]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/dax.c
Merge tag 'for-linus-5.2b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/fs_dax.h>
33
34 static inline unsigned int pe_order(enum page_entry_size pe_size)
35 {
36 if (pe_size == PE_SIZE_PTE)
37 return PAGE_SHIFT - PAGE_SHIFT;
38 if (pe_size == PE_SIZE_PMD)
39 return PMD_SHIFT - PAGE_SHIFT;
40 if (pe_size == PE_SIZE_PUD)
41 return PUD_SHIFT - PAGE_SHIFT;
42 return ~0;
43 }
44
45 /* We choose 4096 entries - same as per-zone page wait tables */
46 #define DAX_WAIT_TABLE_BITS 12
47 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48
49 /* The 'colour' (ie low bits) within a PMD of a page offset. */
50 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
51 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
52
53 /* The order of a PMD entry */
54 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55
56 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
57
58 static int __init init_dax_wait_table(void)
59 {
60 int i;
61
62 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
63 init_waitqueue_head(wait_table + i);
64 return 0;
65 }
66 fs_initcall(init_dax_wait_table);
67
68 /*
69 * DAX pagecache entries use XArray value entries so they can't be mistaken
70 * for pages. We use one bit for locking, one bit for the entry size (PMD)
71 * and two more to tell us if the entry is a zero page or an empty entry that
72 * is just used for locking. In total four special bits.
73 *
74 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
75 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
76 * block allocation.
77 */
78 #define DAX_SHIFT (4)
79 #define DAX_LOCKED (1UL << 0)
80 #define DAX_PMD (1UL << 1)
81 #define DAX_ZERO_PAGE (1UL << 2)
82 #define DAX_EMPTY (1UL << 3)
83
84 static unsigned long dax_to_pfn(void *entry)
85 {
86 return xa_to_value(entry) >> DAX_SHIFT;
87 }
88
89 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90 {
91 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
92 }
93
94 static bool dax_is_locked(void *entry)
95 {
96 return xa_to_value(entry) & DAX_LOCKED;
97 }
98
99 static unsigned int dax_entry_order(void *entry)
100 {
101 if (xa_to_value(entry) & DAX_PMD)
102 return PMD_ORDER;
103 return 0;
104 }
105
106 static unsigned long dax_is_pmd_entry(void *entry)
107 {
108 return xa_to_value(entry) & DAX_PMD;
109 }
110
111 static bool dax_is_pte_entry(void *entry)
112 {
113 return !(xa_to_value(entry) & DAX_PMD);
114 }
115
116 static int dax_is_zero_entry(void *entry)
117 {
118 return xa_to_value(entry) & DAX_ZERO_PAGE;
119 }
120
121 static int dax_is_empty_entry(void *entry)
122 {
123 return xa_to_value(entry) & DAX_EMPTY;
124 }
125
126 /*
127 * DAX page cache entry locking
128 */
129 struct exceptional_entry_key {
130 struct xarray *xa;
131 pgoff_t entry_start;
132 };
133
134 struct wait_exceptional_entry_queue {
135 wait_queue_entry_t wait;
136 struct exceptional_entry_key key;
137 };
138
139 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
140 void *entry, struct exceptional_entry_key *key)
141 {
142 unsigned long hash;
143 unsigned long index = xas->xa_index;
144
145 /*
146 * If 'entry' is a PMD, align the 'index' that we use for the wait
147 * queue to the start of that PMD. This ensures that all offsets in
148 * the range covered by the PMD map to the same bit lock.
149 */
150 if (dax_is_pmd_entry(entry))
151 index &= ~PG_PMD_COLOUR;
152 key->xa = xas->xa;
153 key->entry_start = index;
154
155 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
156 return wait_table + hash;
157 }
158
159 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
160 unsigned int mode, int sync, void *keyp)
161 {
162 struct exceptional_entry_key *key = keyp;
163 struct wait_exceptional_entry_queue *ewait =
164 container_of(wait, struct wait_exceptional_entry_queue, wait);
165
166 if (key->xa != ewait->key.xa ||
167 key->entry_start != ewait->key.entry_start)
168 return 0;
169 return autoremove_wake_function(wait, mode, sync, NULL);
170 }
171
172 /*
173 * @entry may no longer be the entry at the index in the mapping.
174 * The important information it's conveying is whether the entry at
175 * this index used to be a PMD entry.
176 */
177 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
178 {
179 struct exceptional_entry_key key;
180 wait_queue_head_t *wq;
181
182 wq = dax_entry_waitqueue(xas, entry, &key);
183
184 /*
185 * Checking for locked entry and prepare_to_wait_exclusive() happens
186 * under the i_pages lock, ditto for entry handling in our callers.
187 * So at this point all tasks that could have seen our entry locked
188 * must be in the waitqueue and the following check will see them.
189 */
190 if (waitqueue_active(wq))
191 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
192 }
193
194 /*
195 * Look up entry in page cache, wait for it to become unlocked if it
196 * is a DAX entry and return it. The caller must subsequently call
197 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
198 * if it did.
199 *
200 * Must be called with the i_pages lock held.
201 */
202 static void *get_unlocked_entry(struct xa_state *xas)
203 {
204 void *entry;
205 struct wait_exceptional_entry_queue ewait;
206 wait_queue_head_t *wq;
207
208 init_wait(&ewait.wait);
209 ewait.wait.func = wake_exceptional_entry_func;
210
211 for (;;) {
212 entry = xas_find_conflict(xas);
213 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
214 !dax_is_locked(entry))
215 return entry;
216
217 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
218 prepare_to_wait_exclusive(wq, &ewait.wait,
219 TASK_UNINTERRUPTIBLE);
220 xas_unlock_irq(xas);
221 xas_reset(xas);
222 schedule();
223 finish_wait(wq, &ewait.wait);
224 xas_lock_irq(xas);
225 }
226 }
227
228 /*
229 * The only thing keeping the address space around is the i_pages lock
230 * (it's cycled in clear_inode() after removing the entries from i_pages)
231 * After we call xas_unlock_irq(), we cannot touch xas->xa.
232 */
233 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
234 {
235 struct wait_exceptional_entry_queue ewait;
236 wait_queue_head_t *wq;
237
238 init_wait(&ewait.wait);
239 ewait.wait.func = wake_exceptional_entry_func;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 /*
243 * Unlike get_unlocked_entry() there is no guarantee that this
244 * path ever successfully retrieves an unlocked entry before an
245 * inode dies. Perform a non-exclusive wait in case this path
246 * never successfully performs its own wake up.
247 */
248 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
249 xas_unlock_irq(xas);
250 schedule();
251 finish_wait(wq, &ewait.wait);
252 }
253
254 static void put_unlocked_entry(struct xa_state *xas, void *entry)
255 {
256 /* If we were the only waiter woken, wake the next one */
257 if (entry)
258 dax_wake_entry(xas, entry, false);
259 }
260
261 /*
262 * We used the xa_state to get the entry, but then we locked the entry and
263 * dropped the xa_lock, so we know the xa_state is stale and must be reset
264 * before use.
265 */
266 static void dax_unlock_entry(struct xa_state *xas, void *entry)
267 {
268 void *old;
269
270 BUG_ON(dax_is_locked(entry));
271 xas_reset(xas);
272 xas_lock_irq(xas);
273 old = xas_store(xas, entry);
274 xas_unlock_irq(xas);
275 BUG_ON(!dax_is_locked(old));
276 dax_wake_entry(xas, entry, false);
277 }
278
279 /*
280 * Return: The entry stored at this location before it was locked.
281 */
282 static void *dax_lock_entry(struct xa_state *xas, void *entry)
283 {
284 unsigned long v = xa_to_value(entry);
285 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
286 }
287
288 static unsigned long dax_entry_size(void *entry)
289 {
290 if (dax_is_zero_entry(entry))
291 return 0;
292 else if (dax_is_empty_entry(entry))
293 return 0;
294 else if (dax_is_pmd_entry(entry))
295 return PMD_SIZE;
296 else
297 return PAGE_SIZE;
298 }
299
300 static unsigned long dax_end_pfn(void *entry)
301 {
302 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
303 }
304
305 /*
306 * Iterate through all mapped pfns represented by an entry, i.e. skip
307 * 'empty' and 'zero' entries.
308 */
309 #define for_each_mapped_pfn(entry, pfn) \
310 for (pfn = dax_to_pfn(entry); \
311 pfn < dax_end_pfn(entry); pfn++)
312
313 /*
314 * TODO: for reflink+dax we need a way to associate a single page with
315 * multiple address_space instances at different linear_page_index()
316 * offsets.
317 */
318 static void dax_associate_entry(void *entry, struct address_space *mapping,
319 struct vm_area_struct *vma, unsigned long address)
320 {
321 unsigned long size = dax_entry_size(entry), pfn, index;
322 int i = 0;
323
324 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
325 return;
326
327 index = linear_page_index(vma, address & ~(size - 1));
328 for_each_mapped_pfn(entry, pfn) {
329 struct page *page = pfn_to_page(pfn);
330
331 WARN_ON_ONCE(page->mapping);
332 page->mapping = mapping;
333 page->index = index + i++;
334 }
335 }
336
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338 bool trunc)
339 {
340 unsigned long pfn;
341
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343 return;
344
345 for_each_mapped_pfn(entry, pfn) {
346 struct page *page = pfn_to_page(pfn);
347
348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350 page->mapping = NULL;
351 page->index = 0;
352 }
353 }
354
355 static struct page *dax_busy_page(void *entry)
356 {
357 unsigned long pfn;
358
359 for_each_mapped_pfn(entry, pfn) {
360 struct page *page = pfn_to_page(pfn);
361
362 if (page_ref_count(page) > 1)
363 return page;
364 }
365 return NULL;
366 }
367
368 /*
369 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
370 * @page: The page whose entry we want to lock
371 *
372 * Context: Process context.
373 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
374 * not be locked.
375 */
376 dax_entry_t dax_lock_page(struct page *page)
377 {
378 XA_STATE(xas, NULL, 0);
379 void *entry;
380
381 /* Ensure page->mapping isn't freed while we look at it */
382 rcu_read_lock();
383 for (;;) {
384 struct address_space *mapping = READ_ONCE(page->mapping);
385
386 entry = NULL;
387 if (!mapping || !dax_mapping(mapping))
388 break;
389
390 /*
391 * In the device-dax case there's no need to lock, a
392 * struct dev_pagemap pin is sufficient to keep the
393 * inode alive, and we assume we have dev_pagemap pin
394 * otherwise we would not have a valid pfn_to_page()
395 * translation.
396 */
397 entry = (void *)~0UL;
398 if (S_ISCHR(mapping->host->i_mode))
399 break;
400
401 xas.xa = &mapping->i_pages;
402 xas_lock_irq(&xas);
403 if (mapping != page->mapping) {
404 xas_unlock_irq(&xas);
405 continue;
406 }
407 xas_set(&xas, page->index);
408 entry = xas_load(&xas);
409 if (dax_is_locked(entry)) {
410 rcu_read_unlock();
411 wait_entry_unlocked(&xas, entry);
412 rcu_read_lock();
413 continue;
414 }
415 dax_lock_entry(&xas, entry);
416 xas_unlock_irq(&xas);
417 break;
418 }
419 rcu_read_unlock();
420 return (dax_entry_t)entry;
421 }
422
423 void dax_unlock_page(struct page *page, dax_entry_t cookie)
424 {
425 struct address_space *mapping = page->mapping;
426 XA_STATE(xas, &mapping->i_pages, page->index);
427
428 if (S_ISCHR(mapping->host->i_mode))
429 return;
430
431 dax_unlock_entry(&xas, (void *)cookie);
432 }
433
434 /*
435 * Find page cache entry at given index. If it is a DAX entry, return it
436 * with the entry locked. If the page cache doesn't contain an entry at
437 * that index, add a locked empty entry.
438 *
439 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
440 * either return that locked entry or will return VM_FAULT_FALLBACK.
441 * This will happen if there are any PTE entries within the PMD range
442 * that we are requesting.
443 *
444 * We always favor PTE entries over PMD entries. There isn't a flow where we
445 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
446 * insertion will fail if it finds any PTE entries already in the tree, and a
447 * PTE insertion will cause an existing PMD entry to be unmapped and
448 * downgraded to PTE entries. This happens for both PMD zero pages as
449 * well as PMD empty entries.
450 *
451 * The exception to this downgrade path is for PMD entries that have
452 * real storage backing them. We will leave these real PMD entries in
453 * the tree, and PTE writes will simply dirty the entire PMD entry.
454 *
455 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
456 * persistent memory the benefit is doubtful. We can add that later if we can
457 * show it helps.
458 *
459 * On error, this function does not return an ERR_PTR. Instead it returns
460 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
461 * overlap with xarray value entries.
462 */
463 static void *grab_mapping_entry(struct xa_state *xas,
464 struct address_space *mapping, unsigned long size_flag)
465 {
466 unsigned long index = xas->xa_index;
467 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
468 void *entry;
469
470 retry:
471 xas_lock_irq(xas);
472 entry = get_unlocked_entry(xas);
473
474 if (entry) {
475 if (!xa_is_value(entry)) {
476 xas_set_err(xas, EIO);
477 goto out_unlock;
478 }
479
480 if (size_flag & DAX_PMD) {
481 if (dax_is_pte_entry(entry)) {
482 put_unlocked_entry(xas, entry);
483 goto fallback;
484 }
485 } else { /* trying to grab a PTE entry */
486 if (dax_is_pmd_entry(entry) &&
487 (dax_is_zero_entry(entry) ||
488 dax_is_empty_entry(entry))) {
489 pmd_downgrade = true;
490 }
491 }
492 }
493
494 if (pmd_downgrade) {
495 /*
496 * Make sure 'entry' remains valid while we drop
497 * the i_pages lock.
498 */
499 dax_lock_entry(xas, entry);
500
501 /*
502 * Besides huge zero pages the only other thing that gets
503 * downgraded are empty entries which don't need to be
504 * unmapped.
505 */
506 if (dax_is_zero_entry(entry)) {
507 xas_unlock_irq(xas);
508 unmap_mapping_pages(mapping,
509 xas->xa_index & ~PG_PMD_COLOUR,
510 PG_PMD_NR, false);
511 xas_reset(xas);
512 xas_lock_irq(xas);
513 }
514
515 dax_disassociate_entry(entry, mapping, false);
516 xas_store(xas, NULL); /* undo the PMD join */
517 dax_wake_entry(xas, entry, true);
518 mapping->nrexceptional--;
519 entry = NULL;
520 xas_set(xas, index);
521 }
522
523 if (entry) {
524 dax_lock_entry(xas, entry);
525 } else {
526 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
527 dax_lock_entry(xas, entry);
528 if (xas_error(xas))
529 goto out_unlock;
530 mapping->nrexceptional++;
531 }
532
533 out_unlock:
534 xas_unlock_irq(xas);
535 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
536 goto retry;
537 if (xas->xa_node == XA_ERROR(-ENOMEM))
538 return xa_mk_internal(VM_FAULT_OOM);
539 if (xas_error(xas))
540 return xa_mk_internal(VM_FAULT_SIGBUS);
541 return entry;
542 fallback:
543 xas_unlock_irq(xas);
544 return xa_mk_internal(VM_FAULT_FALLBACK);
545 }
546
547 /**
548 * dax_layout_busy_page - find first pinned page in @mapping
549 * @mapping: address space to scan for a page with ref count > 1
550 *
551 * DAX requires ZONE_DEVICE mapped pages. These pages are never
552 * 'onlined' to the page allocator so they are considered idle when
553 * page->count == 1. A filesystem uses this interface to determine if
554 * any page in the mapping is busy, i.e. for DMA, or other
555 * get_user_pages() usages.
556 *
557 * It is expected that the filesystem is holding locks to block the
558 * establishment of new mappings in this address_space. I.e. it expects
559 * to be able to run unmap_mapping_range() and subsequently not race
560 * mapping_mapped() becoming true.
561 */
562 struct page *dax_layout_busy_page(struct address_space *mapping)
563 {
564 XA_STATE(xas, &mapping->i_pages, 0);
565 void *entry;
566 unsigned int scanned = 0;
567 struct page *page = NULL;
568
569 /*
570 * In the 'limited' case get_user_pages() for dax is disabled.
571 */
572 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
573 return NULL;
574
575 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
576 return NULL;
577
578 /*
579 * If we race get_user_pages_fast() here either we'll see the
580 * elevated page count in the iteration and wait, or
581 * get_user_pages_fast() will see that the page it took a reference
582 * against is no longer mapped in the page tables and bail to the
583 * get_user_pages() slow path. The slow path is protected by
584 * pte_lock() and pmd_lock(). New references are not taken without
585 * holding those locks, and unmap_mapping_range() will not zero the
586 * pte or pmd without holding the respective lock, so we are
587 * guaranteed to either see new references or prevent new
588 * references from being established.
589 */
590 unmap_mapping_range(mapping, 0, 0, 1);
591
592 xas_lock_irq(&xas);
593 xas_for_each(&xas, entry, ULONG_MAX) {
594 if (WARN_ON_ONCE(!xa_is_value(entry)))
595 continue;
596 if (unlikely(dax_is_locked(entry)))
597 entry = get_unlocked_entry(&xas);
598 if (entry)
599 page = dax_busy_page(entry);
600 put_unlocked_entry(&xas, entry);
601 if (page)
602 break;
603 if (++scanned % XA_CHECK_SCHED)
604 continue;
605
606 xas_pause(&xas);
607 xas_unlock_irq(&xas);
608 cond_resched();
609 xas_lock_irq(&xas);
610 }
611 xas_unlock_irq(&xas);
612 return page;
613 }
614 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
615
616 static int __dax_invalidate_entry(struct address_space *mapping,
617 pgoff_t index, bool trunc)
618 {
619 XA_STATE(xas, &mapping->i_pages, index);
620 int ret = 0;
621 void *entry;
622
623 xas_lock_irq(&xas);
624 entry = get_unlocked_entry(&xas);
625 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
626 goto out;
627 if (!trunc &&
628 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
629 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
630 goto out;
631 dax_disassociate_entry(entry, mapping, trunc);
632 xas_store(&xas, NULL);
633 mapping->nrexceptional--;
634 ret = 1;
635 out:
636 put_unlocked_entry(&xas, entry);
637 xas_unlock_irq(&xas);
638 return ret;
639 }
640
641 /*
642 * Delete DAX entry at @index from @mapping. Wait for it
643 * to be unlocked before deleting it.
644 */
645 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
646 {
647 int ret = __dax_invalidate_entry(mapping, index, true);
648
649 /*
650 * This gets called from truncate / punch_hole path. As such, the caller
651 * must hold locks protecting against concurrent modifications of the
652 * page cache (usually fs-private i_mmap_sem for writing). Since the
653 * caller has seen a DAX entry for this index, we better find it
654 * at that index as well...
655 */
656 WARN_ON_ONCE(!ret);
657 return ret;
658 }
659
660 /*
661 * Invalidate DAX entry if it is clean.
662 */
663 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
664 pgoff_t index)
665 {
666 return __dax_invalidate_entry(mapping, index, false);
667 }
668
669 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
670 sector_t sector, size_t size, struct page *to,
671 unsigned long vaddr)
672 {
673 void *vto, *kaddr;
674 pgoff_t pgoff;
675 long rc;
676 int id;
677
678 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
679 if (rc)
680 return rc;
681
682 id = dax_read_lock();
683 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
684 if (rc < 0) {
685 dax_read_unlock(id);
686 return rc;
687 }
688 vto = kmap_atomic(to);
689 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
690 kunmap_atomic(vto);
691 dax_read_unlock(id);
692 return 0;
693 }
694
695 /*
696 * By this point grab_mapping_entry() has ensured that we have a locked entry
697 * of the appropriate size so we don't have to worry about downgrading PMDs to
698 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
699 * already in the tree, we will skip the insertion and just dirty the PMD as
700 * appropriate.
701 */
702 static void *dax_insert_entry(struct xa_state *xas,
703 struct address_space *mapping, struct vm_fault *vmf,
704 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
705 {
706 void *new_entry = dax_make_entry(pfn, flags);
707
708 if (dirty)
709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
710
711 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
712 unsigned long index = xas->xa_index;
713 /* we are replacing a zero page with block mapping */
714 if (dax_is_pmd_entry(entry))
715 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
716 PG_PMD_NR, false);
717 else /* pte entry */
718 unmap_mapping_pages(mapping, index, 1, false);
719 }
720
721 xas_reset(xas);
722 xas_lock_irq(xas);
723 if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
724 dax_disassociate_entry(entry, mapping, false);
725 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
726 }
727
728 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
729 /*
730 * Only swap our new entry into the page cache if the current
731 * entry is a zero page or an empty entry. If a normal PTE or
732 * PMD entry is already in the cache, we leave it alone. This
733 * means that if we are trying to insert a PTE and the
734 * existing entry is a PMD, we will just leave the PMD in the
735 * tree and dirty it if necessary.
736 */
737 void *old = dax_lock_entry(xas, new_entry);
738 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
739 DAX_LOCKED));
740 entry = new_entry;
741 } else {
742 xas_load(xas); /* Walk the xa_state */
743 }
744
745 if (dirty)
746 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
747
748 xas_unlock_irq(xas);
749 return entry;
750 }
751
752 static inline
753 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
754 {
755 unsigned long address;
756
757 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
758 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
759 return address;
760 }
761
762 /* Walk all mappings of a given index of a file and writeprotect them */
763 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
764 unsigned long pfn)
765 {
766 struct vm_area_struct *vma;
767 pte_t pte, *ptep = NULL;
768 pmd_t *pmdp = NULL;
769 spinlock_t *ptl;
770
771 i_mmap_lock_read(mapping);
772 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
773 struct mmu_notifier_range range;
774 unsigned long address;
775
776 cond_resched();
777
778 if (!(vma->vm_flags & VM_SHARED))
779 continue;
780
781 address = pgoff_address(index, vma);
782
783 /*
784 * Note because we provide range to follow_pte_pmd it will
785 * call mmu_notifier_invalidate_range_start() on our behalf
786 * before taking any lock.
787 */
788 if (follow_pte_pmd(vma->vm_mm, address, &range,
789 &ptep, &pmdp, &ptl))
790 continue;
791
792 /*
793 * No need to call mmu_notifier_invalidate_range() as we are
794 * downgrading page table protection not changing it to point
795 * to a new page.
796 *
797 * See Documentation/vm/mmu_notifier.rst
798 */
799 if (pmdp) {
800 #ifdef CONFIG_FS_DAX_PMD
801 pmd_t pmd;
802
803 if (pfn != pmd_pfn(*pmdp))
804 goto unlock_pmd;
805 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
806 goto unlock_pmd;
807
808 flush_cache_page(vma, address, pfn);
809 pmd = pmdp_invalidate(vma, address, pmdp);
810 pmd = pmd_wrprotect(pmd);
811 pmd = pmd_mkclean(pmd);
812 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
813 unlock_pmd:
814 #endif
815 spin_unlock(ptl);
816 } else {
817 if (pfn != pte_pfn(*ptep))
818 goto unlock_pte;
819 if (!pte_dirty(*ptep) && !pte_write(*ptep))
820 goto unlock_pte;
821
822 flush_cache_page(vma, address, pfn);
823 pte = ptep_clear_flush(vma, address, ptep);
824 pte = pte_wrprotect(pte);
825 pte = pte_mkclean(pte);
826 set_pte_at(vma->vm_mm, address, ptep, pte);
827 unlock_pte:
828 pte_unmap_unlock(ptep, ptl);
829 }
830
831 mmu_notifier_invalidate_range_end(&range);
832 }
833 i_mmap_unlock_read(mapping);
834 }
835
836 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
837 struct address_space *mapping, void *entry)
838 {
839 unsigned long pfn, index, count;
840 long ret = 0;
841
842 /*
843 * A page got tagged dirty in DAX mapping? Something is seriously
844 * wrong.
845 */
846 if (WARN_ON(!xa_is_value(entry)))
847 return -EIO;
848
849 if (unlikely(dax_is_locked(entry))) {
850 void *old_entry = entry;
851
852 entry = get_unlocked_entry(xas);
853
854 /* Entry got punched out / reallocated? */
855 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
856 goto put_unlocked;
857 /*
858 * Entry got reallocated elsewhere? No need to writeback.
859 * We have to compare pfns as we must not bail out due to
860 * difference in lockbit or entry type.
861 */
862 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
863 goto put_unlocked;
864 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
865 dax_is_zero_entry(entry))) {
866 ret = -EIO;
867 goto put_unlocked;
868 }
869
870 /* Another fsync thread may have already done this entry */
871 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
872 goto put_unlocked;
873 }
874
875 /* Lock the entry to serialize with page faults */
876 dax_lock_entry(xas, entry);
877
878 /*
879 * We can clear the tag now but we have to be careful so that concurrent
880 * dax_writeback_one() calls for the same index cannot finish before we
881 * actually flush the caches. This is achieved as the calls will look
882 * at the entry only under the i_pages lock and once they do that
883 * they will see the entry locked and wait for it to unlock.
884 */
885 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
886 xas_unlock_irq(xas);
887
888 /*
889 * If dax_writeback_mapping_range() was given a wbc->range_start
890 * in the middle of a PMD, the 'index' we use needs to be
891 * aligned to the start of the PMD.
892 * This allows us to flush for PMD_SIZE and not have to worry about
893 * partial PMD writebacks.
894 */
895 pfn = dax_to_pfn(entry);
896 count = 1UL << dax_entry_order(entry);
897 index = xas->xa_index & ~(count - 1);
898
899 dax_entry_mkclean(mapping, index, pfn);
900 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
901 /*
902 * After we have flushed the cache, we can clear the dirty tag. There
903 * cannot be new dirty data in the pfn after the flush has completed as
904 * the pfn mappings are writeprotected and fault waits for mapping
905 * entry lock.
906 */
907 xas_reset(xas);
908 xas_lock_irq(xas);
909 xas_store(xas, entry);
910 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
911 dax_wake_entry(xas, entry, false);
912
913 trace_dax_writeback_one(mapping->host, index, count);
914 return ret;
915
916 put_unlocked:
917 put_unlocked_entry(xas, entry);
918 return ret;
919 }
920
921 /*
922 * Flush the mapping to the persistent domain within the byte range of [start,
923 * end]. This is required by data integrity operations to ensure file data is
924 * on persistent storage prior to completion of the operation.
925 */
926 int dax_writeback_mapping_range(struct address_space *mapping,
927 struct block_device *bdev, struct writeback_control *wbc)
928 {
929 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
930 struct inode *inode = mapping->host;
931 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
932 struct dax_device *dax_dev;
933 void *entry;
934 int ret = 0;
935 unsigned int scanned = 0;
936
937 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
938 return -EIO;
939
940 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
941 return 0;
942
943 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
944 if (!dax_dev)
945 return -EIO;
946
947 trace_dax_writeback_range(inode, xas.xa_index, end_index);
948
949 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
950
951 xas_lock_irq(&xas);
952 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
953 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
954 if (ret < 0) {
955 mapping_set_error(mapping, ret);
956 break;
957 }
958 if (++scanned % XA_CHECK_SCHED)
959 continue;
960
961 xas_pause(&xas);
962 xas_unlock_irq(&xas);
963 cond_resched();
964 xas_lock_irq(&xas);
965 }
966 xas_unlock_irq(&xas);
967 put_dax(dax_dev);
968 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
969 return ret;
970 }
971 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
972
973 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
974 {
975 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
976 }
977
978 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
979 pfn_t *pfnp)
980 {
981 const sector_t sector = dax_iomap_sector(iomap, pos);
982 pgoff_t pgoff;
983 int id, rc;
984 long length;
985
986 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
987 if (rc)
988 return rc;
989 id = dax_read_lock();
990 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
991 NULL, pfnp);
992 if (length < 0) {
993 rc = length;
994 goto out;
995 }
996 rc = -EINVAL;
997 if (PFN_PHYS(length) < size)
998 goto out;
999 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1000 goto out;
1001 /* For larger pages we need devmap */
1002 if (length > 1 && !pfn_t_devmap(*pfnp))
1003 goto out;
1004 rc = 0;
1005 out:
1006 dax_read_unlock(id);
1007 return rc;
1008 }
1009
1010 /*
1011 * The user has performed a load from a hole in the file. Allocating a new
1012 * page in the file would cause excessive storage usage for workloads with
1013 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1014 * If this page is ever written to we will re-fault and change the mapping to
1015 * point to real DAX storage instead.
1016 */
1017 static vm_fault_t dax_load_hole(struct xa_state *xas,
1018 struct address_space *mapping, void **entry,
1019 struct vm_fault *vmf)
1020 {
1021 struct inode *inode = mapping->host;
1022 unsigned long vaddr = vmf->address;
1023 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1024 vm_fault_t ret;
1025
1026 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1027 DAX_ZERO_PAGE, false);
1028
1029 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1030 trace_dax_load_hole(inode, vmf, ret);
1031 return ret;
1032 }
1033
1034 static bool dax_range_is_aligned(struct block_device *bdev,
1035 unsigned int offset, unsigned int length)
1036 {
1037 unsigned short sector_size = bdev_logical_block_size(bdev);
1038
1039 if (!IS_ALIGNED(offset, sector_size))
1040 return false;
1041 if (!IS_ALIGNED(length, sector_size))
1042 return false;
1043
1044 return true;
1045 }
1046
1047 int __dax_zero_page_range(struct block_device *bdev,
1048 struct dax_device *dax_dev, sector_t sector,
1049 unsigned int offset, unsigned int size)
1050 {
1051 if (dax_range_is_aligned(bdev, offset, size)) {
1052 sector_t start_sector = sector + (offset >> 9);
1053
1054 return blkdev_issue_zeroout(bdev, start_sector,
1055 size >> 9, GFP_NOFS, 0);
1056 } else {
1057 pgoff_t pgoff;
1058 long rc, id;
1059 void *kaddr;
1060
1061 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1062 if (rc)
1063 return rc;
1064
1065 id = dax_read_lock();
1066 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1067 if (rc < 0) {
1068 dax_read_unlock(id);
1069 return rc;
1070 }
1071 memset(kaddr + offset, 0, size);
1072 dax_flush(dax_dev, kaddr + offset, size);
1073 dax_read_unlock(id);
1074 }
1075 return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1078
1079 static loff_t
1080 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1081 struct iomap *iomap)
1082 {
1083 struct block_device *bdev = iomap->bdev;
1084 struct dax_device *dax_dev = iomap->dax_dev;
1085 struct iov_iter *iter = data;
1086 loff_t end = pos + length, done = 0;
1087 ssize_t ret = 0;
1088 size_t xfer;
1089 int id;
1090
1091 if (iov_iter_rw(iter) == READ) {
1092 end = min(end, i_size_read(inode));
1093 if (pos >= end)
1094 return 0;
1095
1096 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1097 return iov_iter_zero(min(length, end - pos), iter);
1098 }
1099
1100 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1101 return -EIO;
1102
1103 /*
1104 * Write can allocate block for an area which has a hole page mapped
1105 * into page tables. We have to tear down these mappings so that data
1106 * written by write(2) is visible in mmap.
1107 */
1108 if (iomap->flags & IOMAP_F_NEW) {
1109 invalidate_inode_pages2_range(inode->i_mapping,
1110 pos >> PAGE_SHIFT,
1111 (end - 1) >> PAGE_SHIFT);
1112 }
1113
1114 id = dax_read_lock();
1115 while (pos < end) {
1116 unsigned offset = pos & (PAGE_SIZE - 1);
1117 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1118 const sector_t sector = dax_iomap_sector(iomap, pos);
1119 ssize_t map_len;
1120 pgoff_t pgoff;
1121 void *kaddr;
1122
1123 if (fatal_signal_pending(current)) {
1124 ret = -EINTR;
1125 break;
1126 }
1127
1128 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1129 if (ret)
1130 break;
1131
1132 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1133 &kaddr, NULL);
1134 if (map_len < 0) {
1135 ret = map_len;
1136 break;
1137 }
1138
1139 map_len = PFN_PHYS(map_len);
1140 kaddr += offset;
1141 map_len -= offset;
1142 if (map_len > end - pos)
1143 map_len = end - pos;
1144
1145 /*
1146 * The userspace address for the memory copy has already been
1147 * validated via access_ok() in either vfs_read() or
1148 * vfs_write(), depending on which operation we are doing.
1149 */
1150 if (iov_iter_rw(iter) == WRITE)
1151 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1152 map_len, iter);
1153 else
1154 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1155 map_len, iter);
1156
1157 pos += xfer;
1158 length -= xfer;
1159 done += xfer;
1160
1161 if (xfer == 0)
1162 ret = -EFAULT;
1163 if (xfer < map_len)
1164 break;
1165 }
1166 dax_read_unlock(id);
1167
1168 return done ? done : ret;
1169 }
1170
1171 /**
1172 * dax_iomap_rw - Perform I/O to a DAX file
1173 * @iocb: The control block for this I/O
1174 * @iter: The addresses to do I/O from or to
1175 * @ops: iomap ops passed from the file system
1176 *
1177 * This function performs read and write operations to directly mapped
1178 * persistent memory. The callers needs to take care of read/write exclusion
1179 * and evicting any page cache pages in the region under I/O.
1180 */
1181 ssize_t
1182 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1183 const struct iomap_ops *ops)
1184 {
1185 struct address_space *mapping = iocb->ki_filp->f_mapping;
1186 struct inode *inode = mapping->host;
1187 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1188 unsigned flags = 0;
1189
1190 if (iov_iter_rw(iter) == WRITE) {
1191 lockdep_assert_held_exclusive(&inode->i_rwsem);
1192 flags |= IOMAP_WRITE;
1193 } else {
1194 lockdep_assert_held(&inode->i_rwsem);
1195 }
1196
1197 while (iov_iter_count(iter)) {
1198 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1199 iter, dax_iomap_actor);
1200 if (ret <= 0)
1201 break;
1202 pos += ret;
1203 done += ret;
1204 }
1205
1206 iocb->ki_pos += done;
1207 return done ? done : ret;
1208 }
1209 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1210
1211 static vm_fault_t dax_fault_return(int error)
1212 {
1213 if (error == 0)
1214 return VM_FAULT_NOPAGE;
1215 return vmf_error(error);
1216 }
1217
1218 /*
1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1220 * flushed on write-faults (non-cow), but not read-faults.
1221 */
1222 static bool dax_fault_is_synchronous(unsigned long flags,
1223 struct vm_area_struct *vma, struct iomap *iomap)
1224 {
1225 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1226 && (iomap->flags & IOMAP_F_DIRTY);
1227 }
1228
1229 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1230 int *iomap_errp, const struct iomap_ops *ops)
1231 {
1232 struct vm_area_struct *vma = vmf->vma;
1233 struct address_space *mapping = vma->vm_file->f_mapping;
1234 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1235 struct inode *inode = mapping->host;
1236 unsigned long vaddr = vmf->address;
1237 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1238 struct iomap iomap = { 0 };
1239 unsigned flags = IOMAP_FAULT;
1240 int error, major = 0;
1241 bool write = vmf->flags & FAULT_FLAG_WRITE;
1242 bool sync;
1243 vm_fault_t ret = 0;
1244 void *entry;
1245 pfn_t pfn;
1246
1247 trace_dax_pte_fault(inode, vmf, ret);
1248 /*
1249 * Check whether offset isn't beyond end of file now. Caller is supposed
1250 * to hold locks serializing us with truncate / punch hole so this is
1251 * a reliable test.
1252 */
1253 if (pos >= i_size_read(inode)) {
1254 ret = VM_FAULT_SIGBUS;
1255 goto out;
1256 }
1257
1258 if (write && !vmf->cow_page)
1259 flags |= IOMAP_WRITE;
1260
1261 entry = grab_mapping_entry(&xas, mapping, 0);
1262 if (xa_is_internal(entry)) {
1263 ret = xa_to_internal(entry);
1264 goto out;
1265 }
1266
1267 /*
1268 * It is possible, particularly with mixed reads & writes to private
1269 * mappings, that we have raced with a PMD fault that overlaps with
1270 * the PTE we need to set up. If so just return and the fault will be
1271 * retried.
1272 */
1273 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1274 ret = VM_FAULT_NOPAGE;
1275 goto unlock_entry;
1276 }
1277
1278 /*
1279 * Note that we don't bother to use iomap_apply here: DAX required
1280 * the file system block size to be equal the page size, which means
1281 * that we never have to deal with more than a single extent here.
1282 */
1283 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1284 if (iomap_errp)
1285 *iomap_errp = error;
1286 if (error) {
1287 ret = dax_fault_return(error);
1288 goto unlock_entry;
1289 }
1290 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1291 error = -EIO; /* fs corruption? */
1292 goto error_finish_iomap;
1293 }
1294
1295 if (vmf->cow_page) {
1296 sector_t sector = dax_iomap_sector(&iomap, pos);
1297
1298 switch (iomap.type) {
1299 case IOMAP_HOLE:
1300 case IOMAP_UNWRITTEN:
1301 clear_user_highpage(vmf->cow_page, vaddr);
1302 break;
1303 case IOMAP_MAPPED:
1304 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1305 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1306 break;
1307 default:
1308 WARN_ON_ONCE(1);
1309 error = -EIO;
1310 break;
1311 }
1312
1313 if (error)
1314 goto error_finish_iomap;
1315
1316 __SetPageUptodate(vmf->cow_page);
1317 ret = finish_fault(vmf);
1318 if (!ret)
1319 ret = VM_FAULT_DONE_COW;
1320 goto finish_iomap;
1321 }
1322
1323 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1324
1325 switch (iomap.type) {
1326 case IOMAP_MAPPED:
1327 if (iomap.flags & IOMAP_F_NEW) {
1328 count_vm_event(PGMAJFAULT);
1329 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1330 major = VM_FAULT_MAJOR;
1331 }
1332 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1333 if (error < 0)
1334 goto error_finish_iomap;
1335
1336 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1337 0, write && !sync);
1338
1339 /*
1340 * If we are doing synchronous page fault and inode needs fsync,
1341 * we can insert PTE into page tables only after that happens.
1342 * Skip insertion for now and return the pfn so that caller can
1343 * insert it after fsync is done.
1344 */
1345 if (sync) {
1346 if (WARN_ON_ONCE(!pfnp)) {
1347 error = -EIO;
1348 goto error_finish_iomap;
1349 }
1350 *pfnp = pfn;
1351 ret = VM_FAULT_NEEDDSYNC | major;
1352 goto finish_iomap;
1353 }
1354 trace_dax_insert_mapping(inode, vmf, entry);
1355 if (write)
1356 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1357 else
1358 ret = vmf_insert_mixed(vma, vaddr, pfn);
1359
1360 goto finish_iomap;
1361 case IOMAP_UNWRITTEN:
1362 case IOMAP_HOLE:
1363 if (!write) {
1364 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1365 goto finish_iomap;
1366 }
1367 /*FALLTHRU*/
1368 default:
1369 WARN_ON_ONCE(1);
1370 error = -EIO;
1371 break;
1372 }
1373
1374 error_finish_iomap:
1375 ret = dax_fault_return(error);
1376 finish_iomap:
1377 if (ops->iomap_end) {
1378 int copied = PAGE_SIZE;
1379
1380 if (ret & VM_FAULT_ERROR)
1381 copied = 0;
1382 /*
1383 * The fault is done by now and there's no way back (other
1384 * thread may be already happily using PTE we have installed).
1385 * Just ignore error from ->iomap_end since we cannot do much
1386 * with it.
1387 */
1388 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1389 }
1390 unlock_entry:
1391 dax_unlock_entry(&xas, entry);
1392 out:
1393 trace_dax_pte_fault_done(inode, vmf, ret);
1394 return ret | major;
1395 }
1396
1397 #ifdef CONFIG_FS_DAX_PMD
1398 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1399 struct iomap *iomap, void **entry)
1400 {
1401 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1402 unsigned long pmd_addr = vmf->address & PMD_MASK;
1403 struct vm_area_struct *vma = vmf->vma;
1404 struct inode *inode = mapping->host;
1405 pgtable_t pgtable = NULL;
1406 struct page *zero_page;
1407 spinlock_t *ptl;
1408 pmd_t pmd_entry;
1409 pfn_t pfn;
1410
1411 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1412
1413 if (unlikely(!zero_page))
1414 goto fallback;
1415
1416 pfn = page_to_pfn_t(zero_page);
1417 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1418 DAX_PMD | DAX_ZERO_PAGE, false);
1419
1420 if (arch_needs_pgtable_deposit()) {
1421 pgtable = pte_alloc_one(vma->vm_mm);
1422 if (!pgtable)
1423 return VM_FAULT_OOM;
1424 }
1425
1426 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1427 if (!pmd_none(*(vmf->pmd))) {
1428 spin_unlock(ptl);
1429 goto fallback;
1430 }
1431
1432 if (pgtable) {
1433 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1434 mm_inc_nr_ptes(vma->vm_mm);
1435 }
1436 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1437 pmd_entry = pmd_mkhuge(pmd_entry);
1438 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1439 spin_unlock(ptl);
1440 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1441 return VM_FAULT_NOPAGE;
1442
1443 fallback:
1444 if (pgtable)
1445 pte_free(vma->vm_mm, pgtable);
1446 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1447 return VM_FAULT_FALLBACK;
1448 }
1449
1450 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1451 const struct iomap_ops *ops)
1452 {
1453 struct vm_area_struct *vma = vmf->vma;
1454 struct address_space *mapping = vma->vm_file->f_mapping;
1455 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1456 unsigned long pmd_addr = vmf->address & PMD_MASK;
1457 bool write = vmf->flags & FAULT_FLAG_WRITE;
1458 bool sync;
1459 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1460 struct inode *inode = mapping->host;
1461 vm_fault_t result = VM_FAULT_FALLBACK;
1462 struct iomap iomap = { 0 };
1463 pgoff_t max_pgoff;
1464 void *entry;
1465 loff_t pos;
1466 int error;
1467 pfn_t pfn;
1468
1469 /*
1470 * Check whether offset isn't beyond end of file now. Caller is
1471 * supposed to hold locks serializing us with truncate / punch hole so
1472 * this is a reliable test.
1473 */
1474 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1475
1476 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1477
1478 /*
1479 * Make sure that the faulting address's PMD offset (color) matches
1480 * the PMD offset from the start of the file. This is necessary so
1481 * that a PMD range in the page table overlaps exactly with a PMD
1482 * range in the page cache.
1483 */
1484 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1485 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1486 goto fallback;
1487
1488 /* Fall back to PTEs if we're going to COW */
1489 if (write && !(vma->vm_flags & VM_SHARED))
1490 goto fallback;
1491
1492 /* If the PMD would extend outside the VMA */
1493 if (pmd_addr < vma->vm_start)
1494 goto fallback;
1495 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1496 goto fallback;
1497
1498 if (xas.xa_index >= max_pgoff) {
1499 result = VM_FAULT_SIGBUS;
1500 goto out;
1501 }
1502
1503 /* If the PMD would extend beyond the file size */
1504 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1505 goto fallback;
1506
1507 /*
1508 * grab_mapping_entry() will make sure we get an empty PMD entry,
1509 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1510 * entry is already in the array, for instance), it will return
1511 * VM_FAULT_FALLBACK.
1512 */
1513 entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1514 if (xa_is_internal(entry)) {
1515 result = xa_to_internal(entry);
1516 goto fallback;
1517 }
1518
1519 /*
1520 * It is possible, particularly with mixed reads & writes to private
1521 * mappings, that we have raced with a PTE fault that overlaps with
1522 * the PMD we need to set up. If so just return and the fault will be
1523 * retried.
1524 */
1525 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1526 !pmd_devmap(*vmf->pmd)) {
1527 result = 0;
1528 goto unlock_entry;
1529 }
1530
1531 /*
1532 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1533 * setting up a mapping, so really we're using iomap_begin() as a way
1534 * to look up our filesystem block.
1535 */
1536 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1537 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1538 if (error)
1539 goto unlock_entry;
1540
1541 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1542 goto finish_iomap;
1543
1544 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1545
1546 switch (iomap.type) {
1547 case IOMAP_MAPPED:
1548 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1549 if (error < 0)
1550 goto finish_iomap;
1551
1552 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1553 DAX_PMD, write && !sync);
1554
1555 /*
1556 * If we are doing synchronous page fault and inode needs fsync,
1557 * we can insert PMD into page tables only after that happens.
1558 * Skip insertion for now and return the pfn so that caller can
1559 * insert it after fsync is done.
1560 */
1561 if (sync) {
1562 if (WARN_ON_ONCE(!pfnp))
1563 goto finish_iomap;
1564 *pfnp = pfn;
1565 result = VM_FAULT_NEEDDSYNC;
1566 goto finish_iomap;
1567 }
1568
1569 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1570 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1571 break;
1572 case IOMAP_UNWRITTEN:
1573 case IOMAP_HOLE:
1574 if (WARN_ON_ONCE(write))
1575 break;
1576 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1577 break;
1578 default:
1579 WARN_ON_ONCE(1);
1580 break;
1581 }
1582
1583 finish_iomap:
1584 if (ops->iomap_end) {
1585 int copied = PMD_SIZE;
1586
1587 if (result == VM_FAULT_FALLBACK)
1588 copied = 0;
1589 /*
1590 * The fault is done by now and there's no way back (other
1591 * thread may be already happily using PMD we have installed).
1592 * Just ignore error from ->iomap_end since we cannot do much
1593 * with it.
1594 */
1595 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1596 &iomap);
1597 }
1598 unlock_entry:
1599 dax_unlock_entry(&xas, entry);
1600 fallback:
1601 if (result == VM_FAULT_FALLBACK) {
1602 split_huge_pmd(vma, vmf->pmd, vmf->address);
1603 count_vm_event(THP_FAULT_FALLBACK);
1604 }
1605 out:
1606 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1607 return result;
1608 }
1609 #else
1610 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1611 const struct iomap_ops *ops)
1612 {
1613 return VM_FAULT_FALLBACK;
1614 }
1615 #endif /* CONFIG_FS_DAX_PMD */
1616
1617 /**
1618 * dax_iomap_fault - handle a page fault on a DAX file
1619 * @vmf: The description of the fault
1620 * @pe_size: Size of the page to fault in
1621 * @pfnp: PFN to insert for synchronous faults if fsync is required
1622 * @iomap_errp: Storage for detailed error code in case of error
1623 * @ops: Iomap ops passed from the file system
1624 *
1625 * When a page fault occurs, filesystems may call this helper in
1626 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1627 * has done all the necessary locking for page fault to proceed
1628 * successfully.
1629 */
1630 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1631 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1632 {
1633 switch (pe_size) {
1634 case PE_SIZE_PTE:
1635 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1636 case PE_SIZE_PMD:
1637 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1638 default:
1639 return VM_FAULT_FALLBACK;
1640 }
1641 }
1642 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1643
1644 /*
1645 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1646 * @vmf: The description of the fault
1647 * @pfn: PFN to insert
1648 * @order: Order of entry to insert.
1649 *
1650 * This function inserts a writeable PTE or PMD entry into the page tables
1651 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1652 */
1653 static vm_fault_t
1654 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1655 {
1656 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1657 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1658 void *entry;
1659 vm_fault_t ret;
1660
1661 xas_lock_irq(&xas);
1662 entry = get_unlocked_entry(&xas);
1663 /* Did we race with someone splitting entry or so? */
1664 if (!entry ||
1665 (order == 0 && !dax_is_pte_entry(entry)) ||
1666 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1667 put_unlocked_entry(&xas, entry);
1668 xas_unlock_irq(&xas);
1669 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1670 VM_FAULT_NOPAGE);
1671 return VM_FAULT_NOPAGE;
1672 }
1673 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1674 dax_lock_entry(&xas, entry);
1675 xas_unlock_irq(&xas);
1676 if (order == 0)
1677 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1678 #ifdef CONFIG_FS_DAX_PMD
1679 else if (order == PMD_ORDER)
1680 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1681 #endif
1682 else
1683 ret = VM_FAULT_FALLBACK;
1684 dax_unlock_entry(&xas, entry);
1685 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1686 return ret;
1687 }
1688
1689 /**
1690 * dax_finish_sync_fault - finish synchronous page fault
1691 * @vmf: The description of the fault
1692 * @pe_size: Size of entry to be inserted
1693 * @pfn: PFN to insert
1694 *
1695 * This function ensures that the file range touched by the page fault is
1696 * stored persistently on the media and handles inserting of appropriate page
1697 * table entry.
1698 */
1699 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1700 enum page_entry_size pe_size, pfn_t pfn)
1701 {
1702 int err;
1703 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1704 unsigned int order = pe_order(pe_size);
1705 size_t len = PAGE_SIZE << order;
1706
1707 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1708 if (err)
1709 return VM_FAULT_SIGBUS;
1710 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1711 }
1712 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);