]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/dax.c
dax: Fix missed wakeup in put_unlocked_entry()
[thirdparty/linux.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95 return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112 return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122 return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129 static bool dax_is_conflict(void *entry)
130 {
131 return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135 * DAX page cache entry locking
136 */
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
149 {
150 unsigned long hash;
151 unsigned long index = xas->xa_index;
152
153 /*
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
157 */
158 if (dax_is_pmd_entry(entry))
159 index &= ~PG_PMD_COLOUR;
160 key->xa = xas->xa;
161 key->entry_start = index;
162
163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
169 {
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174 if (key->xa != ewait->key.xa ||
175 key->entry_start != ewait->key.entry_start)
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
184 */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
189
190 wq = dax_entry_waitqueue(xas, entry, &key);
191
192 /*
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
197 */
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
209 *
210 * Must be called with the i_pages lock held.
211 */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
217
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
220
221 for (;;) {
222 entry = xas_find_conflict(xas);
223 if (dax_entry_order(entry) < order)
224 return XA_RETRY_ENTRY;
225 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
226 !dax_is_locked(entry))
227 return entry;
228
229 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
230 prepare_to_wait_exclusive(wq, &ewait.wait,
231 TASK_UNINTERRUPTIBLE);
232 xas_unlock_irq(xas);
233 xas_reset(xas);
234 schedule();
235 finish_wait(wq, &ewait.wait);
236 xas_lock_irq(xas);
237 }
238 }
239
240 /*
241 * The only thing keeping the address space around is the i_pages lock
242 * (it's cycled in clear_inode() after removing the entries from i_pages)
243 * After we call xas_unlock_irq(), we cannot touch xas->xa.
244 */
245 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
246 {
247 struct wait_exceptional_entry_queue ewait;
248 wait_queue_head_t *wq;
249
250 init_wait(&ewait.wait);
251 ewait.wait.func = wake_exceptional_entry_func;
252
253 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
254 /*
255 * Unlike get_unlocked_entry() there is no guarantee that this
256 * path ever successfully retrieves an unlocked entry before an
257 * inode dies. Perform a non-exclusive wait in case this path
258 * never successfully performs its own wake up.
259 */
260 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
261 xas_unlock_irq(xas);
262 schedule();
263 finish_wait(wq, &ewait.wait);
264 }
265
266 static void put_unlocked_entry(struct xa_state *xas, void *entry)
267 {
268 /* If we were the only waiter woken, wake the next one */
269 if (entry && !dax_is_conflict(entry))
270 dax_wake_entry(xas, entry, false);
271 }
272
273 /*
274 * We used the xa_state to get the entry, but then we locked the entry and
275 * dropped the xa_lock, so we know the xa_state is stale and must be reset
276 * before use.
277 */
278 static void dax_unlock_entry(struct xa_state *xas, void *entry)
279 {
280 void *old;
281
282 BUG_ON(dax_is_locked(entry));
283 xas_reset(xas);
284 xas_lock_irq(xas);
285 old = xas_store(xas, entry);
286 xas_unlock_irq(xas);
287 BUG_ON(!dax_is_locked(old));
288 dax_wake_entry(xas, entry, false);
289 }
290
291 /*
292 * Return: The entry stored at this location before it was locked.
293 */
294 static void *dax_lock_entry(struct xa_state *xas, void *entry)
295 {
296 unsigned long v = xa_to_value(entry);
297 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
298 }
299
300 static unsigned long dax_entry_size(void *entry)
301 {
302 if (dax_is_zero_entry(entry))
303 return 0;
304 else if (dax_is_empty_entry(entry))
305 return 0;
306 else if (dax_is_pmd_entry(entry))
307 return PMD_SIZE;
308 else
309 return PAGE_SIZE;
310 }
311
312 static unsigned long dax_end_pfn(void *entry)
313 {
314 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
315 }
316
317 /*
318 * Iterate through all mapped pfns represented by an entry, i.e. skip
319 * 'empty' and 'zero' entries.
320 */
321 #define for_each_mapped_pfn(entry, pfn) \
322 for (pfn = dax_to_pfn(entry); \
323 pfn < dax_end_pfn(entry); pfn++)
324
325 /*
326 * TODO: for reflink+dax we need a way to associate a single page with
327 * multiple address_space instances at different linear_page_index()
328 * offsets.
329 */
330 static void dax_associate_entry(void *entry, struct address_space *mapping,
331 struct vm_area_struct *vma, unsigned long address)
332 {
333 unsigned long size = dax_entry_size(entry), pfn, index;
334 int i = 0;
335
336 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
337 return;
338
339 index = linear_page_index(vma, address & ~(size - 1));
340 for_each_mapped_pfn(entry, pfn) {
341 struct page *page = pfn_to_page(pfn);
342
343 WARN_ON_ONCE(page->mapping);
344 page->mapping = mapping;
345 page->index = index + i++;
346 }
347 }
348
349 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
350 bool trunc)
351 {
352 unsigned long pfn;
353
354 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
355 return;
356
357 for_each_mapped_pfn(entry, pfn) {
358 struct page *page = pfn_to_page(pfn);
359
360 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
361 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
362 page->mapping = NULL;
363 page->index = 0;
364 }
365 }
366
367 static struct page *dax_busy_page(void *entry)
368 {
369 unsigned long pfn;
370
371 for_each_mapped_pfn(entry, pfn) {
372 struct page *page = pfn_to_page(pfn);
373
374 if (page_ref_count(page) > 1)
375 return page;
376 }
377 return NULL;
378 }
379
380 /*
381 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
382 * @page: The page whose entry we want to lock
383 *
384 * Context: Process context.
385 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
386 * not be locked.
387 */
388 dax_entry_t dax_lock_page(struct page *page)
389 {
390 XA_STATE(xas, NULL, 0);
391 void *entry;
392
393 /* Ensure page->mapping isn't freed while we look at it */
394 rcu_read_lock();
395 for (;;) {
396 struct address_space *mapping = READ_ONCE(page->mapping);
397
398 entry = NULL;
399 if (!mapping || !dax_mapping(mapping))
400 break;
401
402 /*
403 * In the device-dax case there's no need to lock, a
404 * struct dev_pagemap pin is sufficient to keep the
405 * inode alive, and we assume we have dev_pagemap pin
406 * otherwise we would not have a valid pfn_to_page()
407 * translation.
408 */
409 entry = (void *)~0UL;
410 if (S_ISCHR(mapping->host->i_mode))
411 break;
412
413 xas.xa = &mapping->i_pages;
414 xas_lock_irq(&xas);
415 if (mapping != page->mapping) {
416 xas_unlock_irq(&xas);
417 continue;
418 }
419 xas_set(&xas, page->index);
420 entry = xas_load(&xas);
421 if (dax_is_locked(entry)) {
422 rcu_read_unlock();
423 wait_entry_unlocked(&xas, entry);
424 rcu_read_lock();
425 continue;
426 }
427 dax_lock_entry(&xas, entry);
428 xas_unlock_irq(&xas);
429 break;
430 }
431 rcu_read_unlock();
432 return (dax_entry_t)entry;
433 }
434
435 void dax_unlock_page(struct page *page, dax_entry_t cookie)
436 {
437 struct address_space *mapping = page->mapping;
438 XA_STATE(xas, &mapping->i_pages, page->index);
439
440 if (S_ISCHR(mapping->host->i_mode))
441 return;
442
443 dax_unlock_entry(&xas, (void *)cookie);
444 }
445
446 /*
447 * Find page cache entry at given index. If it is a DAX entry, return it
448 * with the entry locked. If the page cache doesn't contain an entry at
449 * that index, add a locked empty entry.
450 *
451 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
452 * either return that locked entry or will return VM_FAULT_FALLBACK.
453 * This will happen if there are any PTE entries within the PMD range
454 * that we are requesting.
455 *
456 * We always favor PTE entries over PMD entries. There isn't a flow where we
457 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
458 * insertion will fail if it finds any PTE entries already in the tree, and a
459 * PTE insertion will cause an existing PMD entry to be unmapped and
460 * downgraded to PTE entries. This happens for both PMD zero pages as
461 * well as PMD empty entries.
462 *
463 * The exception to this downgrade path is for PMD entries that have
464 * real storage backing them. We will leave these real PMD entries in
465 * the tree, and PTE writes will simply dirty the entire PMD entry.
466 *
467 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
468 * persistent memory the benefit is doubtful. We can add that later if we can
469 * show it helps.
470 *
471 * On error, this function does not return an ERR_PTR. Instead it returns
472 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
473 * overlap with xarray value entries.
474 */
475 static void *grab_mapping_entry(struct xa_state *xas,
476 struct address_space *mapping, unsigned int order)
477 {
478 unsigned long index = xas->xa_index;
479 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
480 void *entry;
481
482 retry:
483 xas_lock_irq(xas);
484 entry = get_unlocked_entry(xas, order);
485
486 if (entry) {
487 if (dax_is_conflict(entry))
488 goto fallback;
489 if (!xa_is_value(entry)) {
490 xas_set_err(xas, EIO);
491 goto out_unlock;
492 }
493
494 if (order == 0) {
495 if (dax_is_pmd_entry(entry) &&
496 (dax_is_zero_entry(entry) ||
497 dax_is_empty_entry(entry))) {
498 pmd_downgrade = true;
499 }
500 }
501 }
502
503 if (pmd_downgrade) {
504 /*
505 * Make sure 'entry' remains valid while we drop
506 * the i_pages lock.
507 */
508 dax_lock_entry(xas, entry);
509
510 /*
511 * Besides huge zero pages the only other thing that gets
512 * downgraded are empty entries which don't need to be
513 * unmapped.
514 */
515 if (dax_is_zero_entry(entry)) {
516 xas_unlock_irq(xas);
517 unmap_mapping_pages(mapping,
518 xas->xa_index & ~PG_PMD_COLOUR,
519 PG_PMD_NR, false);
520 xas_reset(xas);
521 xas_lock_irq(xas);
522 }
523
524 dax_disassociate_entry(entry, mapping, false);
525 xas_store(xas, NULL); /* undo the PMD join */
526 dax_wake_entry(xas, entry, true);
527 mapping->nrexceptional--;
528 entry = NULL;
529 xas_set(xas, index);
530 }
531
532 if (entry) {
533 dax_lock_entry(xas, entry);
534 } else {
535 unsigned long flags = DAX_EMPTY;
536
537 if (order > 0)
538 flags |= DAX_PMD;
539 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
540 dax_lock_entry(xas, entry);
541 if (xas_error(xas))
542 goto out_unlock;
543 mapping->nrexceptional++;
544 }
545
546 out_unlock:
547 xas_unlock_irq(xas);
548 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
549 goto retry;
550 if (xas->xa_node == XA_ERROR(-ENOMEM))
551 return xa_mk_internal(VM_FAULT_OOM);
552 if (xas_error(xas))
553 return xa_mk_internal(VM_FAULT_SIGBUS);
554 return entry;
555 fallback:
556 xas_unlock_irq(xas);
557 return xa_mk_internal(VM_FAULT_FALLBACK);
558 }
559
560 /**
561 * dax_layout_busy_page - find first pinned page in @mapping
562 * @mapping: address space to scan for a page with ref count > 1
563 *
564 * DAX requires ZONE_DEVICE mapped pages. These pages are never
565 * 'onlined' to the page allocator so they are considered idle when
566 * page->count == 1. A filesystem uses this interface to determine if
567 * any page in the mapping is busy, i.e. for DMA, or other
568 * get_user_pages() usages.
569 *
570 * It is expected that the filesystem is holding locks to block the
571 * establishment of new mappings in this address_space. I.e. it expects
572 * to be able to run unmap_mapping_range() and subsequently not race
573 * mapping_mapped() becoming true.
574 */
575 struct page *dax_layout_busy_page(struct address_space *mapping)
576 {
577 XA_STATE(xas, &mapping->i_pages, 0);
578 void *entry;
579 unsigned int scanned = 0;
580 struct page *page = NULL;
581
582 /*
583 * In the 'limited' case get_user_pages() for dax is disabled.
584 */
585 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
586 return NULL;
587
588 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
589 return NULL;
590
591 /*
592 * If we race get_user_pages_fast() here either we'll see the
593 * elevated page count in the iteration and wait, or
594 * get_user_pages_fast() will see that the page it took a reference
595 * against is no longer mapped in the page tables and bail to the
596 * get_user_pages() slow path. The slow path is protected by
597 * pte_lock() and pmd_lock(). New references are not taken without
598 * holding those locks, and unmap_mapping_range() will not zero the
599 * pte or pmd without holding the respective lock, so we are
600 * guaranteed to either see new references or prevent new
601 * references from being established.
602 */
603 unmap_mapping_range(mapping, 0, 0, 1);
604
605 xas_lock_irq(&xas);
606 xas_for_each(&xas, entry, ULONG_MAX) {
607 if (WARN_ON_ONCE(!xa_is_value(entry)))
608 continue;
609 if (unlikely(dax_is_locked(entry)))
610 entry = get_unlocked_entry(&xas, 0);
611 if (entry)
612 page = dax_busy_page(entry);
613 put_unlocked_entry(&xas, entry);
614 if (page)
615 break;
616 if (++scanned % XA_CHECK_SCHED)
617 continue;
618
619 xas_pause(&xas);
620 xas_unlock_irq(&xas);
621 cond_resched();
622 xas_lock_irq(&xas);
623 }
624 xas_unlock_irq(&xas);
625 return page;
626 }
627 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
628
629 static int __dax_invalidate_entry(struct address_space *mapping,
630 pgoff_t index, bool trunc)
631 {
632 XA_STATE(xas, &mapping->i_pages, index);
633 int ret = 0;
634 void *entry;
635
636 xas_lock_irq(&xas);
637 entry = get_unlocked_entry(&xas, 0);
638 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
639 goto out;
640 if (!trunc &&
641 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
642 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
643 goto out;
644 dax_disassociate_entry(entry, mapping, trunc);
645 xas_store(&xas, NULL);
646 mapping->nrexceptional--;
647 ret = 1;
648 out:
649 put_unlocked_entry(&xas, entry);
650 xas_unlock_irq(&xas);
651 return ret;
652 }
653
654 /*
655 * Delete DAX entry at @index from @mapping. Wait for it
656 * to be unlocked before deleting it.
657 */
658 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
659 {
660 int ret = __dax_invalidate_entry(mapping, index, true);
661
662 /*
663 * This gets called from truncate / punch_hole path. As such, the caller
664 * must hold locks protecting against concurrent modifications of the
665 * page cache (usually fs-private i_mmap_sem for writing). Since the
666 * caller has seen a DAX entry for this index, we better find it
667 * at that index as well...
668 */
669 WARN_ON_ONCE(!ret);
670 return ret;
671 }
672
673 /*
674 * Invalidate DAX entry if it is clean.
675 */
676 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
677 pgoff_t index)
678 {
679 return __dax_invalidate_entry(mapping, index, false);
680 }
681
682 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
683 sector_t sector, size_t size, struct page *to,
684 unsigned long vaddr)
685 {
686 void *vto, *kaddr;
687 pgoff_t pgoff;
688 long rc;
689 int id;
690
691 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
692 if (rc)
693 return rc;
694
695 id = dax_read_lock();
696 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
697 if (rc < 0) {
698 dax_read_unlock(id);
699 return rc;
700 }
701 vto = kmap_atomic(to);
702 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
703 kunmap_atomic(vto);
704 dax_read_unlock(id);
705 return 0;
706 }
707
708 /*
709 * By this point grab_mapping_entry() has ensured that we have a locked entry
710 * of the appropriate size so we don't have to worry about downgrading PMDs to
711 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
712 * already in the tree, we will skip the insertion and just dirty the PMD as
713 * appropriate.
714 */
715 static void *dax_insert_entry(struct xa_state *xas,
716 struct address_space *mapping, struct vm_fault *vmf,
717 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
718 {
719 void *new_entry = dax_make_entry(pfn, flags);
720
721 if (dirty)
722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723
724 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
725 unsigned long index = xas->xa_index;
726 /* we are replacing a zero page with block mapping */
727 if (dax_is_pmd_entry(entry))
728 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
729 PG_PMD_NR, false);
730 else /* pte entry */
731 unmap_mapping_pages(mapping, index, 1, false);
732 }
733
734 xas_reset(xas);
735 xas_lock_irq(xas);
736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737 void *old;
738
739 dax_disassociate_entry(entry, mapping, false);
740 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
741 /*
742 * Only swap our new entry into the page cache if the current
743 * entry is a zero page or an empty entry. If a normal PTE or
744 * PMD entry is already in the cache, we leave it alone. This
745 * means that if we are trying to insert a PTE and the
746 * existing entry is a PMD, we will just leave the PMD in the
747 * tree and dirty it if necessary.
748 */
749 old = dax_lock_entry(xas, new_entry);
750 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751 DAX_LOCKED));
752 entry = new_entry;
753 } else {
754 xas_load(xas); /* Walk the xa_state */
755 }
756
757 if (dirty)
758 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
759
760 xas_unlock_irq(xas);
761 return entry;
762 }
763
764 static inline
765 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
766 {
767 unsigned long address;
768
769 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771 return address;
772 }
773
774 /* Walk all mappings of a given index of a file and writeprotect them */
775 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776 unsigned long pfn)
777 {
778 struct vm_area_struct *vma;
779 pte_t pte, *ptep = NULL;
780 pmd_t *pmdp = NULL;
781 spinlock_t *ptl;
782
783 i_mmap_lock_read(mapping);
784 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
785 struct mmu_notifier_range range;
786 unsigned long address;
787
788 cond_resched();
789
790 if (!(vma->vm_flags & VM_SHARED))
791 continue;
792
793 address = pgoff_address(index, vma);
794
795 /*
796 * Note because we provide range to follow_pte_pmd it will
797 * call mmu_notifier_invalidate_range_start() on our behalf
798 * before taking any lock.
799 */
800 if (follow_pte_pmd(vma->vm_mm, address, &range,
801 &ptep, &pmdp, &ptl))
802 continue;
803
804 /*
805 * No need to call mmu_notifier_invalidate_range() as we are
806 * downgrading page table protection not changing it to point
807 * to a new page.
808 *
809 * See Documentation/vm/mmu_notifier.rst
810 */
811 if (pmdp) {
812 #ifdef CONFIG_FS_DAX_PMD
813 pmd_t pmd;
814
815 if (pfn != pmd_pfn(*pmdp))
816 goto unlock_pmd;
817 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
818 goto unlock_pmd;
819
820 flush_cache_page(vma, address, pfn);
821 pmd = pmdp_invalidate(vma, address, pmdp);
822 pmd = pmd_wrprotect(pmd);
823 pmd = pmd_mkclean(pmd);
824 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
825 unlock_pmd:
826 #endif
827 spin_unlock(ptl);
828 } else {
829 if (pfn != pte_pfn(*ptep))
830 goto unlock_pte;
831 if (!pte_dirty(*ptep) && !pte_write(*ptep))
832 goto unlock_pte;
833
834 flush_cache_page(vma, address, pfn);
835 pte = ptep_clear_flush(vma, address, ptep);
836 pte = pte_wrprotect(pte);
837 pte = pte_mkclean(pte);
838 set_pte_at(vma->vm_mm, address, ptep, pte);
839 unlock_pte:
840 pte_unmap_unlock(ptep, ptl);
841 }
842
843 mmu_notifier_invalidate_range_end(&range);
844 }
845 i_mmap_unlock_read(mapping);
846 }
847
848 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849 struct address_space *mapping, void *entry)
850 {
851 unsigned long pfn, index, count;
852 long ret = 0;
853
854 /*
855 * A page got tagged dirty in DAX mapping? Something is seriously
856 * wrong.
857 */
858 if (WARN_ON(!xa_is_value(entry)))
859 return -EIO;
860
861 if (unlikely(dax_is_locked(entry))) {
862 void *old_entry = entry;
863
864 entry = get_unlocked_entry(xas, 0);
865
866 /* Entry got punched out / reallocated? */
867 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868 goto put_unlocked;
869 /*
870 * Entry got reallocated elsewhere? No need to writeback.
871 * We have to compare pfns as we must not bail out due to
872 * difference in lockbit or entry type.
873 */
874 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875 goto put_unlocked;
876 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877 dax_is_zero_entry(entry))) {
878 ret = -EIO;
879 goto put_unlocked;
880 }
881
882 /* Another fsync thread may have already done this entry */
883 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884 goto put_unlocked;
885 }
886
887 /* Lock the entry to serialize with page faults */
888 dax_lock_entry(xas, entry);
889
890 /*
891 * We can clear the tag now but we have to be careful so that concurrent
892 * dax_writeback_one() calls for the same index cannot finish before we
893 * actually flush the caches. This is achieved as the calls will look
894 * at the entry only under the i_pages lock and once they do that
895 * they will see the entry locked and wait for it to unlock.
896 */
897 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898 xas_unlock_irq(xas);
899
900 /*
901 * If dax_writeback_mapping_range() was given a wbc->range_start
902 * in the middle of a PMD, the 'index' we use needs to be
903 * aligned to the start of the PMD.
904 * This allows us to flush for PMD_SIZE and not have to worry about
905 * partial PMD writebacks.
906 */
907 pfn = dax_to_pfn(entry);
908 count = 1UL << dax_entry_order(entry);
909 index = xas->xa_index & ~(count - 1);
910
911 dax_entry_mkclean(mapping, index, pfn);
912 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
913 /*
914 * After we have flushed the cache, we can clear the dirty tag. There
915 * cannot be new dirty data in the pfn after the flush has completed as
916 * the pfn mappings are writeprotected and fault waits for mapping
917 * entry lock.
918 */
919 xas_reset(xas);
920 xas_lock_irq(xas);
921 xas_store(xas, entry);
922 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923 dax_wake_entry(xas, entry, false);
924
925 trace_dax_writeback_one(mapping->host, index, count);
926 return ret;
927
928 put_unlocked:
929 put_unlocked_entry(xas, entry);
930 return ret;
931 }
932
933 /*
934 * Flush the mapping to the persistent domain within the byte range of [start,
935 * end]. This is required by data integrity operations to ensure file data is
936 * on persistent storage prior to completion of the operation.
937 */
938 int dax_writeback_mapping_range(struct address_space *mapping,
939 struct block_device *bdev, struct writeback_control *wbc)
940 {
941 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
942 struct inode *inode = mapping->host;
943 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
944 struct dax_device *dax_dev;
945 void *entry;
946 int ret = 0;
947 unsigned int scanned = 0;
948
949 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
950 return -EIO;
951
952 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
953 return 0;
954
955 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
956 if (!dax_dev)
957 return -EIO;
958
959 trace_dax_writeback_range(inode, xas.xa_index, end_index);
960
961 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
962
963 xas_lock_irq(&xas);
964 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
965 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
966 if (ret < 0) {
967 mapping_set_error(mapping, ret);
968 break;
969 }
970 if (++scanned % XA_CHECK_SCHED)
971 continue;
972
973 xas_pause(&xas);
974 xas_unlock_irq(&xas);
975 cond_resched();
976 xas_lock_irq(&xas);
977 }
978 xas_unlock_irq(&xas);
979 put_dax(dax_dev);
980 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
981 return ret;
982 }
983 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
984
985 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
986 {
987 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
988 }
989
990 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
991 pfn_t *pfnp)
992 {
993 const sector_t sector = dax_iomap_sector(iomap, pos);
994 pgoff_t pgoff;
995 int id, rc;
996 long length;
997
998 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
999 if (rc)
1000 return rc;
1001 id = dax_read_lock();
1002 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1003 NULL, pfnp);
1004 if (length < 0) {
1005 rc = length;
1006 goto out;
1007 }
1008 rc = -EINVAL;
1009 if (PFN_PHYS(length) < size)
1010 goto out;
1011 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1012 goto out;
1013 /* For larger pages we need devmap */
1014 if (length > 1 && !pfn_t_devmap(*pfnp))
1015 goto out;
1016 rc = 0;
1017 out:
1018 dax_read_unlock(id);
1019 return rc;
1020 }
1021
1022 /*
1023 * The user has performed a load from a hole in the file. Allocating a new
1024 * page in the file would cause excessive storage usage for workloads with
1025 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1026 * If this page is ever written to we will re-fault and change the mapping to
1027 * point to real DAX storage instead.
1028 */
1029 static vm_fault_t dax_load_hole(struct xa_state *xas,
1030 struct address_space *mapping, void **entry,
1031 struct vm_fault *vmf)
1032 {
1033 struct inode *inode = mapping->host;
1034 unsigned long vaddr = vmf->address;
1035 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1036 vm_fault_t ret;
1037
1038 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1039 DAX_ZERO_PAGE, false);
1040
1041 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1042 trace_dax_load_hole(inode, vmf, ret);
1043 return ret;
1044 }
1045
1046 static bool dax_range_is_aligned(struct block_device *bdev,
1047 unsigned int offset, unsigned int length)
1048 {
1049 unsigned short sector_size = bdev_logical_block_size(bdev);
1050
1051 if (!IS_ALIGNED(offset, sector_size))
1052 return false;
1053 if (!IS_ALIGNED(length, sector_size))
1054 return false;
1055
1056 return true;
1057 }
1058
1059 int __dax_zero_page_range(struct block_device *bdev,
1060 struct dax_device *dax_dev, sector_t sector,
1061 unsigned int offset, unsigned int size)
1062 {
1063 if (dax_range_is_aligned(bdev, offset, size)) {
1064 sector_t start_sector = sector + (offset >> 9);
1065
1066 return blkdev_issue_zeroout(bdev, start_sector,
1067 size >> 9, GFP_NOFS, 0);
1068 } else {
1069 pgoff_t pgoff;
1070 long rc, id;
1071 void *kaddr;
1072
1073 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1074 if (rc)
1075 return rc;
1076
1077 id = dax_read_lock();
1078 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1079 if (rc < 0) {
1080 dax_read_unlock(id);
1081 return rc;
1082 }
1083 memset(kaddr + offset, 0, size);
1084 dax_flush(dax_dev, kaddr + offset, size);
1085 dax_read_unlock(id);
1086 }
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1090
1091 static loff_t
1092 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1093 struct iomap *iomap)
1094 {
1095 struct block_device *bdev = iomap->bdev;
1096 struct dax_device *dax_dev = iomap->dax_dev;
1097 struct iov_iter *iter = data;
1098 loff_t end = pos + length, done = 0;
1099 ssize_t ret = 0;
1100 size_t xfer;
1101 int id;
1102
1103 if (iov_iter_rw(iter) == READ) {
1104 end = min(end, i_size_read(inode));
1105 if (pos >= end)
1106 return 0;
1107
1108 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1109 return iov_iter_zero(min(length, end - pos), iter);
1110 }
1111
1112 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1113 return -EIO;
1114
1115 /*
1116 * Write can allocate block for an area which has a hole page mapped
1117 * into page tables. We have to tear down these mappings so that data
1118 * written by write(2) is visible in mmap.
1119 */
1120 if (iomap->flags & IOMAP_F_NEW) {
1121 invalidate_inode_pages2_range(inode->i_mapping,
1122 pos >> PAGE_SHIFT,
1123 (end - 1) >> PAGE_SHIFT);
1124 }
1125
1126 id = dax_read_lock();
1127 while (pos < end) {
1128 unsigned offset = pos & (PAGE_SIZE - 1);
1129 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1130 const sector_t sector = dax_iomap_sector(iomap, pos);
1131 ssize_t map_len;
1132 pgoff_t pgoff;
1133 void *kaddr;
1134
1135 if (fatal_signal_pending(current)) {
1136 ret = -EINTR;
1137 break;
1138 }
1139
1140 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1141 if (ret)
1142 break;
1143
1144 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1145 &kaddr, NULL);
1146 if (map_len < 0) {
1147 ret = map_len;
1148 break;
1149 }
1150
1151 map_len = PFN_PHYS(map_len);
1152 kaddr += offset;
1153 map_len -= offset;
1154 if (map_len > end - pos)
1155 map_len = end - pos;
1156
1157 /*
1158 * The userspace address for the memory copy has already been
1159 * validated via access_ok() in either vfs_read() or
1160 * vfs_write(), depending on which operation we are doing.
1161 */
1162 if (iov_iter_rw(iter) == WRITE)
1163 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1164 map_len, iter);
1165 else
1166 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1167 map_len, iter);
1168
1169 pos += xfer;
1170 length -= xfer;
1171 done += xfer;
1172
1173 if (xfer == 0)
1174 ret = -EFAULT;
1175 if (xfer < map_len)
1176 break;
1177 }
1178 dax_read_unlock(id);
1179
1180 return done ? done : ret;
1181 }
1182
1183 /**
1184 * dax_iomap_rw - Perform I/O to a DAX file
1185 * @iocb: The control block for this I/O
1186 * @iter: The addresses to do I/O from or to
1187 * @ops: iomap ops passed from the file system
1188 *
1189 * This function performs read and write operations to directly mapped
1190 * persistent memory. The callers needs to take care of read/write exclusion
1191 * and evicting any page cache pages in the region under I/O.
1192 */
1193 ssize_t
1194 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1195 const struct iomap_ops *ops)
1196 {
1197 struct address_space *mapping = iocb->ki_filp->f_mapping;
1198 struct inode *inode = mapping->host;
1199 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1200 unsigned flags = 0;
1201
1202 if (iov_iter_rw(iter) == WRITE) {
1203 lockdep_assert_held_write(&inode->i_rwsem);
1204 flags |= IOMAP_WRITE;
1205 } else {
1206 lockdep_assert_held(&inode->i_rwsem);
1207 }
1208
1209 while (iov_iter_count(iter)) {
1210 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1211 iter, dax_iomap_actor);
1212 if (ret <= 0)
1213 break;
1214 pos += ret;
1215 done += ret;
1216 }
1217
1218 iocb->ki_pos += done;
1219 return done ? done : ret;
1220 }
1221 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1222
1223 static vm_fault_t dax_fault_return(int error)
1224 {
1225 if (error == 0)
1226 return VM_FAULT_NOPAGE;
1227 return vmf_error(error);
1228 }
1229
1230 /*
1231 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232 * flushed on write-faults (non-cow), but not read-faults.
1233 */
1234 static bool dax_fault_is_synchronous(unsigned long flags,
1235 struct vm_area_struct *vma, struct iomap *iomap)
1236 {
1237 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1238 && (iomap->flags & IOMAP_F_DIRTY);
1239 }
1240
1241 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1242 int *iomap_errp, const struct iomap_ops *ops)
1243 {
1244 struct vm_area_struct *vma = vmf->vma;
1245 struct address_space *mapping = vma->vm_file->f_mapping;
1246 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1247 struct inode *inode = mapping->host;
1248 unsigned long vaddr = vmf->address;
1249 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1250 struct iomap iomap = { 0 };
1251 unsigned flags = IOMAP_FAULT;
1252 int error, major = 0;
1253 bool write = vmf->flags & FAULT_FLAG_WRITE;
1254 bool sync;
1255 vm_fault_t ret = 0;
1256 void *entry;
1257 pfn_t pfn;
1258
1259 trace_dax_pte_fault(inode, vmf, ret);
1260 /*
1261 * Check whether offset isn't beyond end of file now. Caller is supposed
1262 * to hold locks serializing us with truncate / punch hole so this is
1263 * a reliable test.
1264 */
1265 if (pos >= i_size_read(inode)) {
1266 ret = VM_FAULT_SIGBUS;
1267 goto out;
1268 }
1269
1270 if (write && !vmf->cow_page)
1271 flags |= IOMAP_WRITE;
1272
1273 entry = grab_mapping_entry(&xas, mapping, 0);
1274 if (xa_is_internal(entry)) {
1275 ret = xa_to_internal(entry);
1276 goto out;
1277 }
1278
1279 /*
1280 * It is possible, particularly with mixed reads & writes to private
1281 * mappings, that we have raced with a PMD fault that overlaps with
1282 * the PTE we need to set up. If so just return and the fault will be
1283 * retried.
1284 */
1285 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1286 ret = VM_FAULT_NOPAGE;
1287 goto unlock_entry;
1288 }
1289
1290 /*
1291 * Note that we don't bother to use iomap_apply here: DAX required
1292 * the file system block size to be equal the page size, which means
1293 * that we never have to deal with more than a single extent here.
1294 */
1295 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1296 if (iomap_errp)
1297 *iomap_errp = error;
1298 if (error) {
1299 ret = dax_fault_return(error);
1300 goto unlock_entry;
1301 }
1302 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1303 error = -EIO; /* fs corruption? */
1304 goto error_finish_iomap;
1305 }
1306
1307 if (vmf->cow_page) {
1308 sector_t sector = dax_iomap_sector(&iomap, pos);
1309
1310 switch (iomap.type) {
1311 case IOMAP_HOLE:
1312 case IOMAP_UNWRITTEN:
1313 clear_user_highpage(vmf->cow_page, vaddr);
1314 break;
1315 case IOMAP_MAPPED:
1316 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1317 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1318 break;
1319 default:
1320 WARN_ON_ONCE(1);
1321 error = -EIO;
1322 break;
1323 }
1324
1325 if (error)
1326 goto error_finish_iomap;
1327
1328 __SetPageUptodate(vmf->cow_page);
1329 ret = finish_fault(vmf);
1330 if (!ret)
1331 ret = VM_FAULT_DONE_COW;
1332 goto finish_iomap;
1333 }
1334
1335 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1336
1337 switch (iomap.type) {
1338 case IOMAP_MAPPED:
1339 if (iomap.flags & IOMAP_F_NEW) {
1340 count_vm_event(PGMAJFAULT);
1341 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1342 major = VM_FAULT_MAJOR;
1343 }
1344 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1345 if (error < 0)
1346 goto error_finish_iomap;
1347
1348 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1349 0, write && !sync);
1350
1351 /*
1352 * If we are doing synchronous page fault and inode needs fsync,
1353 * we can insert PTE into page tables only after that happens.
1354 * Skip insertion for now and return the pfn so that caller can
1355 * insert it after fsync is done.
1356 */
1357 if (sync) {
1358 if (WARN_ON_ONCE(!pfnp)) {
1359 error = -EIO;
1360 goto error_finish_iomap;
1361 }
1362 *pfnp = pfn;
1363 ret = VM_FAULT_NEEDDSYNC | major;
1364 goto finish_iomap;
1365 }
1366 trace_dax_insert_mapping(inode, vmf, entry);
1367 if (write)
1368 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1369 else
1370 ret = vmf_insert_mixed(vma, vaddr, pfn);
1371
1372 goto finish_iomap;
1373 case IOMAP_UNWRITTEN:
1374 case IOMAP_HOLE:
1375 if (!write) {
1376 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1377 goto finish_iomap;
1378 }
1379 /*FALLTHRU*/
1380 default:
1381 WARN_ON_ONCE(1);
1382 error = -EIO;
1383 break;
1384 }
1385
1386 error_finish_iomap:
1387 ret = dax_fault_return(error);
1388 finish_iomap:
1389 if (ops->iomap_end) {
1390 int copied = PAGE_SIZE;
1391
1392 if (ret & VM_FAULT_ERROR)
1393 copied = 0;
1394 /*
1395 * The fault is done by now and there's no way back (other
1396 * thread may be already happily using PTE we have installed).
1397 * Just ignore error from ->iomap_end since we cannot do much
1398 * with it.
1399 */
1400 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1401 }
1402 unlock_entry:
1403 dax_unlock_entry(&xas, entry);
1404 out:
1405 trace_dax_pte_fault_done(inode, vmf, ret);
1406 return ret | major;
1407 }
1408
1409 #ifdef CONFIG_FS_DAX_PMD
1410 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1411 struct iomap *iomap, void **entry)
1412 {
1413 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1414 unsigned long pmd_addr = vmf->address & PMD_MASK;
1415 struct vm_area_struct *vma = vmf->vma;
1416 struct inode *inode = mapping->host;
1417 pgtable_t pgtable = NULL;
1418 struct page *zero_page;
1419 spinlock_t *ptl;
1420 pmd_t pmd_entry;
1421 pfn_t pfn;
1422
1423 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1424
1425 if (unlikely(!zero_page))
1426 goto fallback;
1427
1428 pfn = page_to_pfn_t(zero_page);
1429 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1430 DAX_PMD | DAX_ZERO_PAGE, false);
1431
1432 if (arch_needs_pgtable_deposit()) {
1433 pgtable = pte_alloc_one(vma->vm_mm);
1434 if (!pgtable)
1435 return VM_FAULT_OOM;
1436 }
1437
1438 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1439 if (!pmd_none(*(vmf->pmd))) {
1440 spin_unlock(ptl);
1441 goto fallback;
1442 }
1443
1444 if (pgtable) {
1445 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1446 mm_inc_nr_ptes(vma->vm_mm);
1447 }
1448 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1449 pmd_entry = pmd_mkhuge(pmd_entry);
1450 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1451 spin_unlock(ptl);
1452 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1453 return VM_FAULT_NOPAGE;
1454
1455 fallback:
1456 if (pgtable)
1457 pte_free(vma->vm_mm, pgtable);
1458 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1459 return VM_FAULT_FALLBACK;
1460 }
1461
1462 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1463 const struct iomap_ops *ops)
1464 {
1465 struct vm_area_struct *vma = vmf->vma;
1466 struct address_space *mapping = vma->vm_file->f_mapping;
1467 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1468 unsigned long pmd_addr = vmf->address & PMD_MASK;
1469 bool write = vmf->flags & FAULT_FLAG_WRITE;
1470 bool sync;
1471 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1472 struct inode *inode = mapping->host;
1473 vm_fault_t result = VM_FAULT_FALLBACK;
1474 struct iomap iomap = { 0 };
1475 pgoff_t max_pgoff;
1476 void *entry;
1477 loff_t pos;
1478 int error;
1479 pfn_t pfn;
1480
1481 /*
1482 * Check whether offset isn't beyond end of file now. Caller is
1483 * supposed to hold locks serializing us with truncate / punch hole so
1484 * this is a reliable test.
1485 */
1486 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1487
1488 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1489
1490 /*
1491 * Make sure that the faulting address's PMD offset (color) matches
1492 * the PMD offset from the start of the file. This is necessary so
1493 * that a PMD range in the page table overlaps exactly with a PMD
1494 * range in the page cache.
1495 */
1496 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1497 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1498 goto fallback;
1499
1500 /* Fall back to PTEs if we're going to COW */
1501 if (write && !(vma->vm_flags & VM_SHARED))
1502 goto fallback;
1503
1504 /* If the PMD would extend outside the VMA */
1505 if (pmd_addr < vma->vm_start)
1506 goto fallback;
1507 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1508 goto fallback;
1509
1510 if (xas.xa_index >= max_pgoff) {
1511 result = VM_FAULT_SIGBUS;
1512 goto out;
1513 }
1514
1515 /* If the PMD would extend beyond the file size */
1516 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1517 goto fallback;
1518
1519 /*
1520 * grab_mapping_entry() will make sure we get an empty PMD entry,
1521 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1522 * entry is already in the array, for instance), it will return
1523 * VM_FAULT_FALLBACK.
1524 */
1525 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1526 if (xa_is_internal(entry)) {
1527 result = xa_to_internal(entry);
1528 goto fallback;
1529 }
1530
1531 /*
1532 * It is possible, particularly with mixed reads & writes to private
1533 * mappings, that we have raced with a PTE fault that overlaps with
1534 * the PMD we need to set up. If so just return and the fault will be
1535 * retried.
1536 */
1537 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1538 !pmd_devmap(*vmf->pmd)) {
1539 result = 0;
1540 goto unlock_entry;
1541 }
1542
1543 /*
1544 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1545 * setting up a mapping, so really we're using iomap_begin() as a way
1546 * to look up our filesystem block.
1547 */
1548 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1549 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1550 if (error)
1551 goto unlock_entry;
1552
1553 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1554 goto finish_iomap;
1555
1556 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1557
1558 switch (iomap.type) {
1559 case IOMAP_MAPPED:
1560 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1561 if (error < 0)
1562 goto finish_iomap;
1563
1564 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1565 DAX_PMD, write && !sync);
1566
1567 /*
1568 * If we are doing synchronous page fault and inode needs fsync,
1569 * we can insert PMD into page tables only after that happens.
1570 * Skip insertion for now and return the pfn so that caller can
1571 * insert it after fsync is done.
1572 */
1573 if (sync) {
1574 if (WARN_ON_ONCE(!pfnp))
1575 goto finish_iomap;
1576 *pfnp = pfn;
1577 result = VM_FAULT_NEEDDSYNC;
1578 goto finish_iomap;
1579 }
1580
1581 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1582 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1583 break;
1584 case IOMAP_UNWRITTEN:
1585 case IOMAP_HOLE:
1586 if (WARN_ON_ONCE(write))
1587 break;
1588 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1589 break;
1590 default:
1591 WARN_ON_ONCE(1);
1592 break;
1593 }
1594
1595 finish_iomap:
1596 if (ops->iomap_end) {
1597 int copied = PMD_SIZE;
1598
1599 if (result == VM_FAULT_FALLBACK)
1600 copied = 0;
1601 /*
1602 * The fault is done by now and there's no way back (other
1603 * thread may be already happily using PMD we have installed).
1604 * Just ignore error from ->iomap_end since we cannot do much
1605 * with it.
1606 */
1607 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1608 &iomap);
1609 }
1610 unlock_entry:
1611 dax_unlock_entry(&xas, entry);
1612 fallback:
1613 if (result == VM_FAULT_FALLBACK) {
1614 split_huge_pmd(vma, vmf->pmd, vmf->address);
1615 count_vm_event(THP_FAULT_FALLBACK);
1616 }
1617 out:
1618 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1619 return result;
1620 }
1621 #else
1622 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1623 const struct iomap_ops *ops)
1624 {
1625 return VM_FAULT_FALLBACK;
1626 }
1627 #endif /* CONFIG_FS_DAX_PMD */
1628
1629 /**
1630 * dax_iomap_fault - handle a page fault on a DAX file
1631 * @vmf: The description of the fault
1632 * @pe_size: Size of the page to fault in
1633 * @pfnp: PFN to insert for synchronous faults if fsync is required
1634 * @iomap_errp: Storage for detailed error code in case of error
1635 * @ops: Iomap ops passed from the file system
1636 *
1637 * When a page fault occurs, filesystems may call this helper in
1638 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1639 * has done all the necessary locking for page fault to proceed
1640 * successfully.
1641 */
1642 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1643 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1644 {
1645 switch (pe_size) {
1646 case PE_SIZE_PTE:
1647 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1648 case PE_SIZE_PMD:
1649 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1650 default:
1651 return VM_FAULT_FALLBACK;
1652 }
1653 }
1654 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1655
1656 /*
1657 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1658 * @vmf: The description of the fault
1659 * @pfn: PFN to insert
1660 * @order: Order of entry to insert.
1661 *
1662 * This function inserts a writeable PTE or PMD entry into the page tables
1663 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1664 */
1665 static vm_fault_t
1666 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1667 {
1668 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1669 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1670 void *entry;
1671 vm_fault_t ret;
1672
1673 xas_lock_irq(&xas);
1674 entry = get_unlocked_entry(&xas, order);
1675 /* Did we race with someone splitting entry or so? */
1676 if (!entry || dax_is_conflict(entry) ||
1677 (order == 0 && !dax_is_pte_entry(entry))) {
1678 put_unlocked_entry(&xas, entry);
1679 xas_unlock_irq(&xas);
1680 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1681 VM_FAULT_NOPAGE);
1682 return VM_FAULT_NOPAGE;
1683 }
1684 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1685 dax_lock_entry(&xas, entry);
1686 xas_unlock_irq(&xas);
1687 if (order == 0)
1688 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1689 #ifdef CONFIG_FS_DAX_PMD
1690 else if (order == PMD_ORDER)
1691 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1692 #endif
1693 else
1694 ret = VM_FAULT_FALLBACK;
1695 dax_unlock_entry(&xas, entry);
1696 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1697 return ret;
1698 }
1699
1700 /**
1701 * dax_finish_sync_fault - finish synchronous page fault
1702 * @vmf: The description of the fault
1703 * @pe_size: Size of entry to be inserted
1704 * @pfn: PFN to insert
1705 *
1706 * This function ensures that the file range touched by the page fault is
1707 * stored persistently on the media and handles inserting of appropriate page
1708 * table entry.
1709 */
1710 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1711 enum page_entry_size pe_size, pfn_t pfn)
1712 {
1713 int err;
1714 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1715 unsigned int order = pe_order(pe_size);
1716 size_t len = PAGE_SIZE << order;
1717
1718 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1719 if (err)
1720 return VM_FAULT_SIGBUS;
1721 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1722 }
1723 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);