]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/dax.c
Merge tag 'topic/drmp-cleanup-2019-01-02' of git://anongit.freedesktop.org/drm/drm...
[thirdparty/kernel/stable.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43 if (pe_size == PE_SIZE_PTE)
44 return PAGE_SHIFT - PAGE_SHIFT;
45 if (pe_size == PE_SIZE_PMD)
46 return PMD_SHIFT - PAGE_SHIFT;
47 if (pe_size == PE_SIZE_PUD)
48 return PUD_SHIFT - PAGE_SHIFT;
49 return ~0;
50 }
51
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
56 /* The 'colour' (ie low bits) within a PMD of a page offset. */
57 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
59
60 /* The order of a PMD entry */
61 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
62
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64
65 static int __init init_dax_wait_table(void)
66 {
67 int i;
68
69 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70 init_waitqueue_head(wait_table + i);
71 return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74
75 /*
76 * DAX pagecache entries use XArray value entries so they can't be mistaken
77 * for pages. We use one bit for locking, one bit for the entry size (PMD)
78 * and two more to tell us if the entry is a zero page or an empty entry that
79 * is just used for locking. In total four special bits.
80 *
81 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83 * block allocation.
84 */
85 #define DAX_SHIFT (4)
86 #define DAX_LOCKED (1UL << 0)
87 #define DAX_PMD (1UL << 1)
88 #define DAX_ZERO_PAGE (1UL << 2)
89 #define DAX_EMPTY (1UL << 3)
90
91 static unsigned long dax_to_pfn(void *entry)
92 {
93 return xa_to_value(entry) >> DAX_SHIFT;
94 }
95
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100
101 static bool dax_is_locked(void *entry)
102 {
103 return xa_to_value(entry) & DAX_LOCKED;
104 }
105
106 static unsigned int dax_entry_order(void *entry)
107 {
108 if (xa_to_value(entry) & DAX_PMD)
109 return PMD_ORDER;
110 return 0;
111 }
112
113 static unsigned long dax_is_pmd_entry(void *entry)
114 {
115 return xa_to_value(entry) & DAX_PMD;
116 }
117
118 static bool dax_is_pte_entry(void *entry)
119 {
120 return !(xa_to_value(entry) & DAX_PMD);
121 }
122
123 static int dax_is_zero_entry(void *entry)
124 {
125 return xa_to_value(entry) & DAX_ZERO_PAGE;
126 }
127
128 static int dax_is_empty_entry(void *entry)
129 {
130 return xa_to_value(entry) & DAX_EMPTY;
131 }
132
133 /*
134 * DAX page cache entry locking
135 */
136 struct exceptional_entry_key {
137 struct xarray *xa;
138 pgoff_t entry_start;
139 };
140
141 struct wait_exceptional_entry_queue {
142 wait_queue_entry_t wait;
143 struct exceptional_entry_key key;
144 };
145
146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147 void *entry, struct exceptional_entry_key *key)
148 {
149 unsigned long hash;
150 unsigned long index = xas->xa_index;
151
152 /*
153 * If 'entry' is a PMD, align the 'index' that we use for the wait
154 * queue to the start of that PMD. This ensures that all offsets in
155 * the range covered by the PMD map to the same bit lock.
156 */
157 if (dax_is_pmd_entry(entry))
158 index &= ~PG_PMD_COLOUR;
159 key->xa = xas->xa;
160 key->entry_start = index;
161
162 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163 return wait_table + hash;
164 }
165
166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167 unsigned int mode, int sync, void *keyp)
168 {
169 struct exceptional_entry_key *key = keyp;
170 struct wait_exceptional_entry_queue *ewait =
171 container_of(wait, struct wait_exceptional_entry_queue, wait);
172
173 if (key->xa != ewait->key.xa ||
174 key->entry_start != ewait->key.entry_start)
175 return 0;
176 return autoremove_wake_function(wait, mode, sync, NULL);
177 }
178
179 /*
180 * @entry may no longer be the entry at the index in the mapping.
181 * The important information it's conveying is whether the entry at
182 * this index used to be a PMD entry.
183 */
184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
185 {
186 struct exceptional_entry_key key;
187 wait_queue_head_t *wq;
188
189 wq = dax_entry_waitqueue(xas, entry, &key);
190
191 /*
192 * Checking for locked entry and prepare_to_wait_exclusive() happens
193 * under the i_pages lock, ditto for entry handling in our callers.
194 * So at this point all tasks that could have seen our entry locked
195 * must be in the waitqueue and the following check will see them.
196 */
197 if (waitqueue_active(wq))
198 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199 }
200
201 /*
202 * Look up entry in page cache, wait for it to become unlocked if it
203 * is a DAX entry and return it. The caller must subsequently call
204 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205 * if it did.
206 *
207 * Must be called with the i_pages lock held.
208 */
209 static void *get_unlocked_entry(struct xa_state *xas)
210 {
211 void *entry;
212 struct wait_exceptional_entry_queue ewait;
213 wait_queue_head_t *wq;
214
215 init_wait(&ewait.wait);
216 ewait.wait.func = wake_exceptional_entry_func;
217
218 for (;;) {
219 entry = xas_find_conflict(xas);
220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221 !dax_is_locked(entry))
222 return entry;
223
224 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225 prepare_to_wait_exclusive(wq, &ewait.wait,
226 TASK_UNINTERRUPTIBLE);
227 xas_unlock_irq(xas);
228 xas_reset(xas);
229 schedule();
230 finish_wait(wq, &ewait.wait);
231 xas_lock_irq(xas);
232 }
233 }
234
235 static void put_unlocked_entry(struct xa_state *xas, void *entry)
236 {
237 /* If we were the only waiter woken, wake the next one */
238 if (entry)
239 dax_wake_entry(xas, entry, false);
240 }
241
242 /*
243 * We used the xa_state to get the entry, but then we locked the entry and
244 * dropped the xa_lock, so we know the xa_state is stale and must be reset
245 * before use.
246 */
247 static void dax_unlock_entry(struct xa_state *xas, void *entry)
248 {
249 void *old;
250
251 BUG_ON(dax_is_locked(entry));
252 xas_reset(xas);
253 xas_lock_irq(xas);
254 old = xas_store(xas, entry);
255 xas_unlock_irq(xas);
256 BUG_ON(!dax_is_locked(old));
257 dax_wake_entry(xas, entry, false);
258 }
259
260 /*
261 * Return: The entry stored at this location before it was locked.
262 */
263 static void *dax_lock_entry(struct xa_state *xas, void *entry)
264 {
265 unsigned long v = xa_to_value(entry);
266 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
267 }
268
269 static unsigned long dax_entry_size(void *entry)
270 {
271 if (dax_is_zero_entry(entry))
272 return 0;
273 else if (dax_is_empty_entry(entry))
274 return 0;
275 else if (dax_is_pmd_entry(entry))
276 return PMD_SIZE;
277 else
278 return PAGE_SIZE;
279 }
280
281 static unsigned long dax_end_pfn(void *entry)
282 {
283 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
284 }
285
286 /*
287 * Iterate through all mapped pfns represented by an entry, i.e. skip
288 * 'empty' and 'zero' entries.
289 */
290 #define for_each_mapped_pfn(entry, pfn) \
291 for (pfn = dax_to_pfn(entry); \
292 pfn < dax_end_pfn(entry); pfn++)
293
294 /*
295 * TODO: for reflink+dax we need a way to associate a single page with
296 * multiple address_space instances at different linear_page_index()
297 * offsets.
298 */
299 static void dax_associate_entry(void *entry, struct address_space *mapping,
300 struct vm_area_struct *vma, unsigned long address)
301 {
302 unsigned long size = dax_entry_size(entry), pfn, index;
303 int i = 0;
304
305 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
306 return;
307
308 index = linear_page_index(vma, address & ~(size - 1));
309 for_each_mapped_pfn(entry, pfn) {
310 struct page *page = pfn_to_page(pfn);
311
312 WARN_ON_ONCE(page->mapping);
313 page->mapping = mapping;
314 page->index = index + i++;
315 }
316 }
317
318 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
319 bool trunc)
320 {
321 unsigned long pfn;
322
323 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
324 return;
325
326 for_each_mapped_pfn(entry, pfn) {
327 struct page *page = pfn_to_page(pfn);
328
329 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
330 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
331 page->mapping = NULL;
332 page->index = 0;
333 }
334 }
335
336 static struct page *dax_busy_page(void *entry)
337 {
338 unsigned long pfn;
339
340 for_each_mapped_pfn(entry, pfn) {
341 struct page *page = pfn_to_page(pfn);
342
343 if (page_ref_count(page) > 1)
344 return page;
345 }
346 return NULL;
347 }
348
349 /*
350 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
351 * @page: The page whose entry we want to lock
352 *
353 * Context: Process context.
354 * Return: %true if the entry was locked or does not need to be locked.
355 */
356 bool dax_lock_mapping_entry(struct page *page)
357 {
358 XA_STATE(xas, NULL, 0);
359 void *entry;
360 bool locked;
361
362 /* Ensure page->mapping isn't freed while we look at it */
363 rcu_read_lock();
364 for (;;) {
365 struct address_space *mapping = READ_ONCE(page->mapping);
366
367 locked = false;
368 if (!dax_mapping(mapping))
369 break;
370
371 /*
372 * In the device-dax case there's no need to lock, a
373 * struct dev_pagemap pin is sufficient to keep the
374 * inode alive, and we assume we have dev_pagemap pin
375 * otherwise we would not have a valid pfn_to_page()
376 * translation.
377 */
378 locked = true;
379 if (S_ISCHR(mapping->host->i_mode))
380 break;
381
382 xas.xa = &mapping->i_pages;
383 xas_lock_irq(&xas);
384 if (mapping != page->mapping) {
385 xas_unlock_irq(&xas);
386 continue;
387 }
388 xas_set(&xas, page->index);
389 entry = xas_load(&xas);
390 if (dax_is_locked(entry)) {
391 rcu_read_unlock();
392 entry = get_unlocked_entry(&xas);
393 xas_unlock_irq(&xas);
394 put_unlocked_entry(&xas, entry);
395 rcu_read_lock();
396 continue;
397 }
398 dax_lock_entry(&xas, entry);
399 xas_unlock_irq(&xas);
400 break;
401 }
402 rcu_read_unlock();
403 return locked;
404 }
405
406 void dax_unlock_mapping_entry(struct page *page)
407 {
408 struct address_space *mapping = page->mapping;
409 XA_STATE(xas, &mapping->i_pages, page->index);
410 void *entry;
411
412 if (S_ISCHR(mapping->host->i_mode))
413 return;
414
415 rcu_read_lock();
416 entry = xas_load(&xas);
417 rcu_read_unlock();
418 entry = dax_make_entry(page_to_pfn_t(page), dax_is_pmd_entry(entry));
419 dax_unlock_entry(&xas, entry);
420 }
421
422 /*
423 * Find page cache entry at given index. If it is a DAX entry, return it
424 * with the entry locked. If the page cache doesn't contain an entry at
425 * that index, add a locked empty entry.
426 *
427 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
428 * either return that locked entry or will return VM_FAULT_FALLBACK.
429 * This will happen if there are any PTE entries within the PMD range
430 * that we are requesting.
431 *
432 * We always favor PTE entries over PMD entries. There isn't a flow where we
433 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
434 * insertion will fail if it finds any PTE entries already in the tree, and a
435 * PTE insertion will cause an existing PMD entry to be unmapped and
436 * downgraded to PTE entries. This happens for both PMD zero pages as
437 * well as PMD empty entries.
438 *
439 * The exception to this downgrade path is for PMD entries that have
440 * real storage backing them. We will leave these real PMD entries in
441 * the tree, and PTE writes will simply dirty the entire PMD entry.
442 *
443 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
444 * persistent memory the benefit is doubtful. We can add that later if we can
445 * show it helps.
446 *
447 * On error, this function does not return an ERR_PTR. Instead it returns
448 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
449 * overlap with xarray value entries.
450 */
451 static void *grab_mapping_entry(struct xa_state *xas,
452 struct address_space *mapping, unsigned long size_flag)
453 {
454 unsigned long index = xas->xa_index;
455 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
456 void *entry;
457
458 retry:
459 xas_lock_irq(xas);
460 entry = get_unlocked_entry(xas);
461
462 if (entry) {
463 if (!xa_is_value(entry)) {
464 xas_set_err(xas, EIO);
465 goto out_unlock;
466 }
467
468 if (size_flag & DAX_PMD) {
469 if (dax_is_pte_entry(entry)) {
470 put_unlocked_entry(xas, entry);
471 goto fallback;
472 }
473 } else { /* trying to grab a PTE entry */
474 if (dax_is_pmd_entry(entry) &&
475 (dax_is_zero_entry(entry) ||
476 dax_is_empty_entry(entry))) {
477 pmd_downgrade = true;
478 }
479 }
480 }
481
482 if (pmd_downgrade) {
483 /*
484 * Make sure 'entry' remains valid while we drop
485 * the i_pages lock.
486 */
487 dax_lock_entry(xas, entry);
488
489 /*
490 * Besides huge zero pages the only other thing that gets
491 * downgraded are empty entries which don't need to be
492 * unmapped.
493 */
494 if (dax_is_zero_entry(entry)) {
495 xas_unlock_irq(xas);
496 unmap_mapping_pages(mapping,
497 xas->xa_index & ~PG_PMD_COLOUR,
498 PG_PMD_NR, false);
499 xas_reset(xas);
500 xas_lock_irq(xas);
501 }
502
503 dax_disassociate_entry(entry, mapping, false);
504 xas_store(xas, NULL); /* undo the PMD join */
505 dax_wake_entry(xas, entry, true);
506 mapping->nrexceptional--;
507 entry = NULL;
508 xas_set(xas, index);
509 }
510
511 if (entry) {
512 dax_lock_entry(xas, entry);
513 } else {
514 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
515 dax_lock_entry(xas, entry);
516 if (xas_error(xas))
517 goto out_unlock;
518 mapping->nrexceptional++;
519 }
520
521 out_unlock:
522 xas_unlock_irq(xas);
523 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
524 goto retry;
525 if (xas->xa_node == XA_ERROR(-ENOMEM))
526 return xa_mk_internal(VM_FAULT_OOM);
527 if (xas_error(xas))
528 return xa_mk_internal(VM_FAULT_SIGBUS);
529 return entry;
530 fallback:
531 xas_unlock_irq(xas);
532 return xa_mk_internal(VM_FAULT_FALLBACK);
533 }
534
535 /**
536 * dax_layout_busy_page - find first pinned page in @mapping
537 * @mapping: address space to scan for a page with ref count > 1
538 *
539 * DAX requires ZONE_DEVICE mapped pages. These pages are never
540 * 'onlined' to the page allocator so they are considered idle when
541 * page->count == 1. A filesystem uses this interface to determine if
542 * any page in the mapping is busy, i.e. for DMA, or other
543 * get_user_pages() usages.
544 *
545 * It is expected that the filesystem is holding locks to block the
546 * establishment of new mappings in this address_space. I.e. it expects
547 * to be able to run unmap_mapping_range() and subsequently not race
548 * mapping_mapped() becoming true.
549 */
550 struct page *dax_layout_busy_page(struct address_space *mapping)
551 {
552 XA_STATE(xas, &mapping->i_pages, 0);
553 void *entry;
554 unsigned int scanned = 0;
555 struct page *page = NULL;
556
557 /*
558 * In the 'limited' case get_user_pages() for dax is disabled.
559 */
560 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
561 return NULL;
562
563 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
564 return NULL;
565
566 /*
567 * If we race get_user_pages_fast() here either we'll see the
568 * elevated page count in the iteration and wait, or
569 * get_user_pages_fast() will see that the page it took a reference
570 * against is no longer mapped in the page tables and bail to the
571 * get_user_pages() slow path. The slow path is protected by
572 * pte_lock() and pmd_lock(). New references are not taken without
573 * holding those locks, and unmap_mapping_range() will not zero the
574 * pte or pmd without holding the respective lock, so we are
575 * guaranteed to either see new references or prevent new
576 * references from being established.
577 */
578 unmap_mapping_range(mapping, 0, 0, 1);
579
580 xas_lock_irq(&xas);
581 xas_for_each(&xas, entry, ULONG_MAX) {
582 if (WARN_ON_ONCE(!xa_is_value(entry)))
583 continue;
584 if (unlikely(dax_is_locked(entry)))
585 entry = get_unlocked_entry(&xas);
586 if (entry)
587 page = dax_busy_page(entry);
588 put_unlocked_entry(&xas, entry);
589 if (page)
590 break;
591 if (++scanned % XA_CHECK_SCHED)
592 continue;
593
594 xas_pause(&xas);
595 xas_unlock_irq(&xas);
596 cond_resched();
597 xas_lock_irq(&xas);
598 }
599 xas_unlock_irq(&xas);
600 return page;
601 }
602 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
603
604 static int __dax_invalidate_entry(struct address_space *mapping,
605 pgoff_t index, bool trunc)
606 {
607 XA_STATE(xas, &mapping->i_pages, index);
608 int ret = 0;
609 void *entry;
610
611 xas_lock_irq(&xas);
612 entry = get_unlocked_entry(&xas);
613 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
614 goto out;
615 if (!trunc &&
616 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
617 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
618 goto out;
619 dax_disassociate_entry(entry, mapping, trunc);
620 xas_store(&xas, NULL);
621 mapping->nrexceptional--;
622 ret = 1;
623 out:
624 put_unlocked_entry(&xas, entry);
625 xas_unlock_irq(&xas);
626 return ret;
627 }
628
629 /*
630 * Delete DAX entry at @index from @mapping. Wait for it
631 * to be unlocked before deleting it.
632 */
633 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
634 {
635 int ret = __dax_invalidate_entry(mapping, index, true);
636
637 /*
638 * This gets called from truncate / punch_hole path. As such, the caller
639 * must hold locks protecting against concurrent modifications of the
640 * page cache (usually fs-private i_mmap_sem for writing). Since the
641 * caller has seen a DAX entry for this index, we better find it
642 * at that index as well...
643 */
644 WARN_ON_ONCE(!ret);
645 return ret;
646 }
647
648 /*
649 * Invalidate DAX entry if it is clean.
650 */
651 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
652 pgoff_t index)
653 {
654 return __dax_invalidate_entry(mapping, index, false);
655 }
656
657 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
658 sector_t sector, size_t size, struct page *to,
659 unsigned long vaddr)
660 {
661 void *vto, *kaddr;
662 pgoff_t pgoff;
663 long rc;
664 int id;
665
666 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
667 if (rc)
668 return rc;
669
670 id = dax_read_lock();
671 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
672 if (rc < 0) {
673 dax_read_unlock(id);
674 return rc;
675 }
676 vto = kmap_atomic(to);
677 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
678 kunmap_atomic(vto);
679 dax_read_unlock(id);
680 return 0;
681 }
682
683 /*
684 * By this point grab_mapping_entry() has ensured that we have a locked entry
685 * of the appropriate size so we don't have to worry about downgrading PMDs to
686 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
687 * already in the tree, we will skip the insertion and just dirty the PMD as
688 * appropriate.
689 */
690 static void *dax_insert_entry(struct xa_state *xas,
691 struct address_space *mapping, struct vm_fault *vmf,
692 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
693 {
694 void *new_entry = dax_make_entry(pfn, flags);
695
696 if (dirty)
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
699 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
700 unsigned long index = xas->xa_index;
701 /* we are replacing a zero page with block mapping */
702 if (dax_is_pmd_entry(entry))
703 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
704 PG_PMD_NR, false);
705 else /* pte entry */
706 unmap_mapping_pages(mapping, index, 1, false);
707 }
708
709 xas_reset(xas);
710 xas_lock_irq(xas);
711 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
712 dax_disassociate_entry(entry, mapping, false);
713 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
714 }
715
716 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
717 /*
718 * Only swap our new entry into the page cache if the current
719 * entry is a zero page or an empty entry. If a normal PTE or
720 * PMD entry is already in the cache, we leave it alone. This
721 * means that if we are trying to insert a PTE and the
722 * existing entry is a PMD, we will just leave the PMD in the
723 * tree and dirty it if necessary.
724 */
725 void *old = dax_lock_entry(xas, new_entry);
726 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
727 DAX_LOCKED));
728 entry = new_entry;
729 } else {
730 xas_load(xas); /* Walk the xa_state */
731 }
732
733 if (dirty)
734 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
735
736 xas_unlock_irq(xas);
737 return entry;
738 }
739
740 static inline
741 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
742 {
743 unsigned long address;
744
745 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
746 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
747 return address;
748 }
749
750 /* Walk all mappings of a given index of a file and writeprotect them */
751 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
752 unsigned long pfn)
753 {
754 struct vm_area_struct *vma;
755 pte_t pte, *ptep = NULL;
756 pmd_t *pmdp = NULL;
757 spinlock_t *ptl;
758
759 i_mmap_lock_read(mapping);
760 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
761 unsigned long address, start, end;
762
763 cond_resched();
764
765 if (!(vma->vm_flags & VM_SHARED))
766 continue;
767
768 address = pgoff_address(index, vma);
769
770 /*
771 * Note because we provide start/end to follow_pte_pmd it will
772 * call mmu_notifier_invalidate_range_start() on our behalf
773 * before taking any lock.
774 */
775 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
776 continue;
777
778 /*
779 * No need to call mmu_notifier_invalidate_range() as we are
780 * downgrading page table protection not changing it to point
781 * to a new page.
782 *
783 * See Documentation/vm/mmu_notifier.rst
784 */
785 if (pmdp) {
786 #ifdef CONFIG_FS_DAX_PMD
787 pmd_t pmd;
788
789 if (pfn != pmd_pfn(*pmdp))
790 goto unlock_pmd;
791 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
792 goto unlock_pmd;
793
794 flush_cache_page(vma, address, pfn);
795 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
796 pmd = pmd_wrprotect(pmd);
797 pmd = pmd_mkclean(pmd);
798 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
799 unlock_pmd:
800 #endif
801 spin_unlock(ptl);
802 } else {
803 if (pfn != pte_pfn(*ptep))
804 goto unlock_pte;
805 if (!pte_dirty(*ptep) && !pte_write(*ptep))
806 goto unlock_pte;
807
808 flush_cache_page(vma, address, pfn);
809 pte = ptep_clear_flush(vma, address, ptep);
810 pte = pte_wrprotect(pte);
811 pte = pte_mkclean(pte);
812 set_pte_at(vma->vm_mm, address, ptep, pte);
813 unlock_pte:
814 pte_unmap_unlock(ptep, ptl);
815 }
816
817 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
818 }
819 i_mmap_unlock_read(mapping);
820 }
821
822 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
823 struct address_space *mapping, void *entry)
824 {
825 unsigned long pfn;
826 long ret = 0;
827 size_t size;
828
829 /*
830 * A page got tagged dirty in DAX mapping? Something is seriously
831 * wrong.
832 */
833 if (WARN_ON(!xa_is_value(entry)))
834 return -EIO;
835
836 if (unlikely(dax_is_locked(entry))) {
837 void *old_entry = entry;
838
839 entry = get_unlocked_entry(xas);
840
841 /* Entry got punched out / reallocated? */
842 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
843 goto put_unlocked;
844 /*
845 * Entry got reallocated elsewhere? No need to writeback.
846 * We have to compare pfns as we must not bail out due to
847 * difference in lockbit or entry type.
848 */
849 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
850 goto put_unlocked;
851 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
852 dax_is_zero_entry(entry))) {
853 ret = -EIO;
854 goto put_unlocked;
855 }
856
857 /* Another fsync thread may have already done this entry */
858 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
859 goto put_unlocked;
860 }
861
862 /* Lock the entry to serialize with page faults */
863 dax_lock_entry(xas, entry);
864
865 /*
866 * We can clear the tag now but we have to be careful so that concurrent
867 * dax_writeback_one() calls for the same index cannot finish before we
868 * actually flush the caches. This is achieved as the calls will look
869 * at the entry only under the i_pages lock and once they do that
870 * they will see the entry locked and wait for it to unlock.
871 */
872 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
873 xas_unlock_irq(xas);
874
875 /*
876 * Even if dax_writeback_mapping_range() was given a wbc->range_start
877 * in the middle of a PMD, the 'index' we are given will be aligned to
878 * the start index of the PMD, as will the pfn we pull from 'entry'.
879 * This allows us to flush for PMD_SIZE and not have to worry about
880 * partial PMD writebacks.
881 */
882 pfn = dax_to_pfn(entry);
883 size = PAGE_SIZE << dax_entry_order(entry);
884
885 dax_entry_mkclean(mapping, xas->xa_index, pfn);
886 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
887 /*
888 * After we have flushed the cache, we can clear the dirty tag. There
889 * cannot be new dirty data in the pfn after the flush has completed as
890 * the pfn mappings are writeprotected and fault waits for mapping
891 * entry lock.
892 */
893 xas_reset(xas);
894 xas_lock_irq(xas);
895 xas_store(xas, entry);
896 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
897 dax_wake_entry(xas, entry, false);
898
899 trace_dax_writeback_one(mapping->host, xas->xa_index,
900 size >> PAGE_SHIFT);
901 return ret;
902
903 put_unlocked:
904 put_unlocked_entry(xas, entry);
905 return ret;
906 }
907
908 /*
909 * Flush the mapping to the persistent domain within the byte range of [start,
910 * end]. This is required by data integrity operations to ensure file data is
911 * on persistent storage prior to completion of the operation.
912 */
913 int dax_writeback_mapping_range(struct address_space *mapping,
914 struct block_device *bdev, struct writeback_control *wbc)
915 {
916 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
917 struct inode *inode = mapping->host;
918 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
919 struct dax_device *dax_dev;
920 void *entry;
921 int ret = 0;
922 unsigned int scanned = 0;
923
924 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
925 return -EIO;
926
927 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
928 return 0;
929
930 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
931 if (!dax_dev)
932 return -EIO;
933
934 trace_dax_writeback_range(inode, xas.xa_index, end_index);
935
936 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
937
938 xas_lock_irq(&xas);
939 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
940 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
941 if (ret < 0) {
942 mapping_set_error(mapping, ret);
943 break;
944 }
945 if (++scanned % XA_CHECK_SCHED)
946 continue;
947
948 xas_pause(&xas);
949 xas_unlock_irq(&xas);
950 cond_resched();
951 xas_lock_irq(&xas);
952 }
953 xas_unlock_irq(&xas);
954 put_dax(dax_dev);
955 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
956 return ret;
957 }
958 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
959
960 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
961 {
962 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
963 }
964
965 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
966 pfn_t *pfnp)
967 {
968 const sector_t sector = dax_iomap_sector(iomap, pos);
969 pgoff_t pgoff;
970 int id, rc;
971 long length;
972
973 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
974 if (rc)
975 return rc;
976 id = dax_read_lock();
977 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
978 NULL, pfnp);
979 if (length < 0) {
980 rc = length;
981 goto out;
982 }
983 rc = -EINVAL;
984 if (PFN_PHYS(length) < size)
985 goto out;
986 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
987 goto out;
988 /* For larger pages we need devmap */
989 if (length > 1 && !pfn_t_devmap(*pfnp))
990 goto out;
991 rc = 0;
992 out:
993 dax_read_unlock(id);
994 return rc;
995 }
996
997 /*
998 * The user has performed a load from a hole in the file. Allocating a new
999 * page in the file would cause excessive storage usage for workloads with
1000 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1001 * If this page is ever written to we will re-fault and change the mapping to
1002 * point to real DAX storage instead.
1003 */
1004 static vm_fault_t dax_load_hole(struct xa_state *xas,
1005 struct address_space *mapping, void **entry,
1006 struct vm_fault *vmf)
1007 {
1008 struct inode *inode = mapping->host;
1009 unsigned long vaddr = vmf->address;
1010 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1011 vm_fault_t ret;
1012
1013 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1014 DAX_ZERO_PAGE, false);
1015
1016 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1017 trace_dax_load_hole(inode, vmf, ret);
1018 return ret;
1019 }
1020
1021 static bool dax_range_is_aligned(struct block_device *bdev,
1022 unsigned int offset, unsigned int length)
1023 {
1024 unsigned short sector_size = bdev_logical_block_size(bdev);
1025
1026 if (!IS_ALIGNED(offset, sector_size))
1027 return false;
1028 if (!IS_ALIGNED(length, sector_size))
1029 return false;
1030
1031 return true;
1032 }
1033
1034 int __dax_zero_page_range(struct block_device *bdev,
1035 struct dax_device *dax_dev, sector_t sector,
1036 unsigned int offset, unsigned int size)
1037 {
1038 if (dax_range_is_aligned(bdev, offset, size)) {
1039 sector_t start_sector = sector + (offset >> 9);
1040
1041 return blkdev_issue_zeroout(bdev, start_sector,
1042 size >> 9, GFP_NOFS, 0);
1043 } else {
1044 pgoff_t pgoff;
1045 long rc, id;
1046 void *kaddr;
1047
1048 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1049 if (rc)
1050 return rc;
1051
1052 id = dax_read_lock();
1053 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1054 if (rc < 0) {
1055 dax_read_unlock(id);
1056 return rc;
1057 }
1058 memset(kaddr + offset, 0, size);
1059 dax_flush(dax_dev, kaddr + offset, size);
1060 dax_read_unlock(id);
1061 }
1062 return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1065
1066 static loff_t
1067 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1068 struct iomap *iomap)
1069 {
1070 struct block_device *bdev = iomap->bdev;
1071 struct dax_device *dax_dev = iomap->dax_dev;
1072 struct iov_iter *iter = data;
1073 loff_t end = pos + length, done = 0;
1074 ssize_t ret = 0;
1075 size_t xfer;
1076 int id;
1077
1078 if (iov_iter_rw(iter) == READ) {
1079 end = min(end, i_size_read(inode));
1080 if (pos >= end)
1081 return 0;
1082
1083 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1084 return iov_iter_zero(min(length, end - pos), iter);
1085 }
1086
1087 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1088 return -EIO;
1089
1090 /*
1091 * Write can allocate block for an area which has a hole page mapped
1092 * into page tables. We have to tear down these mappings so that data
1093 * written by write(2) is visible in mmap.
1094 */
1095 if (iomap->flags & IOMAP_F_NEW) {
1096 invalidate_inode_pages2_range(inode->i_mapping,
1097 pos >> PAGE_SHIFT,
1098 (end - 1) >> PAGE_SHIFT);
1099 }
1100
1101 id = dax_read_lock();
1102 while (pos < end) {
1103 unsigned offset = pos & (PAGE_SIZE - 1);
1104 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1105 const sector_t sector = dax_iomap_sector(iomap, pos);
1106 ssize_t map_len;
1107 pgoff_t pgoff;
1108 void *kaddr;
1109
1110 if (fatal_signal_pending(current)) {
1111 ret = -EINTR;
1112 break;
1113 }
1114
1115 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1116 if (ret)
1117 break;
1118
1119 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1120 &kaddr, NULL);
1121 if (map_len < 0) {
1122 ret = map_len;
1123 break;
1124 }
1125
1126 map_len = PFN_PHYS(map_len);
1127 kaddr += offset;
1128 map_len -= offset;
1129 if (map_len > end - pos)
1130 map_len = end - pos;
1131
1132 /*
1133 * The userspace address for the memory copy has already been
1134 * validated via access_ok() in either vfs_read() or
1135 * vfs_write(), depending on which operation we are doing.
1136 */
1137 if (iov_iter_rw(iter) == WRITE)
1138 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1139 map_len, iter);
1140 else
1141 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1142 map_len, iter);
1143
1144 pos += xfer;
1145 length -= xfer;
1146 done += xfer;
1147
1148 if (xfer == 0)
1149 ret = -EFAULT;
1150 if (xfer < map_len)
1151 break;
1152 }
1153 dax_read_unlock(id);
1154
1155 return done ? done : ret;
1156 }
1157
1158 /**
1159 * dax_iomap_rw - Perform I/O to a DAX file
1160 * @iocb: The control block for this I/O
1161 * @iter: The addresses to do I/O from or to
1162 * @ops: iomap ops passed from the file system
1163 *
1164 * This function performs read and write operations to directly mapped
1165 * persistent memory. The callers needs to take care of read/write exclusion
1166 * and evicting any page cache pages in the region under I/O.
1167 */
1168 ssize_t
1169 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1170 const struct iomap_ops *ops)
1171 {
1172 struct address_space *mapping = iocb->ki_filp->f_mapping;
1173 struct inode *inode = mapping->host;
1174 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1175 unsigned flags = 0;
1176
1177 if (iov_iter_rw(iter) == WRITE) {
1178 lockdep_assert_held_exclusive(&inode->i_rwsem);
1179 flags |= IOMAP_WRITE;
1180 } else {
1181 lockdep_assert_held(&inode->i_rwsem);
1182 }
1183
1184 while (iov_iter_count(iter)) {
1185 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1186 iter, dax_iomap_actor);
1187 if (ret <= 0)
1188 break;
1189 pos += ret;
1190 done += ret;
1191 }
1192
1193 iocb->ki_pos += done;
1194 return done ? done : ret;
1195 }
1196 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1197
1198 static vm_fault_t dax_fault_return(int error)
1199 {
1200 if (error == 0)
1201 return VM_FAULT_NOPAGE;
1202 if (error == -ENOMEM)
1203 return VM_FAULT_OOM;
1204 return VM_FAULT_SIGBUS;
1205 }
1206
1207 /*
1208 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1209 * flushed on write-faults (non-cow), but not read-faults.
1210 */
1211 static bool dax_fault_is_synchronous(unsigned long flags,
1212 struct vm_area_struct *vma, struct iomap *iomap)
1213 {
1214 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1215 && (iomap->flags & IOMAP_F_DIRTY);
1216 }
1217
1218 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1219 int *iomap_errp, const struct iomap_ops *ops)
1220 {
1221 struct vm_area_struct *vma = vmf->vma;
1222 struct address_space *mapping = vma->vm_file->f_mapping;
1223 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1224 struct inode *inode = mapping->host;
1225 unsigned long vaddr = vmf->address;
1226 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1227 struct iomap iomap = { 0 };
1228 unsigned flags = IOMAP_FAULT;
1229 int error, major = 0;
1230 bool write = vmf->flags & FAULT_FLAG_WRITE;
1231 bool sync;
1232 vm_fault_t ret = 0;
1233 void *entry;
1234 pfn_t pfn;
1235
1236 trace_dax_pte_fault(inode, vmf, ret);
1237 /*
1238 * Check whether offset isn't beyond end of file now. Caller is supposed
1239 * to hold locks serializing us with truncate / punch hole so this is
1240 * a reliable test.
1241 */
1242 if (pos >= i_size_read(inode)) {
1243 ret = VM_FAULT_SIGBUS;
1244 goto out;
1245 }
1246
1247 if (write && !vmf->cow_page)
1248 flags |= IOMAP_WRITE;
1249
1250 entry = grab_mapping_entry(&xas, mapping, 0);
1251 if (xa_is_internal(entry)) {
1252 ret = xa_to_internal(entry);
1253 goto out;
1254 }
1255
1256 /*
1257 * It is possible, particularly with mixed reads & writes to private
1258 * mappings, that we have raced with a PMD fault that overlaps with
1259 * the PTE we need to set up. If so just return and the fault will be
1260 * retried.
1261 */
1262 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1263 ret = VM_FAULT_NOPAGE;
1264 goto unlock_entry;
1265 }
1266
1267 /*
1268 * Note that we don't bother to use iomap_apply here: DAX required
1269 * the file system block size to be equal the page size, which means
1270 * that we never have to deal with more than a single extent here.
1271 */
1272 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1273 if (iomap_errp)
1274 *iomap_errp = error;
1275 if (error) {
1276 ret = dax_fault_return(error);
1277 goto unlock_entry;
1278 }
1279 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1280 error = -EIO; /* fs corruption? */
1281 goto error_finish_iomap;
1282 }
1283
1284 if (vmf->cow_page) {
1285 sector_t sector = dax_iomap_sector(&iomap, pos);
1286
1287 switch (iomap.type) {
1288 case IOMAP_HOLE:
1289 case IOMAP_UNWRITTEN:
1290 clear_user_highpage(vmf->cow_page, vaddr);
1291 break;
1292 case IOMAP_MAPPED:
1293 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1294 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1295 break;
1296 default:
1297 WARN_ON_ONCE(1);
1298 error = -EIO;
1299 break;
1300 }
1301
1302 if (error)
1303 goto error_finish_iomap;
1304
1305 __SetPageUptodate(vmf->cow_page);
1306 ret = finish_fault(vmf);
1307 if (!ret)
1308 ret = VM_FAULT_DONE_COW;
1309 goto finish_iomap;
1310 }
1311
1312 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1313
1314 switch (iomap.type) {
1315 case IOMAP_MAPPED:
1316 if (iomap.flags & IOMAP_F_NEW) {
1317 count_vm_event(PGMAJFAULT);
1318 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1319 major = VM_FAULT_MAJOR;
1320 }
1321 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1322 if (error < 0)
1323 goto error_finish_iomap;
1324
1325 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1326 0, write && !sync);
1327
1328 /*
1329 * If we are doing synchronous page fault and inode needs fsync,
1330 * we can insert PTE into page tables only after that happens.
1331 * Skip insertion for now and return the pfn so that caller can
1332 * insert it after fsync is done.
1333 */
1334 if (sync) {
1335 if (WARN_ON_ONCE(!pfnp)) {
1336 error = -EIO;
1337 goto error_finish_iomap;
1338 }
1339 *pfnp = pfn;
1340 ret = VM_FAULT_NEEDDSYNC | major;
1341 goto finish_iomap;
1342 }
1343 trace_dax_insert_mapping(inode, vmf, entry);
1344 if (write)
1345 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1346 else
1347 ret = vmf_insert_mixed(vma, vaddr, pfn);
1348
1349 goto finish_iomap;
1350 case IOMAP_UNWRITTEN:
1351 case IOMAP_HOLE:
1352 if (!write) {
1353 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1354 goto finish_iomap;
1355 }
1356 /*FALLTHRU*/
1357 default:
1358 WARN_ON_ONCE(1);
1359 error = -EIO;
1360 break;
1361 }
1362
1363 error_finish_iomap:
1364 ret = dax_fault_return(error);
1365 finish_iomap:
1366 if (ops->iomap_end) {
1367 int copied = PAGE_SIZE;
1368
1369 if (ret & VM_FAULT_ERROR)
1370 copied = 0;
1371 /*
1372 * The fault is done by now and there's no way back (other
1373 * thread may be already happily using PTE we have installed).
1374 * Just ignore error from ->iomap_end since we cannot do much
1375 * with it.
1376 */
1377 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1378 }
1379 unlock_entry:
1380 dax_unlock_entry(&xas, entry);
1381 out:
1382 trace_dax_pte_fault_done(inode, vmf, ret);
1383 return ret | major;
1384 }
1385
1386 #ifdef CONFIG_FS_DAX_PMD
1387 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1388 struct iomap *iomap, void **entry)
1389 {
1390 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1391 unsigned long pmd_addr = vmf->address & PMD_MASK;
1392 struct inode *inode = mapping->host;
1393 struct page *zero_page;
1394 spinlock_t *ptl;
1395 pmd_t pmd_entry;
1396 pfn_t pfn;
1397
1398 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1399
1400 if (unlikely(!zero_page))
1401 goto fallback;
1402
1403 pfn = page_to_pfn_t(zero_page);
1404 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1405 DAX_PMD | DAX_ZERO_PAGE, false);
1406
1407 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1408 if (!pmd_none(*(vmf->pmd))) {
1409 spin_unlock(ptl);
1410 goto fallback;
1411 }
1412
1413 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1414 pmd_entry = pmd_mkhuge(pmd_entry);
1415 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1416 spin_unlock(ptl);
1417 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1418 return VM_FAULT_NOPAGE;
1419
1420 fallback:
1421 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1422 return VM_FAULT_FALLBACK;
1423 }
1424
1425 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1426 const struct iomap_ops *ops)
1427 {
1428 struct vm_area_struct *vma = vmf->vma;
1429 struct address_space *mapping = vma->vm_file->f_mapping;
1430 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1431 unsigned long pmd_addr = vmf->address & PMD_MASK;
1432 bool write = vmf->flags & FAULT_FLAG_WRITE;
1433 bool sync;
1434 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1435 struct inode *inode = mapping->host;
1436 vm_fault_t result = VM_FAULT_FALLBACK;
1437 struct iomap iomap = { 0 };
1438 pgoff_t max_pgoff;
1439 void *entry;
1440 loff_t pos;
1441 int error;
1442 pfn_t pfn;
1443
1444 /*
1445 * Check whether offset isn't beyond end of file now. Caller is
1446 * supposed to hold locks serializing us with truncate / punch hole so
1447 * this is a reliable test.
1448 */
1449 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1450
1451 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1452
1453 /*
1454 * Make sure that the faulting address's PMD offset (color) matches
1455 * the PMD offset from the start of the file. This is necessary so
1456 * that a PMD range in the page table overlaps exactly with a PMD
1457 * range in the page cache.
1458 */
1459 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1460 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1461 goto fallback;
1462
1463 /* Fall back to PTEs if we're going to COW */
1464 if (write && !(vma->vm_flags & VM_SHARED))
1465 goto fallback;
1466
1467 /* If the PMD would extend outside the VMA */
1468 if (pmd_addr < vma->vm_start)
1469 goto fallback;
1470 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1471 goto fallback;
1472
1473 if (xas.xa_index >= max_pgoff) {
1474 result = VM_FAULT_SIGBUS;
1475 goto out;
1476 }
1477
1478 /* If the PMD would extend beyond the file size */
1479 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1480 goto fallback;
1481
1482 /*
1483 * grab_mapping_entry() will make sure we get an empty PMD entry,
1484 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1485 * entry is already in the array, for instance), it will return
1486 * VM_FAULT_FALLBACK.
1487 */
1488 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1489 if (xa_is_internal(entry)) {
1490 result = xa_to_internal(entry);
1491 goto fallback;
1492 }
1493
1494 /*
1495 * It is possible, particularly with mixed reads & writes to private
1496 * mappings, that we have raced with a PTE fault that overlaps with
1497 * the PMD we need to set up. If so just return and the fault will be
1498 * retried.
1499 */
1500 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1501 !pmd_devmap(*vmf->pmd)) {
1502 result = 0;
1503 goto unlock_entry;
1504 }
1505
1506 /*
1507 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1508 * setting up a mapping, so really we're using iomap_begin() as a way
1509 * to look up our filesystem block.
1510 */
1511 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1512 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1513 if (error)
1514 goto unlock_entry;
1515
1516 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1517 goto finish_iomap;
1518
1519 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1520
1521 switch (iomap.type) {
1522 case IOMAP_MAPPED:
1523 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1524 if (error < 0)
1525 goto finish_iomap;
1526
1527 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1528 DAX_PMD, write && !sync);
1529
1530 /*
1531 * If we are doing synchronous page fault and inode needs fsync,
1532 * we can insert PMD into page tables only after that happens.
1533 * Skip insertion for now and return the pfn so that caller can
1534 * insert it after fsync is done.
1535 */
1536 if (sync) {
1537 if (WARN_ON_ONCE(!pfnp))
1538 goto finish_iomap;
1539 *pfnp = pfn;
1540 result = VM_FAULT_NEEDDSYNC;
1541 goto finish_iomap;
1542 }
1543
1544 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1545 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1546 write);
1547 break;
1548 case IOMAP_UNWRITTEN:
1549 case IOMAP_HOLE:
1550 if (WARN_ON_ONCE(write))
1551 break;
1552 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1553 break;
1554 default:
1555 WARN_ON_ONCE(1);
1556 break;
1557 }
1558
1559 finish_iomap:
1560 if (ops->iomap_end) {
1561 int copied = PMD_SIZE;
1562
1563 if (result == VM_FAULT_FALLBACK)
1564 copied = 0;
1565 /*
1566 * The fault is done by now and there's no way back (other
1567 * thread may be already happily using PMD we have installed).
1568 * Just ignore error from ->iomap_end since we cannot do much
1569 * with it.
1570 */
1571 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1572 &iomap);
1573 }
1574 unlock_entry:
1575 dax_unlock_entry(&xas, entry);
1576 fallback:
1577 if (result == VM_FAULT_FALLBACK) {
1578 split_huge_pmd(vma, vmf->pmd, vmf->address);
1579 count_vm_event(THP_FAULT_FALLBACK);
1580 }
1581 out:
1582 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1583 return result;
1584 }
1585 #else
1586 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1587 const struct iomap_ops *ops)
1588 {
1589 return VM_FAULT_FALLBACK;
1590 }
1591 #endif /* CONFIG_FS_DAX_PMD */
1592
1593 /**
1594 * dax_iomap_fault - handle a page fault on a DAX file
1595 * @vmf: The description of the fault
1596 * @pe_size: Size of the page to fault in
1597 * @pfnp: PFN to insert for synchronous faults if fsync is required
1598 * @iomap_errp: Storage for detailed error code in case of error
1599 * @ops: Iomap ops passed from the file system
1600 *
1601 * When a page fault occurs, filesystems may call this helper in
1602 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1603 * has done all the necessary locking for page fault to proceed
1604 * successfully.
1605 */
1606 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1607 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1608 {
1609 switch (pe_size) {
1610 case PE_SIZE_PTE:
1611 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1612 case PE_SIZE_PMD:
1613 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1614 default:
1615 return VM_FAULT_FALLBACK;
1616 }
1617 }
1618 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1619
1620 /*
1621 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1622 * @vmf: The description of the fault
1623 * @pfn: PFN to insert
1624 * @order: Order of entry to insert.
1625 *
1626 * This function inserts a writeable PTE or PMD entry into the page tables
1627 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1628 */
1629 static vm_fault_t
1630 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1631 {
1632 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1633 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1634 void *entry;
1635 vm_fault_t ret;
1636
1637 xas_lock_irq(&xas);
1638 entry = get_unlocked_entry(&xas);
1639 /* Did we race with someone splitting entry or so? */
1640 if (!entry ||
1641 (order == 0 && !dax_is_pte_entry(entry)) ||
1642 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1643 put_unlocked_entry(&xas, entry);
1644 xas_unlock_irq(&xas);
1645 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1646 VM_FAULT_NOPAGE);
1647 return VM_FAULT_NOPAGE;
1648 }
1649 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1650 dax_lock_entry(&xas, entry);
1651 xas_unlock_irq(&xas);
1652 if (order == 0)
1653 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1654 #ifdef CONFIG_FS_DAX_PMD
1655 else if (order == PMD_ORDER)
1656 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1657 pfn, true);
1658 #endif
1659 else
1660 ret = VM_FAULT_FALLBACK;
1661 dax_unlock_entry(&xas, entry);
1662 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1663 return ret;
1664 }
1665
1666 /**
1667 * dax_finish_sync_fault - finish synchronous page fault
1668 * @vmf: The description of the fault
1669 * @pe_size: Size of entry to be inserted
1670 * @pfn: PFN to insert
1671 *
1672 * This function ensures that the file range touched by the page fault is
1673 * stored persistently on the media and handles inserting of appropriate page
1674 * table entry.
1675 */
1676 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1677 enum page_entry_size pe_size, pfn_t pfn)
1678 {
1679 int err;
1680 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1681 unsigned int order = pe_order(pe_size);
1682 size_t len = PAGE_SIZE << order;
1683
1684 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1685 if (err)
1686 return VM_FAULT_SIGBUS;
1687 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1688 }
1689 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);