]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/buffer.c
Merge tag 'net-6.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[thirdparty/linux.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 trace_block_touch_buffer(bh);
64 folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83 * Returns if the folio has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the folio_test_dirty information is stale. If
85 * any of the buffers are locked, it is assumed they are locked for IO.
86 */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 bool *dirty, bool *writeback)
89 {
90 struct buffer_head *head, *bh;
91 *dirty = false;
92 *writeback = false;
93
94 BUG_ON(!folio_test_locked(folio));
95
96 head = folio_buffers(folio);
97 if (!head)
98 return;
99
100 if (folio_test_writeback(folio))
101 *writeback = true;
102
103 bh = head;
104 do {
105 if (buffer_locked(bh))
106 *writeback = true;
107
108 if (buffer_dirty(bh))
109 *dirty = true;
110
111 bh = bh->b_this_page;
112 } while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116 /*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152 }
153
154 /*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * private_lock.
184 *
185 * Hack idea: for the blockdev mapping, private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take private_lock.
188 */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct page *page;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204 if (!page)
205 goto out;
206
207 spin_lock(&bd_mapping->private_lock);
208 if (!page_has_buffers(page))
209 goto out_unlock;
210 head = page_buffers(page);
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
237 }
238 out_unlock:
239 spin_unlock(&bd_mapping->private_lock);
240 put_page(page);
241 out:
242 return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
252
253 BUG_ON(!buffer_async_read(bh));
254
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
261 folio_set_error(folio);
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
269 first = folio_buffers(folio);
270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(tmp))
276 folio_uptodate = 0;
277 if (buffer_async_read(tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285 /*
286 * If all of the buffers are uptodate then we can set the page
287 * uptodate.
288 */
289 if (folio_uptodate)
290 folio_mark_uptodate(folio);
291 folio_unlock(folio);
292 return;
293
294 still_busy:
295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 return;
297 }
298
299 struct postprocess_bh_ctx {
300 struct work_struct work;
301 struct buffer_head *bh;
302 };
303
304 static void verify_bh(struct work_struct *work)
305 {
306 struct postprocess_bh_ctx *ctx =
307 container_of(work, struct postprocess_bh_ctx, work);
308 struct buffer_head *bh = ctx->bh;
309 bool valid;
310
311 valid = fsverity_verify_blocks(page_folio(bh->b_page), bh->b_size,
312 bh_offset(bh));
313 end_buffer_async_read(bh, valid);
314 kfree(ctx);
315 }
316
317 static bool need_fsverity(struct buffer_head *bh)
318 {
319 struct page *page = bh->b_page;
320 struct inode *inode = page->mapping->host;
321
322 return fsverity_active(inode) &&
323 /* needed by ext4 */
324 page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
325 }
326
327 static void decrypt_bh(struct work_struct *work)
328 {
329 struct postprocess_bh_ctx *ctx =
330 container_of(work, struct postprocess_bh_ctx, work);
331 struct buffer_head *bh = ctx->bh;
332 int err;
333
334 err = fscrypt_decrypt_pagecache_blocks(page_folio(bh->b_page),
335 bh->b_size, bh_offset(bh));
336 if (err == 0 && need_fsverity(bh)) {
337 /*
338 * We use different work queues for decryption and for verity
339 * because verity may require reading metadata pages that need
340 * decryption, and we shouldn't recurse to the same workqueue.
341 */
342 INIT_WORK(&ctx->work, verify_bh);
343 fsverity_enqueue_verify_work(&ctx->work);
344 return;
345 }
346 end_buffer_async_read(bh, err == 0);
347 kfree(ctx);
348 }
349
350 /*
351 * I/O completion handler for block_read_full_folio() - pages
352 * which come unlocked at the end of I/O.
353 */
354 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
355 {
356 struct inode *inode = bh->b_folio->mapping->host;
357 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
358 bool verify = need_fsverity(bh);
359
360 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
361 if (uptodate && (decrypt || verify)) {
362 struct postprocess_bh_ctx *ctx =
363 kmalloc(sizeof(*ctx), GFP_ATOMIC);
364
365 if (ctx) {
366 ctx->bh = bh;
367 if (decrypt) {
368 INIT_WORK(&ctx->work, decrypt_bh);
369 fscrypt_enqueue_decrypt_work(&ctx->work);
370 } else {
371 INIT_WORK(&ctx->work, verify_bh);
372 fsverity_enqueue_verify_work(&ctx->work);
373 }
374 return;
375 }
376 uptodate = 0;
377 }
378 end_buffer_async_read(bh, uptodate);
379 }
380
381 /*
382 * Completion handler for block_write_full_page() - pages which are unlocked
383 * during I/O, and which have PageWriteback cleared upon I/O completion.
384 */
385 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
386 {
387 unsigned long flags;
388 struct buffer_head *first;
389 struct buffer_head *tmp;
390 struct folio *folio;
391
392 BUG_ON(!buffer_async_write(bh));
393
394 folio = bh->b_folio;
395 if (uptodate) {
396 set_buffer_uptodate(bh);
397 } else {
398 buffer_io_error(bh, ", lost async page write");
399 mark_buffer_write_io_error(bh);
400 clear_buffer_uptodate(bh);
401 folio_set_error(folio);
402 }
403
404 first = folio_buffers(folio);
405 spin_lock_irqsave(&first->b_uptodate_lock, flags);
406
407 clear_buffer_async_write(bh);
408 unlock_buffer(bh);
409 tmp = bh->b_this_page;
410 while (tmp != bh) {
411 if (buffer_async_write(tmp)) {
412 BUG_ON(!buffer_locked(tmp));
413 goto still_busy;
414 }
415 tmp = tmp->b_this_page;
416 }
417 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
418 folio_end_writeback(folio);
419 return;
420
421 still_busy:
422 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
423 return;
424 }
425 EXPORT_SYMBOL(end_buffer_async_write);
426
427 /*
428 * If a page's buffers are under async readin (end_buffer_async_read
429 * completion) then there is a possibility that another thread of
430 * control could lock one of the buffers after it has completed
431 * but while some of the other buffers have not completed. This
432 * locked buffer would confuse end_buffer_async_read() into not unlocking
433 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
434 * that this buffer is not under async I/O.
435 *
436 * The page comes unlocked when it has no locked buffer_async buffers
437 * left.
438 *
439 * PageLocked prevents anyone starting new async I/O reads any of
440 * the buffers.
441 *
442 * PageWriteback is used to prevent simultaneous writeout of the same
443 * page.
444 *
445 * PageLocked prevents anyone from starting writeback of a page which is
446 * under read I/O (PageWriteback is only ever set against a locked page).
447 */
448 static void mark_buffer_async_read(struct buffer_head *bh)
449 {
450 bh->b_end_io = end_buffer_async_read_io;
451 set_buffer_async_read(bh);
452 }
453
454 static void mark_buffer_async_write_endio(struct buffer_head *bh,
455 bh_end_io_t *handler)
456 {
457 bh->b_end_io = handler;
458 set_buffer_async_write(bh);
459 }
460
461 void mark_buffer_async_write(struct buffer_head *bh)
462 {
463 mark_buffer_async_write_endio(bh, end_buffer_async_write);
464 }
465 EXPORT_SYMBOL(mark_buffer_async_write);
466
467
468 /*
469 * fs/buffer.c contains helper functions for buffer-backed address space's
470 * fsync functions. A common requirement for buffer-based filesystems is
471 * that certain data from the backing blockdev needs to be written out for
472 * a successful fsync(). For example, ext2 indirect blocks need to be
473 * written back and waited upon before fsync() returns.
474 *
475 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
476 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
477 * management of a list of dependent buffers at ->i_mapping->private_list.
478 *
479 * Locking is a little subtle: try_to_free_buffers() will remove buffers
480 * from their controlling inode's queue when they are being freed. But
481 * try_to_free_buffers() will be operating against the *blockdev* mapping
482 * at the time, not against the S_ISREG file which depends on those buffers.
483 * So the locking for private_list is via the private_lock in the address_space
484 * which backs the buffers. Which is different from the address_space
485 * against which the buffers are listed. So for a particular address_space,
486 * mapping->private_lock does *not* protect mapping->private_list! In fact,
487 * mapping->private_list will always be protected by the backing blockdev's
488 * ->private_lock.
489 *
490 * Which introduces a requirement: all buffers on an address_space's
491 * ->private_list must be from the same address_space: the blockdev's.
492 *
493 * address_spaces which do not place buffers at ->private_list via these
494 * utility functions are free to use private_lock and private_list for
495 * whatever they want. The only requirement is that list_empty(private_list)
496 * be true at clear_inode() time.
497 *
498 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
499 * filesystems should do that. invalidate_inode_buffers() should just go
500 * BUG_ON(!list_empty).
501 *
502 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
503 * take an address_space, not an inode. And it should be called
504 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
505 * queued up.
506 *
507 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
508 * list if it is already on a list. Because if the buffer is on a list,
509 * it *must* already be on the right one. If not, the filesystem is being
510 * silly. This will save a ton of locking. But first we have to ensure
511 * that buffers are taken *off* the old inode's list when they are freed
512 * (presumably in truncate). That requires careful auditing of all
513 * filesystems (do it inside bforget()). It could also be done by bringing
514 * b_inode back.
515 */
516
517 /*
518 * The buffer's backing address_space's private_lock must be held
519 */
520 static void __remove_assoc_queue(struct buffer_head *bh)
521 {
522 list_del_init(&bh->b_assoc_buffers);
523 WARN_ON(!bh->b_assoc_map);
524 bh->b_assoc_map = NULL;
525 }
526
527 int inode_has_buffers(struct inode *inode)
528 {
529 return !list_empty(&inode->i_data.private_list);
530 }
531
532 /*
533 * osync is designed to support O_SYNC io. It waits synchronously for
534 * all already-submitted IO to complete, but does not queue any new
535 * writes to the disk.
536 *
537 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
538 * as you dirty the buffers, and then use osync_inode_buffers to wait for
539 * completion. Any other dirty buffers which are not yet queued for
540 * write will not be flushed to disk by the osync.
541 */
542 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
543 {
544 struct buffer_head *bh;
545 struct list_head *p;
546 int err = 0;
547
548 spin_lock(lock);
549 repeat:
550 list_for_each_prev(p, list) {
551 bh = BH_ENTRY(p);
552 if (buffer_locked(bh)) {
553 get_bh(bh);
554 spin_unlock(lock);
555 wait_on_buffer(bh);
556 if (!buffer_uptodate(bh))
557 err = -EIO;
558 brelse(bh);
559 spin_lock(lock);
560 goto repeat;
561 }
562 }
563 spin_unlock(lock);
564 return err;
565 }
566
567 void emergency_thaw_bdev(struct super_block *sb)
568 {
569 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
570 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
571 }
572
573 /**
574 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
575 * @mapping: the mapping which wants those buffers written
576 *
577 * Starts I/O against the buffers at mapping->private_list, and waits upon
578 * that I/O.
579 *
580 * Basically, this is a convenience function for fsync().
581 * @mapping is a file or directory which needs those buffers to be written for
582 * a successful fsync().
583 */
584 int sync_mapping_buffers(struct address_space *mapping)
585 {
586 struct address_space *buffer_mapping = mapping->private_data;
587
588 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
589 return 0;
590
591 return fsync_buffers_list(&buffer_mapping->private_lock,
592 &mapping->private_list);
593 }
594 EXPORT_SYMBOL(sync_mapping_buffers);
595
596 /*
597 * Called when we've recently written block `bblock', and it is known that
598 * `bblock' was for a buffer_boundary() buffer. This means that the block at
599 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
600 * dirty, schedule it for IO. So that indirects merge nicely with their data.
601 */
602 void write_boundary_block(struct block_device *bdev,
603 sector_t bblock, unsigned blocksize)
604 {
605 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
606 if (bh) {
607 if (buffer_dirty(bh))
608 write_dirty_buffer(bh, 0);
609 put_bh(bh);
610 }
611 }
612
613 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
614 {
615 struct address_space *mapping = inode->i_mapping;
616 struct address_space *buffer_mapping = bh->b_folio->mapping;
617
618 mark_buffer_dirty(bh);
619 if (!mapping->private_data) {
620 mapping->private_data = buffer_mapping;
621 } else {
622 BUG_ON(mapping->private_data != buffer_mapping);
623 }
624 if (!bh->b_assoc_map) {
625 spin_lock(&buffer_mapping->private_lock);
626 list_move_tail(&bh->b_assoc_buffers,
627 &mapping->private_list);
628 bh->b_assoc_map = mapping;
629 spin_unlock(&buffer_mapping->private_lock);
630 }
631 }
632 EXPORT_SYMBOL(mark_buffer_dirty_inode);
633
634 /*
635 * Add a page to the dirty page list.
636 *
637 * It is a sad fact of life that this function is called from several places
638 * deeply under spinlocking. It may not sleep.
639 *
640 * If the page has buffers, the uptodate buffers are set dirty, to preserve
641 * dirty-state coherency between the page and the buffers. It the page does
642 * not have buffers then when they are later attached they will all be set
643 * dirty.
644 *
645 * The buffers are dirtied before the page is dirtied. There's a small race
646 * window in which a writepage caller may see the page cleanness but not the
647 * buffer dirtiness. That's fine. If this code were to set the page dirty
648 * before the buffers, a concurrent writepage caller could clear the page dirty
649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650 * page on the dirty page list.
651 *
652 * We use private_lock to lock against try_to_free_buffers while using the
653 * page's buffer list. Also use this to protect against clean buffers being
654 * added to the page after it was set dirty.
655 *
656 * FIXME: may need to call ->reservepage here as well. That's rather up to the
657 * address_space though.
658 */
659 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
660 {
661 struct buffer_head *head;
662 bool newly_dirty;
663
664 spin_lock(&mapping->private_lock);
665 head = folio_buffers(folio);
666 if (head) {
667 struct buffer_head *bh = head;
668
669 do {
670 set_buffer_dirty(bh);
671 bh = bh->b_this_page;
672 } while (bh != head);
673 }
674 /*
675 * Lock out page's memcg migration to keep PageDirty
676 * synchronized with per-memcg dirty page counters.
677 */
678 folio_memcg_lock(folio);
679 newly_dirty = !folio_test_set_dirty(folio);
680 spin_unlock(&mapping->private_lock);
681
682 if (newly_dirty)
683 __folio_mark_dirty(folio, mapping, 1);
684
685 folio_memcg_unlock(folio);
686
687 if (newly_dirty)
688 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689
690 return newly_dirty;
691 }
692 EXPORT_SYMBOL(block_dirty_folio);
693
694 /*
695 * Write out and wait upon a list of buffers.
696 *
697 * We have conflicting pressures: we want to make sure that all
698 * initially dirty buffers get waited on, but that any subsequently
699 * dirtied buffers don't. After all, we don't want fsync to last
700 * forever if somebody is actively writing to the file.
701 *
702 * Do this in two main stages: first we copy dirty buffers to a
703 * temporary inode list, queueing the writes as we go. Then we clean
704 * up, waiting for those writes to complete.
705 *
706 * During this second stage, any subsequent updates to the file may end
707 * up refiling the buffer on the original inode's dirty list again, so
708 * there is a chance we will end up with a buffer queued for write but
709 * not yet completed on that list. So, as a final cleanup we go through
710 * the osync code to catch these locked, dirty buffers without requeuing
711 * any newly dirty buffers for write.
712 */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715 struct buffer_head *bh;
716 struct list_head tmp;
717 struct address_space *mapping;
718 int err = 0, err2;
719 struct blk_plug plug;
720
721 INIT_LIST_HEAD(&tmp);
722 blk_start_plug(&plug);
723
724 spin_lock(lock);
725 while (!list_empty(list)) {
726 bh = BH_ENTRY(list->next);
727 mapping = bh->b_assoc_map;
728 __remove_assoc_queue(bh);
729 /* Avoid race with mark_buffer_dirty_inode() which does
730 * a lockless check and we rely on seeing the dirty bit */
731 smp_mb();
732 if (buffer_dirty(bh) || buffer_locked(bh)) {
733 list_add(&bh->b_assoc_buffers, &tmp);
734 bh->b_assoc_map = mapping;
735 if (buffer_dirty(bh)) {
736 get_bh(bh);
737 spin_unlock(lock);
738 /*
739 * Ensure any pending I/O completes so that
740 * write_dirty_buffer() actually writes the
741 * current contents - it is a noop if I/O is
742 * still in flight on potentially older
743 * contents.
744 */
745 write_dirty_buffer(bh, REQ_SYNC);
746
747 /*
748 * Kick off IO for the previous mapping. Note
749 * that we will not run the very last mapping,
750 * wait_on_buffer() will do that for us
751 * through sync_buffer().
752 */
753 brelse(bh);
754 spin_lock(lock);
755 }
756 }
757 }
758
759 spin_unlock(lock);
760 blk_finish_plug(&plug);
761 spin_lock(lock);
762
763 while (!list_empty(&tmp)) {
764 bh = BH_ENTRY(tmp.prev);
765 get_bh(bh);
766 mapping = bh->b_assoc_map;
767 __remove_assoc_queue(bh);
768 /* Avoid race with mark_buffer_dirty_inode() which does
769 * a lockless check and we rely on seeing the dirty bit */
770 smp_mb();
771 if (buffer_dirty(bh)) {
772 list_add(&bh->b_assoc_buffers,
773 &mapping->private_list);
774 bh->b_assoc_map = mapping;
775 }
776 spin_unlock(lock);
777 wait_on_buffer(bh);
778 if (!buffer_uptodate(bh))
779 err = -EIO;
780 brelse(bh);
781 spin_lock(lock);
782 }
783
784 spin_unlock(lock);
785 err2 = osync_buffers_list(lock, list);
786 if (err)
787 return err;
788 else
789 return err2;
790 }
791
792 /*
793 * Invalidate any and all dirty buffers on a given inode. We are
794 * probably unmounting the fs, but that doesn't mean we have already
795 * done a sync(). Just drop the buffers from the inode list.
796 *
797 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
798 * assumes that all the buffers are against the blockdev. Not true
799 * for reiserfs.
800 */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803 if (inode_has_buffers(inode)) {
804 struct address_space *mapping = &inode->i_data;
805 struct list_head *list = &mapping->private_list;
806 struct address_space *buffer_mapping = mapping->private_data;
807
808 spin_lock(&buffer_mapping->private_lock);
809 while (!list_empty(list))
810 __remove_assoc_queue(BH_ENTRY(list->next));
811 spin_unlock(&buffer_mapping->private_lock);
812 }
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815
816 /*
817 * Remove any clean buffers from the inode's buffer list. This is called
818 * when we're trying to free the inode itself. Those buffers can pin it.
819 *
820 * Returns true if all buffers were removed.
821 */
822 int remove_inode_buffers(struct inode *inode)
823 {
824 int ret = 1;
825
826 if (inode_has_buffers(inode)) {
827 struct address_space *mapping = &inode->i_data;
828 struct list_head *list = &mapping->private_list;
829 struct address_space *buffer_mapping = mapping->private_data;
830
831 spin_lock(&buffer_mapping->private_lock);
832 while (!list_empty(list)) {
833 struct buffer_head *bh = BH_ENTRY(list->next);
834 if (buffer_dirty(bh)) {
835 ret = 0;
836 break;
837 }
838 __remove_assoc_queue(bh);
839 }
840 spin_unlock(&buffer_mapping->private_lock);
841 }
842 return ret;
843 }
844
845 /*
846 * Create the appropriate buffers when given a page for data area and
847 * the size of each buffer.. Use the bh->b_this_page linked list to
848 * follow the buffers created. Return NULL if unable to create more
849 * buffers.
850 *
851 * The retry flag is used to differentiate async IO (paging, swapping)
852 * which may not fail from ordinary buffer allocations.
853 */
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855 bool retry)
856 {
857 struct buffer_head *bh, *head;
858 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859 long offset;
860 struct mem_cgroup *memcg, *old_memcg;
861
862 if (retry)
863 gfp |= __GFP_NOFAIL;
864
865 /* The page lock pins the memcg */
866 memcg = page_memcg(page);
867 old_memcg = set_active_memcg(memcg);
868
869 head = NULL;
870 offset = PAGE_SIZE;
871 while ((offset -= size) >= 0) {
872 bh = alloc_buffer_head(gfp);
873 if (!bh)
874 goto no_grow;
875
876 bh->b_this_page = head;
877 bh->b_blocknr = -1;
878 head = bh;
879
880 bh->b_size = size;
881
882 /* Link the buffer to its page */
883 set_bh_page(bh, page, offset);
884 }
885 out:
886 set_active_memcg(old_memcg);
887 return head;
888 /*
889 * In case anything failed, we just free everything we got.
890 */
891 no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
898 }
899
900 goto out;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907 struct buffer_head *bh, *tail;
908
909 bh = head;
910 do {
911 tail = bh;
912 bh = bh->b_this_page;
913 } while (bh);
914 tail->b_this_page = head;
915 attach_page_private(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920 sector_t retval = ~((sector_t)0);
921 loff_t sz = bdev_nr_bytes(bdev);
922
923 if (sz) {
924 unsigned int sizebits = blksize_bits(size);
925 retval = (sz >> sizebits);
926 }
927 return retval;
928 }
929
930 /*
931 * Initialise the state of a blockdev page's buffers.
932 */
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 sector_t block, int size)
936 {
937 struct buffer_head *head = page_buffers(page);
938 struct buffer_head *bh = head;
939 int uptodate = PageUptodate(page);
940 sector_t end_block = blkdev_max_block(bdev, size);
941
942 do {
943 if (!buffer_mapped(bh)) {
944 bh->b_end_io = NULL;
945 bh->b_private = NULL;
946 bh->b_bdev = bdev;
947 bh->b_blocknr = block;
948 if (uptodate)
949 set_buffer_uptodate(bh);
950 if (block < end_block)
951 set_buffer_mapped(bh);
952 }
953 block++;
954 bh = bh->b_this_page;
955 } while (bh != head);
956
957 /*
958 * Caller needs to validate requested block against end of device.
959 */
960 return end_block;
961 }
962
963 /*
964 * Create the page-cache page that contains the requested block.
965 *
966 * This is used purely for blockdev mappings.
967 */
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970 pgoff_t index, int size, int sizebits, gfp_t gfp)
971 {
972 struct inode *inode = bdev->bd_inode;
973 struct page *page;
974 struct buffer_head *bh;
975 sector_t end_block;
976 int ret = 0;
977 gfp_t gfp_mask;
978
979 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
980
981 /*
982 * XXX: __getblk_slow() can not really deal with failure and
983 * will endlessly loop on improvised global reclaim. Prefer
984 * looping in the allocator rather than here, at least that
985 * code knows what it's doing.
986 */
987 gfp_mask |= __GFP_NOFAIL;
988
989 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
990
991 BUG_ON(!PageLocked(page));
992
993 if (page_has_buffers(page)) {
994 bh = page_buffers(page);
995 if (bh->b_size == size) {
996 end_block = init_page_buffers(page, bdev,
997 (sector_t)index << sizebits,
998 size);
999 goto done;
1000 }
1001 if (!try_to_free_buffers(page_folio(page)))
1002 goto failed;
1003 }
1004
1005 /*
1006 * Allocate some buffers for this page
1007 */
1008 bh = alloc_page_buffers(page, size, true);
1009
1010 /*
1011 * Link the page to the buffers and initialise them. Take the
1012 * lock to be atomic wrt __find_get_block(), which does not
1013 * run under the page lock.
1014 */
1015 spin_lock(&inode->i_mapping->private_lock);
1016 link_dev_buffers(page, bh);
1017 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018 size);
1019 spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021 ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023 unlock_page(page);
1024 put_page(page);
1025 return ret;
1026 }
1027
1028 /*
1029 * Create buffers for the specified block device block's page. If
1030 * that page was dirty, the buffers are set dirty also.
1031 */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035 pgoff_t index;
1036 int sizebits;
1037
1038 sizebits = PAGE_SHIFT - __ffs(size);
1039 index = block >> sizebits;
1040
1041 /*
1042 * Check for a block which wants to lie outside our maximum possible
1043 * pagecache index. (this comparison is done using sector_t types).
1044 */
1045 if (unlikely(index != block >> sizebits)) {
1046 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1047 "device %pg\n",
1048 __func__, (unsigned long long)block,
1049 bdev);
1050 return -EIO;
1051 }
1052
1053 /* Create a page with the proper size buffers.. */
1054 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1055 }
1056
1057 static struct buffer_head *
1058 __getblk_slow(struct block_device *bdev, sector_t block,
1059 unsigned size, gfp_t gfp)
1060 {
1061 /* Size must be multiple of hard sectorsize */
1062 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1063 (size < 512 || size > PAGE_SIZE))) {
1064 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1065 size);
1066 printk(KERN_ERR "logical block size: %d\n",
1067 bdev_logical_block_size(bdev));
1068
1069 dump_stack();
1070 return NULL;
1071 }
1072
1073 for (;;) {
1074 struct buffer_head *bh;
1075 int ret;
1076
1077 bh = __find_get_block(bdev, block, size);
1078 if (bh)
1079 return bh;
1080
1081 ret = grow_buffers(bdev, block, size, gfp);
1082 if (ret < 0)
1083 return NULL;
1084 }
1085 }
1086
1087 /*
1088 * The relationship between dirty buffers and dirty pages:
1089 *
1090 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091 * the page is tagged dirty in the page cache.
1092 *
1093 * At all times, the dirtiness of the buffers represents the dirtiness of
1094 * subsections of the page. If the page has buffers, the page dirty bit is
1095 * merely a hint about the true dirty state.
1096 *
1097 * When a page is set dirty in its entirety, all its buffers are marked dirty
1098 * (if the page has buffers).
1099 *
1100 * When a buffer is marked dirty, its page is dirtied, but the page's other
1101 * buffers are not.
1102 *
1103 * Also. When blockdev buffers are explicitly read with bread(), they
1104 * individually become uptodate. But their backing page remains not
1105 * uptodate - even if all of its buffers are uptodate. A subsequent
1106 * block_read_full_folio() against that folio will discover all the uptodate
1107 * buffers, will set the folio uptodate and will perform no I/O.
1108 */
1109
1110 /**
1111 * mark_buffer_dirty - mark a buffer_head as needing writeout
1112 * @bh: the buffer_head to mark dirty
1113 *
1114 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1115 * its backing page dirty, then tag the page as dirty in the page cache
1116 * and then attach the address_space's inode to its superblock's dirty
1117 * inode list.
1118 *
1119 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1120 * i_pages lock and mapping->host->i_lock.
1121 */
1122 void mark_buffer_dirty(struct buffer_head *bh)
1123 {
1124 WARN_ON_ONCE(!buffer_uptodate(bh));
1125
1126 trace_block_dirty_buffer(bh);
1127
1128 /*
1129 * Very *carefully* optimize the it-is-already-dirty case.
1130 *
1131 * Don't let the final "is it dirty" escape to before we
1132 * perhaps modified the buffer.
1133 */
1134 if (buffer_dirty(bh)) {
1135 smp_mb();
1136 if (buffer_dirty(bh))
1137 return;
1138 }
1139
1140 if (!test_set_buffer_dirty(bh)) {
1141 struct folio *folio = bh->b_folio;
1142 struct address_space *mapping = NULL;
1143
1144 folio_memcg_lock(folio);
1145 if (!folio_test_set_dirty(folio)) {
1146 mapping = folio->mapping;
1147 if (mapping)
1148 __folio_mark_dirty(folio, mapping, 0);
1149 }
1150 folio_memcg_unlock(folio);
1151 if (mapping)
1152 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1153 }
1154 }
1155 EXPORT_SYMBOL(mark_buffer_dirty);
1156
1157 void mark_buffer_write_io_error(struct buffer_head *bh)
1158 {
1159 struct super_block *sb;
1160
1161 set_buffer_write_io_error(bh);
1162 /* FIXME: do we need to set this in both places? */
1163 if (bh->b_folio && bh->b_folio->mapping)
1164 mapping_set_error(bh->b_folio->mapping, -EIO);
1165 if (bh->b_assoc_map)
1166 mapping_set_error(bh->b_assoc_map, -EIO);
1167 rcu_read_lock();
1168 sb = READ_ONCE(bh->b_bdev->bd_super);
1169 if (sb)
1170 errseq_set(&sb->s_wb_err, -EIO);
1171 rcu_read_unlock();
1172 }
1173 EXPORT_SYMBOL(mark_buffer_write_io_error);
1174
1175 /*
1176 * Decrement a buffer_head's reference count. If all buffers against a page
1177 * have zero reference count, are clean and unlocked, and if the page is clean
1178 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180 * a page but it ends up not being freed, and buffers may later be reattached).
1181 */
1182 void __brelse(struct buffer_head * buf)
1183 {
1184 if (atomic_read(&buf->b_count)) {
1185 put_bh(buf);
1186 return;
1187 }
1188 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189 }
1190 EXPORT_SYMBOL(__brelse);
1191
1192 /*
1193 * bforget() is like brelse(), except it discards any
1194 * potentially dirty data.
1195 */
1196 void __bforget(struct buffer_head *bh)
1197 {
1198 clear_buffer_dirty(bh);
1199 if (bh->b_assoc_map) {
1200 struct address_space *buffer_mapping = bh->b_folio->mapping;
1201
1202 spin_lock(&buffer_mapping->private_lock);
1203 list_del_init(&bh->b_assoc_buffers);
1204 bh->b_assoc_map = NULL;
1205 spin_unlock(&buffer_mapping->private_lock);
1206 }
1207 __brelse(bh);
1208 }
1209 EXPORT_SYMBOL(__bforget);
1210
1211 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212 {
1213 lock_buffer(bh);
1214 if (buffer_uptodate(bh)) {
1215 unlock_buffer(bh);
1216 return bh;
1217 } else {
1218 get_bh(bh);
1219 bh->b_end_io = end_buffer_read_sync;
1220 submit_bh(REQ_OP_READ, bh);
1221 wait_on_buffer(bh);
1222 if (buffer_uptodate(bh))
1223 return bh;
1224 }
1225 brelse(bh);
1226 return NULL;
1227 }
1228
1229 /*
1230 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1231 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1232 * refcount elevated by one when they're in an LRU. A buffer can only appear
1233 * once in a particular CPU's LRU. A single buffer can be present in multiple
1234 * CPU's LRUs at the same time.
1235 *
1236 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237 * sb_find_get_block().
1238 *
1239 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1240 * a local interrupt disable for that.
1241 */
1242
1243 #define BH_LRU_SIZE 16
1244
1245 struct bh_lru {
1246 struct buffer_head *bhs[BH_LRU_SIZE];
1247 };
1248
1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250
1251 #ifdef CONFIG_SMP
1252 #define bh_lru_lock() local_irq_disable()
1253 #define bh_lru_unlock() local_irq_enable()
1254 #else
1255 #define bh_lru_lock() preempt_disable()
1256 #define bh_lru_unlock() preempt_enable()
1257 #endif
1258
1259 static inline void check_irqs_on(void)
1260 {
1261 #ifdef irqs_disabled
1262 BUG_ON(irqs_disabled());
1263 #endif
1264 }
1265
1266 /*
1267 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1268 * inserted at the front, and the buffer_head at the back if any is evicted.
1269 * Or, if already in the LRU it is moved to the front.
1270 */
1271 static void bh_lru_install(struct buffer_head *bh)
1272 {
1273 struct buffer_head *evictee = bh;
1274 struct bh_lru *b;
1275 int i;
1276
1277 check_irqs_on();
1278 bh_lru_lock();
1279
1280 /*
1281 * the refcount of buffer_head in bh_lru prevents dropping the
1282 * attached page(i.e., try_to_free_buffers) so it could cause
1283 * failing page migration.
1284 * Skip putting upcoming bh into bh_lru until migration is done.
1285 */
1286 if (lru_cache_disabled()) {
1287 bh_lru_unlock();
1288 return;
1289 }
1290
1291 b = this_cpu_ptr(&bh_lrus);
1292 for (i = 0; i < BH_LRU_SIZE; i++) {
1293 swap(evictee, b->bhs[i]);
1294 if (evictee == bh) {
1295 bh_lru_unlock();
1296 return;
1297 }
1298 }
1299
1300 get_bh(bh);
1301 bh_lru_unlock();
1302 brelse(evictee);
1303 }
1304
1305 /*
1306 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1307 */
1308 static struct buffer_head *
1309 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1310 {
1311 struct buffer_head *ret = NULL;
1312 unsigned int i;
1313
1314 check_irqs_on();
1315 bh_lru_lock();
1316 for (i = 0; i < BH_LRU_SIZE; i++) {
1317 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1318
1319 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1320 bh->b_size == size) {
1321 if (i) {
1322 while (i) {
1323 __this_cpu_write(bh_lrus.bhs[i],
1324 __this_cpu_read(bh_lrus.bhs[i - 1]));
1325 i--;
1326 }
1327 __this_cpu_write(bh_lrus.bhs[0], bh);
1328 }
1329 get_bh(bh);
1330 ret = bh;
1331 break;
1332 }
1333 }
1334 bh_lru_unlock();
1335 return ret;
1336 }
1337
1338 /*
1339 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1340 * it in the LRU and mark it as accessed. If it is not present then return
1341 * NULL
1342 */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347
1348 if (bh == NULL) {
1349 /* __find_get_block_slow will mark the page accessed */
1350 bh = __find_get_block_slow(bdev, block);
1351 if (bh)
1352 bh_lru_install(bh);
1353 } else
1354 touch_buffer(bh);
1355
1356 return bh;
1357 }
1358 EXPORT_SYMBOL(__find_get_block);
1359
1360 /*
1361 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1362 * which corresponds to the passed block_device, block and size. The
1363 * returned buffer has its reference count incremented.
1364 *
1365 * __getblk_gfp() will lock up the machine if grow_dev_page's
1366 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1367 */
1368 struct buffer_head *
1369 __getblk_gfp(struct block_device *bdev, sector_t block,
1370 unsigned size, gfp_t gfp)
1371 {
1372 struct buffer_head *bh = __find_get_block(bdev, block, size);
1373
1374 might_sleep();
1375 if (bh == NULL)
1376 bh = __getblk_slow(bdev, block, size, gfp);
1377 return bh;
1378 }
1379 EXPORT_SYMBOL(__getblk_gfp);
1380
1381 /*
1382 * Do async read-ahead on a buffer..
1383 */
1384 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1385 {
1386 struct buffer_head *bh = __getblk(bdev, block, size);
1387 if (likely(bh)) {
1388 bh_readahead(bh, REQ_RAHEAD);
1389 brelse(bh);
1390 }
1391 }
1392 EXPORT_SYMBOL(__breadahead);
1393
1394 /**
1395 * __bread_gfp() - reads a specified block and returns the bh
1396 * @bdev: the block_device to read from
1397 * @block: number of block
1398 * @size: size (in bytes) to read
1399 * @gfp: page allocation flag
1400 *
1401 * Reads a specified block, and returns buffer head that contains it.
1402 * The page cache can be allocated from non-movable area
1403 * not to prevent page migration if you set gfp to zero.
1404 * It returns NULL if the block was unreadable.
1405 */
1406 struct buffer_head *
1407 __bread_gfp(struct block_device *bdev, sector_t block,
1408 unsigned size, gfp_t gfp)
1409 {
1410 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1411
1412 if (likely(bh) && !buffer_uptodate(bh))
1413 bh = __bread_slow(bh);
1414 return bh;
1415 }
1416 EXPORT_SYMBOL(__bread_gfp);
1417
1418 static void __invalidate_bh_lrus(struct bh_lru *b)
1419 {
1420 int i;
1421
1422 for (i = 0; i < BH_LRU_SIZE; i++) {
1423 brelse(b->bhs[i]);
1424 b->bhs[i] = NULL;
1425 }
1426 }
1427 /*
1428 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1429 * This doesn't race because it runs in each cpu either in irq
1430 * or with preempt disabled.
1431 */
1432 static void invalidate_bh_lru(void *arg)
1433 {
1434 struct bh_lru *b = &get_cpu_var(bh_lrus);
1435
1436 __invalidate_bh_lrus(b);
1437 put_cpu_var(bh_lrus);
1438 }
1439
1440 bool has_bh_in_lru(int cpu, void *dummy)
1441 {
1442 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1443 int i;
1444
1445 for (i = 0; i < BH_LRU_SIZE; i++) {
1446 if (b->bhs[i])
1447 return true;
1448 }
1449
1450 return false;
1451 }
1452
1453 void invalidate_bh_lrus(void)
1454 {
1455 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1456 }
1457 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1458
1459 /*
1460 * It's called from workqueue context so we need a bh_lru_lock to close
1461 * the race with preemption/irq.
1462 */
1463 void invalidate_bh_lrus_cpu(void)
1464 {
1465 struct bh_lru *b;
1466
1467 bh_lru_lock();
1468 b = this_cpu_ptr(&bh_lrus);
1469 __invalidate_bh_lrus(b);
1470 bh_lru_unlock();
1471 }
1472
1473 void set_bh_page(struct buffer_head *bh,
1474 struct page *page, unsigned long offset)
1475 {
1476 bh->b_page = page;
1477 BUG_ON(offset >= PAGE_SIZE);
1478 if (PageHighMem(page))
1479 /*
1480 * This catches illegal uses and preserves the offset:
1481 */
1482 bh->b_data = (char *)(0 + offset);
1483 else
1484 bh->b_data = page_address(page) + offset;
1485 }
1486 EXPORT_SYMBOL(set_bh_page);
1487
1488 /*
1489 * Called when truncating a buffer on a page completely.
1490 */
1491
1492 /* Bits that are cleared during an invalidate */
1493 #define BUFFER_FLAGS_DISCARD \
1494 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1495 1 << BH_Delay | 1 << BH_Unwritten)
1496
1497 static void discard_buffer(struct buffer_head * bh)
1498 {
1499 unsigned long b_state;
1500
1501 lock_buffer(bh);
1502 clear_buffer_dirty(bh);
1503 bh->b_bdev = NULL;
1504 b_state = READ_ONCE(bh->b_state);
1505 do {
1506 } while (!try_cmpxchg(&bh->b_state, &b_state,
1507 b_state & ~BUFFER_FLAGS_DISCARD));
1508 unlock_buffer(bh);
1509 }
1510
1511 /**
1512 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1513 * @folio: The folio which is affected.
1514 * @offset: start of the range to invalidate
1515 * @length: length of the range to invalidate
1516 *
1517 * block_invalidate_folio() is called when all or part of the folio has been
1518 * invalidated by a truncate operation.
1519 *
1520 * block_invalidate_folio() does not have to release all buffers, but it must
1521 * ensure that no dirty buffer is left outside @offset and that no I/O
1522 * is underway against any of the blocks which are outside the truncation
1523 * point. Because the caller is about to free (and possibly reuse) those
1524 * blocks on-disk.
1525 */
1526 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1527 {
1528 struct buffer_head *head, *bh, *next;
1529 size_t curr_off = 0;
1530 size_t stop = length + offset;
1531
1532 BUG_ON(!folio_test_locked(folio));
1533
1534 /*
1535 * Check for overflow
1536 */
1537 BUG_ON(stop > folio_size(folio) || stop < length);
1538
1539 head = folio_buffers(folio);
1540 if (!head)
1541 return;
1542
1543 bh = head;
1544 do {
1545 size_t next_off = curr_off + bh->b_size;
1546 next = bh->b_this_page;
1547
1548 /*
1549 * Are we still fully in range ?
1550 */
1551 if (next_off > stop)
1552 goto out;
1553
1554 /*
1555 * is this block fully invalidated?
1556 */
1557 if (offset <= curr_off)
1558 discard_buffer(bh);
1559 curr_off = next_off;
1560 bh = next;
1561 } while (bh != head);
1562
1563 /*
1564 * We release buffers only if the entire folio is being invalidated.
1565 * The get_block cached value has been unconditionally invalidated,
1566 * so real IO is not possible anymore.
1567 */
1568 if (length == folio_size(folio))
1569 filemap_release_folio(folio, 0);
1570 out:
1571 return;
1572 }
1573 EXPORT_SYMBOL(block_invalidate_folio);
1574
1575
1576 /*
1577 * We attach and possibly dirty the buffers atomically wrt
1578 * block_dirty_folio() via private_lock. try_to_free_buffers
1579 * is already excluded via the page lock.
1580 */
1581 void create_empty_buffers(struct page *page,
1582 unsigned long blocksize, unsigned long b_state)
1583 {
1584 struct buffer_head *bh, *head, *tail;
1585
1586 head = alloc_page_buffers(page, blocksize, true);
1587 bh = head;
1588 do {
1589 bh->b_state |= b_state;
1590 tail = bh;
1591 bh = bh->b_this_page;
1592 } while (bh);
1593 tail->b_this_page = head;
1594
1595 spin_lock(&page->mapping->private_lock);
1596 if (PageUptodate(page) || PageDirty(page)) {
1597 bh = head;
1598 do {
1599 if (PageDirty(page))
1600 set_buffer_dirty(bh);
1601 if (PageUptodate(page))
1602 set_buffer_uptodate(bh);
1603 bh = bh->b_this_page;
1604 } while (bh != head);
1605 }
1606 attach_page_private(page, head);
1607 spin_unlock(&page->mapping->private_lock);
1608 }
1609 EXPORT_SYMBOL(create_empty_buffers);
1610
1611 /**
1612 * clean_bdev_aliases: clean a range of buffers in block device
1613 * @bdev: Block device to clean buffers in
1614 * @block: Start of a range of blocks to clean
1615 * @len: Number of blocks to clean
1616 *
1617 * We are taking a range of blocks for data and we don't want writeback of any
1618 * buffer-cache aliases starting from return from this function and until the
1619 * moment when something will explicitly mark the buffer dirty (hopefully that
1620 * will not happen until we will free that block ;-) We don't even need to mark
1621 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1622 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1623 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1624 * would confuse anyone who might pick it with bread() afterwards...
1625 *
1626 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1627 * writeout I/O going on against recently-freed buffers. We don't wait on that
1628 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1629 * need to. That happens here.
1630 */
1631 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1632 {
1633 struct inode *bd_inode = bdev->bd_inode;
1634 struct address_space *bd_mapping = bd_inode->i_mapping;
1635 struct folio_batch fbatch;
1636 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1637 pgoff_t end;
1638 int i, count;
1639 struct buffer_head *bh;
1640 struct buffer_head *head;
1641
1642 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1643 folio_batch_init(&fbatch);
1644 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1645 count = folio_batch_count(&fbatch);
1646 for (i = 0; i < count; i++) {
1647 struct folio *folio = fbatch.folios[i];
1648
1649 if (!folio_buffers(folio))
1650 continue;
1651 /*
1652 * We use folio lock instead of bd_mapping->private_lock
1653 * to pin buffers here since we can afford to sleep and
1654 * it scales better than a global spinlock lock.
1655 */
1656 folio_lock(folio);
1657 /* Recheck when the folio is locked which pins bhs */
1658 head = folio_buffers(folio);
1659 if (!head)
1660 goto unlock_page;
1661 bh = head;
1662 do {
1663 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664 goto next;
1665 if (bh->b_blocknr >= block + len)
1666 break;
1667 clear_buffer_dirty(bh);
1668 wait_on_buffer(bh);
1669 clear_buffer_req(bh);
1670 next:
1671 bh = bh->b_this_page;
1672 } while (bh != head);
1673 unlock_page:
1674 folio_unlock(folio);
1675 }
1676 folio_batch_release(&fbatch);
1677 cond_resched();
1678 /* End of range already reached? */
1679 if (index > end || !index)
1680 break;
1681 }
1682 }
1683 EXPORT_SYMBOL(clean_bdev_aliases);
1684
1685 /*
1686 * Size is a power-of-two in the range 512..PAGE_SIZE,
1687 * and the case we care about most is PAGE_SIZE.
1688 *
1689 * So this *could* possibly be written with those
1690 * constraints in mind (relevant mostly if some
1691 * architecture has a slow bit-scan instruction)
1692 */
1693 static inline int block_size_bits(unsigned int blocksize)
1694 {
1695 return ilog2(blocksize);
1696 }
1697
1698 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1699 {
1700 BUG_ON(!PageLocked(page));
1701
1702 if (!page_has_buffers(page))
1703 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1704 b_state);
1705 return page_buffers(page);
1706 }
1707
1708 /*
1709 * NOTE! All mapped/uptodate combinations are valid:
1710 *
1711 * Mapped Uptodate Meaning
1712 *
1713 * No No "unknown" - must do get_block()
1714 * No Yes "hole" - zero-filled
1715 * Yes No "allocated" - allocated on disk, not read in
1716 * Yes Yes "valid" - allocated and up-to-date in memory.
1717 *
1718 * "Dirty" is valid only with the last case (mapped+uptodate).
1719 */
1720
1721 /*
1722 * While block_write_full_page is writing back the dirty buffers under
1723 * the page lock, whoever dirtied the buffers may decide to clean them
1724 * again at any time. We handle that by only looking at the buffer
1725 * state inside lock_buffer().
1726 *
1727 * If block_write_full_page() is called for regular writeback
1728 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1729 * locked buffer. This only can happen if someone has written the buffer
1730 * directly, with submit_bh(). At the address_space level PageWriteback
1731 * prevents this contention from occurring.
1732 *
1733 * If block_write_full_page() is called with wbc->sync_mode ==
1734 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1735 * causes the writes to be flagged as synchronous writes.
1736 */
1737 int __block_write_full_page(struct inode *inode, struct page *page,
1738 get_block_t *get_block, struct writeback_control *wbc,
1739 bh_end_io_t *handler)
1740 {
1741 int err;
1742 sector_t block;
1743 sector_t last_block;
1744 struct buffer_head *bh, *head;
1745 unsigned int blocksize, bbits;
1746 int nr_underway = 0;
1747 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1748
1749 head = create_page_buffers(page, inode,
1750 (1 << BH_Dirty)|(1 << BH_Uptodate));
1751
1752 /*
1753 * Be very careful. We have no exclusion from block_dirty_folio
1754 * here, and the (potentially unmapped) buffers may become dirty at
1755 * any time. If a buffer becomes dirty here after we've inspected it
1756 * then we just miss that fact, and the page stays dirty.
1757 *
1758 * Buffers outside i_size may be dirtied by block_dirty_folio;
1759 * handle that here by just cleaning them.
1760 */
1761
1762 bh = head;
1763 blocksize = bh->b_size;
1764 bbits = block_size_bits(blocksize);
1765
1766 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1767 last_block = (i_size_read(inode) - 1) >> bbits;
1768
1769 /*
1770 * Get all the dirty buffers mapped to disk addresses and
1771 * handle any aliases from the underlying blockdev's mapping.
1772 */
1773 do {
1774 if (block > last_block) {
1775 /*
1776 * mapped buffers outside i_size will occur, because
1777 * this page can be outside i_size when there is a
1778 * truncate in progress.
1779 */
1780 /*
1781 * The buffer was zeroed by block_write_full_page()
1782 */
1783 clear_buffer_dirty(bh);
1784 set_buffer_uptodate(bh);
1785 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1786 buffer_dirty(bh)) {
1787 WARN_ON(bh->b_size != blocksize);
1788 err = get_block(inode, block, bh, 1);
1789 if (err)
1790 goto recover;
1791 clear_buffer_delay(bh);
1792 if (buffer_new(bh)) {
1793 /* blockdev mappings never come here */
1794 clear_buffer_new(bh);
1795 clean_bdev_bh_alias(bh);
1796 }
1797 }
1798 bh = bh->b_this_page;
1799 block++;
1800 } while (bh != head);
1801
1802 do {
1803 if (!buffer_mapped(bh))
1804 continue;
1805 /*
1806 * If it's a fully non-blocking write attempt and we cannot
1807 * lock the buffer then redirty the page. Note that this can
1808 * potentially cause a busy-wait loop from writeback threads
1809 * and kswapd activity, but those code paths have their own
1810 * higher-level throttling.
1811 */
1812 if (wbc->sync_mode != WB_SYNC_NONE) {
1813 lock_buffer(bh);
1814 } else if (!trylock_buffer(bh)) {
1815 redirty_page_for_writepage(wbc, page);
1816 continue;
1817 }
1818 if (test_clear_buffer_dirty(bh)) {
1819 mark_buffer_async_write_endio(bh, handler);
1820 } else {
1821 unlock_buffer(bh);
1822 }
1823 } while ((bh = bh->b_this_page) != head);
1824
1825 /*
1826 * The page and its buffers are protected by PageWriteback(), so we can
1827 * drop the bh refcounts early.
1828 */
1829 BUG_ON(PageWriteback(page));
1830 set_page_writeback(page);
1831
1832 do {
1833 struct buffer_head *next = bh->b_this_page;
1834 if (buffer_async_write(bh)) {
1835 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1836 nr_underway++;
1837 }
1838 bh = next;
1839 } while (bh != head);
1840 unlock_page(page);
1841
1842 err = 0;
1843 done:
1844 if (nr_underway == 0) {
1845 /*
1846 * The page was marked dirty, but the buffers were
1847 * clean. Someone wrote them back by hand with
1848 * write_dirty_buffer/submit_bh. A rare case.
1849 */
1850 end_page_writeback(page);
1851
1852 /*
1853 * The page and buffer_heads can be released at any time from
1854 * here on.
1855 */
1856 }
1857 return err;
1858
1859 recover:
1860 /*
1861 * ENOSPC, or some other error. We may already have added some
1862 * blocks to the file, so we need to write these out to avoid
1863 * exposing stale data.
1864 * The page is currently locked and not marked for writeback
1865 */
1866 bh = head;
1867 /* Recovery: lock and submit the mapped buffers */
1868 do {
1869 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1870 !buffer_delay(bh)) {
1871 lock_buffer(bh);
1872 mark_buffer_async_write_endio(bh, handler);
1873 } else {
1874 /*
1875 * The buffer may have been set dirty during
1876 * attachment to a dirty page.
1877 */
1878 clear_buffer_dirty(bh);
1879 }
1880 } while ((bh = bh->b_this_page) != head);
1881 SetPageError(page);
1882 BUG_ON(PageWriteback(page));
1883 mapping_set_error(page->mapping, err);
1884 set_page_writeback(page);
1885 do {
1886 struct buffer_head *next = bh->b_this_page;
1887 if (buffer_async_write(bh)) {
1888 clear_buffer_dirty(bh);
1889 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1890 nr_underway++;
1891 }
1892 bh = next;
1893 } while (bh != head);
1894 unlock_page(page);
1895 goto done;
1896 }
1897 EXPORT_SYMBOL(__block_write_full_page);
1898
1899 /*
1900 * If a page has any new buffers, zero them out here, and mark them uptodate
1901 * and dirty so they'll be written out (in order to prevent uninitialised
1902 * block data from leaking). And clear the new bit.
1903 */
1904 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1905 {
1906 unsigned int block_start, block_end;
1907 struct buffer_head *head, *bh;
1908
1909 BUG_ON(!PageLocked(page));
1910 if (!page_has_buffers(page))
1911 return;
1912
1913 bh = head = page_buffers(page);
1914 block_start = 0;
1915 do {
1916 block_end = block_start + bh->b_size;
1917
1918 if (buffer_new(bh)) {
1919 if (block_end > from && block_start < to) {
1920 if (!PageUptodate(page)) {
1921 unsigned start, size;
1922
1923 start = max(from, block_start);
1924 size = min(to, block_end) - start;
1925
1926 zero_user(page, start, size);
1927 set_buffer_uptodate(bh);
1928 }
1929
1930 clear_buffer_new(bh);
1931 mark_buffer_dirty(bh);
1932 }
1933 }
1934
1935 block_start = block_end;
1936 bh = bh->b_this_page;
1937 } while (bh != head);
1938 }
1939 EXPORT_SYMBOL(page_zero_new_buffers);
1940
1941 static void
1942 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1943 const struct iomap *iomap)
1944 {
1945 loff_t offset = block << inode->i_blkbits;
1946
1947 bh->b_bdev = iomap->bdev;
1948
1949 /*
1950 * Block points to offset in file we need to map, iomap contains
1951 * the offset at which the map starts. If the map ends before the
1952 * current block, then do not map the buffer and let the caller
1953 * handle it.
1954 */
1955 BUG_ON(offset >= iomap->offset + iomap->length);
1956
1957 switch (iomap->type) {
1958 case IOMAP_HOLE:
1959 /*
1960 * If the buffer is not up to date or beyond the current EOF,
1961 * we need to mark it as new to ensure sub-block zeroing is
1962 * executed if necessary.
1963 */
1964 if (!buffer_uptodate(bh) ||
1965 (offset >= i_size_read(inode)))
1966 set_buffer_new(bh);
1967 break;
1968 case IOMAP_DELALLOC:
1969 if (!buffer_uptodate(bh) ||
1970 (offset >= i_size_read(inode)))
1971 set_buffer_new(bh);
1972 set_buffer_uptodate(bh);
1973 set_buffer_mapped(bh);
1974 set_buffer_delay(bh);
1975 break;
1976 case IOMAP_UNWRITTEN:
1977 /*
1978 * For unwritten regions, we always need to ensure that regions
1979 * in the block we are not writing to are zeroed. Mark the
1980 * buffer as new to ensure this.
1981 */
1982 set_buffer_new(bh);
1983 set_buffer_unwritten(bh);
1984 fallthrough;
1985 case IOMAP_MAPPED:
1986 if ((iomap->flags & IOMAP_F_NEW) ||
1987 offset >= i_size_read(inode))
1988 set_buffer_new(bh);
1989 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1990 inode->i_blkbits;
1991 set_buffer_mapped(bh);
1992 break;
1993 }
1994 }
1995
1996 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1997 get_block_t *get_block, const struct iomap *iomap)
1998 {
1999 unsigned from = pos & (PAGE_SIZE - 1);
2000 unsigned to = from + len;
2001 struct inode *inode = folio->mapping->host;
2002 unsigned block_start, block_end;
2003 sector_t block;
2004 int err = 0;
2005 unsigned blocksize, bbits;
2006 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2007
2008 BUG_ON(!folio_test_locked(folio));
2009 BUG_ON(from > PAGE_SIZE);
2010 BUG_ON(to > PAGE_SIZE);
2011 BUG_ON(from > to);
2012
2013 head = create_page_buffers(&folio->page, inode, 0);
2014 blocksize = head->b_size;
2015 bbits = block_size_bits(blocksize);
2016
2017 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2018
2019 for(bh = head, block_start = 0; bh != head || !block_start;
2020 block++, block_start=block_end, bh = bh->b_this_page) {
2021 block_end = block_start + blocksize;
2022 if (block_end <= from || block_start >= to) {
2023 if (folio_test_uptodate(folio)) {
2024 if (!buffer_uptodate(bh))
2025 set_buffer_uptodate(bh);
2026 }
2027 continue;
2028 }
2029 if (buffer_new(bh))
2030 clear_buffer_new(bh);
2031 if (!buffer_mapped(bh)) {
2032 WARN_ON(bh->b_size != blocksize);
2033 if (get_block) {
2034 err = get_block(inode, block, bh, 1);
2035 if (err)
2036 break;
2037 } else {
2038 iomap_to_bh(inode, block, bh, iomap);
2039 }
2040
2041 if (buffer_new(bh)) {
2042 clean_bdev_bh_alias(bh);
2043 if (folio_test_uptodate(folio)) {
2044 clear_buffer_new(bh);
2045 set_buffer_uptodate(bh);
2046 mark_buffer_dirty(bh);
2047 continue;
2048 }
2049 if (block_end > to || block_start < from)
2050 folio_zero_segments(folio,
2051 to, block_end,
2052 block_start, from);
2053 continue;
2054 }
2055 }
2056 if (folio_test_uptodate(folio)) {
2057 if (!buffer_uptodate(bh))
2058 set_buffer_uptodate(bh);
2059 continue;
2060 }
2061 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2062 !buffer_unwritten(bh) &&
2063 (block_start < from || block_end > to)) {
2064 bh_read_nowait(bh, 0);
2065 *wait_bh++=bh;
2066 }
2067 }
2068 /*
2069 * If we issued read requests - let them complete.
2070 */
2071 while(wait_bh > wait) {
2072 wait_on_buffer(*--wait_bh);
2073 if (!buffer_uptodate(*wait_bh))
2074 err = -EIO;
2075 }
2076 if (unlikely(err))
2077 page_zero_new_buffers(&folio->page, from, to);
2078 return err;
2079 }
2080
2081 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2082 get_block_t *get_block)
2083 {
2084 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2085 NULL);
2086 }
2087 EXPORT_SYMBOL(__block_write_begin);
2088
2089 static int __block_commit_write(struct inode *inode, struct page *page,
2090 unsigned from, unsigned to)
2091 {
2092 unsigned block_start, block_end;
2093 int partial = 0;
2094 unsigned blocksize;
2095 struct buffer_head *bh, *head;
2096
2097 bh = head = page_buffers(page);
2098 blocksize = bh->b_size;
2099
2100 block_start = 0;
2101 do {
2102 block_end = block_start + blocksize;
2103 if (block_end <= from || block_start >= to) {
2104 if (!buffer_uptodate(bh))
2105 partial = 1;
2106 } else {
2107 set_buffer_uptodate(bh);
2108 mark_buffer_dirty(bh);
2109 }
2110 if (buffer_new(bh))
2111 clear_buffer_new(bh);
2112
2113 block_start = block_end;
2114 bh = bh->b_this_page;
2115 } while (bh != head);
2116
2117 /*
2118 * If this is a partial write which happened to make all buffers
2119 * uptodate then we can optimize away a bogus read_folio() for
2120 * the next read(). Here we 'discover' whether the page went
2121 * uptodate as a result of this (potentially partial) write.
2122 */
2123 if (!partial)
2124 SetPageUptodate(page);
2125 return 0;
2126 }
2127
2128 /*
2129 * block_write_begin takes care of the basic task of block allocation and
2130 * bringing partial write blocks uptodate first.
2131 *
2132 * The filesystem needs to handle block truncation upon failure.
2133 */
2134 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2135 struct page **pagep, get_block_t *get_block)
2136 {
2137 pgoff_t index = pos >> PAGE_SHIFT;
2138 struct page *page;
2139 int status;
2140
2141 page = grab_cache_page_write_begin(mapping, index);
2142 if (!page)
2143 return -ENOMEM;
2144
2145 status = __block_write_begin(page, pos, len, get_block);
2146 if (unlikely(status)) {
2147 unlock_page(page);
2148 put_page(page);
2149 page = NULL;
2150 }
2151
2152 *pagep = page;
2153 return status;
2154 }
2155 EXPORT_SYMBOL(block_write_begin);
2156
2157 int block_write_end(struct file *file, struct address_space *mapping,
2158 loff_t pos, unsigned len, unsigned copied,
2159 struct page *page, void *fsdata)
2160 {
2161 struct inode *inode = mapping->host;
2162 unsigned start;
2163
2164 start = pos & (PAGE_SIZE - 1);
2165
2166 if (unlikely(copied < len)) {
2167 /*
2168 * The buffers that were written will now be uptodate, so
2169 * we don't have to worry about a read_folio reading them
2170 * and overwriting a partial write. However if we have
2171 * encountered a short write and only partially written
2172 * into a buffer, it will not be marked uptodate, so a
2173 * read_folio might come in and destroy our partial write.
2174 *
2175 * Do the simplest thing, and just treat any short write to a
2176 * non uptodate page as a zero-length write, and force the
2177 * caller to redo the whole thing.
2178 */
2179 if (!PageUptodate(page))
2180 copied = 0;
2181
2182 page_zero_new_buffers(page, start+copied, start+len);
2183 }
2184 flush_dcache_page(page);
2185
2186 /* This could be a short (even 0-length) commit */
2187 __block_commit_write(inode, page, start, start+copied);
2188
2189 return copied;
2190 }
2191 EXPORT_SYMBOL(block_write_end);
2192
2193 int generic_write_end(struct file *file, struct address_space *mapping,
2194 loff_t pos, unsigned len, unsigned copied,
2195 struct page *page, void *fsdata)
2196 {
2197 struct inode *inode = mapping->host;
2198 loff_t old_size = inode->i_size;
2199 bool i_size_changed = false;
2200
2201 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2202
2203 /*
2204 * No need to use i_size_read() here, the i_size cannot change under us
2205 * because we hold i_rwsem.
2206 *
2207 * But it's important to update i_size while still holding page lock:
2208 * page writeout could otherwise come in and zero beyond i_size.
2209 */
2210 if (pos + copied > inode->i_size) {
2211 i_size_write(inode, pos + copied);
2212 i_size_changed = true;
2213 }
2214
2215 unlock_page(page);
2216 put_page(page);
2217
2218 if (old_size < pos)
2219 pagecache_isize_extended(inode, old_size, pos);
2220 /*
2221 * Don't mark the inode dirty under page lock. First, it unnecessarily
2222 * makes the holding time of page lock longer. Second, it forces lock
2223 * ordering of page lock and transaction start for journaling
2224 * filesystems.
2225 */
2226 if (i_size_changed)
2227 mark_inode_dirty(inode);
2228 return copied;
2229 }
2230 EXPORT_SYMBOL(generic_write_end);
2231
2232 /*
2233 * block_is_partially_uptodate checks whether buffers within a folio are
2234 * uptodate or not.
2235 *
2236 * Returns true if all buffers which correspond to the specified part
2237 * of the folio are uptodate.
2238 */
2239 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2240 {
2241 unsigned block_start, block_end, blocksize;
2242 unsigned to;
2243 struct buffer_head *bh, *head;
2244 bool ret = true;
2245
2246 head = folio_buffers(folio);
2247 if (!head)
2248 return false;
2249 blocksize = head->b_size;
2250 to = min_t(unsigned, folio_size(folio) - from, count);
2251 to = from + to;
2252 if (from < blocksize && to > folio_size(folio) - blocksize)
2253 return false;
2254
2255 bh = head;
2256 block_start = 0;
2257 do {
2258 block_end = block_start + blocksize;
2259 if (block_end > from && block_start < to) {
2260 if (!buffer_uptodate(bh)) {
2261 ret = false;
2262 break;
2263 }
2264 if (block_end >= to)
2265 break;
2266 }
2267 block_start = block_end;
2268 bh = bh->b_this_page;
2269 } while (bh != head);
2270
2271 return ret;
2272 }
2273 EXPORT_SYMBOL(block_is_partially_uptodate);
2274
2275 /*
2276 * Generic "read_folio" function for block devices that have the normal
2277 * get_block functionality. This is most of the block device filesystems.
2278 * Reads the folio asynchronously --- the unlock_buffer() and
2279 * set/clear_buffer_uptodate() functions propagate buffer state into the
2280 * folio once IO has completed.
2281 */
2282 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2283 {
2284 struct inode *inode = folio->mapping->host;
2285 sector_t iblock, lblock;
2286 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2287 unsigned int blocksize, bbits;
2288 int nr, i;
2289 int fully_mapped = 1;
2290 bool page_error = false;
2291 loff_t limit = i_size_read(inode);
2292
2293 /* This is needed for ext4. */
2294 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2295 limit = inode->i_sb->s_maxbytes;
2296
2297 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2298
2299 head = create_page_buffers(&folio->page, inode, 0);
2300 blocksize = head->b_size;
2301 bbits = block_size_bits(blocksize);
2302
2303 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2304 lblock = (limit+blocksize-1) >> bbits;
2305 bh = head;
2306 nr = 0;
2307 i = 0;
2308
2309 do {
2310 if (buffer_uptodate(bh))
2311 continue;
2312
2313 if (!buffer_mapped(bh)) {
2314 int err = 0;
2315
2316 fully_mapped = 0;
2317 if (iblock < lblock) {
2318 WARN_ON(bh->b_size != blocksize);
2319 err = get_block(inode, iblock, bh, 0);
2320 if (err) {
2321 folio_set_error(folio);
2322 page_error = true;
2323 }
2324 }
2325 if (!buffer_mapped(bh)) {
2326 folio_zero_range(folio, i * blocksize,
2327 blocksize);
2328 if (!err)
2329 set_buffer_uptodate(bh);
2330 continue;
2331 }
2332 /*
2333 * get_block() might have updated the buffer
2334 * synchronously
2335 */
2336 if (buffer_uptodate(bh))
2337 continue;
2338 }
2339 arr[nr++] = bh;
2340 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2341
2342 if (fully_mapped)
2343 folio_set_mappedtodisk(folio);
2344
2345 if (!nr) {
2346 /*
2347 * All buffers are uptodate - we can set the folio uptodate
2348 * as well. But not if get_block() returned an error.
2349 */
2350 if (!page_error)
2351 folio_mark_uptodate(folio);
2352 folio_unlock(folio);
2353 return 0;
2354 }
2355
2356 /* Stage two: lock the buffers */
2357 for (i = 0; i < nr; i++) {
2358 bh = arr[i];
2359 lock_buffer(bh);
2360 mark_buffer_async_read(bh);
2361 }
2362
2363 /*
2364 * Stage 3: start the IO. Check for uptodateness
2365 * inside the buffer lock in case another process reading
2366 * the underlying blockdev brought it uptodate (the sct fix).
2367 */
2368 for (i = 0; i < nr; i++) {
2369 bh = arr[i];
2370 if (buffer_uptodate(bh))
2371 end_buffer_async_read(bh, 1);
2372 else
2373 submit_bh(REQ_OP_READ, bh);
2374 }
2375 return 0;
2376 }
2377 EXPORT_SYMBOL(block_read_full_folio);
2378
2379 /* utility function for filesystems that need to do work on expanding
2380 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2381 * deal with the hole.
2382 */
2383 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2384 {
2385 struct address_space *mapping = inode->i_mapping;
2386 const struct address_space_operations *aops = mapping->a_ops;
2387 struct page *page;
2388 void *fsdata = NULL;
2389 int err;
2390
2391 err = inode_newsize_ok(inode, size);
2392 if (err)
2393 goto out;
2394
2395 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2396 if (err)
2397 goto out;
2398
2399 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2400 BUG_ON(err > 0);
2401
2402 out:
2403 return err;
2404 }
2405 EXPORT_SYMBOL(generic_cont_expand_simple);
2406
2407 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2408 loff_t pos, loff_t *bytes)
2409 {
2410 struct inode *inode = mapping->host;
2411 const struct address_space_operations *aops = mapping->a_ops;
2412 unsigned int blocksize = i_blocksize(inode);
2413 struct page *page;
2414 void *fsdata = NULL;
2415 pgoff_t index, curidx;
2416 loff_t curpos;
2417 unsigned zerofrom, offset, len;
2418 int err = 0;
2419
2420 index = pos >> PAGE_SHIFT;
2421 offset = pos & ~PAGE_MASK;
2422
2423 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2424 zerofrom = curpos & ~PAGE_MASK;
2425 if (zerofrom & (blocksize-1)) {
2426 *bytes |= (blocksize-1);
2427 (*bytes)++;
2428 }
2429 len = PAGE_SIZE - zerofrom;
2430
2431 err = aops->write_begin(file, mapping, curpos, len,
2432 &page, &fsdata);
2433 if (err)
2434 goto out;
2435 zero_user(page, zerofrom, len);
2436 err = aops->write_end(file, mapping, curpos, len, len,
2437 page, fsdata);
2438 if (err < 0)
2439 goto out;
2440 BUG_ON(err != len);
2441 err = 0;
2442
2443 balance_dirty_pages_ratelimited(mapping);
2444
2445 if (fatal_signal_pending(current)) {
2446 err = -EINTR;
2447 goto out;
2448 }
2449 }
2450
2451 /* page covers the boundary, find the boundary offset */
2452 if (index == curidx) {
2453 zerofrom = curpos & ~PAGE_MASK;
2454 /* if we will expand the thing last block will be filled */
2455 if (offset <= zerofrom) {
2456 goto out;
2457 }
2458 if (zerofrom & (blocksize-1)) {
2459 *bytes |= (blocksize-1);
2460 (*bytes)++;
2461 }
2462 len = offset - zerofrom;
2463
2464 err = aops->write_begin(file, mapping, curpos, len,
2465 &page, &fsdata);
2466 if (err)
2467 goto out;
2468 zero_user(page, zerofrom, len);
2469 err = aops->write_end(file, mapping, curpos, len, len,
2470 page, fsdata);
2471 if (err < 0)
2472 goto out;
2473 BUG_ON(err != len);
2474 err = 0;
2475 }
2476 out:
2477 return err;
2478 }
2479
2480 /*
2481 * For moronic filesystems that do not allow holes in file.
2482 * We may have to extend the file.
2483 */
2484 int cont_write_begin(struct file *file, struct address_space *mapping,
2485 loff_t pos, unsigned len,
2486 struct page **pagep, void **fsdata,
2487 get_block_t *get_block, loff_t *bytes)
2488 {
2489 struct inode *inode = mapping->host;
2490 unsigned int blocksize = i_blocksize(inode);
2491 unsigned int zerofrom;
2492 int err;
2493
2494 err = cont_expand_zero(file, mapping, pos, bytes);
2495 if (err)
2496 return err;
2497
2498 zerofrom = *bytes & ~PAGE_MASK;
2499 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2500 *bytes |= (blocksize-1);
2501 (*bytes)++;
2502 }
2503
2504 return block_write_begin(mapping, pos, len, pagep, get_block);
2505 }
2506 EXPORT_SYMBOL(cont_write_begin);
2507
2508 int block_commit_write(struct page *page, unsigned from, unsigned to)
2509 {
2510 struct inode *inode = page->mapping->host;
2511 __block_commit_write(inode,page,from,to);
2512 return 0;
2513 }
2514 EXPORT_SYMBOL(block_commit_write);
2515
2516 /*
2517 * block_page_mkwrite() is not allowed to change the file size as it gets
2518 * called from a page fault handler when a page is first dirtied. Hence we must
2519 * be careful to check for EOF conditions here. We set the page up correctly
2520 * for a written page which means we get ENOSPC checking when writing into
2521 * holes and correct delalloc and unwritten extent mapping on filesystems that
2522 * support these features.
2523 *
2524 * We are not allowed to take the i_mutex here so we have to play games to
2525 * protect against truncate races as the page could now be beyond EOF. Because
2526 * truncate writes the inode size before removing pages, once we have the
2527 * page lock we can determine safely if the page is beyond EOF. If it is not
2528 * beyond EOF, then the page is guaranteed safe against truncation until we
2529 * unlock the page.
2530 *
2531 * Direct callers of this function should protect against filesystem freezing
2532 * using sb_start_pagefault() - sb_end_pagefault() functions.
2533 */
2534 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2535 get_block_t get_block)
2536 {
2537 struct page *page = vmf->page;
2538 struct inode *inode = file_inode(vma->vm_file);
2539 unsigned long end;
2540 loff_t size;
2541 int ret;
2542
2543 lock_page(page);
2544 size = i_size_read(inode);
2545 if ((page->mapping != inode->i_mapping) ||
2546 (page_offset(page) > size)) {
2547 /* We overload EFAULT to mean page got truncated */
2548 ret = -EFAULT;
2549 goto out_unlock;
2550 }
2551
2552 /* page is wholly or partially inside EOF */
2553 if (((page->index + 1) << PAGE_SHIFT) > size)
2554 end = size & ~PAGE_MASK;
2555 else
2556 end = PAGE_SIZE;
2557
2558 ret = __block_write_begin(page, 0, end, get_block);
2559 if (!ret)
2560 ret = block_commit_write(page, 0, end);
2561
2562 if (unlikely(ret < 0))
2563 goto out_unlock;
2564 set_page_dirty(page);
2565 wait_for_stable_page(page);
2566 return 0;
2567 out_unlock:
2568 unlock_page(page);
2569 return ret;
2570 }
2571 EXPORT_SYMBOL(block_page_mkwrite);
2572
2573 int block_truncate_page(struct address_space *mapping,
2574 loff_t from, get_block_t *get_block)
2575 {
2576 pgoff_t index = from >> PAGE_SHIFT;
2577 unsigned offset = from & (PAGE_SIZE-1);
2578 unsigned blocksize;
2579 sector_t iblock;
2580 unsigned length, pos;
2581 struct inode *inode = mapping->host;
2582 struct page *page;
2583 struct buffer_head *bh;
2584 int err;
2585
2586 blocksize = i_blocksize(inode);
2587 length = offset & (blocksize - 1);
2588
2589 /* Block boundary? Nothing to do */
2590 if (!length)
2591 return 0;
2592
2593 length = blocksize - length;
2594 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2595
2596 page = grab_cache_page(mapping, index);
2597 err = -ENOMEM;
2598 if (!page)
2599 goto out;
2600
2601 if (!page_has_buffers(page))
2602 create_empty_buffers(page, blocksize, 0);
2603
2604 /* Find the buffer that contains "offset" */
2605 bh = page_buffers(page);
2606 pos = blocksize;
2607 while (offset >= pos) {
2608 bh = bh->b_this_page;
2609 iblock++;
2610 pos += blocksize;
2611 }
2612
2613 err = 0;
2614 if (!buffer_mapped(bh)) {
2615 WARN_ON(bh->b_size != blocksize);
2616 err = get_block(inode, iblock, bh, 0);
2617 if (err)
2618 goto unlock;
2619 /* unmapped? It's a hole - nothing to do */
2620 if (!buffer_mapped(bh))
2621 goto unlock;
2622 }
2623
2624 /* Ok, it's mapped. Make sure it's up-to-date */
2625 if (PageUptodate(page))
2626 set_buffer_uptodate(bh);
2627
2628 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2629 err = bh_read(bh, 0);
2630 /* Uhhuh. Read error. Complain and punt. */
2631 if (err < 0)
2632 goto unlock;
2633 }
2634
2635 zero_user(page, offset, length);
2636 mark_buffer_dirty(bh);
2637 err = 0;
2638
2639 unlock:
2640 unlock_page(page);
2641 put_page(page);
2642 out:
2643 return err;
2644 }
2645 EXPORT_SYMBOL(block_truncate_page);
2646
2647 /*
2648 * The generic ->writepage function for buffer-backed address_spaces
2649 */
2650 int block_write_full_page(struct page *page, get_block_t *get_block,
2651 struct writeback_control *wbc)
2652 {
2653 struct inode * const inode = page->mapping->host;
2654 loff_t i_size = i_size_read(inode);
2655 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2656 unsigned offset;
2657
2658 /* Is the page fully inside i_size? */
2659 if (page->index < end_index)
2660 return __block_write_full_page(inode, page, get_block, wbc,
2661 end_buffer_async_write);
2662
2663 /* Is the page fully outside i_size? (truncate in progress) */
2664 offset = i_size & (PAGE_SIZE-1);
2665 if (page->index >= end_index+1 || !offset) {
2666 unlock_page(page);
2667 return 0; /* don't care */
2668 }
2669
2670 /*
2671 * The page straddles i_size. It must be zeroed out on each and every
2672 * writepage invocation because it may be mmapped. "A file is mapped
2673 * in multiples of the page size. For a file that is not a multiple of
2674 * the page size, the remaining memory is zeroed when mapped, and
2675 * writes to that region are not written out to the file."
2676 */
2677 zero_user_segment(page, offset, PAGE_SIZE);
2678 return __block_write_full_page(inode, page, get_block, wbc,
2679 end_buffer_async_write);
2680 }
2681 EXPORT_SYMBOL(block_write_full_page);
2682
2683 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2684 get_block_t *get_block)
2685 {
2686 struct inode *inode = mapping->host;
2687 struct buffer_head tmp = {
2688 .b_size = i_blocksize(inode),
2689 };
2690
2691 get_block(inode, block, &tmp, 0);
2692 return tmp.b_blocknr;
2693 }
2694 EXPORT_SYMBOL(generic_block_bmap);
2695
2696 static void end_bio_bh_io_sync(struct bio *bio)
2697 {
2698 struct buffer_head *bh = bio->bi_private;
2699
2700 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2701 set_bit(BH_Quiet, &bh->b_state);
2702
2703 bh->b_end_io(bh, !bio->bi_status);
2704 bio_put(bio);
2705 }
2706
2707 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2708 struct writeback_control *wbc)
2709 {
2710 const enum req_op op = opf & REQ_OP_MASK;
2711 struct bio *bio;
2712
2713 BUG_ON(!buffer_locked(bh));
2714 BUG_ON(!buffer_mapped(bh));
2715 BUG_ON(!bh->b_end_io);
2716 BUG_ON(buffer_delay(bh));
2717 BUG_ON(buffer_unwritten(bh));
2718
2719 /*
2720 * Only clear out a write error when rewriting
2721 */
2722 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2723 clear_buffer_write_io_error(bh);
2724
2725 if (buffer_meta(bh))
2726 opf |= REQ_META;
2727 if (buffer_prio(bh))
2728 opf |= REQ_PRIO;
2729
2730 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2731
2732 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2733
2734 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2735
2736 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2737 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2738
2739 bio->bi_end_io = end_bio_bh_io_sync;
2740 bio->bi_private = bh;
2741
2742 /* Take care of bh's that straddle the end of the device */
2743 guard_bio_eod(bio);
2744
2745 if (wbc) {
2746 wbc_init_bio(wbc, bio);
2747 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2748 }
2749
2750 submit_bio(bio);
2751 }
2752
2753 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2754 {
2755 submit_bh_wbc(opf, bh, NULL);
2756 }
2757 EXPORT_SYMBOL(submit_bh);
2758
2759 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2760 {
2761 lock_buffer(bh);
2762 if (!test_clear_buffer_dirty(bh)) {
2763 unlock_buffer(bh);
2764 return;
2765 }
2766 bh->b_end_io = end_buffer_write_sync;
2767 get_bh(bh);
2768 submit_bh(REQ_OP_WRITE | op_flags, bh);
2769 }
2770 EXPORT_SYMBOL(write_dirty_buffer);
2771
2772 /*
2773 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2774 * and then start new I/O and then wait upon it. The caller must have a ref on
2775 * the buffer_head.
2776 */
2777 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2778 {
2779 WARN_ON(atomic_read(&bh->b_count) < 1);
2780 lock_buffer(bh);
2781 if (test_clear_buffer_dirty(bh)) {
2782 /*
2783 * The bh should be mapped, but it might not be if the
2784 * device was hot-removed. Not much we can do but fail the I/O.
2785 */
2786 if (!buffer_mapped(bh)) {
2787 unlock_buffer(bh);
2788 return -EIO;
2789 }
2790
2791 get_bh(bh);
2792 bh->b_end_io = end_buffer_write_sync;
2793 submit_bh(REQ_OP_WRITE | op_flags, bh);
2794 wait_on_buffer(bh);
2795 if (!buffer_uptodate(bh))
2796 return -EIO;
2797 } else {
2798 unlock_buffer(bh);
2799 }
2800 return 0;
2801 }
2802 EXPORT_SYMBOL(__sync_dirty_buffer);
2803
2804 int sync_dirty_buffer(struct buffer_head *bh)
2805 {
2806 return __sync_dirty_buffer(bh, REQ_SYNC);
2807 }
2808 EXPORT_SYMBOL(sync_dirty_buffer);
2809
2810 /*
2811 * try_to_free_buffers() checks if all the buffers on this particular folio
2812 * are unused, and releases them if so.
2813 *
2814 * Exclusion against try_to_free_buffers may be obtained by either
2815 * locking the folio or by holding its mapping's private_lock.
2816 *
2817 * If the folio is dirty but all the buffers are clean then we need to
2818 * be sure to mark the folio clean as well. This is because the folio
2819 * may be against a block device, and a later reattachment of buffers
2820 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2821 * filesystem data on the same device.
2822 *
2823 * The same applies to regular filesystem folios: if all the buffers are
2824 * clean then we set the folio clean and proceed. To do that, we require
2825 * total exclusion from block_dirty_folio(). That is obtained with
2826 * private_lock.
2827 *
2828 * try_to_free_buffers() is non-blocking.
2829 */
2830 static inline int buffer_busy(struct buffer_head *bh)
2831 {
2832 return atomic_read(&bh->b_count) |
2833 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2834 }
2835
2836 static bool
2837 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2838 {
2839 struct buffer_head *head = folio_buffers(folio);
2840 struct buffer_head *bh;
2841
2842 bh = head;
2843 do {
2844 if (buffer_busy(bh))
2845 goto failed;
2846 bh = bh->b_this_page;
2847 } while (bh != head);
2848
2849 do {
2850 struct buffer_head *next = bh->b_this_page;
2851
2852 if (bh->b_assoc_map)
2853 __remove_assoc_queue(bh);
2854 bh = next;
2855 } while (bh != head);
2856 *buffers_to_free = head;
2857 folio_detach_private(folio);
2858 return true;
2859 failed:
2860 return false;
2861 }
2862
2863 bool try_to_free_buffers(struct folio *folio)
2864 {
2865 struct address_space * const mapping = folio->mapping;
2866 struct buffer_head *buffers_to_free = NULL;
2867 bool ret = 0;
2868
2869 BUG_ON(!folio_test_locked(folio));
2870 if (folio_test_writeback(folio))
2871 return false;
2872
2873 if (mapping == NULL) { /* can this still happen? */
2874 ret = drop_buffers(folio, &buffers_to_free);
2875 goto out;
2876 }
2877
2878 spin_lock(&mapping->private_lock);
2879 ret = drop_buffers(folio, &buffers_to_free);
2880
2881 /*
2882 * If the filesystem writes its buffers by hand (eg ext3)
2883 * then we can have clean buffers against a dirty folio. We
2884 * clean the folio here; otherwise the VM will never notice
2885 * that the filesystem did any IO at all.
2886 *
2887 * Also, during truncate, discard_buffer will have marked all
2888 * the folio's buffers clean. We discover that here and clean
2889 * the folio also.
2890 *
2891 * private_lock must be held over this entire operation in order
2892 * to synchronise against block_dirty_folio and prevent the
2893 * dirty bit from being lost.
2894 */
2895 if (ret)
2896 folio_cancel_dirty(folio);
2897 spin_unlock(&mapping->private_lock);
2898 out:
2899 if (buffers_to_free) {
2900 struct buffer_head *bh = buffers_to_free;
2901
2902 do {
2903 struct buffer_head *next = bh->b_this_page;
2904 free_buffer_head(bh);
2905 bh = next;
2906 } while (bh != buffers_to_free);
2907 }
2908 return ret;
2909 }
2910 EXPORT_SYMBOL(try_to_free_buffers);
2911
2912 /*
2913 * Buffer-head allocation
2914 */
2915 static struct kmem_cache *bh_cachep __read_mostly;
2916
2917 /*
2918 * Once the number of bh's in the machine exceeds this level, we start
2919 * stripping them in writeback.
2920 */
2921 static unsigned long max_buffer_heads;
2922
2923 int buffer_heads_over_limit;
2924
2925 struct bh_accounting {
2926 int nr; /* Number of live bh's */
2927 int ratelimit; /* Limit cacheline bouncing */
2928 };
2929
2930 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2931
2932 static void recalc_bh_state(void)
2933 {
2934 int i;
2935 int tot = 0;
2936
2937 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2938 return;
2939 __this_cpu_write(bh_accounting.ratelimit, 0);
2940 for_each_online_cpu(i)
2941 tot += per_cpu(bh_accounting, i).nr;
2942 buffer_heads_over_limit = (tot > max_buffer_heads);
2943 }
2944
2945 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2946 {
2947 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2948 if (ret) {
2949 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2950 spin_lock_init(&ret->b_uptodate_lock);
2951 preempt_disable();
2952 __this_cpu_inc(bh_accounting.nr);
2953 recalc_bh_state();
2954 preempt_enable();
2955 }
2956 return ret;
2957 }
2958 EXPORT_SYMBOL(alloc_buffer_head);
2959
2960 void free_buffer_head(struct buffer_head *bh)
2961 {
2962 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2963 kmem_cache_free(bh_cachep, bh);
2964 preempt_disable();
2965 __this_cpu_dec(bh_accounting.nr);
2966 recalc_bh_state();
2967 preempt_enable();
2968 }
2969 EXPORT_SYMBOL(free_buffer_head);
2970
2971 static int buffer_exit_cpu_dead(unsigned int cpu)
2972 {
2973 int i;
2974 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2975
2976 for (i = 0; i < BH_LRU_SIZE; i++) {
2977 brelse(b->bhs[i]);
2978 b->bhs[i] = NULL;
2979 }
2980 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2981 per_cpu(bh_accounting, cpu).nr = 0;
2982 return 0;
2983 }
2984
2985 /**
2986 * bh_uptodate_or_lock - Test whether the buffer is uptodate
2987 * @bh: struct buffer_head
2988 *
2989 * Return true if the buffer is up-to-date and false,
2990 * with the buffer locked, if not.
2991 */
2992 int bh_uptodate_or_lock(struct buffer_head *bh)
2993 {
2994 if (!buffer_uptodate(bh)) {
2995 lock_buffer(bh);
2996 if (!buffer_uptodate(bh))
2997 return 0;
2998 unlock_buffer(bh);
2999 }
3000 return 1;
3001 }
3002 EXPORT_SYMBOL(bh_uptodate_or_lock);
3003
3004 /**
3005 * __bh_read - Submit read for a locked buffer
3006 * @bh: struct buffer_head
3007 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3008 * @wait: wait until reading finish
3009 *
3010 * Returns zero on success or don't wait, and -EIO on error.
3011 */
3012 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3013 {
3014 int ret = 0;
3015
3016 BUG_ON(!buffer_locked(bh));
3017
3018 get_bh(bh);
3019 bh->b_end_io = end_buffer_read_sync;
3020 submit_bh(REQ_OP_READ | op_flags, bh);
3021 if (wait) {
3022 wait_on_buffer(bh);
3023 if (!buffer_uptodate(bh))
3024 ret = -EIO;
3025 }
3026 return ret;
3027 }
3028 EXPORT_SYMBOL(__bh_read);
3029
3030 /**
3031 * __bh_read_batch - Submit read for a batch of unlocked buffers
3032 * @nr: entry number of the buffer batch
3033 * @bhs: a batch of struct buffer_head
3034 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3035 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3036 * buffer that cannot lock.
3037 *
3038 * Returns zero on success or don't wait, and -EIO on error.
3039 */
3040 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3041 blk_opf_t op_flags, bool force_lock)
3042 {
3043 int i;
3044
3045 for (i = 0; i < nr; i++) {
3046 struct buffer_head *bh = bhs[i];
3047
3048 if (buffer_uptodate(bh))
3049 continue;
3050
3051 if (force_lock)
3052 lock_buffer(bh);
3053 else
3054 if (!trylock_buffer(bh))
3055 continue;
3056
3057 if (buffer_uptodate(bh)) {
3058 unlock_buffer(bh);
3059 continue;
3060 }
3061
3062 bh->b_end_io = end_buffer_read_sync;
3063 get_bh(bh);
3064 submit_bh(REQ_OP_READ | op_flags, bh);
3065 }
3066 }
3067 EXPORT_SYMBOL(__bh_read_batch);
3068
3069 void __init buffer_init(void)
3070 {
3071 unsigned long nrpages;
3072 int ret;
3073
3074 bh_cachep = kmem_cache_create("buffer_head",
3075 sizeof(struct buffer_head), 0,
3076 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3077 SLAB_MEM_SPREAD),
3078 NULL);
3079
3080 /*
3081 * Limit the bh occupancy to 10% of ZONE_NORMAL
3082 */
3083 nrpages = (nr_free_buffer_pages() * 10) / 100;
3084 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3085 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3086 NULL, buffer_exit_cpu_dead);
3087 WARN_ON(ret < 0);
3088 }