]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/crypto/keyring.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / fs / crypto / keyring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 /*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21 #include <crypto/skcipher.h>
22 #include <linux/key-type.h>
23 #include <linux/seq_file.h>
24
25 #include "fscrypt_private.h"
26
27 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
28 {
29 fscrypt_destroy_hkdf(&secret->hkdf);
30 memzero_explicit(secret, sizeof(*secret));
31 }
32
33 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
34 struct fscrypt_master_key_secret *src)
35 {
36 memcpy(dst, src, sizeof(*dst));
37 memzero_explicit(src, sizeof(*src));
38 }
39
40 static void free_master_key(struct fscrypt_master_key *mk)
41 {
42 size_t i;
43
44 wipe_master_key_secret(&mk->mk_secret);
45
46 for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) {
47 crypto_free_skcipher(mk->mk_direct_tfms[i]);
48 crypto_free_skcipher(mk->mk_iv_ino_lblk_64_tfms[i]);
49 }
50
51 key_put(mk->mk_users);
52 kzfree(mk);
53 }
54
55 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
56 {
57 if (spec->__reserved)
58 return false;
59 return master_key_spec_len(spec) != 0;
60 }
61
62 static int fscrypt_key_instantiate(struct key *key,
63 struct key_preparsed_payload *prep)
64 {
65 key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
66 return 0;
67 }
68
69 static void fscrypt_key_destroy(struct key *key)
70 {
71 free_master_key(key->payload.data[0]);
72 }
73
74 static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
75 {
76 seq_puts(m, key->description);
77
78 if (key_is_positive(key)) {
79 const struct fscrypt_master_key *mk = key->payload.data[0];
80
81 if (!is_master_key_secret_present(&mk->mk_secret))
82 seq_puts(m, ": secret removed");
83 }
84 }
85
86 /*
87 * Type of key in ->s_master_keys. Each key of this type represents a master
88 * key which has been added to the filesystem. Its payload is a
89 * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents
90 * users from adding keys of this type via the keyrings syscalls rather than via
91 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
92 */
93 static struct key_type key_type_fscrypt = {
94 .name = "._fscrypt",
95 .instantiate = fscrypt_key_instantiate,
96 .destroy = fscrypt_key_destroy,
97 .describe = fscrypt_key_describe,
98 };
99
100 static int fscrypt_user_key_instantiate(struct key *key,
101 struct key_preparsed_payload *prep)
102 {
103 /*
104 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
105 * each key, regardless of the exact key size. The amount of memory
106 * actually used is greater than the size of the raw key anyway.
107 */
108 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
109 }
110
111 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
112 {
113 seq_puts(m, key->description);
114 }
115
116 /*
117 * Type of key in ->mk_users. Each key of this type represents a particular
118 * user who has added a particular master key.
119 *
120 * Note that the name of this key type really should be something like
121 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
122 * mainly for simplicity of presentation in /proc/keys when read by a non-root
123 * user. And it is expected to be rare that a key is actually added by multiple
124 * users, since users should keep their encryption keys confidential.
125 */
126 static struct key_type key_type_fscrypt_user = {
127 .name = ".fscrypt",
128 .instantiate = fscrypt_user_key_instantiate,
129 .describe = fscrypt_user_key_describe,
130 };
131
132 /* Search ->s_master_keys or ->mk_users */
133 static struct key *search_fscrypt_keyring(struct key *keyring,
134 struct key_type *type,
135 const char *description)
136 {
137 /*
138 * We need to mark the keyring reference as "possessed" so that we
139 * acquire permission to search it, via the KEY_POS_SEARCH permission.
140 */
141 key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
142
143 keyref = keyring_search(keyref, type, description, false);
144 if (IS_ERR(keyref)) {
145 if (PTR_ERR(keyref) == -EAGAIN || /* not found */
146 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
147 keyref = ERR_PTR(-ENOKEY);
148 return ERR_CAST(keyref);
149 }
150 return key_ref_to_ptr(keyref);
151 }
152
153 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \
154 (CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id))
155
156 #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
157
158 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
159 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
160 CONST_STRLEN("-users") + 1)
161
162 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
163 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
164
165 static void format_fs_keyring_description(
166 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
167 const struct super_block *sb)
168 {
169 sprintf(description, "fscrypt-%s", sb->s_id);
170 }
171
172 static void format_mk_description(
173 char description[FSCRYPT_MK_DESCRIPTION_SIZE],
174 const struct fscrypt_key_specifier *mk_spec)
175 {
176 sprintf(description, "%*phN",
177 master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
178 }
179
180 static void format_mk_users_keyring_description(
181 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
182 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
183 {
184 sprintf(description, "fscrypt-%*phN-users",
185 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
186 }
187
188 static void format_mk_user_description(
189 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
190 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
191 {
192
193 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
194 mk_identifier, __kuid_val(current_fsuid()));
195 }
196
197 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
198 static int allocate_filesystem_keyring(struct super_block *sb)
199 {
200 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
201 struct key *keyring;
202
203 if (sb->s_master_keys)
204 return 0;
205
206 format_fs_keyring_description(description, sb);
207 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
208 current_cred(), KEY_POS_SEARCH |
209 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
210 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
211 if (IS_ERR(keyring))
212 return PTR_ERR(keyring);
213
214 /* Pairs with READ_ONCE() in fscrypt_find_master_key() */
215 smp_store_release(&sb->s_master_keys, keyring);
216 return 0;
217 }
218
219 void fscrypt_sb_free(struct super_block *sb)
220 {
221 key_put(sb->s_master_keys);
222 sb->s_master_keys = NULL;
223 }
224
225 /*
226 * Find the specified master key in ->s_master_keys.
227 * Returns ERR_PTR(-ENOKEY) if not found.
228 */
229 struct key *fscrypt_find_master_key(struct super_block *sb,
230 const struct fscrypt_key_specifier *mk_spec)
231 {
232 struct key *keyring;
233 char description[FSCRYPT_MK_DESCRIPTION_SIZE];
234
235 /* pairs with smp_store_release() in allocate_filesystem_keyring() */
236 keyring = READ_ONCE(sb->s_master_keys);
237 if (keyring == NULL)
238 return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
239
240 format_mk_description(description, mk_spec);
241 return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
242 }
243
244 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
245 {
246 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
247 struct key *keyring;
248
249 format_mk_users_keyring_description(description,
250 mk->mk_spec.u.identifier);
251 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
252 current_cred(), KEY_POS_SEARCH |
253 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
254 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
255 if (IS_ERR(keyring))
256 return PTR_ERR(keyring);
257
258 mk->mk_users = keyring;
259 return 0;
260 }
261
262 /*
263 * Find the current user's "key" in the master key's ->mk_users.
264 * Returns ERR_PTR(-ENOKEY) if not found.
265 */
266 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
267 {
268 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
269
270 format_mk_user_description(description, mk->mk_spec.u.identifier);
271 return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
272 description);
273 }
274
275 /*
276 * Give the current user a "key" in ->mk_users. This charges the user's quota
277 * and marks the master key as added by the current user, so that it cannot be
278 * removed by another user with the key. Either the master key's key->sem must
279 * be held for write, or the master key must be still undergoing initialization.
280 */
281 static int add_master_key_user(struct fscrypt_master_key *mk)
282 {
283 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
284 struct key *mk_user;
285 int err;
286
287 format_mk_user_description(description, mk->mk_spec.u.identifier);
288 mk_user = key_alloc(&key_type_fscrypt_user, description,
289 current_fsuid(), current_gid(), current_cred(),
290 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
291 if (IS_ERR(mk_user))
292 return PTR_ERR(mk_user);
293
294 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
295 key_put(mk_user);
296 return err;
297 }
298
299 /*
300 * Remove the current user's "key" from ->mk_users.
301 * The master key's key->sem must be held for write.
302 *
303 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
304 */
305 static int remove_master_key_user(struct fscrypt_master_key *mk)
306 {
307 struct key *mk_user;
308 int err;
309
310 mk_user = find_master_key_user(mk);
311 if (IS_ERR(mk_user))
312 return PTR_ERR(mk_user);
313 err = key_unlink(mk->mk_users, mk_user);
314 key_put(mk_user);
315 return err;
316 }
317
318 /*
319 * Allocate a new fscrypt_master_key which contains the given secret, set it as
320 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
321 * into the given keyring. Synchronized by fscrypt_add_key_mutex.
322 */
323 static int add_new_master_key(struct fscrypt_master_key_secret *secret,
324 const struct fscrypt_key_specifier *mk_spec,
325 struct key *keyring)
326 {
327 struct fscrypt_master_key *mk;
328 char description[FSCRYPT_MK_DESCRIPTION_SIZE];
329 struct key *key;
330 int err;
331
332 mk = kzalloc(sizeof(*mk), GFP_KERNEL);
333 if (!mk)
334 return -ENOMEM;
335
336 mk->mk_spec = *mk_spec;
337
338 move_master_key_secret(&mk->mk_secret, secret);
339 init_rwsem(&mk->mk_secret_sem);
340
341 refcount_set(&mk->mk_refcount, 1); /* secret is present */
342 INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
343 spin_lock_init(&mk->mk_decrypted_inodes_lock);
344
345 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
346 err = allocate_master_key_users_keyring(mk);
347 if (err)
348 goto out_free_mk;
349 err = add_master_key_user(mk);
350 if (err)
351 goto out_free_mk;
352 }
353
354 /*
355 * Note that we don't charge this key to anyone's quota, since when
356 * ->mk_users is in use those keys are charged instead, and otherwise
357 * (when ->mk_users isn't in use) only root can add these keys.
358 */
359 format_mk_description(description, mk_spec);
360 key = key_alloc(&key_type_fscrypt, description,
361 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
362 KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
363 KEY_ALLOC_NOT_IN_QUOTA, NULL);
364 if (IS_ERR(key)) {
365 err = PTR_ERR(key);
366 goto out_free_mk;
367 }
368 err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
369 key_put(key);
370 if (err)
371 goto out_free_mk;
372
373 return 0;
374
375 out_free_mk:
376 free_master_key(mk);
377 return err;
378 }
379
380 #define KEY_DEAD 1
381
382 static int add_existing_master_key(struct fscrypt_master_key *mk,
383 struct fscrypt_master_key_secret *secret)
384 {
385 struct key *mk_user;
386 bool rekey;
387 int err;
388
389 /*
390 * If the current user is already in ->mk_users, then there's nothing to
391 * do. (Not applicable for v1 policy keys, which have NULL ->mk_users.)
392 */
393 if (mk->mk_users) {
394 mk_user = find_master_key_user(mk);
395 if (mk_user != ERR_PTR(-ENOKEY)) {
396 if (IS_ERR(mk_user))
397 return PTR_ERR(mk_user);
398 key_put(mk_user);
399 return 0;
400 }
401 }
402
403 /* If we'll be re-adding ->mk_secret, try to take the reference. */
404 rekey = !is_master_key_secret_present(&mk->mk_secret);
405 if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
406 return KEY_DEAD;
407
408 /* Add the current user to ->mk_users, if applicable. */
409 if (mk->mk_users) {
410 err = add_master_key_user(mk);
411 if (err) {
412 if (rekey && refcount_dec_and_test(&mk->mk_refcount))
413 return KEY_DEAD;
414 return err;
415 }
416 }
417
418 /* Re-add the secret if needed. */
419 if (rekey) {
420 down_write(&mk->mk_secret_sem);
421 move_master_key_secret(&mk->mk_secret, secret);
422 up_write(&mk->mk_secret_sem);
423 }
424 return 0;
425 }
426
427 static int add_master_key(struct super_block *sb,
428 struct fscrypt_master_key_secret *secret,
429 const struct fscrypt_key_specifier *mk_spec)
430 {
431 static DEFINE_MUTEX(fscrypt_add_key_mutex);
432 struct key *key;
433 int err;
434
435 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
436 retry:
437 key = fscrypt_find_master_key(sb, mk_spec);
438 if (IS_ERR(key)) {
439 err = PTR_ERR(key);
440 if (err != -ENOKEY)
441 goto out_unlock;
442 /* Didn't find the key in ->s_master_keys. Add it. */
443 err = allocate_filesystem_keyring(sb);
444 if (err)
445 goto out_unlock;
446 err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
447 } else {
448 /*
449 * Found the key in ->s_master_keys. Re-add the secret if
450 * needed, and add the user to ->mk_users if needed.
451 */
452 down_write(&key->sem);
453 err = add_existing_master_key(key->payload.data[0], secret);
454 up_write(&key->sem);
455 if (err == KEY_DEAD) {
456 /* Key being removed or needs to be removed */
457 key_invalidate(key);
458 key_put(key);
459 goto retry;
460 }
461 key_put(key);
462 }
463 out_unlock:
464 mutex_unlock(&fscrypt_add_key_mutex);
465 return err;
466 }
467
468 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
469 {
470 const struct fscrypt_provisioning_key_payload *payload = prep->data;
471
472 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
473 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
474 return -EINVAL;
475
476 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
477 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
478 return -EINVAL;
479
480 if (payload->__reserved)
481 return -EINVAL;
482
483 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
484 if (!prep->payload.data[0])
485 return -ENOMEM;
486
487 prep->quotalen = prep->datalen;
488 return 0;
489 }
490
491 static void fscrypt_provisioning_key_free_preparse(
492 struct key_preparsed_payload *prep)
493 {
494 kzfree(prep->payload.data[0]);
495 }
496
497 static void fscrypt_provisioning_key_describe(const struct key *key,
498 struct seq_file *m)
499 {
500 seq_puts(m, key->description);
501 if (key_is_positive(key)) {
502 const struct fscrypt_provisioning_key_payload *payload =
503 key->payload.data[0];
504
505 seq_printf(m, ": %u [%u]", key->datalen, payload->type);
506 }
507 }
508
509 static void fscrypt_provisioning_key_destroy(struct key *key)
510 {
511 kzfree(key->payload.data[0]);
512 }
513
514 static struct key_type key_type_fscrypt_provisioning = {
515 .name = "fscrypt-provisioning",
516 .preparse = fscrypt_provisioning_key_preparse,
517 .free_preparse = fscrypt_provisioning_key_free_preparse,
518 .instantiate = generic_key_instantiate,
519 .describe = fscrypt_provisioning_key_describe,
520 .destroy = fscrypt_provisioning_key_destroy,
521 };
522
523 /*
524 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
525 * store it into 'secret'.
526 *
527 * The key must be of type "fscrypt-provisioning" and must have the field
528 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
529 * only usable with fscrypt with the particular KDF version identified by
530 * 'type'. We don't use the "logon" key type because there's no way to
531 * completely restrict the use of such keys; they can be used by any kernel API
532 * that accepts "logon" keys and doesn't require a specific service prefix.
533 *
534 * The ability to specify the key via Linux keyring key is intended for cases
535 * where userspace needs to re-add keys after the filesystem is unmounted and
536 * re-mounted. Most users should just provide the raw key directly instead.
537 */
538 static int get_keyring_key(u32 key_id, u32 type,
539 struct fscrypt_master_key_secret *secret)
540 {
541 key_ref_t ref;
542 struct key *key;
543 const struct fscrypt_provisioning_key_payload *payload;
544 int err;
545
546 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
547 if (IS_ERR(ref))
548 return PTR_ERR(ref);
549 key = key_ref_to_ptr(ref);
550
551 if (key->type != &key_type_fscrypt_provisioning)
552 goto bad_key;
553 payload = key->payload.data[0];
554
555 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
556 if (payload->type != type)
557 goto bad_key;
558
559 secret->size = key->datalen - sizeof(*payload);
560 memcpy(secret->raw, payload->raw, secret->size);
561 err = 0;
562 goto out_put;
563
564 bad_key:
565 err = -EKEYREJECTED;
566 out_put:
567 key_ref_put(ref);
568 return err;
569 }
570
571 /*
572 * Add a master encryption key to the filesystem, causing all files which were
573 * encrypted with it to appear "unlocked" (decrypted) when accessed.
574 *
575 * When adding a key for use by v1 encryption policies, this ioctl is
576 * privileged, and userspace must provide the 'key_descriptor'.
577 *
578 * When adding a key for use by v2+ encryption policies, this ioctl is
579 * unprivileged. This is needed, in general, to allow non-root users to use
580 * encryption without encountering the visibility problems of process-subscribed
581 * keyrings and the inability to properly remove keys. This works by having
582 * each key identified by its cryptographically secure hash --- the
583 * 'key_identifier'. The cryptographic hash ensures that a malicious user
584 * cannot add the wrong key for a given identifier. Furthermore, each added key
585 * is charged to the appropriate user's quota for the keyrings service, which
586 * prevents a malicious user from adding too many keys. Finally, we forbid a
587 * user from removing a key while other users have added it too, which prevents
588 * a user who knows another user's key from causing a denial-of-service by
589 * removing it at an inopportune time. (We tolerate that a user who knows a key
590 * can prevent other users from removing it.)
591 *
592 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
593 * Documentation/filesystems/fscrypt.rst.
594 */
595 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
596 {
597 struct super_block *sb = file_inode(filp)->i_sb;
598 struct fscrypt_add_key_arg __user *uarg = _uarg;
599 struct fscrypt_add_key_arg arg;
600 struct fscrypt_master_key_secret secret;
601 int err;
602
603 if (copy_from_user(&arg, uarg, sizeof(arg)))
604 return -EFAULT;
605
606 if (!valid_key_spec(&arg.key_spec))
607 return -EINVAL;
608
609 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
610 return -EINVAL;
611
612 memset(&secret, 0, sizeof(secret));
613 if (arg.key_id) {
614 if (arg.raw_size != 0)
615 return -EINVAL;
616 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
617 if (err)
618 goto out_wipe_secret;
619 } else {
620 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
621 arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
622 return -EINVAL;
623 secret.size = arg.raw_size;
624 err = -EFAULT;
625 if (copy_from_user(secret.raw, uarg->raw, secret.size))
626 goto out_wipe_secret;
627 }
628
629 switch (arg.key_spec.type) {
630 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
631 /*
632 * Only root can add keys that are identified by an arbitrary
633 * descriptor rather than by a cryptographic hash --- since
634 * otherwise a malicious user could add the wrong key.
635 */
636 err = -EACCES;
637 if (!capable(CAP_SYS_ADMIN))
638 goto out_wipe_secret;
639 break;
640 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
641 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
642 if (err)
643 goto out_wipe_secret;
644
645 /*
646 * Now that the HKDF context is initialized, the raw key is no
647 * longer needed.
648 */
649 memzero_explicit(secret.raw, secret.size);
650
651 /* Calculate the key identifier and return it to userspace. */
652 err = fscrypt_hkdf_expand(&secret.hkdf,
653 HKDF_CONTEXT_KEY_IDENTIFIER,
654 NULL, 0, arg.key_spec.u.identifier,
655 FSCRYPT_KEY_IDENTIFIER_SIZE);
656 if (err)
657 goto out_wipe_secret;
658 err = -EFAULT;
659 if (copy_to_user(uarg->key_spec.u.identifier,
660 arg.key_spec.u.identifier,
661 FSCRYPT_KEY_IDENTIFIER_SIZE))
662 goto out_wipe_secret;
663 break;
664 default:
665 WARN_ON(1);
666 err = -EINVAL;
667 goto out_wipe_secret;
668 }
669
670 err = add_master_key(sb, &secret, &arg.key_spec);
671 out_wipe_secret:
672 wipe_master_key_secret(&secret);
673 return err;
674 }
675 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
676
677 /*
678 * Verify that the current user has added a master key with the given identifier
679 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
680 * their files using some other user's key which they don't actually know.
681 * Cryptographically this isn't much of a problem, but the semantics of this
682 * would be a bit weird, so it's best to just forbid it.
683 *
684 * The system administrator (CAP_FOWNER) can override this, which should be
685 * enough for any use cases where encryption policies are being set using keys
686 * that were chosen ahead of time but aren't available at the moment.
687 *
688 * Note that the key may have already removed by the time this returns, but
689 * that's okay; we just care whether the key was there at some point.
690 *
691 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
692 */
693 int fscrypt_verify_key_added(struct super_block *sb,
694 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
695 {
696 struct fscrypt_key_specifier mk_spec;
697 struct key *key, *mk_user;
698 struct fscrypt_master_key *mk;
699 int err;
700
701 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
702 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
703
704 key = fscrypt_find_master_key(sb, &mk_spec);
705 if (IS_ERR(key)) {
706 err = PTR_ERR(key);
707 goto out;
708 }
709 mk = key->payload.data[0];
710 mk_user = find_master_key_user(mk);
711 if (IS_ERR(mk_user)) {
712 err = PTR_ERR(mk_user);
713 } else {
714 key_put(mk_user);
715 err = 0;
716 }
717 key_put(key);
718 out:
719 if (err == -ENOKEY && capable(CAP_FOWNER))
720 err = 0;
721 return err;
722 }
723
724 /*
725 * Try to evict the inode's dentries from the dentry cache. If the inode is a
726 * directory, then it can have at most one dentry; however, that dentry may be
727 * pinned by child dentries, so first try to evict the children too.
728 */
729 static void shrink_dcache_inode(struct inode *inode)
730 {
731 struct dentry *dentry;
732
733 if (S_ISDIR(inode->i_mode)) {
734 dentry = d_find_any_alias(inode);
735 if (dentry) {
736 shrink_dcache_parent(dentry);
737 dput(dentry);
738 }
739 }
740 d_prune_aliases(inode);
741 }
742
743 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
744 {
745 struct fscrypt_info *ci;
746 struct inode *inode;
747 struct inode *toput_inode = NULL;
748
749 spin_lock(&mk->mk_decrypted_inodes_lock);
750
751 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
752 inode = ci->ci_inode;
753 spin_lock(&inode->i_lock);
754 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
755 spin_unlock(&inode->i_lock);
756 continue;
757 }
758 __iget(inode);
759 spin_unlock(&inode->i_lock);
760 spin_unlock(&mk->mk_decrypted_inodes_lock);
761
762 shrink_dcache_inode(inode);
763 iput(toput_inode);
764 toput_inode = inode;
765
766 spin_lock(&mk->mk_decrypted_inodes_lock);
767 }
768
769 spin_unlock(&mk->mk_decrypted_inodes_lock);
770 iput(toput_inode);
771 }
772
773 static int check_for_busy_inodes(struct super_block *sb,
774 struct fscrypt_master_key *mk)
775 {
776 struct list_head *pos;
777 size_t busy_count = 0;
778 unsigned long ino;
779
780 spin_lock(&mk->mk_decrypted_inodes_lock);
781
782 list_for_each(pos, &mk->mk_decrypted_inodes)
783 busy_count++;
784
785 if (busy_count == 0) {
786 spin_unlock(&mk->mk_decrypted_inodes_lock);
787 return 0;
788 }
789
790 {
791 /* select an example file to show for debugging purposes */
792 struct inode *inode =
793 list_first_entry(&mk->mk_decrypted_inodes,
794 struct fscrypt_info,
795 ci_master_key_link)->ci_inode;
796 ino = inode->i_ino;
797 }
798 spin_unlock(&mk->mk_decrypted_inodes_lock);
799
800 fscrypt_warn(NULL,
801 "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu",
802 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
803 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
804 ino);
805 return -EBUSY;
806 }
807
808 static int try_to_lock_encrypted_files(struct super_block *sb,
809 struct fscrypt_master_key *mk)
810 {
811 int err1;
812 int err2;
813
814 /*
815 * An inode can't be evicted while it is dirty or has dirty pages.
816 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
817 *
818 * Just do it the easy way: call sync_filesystem(). It's overkill, but
819 * it works, and it's more important to minimize the amount of caches we
820 * drop than the amount of data we sync. Also, unprivileged users can
821 * already call sync_filesystem() via sys_syncfs() or sys_sync().
822 */
823 down_read(&sb->s_umount);
824 err1 = sync_filesystem(sb);
825 up_read(&sb->s_umount);
826 /* If a sync error occurs, still try to evict as much as possible. */
827
828 /*
829 * Inodes are pinned by their dentries, so we have to evict their
830 * dentries. shrink_dcache_sb() would suffice, but would be overkill
831 * and inappropriate for use by unprivileged users. So instead go
832 * through the inodes' alias lists and try to evict each dentry.
833 */
834 evict_dentries_for_decrypted_inodes(mk);
835
836 /*
837 * evict_dentries_for_decrypted_inodes() already iput() each inode in
838 * the list; any inodes for which that dropped the last reference will
839 * have been evicted due to fscrypt_drop_inode() detecting the key
840 * removal and telling the VFS to evict the inode. So to finish, we
841 * just need to check whether any inodes couldn't be evicted.
842 */
843 err2 = check_for_busy_inodes(sb, mk);
844
845 return err1 ?: err2;
846 }
847
848 /*
849 * Try to remove an fscrypt master encryption key.
850 *
851 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
852 * claim to the key, then removes the key itself if no other users have claims.
853 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
854 * key itself.
855 *
856 * To "remove the key itself", first we wipe the actual master key secret, so
857 * that no more inodes can be unlocked with it. Then we try to evict all cached
858 * inodes that had been unlocked with the key.
859 *
860 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
861 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
862 * state (without the actual secret key) where it tracks the list of remaining
863 * inodes. Userspace can execute the ioctl again later to retry eviction, or
864 * alternatively can re-add the secret key again.
865 *
866 * For more details, see the "Removing keys" section of
867 * Documentation/filesystems/fscrypt.rst.
868 */
869 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
870 {
871 struct super_block *sb = file_inode(filp)->i_sb;
872 struct fscrypt_remove_key_arg __user *uarg = _uarg;
873 struct fscrypt_remove_key_arg arg;
874 struct key *key;
875 struct fscrypt_master_key *mk;
876 u32 status_flags = 0;
877 int err;
878 bool dead;
879
880 if (copy_from_user(&arg, uarg, sizeof(arg)))
881 return -EFAULT;
882
883 if (!valid_key_spec(&arg.key_spec))
884 return -EINVAL;
885
886 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
887 return -EINVAL;
888
889 /*
890 * Only root can add and remove keys that are identified by an arbitrary
891 * descriptor rather than by a cryptographic hash.
892 */
893 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
894 !capable(CAP_SYS_ADMIN))
895 return -EACCES;
896
897 /* Find the key being removed. */
898 key = fscrypt_find_master_key(sb, &arg.key_spec);
899 if (IS_ERR(key))
900 return PTR_ERR(key);
901 mk = key->payload.data[0];
902
903 down_write(&key->sem);
904
905 /* If relevant, remove current user's (or all users) claim to the key */
906 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
907 if (all_users)
908 err = keyring_clear(mk->mk_users);
909 else
910 err = remove_master_key_user(mk);
911 if (err) {
912 up_write(&key->sem);
913 goto out_put_key;
914 }
915 if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
916 /*
917 * Other users have still added the key too. We removed
918 * the current user's claim to the key, but we still
919 * can't remove the key itself.
920 */
921 status_flags |=
922 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
923 err = 0;
924 up_write(&key->sem);
925 goto out_put_key;
926 }
927 }
928
929 /* No user claims remaining. Go ahead and wipe the secret. */
930 dead = false;
931 if (is_master_key_secret_present(&mk->mk_secret)) {
932 down_write(&mk->mk_secret_sem);
933 wipe_master_key_secret(&mk->mk_secret);
934 dead = refcount_dec_and_test(&mk->mk_refcount);
935 up_write(&mk->mk_secret_sem);
936 }
937 up_write(&key->sem);
938 if (dead) {
939 /*
940 * No inodes reference the key, and we wiped the secret, so the
941 * key object is free to be removed from the keyring.
942 */
943 key_invalidate(key);
944 err = 0;
945 } else {
946 /* Some inodes still reference this key; try to evict them. */
947 err = try_to_lock_encrypted_files(sb, mk);
948 if (err == -EBUSY) {
949 status_flags |=
950 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
951 err = 0;
952 }
953 }
954 /*
955 * We return 0 if we successfully did something: removed a claim to the
956 * key, wiped the secret, or tried locking the files again. Users need
957 * to check the informational status flags if they care whether the key
958 * has been fully removed including all files locked.
959 */
960 out_put_key:
961 key_put(key);
962 if (err == 0)
963 err = put_user(status_flags, &uarg->removal_status_flags);
964 return err;
965 }
966
967 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
968 {
969 return do_remove_key(filp, uarg, false);
970 }
971 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
972
973 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
974 {
975 if (!capable(CAP_SYS_ADMIN))
976 return -EACCES;
977 return do_remove_key(filp, uarg, true);
978 }
979 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
980
981 /*
982 * Retrieve the status of an fscrypt master encryption key.
983 *
984 * We set ->status to indicate whether the key is absent, present, or
985 * incompletely removed. "Incompletely removed" means that the master key
986 * secret has been removed, but some files which had been unlocked with it are
987 * still in use. This field allows applications to easily determine the state
988 * of an encrypted directory without using a hack such as trying to open a
989 * regular file in it (which can confuse the "incompletely removed" state with
990 * absent or present).
991 *
992 * In addition, for v2 policy keys we allow applications to determine, via
993 * ->status_flags and ->user_count, whether the key has been added by the
994 * current user, by other users, or by both. Most applications should not need
995 * this, since ordinarily only one user should know a given key. However, if a
996 * secret key is shared by multiple users, applications may wish to add an
997 * already-present key to prevent other users from removing it. This ioctl can
998 * be used to check whether that really is the case before the work is done to
999 * add the key --- which might e.g. require prompting the user for a passphrase.
1000 *
1001 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1002 * Documentation/filesystems/fscrypt.rst.
1003 */
1004 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1005 {
1006 struct super_block *sb = file_inode(filp)->i_sb;
1007 struct fscrypt_get_key_status_arg arg;
1008 struct key *key;
1009 struct fscrypt_master_key *mk;
1010 int err;
1011
1012 if (copy_from_user(&arg, uarg, sizeof(arg)))
1013 return -EFAULT;
1014
1015 if (!valid_key_spec(&arg.key_spec))
1016 return -EINVAL;
1017
1018 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1019 return -EINVAL;
1020
1021 arg.status_flags = 0;
1022 arg.user_count = 0;
1023 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1024
1025 key = fscrypt_find_master_key(sb, &arg.key_spec);
1026 if (IS_ERR(key)) {
1027 if (key != ERR_PTR(-ENOKEY))
1028 return PTR_ERR(key);
1029 arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1030 err = 0;
1031 goto out;
1032 }
1033 mk = key->payload.data[0];
1034 down_read(&key->sem);
1035
1036 if (!is_master_key_secret_present(&mk->mk_secret)) {
1037 arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
1038 err = 0;
1039 goto out_release_key;
1040 }
1041
1042 arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1043 if (mk->mk_users) {
1044 struct key *mk_user;
1045
1046 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1047 mk_user = find_master_key_user(mk);
1048 if (!IS_ERR(mk_user)) {
1049 arg.status_flags |=
1050 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1051 key_put(mk_user);
1052 } else if (mk_user != ERR_PTR(-ENOKEY)) {
1053 err = PTR_ERR(mk_user);
1054 goto out_release_key;
1055 }
1056 }
1057 err = 0;
1058 out_release_key:
1059 up_read(&key->sem);
1060 key_put(key);
1061 out:
1062 if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1063 err = -EFAULT;
1064 return err;
1065 }
1066 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1067
1068 int __init fscrypt_init_keyring(void)
1069 {
1070 int err;
1071
1072 err = register_key_type(&key_type_fscrypt);
1073 if (err)
1074 return err;
1075
1076 err = register_key_type(&key_type_fscrypt_user);
1077 if (err)
1078 goto err_unregister_fscrypt;
1079
1080 err = register_key_type(&key_type_fscrypt_provisioning);
1081 if (err)
1082 goto err_unregister_fscrypt_user;
1083
1084 return 0;
1085
1086 err_unregister_fscrypt_user:
1087 unregister_key_type(&key_type_fscrypt_user);
1088 err_unregister_fscrypt:
1089 unregister_key_type(&key_type_fscrypt);
1090 return err;
1091 }