]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/buffer.c
ext4: use non-movable memory for superblock readahead
[people/arne_f/kernel.git] / fs / buffer.c
1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 bh->b_end_io = handler;
59 bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 trace_block_touch_buffer(bh);
66 mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 clear_bit_unlock(BH_Lock, &bh->b_state);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83
84 /*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89 void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91 {
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
118 /*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 ClearPagePrivate(page);
133 set_page_private(page, 0);
134 put_page(page);
135 }
136
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144
145 /*
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
152 */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
162 }
163
164 /*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 __end_buffer_read_notouch(bh, uptodate);
171 put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
180 buffer_io_error(bh, ", lost sync page write");
181 mark_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188
189 /*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
212
213 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
214 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215 if (!page)
216 goto out;
217
218 spin_lock(&bd_mapping->private_lock);
219 if (!page_has_buffers(page))
220 goto out_unlock;
221 head = page_buffers(page);
222 bh = head;
223 do {
224 if (!buffer_mapped(bh))
225 all_mapped = 0;
226 else if (bh->b_blocknr == block) {
227 ret = bh;
228 get_bh(bh);
229 goto out_unlock;
230 }
231 bh = bh->b_this_page;
232 } while (bh != head);
233
234 /* we might be here because some of the buffers on this page are
235 * not mapped. This is due to various races between
236 * file io on the block device and getblk. It gets dealt with
237 * elsewhere, don't buffer_error if we had some unmapped buffers
238 */
239 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
240 if (all_mapped && __ratelimit(&last_warned)) {
241 printk("__find_get_block_slow() failed. block=%llu, "
242 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
243 "device %pg blocksize: %d\n",
244 (unsigned long long)block,
245 (unsigned long long)bh->b_blocknr,
246 bh->b_state, bh->b_size, bdev,
247 1 << bd_inode->i_blkbits);
248 }
249 out_unlock:
250 spin_unlock(&bd_mapping->private_lock);
251 put_page(page);
252 out:
253 return ret;
254 }
255
256 /*
257 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258 */
259 static void free_more_memory(void)
260 {
261 struct zoneref *z;
262 int nid;
263
264 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
265 yield();
266
267 for_each_online_node(nid) {
268
269 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
270 gfp_zone(GFP_NOFS), NULL);
271 if (z->zone)
272 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
273 GFP_NOFS, NULL);
274 }
275 }
276
277 /*
278 * I/O completion handler for block_read_full_page() - pages
279 * which come unlocked at the end of I/O.
280 */
281 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 {
283 unsigned long flags;
284 struct buffer_head *first;
285 struct buffer_head *tmp;
286 struct page *page;
287 int page_uptodate = 1;
288
289 BUG_ON(!buffer_async_read(bh));
290
291 page = bh->b_page;
292 if (uptodate) {
293 set_buffer_uptodate(bh);
294 } else {
295 clear_buffer_uptodate(bh);
296 buffer_io_error(bh, ", async page read");
297 SetPageError(page);
298 }
299
300 /*
301 * Be _very_ careful from here on. Bad things can happen if
302 * two buffer heads end IO at almost the same time and both
303 * decide that the page is now completely done.
304 */
305 first = page_buffers(page);
306 local_irq_save(flags);
307 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
308 clear_buffer_async_read(bh);
309 unlock_buffer(bh);
310 tmp = bh;
311 do {
312 if (!buffer_uptodate(tmp))
313 page_uptodate = 0;
314 if (buffer_async_read(tmp)) {
315 BUG_ON(!buffer_locked(tmp));
316 goto still_busy;
317 }
318 tmp = tmp->b_this_page;
319 } while (tmp != bh);
320 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
321 local_irq_restore(flags);
322
323 /*
324 * If none of the buffers had errors and they are all
325 * uptodate then we can set the page uptodate.
326 */
327 if (page_uptodate && !PageError(page))
328 SetPageUptodate(page);
329 unlock_page(page);
330 return;
331
332 still_busy:
333 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
334 local_irq_restore(flags);
335 return;
336 }
337
338 /*
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
341 */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 unsigned long flags;
345 struct buffer_head *first;
346 struct buffer_head *tmp;
347 struct page *page;
348
349 BUG_ON(!buffer_async_write(bh));
350
351 page = bh->b_page;
352 if (uptodate) {
353 set_buffer_uptodate(bh);
354 } else {
355 buffer_io_error(bh, ", lost async page write");
356 mark_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
377 end_page_writeback(page);
378 return;
379
380 still_busy:
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
383 return;
384 }
385 EXPORT_SYMBOL(end_buffer_async_write);
386
387 /*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408 static void mark_buffer_async_read(struct buffer_head *bh)
409 {
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412 }
413
414 static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
416 {
417 bh->b_end_io = handler;
418 set_buffer_async_write(bh);
419 }
420
421 void mark_buffer_async_write(struct buffer_head *bh)
422 {
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424 }
425 EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428 /*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477 /*
478 * The buffer's backing address_space's private_lock must be held
479 */
480 static void __remove_assoc_queue(struct buffer_head *bh)
481 {
482 list_del_init(&bh->b_assoc_buffers);
483 WARN_ON(!bh->b_assoc_map);
484 bh->b_assoc_map = NULL;
485 }
486
487 int inode_has_buffers(struct inode *inode)
488 {
489 return !list_empty(&inode->i_data.private_list);
490 }
491
492 /*
493 * osync is designed to support O_SYNC io. It waits synchronously for
494 * all already-submitted IO to complete, but does not queue any new
495 * writes to the disk.
496 *
497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498 * you dirty the buffers, and then use osync_inode_buffers to wait for
499 * completion. Any other dirty buffers which are not yet queued for
500 * write will not be flushed to disk by the osync.
501 */
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 {
504 struct buffer_head *bh;
505 struct list_head *p;
506 int err = 0;
507
508 spin_lock(lock);
509 repeat:
510 list_for_each_prev(p, list) {
511 bh = BH_ENTRY(p);
512 if (buffer_locked(bh)) {
513 get_bh(bh);
514 spin_unlock(lock);
515 wait_on_buffer(bh);
516 if (!buffer_uptodate(bh))
517 err = -EIO;
518 brelse(bh);
519 spin_lock(lock);
520 goto repeat;
521 }
522 }
523 spin_unlock(lock);
524 return err;
525 }
526
527 static void do_thaw_one(struct super_block *sb, void *unused)
528 {
529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 }
532
533 static void do_thaw_all(struct work_struct *work)
534 {
535 iterate_supers(do_thaw_one, NULL);
536 kfree(work);
537 printk(KERN_WARNING "Emergency Thaw complete\n");
538 }
539
540 /**
541 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 *
543 * Used for emergency unfreeze of all filesystems via SysRq
544 */
545 void emergency_thaw_all(void)
546 {
547 struct work_struct *work;
548
549 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 if (work) {
551 INIT_WORK(work, do_thaw_all);
552 schedule_work(work);
553 }
554 }
555
556 /**
557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558 * @mapping: the mapping which wants those buffers written
559 *
560 * Starts I/O against the buffers at mapping->private_list, and waits upon
561 * that I/O.
562 *
563 * Basically, this is a convenience function for fsync().
564 * @mapping is a file or directory which needs those buffers to be written for
565 * a successful fsync().
566 */
567 int sync_mapping_buffers(struct address_space *mapping)
568 {
569 struct address_space *buffer_mapping = mapping->private_data;
570
571 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 return 0;
573
574 return fsync_buffers_list(&buffer_mapping->private_lock,
575 &mapping->private_list);
576 }
577 EXPORT_SYMBOL(sync_mapping_buffers);
578
579 /*
580 * Called when we've recently written block `bblock', and it is known that
581 * `bblock' was for a buffer_boundary() buffer. This means that the block at
582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
583 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 */
585 void write_boundary_block(struct block_device *bdev,
586 sector_t bblock, unsigned blocksize)
587 {
588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (bh) {
590 if (buffer_dirty(bh))
591 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
592 put_bh(bh);
593 }
594 }
595
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 {
598 struct address_space *mapping = inode->i_mapping;
599 struct address_space *buffer_mapping = bh->b_page->mapping;
600
601 mark_buffer_dirty(bh);
602 if (!mapping->private_data) {
603 mapping->private_data = buffer_mapping;
604 } else {
605 BUG_ON(mapping->private_data != buffer_mapping);
606 }
607 if (!bh->b_assoc_map) {
608 spin_lock(&buffer_mapping->private_lock);
609 list_move_tail(&bh->b_assoc_buffers,
610 &mapping->private_list);
611 bh->b_assoc_map = mapping;
612 spin_unlock(&buffer_mapping->private_lock);
613 }
614 }
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
617 /*
618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619 * dirty.
620 *
621 * If warn is true, then emit a warning if the page is not uptodate and has
622 * not been truncated.
623 *
624 * The caller must hold lock_page_memcg().
625 */
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 int warn)
628 {
629 unsigned long flags;
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
632 if (page->mapping) { /* Race with truncate? */
633 WARN_ON_ONCE(warn && !PageUptodate(page));
634 account_page_dirtied(page, mapping);
635 radix_tree_tag_set(&mapping->page_tree,
636 page_index(page), PAGECACHE_TAG_DIRTY);
637 }
638 spin_unlock_irqrestore(&mapping->tree_lock, flags);
639 }
640
641 /*
642 * Add a page to the dirty page list.
643 *
644 * It is a sad fact of life that this function is called from several places
645 * deeply under spinlocking. It may not sleep.
646 *
647 * If the page has buffers, the uptodate buffers are set dirty, to preserve
648 * dirty-state coherency between the page and the buffers. It the page does
649 * not have buffers then when they are later attached they will all be set
650 * dirty.
651 *
652 * The buffers are dirtied before the page is dirtied. There's a small race
653 * window in which a writepage caller may see the page cleanness but not the
654 * buffer dirtiness. That's fine. If this code were to set the page dirty
655 * before the buffers, a concurrent writepage caller could clear the page dirty
656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657 * page on the dirty page list.
658 *
659 * We use private_lock to lock against try_to_free_buffers while using the
660 * page's buffer list. Also use this to protect against clean buffers being
661 * added to the page after it was set dirty.
662 *
663 * FIXME: may need to call ->reservepage here as well. That's rather up to the
664 * address_space though.
665 */
666 int __set_page_dirty_buffers(struct page *page)
667 {
668 int newly_dirty;
669 struct address_space *mapping = page_mapping(page);
670
671 if (unlikely(!mapping))
672 return !TestSetPageDirty(page);
673
674 spin_lock(&mapping->private_lock);
675 if (page_has_buffers(page)) {
676 struct buffer_head *head = page_buffers(page);
677 struct buffer_head *bh = head;
678
679 do {
680 set_buffer_dirty(bh);
681 bh = bh->b_this_page;
682 } while (bh != head);
683 }
684 /*
685 * Lock out page->mem_cgroup migration to keep PageDirty
686 * synchronized with per-memcg dirty page counters.
687 */
688 lock_page_memcg(page);
689 newly_dirty = !TestSetPageDirty(page);
690 spin_unlock(&mapping->private_lock);
691
692 if (newly_dirty)
693 __set_page_dirty(page, mapping, 1);
694
695 unlock_page_memcg(page);
696
697 if (newly_dirty)
698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699
700 return newly_dirty;
701 }
702 EXPORT_SYMBOL(__set_page_dirty_buffers);
703
704 /*
705 * Write out and wait upon a list of buffers.
706 *
707 * We have conflicting pressures: we want to make sure that all
708 * initially dirty buffers get waited on, but that any subsequently
709 * dirtied buffers don't. After all, we don't want fsync to last
710 * forever if somebody is actively writing to the file.
711 *
712 * Do this in two main stages: first we copy dirty buffers to a
713 * temporary inode list, queueing the writes as we go. Then we clean
714 * up, waiting for those writes to complete.
715 *
716 * During this second stage, any subsequent updates to the file may end
717 * up refiling the buffer on the original inode's dirty list again, so
718 * there is a chance we will end up with a buffer queued for write but
719 * not yet completed on that list. So, as a final cleanup we go through
720 * the osync code to catch these locked, dirty buffers without requeuing
721 * any newly dirty buffers for write.
722 */
723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 {
725 struct buffer_head *bh;
726 struct list_head tmp;
727 struct address_space *mapping;
728 int err = 0, err2;
729 struct blk_plug plug;
730
731 INIT_LIST_HEAD(&tmp);
732 blk_start_plug(&plug);
733
734 spin_lock(lock);
735 while (!list_empty(list)) {
736 bh = BH_ENTRY(list->next);
737 mapping = bh->b_assoc_map;
738 __remove_assoc_queue(bh);
739 /* Avoid race with mark_buffer_dirty_inode() which does
740 * a lockless check and we rely on seeing the dirty bit */
741 smp_mb();
742 if (buffer_dirty(bh) || buffer_locked(bh)) {
743 list_add(&bh->b_assoc_buffers, &tmp);
744 bh->b_assoc_map = mapping;
745 if (buffer_dirty(bh)) {
746 get_bh(bh);
747 spin_unlock(lock);
748 /*
749 * Ensure any pending I/O completes so that
750 * write_dirty_buffer() actually writes the
751 * current contents - it is a noop if I/O is
752 * still in flight on potentially older
753 * contents.
754 */
755 write_dirty_buffer(bh, REQ_SYNC);
756
757 /*
758 * Kick off IO for the previous mapping. Note
759 * that we will not run the very last mapping,
760 * wait_on_buffer() will do that for us
761 * through sync_buffer().
762 */
763 brelse(bh);
764 spin_lock(lock);
765 }
766 }
767 }
768
769 spin_unlock(lock);
770 blk_finish_plug(&plug);
771 spin_lock(lock);
772
773 while (!list_empty(&tmp)) {
774 bh = BH_ENTRY(tmp.prev);
775 get_bh(bh);
776 mapping = bh->b_assoc_map;
777 __remove_assoc_queue(bh);
778 /* Avoid race with mark_buffer_dirty_inode() which does
779 * a lockless check and we rely on seeing the dirty bit */
780 smp_mb();
781 if (buffer_dirty(bh)) {
782 list_add(&bh->b_assoc_buffers,
783 &mapping->private_list);
784 bh->b_assoc_map = mapping;
785 }
786 spin_unlock(lock);
787 wait_on_buffer(bh);
788 if (!buffer_uptodate(bh))
789 err = -EIO;
790 brelse(bh);
791 spin_lock(lock);
792 }
793
794 spin_unlock(lock);
795 err2 = osync_buffers_list(lock, list);
796 if (err)
797 return err;
798 else
799 return err2;
800 }
801
802 /*
803 * Invalidate any and all dirty buffers on a given inode. We are
804 * probably unmounting the fs, but that doesn't mean we have already
805 * done a sync(). Just drop the buffers from the inode list.
806 *
807 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
808 * assumes that all the buffers are against the blockdev. Not true
809 * for reiserfs.
810 */
811 void invalidate_inode_buffers(struct inode *inode)
812 {
813 if (inode_has_buffers(inode)) {
814 struct address_space *mapping = &inode->i_data;
815 struct list_head *list = &mapping->private_list;
816 struct address_space *buffer_mapping = mapping->private_data;
817
818 spin_lock(&buffer_mapping->private_lock);
819 while (!list_empty(list))
820 __remove_assoc_queue(BH_ENTRY(list->next));
821 spin_unlock(&buffer_mapping->private_lock);
822 }
823 }
824 EXPORT_SYMBOL(invalidate_inode_buffers);
825
826 /*
827 * Remove any clean buffers from the inode's buffer list. This is called
828 * when we're trying to free the inode itself. Those buffers can pin it.
829 *
830 * Returns true if all buffers were removed.
831 */
832 int remove_inode_buffers(struct inode *inode)
833 {
834 int ret = 1;
835
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->private_data;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list)) {
843 struct buffer_head *bh = BH_ENTRY(list->next);
844 if (buffer_dirty(bh)) {
845 ret = 0;
846 break;
847 }
848 __remove_assoc_queue(bh);
849 }
850 spin_unlock(&buffer_mapping->private_lock);
851 }
852 return ret;
853 }
854
855 /*
856 * Create the appropriate buffers when given a page for data area and
857 * the size of each buffer.. Use the bh->b_this_page linked list to
858 * follow the buffers created. Return NULL if unable to create more
859 * buffers.
860 *
861 * The retry flag is used to differentiate async IO (paging, swapping)
862 * which may not fail from ordinary buffer allocations.
863 */
864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865 int retry)
866 {
867 struct buffer_head *bh, *head;
868 long offset;
869
870 try_again:
871 head = NULL;
872 offset = PAGE_SIZE;
873 while ((offset -= size) >= 0) {
874 bh = alloc_buffer_head(GFP_NOFS);
875 if (!bh)
876 goto no_grow;
877
878 bh->b_this_page = head;
879 bh->b_blocknr = -1;
880 head = bh;
881
882 bh->b_size = size;
883
884 /* Link the buffer to its page */
885 set_bh_page(bh, page, offset);
886 }
887 return head;
888 /*
889 * In case anything failed, we just free everything we got.
890 */
891 no_grow:
892 if (head) {
893 do {
894 bh = head;
895 head = head->b_this_page;
896 free_buffer_head(bh);
897 } while (head);
898 }
899
900 /*
901 * Return failure for non-async IO requests. Async IO requests
902 * are not allowed to fail, so we have to wait until buffer heads
903 * become available. But we don't want tasks sleeping with
904 * partially complete buffers, so all were released above.
905 */
906 if (!retry)
907 return NULL;
908
909 /* We're _really_ low on memory. Now we just
910 * wait for old buffer heads to become free due to
911 * finishing IO. Since this is an async request and
912 * the reserve list is empty, we're sure there are
913 * async buffer heads in use.
914 */
915 free_more_memory();
916 goto try_again;
917 }
918 EXPORT_SYMBOL_GPL(alloc_page_buffers);
919
920 static inline void
921 link_dev_buffers(struct page *page, struct buffer_head *head)
922 {
923 struct buffer_head *bh, *tail;
924
925 bh = head;
926 do {
927 tail = bh;
928 bh = bh->b_this_page;
929 } while (bh);
930 tail->b_this_page = head;
931 attach_page_buffers(page, head);
932 }
933
934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 {
936 sector_t retval = ~((sector_t)0);
937 loff_t sz = i_size_read(bdev->bd_inode);
938
939 if (sz) {
940 unsigned int sizebits = blksize_bits(size);
941 retval = (sz >> sizebits);
942 }
943 return retval;
944 }
945
946 /*
947 * Initialise the state of a blockdev page's buffers.
948 */
949 static sector_t
950 init_page_buffers(struct page *page, struct block_device *bdev,
951 sector_t block, int size)
952 {
953 struct buffer_head *head = page_buffers(page);
954 struct buffer_head *bh = head;
955 int uptodate = PageUptodate(page);
956 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957
958 do {
959 if (!buffer_mapped(bh)) {
960 init_buffer(bh, NULL, NULL);
961 bh->b_bdev = bdev;
962 bh->b_blocknr = block;
963 if (uptodate)
964 set_buffer_uptodate(bh);
965 if (block < end_block)
966 set_buffer_mapped(bh);
967 }
968 block++;
969 bh = bh->b_this_page;
970 } while (bh != head);
971
972 /*
973 * Caller needs to validate requested block against end of device.
974 */
975 return end_block;
976 }
977
978 /*
979 * Create the page-cache page that contains the requested block.
980 *
981 * This is used purely for blockdev mappings.
982 */
983 static int
984 grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size, int sizebits, gfp_t gfp)
986 {
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
990 sector_t end_block;
991 int ret = 0; /* Will call free_more_memory() */
992 gfp_t gfp_mask;
993
994 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
995
996 /*
997 * XXX: __getblk_slow() can not really deal with failure and
998 * will endlessly loop on improvised global reclaim. Prefer
999 * looping in the allocator rather than here, at least that
1000 * code knows what it's doing.
1001 */
1002 gfp_mask |= __GFP_NOFAIL;
1003
1004 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005 if (!page)
1006 return ret;
1007
1008 BUG_ON(!PageLocked(page));
1009
1010 if (page_has_buffers(page)) {
1011 bh = page_buffers(page);
1012 if (bh->b_size == size) {
1013 end_block = init_page_buffers(page, bdev,
1014 (sector_t)index << sizebits,
1015 size);
1016 goto done;
1017 }
1018 if (!try_to_free_buffers(page))
1019 goto failed;
1020 }
1021
1022 /*
1023 * Allocate some buffers for this page
1024 */
1025 bh = alloc_page_buffers(page, size, 0);
1026 if (!bh)
1027 goto failed;
1028
1029 /*
1030 * Link the page to the buffers and initialise them. Take the
1031 * lock to be atomic wrt __find_get_block(), which does not
1032 * run under the page lock.
1033 */
1034 spin_lock(&inode->i_mapping->private_lock);
1035 link_dev_buffers(page, bh);
1036 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 size);
1038 spin_unlock(&inode->i_mapping->private_lock);
1039 done:
1040 ret = (block < end_block) ? 1 : -ENXIO;
1041 failed:
1042 unlock_page(page);
1043 put_page(page);
1044 return ret;
1045 }
1046
1047 /*
1048 * Create buffers for the specified block device block's page. If
1049 * that page was dirty, the buffers are set dirty also.
1050 */
1051 static int
1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053 {
1054 pgoff_t index;
1055 int sizebits;
1056
1057 sizebits = -1;
1058 do {
1059 sizebits++;
1060 } while ((size << sizebits) < PAGE_SIZE);
1061
1062 index = block >> sizebits;
1063
1064 /*
1065 * Check for a block which wants to lie outside our maximum possible
1066 * pagecache index. (this comparison is done using sector_t types).
1067 */
1068 if (unlikely(index != block >> sizebits)) {
1069 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 "device %pg\n",
1071 __func__, (unsigned long long)block,
1072 bdev);
1073 return -EIO;
1074 }
1075
1076 /* Create a page with the proper size buffers.. */
1077 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1078 }
1079
1080 static struct buffer_head *
1081 __getblk_slow(struct block_device *bdev, sector_t block,
1082 unsigned size, gfp_t gfp)
1083 {
1084 /* Size must be multiple of hard sectorsize */
1085 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086 (size < 512 || size > PAGE_SIZE))) {
1087 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 size);
1089 printk(KERN_ERR "logical block size: %d\n",
1090 bdev_logical_block_size(bdev));
1091
1092 dump_stack();
1093 return NULL;
1094 }
1095
1096 for (;;) {
1097 struct buffer_head *bh;
1098 int ret;
1099
1100 bh = __find_get_block(bdev, block, size);
1101 if (bh)
1102 return bh;
1103
1104 ret = grow_buffers(bdev, block, size, gfp);
1105 if (ret < 0)
1106 return NULL;
1107 if (ret == 0)
1108 free_more_memory();
1109 }
1110 }
1111
1112 /*
1113 * The relationship between dirty buffers and dirty pages:
1114 *
1115 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1116 * the page is tagged dirty in its radix tree.
1117 *
1118 * At all times, the dirtiness of the buffers represents the dirtiness of
1119 * subsections of the page. If the page has buffers, the page dirty bit is
1120 * merely a hint about the true dirty state.
1121 *
1122 * When a page is set dirty in its entirety, all its buffers are marked dirty
1123 * (if the page has buffers).
1124 *
1125 * When a buffer is marked dirty, its page is dirtied, but the page's other
1126 * buffers are not.
1127 *
1128 * Also. When blockdev buffers are explicitly read with bread(), they
1129 * individually become uptodate. But their backing page remains not
1130 * uptodate - even if all of its buffers are uptodate. A subsequent
1131 * block_read_full_page() against that page will discover all the uptodate
1132 * buffers, will set the page uptodate and will perform no I/O.
1133 */
1134
1135 /**
1136 * mark_buffer_dirty - mark a buffer_head as needing writeout
1137 * @bh: the buffer_head to mark dirty
1138 *
1139 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1140 * backing page dirty, then tag the page as dirty in its address_space's radix
1141 * tree and then attach the address_space's inode to its superblock's dirty
1142 * inode list.
1143 *
1144 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1145 * mapping->tree_lock and mapping->host->i_lock.
1146 */
1147 void mark_buffer_dirty(struct buffer_head *bh)
1148 {
1149 WARN_ON_ONCE(!buffer_uptodate(bh));
1150
1151 trace_block_dirty_buffer(bh);
1152
1153 /*
1154 * Very *carefully* optimize the it-is-already-dirty case.
1155 *
1156 * Don't let the final "is it dirty" escape to before we
1157 * perhaps modified the buffer.
1158 */
1159 if (buffer_dirty(bh)) {
1160 smp_mb();
1161 if (buffer_dirty(bh))
1162 return;
1163 }
1164
1165 if (!test_set_buffer_dirty(bh)) {
1166 struct page *page = bh->b_page;
1167 struct address_space *mapping = NULL;
1168
1169 lock_page_memcg(page);
1170 if (!TestSetPageDirty(page)) {
1171 mapping = page_mapping(page);
1172 if (mapping)
1173 __set_page_dirty(page, mapping, 0);
1174 }
1175 unlock_page_memcg(page);
1176 if (mapping)
1177 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1178 }
1179 }
1180 EXPORT_SYMBOL(mark_buffer_dirty);
1181
1182 void mark_buffer_write_io_error(struct buffer_head *bh)
1183 {
1184 set_buffer_write_io_error(bh);
1185 /* FIXME: do we need to set this in both places? */
1186 if (bh->b_page && bh->b_page->mapping)
1187 mapping_set_error(bh->b_page->mapping, -EIO);
1188 if (bh->b_assoc_map)
1189 mapping_set_error(bh->b_assoc_map, -EIO);
1190 }
1191 EXPORT_SYMBOL(mark_buffer_write_io_error);
1192
1193 /*
1194 * Decrement a buffer_head's reference count. If all buffers against a page
1195 * have zero reference count, are clean and unlocked, and if the page is clean
1196 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198 * a page but it ends up not being freed, and buffers may later be reattached).
1199 */
1200 void __brelse(struct buffer_head * buf)
1201 {
1202 if (atomic_read(&buf->b_count)) {
1203 put_bh(buf);
1204 return;
1205 }
1206 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207 }
1208 EXPORT_SYMBOL(__brelse);
1209
1210 /*
1211 * bforget() is like brelse(), except it discards any
1212 * potentially dirty data.
1213 */
1214 void __bforget(struct buffer_head *bh)
1215 {
1216 clear_buffer_dirty(bh);
1217 if (bh->b_assoc_map) {
1218 struct address_space *buffer_mapping = bh->b_page->mapping;
1219
1220 spin_lock(&buffer_mapping->private_lock);
1221 list_del_init(&bh->b_assoc_buffers);
1222 bh->b_assoc_map = NULL;
1223 spin_unlock(&buffer_mapping->private_lock);
1224 }
1225 __brelse(bh);
1226 }
1227 EXPORT_SYMBOL(__bforget);
1228
1229 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230 {
1231 lock_buffer(bh);
1232 if (buffer_uptodate(bh)) {
1233 unlock_buffer(bh);
1234 return bh;
1235 } else {
1236 get_bh(bh);
1237 bh->b_end_io = end_buffer_read_sync;
1238 submit_bh(REQ_OP_READ, 0, bh);
1239 wait_on_buffer(bh);
1240 if (buffer_uptodate(bh))
1241 return bh;
1242 }
1243 brelse(bh);
1244 return NULL;
1245 }
1246
1247 /*
1248 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1249 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1250 * refcount elevated by one when they're in an LRU. A buffer can only appear
1251 * once in a particular CPU's LRU. A single buffer can be present in multiple
1252 * CPU's LRUs at the same time.
1253 *
1254 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255 * sb_find_get_block().
1256 *
1257 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1258 * a local interrupt disable for that.
1259 */
1260
1261 #define BH_LRU_SIZE 16
1262
1263 struct bh_lru {
1264 struct buffer_head *bhs[BH_LRU_SIZE];
1265 };
1266
1267 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268
1269 #ifdef CONFIG_SMP
1270 #define bh_lru_lock() local_irq_disable()
1271 #define bh_lru_unlock() local_irq_enable()
1272 #else
1273 #define bh_lru_lock() preempt_disable()
1274 #define bh_lru_unlock() preempt_enable()
1275 #endif
1276
1277 static inline void check_irqs_on(void)
1278 {
1279 #ifdef irqs_disabled
1280 BUG_ON(irqs_disabled());
1281 #endif
1282 }
1283
1284 /*
1285 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1286 * inserted at the front, and the buffer_head at the back if any is evicted.
1287 * Or, if already in the LRU it is moved to the front.
1288 */
1289 static void bh_lru_install(struct buffer_head *bh)
1290 {
1291 struct buffer_head *evictee = bh;
1292 struct bh_lru *b;
1293 int i;
1294
1295 check_irqs_on();
1296 bh_lru_lock();
1297
1298 b = this_cpu_ptr(&bh_lrus);
1299 for (i = 0; i < BH_LRU_SIZE; i++) {
1300 swap(evictee, b->bhs[i]);
1301 if (evictee == bh) {
1302 bh_lru_unlock();
1303 return;
1304 }
1305 }
1306
1307 get_bh(bh);
1308 bh_lru_unlock();
1309 brelse(evictee);
1310 }
1311
1312 /*
1313 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1314 */
1315 static struct buffer_head *
1316 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 {
1318 struct buffer_head *ret = NULL;
1319 unsigned int i;
1320
1321 check_irqs_on();
1322 bh_lru_lock();
1323 for (i = 0; i < BH_LRU_SIZE; i++) {
1324 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325
1326 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1327 bh->b_size == size) {
1328 if (i) {
1329 while (i) {
1330 __this_cpu_write(bh_lrus.bhs[i],
1331 __this_cpu_read(bh_lrus.bhs[i - 1]));
1332 i--;
1333 }
1334 __this_cpu_write(bh_lrus.bhs[0], bh);
1335 }
1336 get_bh(bh);
1337 ret = bh;
1338 break;
1339 }
1340 }
1341 bh_lru_unlock();
1342 return ret;
1343 }
1344
1345 /*
1346 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1347 * it in the LRU and mark it as accessed. If it is not present then return
1348 * NULL
1349 */
1350 struct buffer_head *
1351 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 {
1353 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354
1355 if (bh == NULL) {
1356 /* __find_get_block_slow will mark the page accessed */
1357 bh = __find_get_block_slow(bdev, block);
1358 if (bh)
1359 bh_lru_install(bh);
1360 } else
1361 touch_buffer(bh);
1362
1363 return bh;
1364 }
1365 EXPORT_SYMBOL(__find_get_block);
1366
1367 /*
1368 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1369 * which corresponds to the passed block_device, block and size. The
1370 * returned buffer has its reference count incremented.
1371 *
1372 * __getblk_gfp() will lock up the machine if grow_dev_page's
1373 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1374 */
1375 struct buffer_head *
1376 __getblk_gfp(struct block_device *bdev, sector_t block,
1377 unsigned size, gfp_t gfp)
1378 {
1379 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380
1381 might_sleep();
1382 if (bh == NULL)
1383 bh = __getblk_slow(bdev, block, size, gfp);
1384 return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk_gfp);
1387
1388 /*
1389 * Do async read-ahead on a buffer..
1390 */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 struct buffer_head *bh = __getblk(bdev, block, size);
1394 if (likely(bh)) {
1395 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1396 brelse(bh);
1397 }
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400
1401 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1402 gfp_t gfp)
1403 {
1404 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1405 if (likely(bh)) {
1406 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1407 brelse(bh);
1408 }
1409 }
1410 EXPORT_SYMBOL(__breadahead_gfp);
1411
1412 /**
1413 * __bread_gfp() - reads a specified block and returns the bh
1414 * @bdev: the block_device to read from
1415 * @block: number of block
1416 * @size: size (in bytes) to read
1417 * @gfp: page allocation flag
1418 *
1419 * Reads a specified block, and returns buffer head that contains it.
1420 * The page cache can be allocated from non-movable area
1421 * not to prevent page migration if you set gfp to zero.
1422 * It returns NULL if the block was unreadable.
1423 */
1424 struct buffer_head *
1425 __bread_gfp(struct block_device *bdev, sector_t block,
1426 unsigned size, gfp_t gfp)
1427 {
1428 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1429
1430 if (likely(bh) && !buffer_uptodate(bh))
1431 bh = __bread_slow(bh);
1432 return bh;
1433 }
1434 EXPORT_SYMBOL(__bread_gfp);
1435
1436 /*
1437 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1438 * This doesn't race because it runs in each cpu either in irq
1439 * or with preempt disabled.
1440 */
1441 static void invalidate_bh_lru(void *arg)
1442 {
1443 struct bh_lru *b = &get_cpu_var(bh_lrus);
1444 int i;
1445
1446 for (i = 0; i < BH_LRU_SIZE; i++) {
1447 brelse(b->bhs[i]);
1448 b->bhs[i] = NULL;
1449 }
1450 put_cpu_var(bh_lrus);
1451 }
1452
1453 static bool has_bh_in_lru(int cpu, void *dummy)
1454 {
1455 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1456 int i;
1457
1458 for (i = 0; i < BH_LRU_SIZE; i++) {
1459 if (b->bhs[i])
1460 return 1;
1461 }
1462
1463 return 0;
1464 }
1465
1466 void invalidate_bh_lrus(void)
1467 {
1468 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1469 }
1470 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1471
1472 void set_bh_page(struct buffer_head *bh,
1473 struct page *page, unsigned long offset)
1474 {
1475 bh->b_page = page;
1476 BUG_ON(offset >= PAGE_SIZE);
1477 if (PageHighMem(page))
1478 /*
1479 * This catches illegal uses and preserves the offset:
1480 */
1481 bh->b_data = (char *)(0 + offset);
1482 else
1483 bh->b_data = page_address(page) + offset;
1484 }
1485 EXPORT_SYMBOL(set_bh_page);
1486
1487 /*
1488 * Called when truncating a buffer on a page completely.
1489 */
1490
1491 /* Bits that are cleared during an invalidate */
1492 #define BUFFER_FLAGS_DISCARD \
1493 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1494 1 << BH_Delay | 1 << BH_Unwritten)
1495
1496 static void discard_buffer(struct buffer_head * bh)
1497 {
1498 unsigned long b_state, b_state_old;
1499
1500 lock_buffer(bh);
1501 clear_buffer_dirty(bh);
1502 bh->b_bdev = NULL;
1503 b_state = bh->b_state;
1504 for (;;) {
1505 b_state_old = cmpxchg(&bh->b_state, b_state,
1506 (b_state & ~BUFFER_FLAGS_DISCARD));
1507 if (b_state_old == b_state)
1508 break;
1509 b_state = b_state_old;
1510 }
1511 unlock_buffer(bh);
1512 }
1513
1514 /**
1515 * block_invalidatepage - invalidate part or all of a buffer-backed page
1516 *
1517 * @page: the page which is affected
1518 * @offset: start of the range to invalidate
1519 * @length: length of the range to invalidate
1520 *
1521 * block_invalidatepage() is called when all or part of the page has become
1522 * invalidated by a truncate operation.
1523 *
1524 * block_invalidatepage() does not have to release all buffers, but it must
1525 * ensure that no dirty buffer is left outside @offset and that no I/O
1526 * is underway against any of the blocks which are outside the truncation
1527 * point. Because the caller is about to free (and possibly reuse) those
1528 * blocks on-disk.
1529 */
1530 void block_invalidatepage(struct page *page, unsigned int offset,
1531 unsigned int length)
1532 {
1533 struct buffer_head *head, *bh, *next;
1534 unsigned int curr_off = 0;
1535 unsigned int stop = length + offset;
1536
1537 BUG_ON(!PageLocked(page));
1538 if (!page_has_buffers(page))
1539 goto out;
1540
1541 /*
1542 * Check for overflow
1543 */
1544 BUG_ON(stop > PAGE_SIZE || stop < length);
1545
1546 head = page_buffers(page);
1547 bh = head;
1548 do {
1549 unsigned int next_off = curr_off + bh->b_size;
1550 next = bh->b_this_page;
1551
1552 /*
1553 * Are we still fully in range ?
1554 */
1555 if (next_off > stop)
1556 goto out;
1557
1558 /*
1559 * is this block fully invalidated?
1560 */
1561 if (offset <= curr_off)
1562 discard_buffer(bh);
1563 curr_off = next_off;
1564 bh = next;
1565 } while (bh != head);
1566
1567 /*
1568 * We release buffers only if the entire page is being invalidated.
1569 * The get_block cached value has been unconditionally invalidated,
1570 * so real IO is not possible anymore.
1571 */
1572 if (offset == 0)
1573 try_to_release_page(page, 0);
1574 out:
1575 return;
1576 }
1577 EXPORT_SYMBOL(block_invalidatepage);
1578
1579
1580 /*
1581 * We attach and possibly dirty the buffers atomically wrt
1582 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1583 * is already excluded via the page lock.
1584 */
1585 void create_empty_buffers(struct page *page,
1586 unsigned long blocksize, unsigned long b_state)
1587 {
1588 struct buffer_head *bh, *head, *tail;
1589
1590 head = alloc_page_buffers(page, blocksize, 1);
1591 bh = head;
1592 do {
1593 bh->b_state |= b_state;
1594 tail = bh;
1595 bh = bh->b_this_page;
1596 } while (bh);
1597 tail->b_this_page = head;
1598
1599 spin_lock(&page->mapping->private_lock);
1600 if (PageUptodate(page) || PageDirty(page)) {
1601 bh = head;
1602 do {
1603 if (PageDirty(page))
1604 set_buffer_dirty(bh);
1605 if (PageUptodate(page))
1606 set_buffer_uptodate(bh);
1607 bh = bh->b_this_page;
1608 } while (bh != head);
1609 }
1610 attach_page_buffers(page, head);
1611 spin_unlock(&page->mapping->private_lock);
1612 }
1613 EXPORT_SYMBOL(create_empty_buffers);
1614
1615 /**
1616 * clean_bdev_aliases: clean a range of buffers in block device
1617 * @bdev: Block device to clean buffers in
1618 * @block: Start of a range of blocks to clean
1619 * @len: Number of blocks to clean
1620 *
1621 * We are taking a range of blocks for data and we don't want writeback of any
1622 * buffer-cache aliases starting from return from this function and until the
1623 * moment when something will explicitly mark the buffer dirty (hopefully that
1624 * will not happen until we will free that block ;-) We don't even need to mark
1625 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1626 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1627 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1628 * would confuse anyone who might pick it with bread() afterwards...
1629 *
1630 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1631 * writeout I/O going on against recently-freed buffers. We don't wait on that
1632 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1633 * need to. That happens here.
1634 */
1635 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1636 {
1637 struct inode *bd_inode = bdev->bd_inode;
1638 struct address_space *bd_mapping = bd_inode->i_mapping;
1639 struct pagevec pvec;
1640 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1641 pgoff_t end;
1642 int i, count;
1643 struct buffer_head *bh;
1644 struct buffer_head *head;
1645
1646 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1647 pagevec_init(&pvec, 0);
1648 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1649 count = pagevec_count(&pvec);
1650 for (i = 0; i < count; i++) {
1651 struct page *page = pvec.pages[i];
1652
1653 if (!page_has_buffers(page))
1654 continue;
1655 /*
1656 * We use page lock instead of bd_mapping->private_lock
1657 * to pin buffers here since we can afford to sleep and
1658 * it scales better than a global spinlock lock.
1659 */
1660 lock_page(page);
1661 /* Recheck when the page is locked which pins bhs */
1662 if (!page_has_buffers(page))
1663 goto unlock_page;
1664 head = page_buffers(page);
1665 bh = head;
1666 do {
1667 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1668 goto next;
1669 if (bh->b_blocknr >= block + len)
1670 break;
1671 clear_buffer_dirty(bh);
1672 wait_on_buffer(bh);
1673 clear_buffer_req(bh);
1674 next:
1675 bh = bh->b_this_page;
1676 } while (bh != head);
1677 unlock_page:
1678 unlock_page(page);
1679 }
1680 pagevec_release(&pvec);
1681 cond_resched();
1682 /* End of range already reached? */
1683 if (index > end || !index)
1684 break;
1685 }
1686 }
1687 EXPORT_SYMBOL(clean_bdev_aliases);
1688
1689 /*
1690 * Size is a power-of-two in the range 512..PAGE_SIZE,
1691 * and the case we care about most is PAGE_SIZE.
1692 *
1693 * So this *could* possibly be written with those
1694 * constraints in mind (relevant mostly if some
1695 * architecture has a slow bit-scan instruction)
1696 */
1697 static inline int block_size_bits(unsigned int blocksize)
1698 {
1699 return ilog2(blocksize);
1700 }
1701
1702 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1703 {
1704 BUG_ON(!PageLocked(page));
1705
1706 if (!page_has_buffers(page))
1707 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1708 return page_buffers(page);
1709 }
1710
1711 /*
1712 * NOTE! All mapped/uptodate combinations are valid:
1713 *
1714 * Mapped Uptodate Meaning
1715 *
1716 * No No "unknown" - must do get_block()
1717 * No Yes "hole" - zero-filled
1718 * Yes No "allocated" - allocated on disk, not read in
1719 * Yes Yes "valid" - allocated and up-to-date in memory.
1720 *
1721 * "Dirty" is valid only with the last case (mapped+uptodate).
1722 */
1723
1724 /*
1725 * While block_write_full_page is writing back the dirty buffers under
1726 * the page lock, whoever dirtied the buffers may decide to clean them
1727 * again at any time. We handle that by only looking at the buffer
1728 * state inside lock_buffer().
1729 *
1730 * If block_write_full_page() is called for regular writeback
1731 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1732 * locked buffer. This only can happen if someone has written the buffer
1733 * directly, with submit_bh(). At the address_space level PageWriteback
1734 * prevents this contention from occurring.
1735 *
1736 * If block_write_full_page() is called with wbc->sync_mode ==
1737 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1738 * causes the writes to be flagged as synchronous writes.
1739 */
1740 int __block_write_full_page(struct inode *inode, struct page *page,
1741 get_block_t *get_block, struct writeback_control *wbc,
1742 bh_end_io_t *handler)
1743 {
1744 int err;
1745 sector_t block;
1746 sector_t last_block;
1747 struct buffer_head *bh, *head;
1748 unsigned int blocksize, bbits;
1749 int nr_underway = 0;
1750 int write_flags = wbc_to_write_flags(wbc);
1751
1752 head = create_page_buffers(page, inode,
1753 (1 << BH_Dirty)|(1 << BH_Uptodate));
1754
1755 /*
1756 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1757 * here, and the (potentially unmapped) buffers may become dirty at
1758 * any time. If a buffer becomes dirty here after we've inspected it
1759 * then we just miss that fact, and the page stays dirty.
1760 *
1761 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1762 * handle that here by just cleaning them.
1763 */
1764
1765 bh = head;
1766 blocksize = bh->b_size;
1767 bbits = block_size_bits(blocksize);
1768
1769 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1770 last_block = (i_size_read(inode) - 1) >> bbits;
1771
1772 /*
1773 * Get all the dirty buffers mapped to disk addresses and
1774 * handle any aliases from the underlying blockdev's mapping.
1775 */
1776 do {
1777 if (block > last_block) {
1778 /*
1779 * mapped buffers outside i_size will occur, because
1780 * this page can be outside i_size when there is a
1781 * truncate in progress.
1782 */
1783 /*
1784 * The buffer was zeroed by block_write_full_page()
1785 */
1786 clear_buffer_dirty(bh);
1787 set_buffer_uptodate(bh);
1788 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1789 buffer_dirty(bh)) {
1790 WARN_ON(bh->b_size != blocksize);
1791 err = get_block(inode, block, bh, 1);
1792 if (err)
1793 goto recover;
1794 clear_buffer_delay(bh);
1795 if (buffer_new(bh)) {
1796 /* blockdev mappings never come here */
1797 clear_buffer_new(bh);
1798 clean_bdev_bh_alias(bh);
1799 }
1800 }
1801 bh = bh->b_this_page;
1802 block++;
1803 } while (bh != head);
1804
1805 do {
1806 if (!buffer_mapped(bh))
1807 continue;
1808 /*
1809 * If it's a fully non-blocking write attempt and we cannot
1810 * lock the buffer then redirty the page. Note that this can
1811 * potentially cause a busy-wait loop from writeback threads
1812 * and kswapd activity, but those code paths have their own
1813 * higher-level throttling.
1814 */
1815 if (wbc->sync_mode != WB_SYNC_NONE) {
1816 lock_buffer(bh);
1817 } else if (!trylock_buffer(bh)) {
1818 redirty_page_for_writepage(wbc, page);
1819 continue;
1820 }
1821 if (test_clear_buffer_dirty(bh)) {
1822 mark_buffer_async_write_endio(bh, handler);
1823 } else {
1824 unlock_buffer(bh);
1825 }
1826 } while ((bh = bh->b_this_page) != head);
1827
1828 /*
1829 * The page and its buffers are protected by PageWriteback(), so we can
1830 * drop the bh refcounts early.
1831 */
1832 BUG_ON(PageWriteback(page));
1833 set_page_writeback(page);
1834
1835 do {
1836 struct buffer_head *next = bh->b_this_page;
1837 if (buffer_async_write(bh)) {
1838 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1839 inode->i_write_hint, wbc);
1840 nr_underway++;
1841 }
1842 bh = next;
1843 } while (bh != head);
1844 unlock_page(page);
1845
1846 err = 0;
1847 done:
1848 if (nr_underway == 0) {
1849 /*
1850 * The page was marked dirty, but the buffers were
1851 * clean. Someone wrote them back by hand with
1852 * ll_rw_block/submit_bh. A rare case.
1853 */
1854 end_page_writeback(page);
1855
1856 /*
1857 * The page and buffer_heads can be released at any time from
1858 * here on.
1859 */
1860 }
1861 return err;
1862
1863 recover:
1864 /*
1865 * ENOSPC, or some other error. We may already have added some
1866 * blocks to the file, so we need to write these out to avoid
1867 * exposing stale data.
1868 * The page is currently locked and not marked for writeback
1869 */
1870 bh = head;
1871 /* Recovery: lock and submit the mapped buffers */
1872 do {
1873 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1874 !buffer_delay(bh)) {
1875 lock_buffer(bh);
1876 mark_buffer_async_write_endio(bh, handler);
1877 } else {
1878 /*
1879 * The buffer may have been set dirty during
1880 * attachment to a dirty page.
1881 */
1882 clear_buffer_dirty(bh);
1883 }
1884 } while ((bh = bh->b_this_page) != head);
1885 SetPageError(page);
1886 BUG_ON(PageWriteback(page));
1887 mapping_set_error(page->mapping, err);
1888 set_page_writeback(page);
1889 do {
1890 struct buffer_head *next = bh->b_this_page;
1891 if (buffer_async_write(bh)) {
1892 clear_buffer_dirty(bh);
1893 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1894 inode->i_write_hint, wbc);
1895 nr_underway++;
1896 }
1897 bh = next;
1898 } while (bh != head);
1899 unlock_page(page);
1900 goto done;
1901 }
1902 EXPORT_SYMBOL(__block_write_full_page);
1903
1904 /*
1905 * If a page has any new buffers, zero them out here, and mark them uptodate
1906 * and dirty so they'll be written out (in order to prevent uninitialised
1907 * block data from leaking). And clear the new bit.
1908 */
1909 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1910 {
1911 unsigned int block_start, block_end;
1912 struct buffer_head *head, *bh;
1913
1914 BUG_ON(!PageLocked(page));
1915 if (!page_has_buffers(page))
1916 return;
1917
1918 bh = head = page_buffers(page);
1919 block_start = 0;
1920 do {
1921 block_end = block_start + bh->b_size;
1922
1923 if (buffer_new(bh)) {
1924 if (block_end > from && block_start < to) {
1925 if (!PageUptodate(page)) {
1926 unsigned start, size;
1927
1928 start = max(from, block_start);
1929 size = min(to, block_end) - start;
1930
1931 zero_user(page, start, size);
1932 set_buffer_uptodate(bh);
1933 }
1934
1935 clear_buffer_new(bh);
1936 mark_buffer_dirty(bh);
1937 }
1938 }
1939
1940 block_start = block_end;
1941 bh = bh->b_this_page;
1942 } while (bh != head);
1943 }
1944 EXPORT_SYMBOL(page_zero_new_buffers);
1945
1946 static void
1947 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1948 struct iomap *iomap)
1949 {
1950 loff_t offset = block << inode->i_blkbits;
1951
1952 bh->b_bdev = iomap->bdev;
1953
1954 /*
1955 * Block points to offset in file we need to map, iomap contains
1956 * the offset at which the map starts. If the map ends before the
1957 * current block, then do not map the buffer and let the caller
1958 * handle it.
1959 */
1960 BUG_ON(offset >= iomap->offset + iomap->length);
1961
1962 switch (iomap->type) {
1963 case IOMAP_HOLE:
1964 /*
1965 * If the buffer is not up to date or beyond the current EOF,
1966 * we need to mark it as new to ensure sub-block zeroing is
1967 * executed if necessary.
1968 */
1969 if (!buffer_uptodate(bh) ||
1970 (offset >= i_size_read(inode)))
1971 set_buffer_new(bh);
1972 break;
1973 case IOMAP_DELALLOC:
1974 if (!buffer_uptodate(bh) ||
1975 (offset >= i_size_read(inode)))
1976 set_buffer_new(bh);
1977 set_buffer_uptodate(bh);
1978 set_buffer_mapped(bh);
1979 set_buffer_delay(bh);
1980 break;
1981 case IOMAP_UNWRITTEN:
1982 /*
1983 * For unwritten regions, we always need to ensure that
1984 * sub-block writes cause the regions in the block we are not
1985 * writing to are zeroed. Set the buffer as new to ensure this.
1986 */
1987 set_buffer_new(bh);
1988 set_buffer_unwritten(bh);
1989 /* FALLTHRU */
1990 case IOMAP_MAPPED:
1991 if (offset >= i_size_read(inode))
1992 set_buffer_new(bh);
1993 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1994 ((offset - iomap->offset) >> inode->i_blkbits);
1995 set_buffer_mapped(bh);
1996 break;
1997 }
1998 }
1999
2000 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2001 get_block_t *get_block, struct iomap *iomap)
2002 {
2003 unsigned from = pos & (PAGE_SIZE - 1);
2004 unsigned to = from + len;
2005 struct inode *inode = page->mapping->host;
2006 unsigned block_start, block_end;
2007 sector_t block;
2008 int err = 0;
2009 unsigned blocksize, bbits;
2010 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2011
2012 BUG_ON(!PageLocked(page));
2013 BUG_ON(from > PAGE_SIZE);
2014 BUG_ON(to > PAGE_SIZE);
2015 BUG_ON(from > to);
2016
2017 head = create_page_buffers(page, inode, 0);
2018 blocksize = head->b_size;
2019 bbits = block_size_bits(blocksize);
2020
2021 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2022
2023 for(bh = head, block_start = 0; bh != head || !block_start;
2024 block++, block_start=block_end, bh = bh->b_this_page) {
2025 block_end = block_start + blocksize;
2026 if (block_end <= from || block_start >= to) {
2027 if (PageUptodate(page)) {
2028 if (!buffer_uptodate(bh))
2029 set_buffer_uptodate(bh);
2030 }
2031 continue;
2032 }
2033 if (buffer_new(bh))
2034 clear_buffer_new(bh);
2035 if (!buffer_mapped(bh)) {
2036 WARN_ON(bh->b_size != blocksize);
2037 if (get_block) {
2038 err = get_block(inode, block, bh, 1);
2039 if (err)
2040 break;
2041 } else {
2042 iomap_to_bh(inode, block, bh, iomap);
2043 }
2044
2045 if (buffer_new(bh)) {
2046 clean_bdev_bh_alias(bh);
2047 if (PageUptodate(page)) {
2048 clear_buffer_new(bh);
2049 set_buffer_uptodate(bh);
2050 mark_buffer_dirty(bh);
2051 continue;
2052 }
2053 if (block_end > to || block_start < from)
2054 zero_user_segments(page,
2055 to, block_end,
2056 block_start, from);
2057 continue;
2058 }
2059 }
2060 if (PageUptodate(page)) {
2061 if (!buffer_uptodate(bh))
2062 set_buffer_uptodate(bh);
2063 continue;
2064 }
2065 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2066 !buffer_unwritten(bh) &&
2067 (block_start < from || block_end > to)) {
2068 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2069 *wait_bh++=bh;
2070 }
2071 }
2072 /*
2073 * If we issued read requests - let them complete.
2074 */
2075 while(wait_bh > wait) {
2076 wait_on_buffer(*--wait_bh);
2077 if (!buffer_uptodate(*wait_bh))
2078 err = -EIO;
2079 }
2080 if (unlikely(err))
2081 page_zero_new_buffers(page, from, to);
2082 return err;
2083 }
2084
2085 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2086 get_block_t *get_block)
2087 {
2088 return __block_write_begin_int(page, pos, len, get_block, NULL);
2089 }
2090 EXPORT_SYMBOL(__block_write_begin);
2091
2092 static int __block_commit_write(struct inode *inode, struct page *page,
2093 unsigned from, unsigned to)
2094 {
2095 unsigned block_start, block_end;
2096 int partial = 0;
2097 unsigned blocksize;
2098 struct buffer_head *bh, *head;
2099
2100 bh = head = page_buffers(page);
2101 blocksize = bh->b_size;
2102
2103 block_start = 0;
2104 do {
2105 block_end = block_start + blocksize;
2106 if (block_end <= from || block_start >= to) {
2107 if (!buffer_uptodate(bh))
2108 partial = 1;
2109 } else {
2110 set_buffer_uptodate(bh);
2111 mark_buffer_dirty(bh);
2112 }
2113 clear_buffer_new(bh);
2114
2115 block_start = block_end;
2116 bh = bh->b_this_page;
2117 } while (bh != head);
2118
2119 /*
2120 * If this is a partial write which happened to make all buffers
2121 * uptodate then we can optimize away a bogus readpage() for
2122 * the next read(). Here we 'discover' whether the page went
2123 * uptodate as a result of this (potentially partial) write.
2124 */
2125 if (!partial)
2126 SetPageUptodate(page);
2127 return 0;
2128 }
2129
2130 /*
2131 * block_write_begin takes care of the basic task of block allocation and
2132 * bringing partial write blocks uptodate first.
2133 *
2134 * The filesystem needs to handle block truncation upon failure.
2135 */
2136 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2137 unsigned flags, struct page **pagep, get_block_t *get_block)
2138 {
2139 pgoff_t index = pos >> PAGE_SHIFT;
2140 struct page *page;
2141 int status;
2142
2143 page = grab_cache_page_write_begin(mapping, index, flags);
2144 if (!page)
2145 return -ENOMEM;
2146
2147 status = __block_write_begin(page, pos, len, get_block);
2148 if (unlikely(status)) {
2149 unlock_page(page);
2150 put_page(page);
2151 page = NULL;
2152 }
2153
2154 *pagep = page;
2155 return status;
2156 }
2157 EXPORT_SYMBOL(block_write_begin);
2158
2159 int block_write_end(struct file *file, struct address_space *mapping,
2160 loff_t pos, unsigned len, unsigned copied,
2161 struct page *page, void *fsdata)
2162 {
2163 struct inode *inode = mapping->host;
2164 unsigned start;
2165
2166 start = pos & (PAGE_SIZE - 1);
2167
2168 if (unlikely(copied < len)) {
2169 /*
2170 * The buffers that were written will now be uptodate, so we
2171 * don't have to worry about a readpage reading them and
2172 * overwriting a partial write. However if we have encountered
2173 * a short write and only partially written into a buffer, it
2174 * will not be marked uptodate, so a readpage might come in and
2175 * destroy our partial write.
2176 *
2177 * Do the simplest thing, and just treat any short write to a
2178 * non uptodate page as a zero-length write, and force the
2179 * caller to redo the whole thing.
2180 */
2181 if (!PageUptodate(page))
2182 copied = 0;
2183
2184 page_zero_new_buffers(page, start+copied, start+len);
2185 }
2186 flush_dcache_page(page);
2187
2188 /* This could be a short (even 0-length) commit */
2189 __block_commit_write(inode, page, start, start+copied);
2190
2191 return copied;
2192 }
2193 EXPORT_SYMBOL(block_write_end);
2194
2195 int generic_write_end(struct file *file, struct address_space *mapping,
2196 loff_t pos, unsigned len, unsigned copied,
2197 struct page *page, void *fsdata)
2198 {
2199 struct inode *inode = mapping->host;
2200 loff_t old_size = inode->i_size;
2201 int i_size_changed = 0;
2202
2203 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2204
2205 /*
2206 * No need to use i_size_read() here, the i_size
2207 * cannot change under us because we hold i_mutex.
2208 *
2209 * But it's important to update i_size while still holding page lock:
2210 * page writeout could otherwise come in and zero beyond i_size.
2211 */
2212 if (pos+copied > inode->i_size) {
2213 i_size_write(inode, pos+copied);
2214 i_size_changed = 1;
2215 }
2216
2217 unlock_page(page);
2218 put_page(page);
2219
2220 if (old_size < pos)
2221 pagecache_isize_extended(inode, old_size, pos);
2222 /*
2223 * Don't mark the inode dirty under page lock. First, it unnecessarily
2224 * makes the holding time of page lock longer. Second, it forces lock
2225 * ordering of page lock and transaction start for journaling
2226 * filesystems.
2227 */
2228 if (i_size_changed)
2229 mark_inode_dirty(inode);
2230
2231 return copied;
2232 }
2233 EXPORT_SYMBOL(generic_write_end);
2234
2235 /*
2236 * block_is_partially_uptodate checks whether buffers within a page are
2237 * uptodate or not.
2238 *
2239 * Returns true if all buffers which correspond to a file portion
2240 * we want to read are uptodate.
2241 */
2242 int block_is_partially_uptodate(struct page *page, unsigned long from,
2243 unsigned long count)
2244 {
2245 unsigned block_start, block_end, blocksize;
2246 unsigned to;
2247 struct buffer_head *bh, *head;
2248 int ret = 1;
2249
2250 if (!page_has_buffers(page))
2251 return 0;
2252
2253 head = page_buffers(page);
2254 blocksize = head->b_size;
2255 to = min_t(unsigned, PAGE_SIZE - from, count);
2256 to = from + to;
2257 if (from < blocksize && to > PAGE_SIZE - blocksize)
2258 return 0;
2259
2260 bh = head;
2261 block_start = 0;
2262 do {
2263 block_end = block_start + blocksize;
2264 if (block_end > from && block_start < to) {
2265 if (!buffer_uptodate(bh)) {
2266 ret = 0;
2267 break;
2268 }
2269 if (block_end >= to)
2270 break;
2271 }
2272 block_start = block_end;
2273 bh = bh->b_this_page;
2274 } while (bh != head);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL(block_is_partially_uptodate);
2279
2280 /*
2281 * Generic "read page" function for block devices that have the normal
2282 * get_block functionality. This is most of the block device filesystems.
2283 * Reads the page asynchronously --- the unlock_buffer() and
2284 * set/clear_buffer_uptodate() functions propagate buffer state into the
2285 * page struct once IO has completed.
2286 */
2287 int block_read_full_page(struct page *page, get_block_t *get_block)
2288 {
2289 struct inode *inode = page->mapping->host;
2290 sector_t iblock, lblock;
2291 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2292 unsigned int blocksize, bbits;
2293 int nr, i;
2294 int fully_mapped = 1;
2295
2296 head = create_page_buffers(page, inode, 0);
2297 blocksize = head->b_size;
2298 bbits = block_size_bits(blocksize);
2299
2300 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2301 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2302 bh = head;
2303 nr = 0;
2304 i = 0;
2305
2306 do {
2307 if (buffer_uptodate(bh))
2308 continue;
2309
2310 if (!buffer_mapped(bh)) {
2311 int err = 0;
2312
2313 fully_mapped = 0;
2314 if (iblock < lblock) {
2315 WARN_ON(bh->b_size != blocksize);
2316 err = get_block(inode, iblock, bh, 0);
2317 if (err)
2318 SetPageError(page);
2319 }
2320 if (!buffer_mapped(bh)) {
2321 zero_user(page, i * blocksize, blocksize);
2322 if (!err)
2323 set_buffer_uptodate(bh);
2324 continue;
2325 }
2326 /*
2327 * get_block() might have updated the buffer
2328 * synchronously
2329 */
2330 if (buffer_uptodate(bh))
2331 continue;
2332 }
2333 arr[nr++] = bh;
2334 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2335
2336 if (fully_mapped)
2337 SetPageMappedToDisk(page);
2338
2339 if (!nr) {
2340 /*
2341 * All buffers are uptodate - we can set the page uptodate
2342 * as well. But not if get_block() returned an error.
2343 */
2344 if (!PageError(page))
2345 SetPageUptodate(page);
2346 unlock_page(page);
2347 return 0;
2348 }
2349
2350 /* Stage two: lock the buffers */
2351 for (i = 0; i < nr; i++) {
2352 bh = arr[i];
2353 lock_buffer(bh);
2354 mark_buffer_async_read(bh);
2355 }
2356
2357 /*
2358 * Stage 3: start the IO. Check for uptodateness
2359 * inside the buffer lock in case another process reading
2360 * the underlying blockdev brought it uptodate (the sct fix).
2361 */
2362 for (i = 0; i < nr; i++) {
2363 bh = arr[i];
2364 if (buffer_uptodate(bh))
2365 end_buffer_async_read(bh, 1);
2366 else
2367 submit_bh(REQ_OP_READ, 0, bh);
2368 }
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(block_read_full_page);
2372
2373 /* utility function for filesystems that need to do work on expanding
2374 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2375 * deal with the hole.
2376 */
2377 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2378 {
2379 struct address_space *mapping = inode->i_mapping;
2380 struct page *page;
2381 void *fsdata;
2382 int err;
2383
2384 err = inode_newsize_ok(inode, size);
2385 if (err)
2386 goto out;
2387
2388 err = pagecache_write_begin(NULL, mapping, size, 0,
2389 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2390 if (err)
2391 goto out;
2392
2393 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2394 BUG_ON(err > 0);
2395
2396 out:
2397 return err;
2398 }
2399 EXPORT_SYMBOL(generic_cont_expand_simple);
2400
2401 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2402 loff_t pos, loff_t *bytes)
2403 {
2404 struct inode *inode = mapping->host;
2405 unsigned int blocksize = i_blocksize(inode);
2406 struct page *page;
2407 void *fsdata;
2408 pgoff_t index, curidx;
2409 loff_t curpos;
2410 unsigned zerofrom, offset, len;
2411 int err = 0;
2412
2413 index = pos >> PAGE_SHIFT;
2414 offset = pos & ~PAGE_MASK;
2415
2416 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2417 zerofrom = curpos & ~PAGE_MASK;
2418 if (zerofrom & (blocksize-1)) {
2419 *bytes |= (blocksize-1);
2420 (*bytes)++;
2421 }
2422 len = PAGE_SIZE - zerofrom;
2423
2424 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425 &page, &fsdata);
2426 if (err)
2427 goto out;
2428 zero_user(page, zerofrom, len);
2429 err = pagecache_write_end(file, mapping, curpos, len, len,
2430 page, fsdata);
2431 if (err < 0)
2432 goto out;
2433 BUG_ON(err != len);
2434 err = 0;
2435
2436 balance_dirty_pages_ratelimited(mapping);
2437
2438 if (unlikely(fatal_signal_pending(current))) {
2439 err = -EINTR;
2440 goto out;
2441 }
2442 }
2443
2444 /* page covers the boundary, find the boundary offset */
2445 if (index == curidx) {
2446 zerofrom = curpos & ~PAGE_MASK;
2447 /* if we will expand the thing last block will be filled */
2448 if (offset <= zerofrom) {
2449 goto out;
2450 }
2451 if (zerofrom & (blocksize-1)) {
2452 *bytes |= (blocksize-1);
2453 (*bytes)++;
2454 }
2455 len = offset - zerofrom;
2456
2457 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2458 &page, &fsdata);
2459 if (err)
2460 goto out;
2461 zero_user(page, zerofrom, len);
2462 err = pagecache_write_end(file, mapping, curpos, len, len,
2463 page, fsdata);
2464 if (err < 0)
2465 goto out;
2466 BUG_ON(err != len);
2467 err = 0;
2468 }
2469 out:
2470 return err;
2471 }
2472
2473 /*
2474 * For moronic filesystems that do not allow holes in file.
2475 * We may have to extend the file.
2476 */
2477 int cont_write_begin(struct file *file, struct address_space *mapping,
2478 loff_t pos, unsigned len, unsigned flags,
2479 struct page **pagep, void **fsdata,
2480 get_block_t *get_block, loff_t *bytes)
2481 {
2482 struct inode *inode = mapping->host;
2483 unsigned int blocksize = i_blocksize(inode);
2484 unsigned int zerofrom;
2485 int err;
2486
2487 err = cont_expand_zero(file, mapping, pos, bytes);
2488 if (err)
2489 return err;
2490
2491 zerofrom = *bytes & ~PAGE_MASK;
2492 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2493 *bytes |= (blocksize-1);
2494 (*bytes)++;
2495 }
2496
2497 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2498 }
2499 EXPORT_SYMBOL(cont_write_begin);
2500
2501 int block_commit_write(struct page *page, unsigned from, unsigned to)
2502 {
2503 struct inode *inode = page->mapping->host;
2504 __block_commit_write(inode,page,from,to);
2505 return 0;
2506 }
2507 EXPORT_SYMBOL(block_commit_write);
2508
2509 /*
2510 * block_page_mkwrite() is not allowed to change the file size as it gets
2511 * called from a page fault handler when a page is first dirtied. Hence we must
2512 * be careful to check for EOF conditions here. We set the page up correctly
2513 * for a written page which means we get ENOSPC checking when writing into
2514 * holes and correct delalloc and unwritten extent mapping on filesystems that
2515 * support these features.
2516 *
2517 * We are not allowed to take the i_mutex here so we have to play games to
2518 * protect against truncate races as the page could now be beyond EOF. Because
2519 * truncate writes the inode size before removing pages, once we have the
2520 * page lock we can determine safely if the page is beyond EOF. If it is not
2521 * beyond EOF, then the page is guaranteed safe against truncation until we
2522 * unlock the page.
2523 *
2524 * Direct callers of this function should protect against filesystem freezing
2525 * using sb_start_pagefault() - sb_end_pagefault() functions.
2526 */
2527 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2528 get_block_t get_block)
2529 {
2530 struct page *page = vmf->page;
2531 struct inode *inode = file_inode(vma->vm_file);
2532 unsigned long end;
2533 loff_t size;
2534 int ret;
2535
2536 lock_page(page);
2537 size = i_size_read(inode);
2538 if ((page->mapping != inode->i_mapping) ||
2539 (page_offset(page) > size)) {
2540 /* We overload EFAULT to mean page got truncated */
2541 ret = -EFAULT;
2542 goto out_unlock;
2543 }
2544
2545 /* page is wholly or partially inside EOF */
2546 if (((page->index + 1) << PAGE_SHIFT) > size)
2547 end = size & ~PAGE_MASK;
2548 else
2549 end = PAGE_SIZE;
2550
2551 ret = __block_write_begin(page, 0, end, get_block);
2552 if (!ret)
2553 ret = block_commit_write(page, 0, end);
2554
2555 if (unlikely(ret < 0))
2556 goto out_unlock;
2557 set_page_dirty(page);
2558 wait_for_stable_page(page);
2559 return 0;
2560 out_unlock:
2561 unlock_page(page);
2562 return ret;
2563 }
2564 EXPORT_SYMBOL(block_page_mkwrite);
2565
2566 /*
2567 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2568 * immediately, while under the page lock. So it needs a special end_io
2569 * handler which does not touch the bh after unlocking it.
2570 */
2571 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2572 {
2573 __end_buffer_read_notouch(bh, uptodate);
2574 }
2575
2576 /*
2577 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2578 * the page (converting it to circular linked list and taking care of page
2579 * dirty races).
2580 */
2581 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2582 {
2583 struct buffer_head *bh;
2584
2585 BUG_ON(!PageLocked(page));
2586
2587 spin_lock(&page->mapping->private_lock);
2588 bh = head;
2589 do {
2590 if (PageDirty(page))
2591 set_buffer_dirty(bh);
2592 if (!bh->b_this_page)
2593 bh->b_this_page = head;
2594 bh = bh->b_this_page;
2595 } while (bh != head);
2596 attach_page_buffers(page, head);
2597 spin_unlock(&page->mapping->private_lock);
2598 }
2599
2600 /*
2601 * On entry, the page is fully not uptodate.
2602 * On exit the page is fully uptodate in the areas outside (from,to)
2603 * The filesystem needs to handle block truncation upon failure.
2604 */
2605 int nobh_write_begin(struct address_space *mapping,
2606 loff_t pos, unsigned len, unsigned flags,
2607 struct page **pagep, void **fsdata,
2608 get_block_t *get_block)
2609 {
2610 struct inode *inode = mapping->host;
2611 const unsigned blkbits = inode->i_blkbits;
2612 const unsigned blocksize = 1 << blkbits;
2613 struct buffer_head *head, *bh;
2614 struct page *page;
2615 pgoff_t index;
2616 unsigned from, to;
2617 unsigned block_in_page;
2618 unsigned block_start, block_end;
2619 sector_t block_in_file;
2620 int nr_reads = 0;
2621 int ret = 0;
2622 int is_mapped_to_disk = 1;
2623
2624 index = pos >> PAGE_SHIFT;
2625 from = pos & (PAGE_SIZE - 1);
2626 to = from + len;
2627
2628 page = grab_cache_page_write_begin(mapping, index, flags);
2629 if (!page)
2630 return -ENOMEM;
2631 *pagep = page;
2632 *fsdata = NULL;
2633
2634 if (page_has_buffers(page)) {
2635 ret = __block_write_begin(page, pos, len, get_block);
2636 if (unlikely(ret))
2637 goto out_release;
2638 return ret;
2639 }
2640
2641 if (PageMappedToDisk(page))
2642 return 0;
2643
2644 /*
2645 * Allocate buffers so that we can keep track of state, and potentially
2646 * attach them to the page if an error occurs. In the common case of
2647 * no error, they will just be freed again without ever being attached
2648 * to the page (which is all OK, because we're under the page lock).
2649 *
2650 * Be careful: the buffer linked list is a NULL terminated one, rather
2651 * than the circular one we're used to.
2652 */
2653 head = alloc_page_buffers(page, blocksize, 0);
2654 if (!head) {
2655 ret = -ENOMEM;
2656 goto out_release;
2657 }
2658
2659 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2660
2661 /*
2662 * We loop across all blocks in the page, whether or not they are
2663 * part of the affected region. This is so we can discover if the
2664 * page is fully mapped-to-disk.
2665 */
2666 for (block_start = 0, block_in_page = 0, bh = head;
2667 block_start < PAGE_SIZE;
2668 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2669 int create;
2670
2671 block_end = block_start + blocksize;
2672 bh->b_state = 0;
2673 create = 1;
2674 if (block_start >= to)
2675 create = 0;
2676 ret = get_block(inode, block_in_file + block_in_page,
2677 bh, create);
2678 if (ret)
2679 goto failed;
2680 if (!buffer_mapped(bh))
2681 is_mapped_to_disk = 0;
2682 if (buffer_new(bh))
2683 clean_bdev_bh_alias(bh);
2684 if (PageUptodate(page)) {
2685 set_buffer_uptodate(bh);
2686 continue;
2687 }
2688 if (buffer_new(bh) || !buffer_mapped(bh)) {
2689 zero_user_segments(page, block_start, from,
2690 to, block_end);
2691 continue;
2692 }
2693 if (buffer_uptodate(bh))
2694 continue; /* reiserfs does this */
2695 if (block_start < from || block_end > to) {
2696 lock_buffer(bh);
2697 bh->b_end_io = end_buffer_read_nobh;
2698 submit_bh(REQ_OP_READ, 0, bh);
2699 nr_reads++;
2700 }
2701 }
2702
2703 if (nr_reads) {
2704 /*
2705 * The page is locked, so these buffers are protected from
2706 * any VM or truncate activity. Hence we don't need to care
2707 * for the buffer_head refcounts.
2708 */
2709 for (bh = head; bh; bh = bh->b_this_page) {
2710 wait_on_buffer(bh);
2711 if (!buffer_uptodate(bh))
2712 ret = -EIO;
2713 }
2714 if (ret)
2715 goto failed;
2716 }
2717
2718 if (is_mapped_to_disk)
2719 SetPageMappedToDisk(page);
2720
2721 *fsdata = head; /* to be released by nobh_write_end */
2722
2723 return 0;
2724
2725 failed:
2726 BUG_ON(!ret);
2727 /*
2728 * Error recovery is a bit difficult. We need to zero out blocks that
2729 * were newly allocated, and dirty them to ensure they get written out.
2730 * Buffers need to be attached to the page at this point, otherwise
2731 * the handling of potential IO errors during writeout would be hard
2732 * (could try doing synchronous writeout, but what if that fails too?)
2733 */
2734 attach_nobh_buffers(page, head);
2735 page_zero_new_buffers(page, from, to);
2736
2737 out_release:
2738 unlock_page(page);
2739 put_page(page);
2740 *pagep = NULL;
2741
2742 return ret;
2743 }
2744 EXPORT_SYMBOL(nobh_write_begin);
2745
2746 int nobh_write_end(struct file *file, struct address_space *mapping,
2747 loff_t pos, unsigned len, unsigned copied,
2748 struct page *page, void *fsdata)
2749 {
2750 struct inode *inode = page->mapping->host;
2751 struct buffer_head *head = fsdata;
2752 struct buffer_head *bh;
2753 BUG_ON(fsdata != NULL && page_has_buffers(page));
2754
2755 if (unlikely(copied < len) && head)
2756 attach_nobh_buffers(page, head);
2757 if (page_has_buffers(page))
2758 return generic_write_end(file, mapping, pos, len,
2759 copied, page, fsdata);
2760
2761 SetPageUptodate(page);
2762 set_page_dirty(page);
2763 if (pos+copied > inode->i_size) {
2764 i_size_write(inode, pos+copied);
2765 mark_inode_dirty(inode);
2766 }
2767
2768 unlock_page(page);
2769 put_page(page);
2770
2771 while (head) {
2772 bh = head;
2773 head = head->b_this_page;
2774 free_buffer_head(bh);
2775 }
2776
2777 return copied;
2778 }
2779 EXPORT_SYMBOL(nobh_write_end);
2780
2781 /*
2782 * nobh_writepage() - based on block_full_write_page() except
2783 * that it tries to operate without attaching bufferheads to
2784 * the page.
2785 */
2786 int nobh_writepage(struct page *page, get_block_t *get_block,
2787 struct writeback_control *wbc)
2788 {
2789 struct inode * const inode = page->mapping->host;
2790 loff_t i_size = i_size_read(inode);
2791 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2792 unsigned offset;
2793 int ret;
2794
2795 /* Is the page fully inside i_size? */
2796 if (page->index < end_index)
2797 goto out;
2798
2799 /* Is the page fully outside i_size? (truncate in progress) */
2800 offset = i_size & (PAGE_SIZE-1);
2801 if (page->index >= end_index+1 || !offset) {
2802 /*
2803 * The page may have dirty, unmapped buffers. For example,
2804 * they may have been added in ext3_writepage(). Make them
2805 * freeable here, so the page does not leak.
2806 */
2807 #if 0
2808 /* Not really sure about this - do we need this ? */
2809 if (page->mapping->a_ops->invalidatepage)
2810 page->mapping->a_ops->invalidatepage(page, offset);
2811 #endif
2812 unlock_page(page);
2813 return 0; /* don't care */
2814 }
2815
2816 /*
2817 * The page straddles i_size. It must be zeroed out on each and every
2818 * writepage invocation because it may be mmapped. "A file is mapped
2819 * in multiples of the page size. For a file that is not a multiple of
2820 * the page size, the remaining memory is zeroed when mapped, and
2821 * writes to that region are not written out to the file."
2822 */
2823 zero_user_segment(page, offset, PAGE_SIZE);
2824 out:
2825 ret = mpage_writepage(page, get_block, wbc);
2826 if (ret == -EAGAIN)
2827 ret = __block_write_full_page(inode, page, get_block, wbc,
2828 end_buffer_async_write);
2829 return ret;
2830 }
2831 EXPORT_SYMBOL(nobh_writepage);
2832
2833 int nobh_truncate_page(struct address_space *mapping,
2834 loff_t from, get_block_t *get_block)
2835 {
2836 pgoff_t index = from >> PAGE_SHIFT;
2837 unsigned offset = from & (PAGE_SIZE-1);
2838 unsigned blocksize;
2839 sector_t iblock;
2840 unsigned length, pos;
2841 struct inode *inode = mapping->host;
2842 struct page *page;
2843 struct buffer_head map_bh;
2844 int err;
2845
2846 blocksize = i_blocksize(inode);
2847 length = offset & (blocksize - 1);
2848
2849 /* Block boundary? Nothing to do */
2850 if (!length)
2851 return 0;
2852
2853 length = blocksize - length;
2854 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2855
2856 page = grab_cache_page(mapping, index);
2857 err = -ENOMEM;
2858 if (!page)
2859 goto out;
2860
2861 if (page_has_buffers(page)) {
2862 has_buffers:
2863 unlock_page(page);
2864 put_page(page);
2865 return block_truncate_page(mapping, from, get_block);
2866 }
2867
2868 /* Find the buffer that contains "offset" */
2869 pos = blocksize;
2870 while (offset >= pos) {
2871 iblock++;
2872 pos += blocksize;
2873 }
2874
2875 map_bh.b_size = blocksize;
2876 map_bh.b_state = 0;
2877 err = get_block(inode, iblock, &map_bh, 0);
2878 if (err)
2879 goto unlock;
2880 /* unmapped? It's a hole - nothing to do */
2881 if (!buffer_mapped(&map_bh))
2882 goto unlock;
2883
2884 /* Ok, it's mapped. Make sure it's up-to-date */
2885 if (!PageUptodate(page)) {
2886 err = mapping->a_ops->readpage(NULL, page);
2887 if (err) {
2888 put_page(page);
2889 goto out;
2890 }
2891 lock_page(page);
2892 if (!PageUptodate(page)) {
2893 err = -EIO;
2894 goto unlock;
2895 }
2896 if (page_has_buffers(page))
2897 goto has_buffers;
2898 }
2899 zero_user(page, offset, length);
2900 set_page_dirty(page);
2901 err = 0;
2902
2903 unlock:
2904 unlock_page(page);
2905 put_page(page);
2906 out:
2907 return err;
2908 }
2909 EXPORT_SYMBOL(nobh_truncate_page);
2910
2911 int block_truncate_page(struct address_space *mapping,
2912 loff_t from, get_block_t *get_block)
2913 {
2914 pgoff_t index = from >> PAGE_SHIFT;
2915 unsigned offset = from & (PAGE_SIZE-1);
2916 unsigned blocksize;
2917 sector_t iblock;
2918 unsigned length, pos;
2919 struct inode *inode = mapping->host;
2920 struct page *page;
2921 struct buffer_head *bh;
2922 int err;
2923
2924 blocksize = i_blocksize(inode);
2925 length = offset & (blocksize - 1);
2926
2927 /* Block boundary? Nothing to do */
2928 if (!length)
2929 return 0;
2930
2931 length = blocksize - length;
2932 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2933
2934 page = grab_cache_page(mapping, index);
2935 err = -ENOMEM;
2936 if (!page)
2937 goto out;
2938
2939 if (!page_has_buffers(page))
2940 create_empty_buffers(page, blocksize, 0);
2941
2942 /* Find the buffer that contains "offset" */
2943 bh = page_buffers(page);
2944 pos = blocksize;
2945 while (offset >= pos) {
2946 bh = bh->b_this_page;
2947 iblock++;
2948 pos += blocksize;
2949 }
2950
2951 err = 0;
2952 if (!buffer_mapped(bh)) {
2953 WARN_ON(bh->b_size != blocksize);
2954 err = get_block(inode, iblock, bh, 0);
2955 if (err)
2956 goto unlock;
2957 /* unmapped? It's a hole - nothing to do */
2958 if (!buffer_mapped(bh))
2959 goto unlock;
2960 }
2961
2962 /* Ok, it's mapped. Make sure it's up-to-date */
2963 if (PageUptodate(page))
2964 set_buffer_uptodate(bh);
2965
2966 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2967 err = -EIO;
2968 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2969 wait_on_buffer(bh);
2970 /* Uhhuh. Read error. Complain and punt. */
2971 if (!buffer_uptodate(bh))
2972 goto unlock;
2973 }
2974
2975 zero_user(page, offset, length);
2976 mark_buffer_dirty(bh);
2977 err = 0;
2978
2979 unlock:
2980 unlock_page(page);
2981 put_page(page);
2982 out:
2983 return err;
2984 }
2985 EXPORT_SYMBOL(block_truncate_page);
2986
2987 /*
2988 * The generic ->writepage function for buffer-backed address_spaces
2989 */
2990 int block_write_full_page(struct page *page, get_block_t *get_block,
2991 struct writeback_control *wbc)
2992 {
2993 struct inode * const inode = page->mapping->host;
2994 loff_t i_size = i_size_read(inode);
2995 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2996 unsigned offset;
2997
2998 /* Is the page fully inside i_size? */
2999 if (page->index < end_index)
3000 return __block_write_full_page(inode, page, get_block, wbc,
3001 end_buffer_async_write);
3002
3003 /* Is the page fully outside i_size? (truncate in progress) */
3004 offset = i_size & (PAGE_SIZE-1);
3005 if (page->index >= end_index+1 || !offset) {
3006 /*
3007 * The page may have dirty, unmapped buffers. For example,
3008 * they may have been added in ext3_writepage(). Make them
3009 * freeable here, so the page does not leak.
3010 */
3011 do_invalidatepage(page, 0, PAGE_SIZE);
3012 unlock_page(page);
3013 return 0; /* don't care */
3014 }
3015
3016 /*
3017 * The page straddles i_size. It must be zeroed out on each and every
3018 * writepage invocation because it may be mmapped. "A file is mapped
3019 * in multiples of the page size. For a file that is not a multiple of
3020 * the page size, the remaining memory is zeroed when mapped, and
3021 * writes to that region are not written out to the file."
3022 */
3023 zero_user_segment(page, offset, PAGE_SIZE);
3024 return __block_write_full_page(inode, page, get_block, wbc,
3025 end_buffer_async_write);
3026 }
3027 EXPORT_SYMBOL(block_write_full_page);
3028
3029 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3030 get_block_t *get_block)
3031 {
3032 struct inode *inode = mapping->host;
3033 struct buffer_head tmp = {
3034 .b_size = i_blocksize(inode),
3035 };
3036
3037 get_block(inode, block, &tmp, 0);
3038 return tmp.b_blocknr;
3039 }
3040 EXPORT_SYMBOL(generic_block_bmap);
3041
3042 static void end_bio_bh_io_sync(struct bio *bio)
3043 {
3044 struct buffer_head *bh = bio->bi_private;
3045
3046 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3047 set_bit(BH_Quiet, &bh->b_state);
3048
3049 bh->b_end_io(bh, !bio->bi_status);
3050 bio_put(bio);
3051 }
3052
3053 /*
3054 * This allows us to do IO even on the odd last sectors
3055 * of a device, even if the block size is some multiple
3056 * of the physical sector size.
3057 *
3058 * We'll just truncate the bio to the size of the device,
3059 * and clear the end of the buffer head manually.
3060 *
3061 * Truly out-of-range accesses will turn into actual IO
3062 * errors, this only handles the "we need to be able to
3063 * do IO at the final sector" case.
3064 */
3065 void guard_bio_eod(int op, struct bio *bio)
3066 {
3067 sector_t maxsector;
3068 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3069 unsigned truncated_bytes;
3070 struct hd_struct *part;
3071
3072 rcu_read_lock();
3073 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3074 if (part)
3075 maxsector = part_nr_sects_read(part);
3076 else
3077 maxsector = get_capacity(bio->bi_disk);
3078 rcu_read_unlock();
3079
3080 if (!maxsector)
3081 return;
3082
3083 /*
3084 * If the *whole* IO is past the end of the device,
3085 * let it through, and the IO layer will turn it into
3086 * an EIO.
3087 */
3088 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3089 return;
3090
3091 maxsector -= bio->bi_iter.bi_sector;
3092 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3093 return;
3094
3095 /* Uhhuh. We've got a bio that straddles the device size! */
3096 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3097
3098 /*
3099 * The bio contains more than one segment which spans EOD, just return
3100 * and let IO layer turn it into an EIO
3101 */
3102 if (truncated_bytes > bvec->bv_len)
3103 return;
3104
3105 /* Truncate the bio.. */
3106 bio->bi_iter.bi_size -= truncated_bytes;
3107 bvec->bv_len -= truncated_bytes;
3108
3109 /* ..and clear the end of the buffer for reads */
3110 if (op == REQ_OP_READ) {
3111 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3112 truncated_bytes);
3113 }
3114 }
3115
3116 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3117 enum rw_hint write_hint, struct writeback_control *wbc)
3118 {
3119 struct bio *bio;
3120
3121 BUG_ON(!buffer_locked(bh));
3122 BUG_ON(!buffer_mapped(bh));
3123 BUG_ON(!bh->b_end_io);
3124 BUG_ON(buffer_delay(bh));
3125 BUG_ON(buffer_unwritten(bh));
3126
3127 /*
3128 * Only clear out a write error when rewriting
3129 */
3130 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3131 clear_buffer_write_io_error(bh);
3132
3133 /*
3134 * from here on down, it's all bio -- do the initial mapping,
3135 * submit_bio -> generic_make_request may further map this bio around
3136 */
3137 bio = bio_alloc(GFP_NOIO, 1);
3138
3139 if (wbc) {
3140 wbc_init_bio(wbc, bio);
3141 wbc_account_io(wbc, bh->b_page, bh->b_size);
3142 }
3143
3144 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3145 bio_set_dev(bio, bh->b_bdev);
3146 bio->bi_write_hint = write_hint;
3147
3148 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3149 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3150
3151 bio->bi_end_io = end_bio_bh_io_sync;
3152 bio->bi_private = bh;
3153
3154 /* Take care of bh's that straddle the end of the device */
3155 guard_bio_eod(op, bio);
3156
3157 if (buffer_meta(bh))
3158 op_flags |= REQ_META;
3159 if (buffer_prio(bh))
3160 op_flags |= REQ_PRIO;
3161 bio_set_op_attrs(bio, op, op_flags);
3162
3163 submit_bio(bio);
3164 return 0;
3165 }
3166
3167 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3168 {
3169 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3170 }
3171 EXPORT_SYMBOL(submit_bh);
3172
3173 /**
3174 * ll_rw_block: low-level access to block devices (DEPRECATED)
3175 * @op: whether to %READ or %WRITE
3176 * @op_flags: req_flag_bits
3177 * @nr: number of &struct buffer_heads in the array
3178 * @bhs: array of pointers to &struct buffer_head
3179 *
3180 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3181 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3182 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3183 * %REQ_RAHEAD.
3184 *
3185 * This function drops any buffer that it cannot get a lock on (with the
3186 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3187 * request, and any buffer that appears to be up-to-date when doing read
3188 * request. Further it marks as clean buffers that are processed for
3189 * writing (the buffer cache won't assume that they are actually clean
3190 * until the buffer gets unlocked).
3191 *
3192 * ll_rw_block sets b_end_io to simple completion handler that marks
3193 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3194 * any waiters.
3195 *
3196 * All of the buffers must be for the same device, and must also be a
3197 * multiple of the current approved size for the device.
3198 */
3199 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3200 {
3201 int i;
3202
3203 for (i = 0; i < nr; i++) {
3204 struct buffer_head *bh = bhs[i];
3205
3206 if (!trylock_buffer(bh))
3207 continue;
3208 if (op == WRITE) {
3209 if (test_clear_buffer_dirty(bh)) {
3210 bh->b_end_io = end_buffer_write_sync;
3211 get_bh(bh);
3212 submit_bh(op, op_flags, bh);
3213 continue;
3214 }
3215 } else {
3216 if (!buffer_uptodate(bh)) {
3217 bh->b_end_io = end_buffer_read_sync;
3218 get_bh(bh);
3219 submit_bh(op, op_flags, bh);
3220 continue;
3221 }
3222 }
3223 unlock_buffer(bh);
3224 }
3225 }
3226 EXPORT_SYMBOL(ll_rw_block);
3227
3228 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3229 {
3230 lock_buffer(bh);
3231 if (!test_clear_buffer_dirty(bh)) {
3232 unlock_buffer(bh);
3233 return;
3234 }
3235 bh->b_end_io = end_buffer_write_sync;
3236 get_bh(bh);
3237 submit_bh(REQ_OP_WRITE, op_flags, bh);
3238 }
3239 EXPORT_SYMBOL(write_dirty_buffer);
3240
3241 /*
3242 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3243 * and then start new I/O and then wait upon it. The caller must have a ref on
3244 * the buffer_head.
3245 */
3246 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3247 {
3248 int ret = 0;
3249
3250 WARN_ON(atomic_read(&bh->b_count) < 1);
3251 lock_buffer(bh);
3252 if (test_clear_buffer_dirty(bh)) {
3253 get_bh(bh);
3254 bh->b_end_io = end_buffer_write_sync;
3255 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3256 wait_on_buffer(bh);
3257 if (!ret && !buffer_uptodate(bh))
3258 ret = -EIO;
3259 } else {
3260 unlock_buffer(bh);
3261 }
3262 return ret;
3263 }
3264 EXPORT_SYMBOL(__sync_dirty_buffer);
3265
3266 int sync_dirty_buffer(struct buffer_head *bh)
3267 {
3268 return __sync_dirty_buffer(bh, REQ_SYNC);
3269 }
3270 EXPORT_SYMBOL(sync_dirty_buffer);
3271
3272 /*
3273 * try_to_free_buffers() checks if all the buffers on this particular page
3274 * are unused, and releases them if so.
3275 *
3276 * Exclusion against try_to_free_buffers may be obtained by either
3277 * locking the page or by holding its mapping's private_lock.
3278 *
3279 * If the page is dirty but all the buffers are clean then we need to
3280 * be sure to mark the page clean as well. This is because the page
3281 * may be against a block device, and a later reattachment of buffers
3282 * to a dirty page will set *all* buffers dirty. Which would corrupt
3283 * filesystem data on the same device.
3284 *
3285 * The same applies to regular filesystem pages: if all the buffers are
3286 * clean then we set the page clean and proceed. To do that, we require
3287 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3288 * private_lock.
3289 *
3290 * try_to_free_buffers() is non-blocking.
3291 */
3292 static inline int buffer_busy(struct buffer_head *bh)
3293 {
3294 return atomic_read(&bh->b_count) |
3295 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3296 }
3297
3298 static int
3299 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3300 {
3301 struct buffer_head *head = page_buffers(page);
3302 struct buffer_head *bh;
3303
3304 bh = head;
3305 do {
3306 if (buffer_busy(bh))
3307 goto failed;
3308 bh = bh->b_this_page;
3309 } while (bh != head);
3310
3311 do {
3312 struct buffer_head *next = bh->b_this_page;
3313
3314 if (bh->b_assoc_map)
3315 __remove_assoc_queue(bh);
3316 bh = next;
3317 } while (bh != head);
3318 *buffers_to_free = head;
3319 __clear_page_buffers(page);
3320 return 1;
3321 failed:
3322 return 0;
3323 }
3324
3325 int try_to_free_buffers(struct page *page)
3326 {
3327 struct address_space * const mapping = page->mapping;
3328 struct buffer_head *buffers_to_free = NULL;
3329 int ret = 0;
3330
3331 BUG_ON(!PageLocked(page));
3332 if (PageWriteback(page))
3333 return 0;
3334
3335 if (mapping == NULL) { /* can this still happen? */
3336 ret = drop_buffers(page, &buffers_to_free);
3337 goto out;
3338 }
3339
3340 spin_lock(&mapping->private_lock);
3341 ret = drop_buffers(page, &buffers_to_free);
3342
3343 /*
3344 * If the filesystem writes its buffers by hand (eg ext3)
3345 * then we can have clean buffers against a dirty page. We
3346 * clean the page here; otherwise the VM will never notice
3347 * that the filesystem did any IO at all.
3348 *
3349 * Also, during truncate, discard_buffer will have marked all
3350 * the page's buffers clean. We discover that here and clean
3351 * the page also.
3352 *
3353 * private_lock must be held over this entire operation in order
3354 * to synchronise against __set_page_dirty_buffers and prevent the
3355 * dirty bit from being lost.
3356 */
3357 if (ret)
3358 cancel_dirty_page(page);
3359 spin_unlock(&mapping->private_lock);
3360 out:
3361 if (buffers_to_free) {
3362 struct buffer_head *bh = buffers_to_free;
3363
3364 do {
3365 struct buffer_head *next = bh->b_this_page;
3366 free_buffer_head(bh);
3367 bh = next;
3368 } while (bh != buffers_to_free);
3369 }
3370 return ret;
3371 }
3372 EXPORT_SYMBOL(try_to_free_buffers);
3373
3374 /*
3375 * There are no bdflush tunables left. But distributions are
3376 * still running obsolete flush daemons, so we terminate them here.
3377 *
3378 * Use of bdflush() is deprecated and will be removed in a future kernel.
3379 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3380 */
3381 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3382 {
3383 static int msg_count;
3384
3385 if (!capable(CAP_SYS_ADMIN))
3386 return -EPERM;
3387
3388 if (msg_count < 5) {
3389 msg_count++;
3390 printk(KERN_INFO
3391 "warning: process `%s' used the obsolete bdflush"
3392 " system call\n", current->comm);
3393 printk(KERN_INFO "Fix your initscripts?\n");
3394 }
3395
3396 if (func == 1)
3397 do_exit(0);
3398 return 0;
3399 }
3400
3401 /*
3402 * Buffer-head allocation
3403 */
3404 static struct kmem_cache *bh_cachep __read_mostly;
3405
3406 /*
3407 * Once the number of bh's in the machine exceeds this level, we start
3408 * stripping them in writeback.
3409 */
3410 static unsigned long max_buffer_heads;
3411
3412 int buffer_heads_over_limit;
3413
3414 struct bh_accounting {
3415 int nr; /* Number of live bh's */
3416 int ratelimit; /* Limit cacheline bouncing */
3417 };
3418
3419 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3420
3421 static void recalc_bh_state(void)
3422 {
3423 int i;
3424 int tot = 0;
3425
3426 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3427 return;
3428 __this_cpu_write(bh_accounting.ratelimit, 0);
3429 for_each_online_cpu(i)
3430 tot += per_cpu(bh_accounting, i).nr;
3431 buffer_heads_over_limit = (tot > max_buffer_heads);
3432 }
3433
3434 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3435 {
3436 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3437 if (ret) {
3438 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3439 preempt_disable();
3440 __this_cpu_inc(bh_accounting.nr);
3441 recalc_bh_state();
3442 preempt_enable();
3443 }
3444 return ret;
3445 }
3446 EXPORT_SYMBOL(alloc_buffer_head);
3447
3448 void free_buffer_head(struct buffer_head *bh)
3449 {
3450 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3451 kmem_cache_free(bh_cachep, bh);
3452 preempt_disable();
3453 __this_cpu_dec(bh_accounting.nr);
3454 recalc_bh_state();
3455 preempt_enable();
3456 }
3457 EXPORT_SYMBOL(free_buffer_head);
3458
3459 static int buffer_exit_cpu_dead(unsigned int cpu)
3460 {
3461 int i;
3462 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3463
3464 for (i = 0; i < BH_LRU_SIZE; i++) {
3465 brelse(b->bhs[i]);
3466 b->bhs[i] = NULL;
3467 }
3468 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3469 per_cpu(bh_accounting, cpu).nr = 0;
3470 return 0;
3471 }
3472
3473 /**
3474 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3475 * @bh: struct buffer_head
3476 *
3477 * Return true if the buffer is up-to-date and false,
3478 * with the buffer locked, if not.
3479 */
3480 int bh_uptodate_or_lock(struct buffer_head *bh)
3481 {
3482 if (!buffer_uptodate(bh)) {
3483 lock_buffer(bh);
3484 if (!buffer_uptodate(bh))
3485 return 0;
3486 unlock_buffer(bh);
3487 }
3488 return 1;
3489 }
3490 EXPORT_SYMBOL(bh_uptodate_or_lock);
3491
3492 /**
3493 * bh_submit_read - Submit a locked buffer for reading
3494 * @bh: struct buffer_head
3495 *
3496 * Returns zero on success and -EIO on error.
3497 */
3498 int bh_submit_read(struct buffer_head *bh)
3499 {
3500 BUG_ON(!buffer_locked(bh));
3501
3502 if (buffer_uptodate(bh)) {
3503 unlock_buffer(bh);
3504 return 0;
3505 }
3506
3507 get_bh(bh);
3508 bh->b_end_io = end_buffer_read_sync;
3509 submit_bh(REQ_OP_READ, 0, bh);
3510 wait_on_buffer(bh);
3511 if (buffer_uptodate(bh))
3512 return 0;
3513 return -EIO;
3514 }
3515 EXPORT_SYMBOL(bh_submit_read);
3516
3517 /*
3518 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3519 *
3520 * Returns the offset within the file on success, and -ENOENT otherwise.
3521 */
3522 static loff_t
3523 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3524 {
3525 loff_t offset = page_offset(page);
3526 struct buffer_head *bh, *head;
3527 bool seek_data = whence == SEEK_DATA;
3528
3529 if (lastoff < offset)
3530 lastoff = offset;
3531
3532 bh = head = page_buffers(page);
3533 do {
3534 offset += bh->b_size;
3535 if (lastoff >= offset)
3536 continue;
3537
3538 /*
3539 * Unwritten extents that have data in the page cache covering
3540 * them can be identified by the BH_Unwritten state flag.
3541 * Pages with multiple buffers might have a mix of holes, data
3542 * and unwritten extents - any buffer with valid data in it
3543 * should have BH_Uptodate flag set on it.
3544 */
3545
3546 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3547 return lastoff;
3548
3549 lastoff = offset;
3550 } while ((bh = bh->b_this_page) != head);
3551 return -ENOENT;
3552 }
3553
3554 /*
3555 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3556 *
3557 * Within unwritten extents, the page cache determines which parts are holes
3558 * and which are data: unwritten and uptodate buffer heads count as data;
3559 * everything else counts as a hole.
3560 *
3561 * Returns the resulting offset on successs, and -ENOENT otherwise.
3562 */
3563 loff_t
3564 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3565 int whence)
3566 {
3567 pgoff_t index = offset >> PAGE_SHIFT;
3568 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3569 loff_t lastoff = offset;
3570 struct pagevec pvec;
3571
3572 if (length <= 0)
3573 return -ENOENT;
3574
3575 pagevec_init(&pvec, 0);
3576
3577 do {
3578 unsigned nr_pages, i;
3579
3580 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3581 end - 1);
3582 if (nr_pages == 0)
3583 break;
3584
3585 for (i = 0; i < nr_pages; i++) {
3586 struct page *page = pvec.pages[i];
3587
3588 /*
3589 * At this point, the page may be truncated or
3590 * invalidated (changing page->mapping to NULL), or
3591 * even swizzled back from swapper_space to tmpfs file
3592 * mapping. However, page->index will not change
3593 * because we have a reference on the page.
3594 *
3595 * If current page offset is beyond where we've ended,
3596 * we've found a hole.
3597 */
3598 if (whence == SEEK_HOLE &&
3599 lastoff < page_offset(page))
3600 goto check_range;
3601
3602 lock_page(page);
3603 if (likely(page->mapping == inode->i_mapping) &&
3604 page_has_buffers(page)) {
3605 lastoff = page_seek_hole_data(page, lastoff, whence);
3606 if (lastoff >= 0) {
3607 unlock_page(page);
3608 goto check_range;
3609 }
3610 }
3611 unlock_page(page);
3612 lastoff = page_offset(page) + PAGE_SIZE;
3613 }
3614 pagevec_release(&pvec);
3615 } while (index < end);
3616
3617 /* When no page at lastoff and we are not done, we found a hole. */
3618 if (whence != SEEK_HOLE)
3619 goto not_found;
3620
3621 check_range:
3622 if (lastoff < offset + length)
3623 goto out;
3624 not_found:
3625 lastoff = -ENOENT;
3626 out:
3627 pagevec_release(&pvec);
3628 return lastoff;
3629 }
3630
3631 void __init buffer_init(void)
3632 {
3633 unsigned long nrpages;
3634 int ret;
3635
3636 bh_cachep = kmem_cache_create("buffer_head",
3637 sizeof(struct buffer_head), 0,
3638 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3639 SLAB_MEM_SPREAD),
3640 NULL);
3641
3642 /*
3643 * Limit the bh occupancy to 10% of ZONE_NORMAL
3644 */
3645 nrpages = (nr_free_buffer_pages() * 10) / 100;
3646 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3647 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3648 NULL, buffer_exit_cpu_dead);
3649 WARN_ON(ret < 0);
3650 }