]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/ceph/messenger.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[people/arne_f/kernel.git] / fs / ceph / messenger.c
1 #include "ceph_debug.h"
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <net/tcp.h>
13
14 #include "super.h"
15 #include "messenger.h"
16 #include "decode.h"
17 #include "pagelist.h"
18
19 /*
20 * Ceph uses the messenger to exchange ceph_msg messages with other
21 * hosts in the system. The messenger provides ordered and reliable
22 * delivery. We tolerate TCP disconnects by reconnecting (with
23 * exponential backoff) in the case of a fault (disconnection, bad
24 * crc, protocol error). Acks allow sent messages to be discarded by
25 * the sender.
26 */
27
28 /* static tag bytes (protocol control messages) */
29 static char tag_msg = CEPH_MSGR_TAG_MSG;
30 static char tag_ack = CEPH_MSGR_TAG_ACK;
31 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
32
33
34 static void queue_con(struct ceph_connection *con);
35 static void con_work(struct work_struct *);
36 static void ceph_fault(struct ceph_connection *con);
37
38 const char *ceph_name_type_str(int t)
39 {
40 switch (t) {
41 case CEPH_ENTITY_TYPE_MON: return "mon";
42 case CEPH_ENTITY_TYPE_MDS: return "mds";
43 case CEPH_ENTITY_TYPE_OSD: return "osd";
44 case CEPH_ENTITY_TYPE_CLIENT: return "client";
45 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
46 default: return "???";
47 }
48 }
49
50 /*
51 * nicely render a sockaddr as a string.
52 */
53 #define MAX_ADDR_STR 20
54 static char addr_str[MAX_ADDR_STR][40];
55 static DEFINE_SPINLOCK(addr_str_lock);
56 static int last_addr_str;
57
58 const char *pr_addr(const struct sockaddr_storage *ss)
59 {
60 int i;
61 char *s;
62 struct sockaddr_in *in4 = (void *)ss;
63 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
64 struct sockaddr_in6 *in6 = (void *)ss;
65
66 spin_lock(&addr_str_lock);
67 i = last_addr_str++;
68 if (last_addr_str == MAX_ADDR_STR)
69 last_addr_str = 0;
70 spin_unlock(&addr_str_lock);
71 s = addr_str[i];
72
73 switch (ss->ss_family) {
74 case AF_INET:
75 sprintf(s, "%u.%u.%u.%u:%u",
76 (unsigned int)quad[0],
77 (unsigned int)quad[1],
78 (unsigned int)quad[2],
79 (unsigned int)quad[3],
80 (unsigned int)ntohs(in4->sin_port));
81 break;
82
83 case AF_INET6:
84 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
85 in6->sin6_addr.s6_addr16[0],
86 in6->sin6_addr.s6_addr16[1],
87 in6->sin6_addr.s6_addr16[2],
88 in6->sin6_addr.s6_addr16[3],
89 in6->sin6_addr.s6_addr16[4],
90 in6->sin6_addr.s6_addr16[5],
91 in6->sin6_addr.s6_addr16[6],
92 in6->sin6_addr.s6_addr16[7],
93 (unsigned int)ntohs(in6->sin6_port));
94 break;
95
96 default:
97 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
98 }
99
100 return s;
101 }
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106 ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110 * work queue for all reading and writing to/from the socket.
111 */
112 struct workqueue_struct *ceph_msgr_wq;
113
114 int __init ceph_msgr_init(void)
115 {
116 ceph_msgr_wq = create_workqueue("ceph-msgr");
117 if (IS_ERR(ceph_msgr_wq)) {
118 int ret = PTR_ERR(ceph_msgr_wq);
119 pr_err("msgr_init failed to create workqueue: %d\n", ret);
120 ceph_msgr_wq = NULL;
121 return ret;
122 }
123 return 0;
124 }
125
126 void ceph_msgr_exit(void)
127 {
128 destroy_workqueue(ceph_msgr_wq);
129 }
130
131 /*
132 * socket callback functions
133 */
134
135 /* data available on socket, or listen socket received a connect */
136 static void ceph_data_ready(struct sock *sk, int count_unused)
137 {
138 struct ceph_connection *con =
139 (struct ceph_connection *)sk->sk_user_data;
140 if (sk->sk_state != TCP_CLOSE_WAIT) {
141 dout("ceph_data_ready on %p state = %lu, queueing work\n",
142 con, con->state);
143 queue_con(con);
144 }
145 }
146
147 /* socket has buffer space for writing */
148 static void ceph_write_space(struct sock *sk)
149 {
150 struct ceph_connection *con =
151 (struct ceph_connection *)sk->sk_user_data;
152
153 /* only queue to workqueue if there is data we want to write. */
154 if (test_bit(WRITE_PENDING, &con->state)) {
155 dout("ceph_write_space %p queueing write work\n", con);
156 queue_con(con);
157 } else {
158 dout("ceph_write_space %p nothing to write\n", con);
159 }
160
161 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
162 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
163 }
164
165 /* socket's state has changed */
166 static void ceph_state_change(struct sock *sk)
167 {
168 struct ceph_connection *con =
169 (struct ceph_connection *)sk->sk_user_data;
170
171 dout("ceph_state_change %p state = %lu sk_state = %u\n",
172 con, con->state, sk->sk_state);
173
174 if (test_bit(CLOSED, &con->state))
175 return;
176
177 switch (sk->sk_state) {
178 case TCP_CLOSE:
179 dout("ceph_state_change TCP_CLOSE\n");
180 case TCP_CLOSE_WAIT:
181 dout("ceph_state_change TCP_CLOSE_WAIT\n");
182 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
183 if (test_bit(CONNECTING, &con->state))
184 con->error_msg = "connection failed";
185 else
186 con->error_msg = "socket closed";
187 queue_con(con);
188 }
189 break;
190 case TCP_ESTABLISHED:
191 dout("ceph_state_change TCP_ESTABLISHED\n");
192 queue_con(con);
193 break;
194 }
195 }
196
197 /*
198 * set up socket callbacks
199 */
200 static void set_sock_callbacks(struct socket *sock,
201 struct ceph_connection *con)
202 {
203 struct sock *sk = sock->sk;
204 sk->sk_user_data = (void *)con;
205 sk->sk_data_ready = ceph_data_ready;
206 sk->sk_write_space = ceph_write_space;
207 sk->sk_state_change = ceph_state_change;
208 }
209
210
211 /*
212 * socket helpers
213 */
214
215 /*
216 * initiate connection to a remote socket.
217 */
218 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
219 {
220 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
221 struct socket *sock;
222 int ret;
223
224 BUG_ON(con->sock);
225 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
226 if (ret)
227 return ERR_PTR(ret);
228 con->sock = sock;
229 sock->sk->sk_allocation = GFP_NOFS;
230
231 set_sock_callbacks(sock, con);
232
233 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
234
235 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
236 if (ret == -EINPROGRESS) {
237 dout("connect %s EINPROGRESS sk_state = %u\n",
238 pr_addr(&con->peer_addr.in_addr),
239 sock->sk->sk_state);
240 ret = 0;
241 }
242 if (ret < 0) {
243 pr_err("connect %s error %d\n",
244 pr_addr(&con->peer_addr.in_addr), ret);
245 sock_release(sock);
246 con->sock = NULL;
247 con->error_msg = "connect error";
248 }
249
250 if (ret < 0)
251 return ERR_PTR(ret);
252 return sock;
253 }
254
255 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
256 {
257 struct kvec iov = {buf, len};
258 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
259
260 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
261 }
262
263 /*
264 * write something. @more is true if caller will be sending more data
265 * shortly.
266 */
267 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
268 size_t kvlen, size_t len, int more)
269 {
270 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
271
272 if (more)
273 msg.msg_flags |= MSG_MORE;
274 else
275 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
276
277 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
278 }
279
280
281 /*
282 * Shutdown/close the socket for the given connection.
283 */
284 static int con_close_socket(struct ceph_connection *con)
285 {
286 int rc;
287
288 dout("con_close_socket on %p sock %p\n", con, con->sock);
289 if (!con->sock)
290 return 0;
291 set_bit(SOCK_CLOSED, &con->state);
292 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
293 sock_release(con->sock);
294 con->sock = NULL;
295 clear_bit(SOCK_CLOSED, &con->state);
296 return rc;
297 }
298
299 /*
300 * Reset a connection. Discard all incoming and outgoing messages
301 * and clear *_seq state.
302 */
303 static void ceph_msg_remove(struct ceph_msg *msg)
304 {
305 list_del_init(&msg->list_head);
306 ceph_msg_put(msg);
307 }
308 static void ceph_msg_remove_list(struct list_head *head)
309 {
310 while (!list_empty(head)) {
311 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
312 list_head);
313 ceph_msg_remove(msg);
314 }
315 }
316
317 static void reset_connection(struct ceph_connection *con)
318 {
319 /* reset connection, out_queue, msg_ and connect_seq */
320 /* discard existing out_queue and msg_seq */
321 ceph_msg_remove_list(&con->out_queue);
322 ceph_msg_remove_list(&con->out_sent);
323
324 if (con->in_msg) {
325 ceph_msg_put(con->in_msg);
326 con->in_msg = NULL;
327 }
328
329 con->connect_seq = 0;
330 con->out_seq = 0;
331 if (con->out_msg) {
332 ceph_msg_put(con->out_msg);
333 con->out_msg = NULL;
334 }
335 con->in_seq = 0;
336 }
337
338 /*
339 * mark a peer down. drop any open connections.
340 */
341 void ceph_con_close(struct ceph_connection *con)
342 {
343 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
344 set_bit(CLOSED, &con->state); /* in case there's queued work */
345 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
346 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
347 clear_bit(KEEPALIVE_PENDING, &con->state);
348 clear_bit(WRITE_PENDING, &con->state);
349 mutex_lock(&con->mutex);
350 reset_connection(con);
351 cancel_delayed_work(&con->work);
352 mutex_unlock(&con->mutex);
353 queue_con(con);
354 }
355
356 /*
357 * Reopen a closed connection, with a new peer address.
358 */
359 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
360 {
361 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
362 set_bit(OPENING, &con->state);
363 clear_bit(CLOSED, &con->state);
364 memcpy(&con->peer_addr, addr, sizeof(*addr));
365 con->delay = 0; /* reset backoff memory */
366 queue_con(con);
367 }
368
369 /*
370 * return true if this connection ever successfully opened
371 */
372 bool ceph_con_opened(struct ceph_connection *con)
373 {
374 return con->connect_seq > 0;
375 }
376
377 /*
378 * generic get/put
379 */
380 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
381 {
382 dout("con_get %p nref = %d -> %d\n", con,
383 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
384 if (atomic_inc_not_zero(&con->nref))
385 return con;
386 return NULL;
387 }
388
389 void ceph_con_put(struct ceph_connection *con)
390 {
391 dout("con_put %p nref = %d -> %d\n", con,
392 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
393 BUG_ON(atomic_read(&con->nref) == 0);
394 if (atomic_dec_and_test(&con->nref)) {
395 BUG_ON(con->sock);
396 kfree(con);
397 }
398 }
399
400 /*
401 * initialize a new connection.
402 */
403 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
404 {
405 dout("con_init %p\n", con);
406 memset(con, 0, sizeof(*con));
407 atomic_set(&con->nref, 1);
408 con->msgr = msgr;
409 mutex_init(&con->mutex);
410 INIT_LIST_HEAD(&con->out_queue);
411 INIT_LIST_HEAD(&con->out_sent);
412 INIT_DELAYED_WORK(&con->work, con_work);
413 }
414
415
416 /*
417 * We maintain a global counter to order connection attempts. Get
418 * a unique seq greater than @gt.
419 */
420 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
421 {
422 u32 ret;
423
424 spin_lock(&msgr->global_seq_lock);
425 if (msgr->global_seq < gt)
426 msgr->global_seq = gt;
427 ret = ++msgr->global_seq;
428 spin_unlock(&msgr->global_seq_lock);
429 return ret;
430 }
431
432
433 /*
434 * Prepare footer for currently outgoing message, and finish things
435 * off. Assumes out_kvec* are already valid.. we just add on to the end.
436 */
437 static void prepare_write_message_footer(struct ceph_connection *con, int v)
438 {
439 struct ceph_msg *m = con->out_msg;
440
441 dout("prepare_write_message_footer %p\n", con);
442 con->out_kvec_is_msg = true;
443 con->out_kvec[v].iov_base = &m->footer;
444 con->out_kvec[v].iov_len = sizeof(m->footer);
445 con->out_kvec_bytes += sizeof(m->footer);
446 con->out_kvec_left++;
447 con->out_more = m->more_to_follow;
448 con->out_msg_done = true;
449 }
450
451 /*
452 * Prepare headers for the next outgoing message.
453 */
454 static void prepare_write_message(struct ceph_connection *con)
455 {
456 struct ceph_msg *m;
457 int v = 0;
458
459 con->out_kvec_bytes = 0;
460 con->out_kvec_is_msg = true;
461 con->out_msg_done = false;
462
463 /* Sneak an ack in there first? If we can get it into the same
464 * TCP packet that's a good thing. */
465 if (con->in_seq > con->in_seq_acked) {
466 con->in_seq_acked = con->in_seq;
467 con->out_kvec[v].iov_base = &tag_ack;
468 con->out_kvec[v++].iov_len = 1;
469 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
470 con->out_kvec[v].iov_base = &con->out_temp_ack;
471 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
472 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
473 }
474
475 m = list_first_entry(&con->out_queue,
476 struct ceph_msg, list_head);
477 con->out_msg = m;
478 if (test_bit(LOSSYTX, &con->state)) {
479 list_del_init(&m->list_head);
480 } else {
481 /* put message on sent list */
482 ceph_msg_get(m);
483 list_move_tail(&m->list_head, &con->out_sent);
484 }
485
486 m->hdr.seq = cpu_to_le64(++con->out_seq);
487
488 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
489 m, con->out_seq, le16_to_cpu(m->hdr.type),
490 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
491 le32_to_cpu(m->hdr.data_len),
492 m->nr_pages);
493 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
494
495 /* tag + hdr + front + middle */
496 con->out_kvec[v].iov_base = &tag_msg;
497 con->out_kvec[v++].iov_len = 1;
498 con->out_kvec[v].iov_base = &m->hdr;
499 con->out_kvec[v++].iov_len = sizeof(m->hdr);
500 con->out_kvec[v++] = m->front;
501 if (m->middle)
502 con->out_kvec[v++] = m->middle->vec;
503 con->out_kvec_left = v;
504 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
505 (m->middle ? m->middle->vec.iov_len : 0);
506 con->out_kvec_cur = con->out_kvec;
507
508 /* fill in crc (except data pages), footer */
509 con->out_msg->hdr.crc =
510 cpu_to_le32(crc32c(0, (void *)&m->hdr,
511 sizeof(m->hdr) - sizeof(m->hdr.crc)));
512 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
513 con->out_msg->footer.front_crc =
514 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
515 if (m->middle)
516 con->out_msg->footer.middle_crc =
517 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
518 m->middle->vec.iov_len));
519 else
520 con->out_msg->footer.middle_crc = 0;
521 con->out_msg->footer.data_crc = 0;
522 dout("prepare_write_message front_crc %u data_crc %u\n",
523 le32_to_cpu(con->out_msg->footer.front_crc),
524 le32_to_cpu(con->out_msg->footer.middle_crc));
525
526 /* is there a data payload? */
527 if (le32_to_cpu(m->hdr.data_len) > 0) {
528 /* initialize page iterator */
529 con->out_msg_pos.page = 0;
530 con->out_msg_pos.page_pos =
531 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
532 con->out_msg_pos.data_pos = 0;
533 con->out_msg_pos.did_page_crc = 0;
534 con->out_more = 1; /* data + footer will follow */
535 } else {
536 /* no, queue up footer too and be done */
537 prepare_write_message_footer(con, v);
538 }
539
540 set_bit(WRITE_PENDING, &con->state);
541 }
542
543 /*
544 * Prepare an ack.
545 */
546 static void prepare_write_ack(struct ceph_connection *con)
547 {
548 dout("prepare_write_ack %p %llu -> %llu\n", con,
549 con->in_seq_acked, con->in_seq);
550 con->in_seq_acked = con->in_seq;
551
552 con->out_kvec[0].iov_base = &tag_ack;
553 con->out_kvec[0].iov_len = 1;
554 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
555 con->out_kvec[1].iov_base = &con->out_temp_ack;
556 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
557 con->out_kvec_left = 2;
558 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
559 con->out_kvec_cur = con->out_kvec;
560 con->out_more = 1; /* more will follow.. eventually.. */
561 set_bit(WRITE_PENDING, &con->state);
562 }
563
564 /*
565 * Prepare to write keepalive byte.
566 */
567 static void prepare_write_keepalive(struct ceph_connection *con)
568 {
569 dout("prepare_write_keepalive %p\n", con);
570 con->out_kvec[0].iov_base = &tag_keepalive;
571 con->out_kvec[0].iov_len = 1;
572 con->out_kvec_left = 1;
573 con->out_kvec_bytes = 1;
574 con->out_kvec_cur = con->out_kvec;
575 set_bit(WRITE_PENDING, &con->state);
576 }
577
578 /*
579 * Connection negotiation.
580 */
581
582 static void prepare_connect_authorizer(struct ceph_connection *con)
583 {
584 void *auth_buf;
585 int auth_len = 0;
586 int auth_protocol = 0;
587
588 mutex_unlock(&con->mutex);
589 if (con->ops->get_authorizer)
590 con->ops->get_authorizer(con, &auth_buf, &auth_len,
591 &auth_protocol, &con->auth_reply_buf,
592 &con->auth_reply_buf_len,
593 con->auth_retry);
594 mutex_lock(&con->mutex);
595
596 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
597 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
598
599 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
600 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
601 con->out_kvec_left++;
602 con->out_kvec_bytes += auth_len;
603 }
604
605 /*
606 * We connected to a peer and are saying hello.
607 */
608 static void prepare_write_banner(struct ceph_messenger *msgr,
609 struct ceph_connection *con)
610 {
611 int len = strlen(CEPH_BANNER);
612
613 con->out_kvec[0].iov_base = CEPH_BANNER;
614 con->out_kvec[0].iov_len = len;
615 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
616 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
617 con->out_kvec_left = 2;
618 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
619 con->out_kvec_cur = con->out_kvec;
620 con->out_more = 0;
621 set_bit(WRITE_PENDING, &con->state);
622 }
623
624 static void prepare_write_connect(struct ceph_messenger *msgr,
625 struct ceph_connection *con,
626 int after_banner)
627 {
628 unsigned global_seq = get_global_seq(con->msgr, 0);
629 int proto;
630
631 switch (con->peer_name.type) {
632 case CEPH_ENTITY_TYPE_MON:
633 proto = CEPH_MONC_PROTOCOL;
634 break;
635 case CEPH_ENTITY_TYPE_OSD:
636 proto = CEPH_OSDC_PROTOCOL;
637 break;
638 case CEPH_ENTITY_TYPE_MDS:
639 proto = CEPH_MDSC_PROTOCOL;
640 break;
641 default:
642 BUG();
643 }
644
645 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
646 con->connect_seq, global_seq, proto);
647
648 con->out_connect.features = CEPH_FEATURE_SUPPORTED;
649 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
650 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
651 con->out_connect.global_seq = cpu_to_le32(global_seq);
652 con->out_connect.protocol_version = cpu_to_le32(proto);
653 con->out_connect.flags = 0;
654
655 if (!after_banner) {
656 con->out_kvec_left = 0;
657 con->out_kvec_bytes = 0;
658 }
659 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
660 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
661 con->out_kvec_left++;
662 con->out_kvec_bytes += sizeof(con->out_connect);
663 con->out_kvec_cur = con->out_kvec;
664 con->out_more = 0;
665 set_bit(WRITE_PENDING, &con->state);
666
667 prepare_connect_authorizer(con);
668 }
669
670
671 /*
672 * write as much of pending kvecs to the socket as we can.
673 * 1 -> done
674 * 0 -> socket full, but more to do
675 * <0 -> error
676 */
677 static int write_partial_kvec(struct ceph_connection *con)
678 {
679 int ret;
680
681 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
682 while (con->out_kvec_bytes > 0) {
683 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
684 con->out_kvec_left, con->out_kvec_bytes,
685 con->out_more);
686 if (ret <= 0)
687 goto out;
688 con->out_kvec_bytes -= ret;
689 if (con->out_kvec_bytes == 0)
690 break; /* done */
691 while (ret > 0) {
692 if (ret >= con->out_kvec_cur->iov_len) {
693 ret -= con->out_kvec_cur->iov_len;
694 con->out_kvec_cur++;
695 con->out_kvec_left--;
696 } else {
697 con->out_kvec_cur->iov_len -= ret;
698 con->out_kvec_cur->iov_base += ret;
699 ret = 0;
700 break;
701 }
702 }
703 }
704 con->out_kvec_left = 0;
705 con->out_kvec_is_msg = false;
706 ret = 1;
707 out:
708 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
709 con->out_kvec_bytes, con->out_kvec_left, ret);
710 return ret; /* done! */
711 }
712
713 /*
714 * Write as much message data payload as we can. If we finish, queue
715 * up the footer.
716 * 1 -> done, footer is now queued in out_kvec[].
717 * 0 -> socket full, but more to do
718 * <0 -> error
719 */
720 static int write_partial_msg_pages(struct ceph_connection *con)
721 {
722 struct ceph_msg *msg = con->out_msg;
723 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
724 size_t len;
725 int crc = con->msgr->nocrc;
726 int ret;
727
728 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
729 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
730 con->out_msg_pos.page_pos);
731
732 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
733 struct page *page = NULL;
734 void *kaddr = NULL;
735
736 /*
737 * if we are calculating the data crc (the default), we need
738 * to map the page. if our pages[] has been revoked, use the
739 * zero page.
740 */
741 if (msg->pages) {
742 page = msg->pages[con->out_msg_pos.page];
743 if (crc)
744 kaddr = kmap(page);
745 } else if (msg->pagelist) {
746 page = list_first_entry(&msg->pagelist->head,
747 struct page, lru);
748 if (crc)
749 kaddr = kmap(page);
750 } else {
751 page = con->msgr->zero_page;
752 if (crc)
753 kaddr = page_address(con->msgr->zero_page);
754 }
755 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
756 (int)(data_len - con->out_msg_pos.data_pos));
757 if (crc && !con->out_msg_pos.did_page_crc) {
758 void *base = kaddr + con->out_msg_pos.page_pos;
759 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
760
761 BUG_ON(kaddr == NULL);
762 con->out_msg->footer.data_crc =
763 cpu_to_le32(crc32c(tmpcrc, base, len));
764 con->out_msg_pos.did_page_crc = 1;
765 }
766
767 ret = kernel_sendpage(con->sock, page,
768 con->out_msg_pos.page_pos, len,
769 MSG_DONTWAIT | MSG_NOSIGNAL |
770 MSG_MORE);
771
772 if (crc && (msg->pages || msg->pagelist))
773 kunmap(page);
774
775 if (ret <= 0)
776 goto out;
777
778 con->out_msg_pos.data_pos += ret;
779 con->out_msg_pos.page_pos += ret;
780 if (ret == len) {
781 con->out_msg_pos.page_pos = 0;
782 con->out_msg_pos.page++;
783 con->out_msg_pos.did_page_crc = 0;
784 if (msg->pagelist)
785 list_move_tail(&page->lru,
786 &msg->pagelist->head);
787 }
788 }
789
790 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
791
792 /* prepare and queue up footer, too */
793 if (!crc)
794 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
795 con->out_kvec_bytes = 0;
796 con->out_kvec_left = 0;
797 con->out_kvec_cur = con->out_kvec;
798 prepare_write_message_footer(con, 0);
799 ret = 1;
800 out:
801 return ret;
802 }
803
804 /*
805 * write some zeros
806 */
807 static int write_partial_skip(struct ceph_connection *con)
808 {
809 int ret;
810
811 while (con->out_skip > 0) {
812 struct kvec iov = {
813 .iov_base = page_address(con->msgr->zero_page),
814 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
815 };
816
817 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
818 if (ret <= 0)
819 goto out;
820 con->out_skip -= ret;
821 }
822 ret = 1;
823 out:
824 return ret;
825 }
826
827 /*
828 * Prepare to read connection handshake, or an ack.
829 */
830 static void prepare_read_banner(struct ceph_connection *con)
831 {
832 dout("prepare_read_banner %p\n", con);
833 con->in_base_pos = 0;
834 }
835
836 static void prepare_read_connect(struct ceph_connection *con)
837 {
838 dout("prepare_read_connect %p\n", con);
839 con->in_base_pos = 0;
840 }
841
842 static void prepare_read_ack(struct ceph_connection *con)
843 {
844 dout("prepare_read_ack %p\n", con);
845 con->in_base_pos = 0;
846 }
847
848 static void prepare_read_tag(struct ceph_connection *con)
849 {
850 dout("prepare_read_tag %p\n", con);
851 con->in_base_pos = 0;
852 con->in_tag = CEPH_MSGR_TAG_READY;
853 }
854
855 /*
856 * Prepare to read a message.
857 */
858 static int prepare_read_message(struct ceph_connection *con)
859 {
860 dout("prepare_read_message %p\n", con);
861 BUG_ON(con->in_msg != NULL);
862 con->in_base_pos = 0;
863 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
864 return 0;
865 }
866
867
868 static int read_partial(struct ceph_connection *con,
869 int *to, int size, void *object)
870 {
871 *to += size;
872 while (con->in_base_pos < *to) {
873 int left = *to - con->in_base_pos;
874 int have = size - left;
875 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
876 if (ret <= 0)
877 return ret;
878 con->in_base_pos += ret;
879 }
880 return 1;
881 }
882
883
884 /*
885 * Read all or part of the connect-side handshake on a new connection
886 */
887 static int read_partial_banner(struct ceph_connection *con)
888 {
889 int ret, to = 0;
890
891 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
892
893 /* peer's banner */
894 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
895 if (ret <= 0)
896 goto out;
897 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
898 &con->actual_peer_addr);
899 if (ret <= 0)
900 goto out;
901 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
902 &con->peer_addr_for_me);
903 if (ret <= 0)
904 goto out;
905 out:
906 return ret;
907 }
908
909 static int read_partial_connect(struct ceph_connection *con)
910 {
911 int ret, to = 0;
912
913 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
914
915 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
916 if (ret <= 0)
917 goto out;
918 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
919 con->auth_reply_buf);
920 if (ret <= 0)
921 goto out;
922
923 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
924 con, (int)con->in_reply.tag,
925 le32_to_cpu(con->in_reply.connect_seq),
926 le32_to_cpu(con->in_reply.global_seq));
927 out:
928 return ret;
929
930 }
931
932 /*
933 * Verify the hello banner looks okay.
934 */
935 static int verify_hello(struct ceph_connection *con)
936 {
937 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
938 pr_err("connect to %s got bad banner\n",
939 pr_addr(&con->peer_addr.in_addr));
940 con->error_msg = "protocol error, bad banner";
941 return -1;
942 }
943 return 0;
944 }
945
946 static bool addr_is_blank(struct sockaddr_storage *ss)
947 {
948 switch (ss->ss_family) {
949 case AF_INET:
950 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
951 case AF_INET6:
952 return
953 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
954 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
955 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
956 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
957 }
958 return false;
959 }
960
961 static int addr_port(struct sockaddr_storage *ss)
962 {
963 switch (ss->ss_family) {
964 case AF_INET:
965 return ntohs(((struct sockaddr_in *)ss)->sin_port);
966 case AF_INET6:
967 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
968 }
969 return 0;
970 }
971
972 static void addr_set_port(struct sockaddr_storage *ss, int p)
973 {
974 switch (ss->ss_family) {
975 case AF_INET:
976 ((struct sockaddr_in *)ss)->sin_port = htons(p);
977 case AF_INET6:
978 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
979 }
980 }
981
982 /*
983 * Parse an ip[:port] list into an addr array. Use the default
984 * monitor port if a port isn't specified.
985 */
986 int ceph_parse_ips(const char *c, const char *end,
987 struct ceph_entity_addr *addr,
988 int max_count, int *count)
989 {
990 int i;
991 const char *p = c;
992
993 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
994 for (i = 0; i < max_count; i++) {
995 const char *ipend;
996 struct sockaddr_storage *ss = &addr[i].in_addr;
997 struct sockaddr_in *in4 = (void *)ss;
998 struct sockaddr_in6 *in6 = (void *)ss;
999 int port;
1000
1001 memset(ss, 0, sizeof(*ss));
1002 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1003 ',', &ipend)) {
1004 ss->ss_family = AF_INET;
1005 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1006 ',', &ipend)) {
1007 ss->ss_family = AF_INET6;
1008 } else {
1009 goto bad;
1010 }
1011 p = ipend;
1012
1013 /* port? */
1014 if (p < end && *p == ':') {
1015 port = 0;
1016 p++;
1017 while (p < end && *p >= '0' && *p <= '9') {
1018 port = (port * 10) + (*p - '0');
1019 p++;
1020 }
1021 if (port > 65535 || port == 0)
1022 goto bad;
1023 } else {
1024 port = CEPH_MON_PORT;
1025 }
1026
1027 addr_set_port(ss, port);
1028
1029 dout("parse_ips got %s\n", pr_addr(ss));
1030
1031 if (p == end)
1032 break;
1033 if (*p != ',')
1034 goto bad;
1035 p++;
1036 }
1037
1038 if (p != end)
1039 goto bad;
1040
1041 if (count)
1042 *count = i + 1;
1043 return 0;
1044
1045 bad:
1046 pr_err("parse_ips bad ip '%s'\n", c);
1047 return -EINVAL;
1048 }
1049
1050 static int process_banner(struct ceph_connection *con)
1051 {
1052 dout("process_banner on %p\n", con);
1053
1054 if (verify_hello(con) < 0)
1055 return -1;
1056
1057 ceph_decode_addr(&con->actual_peer_addr);
1058 ceph_decode_addr(&con->peer_addr_for_me);
1059
1060 /*
1061 * Make sure the other end is who we wanted. note that the other
1062 * end may not yet know their ip address, so if it's 0.0.0.0, give
1063 * them the benefit of the doubt.
1064 */
1065 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1066 sizeof(con->peer_addr)) != 0 &&
1067 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1068 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1069 pr_warning("wrong peer, want %s/%lld, got %s/%lld\n",
1070 pr_addr(&con->peer_addr.in_addr),
1071 le64_to_cpu(con->peer_addr.nonce),
1072 pr_addr(&con->actual_peer_addr.in_addr),
1073 le64_to_cpu(con->actual_peer_addr.nonce));
1074 con->error_msg = "wrong peer at address";
1075 return -1;
1076 }
1077
1078 /*
1079 * did we learn our address?
1080 */
1081 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1082 int port = addr_port(&con->msgr->inst.addr.in_addr);
1083
1084 memcpy(&con->msgr->inst.addr.in_addr,
1085 &con->peer_addr_for_me.in_addr,
1086 sizeof(con->peer_addr_for_me.in_addr));
1087 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1088 encode_my_addr(con->msgr);
1089 dout("process_banner learned my addr is %s\n",
1090 pr_addr(&con->msgr->inst.addr.in_addr));
1091 }
1092
1093 set_bit(NEGOTIATING, &con->state);
1094 prepare_read_connect(con);
1095 return 0;
1096 }
1097
1098 static void fail_protocol(struct ceph_connection *con)
1099 {
1100 reset_connection(con);
1101 set_bit(CLOSED, &con->state); /* in case there's queued work */
1102
1103 mutex_unlock(&con->mutex);
1104 if (con->ops->bad_proto)
1105 con->ops->bad_proto(con);
1106 mutex_lock(&con->mutex);
1107 }
1108
1109 static int process_connect(struct ceph_connection *con)
1110 {
1111 u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1112 u64 req_feat = CEPH_FEATURE_REQUIRED;
1113 u64 server_feat = le64_to_cpu(con->in_reply.features);
1114
1115 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1116
1117 switch (con->in_reply.tag) {
1118 case CEPH_MSGR_TAG_FEATURES:
1119 pr_err("%s%lld %s feature set mismatch,"
1120 " my %llx < server's %llx, missing %llx\n",
1121 ENTITY_NAME(con->peer_name),
1122 pr_addr(&con->peer_addr.in_addr),
1123 sup_feat, server_feat, server_feat & ~sup_feat);
1124 con->error_msg = "missing required protocol features";
1125 fail_protocol(con);
1126 return -1;
1127
1128 case CEPH_MSGR_TAG_BADPROTOVER:
1129 pr_err("%s%lld %s protocol version mismatch,"
1130 " my %d != server's %d\n",
1131 ENTITY_NAME(con->peer_name),
1132 pr_addr(&con->peer_addr.in_addr),
1133 le32_to_cpu(con->out_connect.protocol_version),
1134 le32_to_cpu(con->in_reply.protocol_version));
1135 con->error_msg = "protocol version mismatch";
1136 fail_protocol(con);
1137 return -1;
1138
1139 case CEPH_MSGR_TAG_BADAUTHORIZER:
1140 con->auth_retry++;
1141 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1142 con->auth_retry);
1143 if (con->auth_retry == 2) {
1144 con->error_msg = "connect authorization failure";
1145 reset_connection(con);
1146 set_bit(CLOSED, &con->state);
1147 return -1;
1148 }
1149 con->auth_retry = 1;
1150 prepare_write_connect(con->msgr, con, 0);
1151 prepare_read_connect(con);
1152 break;
1153
1154 case CEPH_MSGR_TAG_RESETSESSION:
1155 /*
1156 * If we connected with a large connect_seq but the peer
1157 * has no record of a session with us (no connection, or
1158 * connect_seq == 0), they will send RESETSESION to indicate
1159 * that they must have reset their session, and may have
1160 * dropped messages.
1161 */
1162 dout("process_connect got RESET peer seq %u\n",
1163 le32_to_cpu(con->in_connect.connect_seq));
1164 pr_err("%s%lld %s connection reset\n",
1165 ENTITY_NAME(con->peer_name),
1166 pr_addr(&con->peer_addr.in_addr));
1167 reset_connection(con);
1168 prepare_write_connect(con->msgr, con, 0);
1169 prepare_read_connect(con);
1170
1171 /* Tell ceph about it. */
1172 mutex_unlock(&con->mutex);
1173 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1174 if (con->ops->peer_reset)
1175 con->ops->peer_reset(con);
1176 mutex_lock(&con->mutex);
1177 break;
1178
1179 case CEPH_MSGR_TAG_RETRY_SESSION:
1180 /*
1181 * If we sent a smaller connect_seq than the peer has, try
1182 * again with a larger value.
1183 */
1184 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1185 le32_to_cpu(con->out_connect.connect_seq),
1186 le32_to_cpu(con->in_connect.connect_seq));
1187 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1188 prepare_write_connect(con->msgr, con, 0);
1189 prepare_read_connect(con);
1190 break;
1191
1192 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1193 /*
1194 * If we sent a smaller global_seq than the peer has, try
1195 * again with a larger value.
1196 */
1197 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1198 con->peer_global_seq,
1199 le32_to_cpu(con->in_connect.global_seq));
1200 get_global_seq(con->msgr,
1201 le32_to_cpu(con->in_connect.global_seq));
1202 prepare_write_connect(con->msgr, con, 0);
1203 prepare_read_connect(con);
1204 break;
1205
1206 case CEPH_MSGR_TAG_READY:
1207 if (req_feat & ~server_feat) {
1208 pr_err("%s%lld %s protocol feature mismatch,"
1209 " my required %llx > server's %llx, need %llx\n",
1210 ENTITY_NAME(con->peer_name),
1211 pr_addr(&con->peer_addr.in_addr),
1212 req_feat, server_feat, req_feat & ~server_feat);
1213 con->error_msg = "missing required protocol features";
1214 fail_protocol(con);
1215 return -1;
1216 }
1217 clear_bit(CONNECTING, &con->state);
1218 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1219 con->connect_seq++;
1220 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1221 con->peer_global_seq,
1222 le32_to_cpu(con->in_reply.connect_seq),
1223 con->connect_seq);
1224 WARN_ON(con->connect_seq !=
1225 le32_to_cpu(con->in_reply.connect_seq));
1226
1227 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1228 set_bit(LOSSYTX, &con->state);
1229
1230 prepare_read_tag(con);
1231 break;
1232
1233 case CEPH_MSGR_TAG_WAIT:
1234 /*
1235 * If there is a connection race (we are opening
1236 * connections to each other), one of us may just have
1237 * to WAIT. This shouldn't happen if we are the
1238 * client.
1239 */
1240 pr_err("process_connect peer connecting WAIT\n");
1241
1242 default:
1243 pr_err("connect protocol error, will retry\n");
1244 con->error_msg = "protocol error, garbage tag during connect";
1245 return -1;
1246 }
1247 return 0;
1248 }
1249
1250
1251 /*
1252 * read (part of) an ack
1253 */
1254 static int read_partial_ack(struct ceph_connection *con)
1255 {
1256 int to = 0;
1257
1258 return read_partial(con, &to, sizeof(con->in_temp_ack),
1259 &con->in_temp_ack);
1260 }
1261
1262
1263 /*
1264 * We can finally discard anything that's been acked.
1265 */
1266 static void process_ack(struct ceph_connection *con)
1267 {
1268 struct ceph_msg *m;
1269 u64 ack = le64_to_cpu(con->in_temp_ack);
1270 u64 seq;
1271
1272 while (!list_empty(&con->out_sent)) {
1273 m = list_first_entry(&con->out_sent, struct ceph_msg,
1274 list_head);
1275 seq = le64_to_cpu(m->hdr.seq);
1276 if (seq > ack)
1277 break;
1278 dout("got ack for seq %llu type %d at %p\n", seq,
1279 le16_to_cpu(m->hdr.type), m);
1280 ceph_msg_remove(m);
1281 }
1282 prepare_read_tag(con);
1283 }
1284
1285
1286
1287
1288 static int read_partial_message_section(struct ceph_connection *con,
1289 struct kvec *section, unsigned int sec_len,
1290 u32 *crc)
1291 {
1292 int left;
1293 int ret;
1294
1295 BUG_ON(!section);
1296
1297 while (section->iov_len < sec_len) {
1298 BUG_ON(section->iov_base == NULL);
1299 left = sec_len - section->iov_len;
1300 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1301 section->iov_len, left);
1302 if (ret <= 0)
1303 return ret;
1304 section->iov_len += ret;
1305 if (section->iov_len == sec_len)
1306 *crc = crc32c(0, section->iov_base,
1307 section->iov_len);
1308 }
1309
1310 return 1;
1311 }
1312
1313 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1314 struct ceph_msg_header *hdr,
1315 int *skip);
1316 /*
1317 * read (part of) a message.
1318 */
1319 static int read_partial_message(struct ceph_connection *con)
1320 {
1321 struct ceph_msg *m = con->in_msg;
1322 void *p;
1323 int ret;
1324 int to, left;
1325 unsigned front_len, middle_len, data_len, data_off;
1326 int datacrc = con->msgr->nocrc;
1327 int skip;
1328
1329 dout("read_partial_message con %p msg %p\n", con, m);
1330
1331 /* header */
1332 while (con->in_base_pos < sizeof(con->in_hdr)) {
1333 left = sizeof(con->in_hdr) - con->in_base_pos;
1334 ret = ceph_tcp_recvmsg(con->sock,
1335 (char *)&con->in_hdr + con->in_base_pos,
1336 left);
1337 if (ret <= 0)
1338 return ret;
1339 con->in_base_pos += ret;
1340 if (con->in_base_pos == sizeof(con->in_hdr)) {
1341 u32 crc = crc32c(0, (void *)&con->in_hdr,
1342 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1343 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1344 pr_err("read_partial_message bad hdr "
1345 " crc %u != expected %u\n",
1346 crc, con->in_hdr.crc);
1347 return -EBADMSG;
1348 }
1349 }
1350 }
1351 front_len = le32_to_cpu(con->in_hdr.front_len);
1352 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1353 return -EIO;
1354 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1355 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1356 return -EIO;
1357 data_len = le32_to_cpu(con->in_hdr.data_len);
1358 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1359 return -EIO;
1360 data_off = le16_to_cpu(con->in_hdr.data_off);
1361
1362 /* allocate message? */
1363 if (!con->in_msg) {
1364 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1365 con->in_hdr.front_len, con->in_hdr.data_len);
1366 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1367 if (skip) {
1368 /* skip this message */
1369 dout("alloc_msg returned NULL, skipping message\n");
1370 con->in_base_pos = -front_len - middle_len - data_len -
1371 sizeof(m->footer);
1372 con->in_tag = CEPH_MSGR_TAG_READY;
1373 return 0;
1374 }
1375 if (IS_ERR(con->in_msg)) {
1376 ret = PTR_ERR(con->in_msg);
1377 con->in_msg = NULL;
1378 con->error_msg =
1379 "error allocating memory for incoming message";
1380 return ret;
1381 }
1382 m = con->in_msg;
1383 m->front.iov_len = 0; /* haven't read it yet */
1384 if (m->middle)
1385 m->middle->vec.iov_len = 0;
1386
1387 con->in_msg_pos.page = 0;
1388 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1389 con->in_msg_pos.data_pos = 0;
1390 }
1391
1392 /* front */
1393 ret = read_partial_message_section(con, &m->front, front_len,
1394 &con->in_front_crc);
1395 if (ret <= 0)
1396 return ret;
1397
1398 /* middle */
1399 if (m->middle) {
1400 ret = read_partial_message_section(con, &m->middle->vec, middle_len,
1401 &con->in_middle_crc);
1402 if (ret <= 0)
1403 return ret;
1404 }
1405
1406 /* (page) data */
1407 while (con->in_msg_pos.data_pos < data_len) {
1408 left = min((int)(data_len - con->in_msg_pos.data_pos),
1409 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1410 BUG_ON(m->pages == NULL);
1411 p = kmap(m->pages[con->in_msg_pos.page]);
1412 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1413 left);
1414 if (ret > 0 && datacrc)
1415 con->in_data_crc =
1416 crc32c(con->in_data_crc,
1417 p + con->in_msg_pos.page_pos, ret);
1418 kunmap(m->pages[con->in_msg_pos.page]);
1419 if (ret <= 0)
1420 return ret;
1421 con->in_msg_pos.data_pos += ret;
1422 con->in_msg_pos.page_pos += ret;
1423 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1424 con->in_msg_pos.page_pos = 0;
1425 con->in_msg_pos.page++;
1426 }
1427 }
1428
1429 /* footer */
1430 to = sizeof(m->hdr) + sizeof(m->footer);
1431 while (con->in_base_pos < to) {
1432 left = to - con->in_base_pos;
1433 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1434 (con->in_base_pos - sizeof(m->hdr)),
1435 left);
1436 if (ret <= 0)
1437 return ret;
1438 con->in_base_pos += ret;
1439 }
1440 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1441 m, front_len, m->footer.front_crc, middle_len,
1442 m->footer.middle_crc, data_len, m->footer.data_crc);
1443
1444 /* crc ok? */
1445 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1446 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1447 m, con->in_front_crc, m->footer.front_crc);
1448 return -EBADMSG;
1449 }
1450 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1451 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1452 m, con->in_middle_crc, m->footer.middle_crc);
1453 return -EBADMSG;
1454 }
1455 if (datacrc &&
1456 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1457 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1458 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1459 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1460 return -EBADMSG;
1461 }
1462
1463 return 1; /* done! */
1464 }
1465
1466 /*
1467 * Process message. This happens in the worker thread. The callback should
1468 * be careful not to do anything that waits on other incoming messages or it
1469 * may deadlock.
1470 */
1471 static void process_message(struct ceph_connection *con)
1472 {
1473 struct ceph_msg *msg;
1474
1475 msg = con->in_msg;
1476 con->in_msg = NULL;
1477
1478 /* if first message, set peer_name */
1479 if (con->peer_name.type == 0)
1480 con->peer_name = msg->hdr.src.name;
1481
1482 con->in_seq++;
1483 mutex_unlock(&con->mutex);
1484
1485 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1486 msg, le64_to_cpu(msg->hdr.seq),
1487 ENTITY_NAME(msg->hdr.src.name),
1488 le16_to_cpu(msg->hdr.type),
1489 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1490 le32_to_cpu(msg->hdr.front_len),
1491 le32_to_cpu(msg->hdr.data_len),
1492 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1493 con->ops->dispatch(con, msg);
1494
1495 mutex_lock(&con->mutex);
1496 prepare_read_tag(con);
1497 }
1498
1499
1500 /*
1501 * Write something to the socket. Called in a worker thread when the
1502 * socket appears to be writeable and we have something ready to send.
1503 */
1504 static int try_write(struct ceph_connection *con)
1505 {
1506 struct ceph_messenger *msgr = con->msgr;
1507 int ret = 1;
1508
1509 dout("try_write start %p state %lu nref %d\n", con, con->state,
1510 atomic_read(&con->nref));
1511
1512 mutex_lock(&con->mutex);
1513 more:
1514 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1515
1516 /* open the socket first? */
1517 if (con->sock == NULL) {
1518 /*
1519 * if we were STANDBY and are reconnecting _this_
1520 * connection, bump connect_seq now. Always bump
1521 * global_seq.
1522 */
1523 if (test_and_clear_bit(STANDBY, &con->state))
1524 con->connect_seq++;
1525
1526 prepare_write_banner(msgr, con);
1527 prepare_write_connect(msgr, con, 1);
1528 prepare_read_banner(con);
1529 set_bit(CONNECTING, &con->state);
1530 clear_bit(NEGOTIATING, &con->state);
1531
1532 BUG_ON(con->in_msg);
1533 con->in_tag = CEPH_MSGR_TAG_READY;
1534 dout("try_write initiating connect on %p new state %lu\n",
1535 con, con->state);
1536 con->sock = ceph_tcp_connect(con);
1537 if (IS_ERR(con->sock)) {
1538 con->sock = NULL;
1539 con->error_msg = "connect error";
1540 ret = -1;
1541 goto out;
1542 }
1543 }
1544
1545 more_kvec:
1546 /* kvec data queued? */
1547 if (con->out_skip) {
1548 ret = write_partial_skip(con);
1549 if (ret <= 0)
1550 goto done;
1551 if (ret < 0) {
1552 dout("try_write write_partial_skip err %d\n", ret);
1553 goto done;
1554 }
1555 }
1556 if (con->out_kvec_left) {
1557 ret = write_partial_kvec(con);
1558 if (ret <= 0)
1559 goto done;
1560 }
1561
1562 /* msg pages? */
1563 if (con->out_msg) {
1564 if (con->out_msg_done) {
1565 ceph_msg_put(con->out_msg);
1566 con->out_msg = NULL; /* we're done with this one */
1567 goto do_next;
1568 }
1569
1570 ret = write_partial_msg_pages(con);
1571 if (ret == 1)
1572 goto more_kvec; /* we need to send the footer, too! */
1573 if (ret == 0)
1574 goto done;
1575 if (ret < 0) {
1576 dout("try_write write_partial_msg_pages err %d\n",
1577 ret);
1578 goto done;
1579 }
1580 }
1581
1582 do_next:
1583 if (!test_bit(CONNECTING, &con->state)) {
1584 /* is anything else pending? */
1585 if (!list_empty(&con->out_queue)) {
1586 prepare_write_message(con);
1587 goto more;
1588 }
1589 if (con->in_seq > con->in_seq_acked) {
1590 prepare_write_ack(con);
1591 goto more;
1592 }
1593 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1594 prepare_write_keepalive(con);
1595 goto more;
1596 }
1597 }
1598
1599 /* Nothing to do! */
1600 clear_bit(WRITE_PENDING, &con->state);
1601 dout("try_write nothing else to write.\n");
1602 done:
1603 ret = 0;
1604 out:
1605 mutex_unlock(&con->mutex);
1606 dout("try_write done on %p\n", con);
1607 return ret;
1608 }
1609
1610
1611
1612 /*
1613 * Read what we can from the socket.
1614 */
1615 static int try_read(struct ceph_connection *con)
1616 {
1617 struct ceph_messenger *msgr;
1618 int ret = -1;
1619
1620 if (!con->sock)
1621 return 0;
1622
1623 if (test_bit(STANDBY, &con->state))
1624 return 0;
1625
1626 dout("try_read start on %p\n", con);
1627 msgr = con->msgr;
1628
1629 mutex_lock(&con->mutex);
1630
1631 more:
1632 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1633 con->in_base_pos);
1634 if (test_bit(CONNECTING, &con->state)) {
1635 if (!test_bit(NEGOTIATING, &con->state)) {
1636 dout("try_read connecting\n");
1637 ret = read_partial_banner(con);
1638 if (ret <= 0)
1639 goto done;
1640 if (process_banner(con) < 0) {
1641 ret = -1;
1642 goto out;
1643 }
1644 }
1645 ret = read_partial_connect(con);
1646 if (ret <= 0)
1647 goto done;
1648 if (process_connect(con) < 0) {
1649 ret = -1;
1650 goto out;
1651 }
1652 goto more;
1653 }
1654
1655 if (con->in_base_pos < 0) {
1656 /*
1657 * skipping + discarding content.
1658 *
1659 * FIXME: there must be a better way to do this!
1660 */
1661 static char buf[1024];
1662 int skip = min(1024, -con->in_base_pos);
1663 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1664 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1665 if (ret <= 0)
1666 goto done;
1667 con->in_base_pos += ret;
1668 if (con->in_base_pos)
1669 goto more;
1670 }
1671 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1672 /*
1673 * what's next?
1674 */
1675 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1676 if (ret <= 0)
1677 goto done;
1678 dout("try_read got tag %d\n", (int)con->in_tag);
1679 switch (con->in_tag) {
1680 case CEPH_MSGR_TAG_MSG:
1681 prepare_read_message(con);
1682 break;
1683 case CEPH_MSGR_TAG_ACK:
1684 prepare_read_ack(con);
1685 break;
1686 case CEPH_MSGR_TAG_CLOSE:
1687 set_bit(CLOSED, &con->state); /* fixme */
1688 goto done;
1689 default:
1690 goto bad_tag;
1691 }
1692 }
1693 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1694 ret = read_partial_message(con);
1695 if (ret <= 0) {
1696 switch (ret) {
1697 case -EBADMSG:
1698 con->error_msg = "bad crc";
1699 ret = -EIO;
1700 goto out;
1701 case -EIO:
1702 con->error_msg = "io error";
1703 goto out;
1704 default:
1705 goto done;
1706 }
1707 }
1708 if (con->in_tag == CEPH_MSGR_TAG_READY)
1709 goto more;
1710 process_message(con);
1711 goto more;
1712 }
1713 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1714 ret = read_partial_ack(con);
1715 if (ret <= 0)
1716 goto done;
1717 process_ack(con);
1718 goto more;
1719 }
1720
1721 done:
1722 ret = 0;
1723 out:
1724 mutex_unlock(&con->mutex);
1725 dout("try_read done on %p\n", con);
1726 return ret;
1727
1728 bad_tag:
1729 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1730 con->error_msg = "protocol error, garbage tag";
1731 ret = -1;
1732 goto out;
1733 }
1734
1735
1736 /*
1737 * Atomically queue work on a connection. Bump @con reference to
1738 * avoid races with connection teardown.
1739 *
1740 * There is some trickery going on with QUEUED and BUSY because we
1741 * only want a _single_ thread operating on each connection at any
1742 * point in time, but we want to use all available CPUs.
1743 *
1744 * The worker thread only proceeds if it can atomically set BUSY. It
1745 * clears QUEUED and does it's thing. When it thinks it's done, it
1746 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1747 * (tries again to set BUSY).
1748 *
1749 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1750 * try to queue work. If that fails (work is already queued, or BUSY)
1751 * we give up (work also already being done or is queued) but leave QUEUED
1752 * set so that the worker thread will loop if necessary.
1753 */
1754 static void queue_con(struct ceph_connection *con)
1755 {
1756 if (test_bit(DEAD, &con->state)) {
1757 dout("queue_con %p ignoring: DEAD\n",
1758 con);
1759 return;
1760 }
1761
1762 if (!con->ops->get(con)) {
1763 dout("queue_con %p ref count 0\n", con);
1764 return;
1765 }
1766
1767 set_bit(QUEUED, &con->state);
1768 if (test_bit(BUSY, &con->state)) {
1769 dout("queue_con %p - already BUSY\n", con);
1770 con->ops->put(con);
1771 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1772 dout("queue_con %p - already queued\n", con);
1773 con->ops->put(con);
1774 } else {
1775 dout("queue_con %p\n", con);
1776 }
1777 }
1778
1779 /*
1780 * Do some work on a connection. Drop a connection ref when we're done.
1781 */
1782 static void con_work(struct work_struct *work)
1783 {
1784 struct ceph_connection *con = container_of(work, struct ceph_connection,
1785 work.work);
1786 int backoff = 0;
1787
1788 more:
1789 if (test_and_set_bit(BUSY, &con->state) != 0) {
1790 dout("con_work %p BUSY already set\n", con);
1791 goto out;
1792 }
1793 dout("con_work %p start, clearing QUEUED\n", con);
1794 clear_bit(QUEUED, &con->state);
1795
1796 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1797 dout("con_work CLOSED\n");
1798 con_close_socket(con);
1799 goto done;
1800 }
1801 if (test_and_clear_bit(OPENING, &con->state)) {
1802 /* reopen w/ new peer */
1803 dout("con_work OPENING\n");
1804 con_close_socket(con);
1805 }
1806
1807 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1808 try_read(con) < 0 ||
1809 try_write(con) < 0) {
1810 backoff = 1;
1811 ceph_fault(con); /* error/fault path */
1812 }
1813
1814 done:
1815 clear_bit(BUSY, &con->state);
1816 dout("con->state=%lu\n", con->state);
1817 if (test_bit(QUEUED, &con->state)) {
1818 if (!backoff || test_bit(OPENING, &con->state)) {
1819 dout("con_work %p QUEUED reset, looping\n", con);
1820 goto more;
1821 }
1822 dout("con_work %p QUEUED reset, but just faulted\n", con);
1823 clear_bit(QUEUED, &con->state);
1824 }
1825 dout("con_work %p done\n", con);
1826
1827 out:
1828 con->ops->put(con);
1829 }
1830
1831
1832 /*
1833 * Generic error/fault handler. A retry mechanism is used with
1834 * exponential backoff
1835 */
1836 static void ceph_fault(struct ceph_connection *con)
1837 {
1838 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1839 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1840 dout("fault %p state %lu to peer %s\n",
1841 con, con->state, pr_addr(&con->peer_addr.in_addr));
1842
1843 if (test_bit(LOSSYTX, &con->state)) {
1844 dout("fault on LOSSYTX channel\n");
1845 goto out;
1846 }
1847
1848 mutex_lock(&con->mutex);
1849 if (test_bit(CLOSED, &con->state))
1850 goto out_unlock;
1851
1852 con_close_socket(con);
1853
1854 if (con->in_msg) {
1855 ceph_msg_put(con->in_msg);
1856 con->in_msg = NULL;
1857 }
1858
1859 /* Requeue anything that hasn't been acked */
1860 list_splice_init(&con->out_sent, &con->out_queue);
1861
1862 /* If there are no messages in the queue, place the connection
1863 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1864 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1865 dout("fault setting STANDBY\n");
1866 set_bit(STANDBY, &con->state);
1867 } else {
1868 /* retry after a delay. */
1869 if (con->delay == 0)
1870 con->delay = BASE_DELAY_INTERVAL;
1871 else if (con->delay < MAX_DELAY_INTERVAL)
1872 con->delay *= 2;
1873 dout("fault queueing %p delay %lu\n", con, con->delay);
1874 con->ops->get(con);
1875 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1876 round_jiffies_relative(con->delay)) == 0)
1877 con->ops->put(con);
1878 }
1879
1880 out_unlock:
1881 mutex_unlock(&con->mutex);
1882 out:
1883 /*
1884 * in case we faulted due to authentication, invalidate our
1885 * current tickets so that we can get new ones.
1886 */
1887 if (con->auth_retry && con->ops->invalidate_authorizer) {
1888 dout("calling invalidate_authorizer()\n");
1889 con->ops->invalidate_authorizer(con);
1890 }
1891
1892 if (con->ops->fault)
1893 con->ops->fault(con);
1894 }
1895
1896
1897
1898 /*
1899 * create a new messenger instance
1900 */
1901 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1902 {
1903 struct ceph_messenger *msgr;
1904
1905 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1906 if (msgr == NULL)
1907 return ERR_PTR(-ENOMEM);
1908
1909 spin_lock_init(&msgr->global_seq_lock);
1910
1911 /* the zero page is needed if a request is "canceled" while the message
1912 * is being written over the socket */
1913 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1914 if (!msgr->zero_page) {
1915 kfree(msgr);
1916 return ERR_PTR(-ENOMEM);
1917 }
1918 kmap(msgr->zero_page);
1919
1920 if (myaddr)
1921 msgr->inst.addr = *myaddr;
1922
1923 /* select a random nonce */
1924 msgr->inst.addr.type = 0;
1925 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
1926 encode_my_addr(msgr);
1927
1928 dout("messenger_create %p\n", msgr);
1929 return msgr;
1930 }
1931
1932 void ceph_messenger_destroy(struct ceph_messenger *msgr)
1933 {
1934 dout("destroy %p\n", msgr);
1935 kunmap(msgr->zero_page);
1936 __free_page(msgr->zero_page);
1937 kfree(msgr);
1938 dout("destroyed messenger %p\n", msgr);
1939 }
1940
1941 /*
1942 * Queue up an outgoing message on the given connection.
1943 */
1944 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1945 {
1946 if (test_bit(CLOSED, &con->state)) {
1947 dout("con_send %p closed, dropping %p\n", con, msg);
1948 ceph_msg_put(msg);
1949 return;
1950 }
1951
1952 /* set src+dst */
1953 msg->hdr.src.name = con->msgr->inst.name;
1954 msg->hdr.src.addr = con->msgr->my_enc_addr;
1955 msg->hdr.orig_src = msg->hdr.src;
1956
1957 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1958
1959 /* queue */
1960 mutex_lock(&con->mutex);
1961 BUG_ON(!list_empty(&msg->list_head));
1962 list_add_tail(&msg->list_head, &con->out_queue);
1963 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1964 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1965 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1966 le32_to_cpu(msg->hdr.front_len),
1967 le32_to_cpu(msg->hdr.middle_len),
1968 le32_to_cpu(msg->hdr.data_len));
1969 mutex_unlock(&con->mutex);
1970
1971 /* if there wasn't anything waiting to send before, queue
1972 * new work */
1973 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1974 queue_con(con);
1975 }
1976
1977 /*
1978 * Revoke a message that was previously queued for send
1979 */
1980 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1981 {
1982 mutex_lock(&con->mutex);
1983 if (!list_empty(&msg->list_head)) {
1984 dout("con_revoke %p msg %p\n", con, msg);
1985 list_del_init(&msg->list_head);
1986 ceph_msg_put(msg);
1987 msg->hdr.seq = 0;
1988 if (con->out_msg == msg) {
1989 ceph_msg_put(con->out_msg);
1990 con->out_msg = NULL;
1991 }
1992 if (con->out_kvec_is_msg) {
1993 con->out_skip = con->out_kvec_bytes;
1994 con->out_kvec_is_msg = false;
1995 }
1996 } else {
1997 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
1998 }
1999 mutex_unlock(&con->mutex);
2000 }
2001
2002 /*
2003 * Revoke a message that we may be reading data into
2004 */
2005 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2006 {
2007 mutex_lock(&con->mutex);
2008 if (con->in_msg && con->in_msg == msg) {
2009 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2010 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2011 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2012
2013 /* skip rest of message */
2014 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2015 con->in_base_pos = con->in_base_pos -
2016 sizeof(struct ceph_msg_header) -
2017 front_len -
2018 middle_len -
2019 data_len -
2020 sizeof(struct ceph_msg_footer);
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 con->in_tag = CEPH_MSGR_TAG_READY;
2024 } else {
2025 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2026 con, con->in_msg, msg);
2027 }
2028 mutex_unlock(&con->mutex);
2029 }
2030
2031 /*
2032 * Queue a keepalive byte to ensure the tcp connection is alive.
2033 */
2034 void ceph_con_keepalive(struct ceph_connection *con)
2035 {
2036 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2037 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2038 queue_con(con);
2039 }
2040
2041
2042 /*
2043 * construct a new message with given type, size
2044 * the new msg has a ref count of 1.
2045 */
2046 struct ceph_msg *ceph_msg_new(int type, int front_len,
2047 int page_len, int page_off, struct page **pages)
2048 {
2049 struct ceph_msg *m;
2050
2051 m = kmalloc(sizeof(*m), GFP_NOFS);
2052 if (m == NULL)
2053 goto out;
2054 kref_init(&m->kref);
2055 INIT_LIST_HEAD(&m->list_head);
2056
2057 m->hdr.type = cpu_to_le16(type);
2058 m->hdr.front_len = cpu_to_le32(front_len);
2059 m->hdr.middle_len = 0;
2060 m->hdr.data_len = cpu_to_le32(page_len);
2061 m->hdr.data_off = cpu_to_le16(page_off);
2062 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2063 m->footer.front_crc = 0;
2064 m->footer.middle_crc = 0;
2065 m->footer.data_crc = 0;
2066 m->front_max = front_len;
2067 m->front_is_vmalloc = false;
2068 m->more_to_follow = false;
2069 m->pool = NULL;
2070
2071 /* front */
2072 if (front_len) {
2073 if (front_len > PAGE_CACHE_SIZE) {
2074 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
2075 PAGE_KERNEL);
2076 m->front_is_vmalloc = true;
2077 } else {
2078 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
2079 }
2080 if (m->front.iov_base == NULL) {
2081 pr_err("msg_new can't allocate %d bytes\n",
2082 front_len);
2083 goto out2;
2084 }
2085 } else {
2086 m->front.iov_base = NULL;
2087 }
2088 m->front.iov_len = front_len;
2089
2090 /* middle */
2091 m->middle = NULL;
2092
2093 /* data */
2094 m->nr_pages = calc_pages_for(page_off, page_len);
2095 m->pages = pages;
2096 m->pagelist = NULL;
2097
2098 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
2099 m->nr_pages);
2100 return m;
2101
2102 out2:
2103 ceph_msg_put(m);
2104 out:
2105 pr_err("msg_new can't create type %d len %d\n", type, front_len);
2106 return ERR_PTR(-ENOMEM);
2107 }
2108
2109 /*
2110 * Allocate "middle" portion of a message, if it is needed and wasn't
2111 * allocated by alloc_msg. This allows us to read a small fixed-size
2112 * per-type header in the front and then gracefully fail (i.e.,
2113 * propagate the error to the caller based on info in the front) when
2114 * the middle is too large.
2115 */
2116 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2117 {
2118 int type = le16_to_cpu(msg->hdr.type);
2119 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2120
2121 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2122 ceph_msg_type_name(type), middle_len);
2123 BUG_ON(!middle_len);
2124 BUG_ON(msg->middle);
2125
2126 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2127 if (!msg->middle)
2128 return -ENOMEM;
2129 return 0;
2130 }
2131
2132 /*
2133 * Generic message allocator, for incoming messages.
2134 */
2135 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2136 struct ceph_msg_header *hdr,
2137 int *skip)
2138 {
2139 int type = le16_to_cpu(hdr->type);
2140 int front_len = le32_to_cpu(hdr->front_len);
2141 int middle_len = le32_to_cpu(hdr->middle_len);
2142 struct ceph_msg *msg = NULL;
2143 int ret;
2144
2145 if (con->ops->alloc_msg) {
2146 mutex_unlock(&con->mutex);
2147 msg = con->ops->alloc_msg(con, hdr, skip);
2148 mutex_lock(&con->mutex);
2149 if (IS_ERR(msg))
2150 return msg;
2151
2152 if (*skip)
2153 return NULL;
2154 }
2155 if (!msg) {
2156 *skip = 0;
2157 msg = ceph_msg_new(type, front_len, 0, 0, NULL);
2158 if (!msg) {
2159 pr_err("unable to allocate msg type %d len %d\n",
2160 type, front_len);
2161 return ERR_PTR(-ENOMEM);
2162 }
2163 }
2164 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2165
2166 if (middle_len) {
2167 ret = ceph_alloc_middle(con, msg);
2168
2169 if (ret < 0) {
2170 ceph_msg_put(msg);
2171 return msg;
2172 }
2173 }
2174
2175 return msg;
2176 }
2177
2178
2179 /*
2180 * Free a generically kmalloc'd message.
2181 */
2182 void ceph_msg_kfree(struct ceph_msg *m)
2183 {
2184 dout("msg_kfree %p\n", m);
2185 if (m->front_is_vmalloc)
2186 vfree(m->front.iov_base);
2187 else
2188 kfree(m->front.iov_base);
2189 kfree(m);
2190 }
2191
2192 /*
2193 * Drop a msg ref. Destroy as needed.
2194 */
2195 void ceph_msg_last_put(struct kref *kref)
2196 {
2197 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2198
2199 dout("ceph_msg_put last one on %p\n", m);
2200 WARN_ON(!list_empty(&m->list_head));
2201
2202 /* drop middle, data, if any */
2203 if (m->middle) {
2204 ceph_buffer_put(m->middle);
2205 m->middle = NULL;
2206 }
2207 m->nr_pages = 0;
2208 m->pages = NULL;
2209
2210 if (m->pagelist) {
2211 ceph_pagelist_release(m->pagelist);
2212 kfree(m->pagelist);
2213 m->pagelist = NULL;
2214 }
2215
2216 if (m->pool)
2217 ceph_msgpool_put(m->pool, m);
2218 else
2219 ceph_msg_kfree(m);
2220 }
2221
2222 void ceph_msg_dump(struct ceph_msg *msg)
2223 {
2224 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2225 msg->front_max, msg->nr_pages);
2226 print_hex_dump(KERN_DEBUG, "header: ",
2227 DUMP_PREFIX_OFFSET, 16, 1,
2228 &msg->hdr, sizeof(msg->hdr), true);
2229 print_hex_dump(KERN_DEBUG, " front: ",
2230 DUMP_PREFIX_OFFSET, 16, 1,
2231 msg->front.iov_base, msg->front.iov_len, true);
2232 if (msg->middle)
2233 print_hex_dump(KERN_DEBUG, "middle: ",
2234 DUMP_PREFIX_OFFSET, 16, 1,
2235 msg->middle->vec.iov_base,
2236 msg->middle->vec.iov_len, true);
2237 print_hex_dump(KERN_DEBUG, "footer: ",
2238 DUMP_PREFIX_OFFSET, 16, 1,
2239 &msg->footer, sizeof(msg->footer), true);
2240 }