]> git.ipfire.org Git - people/ms/linux.git/blob - fs/dax.c
Merge tag 'random-5.19-rc4-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95 return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112 return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122 return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129 static bool dax_is_conflict(void *entry)
130 {
131 return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135 * DAX page cache entry locking
136 */
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145 };
146
147 /**
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 */
152 enum dax_wake_mode {
153 WAKE_ALL,
154 WAKE_NEXT,
155 };
156
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
159 {
160 unsigned long hash;
161 unsigned long index = xas->xa_index;
162
163 /*
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
167 */
168 if (dax_is_pmd_entry(entry))
169 index &= ~PG_PMD_COLOUR;
170 key->xa = xas->xa;
171 key->entry_start = index;
172
173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 return wait_table + hash;
175 }
176
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
179 {
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184 if (key->xa != ewait->key.xa ||
185 key->entry_start != ewait->key.entry_start)
186 return 0;
187 return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
194 */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
197 {
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
200
201 wq = dax_entry_waitqueue(xas, entry, &key);
202
203 /*
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 * under the i_pages lock, ditto for entry handling in our callers.
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
208 */
209 if (waitqueue_active(wq))
210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
220 *
221 * Must be called with the i_pages lock held.
222 */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 void *entry;
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
228
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
231
232 for (;;) {
233 entry = xas_find_conflict(xas);
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 return entry;
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
238 if (!dax_is_locked(entry))
239 return entry;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
244 xas_unlock_irq(xas);
245 xas_reset(xas);
246 schedule();
247 finish_wait(wq, &ewait.wait);
248 xas_lock_irq(xas);
249 }
250 }
251
252 /*
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
261
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
264
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 /*
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
271 */
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 xas_unlock_irq(xas);
274 schedule();
275 finish_wait(wq, &ewait.wait);
276 }
277
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
280 {
281 if (entry && !dax_is_conflict(entry))
282 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 * before use.
289 */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 void *old;
293
294 BUG_ON(dax_is_locked(entry));
295 xas_reset(xas);
296 xas_lock_irq(xas);
297 old = xas_store(xas, entry);
298 xas_unlock_irq(xas);
299 BUG_ON(!dax_is_locked(old));
300 dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304 * Return: The entry stored at this location before it was locked.
305 */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
312 static unsigned long dax_entry_size(void *entry)
313 {
314 if (dax_is_zero_entry(entry))
315 return 0;
316 else if (dax_is_empty_entry(entry))
317 return 0;
318 else if (dax_is_pmd_entry(entry))
319 return PMD_SIZE;
320 else
321 return PAGE_SIZE;
322 }
323
324 static unsigned long dax_end_pfn(void *entry)
325 {
326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
332 */
333 #define for_each_mapped_pfn(entry, pfn) \
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
336
337 /*
338 * TODO: for reflink+dax we need a way to associate a single page with
339 * multiple address_space instances at different linear_page_index()
340 * offsets.
341 */
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 struct vm_area_struct *vma, unsigned long address)
344 {
345 unsigned long size = dax_entry_size(entry), pfn, index;
346 int i = 0;
347
348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349 return;
350
351 index = linear_page_index(vma, address & ~(size - 1));
352 for_each_mapped_pfn(entry, pfn) {
353 struct page *page = pfn_to_page(pfn);
354
355 WARN_ON_ONCE(page->mapping);
356 page->mapping = mapping;
357 page->index = index + i++;
358 }
359 }
360
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362 bool trunc)
363 {
364 unsigned long pfn;
365
366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367 return;
368
369 for_each_mapped_pfn(entry, pfn) {
370 struct page *page = pfn_to_page(pfn);
371
372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 page->mapping = NULL;
375 page->index = 0;
376 }
377 }
378
379 static struct page *dax_busy_page(void *entry)
380 {
381 unsigned long pfn;
382
383 for_each_mapped_pfn(entry, pfn) {
384 struct page *page = pfn_to_page(pfn);
385
386 if (page_ref_count(page) > 1)
387 return page;
388 }
389 return NULL;
390 }
391
392 /*
393 * dax_lock_page - Lock the DAX entry corresponding to a page
394 * @page: The page whose entry we want to lock
395 *
396 * Context: Process context.
397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398 * not be locked.
399 */
400 dax_entry_t dax_lock_page(struct page *page)
401 {
402 XA_STATE(xas, NULL, 0);
403 void *entry;
404
405 /* Ensure page->mapping isn't freed while we look at it */
406 rcu_read_lock();
407 for (;;) {
408 struct address_space *mapping = READ_ONCE(page->mapping);
409
410 entry = NULL;
411 if (!mapping || !dax_mapping(mapping))
412 break;
413
414 /*
415 * In the device-dax case there's no need to lock, a
416 * struct dev_pagemap pin is sufficient to keep the
417 * inode alive, and we assume we have dev_pagemap pin
418 * otherwise we would not have a valid pfn_to_page()
419 * translation.
420 */
421 entry = (void *)~0UL;
422 if (S_ISCHR(mapping->host->i_mode))
423 break;
424
425 xas.xa = &mapping->i_pages;
426 xas_lock_irq(&xas);
427 if (mapping != page->mapping) {
428 xas_unlock_irq(&xas);
429 continue;
430 }
431 xas_set(&xas, page->index);
432 entry = xas_load(&xas);
433 if (dax_is_locked(entry)) {
434 rcu_read_unlock();
435 wait_entry_unlocked(&xas, entry);
436 rcu_read_lock();
437 continue;
438 }
439 dax_lock_entry(&xas, entry);
440 xas_unlock_irq(&xas);
441 break;
442 }
443 rcu_read_unlock();
444 return (dax_entry_t)entry;
445 }
446
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449 struct address_space *mapping = page->mapping;
450 XA_STATE(xas, &mapping->i_pages, page->index);
451
452 if (S_ISCHR(mapping->host->i_mode))
453 return;
454
455 dax_unlock_entry(&xas, (void *)cookie);
456 }
457
458 /*
459 * Find page cache entry at given index. If it is a DAX entry, return it
460 * with the entry locked. If the page cache doesn't contain an entry at
461 * that index, add a locked empty entry.
462 *
463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464 * either return that locked entry or will return VM_FAULT_FALLBACK.
465 * This will happen if there are any PTE entries within the PMD range
466 * that we are requesting.
467 *
468 * We always favor PTE entries over PMD entries. There isn't a flow where we
469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
470 * insertion will fail if it finds any PTE entries already in the tree, and a
471 * PTE insertion will cause an existing PMD entry to be unmapped and
472 * downgraded to PTE entries. This happens for both PMD zero pages as
473 * well as PMD empty entries.
474 *
475 * The exception to this downgrade path is for PMD entries that have
476 * real storage backing them. We will leave these real PMD entries in
477 * the tree, and PTE writes will simply dirty the entire PMD entry.
478 *
479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480 * persistent memory the benefit is doubtful. We can add that later if we can
481 * show it helps.
482 *
483 * On error, this function does not return an ERR_PTR. Instead it returns
484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
485 * overlap with xarray value entries.
486 */
487 static void *grab_mapping_entry(struct xa_state *xas,
488 struct address_space *mapping, unsigned int order)
489 {
490 unsigned long index = xas->xa_index;
491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
492 void *entry;
493
494 retry:
495 pmd_downgrade = false;
496 xas_lock_irq(xas);
497 entry = get_unlocked_entry(xas, order);
498
499 if (entry) {
500 if (dax_is_conflict(entry))
501 goto fallback;
502 if (!xa_is_value(entry)) {
503 xas_set_err(xas, -EIO);
504 goto out_unlock;
505 }
506
507 if (order == 0) {
508 if (dax_is_pmd_entry(entry) &&
509 (dax_is_zero_entry(entry) ||
510 dax_is_empty_entry(entry))) {
511 pmd_downgrade = true;
512 }
513 }
514 }
515
516 if (pmd_downgrade) {
517 /*
518 * Make sure 'entry' remains valid while we drop
519 * the i_pages lock.
520 */
521 dax_lock_entry(xas, entry);
522
523 /*
524 * Besides huge zero pages the only other thing that gets
525 * downgraded are empty entries which don't need to be
526 * unmapped.
527 */
528 if (dax_is_zero_entry(entry)) {
529 xas_unlock_irq(xas);
530 unmap_mapping_pages(mapping,
531 xas->xa_index & ~PG_PMD_COLOUR,
532 PG_PMD_NR, false);
533 xas_reset(xas);
534 xas_lock_irq(xas);
535 }
536
537 dax_disassociate_entry(entry, mapping, false);
538 xas_store(xas, NULL); /* undo the PMD join */
539 dax_wake_entry(xas, entry, WAKE_ALL);
540 mapping->nrpages -= PG_PMD_NR;
541 entry = NULL;
542 xas_set(xas, index);
543 }
544
545 if (entry) {
546 dax_lock_entry(xas, entry);
547 } else {
548 unsigned long flags = DAX_EMPTY;
549
550 if (order > 0)
551 flags |= DAX_PMD;
552 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553 dax_lock_entry(xas, entry);
554 if (xas_error(xas))
555 goto out_unlock;
556 mapping->nrpages += 1UL << order;
557 }
558
559 out_unlock:
560 xas_unlock_irq(xas);
561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562 goto retry;
563 if (xas->xa_node == XA_ERROR(-ENOMEM))
564 return xa_mk_internal(VM_FAULT_OOM);
565 if (xas_error(xas))
566 return xa_mk_internal(VM_FAULT_SIGBUS);
567 return entry;
568 fallback:
569 xas_unlock_irq(xas);
570 return xa_mk_internal(VM_FAULT_FALLBACK);
571 }
572
573 /**
574 * dax_layout_busy_page_range - find first pinned page in @mapping
575 * @mapping: address space to scan for a page with ref count > 1
576 * @start: Starting offset. Page containing 'start' is included.
577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578 * pages from 'start' till the end of file are included.
579 *
580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
581 * 'onlined' to the page allocator so they are considered idle when
582 * page->count == 1. A filesystem uses this interface to determine if
583 * any page in the mapping is busy, i.e. for DMA, or other
584 * get_user_pages() usages.
585 *
586 * It is expected that the filesystem is holding locks to block the
587 * establishment of new mappings in this address_space. I.e. it expects
588 * to be able to run unmap_mapping_range() and subsequently not race
589 * mapping_mapped() becoming true.
590 */
591 struct page *dax_layout_busy_page_range(struct address_space *mapping,
592 loff_t start, loff_t end)
593 {
594 void *entry;
595 unsigned int scanned = 0;
596 struct page *page = NULL;
597 pgoff_t start_idx = start >> PAGE_SHIFT;
598 pgoff_t end_idx;
599 XA_STATE(xas, &mapping->i_pages, start_idx);
600
601 /*
602 * In the 'limited' case get_user_pages() for dax is disabled.
603 */
604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
605 return NULL;
606
607 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
608 return NULL;
609
610 /* If end == LLONG_MAX, all pages from start to till end of file */
611 if (end == LLONG_MAX)
612 end_idx = ULONG_MAX;
613 else
614 end_idx = end >> PAGE_SHIFT;
615 /*
616 * If we race get_user_pages_fast() here either we'll see the
617 * elevated page count in the iteration and wait, or
618 * get_user_pages_fast() will see that the page it took a reference
619 * against is no longer mapped in the page tables and bail to the
620 * get_user_pages() slow path. The slow path is protected by
621 * pte_lock() and pmd_lock(). New references are not taken without
622 * holding those locks, and unmap_mapping_pages() will not zero the
623 * pte or pmd without holding the respective lock, so we are
624 * guaranteed to either see new references or prevent new
625 * references from being established.
626 */
627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
628
629 xas_lock_irq(&xas);
630 xas_for_each(&xas, entry, end_idx) {
631 if (WARN_ON_ONCE(!xa_is_value(entry)))
632 continue;
633 if (unlikely(dax_is_locked(entry)))
634 entry = get_unlocked_entry(&xas, 0);
635 if (entry)
636 page = dax_busy_page(entry);
637 put_unlocked_entry(&xas, entry, WAKE_NEXT);
638 if (page)
639 break;
640 if (++scanned % XA_CHECK_SCHED)
641 continue;
642
643 xas_pause(&xas);
644 xas_unlock_irq(&xas);
645 cond_resched();
646 xas_lock_irq(&xas);
647 }
648 xas_unlock_irq(&xas);
649 return page;
650 }
651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652
653 struct page *dax_layout_busy_page(struct address_space *mapping)
654 {
655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656 }
657 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658
659 static int __dax_invalidate_entry(struct address_space *mapping,
660 pgoff_t index, bool trunc)
661 {
662 XA_STATE(xas, &mapping->i_pages, index);
663 int ret = 0;
664 void *entry;
665
666 xas_lock_irq(&xas);
667 entry = get_unlocked_entry(&xas, 0);
668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
669 goto out;
670 if (!trunc &&
671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673 goto out;
674 dax_disassociate_entry(entry, mapping, trunc);
675 xas_store(&xas, NULL);
676 mapping->nrpages -= 1UL << dax_entry_order(entry);
677 ret = 1;
678 out:
679 put_unlocked_entry(&xas, entry, WAKE_ALL);
680 xas_unlock_irq(&xas);
681 return ret;
682 }
683
684 /*
685 * Delete DAX entry at @index from @mapping. Wait for it
686 * to be unlocked before deleting it.
687 */
688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689 {
690 int ret = __dax_invalidate_entry(mapping, index, true);
691
692 /*
693 * This gets called from truncate / punch_hole path. As such, the caller
694 * must hold locks protecting against concurrent modifications of the
695 * page cache (usually fs-private i_mmap_sem for writing). Since the
696 * caller has seen a DAX entry for this index, we better find it
697 * at that index as well...
698 */
699 WARN_ON_ONCE(!ret);
700 return ret;
701 }
702
703 /*
704 * Invalidate DAX entry if it is clean.
705 */
706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
707 pgoff_t index)
708 {
709 return __dax_invalidate_entry(mapping, index, false);
710 }
711
712 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
713 {
714 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
715 }
716
717 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
718 {
719 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
720 void *vto, *kaddr;
721 long rc;
722 int id;
723
724 id = dax_read_lock();
725 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
726 &kaddr, NULL);
727 if (rc < 0) {
728 dax_read_unlock(id);
729 return rc;
730 }
731 vto = kmap_atomic(vmf->cow_page);
732 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
733 kunmap_atomic(vto);
734 dax_read_unlock(id);
735 return 0;
736 }
737
738 /*
739 * By this point grab_mapping_entry() has ensured that we have a locked entry
740 * of the appropriate size so we don't have to worry about downgrading PMDs to
741 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
742 * already in the tree, we will skip the insertion and just dirty the PMD as
743 * appropriate.
744 */
745 static void *dax_insert_entry(struct xa_state *xas,
746 struct address_space *mapping, struct vm_fault *vmf,
747 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
748 {
749 void *new_entry = dax_make_entry(pfn, flags);
750
751 if (dirty)
752 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
753
754 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
755 unsigned long index = xas->xa_index;
756 /* we are replacing a zero page with block mapping */
757 if (dax_is_pmd_entry(entry))
758 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
759 PG_PMD_NR, false);
760 else /* pte entry */
761 unmap_mapping_pages(mapping, index, 1, false);
762 }
763
764 xas_reset(xas);
765 xas_lock_irq(xas);
766 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
767 void *old;
768
769 dax_disassociate_entry(entry, mapping, false);
770 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
771 /*
772 * Only swap our new entry into the page cache if the current
773 * entry is a zero page or an empty entry. If a normal PTE or
774 * PMD entry is already in the cache, we leave it alone. This
775 * means that if we are trying to insert a PTE and the
776 * existing entry is a PMD, we will just leave the PMD in the
777 * tree and dirty it if necessary.
778 */
779 old = dax_lock_entry(xas, new_entry);
780 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
781 DAX_LOCKED));
782 entry = new_entry;
783 } else {
784 xas_load(xas); /* Walk the xa_state */
785 }
786
787 if (dirty)
788 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
789
790 xas_unlock_irq(xas);
791 return entry;
792 }
793
794 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
795 struct address_space *mapping, void *entry)
796 {
797 unsigned long pfn, index, count, end;
798 long ret = 0;
799 struct vm_area_struct *vma;
800
801 /*
802 * A page got tagged dirty in DAX mapping? Something is seriously
803 * wrong.
804 */
805 if (WARN_ON(!xa_is_value(entry)))
806 return -EIO;
807
808 if (unlikely(dax_is_locked(entry))) {
809 void *old_entry = entry;
810
811 entry = get_unlocked_entry(xas, 0);
812
813 /* Entry got punched out / reallocated? */
814 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
815 goto put_unlocked;
816 /*
817 * Entry got reallocated elsewhere? No need to writeback.
818 * We have to compare pfns as we must not bail out due to
819 * difference in lockbit or entry type.
820 */
821 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
822 goto put_unlocked;
823 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
824 dax_is_zero_entry(entry))) {
825 ret = -EIO;
826 goto put_unlocked;
827 }
828
829 /* Another fsync thread may have already done this entry */
830 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
831 goto put_unlocked;
832 }
833
834 /* Lock the entry to serialize with page faults */
835 dax_lock_entry(xas, entry);
836
837 /*
838 * We can clear the tag now but we have to be careful so that concurrent
839 * dax_writeback_one() calls for the same index cannot finish before we
840 * actually flush the caches. This is achieved as the calls will look
841 * at the entry only under the i_pages lock and once they do that
842 * they will see the entry locked and wait for it to unlock.
843 */
844 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
845 xas_unlock_irq(xas);
846
847 /*
848 * If dax_writeback_mapping_range() was given a wbc->range_start
849 * in the middle of a PMD, the 'index' we use needs to be
850 * aligned to the start of the PMD.
851 * This allows us to flush for PMD_SIZE and not have to worry about
852 * partial PMD writebacks.
853 */
854 pfn = dax_to_pfn(entry);
855 count = 1UL << dax_entry_order(entry);
856 index = xas->xa_index & ~(count - 1);
857 end = index + count - 1;
858
859 /* Walk all mappings of a given index of a file and writeprotect them */
860 i_mmap_lock_read(mapping);
861 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
862 pfn_mkclean_range(pfn, count, index, vma);
863 cond_resched();
864 }
865 i_mmap_unlock_read(mapping);
866
867 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
868 /*
869 * After we have flushed the cache, we can clear the dirty tag. There
870 * cannot be new dirty data in the pfn after the flush has completed as
871 * the pfn mappings are writeprotected and fault waits for mapping
872 * entry lock.
873 */
874 xas_reset(xas);
875 xas_lock_irq(xas);
876 xas_store(xas, entry);
877 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
878 dax_wake_entry(xas, entry, WAKE_NEXT);
879
880 trace_dax_writeback_one(mapping->host, index, count);
881 return ret;
882
883 put_unlocked:
884 put_unlocked_entry(xas, entry, WAKE_NEXT);
885 return ret;
886 }
887
888 /*
889 * Flush the mapping to the persistent domain within the byte range of [start,
890 * end]. This is required by data integrity operations to ensure file data is
891 * on persistent storage prior to completion of the operation.
892 */
893 int dax_writeback_mapping_range(struct address_space *mapping,
894 struct dax_device *dax_dev, struct writeback_control *wbc)
895 {
896 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
897 struct inode *inode = mapping->host;
898 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
899 void *entry;
900 int ret = 0;
901 unsigned int scanned = 0;
902
903 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
904 return -EIO;
905
906 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
907 return 0;
908
909 trace_dax_writeback_range(inode, xas.xa_index, end_index);
910
911 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
912
913 xas_lock_irq(&xas);
914 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
915 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
916 if (ret < 0) {
917 mapping_set_error(mapping, ret);
918 break;
919 }
920 if (++scanned % XA_CHECK_SCHED)
921 continue;
922
923 xas_pause(&xas);
924 xas_unlock_irq(&xas);
925 cond_resched();
926 xas_lock_irq(&xas);
927 }
928 xas_unlock_irq(&xas);
929 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
930 return ret;
931 }
932 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
933
934 static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
935 pfn_t *pfnp)
936 {
937 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
938 int id, rc;
939 long length;
940
941 id = dax_read_lock();
942 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
943 DAX_ACCESS, NULL, pfnp);
944 if (length < 0) {
945 rc = length;
946 goto out;
947 }
948 rc = -EINVAL;
949 if (PFN_PHYS(length) < size)
950 goto out;
951 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
952 goto out;
953 /* For larger pages we need devmap */
954 if (length > 1 && !pfn_t_devmap(*pfnp))
955 goto out;
956 rc = 0;
957 out:
958 dax_read_unlock(id);
959 return rc;
960 }
961
962 /*
963 * The user has performed a load from a hole in the file. Allocating a new
964 * page in the file would cause excessive storage usage for workloads with
965 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
966 * If this page is ever written to we will re-fault and change the mapping to
967 * point to real DAX storage instead.
968 */
969 static vm_fault_t dax_load_hole(struct xa_state *xas,
970 struct address_space *mapping, void **entry,
971 struct vm_fault *vmf)
972 {
973 struct inode *inode = mapping->host;
974 unsigned long vaddr = vmf->address;
975 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
976 vm_fault_t ret;
977
978 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
979 DAX_ZERO_PAGE, false);
980
981 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
982 trace_dax_load_hole(inode, vmf, ret);
983 return ret;
984 }
985
986 #ifdef CONFIG_FS_DAX_PMD
987 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
988 const struct iomap *iomap, void **entry)
989 {
990 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
991 unsigned long pmd_addr = vmf->address & PMD_MASK;
992 struct vm_area_struct *vma = vmf->vma;
993 struct inode *inode = mapping->host;
994 pgtable_t pgtable = NULL;
995 struct page *zero_page;
996 spinlock_t *ptl;
997 pmd_t pmd_entry;
998 pfn_t pfn;
999
1000 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1001
1002 if (unlikely(!zero_page))
1003 goto fallback;
1004
1005 pfn = page_to_pfn_t(zero_page);
1006 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1007 DAX_PMD | DAX_ZERO_PAGE, false);
1008
1009 if (arch_needs_pgtable_deposit()) {
1010 pgtable = pte_alloc_one(vma->vm_mm);
1011 if (!pgtable)
1012 return VM_FAULT_OOM;
1013 }
1014
1015 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1016 if (!pmd_none(*(vmf->pmd))) {
1017 spin_unlock(ptl);
1018 goto fallback;
1019 }
1020
1021 if (pgtable) {
1022 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1023 mm_inc_nr_ptes(vma->vm_mm);
1024 }
1025 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1026 pmd_entry = pmd_mkhuge(pmd_entry);
1027 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1028 spin_unlock(ptl);
1029 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1030 return VM_FAULT_NOPAGE;
1031
1032 fallback:
1033 if (pgtable)
1034 pte_free(vma->vm_mm, pgtable);
1035 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1036 return VM_FAULT_FALLBACK;
1037 }
1038 #else
1039 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1040 const struct iomap *iomap, void **entry)
1041 {
1042 return VM_FAULT_FALLBACK;
1043 }
1044 #endif /* CONFIG_FS_DAX_PMD */
1045
1046 static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
1047 unsigned int offset, size_t size)
1048 {
1049 void *kaddr;
1050 long ret;
1051
1052 ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL);
1053 if (ret > 0) {
1054 memset(kaddr + offset, 0, size);
1055 dax_flush(dax_dev, kaddr + offset, size);
1056 }
1057 return ret;
1058 }
1059
1060 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1061 {
1062 const struct iomap *iomap = &iter->iomap;
1063 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1064 loff_t pos = iter->pos;
1065 u64 length = iomap_length(iter);
1066 s64 written = 0;
1067
1068 /* already zeroed? we're done. */
1069 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1070 return length;
1071
1072 do {
1073 unsigned offset = offset_in_page(pos);
1074 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1075 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1076 long rc;
1077 int id;
1078
1079 id = dax_read_lock();
1080 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1081 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1082 else
1083 rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
1084 dax_read_unlock(id);
1085
1086 if (rc < 0)
1087 return rc;
1088 pos += size;
1089 length -= size;
1090 written += size;
1091 if (did_zero)
1092 *did_zero = true;
1093 } while (length > 0);
1094
1095 return written;
1096 }
1097
1098 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1099 const struct iomap_ops *ops)
1100 {
1101 struct iomap_iter iter = {
1102 .inode = inode,
1103 .pos = pos,
1104 .len = len,
1105 .flags = IOMAP_DAX | IOMAP_ZERO,
1106 };
1107 int ret;
1108
1109 while ((ret = iomap_iter(&iter, ops)) > 0)
1110 iter.processed = dax_zero_iter(&iter, did_zero);
1111 return ret;
1112 }
1113 EXPORT_SYMBOL_GPL(dax_zero_range);
1114
1115 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1116 const struct iomap_ops *ops)
1117 {
1118 unsigned int blocksize = i_blocksize(inode);
1119 unsigned int off = pos & (blocksize - 1);
1120
1121 /* Block boundary? Nothing to do */
1122 if (!off)
1123 return 0;
1124 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1125 }
1126 EXPORT_SYMBOL_GPL(dax_truncate_page);
1127
1128 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1129 struct iov_iter *iter)
1130 {
1131 const struct iomap *iomap = &iomi->iomap;
1132 loff_t length = iomap_length(iomi);
1133 loff_t pos = iomi->pos;
1134 struct dax_device *dax_dev = iomap->dax_dev;
1135 loff_t end = pos + length, done = 0;
1136 ssize_t ret = 0;
1137 size_t xfer;
1138 int id;
1139
1140 if (iov_iter_rw(iter) == READ) {
1141 end = min(end, i_size_read(iomi->inode));
1142 if (pos >= end)
1143 return 0;
1144
1145 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1146 return iov_iter_zero(min(length, end - pos), iter);
1147 }
1148
1149 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1150 return -EIO;
1151
1152 /*
1153 * Write can allocate block for an area which has a hole page mapped
1154 * into page tables. We have to tear down these mappings so that data
1155 * written by write(2) is visible in mmap.
1156 */
1157 if (iomap->flags & IOMAP_F_NEW) {
1158 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1159 pos >> PAGE_SHIFT,
1160 (end - 1) >> PAGE_SHIFT);
1161 }
1162
1163 id = dax_read_lock();
1164 while (pos < end) {
1165 unsigned offset = pos & (PAGE_SIZE - 1);
1166 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1167 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1168 ssize_t map_len;
1169 bool recovery = false;
1170 void *kaddr;
1171
1172 if (fatal_signal_pending(current)) {
1173 ret = -EINTR;
1174 break;
1175 }
1176
1177 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1178 DAX_ACCESS, &kaddr, NULL);
1179 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1180 map_len = dax_direct_access(dax_dev, pgoff,
1181 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1182 &kaddr, NULL);
1183 if (map_len > 0)
1184 recovery = true;
1185 }
1186 if (map_len < 0) {
1187 ret = map_len;
1188 break;
1189 }
1190
1191 map_len = PFN_PHYS(map_len);
1192 kaddr += offset;
1193 map_len -= offset;
1194 if (map_len > end - pos)
1195 map_len = end - pos;
1196
1197 if (recovery)
1198 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1199 map_len, iter);
1200 else if (iov_iter_rw(iter) == WRITE)
1201 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1202 map_len, iter);
1203 else
1204 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1205 map_len, iter);
1206
1207 pos += xfer;
1208 length -= xfer;
1209 done += xfer;
1210
1211 if (xfer == 0)
1212 ret = -EFAULT;
1213 if (xfer < map_len)
1214 break;
1215 }
1216 dax_read_unlock(id);
1217
1218 return done ? done : ret;
1219 }
1220
1221 /**
1222 * dax_iomap_rw - Perform I/O to a DAX file
1223 * @iocb: The control block for this I/O
1224 * @iter: The addresses to do I/O from or to
1225 * @ops: iomap ops passed from the file system
1226 *
1227 * This function performs read and write operations to directly mapped
1228 * persistent memory. The callers needs to take care of read/write exclusion
1229 * and evicting any page cache pages in the region under I/O.
1230 */
1231 ssize_t
1232 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1233 const struct iomap_ops *ops)
1234 {
1235 struct iomap_iter iomi = {
1236 .inode = iocb->ki_filp->f_mapping->host,
1237 .pos = iocb->ki_pos,
1238 .len = iov_iter_count(iter),
1239 .flags = IOMAP_DAX,
1240 };
1241 loff_t done = 0;
1242 int ret;
1243
1244 if (iov_iter_rw(iter) == WRITE) {
1245 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1246 iomi.flags |= IOMAP_WRITE;
1247 } else {
1248 lockdep_assert_held(&iomi.inode->i_rwsem);
1249 }
1250
1251 if (iocb->ki_flags & IOCB_NOWAIT)
1252 iomi.flags |= IOMAP_NOWAIT;
1253
1254 while ((ret = iomap_iter(&iomi, ops)) > 0)
1255 iomi.processed = dax_iomap_iter(&iomi, iter);
1256
1257 done = iomi.pos - iocb->ki_pos;
1258 iocb->ki_pos = iomi.pos;
1259 return done ? done : ret;
1260 }
1261 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1262
1263 static vm_fault_t dax_fault_return(int error)
1264 {
1265 if (error == 0)
1266 return VM_FAULT_NOPAGE;
1267 return vmf_error(error);
1268 }
1269
1270 /*
1271 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1272 * flushed on write-faults (non-cow), but not read-faults.
1273 */
1274 static bool dax_fault_is_synchronous(unsigned long flags,
1275 struct vm_area_struct *vma, const struct iomap *iomap)
1276 {
1277 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1278 && (iomap->flags & IOMAP_F_DIRTY);
1279 }
1280
1281 /*
1282 * When handling a synchronous page fault and the inode need a fsync, we can
1283 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1284 * insertion for now and return the pfn so that caller can insert it after the
1285 * fsync is done.
1286 */
1287 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1288 {
1289 if (WARN_ON_ONCE(!pfnp))
1290 return VM_FAULT_SIGBUS;
1291 *pfnp = pfn;
1292 return VM_FAULT_NEEDDSYNC;
1293 }
1294
1295 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1296 const struct iomap_iter *iter)
1297 {
1298 vm_fault_t ret;
1299 int error = 0;
1300
1301 switch (iter->iomap.type) {
1302 case IOMAP_HOLE:
1303 case IOMAP_UNWRITTEN:
1304 clear_user_highpage(vmf->cow_page, vmf->address);
1305 break;
1306 case IOMAP_MAPPED:
1307 error = copy_cow_page_dax(vmf, iter);
1308 break;
1309 default:
1310 WARN_ON_ONCE(1);
1311 error = -EIO;
1312 break;
1313 }
1314
1315 if (error)
1316 return dax_fault_return(error);
1317
1318 __SetPageUptodate(vmf->cow_page);
1319 ret = finish_fault(vmf);
1320 if (!ret)
1321 return VM_FAULT_DONE_COW;
1322 return ret;
1323 }
1324
1325 /**
1326 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1327 * @vmf: vm fault instance
1328 * @iter: iomap iter
1329 * @pfnp: pfn to be returned
1330 * @xas: the dax mapping tree of a file
1331 * @entry: an unlocked dax entry to be inserted
1332 * @pmd: distinguish whether it is a pmd fault
1333 */
1334 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1335 const struct iomap_iter *iter, pfn_t *pfnp,
1336 struct xa_state *xas, void **entry, bool pmd)
1337 {
1338 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1339 const struct iomap *iomap = &iter->iomap;
1340 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1341 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1342 bool write = vmf->flags & FAULT_FLAG_WRITE;
1343 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
1344 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1345 int err = 0;
1346 pfn_t pfn;
1347
1348 if (!pmd && vmf->cow_page)
1349 return dax_fault_cow_page(vmf, iter);
1350
1351 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1352 if (!write &&
1353 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1354 if (!pmd)
1355 return dax_load_hole(xas, mapping, entry, vmf);
1356 return dax_pmd_load_hole(xas, vmf, iomap, entry);
1357 }
1358
1359 if (iomap->type != IOMAP_MAPPED) {
1360 WARN_ON_ONCE(1);
1361 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1362 }
1363
1364 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
1365 if (err)
1366 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1367
1368 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
1369 write && !sync);
1370
1371 if (sync)
1372 return dax_fault_synchronous_pfnp(pfnp, pfn);
1373
1374 /* insert PMD pfn */
1375 if (pmd)
1376 return vmf_insert_pfn_pmd(vmf, pfn, write);
1377
1378 /* insert PTE pfn */
1379 if (write)
1380 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1381 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1382 }
1383
1384 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1385 int *iomap_errp, const struct iomap_ops *ops)
1386 {
1387 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1388 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1389 struct iomap_iter iter = {
1390 .inode = mapping->host,
1391 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1392 .len = PAGE_SIZE,
1393 .flags = IOMAP_DAX | IOMAP_FAULT,
1394 };
1395 vm_fault_t ret = 0;
1396 void *entry;
1397 int error;
1398
1399 trace_dax_pte_fault(iter.inode, vmf, ret);
1400 /*
1401 * Check whether offset isn't beyond end of file now. Caller is supposed
1402 * to hold locks serializing us with truncate / punch hole so this is
1403 * a reliable test.
1404 */
1405 if (iter.pos >= i_size_read(iter.inode)) {
1406 ret = VM_FAULT_SIGBUS;
1407 goto out;
1408 }
1409
1410 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1411 iter.flags |= IOMAP_WRITE;
1412
1413 entry = grab_mapping_entry(&xas, mapping, 0);
1414 if (xa_is_internal(entry)) {
1415 ret = xa_to_internal(entry);
1416 goto out;
1417 }
1418
1419 /*
1420 * It is possible, particularly with mixed reads & writes to private
1421 * mappings, that we have raced with a PMD fault that overlaps with
1422 * the PTE we need to set up. If so just return and the fault will be
1423 * retried.
1424 */
1425 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1426 ret = VM_FAULT_NOPAGE;
1427 goto unlock_entry;
1428 }
1429
1430 while ((error = iomap_iter(&iter, ops)) > 0) {
1431 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1432 iter.processed = -EIO; /* fs corruption? */
1433 continue;
1434 }
1435
1436 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1437 if (ret != VM_FAULT_SIGBUS &&
1438 (iter.iomap.flags & IOMAP_F_NEW)) {
1439 count_vm_event(PGMAJFAULT);
1440 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1441 ret |= VM_FAULT_MAJOR;
1442 }
1443
1444 if (!(ret & VM_FAULT_ERROR))
1445 iter.processed = PAGE_SIZE;
1446 }
1447
1448 if (iomap_errp)
1449 *iomap_errp = error;
1450 if (!ret && error)
1451 ret = dax_fault_return(error);
1452
1453 unlock_entry:
1454 dax_unlock_entry(&xas, entry);
1455 out:
1456 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1457 return ret;
1458 }
1459
1460 #ifdef CONFIG_FS_DAX_PMD
1461 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1462 pgoff_t max_pgoff)
1463 {
1464 unsigned long pmd_addr = vmf->address & PMD_MASK;
1465 bool write = vmf->flags & FAULT_FLAG_WRITE;
1466
1467 /*
1468 * Make sure that the faulting address's PMD offset (color) matches
1469 * the PMD offset from the start of the file. This is necessary so
1470 * that a PMD range in the page table overlaps exactly with a PMD
1471 * range in the page cache.
1472 */
1473 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1474 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1475 return true;
1476
1477 /* Fall back to PTEs if we're going to COW */
1478 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1479 return true;
1480
1481 /* If the PMD would extend outside the VMA */
1482 if (pmd_addr < vmf->vma->vm_start)
1483 return true;
1484 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1485 return true;
1486
1487 /* If the PMD would extend beyond the file size */
1488 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1489 return true;
1490
1491 return false;
1492 }
1493
1494 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1495 const struct iomap_ops *ops)
1496 {
1497 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1498 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1499 struct iomap_iter iter = {
1500 .inode = mapping->host,
1501 .len = PMD_SIZE,
1502 .flags = IOMAP_DAX | IOMAP_FAULT,
1503 };
1504 vm_fault_t ret = VM_FAULT_FALLBACK;
1505 pgoff_t max_pgoff;
1506 void *entry;
1507 int error;
1508
1509 if (vmf->flags & FAULT_FLAG_WRITE)
1510 iter.flags |= IOMAP_WRITE;
1511
1512 /*
1513 * Check whether offset isn't beyond end of file now. Caller is
1514 * supposed to hold locks serializing us with truncate / punch hole so
1515 * this is a reliable test.
1516 */
1517 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1518
1519 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1520
1521 if (xas.xa_index >= max_pgoff) {
1522 ret = VM_FAULT_SIGBUS;
1523 goto out;
1524 }
1525
1526 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1527 goto fallback;
1528
1529 /*
1530 * grab_mapping_entry() will make sure we get an empty PMD entry,
1531 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1532 * entry is already in the array, for instance), it will return
1533 * VM_FAULT_FALLBACK.
1534 */
1535 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1536 if (xa_is_internal(entry)) {
1537 ret = xa_to_internal(entry);
1538 goto fallback;
1539 }
1540
1541 /*
1542 * It is possible, particularly with mixed reads & writes to private
1543 * mappings, that we have raced with a PTE fault that overlaps with
1544 * the PMD we need to set up. If so just return and the fault will be
1545 * retried.
1546 */
1547 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1548 !pmd_devmap(*vmf->pmd)) {
1549 ret = 0;
1550 goto unlock_entry;
1551 }
1552
1553 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1554 while ((error = iomap_iter(&iter, ops)) > 0) {
1555 if (iomap_length(&iter) < PMD_SIZE)
1556 continue; /* actually breaks out of the loop */
1557
1558 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1559 if (ret != VM_FAULT_FALLBACK)
1560 iter.processed = PMD_SIZE;
1561 }
1562
1563 unlock_entry:
1564 dax_unlock_entry(&xas, entry);
1565 fallback:
1566 if (ret == VM_FAULT_FALLBACK) {
1567 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1568 count_vm_event(THP_FAULT_FALLBACK);
1569 }
1570 out:
1571 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1572 return ret;
1573 }
1574 #else
1575 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1576 const struct iomap_ops *ops)
1577 {
1578 return VM_FAULT_FALLBACK;
1579 }
1580 #endif /* CONFIG_FS_DAX_PMD */
1581
1582 /**
1583 * dax_iomap_fault - handle a page fault on a DAX file
1584 * @vmf: The description of the fault
1585 * @pe_size: Size of the page to fault in
1586 * @pfnp: PFN to insert for synchronous faults if fsync is required
1587 * @iomap_errp: Storage for detailed error code in case of error
1588 * @ops: Iomap ops passed from the file system
1589 *
1590 * When a page fault occurs, filesystems may call this helper in
1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1592 * has done all the necessary locking for page fault to proceed
1593 * successfully.
1594 */
1595 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1596 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1597 {
1598 switch (pe_size) {
1599 case PE_SIZE_PTE:
1600 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1601 case PE_SIZE_PMD:
1602 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1603 default:
1604 return VM_FAULT_FALLBACK;
1605 }
1606 }
1607 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1608
1609 /*
1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1611 * @vmf: The description of the fault
1612 * @pfn: PFN to insert
1613 * @order: Order of entry to insert.
1614 *
1615 * This function inserts a writeable PTE or PMD entry into the page tables
1616 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1617 */
1618 static vm_fault_t
1619 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1620 {
1621 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1622 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1623 void *entry;
1624 vm_fault_t ret;
1625
1626 xas_lock_irq(&xas);
1627 entry = get_unlocked_entry(&xas, order);
1628 /* Did we race with someone splitting entry or so? */
1629 if (!entry || dax_is_conflict(entry) ||
1630 (order == 0 && !dax_is_pte_entry(entry))) {
1631 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1632 xas_unlock_irq(&xas);
1633 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1634 VM_FAULT_NOPAGE);
1635 return VM_FAULT_NOPAGE;
1636 }
1637 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1638 dax_lock_entry(&xas, entry);
1639 xas_unlock_irq(&xas);
1640 if (order == 0)
1641 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1642 #ifdef CONFIG_FS_DAX_PMD
1643 else if (order == PMD_ORDER)
1644 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1645 #endif
1646 else
1647 ret = VM_FAULT_FALLBACK;
1648 dax_unlock_entry(&xas, entry);
1649 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1650 return ret;
1651 }
1652
1653 /**
1654 * dax_finish_sync_fault - finish synchronous page fault
1655 * @vmf: The description of the fault
1656 * @pe_size: Size of entry to be inserted
1657 * @pfn: PFN to insert
1658 *
1659 * This function ensures that the file range touched by the page fault is
1660 * stored persistently on the media and handles inserting of appropriate page
1661 * table entry.
1662 */
1663 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1664 enum page_entry_size pe_size, pfn_t pfn)
1665 {
1666 int err;
1667 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1668 unsigned int order = pe_order(pe_size);
1669 size_t len = PAGE_SIZE << order;
1670
1671 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1672 if (err)
1673 return VM_FAULT_SIGBUS;
1674 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1675 }
1676 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);