of the block device filesystems.
2256 * Reads the page asynchronously --- the unlock_buffer() and
2257 * set/clear_buffer_uptodate() functions propagate buffer state into the
2258 * page struct once IO has completed.
2259 */
2260 int block_read_full_page(struct page *page, get_block_t *get_block)
2261 {
2262 struct inode *inode = page->mapping->host;
2263 sector_t iblock, lblock;
2264 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2265 unsigned int blocksize, bbits;
2266 int nr, i;
2267 int fully_mapped = 1;
2268
2269 head = create_page_buffers(page, inode, 0);
2270 blocksize = head->b_size;
2271 bbits = block_size_bits(blocksize);
2272
2273 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2274 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2275 bh = head;
2276 nr = 0;
2277 i = 0;
2278
2279 do {
2280 if (buffer_uptodate(bh))
2281 continue;
2282
2283 if (!buffer_mapped(bh)) {
2284 int err = 0;
2285
2286 fully_mapped = 0;
2287 if (iblock < lblock) {
2288 WARN_ON(bh->b_size != blocksize);
2289 err = get_block(inode, iblock, bh, 0);
2290 if (err)
2291 SetPageError(page);
2292 }
2293 if (!buffer_mapped(bh)) {
2294 zero_user(page, i * blocksize, blocksize);
2295 if (!err)
2296 set_buffer_uptodate(bh);
2297 continue;
2298 }
2299 /*
2300 * get_block() might have updated the buffer
2301 * synchronously
2302 */
2303 if (buffer_uptodate(bh))
2304 continue;
2305 }
2306 arr[nr++] = bh;
2307 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2308
2309 if (fully_mapped)
2310 SetPageMappedToDisk(page);
2311
2312 if (!nr) {
2313 /*
2314 * All buffers are uptodate - we can set the page uptodate
2315 * as well. But not if get_block() returned an error.
2316 */
2317 if (!PageError(page))
2318 SetPageUptodate(page);
2319 unlock_page(page);
2320 return 0;
2321 }
2322
2323 /* Stage two: lock the buffers */
2324 for (i = 0; i < nr; i++) {
2325 bh = arr[i];
2326 lock_buffer(bh);
2327 mark_buffer_async_read(bh);
2328 }
2329
2330 /*
2331 * Stage 3: start the IO. Check for uptodateness
2332 * inside the buffer lock in case another process reading
2333 * the underlying blockdev brought it uptodate (the sct fix).
2334 */
2335 for (i = 0; i < nr; i++) {
2336 bh = arr[i];
2337 if (buffer_uptodate(bh))
2338 end_buffer_async_read(bh, 1);
2339 else
2340 submit_bh(REQ_OP_READ, 0, bh);
2341 }
2342 return 0;
2343 }
2344 EXPORT_SYMBOL(block_read_full_page);
2345
2346 /* utility function for filesystems that need to do work on expanding
2347 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2348 * deal with the hole.
2349 */
2350 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2351 {
2352 struct address_space *mapping = inode->i_mapping;
2353 struct page *page;
2354 void *fsdata;
2355 int err;
2356
2357 err = inode_newsize_ok(inode, size);
2358 if (err)
2359 goto out;
2360
2361 err = pagecache_write_begin(NULL, mapping, size, 0,
2362 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2363 if (err)
2364 goto out;
2365
2366 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2367 BUG_ON(err > 0);
2368
2369 out:
2370 return err;
2371 }
2372 EXPORT_SYMBOL(generic_cont_expand_simple);
2373
2374 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2375 loff_t pos, loff_t *bytes)
2376 {
2377 struct inode *inode = mapping->host;
2378 unsigned int blocksize = i_blocksize(inode);
2379 struct page *page;
2380 void *fsdata;
2381 pgoff_t index, curidx;
2382 loff_t curpos;
2383 unsigned zerofrom, offset, len;
2384 int err = 0;
2385
2386 index = pos >> PAGE_SHIFT;
2387 offset = pos & ~PAGE_MASK;
2388
2389 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2390 zerofrom = curpos & ~PAGE_MASK;
2391 if (zerofrom & (blocksize-1)) {
2392 *bytes |= (blocksize-1);
2393 (*bytes)++;
2394 }
2395 len = PAGE_SIZE - zerofrom;
2396
2397 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2398 &page, &fsdata);
2399 if (err)
2400 goto out;
2401 zero_user(page, zerofrom, len);
2402 err = pagecache_write_end(file, mapping, curpos, len, len,
2403 page, fsdata);
2404 if (err < 0)
2405 goto out;
2406 BUG_ON(err != len);
2407 err = 0;
2408
2409 balance_dirty_pages_ratelimited(mapping);
2410
2411 if (fatal_signal_pending(current)) {
2412 err = -EINTR;
2413 goto out;
2414 }
2415 }
2416
2417 /* page covers the boundary, find the boundary offset */
2418 if (index == curidx) {
2419 zerofrom = curpos & ~PAGE_MASK;
2420 /* if we will expand the thing last block will be filled */
2421 if (offset <= zerofrom) {
2422 goto out;
2423 }
2424 if (zerofrom & (blocksize-1)) {
2425 *bytes |= (blocksize-1);
2426 (*bytes)++;
2427 }
2428 len = offset - zerofrom;
2429
2430 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2431 &page, &fsdata);
2432 if (err)
2433 goto out;
2434 zero_user(page, zerofrom, len);
2435 err = pagecache_write_end(file, mapping, curpos, len, len,
2436 page, fsdata);
2437 if (err < 0)
2438 goto out;
2439 BUG_ON(err != len);
2440 err = 0;
2441 }
2442 out:
2443 return err;
2444 }
2445
2446 /*
2447 * For moronic filesystems that do not allow holes in file.
2448 * We may have to extend the file.
2449 */
2450 int cont_write_begin(struct file *file, struct address_space *mapping,
2451 loff_t pos, unsigned len, unsigned flags,
2452 struct page **pagep, void **fsdata,
2453 get_block_t *get_block, loff_t *bytes)
2454 {
2455 struct inode *inode = mapping->host;
2456 unsigned int blocksize = i_blocksize(inode);
2457 unsigned int zerofrom;
2458 int err;
2459
2460 err = cont_expand_zero(file, mapping, pos, bytes);
2461 if (err)
2462 return err;
2463
2464 zerofrom = *bytes & ~PAGE_MASK;
2465 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2466 *bytes |= (blocksize-1);
2467 (*bytes)++;
2468 }
2469
2470 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2471 }
2472 EXPORT_SYMBOL(cont_write_begin);
2473
2474 int block_commit_write(struct page *page, unsigned from, unsigned to)
2475 {
2476 struct inode *inode = page->mapping->host;
2477 __block_commit_write(inode,page,from,to);
2478 return 0;
2479 }
2480 EXPORT_SYMBOL(block_commit_write);
2481
2482 /*
2483 * block_page_mkwrite() is not allowed to change the file size as it gets
2484 * called from a page fault handler when a page is first dirtied. Hence we must
2485 * be careful to check for EOF conditions here. We set the page up correctly
2486 * for a written page which means we get ENOSPC checking when writing into
2487 * holes and correct delalloc and unwritten extent mapping on filesystems that
2488 * support these features.
2489 *
2490 * We are not allowed to take the i_mutex here so we have to play games to
2491 * protect against truncate races as the page could now be beyond EOF. Because
2492 * truncate writes the inode size before removing pages, once we have the
2493 * page lock we can determine safely if the page is beyond EOF. If it is not
2494 * beyond EOF, then the page is guaranteed safe against truncation until we
2495 * unlock the page.
2496 *
2497 * Direct callers of this function should protect against filesystem freezing
2498 * using sb_start_pagefault() - sb_end_pagefault() functions.
2499 */
2500 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2501 get_block_t get_block)
2502 {
2503 struct page *page = vmf->page;
2504 struct inode *inode = file_inode(vma->vm_file);
2505 unsigned long end;
2506 loff_t size;
2507 int ret;
2508
2509 lock_page(page);
2510 size = i_size_read(inode);
2511 if ((page->mapping != inode->i_mapping) ||
2512 (page_offset(page) > size)) {
2513 /* We overload EFAULT to mean page got truncated */
2514 ret = -EFAULT;
2515 goto out_unlock;
2516 }
2517
2518 /* page is wholly or partially inside EOF */
2519 if (((page->index + 1) << PAGE_SHIFT) > size)
2520 end = size & ~PAGE_MASK;
2521 else
2522 end = PAGE_SIZE;
2523
2524 ret = __block_write_begin(page, 0, end, get_block);
2525 if (!ret)
2526 ret = block_commit_write(page, 0, end);
2527
2528 if (unlikely(ret < 0))
2529 goto out_unlock;
2530 set_page_dirty(page);
2531 wait_for_stable_page(page);
2532 return 0;
2533 out_unlock:
2534 unlock_page(page);
2535 return ret;
2536 }
2537 EXPORT_SYMBOL(block_page_mkwrite);
2538
2539 /*
2540 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2541 * immediately, while under the page lock. So it needs a special end_io
2542 * handler which does not touch the bh after unlocking it.
2543 */
2544 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2545 {
2546 __end_buffer_read_notouch(bh, uptodate);
2547 }
2548
2549 /*
2550 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2551 * the page (converting it to circular linked list and taking care of page
2552 * dirty races).
2553 */
2554 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2555 {
2556 struct buffer_head *bh;
2557
2558 BUG_ON(!PageLocked(page));
2559
2560 spin_lock(&page->mapping->private_lock);
2561 bh = head;
2562 do {
2563 if (PageDirty(page))
2564 set_buffer_dirty(bh);
2565 if (!bh->b_this_page)
2566 bh->b_this_page = head;
2567 bh = bh->b_this_page;
2568 } while (bh != head);
2569 attach_page_private(page, head);
2570 spin_unlock(&page->mapping->private_lock);
2571 }
2572
2573 /*
2574 * On entry, the page is fully not uptodate.
2575 * On exit the page is fully uptodate in the areas outside (from,to)
2576 * The filesystem needs to handle block truncation upon failure.
2577 */
2578 int nobh_write_begin(struct address_space *mapping,
2579 loff_t pos, unsigned len, unsigned flags,
2580 struct page **pagep, void **fsdata,
2581 get_block_t *get_block)
2582 {
2583 struct inode *inode = mapping->host;
2584 const unsigned blkbits = inode->i_blkbits;
2585 const unsigned blocksize = 1 << blkbits;
2586 struct buffer_head *head, *bh;
2587 struct page *page;
2588 pgoff_t index;
2589 unsigned from, to;
2590 unsigned block_in_page;
2591 unsigned block_start, block_end;
2592 sector_t block_in_file;
2593 int nr_reads = 0;
2594 int ret = 0;
2595 int is_mapped_to_disk = 1;
2596
2597 index = pos >> PAGE_SHIFT;
2598 from = pos & (PAGE_SIZE - 1);
2599 to = from + len;
2600
2601 page = grab_cache_page_write_begin(mapping, index, flags);
2602 if (!page)
2603 return -ENOMEM;
2604 *pagep = page;
2605 *fsdata = NULL;
2606
2607 if (page_has_buffers(page)) {
2608 ret = __block_write_begin(page, pos, len, get_block);
2609 if (unlikely(ret))
2610 goto out_release;
2611 return ret;
2612 }
2613
2614 if (PageMappedToDisk(page))
2615 return 0;
2616
2617 /*
2618 * Allocate buffers so that we can keep track of state, and potentially
2619 * attach them to the page if an error occurs. In the common case of
2620 * no error, they will just be freed again without ever being attached
2621 * to the page (which is all OK, because we're under the page lock).
2622 *
2623 * Be careful: the buffer linked list is a NULL terminated one, rather
2624 * than the circular one we're used to.
2625 */
2626 head = alloc_page_buffers(page, blocksize, false);
2627 if (!head) {
2628 ret = -ENOMEM;
2629 goto out_release;
2630 }
2631
2632 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2633
2634 /*
2635 * We loop across all blocks in the page, whether or not they are
2636 * part of the affected region. This is so we can discover if the
2637 * page is fully mapped-to-disk.
2638 */
2639 for (block_start = 0, block_in_page = 0, bh = head;
2640 block_start < PAGE_SIZE;
2641 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2642 int create;
2643
2644 block_end = block_start + blocksize;
2645 bh->b_state = 0;
2646 create = 1;
2647 if (block_start >= to)
2648 create = 0;
2649 ret = get_block(inode, block_in_file + block_in_page,
2650 bh, create);
2651 if (ret)
2652 goto failed;
2653 if (!buffer_mapped(bh))
2654 is_mapped_to_disk = 0;
2655 if (buffer_new(bh))
2656 clean_bdev_bh_alias(bh);
2657 if (PageUptodate(page)) {
2658 set_buffer_uptodate(bh);
2659 continue;
2660 }
2661 if (buffer_new(bh) || !buffer_mapped(bh)) {
2662 zero_user_segments(page, block_start, from,
2663 to, block_end);
2664 continue;
2665 }
2666 if (buffer_uptodate(bh))
2667 continue; /* reiserfs does this */
2668 if (block_start < from || block_end > to) {
2669 lock_buffer(bh);
2670 bh->b_end_io = end_buffer_read_nobh;
2671 submit_bh(REQ_OP_READ, 0, bh);
2672 nr_reads++;
2673 }
2674 }
2675
2676 if (nr_reads) {
2677 /*
2678 * The page is locked, so these buffers are protected from
2679 * any VM or truncate activity. Hence we don't need to care
2680 * for the buffer_head refcounts.
2681 */
2682 for (bh = head; bh; bh = bh->b_this_page) {
2683 wait_on_buffer(bh);
2684 if (!buffer_uptodate(bh))
2685 ret = -EIO;
2686 }
2687 if (ret)
2688 goto failed;
2689 }
2690
2691 if (is_mapped_to_disk)
2692 SetPageMappedToDisk(page);
2693
2694 *fsdata = head; /* to be released by nobh_write_end */
2695
2696 return 0;
2697
2698 failed:
2699 BUG_ON(!ret);
2700 /*
2701 * Error recovery is a bit difficult. We need to zero out blocks that
2702 * were newly allocated, and dirty them to ensure they get written out.
2703 * Buffers need to be attached to the page at this point, otherwise
2704 * the handling of potential IO errors during writeout would be hard
2705 * (could try doing synchronous writeout, but what if that fails too?)
2706 */
2707 attach_nobh_buffers(page, head);
2708 page_zero_new_buffers(page, from, to);
2709
2710 out_release:
2711 unlock_page(page);
2712 put_page(page);
2713 *pagep = NULL;
2714
2715 return ret;
2716 }
2717 EXPORT_SYMBOL(nobh_write_begin);
2718
2719 int nobh_write_end(struct file *file, struct address_space *mapping,
2720 loff_t pos, unsigned len, unsigned copied,
2721 struct page *page, void *fsdata)
2722 {
2723 struct inode *inode = page->mapping->host;
2724 struct buffer_head *head = fsdata;
2725 struct buffer_head *bh;
2726 BUG_ON(fsdata != NULL && page_has_buffers(page));
2727
2728 if (unlikely(copied < len) && head)
2729 attach_nobh_buffers(page, head);
2730 if (page_has_buffers(page))
2731 return generic_write_end(file, mapping, pos, len,
2732 copied, page, fsdata);
2733
2734 SetPageUptodate(page);
2735 set_page_dirty(page);
2736 if (pos+copied > inode->i_size) {
2737 i_size_write(inode, pos+copied);
2738 mark_inode_dirty(inode);
2739 }
2740
2741 unlock_page(page);
2742 put_page(page);
2743
2744 while (head) {
2745 bh = head;
2746 head = head->b_this_page;
2747 free_buffer_head(bh);
2748 }
2749
2750 return copied;
2751 }
2752 EXPORT_SYMBOL(nobh_write_end);
2753
2754 /*
2755 * nobh_writepage() - based on block_full_write_page() except
2756 * that it tries to operate without attaching bufferheads to
2757 * the page.
2758 */
2759 int nobh_writepage(struct page *page, get_block_t *get_block,
2760 struct writeback_control *wbc)
2761 {
2762 struct inode * const inode = page->mapping->host;
2763 loff_t i_size = i_size_read(inode);
2764 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2765 unsigned offset;
2766 int ret;
2767
2768 /* Is the page fully inside i_size? */
2769 if (page->index < end_index)
2770 goto out;
2771
2772 /* Is the page fully outside i_size? (truncate in progress) */
2773 offset = i_size & (PAGE_SIZE-1);
2774 if (page->index >= end_index+1 || !offset) {
2775 /*
2776 * The page may have dirty, unmapped buffers. For example,
2777 * they may have been added in ext3_writepage(). Make them
2778 * freeable here, so the page does not leak.
2779 */
2780 #if 0
2781 /* Not really sure about this - do we need this ? */
2782 if (page->mapping->a_ops->invalidatepage)
2783 page->mapping->a_ops->invalidatepage(page, offset);
2784 #endif
2785 unlock_page(page);
2786 return 0; /* don't care */
2787 }
2788
2789 /*
2790 * The page straddles i_size. It must be zeroed out on each and every
2791 * writepage invocation because it may be mmapped. "A file is mapped
2792 * in multiples of the page size. For a file that is not a multiple of
2793 * the page size, the remaining memory is zeroed when mapped, and
2794 * writes to that region are not written out to the file."
2795 */
2796 zero_user_segment(page, offset, PAGE_SIZE);
2797 out:
2798 ret = mpage_writepage(page, get_block, wbc);
2799 if (ret == -EAGAIN)
2800 ret = __block_write_full_page(inode, page, get_block, wbc,
2801 end_buffer_async_write);
2802 return ret;
2803 }
2804 EXPORT_SYMBOL(nobh_writepage);
2805
2806 int nobh_truncate_page(struct address_space *mapping,
2807 loff_t from, get_block_t *get_block)
2808 {
2809 pgoff_t index = from >> PAGE_SHIFT;
2810 unsigned offset = from & (PAGE_SIZE-1);
2811 unsigned blocksize;
2812 sector_t iblock;
2813 unsigned length, pos;
2814 struct inode *inode = mapping->host;
2815 struct page *page;
2816 struct buffer_head map_bh;
2817 int err;
2818
2819 blocksize = i_blocksize(inode);
2820 length = offset & (blocksize - 1);
2821
2822 /* Block boundary? Nothing to do */
2823 if (!length)
2824 return 0;
2825
2826 length = blocksize - length;
2827 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2828
2829 page = grab_cache_page(mapping, index);
2830 err = -ENOMEM;
2831 if (!page)
2832 goto out;
2833
2834 if (page_has_buffers(page)) {
2835 has_buffers:
2836 unlock_page(page);
2837 put_page(page);
2838 return block_truncate_page(mapping, from, get_block);
2839 }
2840
2841 /* Find the buffer that contains "offset" */
2842 pos = blocksize;
2843 while (offset >= pos) {
2844 iblock++;
2845 pos += blocksize;
2846 }
2847
2848 map_bh.b_size = blocksize;
2849 map_bh.b_state = 0;
2850 err = get_block(inode, iblock, &map_bh, 0);
2851 if (err)
2852 goto unlock;
2853 /* unmapped? It's a hole - nothing to do */
2854 if (!buffer_mapped(&map_bh))
2855 goto unlock;
2856
2857 /* Ok, it's mapped. Make sure it's up-to-date */
2858 if (!PageUptodate(page)) {
2859 err = mapping->a_ops->readpage(NULL, page);
2860 if (err) {
2861 put_page(page);
2862 goto out;
2863 }
2864 lock_page(page);
2865 if (!PageUptodate(page)) {
2866 err = -EIO;
2867 goto unlock;
2868 }
2869 if (page_has_buffers(page))
2870 goto has_buffers;
2871 }
2872 zero_user(page, offset, length);
2873 set_page_dirty(page);
2874 err = 0;
2875
2876 unlock:
2877 unlock_page(page);
2878 put_page(page);
2879 out:
2880 return err;
2881 }
2882 EXPORT_SYMBOL(nobh_truncate_page);
2883
2884 int block_truncate_page(struct address_space *mapping,
2885 loff_t from, get_block_t *get_block)
2886 {
2887 pgoff_t index = from >> PAGE_SHIFT;
2888 unsigned offset = from & (PAGE_SIZE-1);
2889 unsigned blocksize;
2890 sector_t iblock;
2891 unsigned length, pos;
2892 struct inode *inode = mapping->host;
2893 struct page *page;
2894 struct buffer_head *bh;
2895 int err;
2896
2897 blocksize = i_blocksize(inode);
2898 length = offset & (blocksize - 1);
2899
2900 /* Block boundary? Nothing to do */
2901 if (!length)
2902 return 0;
2903
2904 length = blocksize - length;
2905 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2906
2907 page = grab_cache_page(mapping, index);
2908 err = -ENOMEM;
2909 if (!page)
2910 goto out;
2911
2912 if (!page_has_buffers(page))
2913 create_empty_buffers(page, blocksize, 0);
2914
2915 /* Find the buffer that contains "offset" */
2916 bh = page_buffers(page);
2917 pos = blocksize;
2918 while (offset >= pos) {
2919 bh = bh->b_this_page;
2920 iblock++;
2921 pos += blocksize;
2922 }
2923
2924 err = 0;
2925 if (!buffer_mapped(bh)) {
2926 WARN_ON(bh->b_size != blocksize);
2927 err = get_block(inode, iblock, bh, 0);
2928 if (err)
2929 goto unlock;
2930 /* unmapped? It's a hole - nothing to do */
2931 if (!buffer_mapped(bh))
2932 goto unlock;
2933 }
2934
2935 /* Ok, it's mapped. Make sure it's up-to-date */
2936 if (PageUptodate(page))
2937 set_buffer_uptodate(bh);
2938
2939 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2940 err = -EIO;
2941 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2942 wait_on_buffer(bh);
2943 /* Uhhuh. Read error. Complain and punt. */
2944 if (!buffer_uptodate(bh))
2945 goto unlock;
2946 }
2947
2948 zero_user(page, offset, length);
2949 mark_buffer_dirty(bh);
2950 err = 0;
2951
2952 unlock:
2953 unlock_page(page);
2954 put_page(page);
2955 out:
2956 return err;
2957 }
2958 EXPORT_SYMBOL(block_truncate_page);
2959
2960 /*
2961 * The generic ->writepage function for buffer-backed address_spaces
2962 */
2963 int block_write_full_page(struct page *page, get_block_t *get_block,
2964 struct writeback_control *wbc)
2965 {
2966 struct inode * const inode = page->mapping->host;
2967 loff_t i_size = i_size_read(inode);
2968 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2969 unsigned offset;
2970
2971 /* Is the page fully inside i_size? */
2972 if (page->index < end_index)
2973 return __block_write_full_page(inode, page, get_block, wbc,
2974 end_buffer_async_write);
2975
2976 /* Is the page fully outside i_size? (truncate in progress) */
2977 offset = i_size & (PAGE_SIZE-1);
2978 if (page->index >= end_index+1 || !offset) {
2979 /*
2980 * The page may have dirty, unmapped buffers. For example,
2981 * they may have been added in ext3_writepage(). Make them
2982 * freeable here, so the page does not leak.
2983 */
2984 do_invalidatepage(page, 0, PAGE_SIZE);
2985 unlock_page(page);
2986 return 0; /* don't care */
2987 }
2988
2989 /*
2990 * The page straddles i_size. It must be zeroed out on each and every
2991 * writepage invocation because it may be mmapped. "A file is mapped
2992 * in multiples of the page size. For a file that is not a multiple of
2993 * the page size, the remaining memory is zeroed when mapped, and
2994 * writes to that region are not written out to the file."
2995 */
2996 zero_user_segment(page, offset, PAGE_SIZE);
2997 return __block_write_full_page(inode, page, get_block, wbc,
2998 end_buffer_async_write);
2999 }
3000 EXPORT_SYMBOL(block_write_full_page);
3001
3002 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3003 get_block_t *get_block)
3004 {
3005 struct inode *inode = mapping->host;
3006 struct buffer_head tmp = {
3007 .b_size = i_blocksize(inode),
3008 };
3009
3010 get_block(inode, block, &tmp, 0);
3011 return tmp.b_blocknr;
3012 }
3013 EXPORT_SYMBOL(generic_block_bmap);
3014
3015 static void end_bio_bh_io_sync(struct bio *bio)
3016 {
3017 struct buffer_head *bh = bio->bi_private;
3018
3019 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3020 set_bit(BH_Quiet, &bh->b_state);
3021
3022 bh->b_end_io(bh, !bio->bi_status);
3023 bio_put(bio);
3024 }
3025
3026 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3027 enum rw_hint write_hint, struct writeback_control *wbc)
3028 {
3029 struct bio *bio;
3030
3031 BUG_ON(!buffer_locked(bh));
3032 BUG_ON(!buffer_mapped(bh));
3033 BUG_ON(!bh->b_end_io);
3034 BUG_ON(buffer_delay(bh));
3035 BUG_ON(buffer_unwritten(bh));
3036
3037 /*
3038 * Only clear out a write error when rewriting
3039 */
3040 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3041 clear_buffer_write_io_error(bh);
3042
3043 /*
3044 * from here on down, it's all bio -- do the initial mapping,
3045 * submit_bio -> generic_make_request may further map this bio around
3046 */
3047 bio = bio_alloc(GFP_NOIO, 1);
3048
3049 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3050 bio_set_dev(bio, bh->b_bdev);
3051 bio->bi_write_hint = write_hint;
3052
3053 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3054 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3055
3056 bio->bi_end_io = end_bio_bh_io_sync;
3057 bio->bi_private = bh;
3058
3059 if (buffer_meta(bh))
3060 op_flags |= REQ_META;
3061 if (buffer_prio(bh))
3062 op_flags |= REQ_PRIO;
3063 bio_set_op_attrs(bio, op, op_flags);
3064
3065 /* Take care of bh's that straddle the end of the device */
3066 guard_bio_eod(bio);
3067
3068 if (wbc) {
3069 wbc_init_bio(wbc, bio);
3070 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3071 }
3072
3073 submit_bio(bio);
3074 return 0;
3075 }
3076
3077 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3078 {
3079 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3080 }
3081 EXPORT_SYMBOL(submit_bh);
3082
3083 /**
3084 * ll_rw_block: low-level access to block devices (DEPRECATED)
3085 * @op: whether to %READ or %WRITE
3086 * @op_flags: req_flag_bits
3087 * @nr: number of &struct buffer_heads in the array
3088 * @bhs: array of pointers to &struct buffer_head
3089 *
3090 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3091 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3092 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3093 * %REQ_RAHEAD.
3094 *
3095 * This function drops any buffer that it cannot get a lock on (with the
3096 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3097 * request, and any buffer that appears to be up-to-date when doing read
3098 * request. Further it marks as clean buffers that are processed for
3099 * writing (the buffer cache won't assume that they are actually clean
3100 * until the buffer gets unlocked).
3101 *
3102 * ll_rw_block sets b_end_io to simple completion handler that marks
3103 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3104 * any waiters.
3105 *
3106 * All of the buffers must be for the same device, and must also be a
3107 * multiple of the current approved size for the device.
3108 */
3109 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3110 {
3111 int i;
3112
3113 for (i = 0; i < nr; i++) {
3114 struct buffer_head *bh = bhs[i];
3115
3116 if (!trylock_buffer(bh))
3117 continue;
3118 if (op == WRITE) {
3119 if (test_clear_buffer_dirty(bh)) {
3120 bh->b_end_io = end_buffer_write_sync;
3121 get_bh(bh);
3122 submit_bh(op, op_flags, bh);
3123 continue;
3124 }
3125 } else {
3126 if (!buffer_uptodate(bh)) {
3127 bh->b_end_io = end_buffer_read_sync;
3128 get_bh(bh);
3129 submit_bh(op, op_flags, bh);
3130 continue;
3131 }
3132 }
3133 unlock_buffer(bh);
3134 }
3135 }
3136 EXPORT_SYMBOL(ll_rw_block);
3137
3138 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3139 {
3140 lock_buffer(bh);
3141 if (!test_clear_buffer_dirty(bh)) {
3142 unlock_buffer(bh);
3143 return;
3144 }
3145 bh->b_end_io = end_buffer_write_sync;
3146 get_bh(bh);
3147 submit_bh(REQ_OP_WRITE, op_flags, bh);
3148 }
3149 EXPORT_SYMBOL(write_dirty_buffer);
3150
3151 /*
3152 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3153 * and then start new I/O and then wait upon it. The caller must have a ref on
3154 * the buffer_head.
3155 */
3156 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3157 {
3158 int ret = 0;
3159
3160 WARN_ON(atomic_read(&bh->b_count) < 1);
3161 lock_buffer(bh);
3162 if (test_clear_buffer_dirty(bh)) {
3163 get_bh(bh);
3164 bh->b_end_io = end_buffer_write_sync;
3165 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3166 wait_on_buffer(bh);
3167 if (!ret && !buffer_uptodate(bh))
3168 ret = -EIO;
3169 } else {
3170 unlock_buffer(bh);
3171 }
3172 return ret;
3173 }
3174 EXPORT_SYMBOL(__sync_dirty_buffer);
3175
3176 int sync_dirty_buffer(struct buffer_head *bh)
3177 {
3178 return __sync_dirty_buffer(bh, REQ_SYNC);
3179 }
3180 EXPORT_SYMBOL(sync_dirty_buffer);
3181
3182 /*
3183 * try_to_free_buffers() checks if all the buffers on this particular page
3184 * are unused, and releases them if so.
3185 *
3186 * Exclusion against try_to_free_buffers may be obtained by either
3187 * locking the page or by holding its mapping's private_lock.
3188 *
3189 * If the page is dirty but all the buffers are clean then we need to
3190 * be sure to mark the page clean as well. This is because the page
3191 * may be against a block device, and a later reattachment of buffers
3192 * to a dirty page will set *all* buffers dirty. Which would corrupt
3193 * filesystem data on the same device.
3194 *
3195 * The same applies to regular filesystem pages: if all the buffers are
3196 * clean then we set the page clean and proceed. To do that, we require
3197 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3198 * private_lock.
3199 *
3200 * try_to_free_buffers() is non-blocking.
3201 */
3202 static inline int buffer_busy(struct buffer_head *bh)
3203 {
3204 return atomic_read(&bh->b_count) |
3205 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3206 }
3207
3208 static int
3209 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3210 {
3211 struct buffer_head *head = page_buffers(page);
3212 struct buffer_head *bh;
3213
3214 bh = head;
3215 do {
3216 if (buffer_busy(bh))
3217 goto failed;
3218 bh = bh->b_this_page;
3219 } while (bh != head);
3220
3221 do {
3222 struct buffer_head *next = bh->b_this_page;
3223
3224 if (bh->b_assoc_map)
3225 __remove_assoc_queue(bh);
3226 bh = next;
3227 } while (bh != head);
3228 *buffers_to_free = head;
3229 detach_page_private(page);
3230 return 1;
3231 failed:
3232 return 0;
3233 }
3234
3235 int try_to_free_buffers(struct page *page)
3236 {
3237 struct address_space * const mapping = page->mapping;
3238 struct buffer_head *buffers_to_free = NULL;
3239 int ret = 0;
3240
3241 BUG_ON(!PageLocked(page));
3242 if (PageWriteback(page))
3243 return 0;
3244
3245 if (mapping == NULL) { /* can this still happen? */
3246 ret = drop_buffers(page, &buffers_to_free);
3247 goto out;
3248 }
3249
3250 spin_lock(&mapping->private_lock);
3251 ret = drop_buffers(page, &buffers_to_free);
3252
3253 /*
3254 * If the filesystem writes its buffers by hand (eg ext3)
3255 * then we can have clean buffers against a dirty page. We
3256 * clean the page here; otherwise the VM will never notice
3257 * that the filesystem did any IO at all.
3258 *
3259 * Also, during truncate, discard_buffer will have marked all
3260 * the page's buffers clean. We discover that here and clean
3261 * the page also.
3262 *
3263 * private_lock must be held over this entire operation in order
3264 * to synchronise against __set_page_dirty_buffers and prevent the
3265 * dirty bit from being lost.
3266 */
3267 if (ret)
3268 cancel_dirty_page(page);
3269 spin_unlock(&mapping->private_lock);
3270 out:
3271 if (buffers_to_free) {
3272 struct buffer_head *bh = buffers_to_free;
3273
3274 do {
3275 struct buffer_head *next = bh->b_this_page;
3276 free_buffer_head(bh);
3277 bh = next;
3278 } while (bh != buffers_to_free);
3279 }
3280 return ret;
3281 }
3282 EXPORT_SYMBOL(try_to_free_buffers);
3283
3284 /*
3285 * There are no bdflush tunables left. But distributions are
3286 * still running obsolete flush daemons, so we terminate them here.
3287 *
3288 * Use of bdflush() is deprecated and will be removed in a future kernel.
3289 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3290 */
3291 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3292 {
3293 static int msg_count;
3294
3295 if (!capable(CAP_SYS_ADMIN))
3296 return -EPERM;
3297
3298 if (msg_count < 5) {
3299 msg_count++;
3300 printk(KERN_INFO
3301 "warning: process `%s' used the obsolete bdflush"
3302 " system call\n", current->comm);
3303 printk(KERN_INFO "Fix your initscripts?\n");
3304 }
3305
3306 if (func == 1)
3307 do_exit(0);
3308 return 0;
3309 }
3310
3311 /*
3312 * Buffer-head allocation
3313 */
3314 static struct kmem_cache *bh_cachep __read_mostly;
3315
3316 /*
3317 * Once the number of bh's in the machine exceeds this level, we start
3318 * stripping them in writeback.
3319 */
3320 static unsigned long max_buffer_heads;
3321
3322 int buffer_heads_over_limit;
3323
3324 struct bh_accounting {
3325 int nr; /* Number of live bh's */
3326 int ratelimit; /* Limit cacheline bouncing */
3327 };
3328
3329 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3330
3331 static void recalc_bh_state(void)
3332 {
3333 int i;
3334 int tot = 0;
3335
3336 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3337 return;
3338 __this_cpu_write(bh_accounting.ratelimit, 0);
3339 for_each_online_cpu(i)
3340 tot += per_cpu(bh_accounting, i).nr;
3341 buffer_heads_over_limit = (tot > max_buffer_heads);
3342 }
3343
3344 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3345 {
3346 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3347 if (ret) {
3348 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3349 spin_lock_init(&ret->b_uptodate_lock);
3350 preempt_disable();
3351 __this_cpu_inc(bh_accounting.nr);
3352 recalc_bh_state();
3353 preempt_enable();
3354 }
3355 return ret;
3356 }
3357 EXPORT_SYMBOL(alloc_buffer_head);
3358
3359 void free_buffer_head(struct buffer_head *bh)
3360 {
3361 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3362 kmem_cache_free(bh_cachep, bh);
3363 preempt_disable();
3364 __this_cpu_dec(bh_accounting.nr);
3365 recalc_bh_state();
3366 preempt_enable();
3367 }
3368 EXPORT_SYMBOL(free_buffer_head);
3369
3370 static int buffer_exit_cpu_dead(unsigned int cpu)
3371 {
3372 int i;
3373 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3374
3375 for (i = 0; i < BH_LRU_SIZE; i++) {
3376 brelse(b->bhs[i]);
3377 b->bhs[i] = NULL;
3378 }
3379 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3380 per_cpu(bh_accounting, cpu).nr = 0;
3381 return 0;
3382 }
3383
3384 /**
3385 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3386 * @bh: struct buffer_head
3387 *
3388 * Return true if the buffer is up-to-date and false,
3389 * with the buffer locked, if not.
3390 */
3391 int bh_uptodate_or_lock(struct buffer_head *bh)
3392 {
3393 if (!buffer_uptodate(bh)) {
3394 lock_buffer(bh);
3395 if (!buffer_uptodate(bh))
3396 return 0;
3397 unlock_buffer(bh);
3398 }
3399 return 1;
3400 }
3401 EXPORT_SYMBOL(bh_uptodate_or_lock);
3402
3403 /**
3404 * bh_submit_read - Submit a locked buffer for reading
3405 * @bh: struct buffer_head
3406 *
3407 * Returns zero on success and -EIO on error.
3408 */
3409 int bh_submit_read(struct buffer_head *bh)
3410 {
3411 BUG_ON(!buffer_locked(bh));
3412
3413 if (buffer_uptodate(bh)) {
3414 unlock_buffer(bh);
3415 return 0;
3416 }
3417
3418 get_bh(bh);
3419 bh->b_end_io = end_buffer_read_sync;
3420 submit_bh(REQ_OP_READ, 0, bh);
3421 wait_on_buffer(bh);
3422 if (buffer_uptodate(bh))
3423 return 0;
3424 return -EIO;
3425 }
3426 EXPORT_SYMBOL(bh_submit_read);
3427
3428 void __init buffer_init(void)
3429 {
3430 unsigned long nrpages;
3431 int ret;
3432
3433 bh_cachep = kmem_cache_create("buffer_head",
3434 sizeof(struct buffer_head), 0,
3435 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3436 SLAB_MEM_SPREAD),
3437 NULL);
3438
3439 /*
3440 * Limit the bh occupancy to 10% of ZONE_NORMAL
3441 */
3442 nrpages = (nr_free_buffer_pages() * 10) / 100;
3443 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3444 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3445 NULL, buffer_exit_cpu_dead);
3446 WARN_ON(ret < 0);
3447 }