]> git.ipfire.org Git - people/ms/linux.git/blob - fs/dcache.c
Merge tag 'efi-urgent-for-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[people/ms/linux.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89
90 /*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
98
99 static unsigned int d_hash_shift __read_mostly;
100
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
102
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 return dentry_hashtable + (hash >> d_hash_shift);
106 }
107
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113 {
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117
118 struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
125 };
126
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135 };
136
137 /*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
149 static long get_nr_dentry(void)
150 {
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_unused(void)
159 {
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165 }
166
167 static long get_nr_dentry_negative(void)
168 {
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175 }
176
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
179 {
180 dentry_stat.nr_dentry = get_nr_dentry();
181 dentry_stat.nr_unused = get_nr_dentry_unused();
182 dentry_stat.nr_negative = get_nr_dentry_negative();
183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185
186 static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
194 { }
195 };
196
197 static int __init init_fs_dcache_sysctls(void)
198 {
199 register_sysctl_init("fs", fs_dcache_sysctls);
200 return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204
205 /*
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
208 */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210
211 #include <asm/word-at-a-time.h>
212 /*
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
217 *
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
220 */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223 unsigned long a,b,mask;
224
225 for (;;) {
226 a = read_word_at_a_time(cs);
227 b = load_unaligned_zeropad(ct);
228 if (tcount < sizeof(unsigned long))
229 break;
230 if (unlikely(a != b))
231 return 1;
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
235 if (!tcount)
236 return 0;
237 }
238 mask = bytemask_from_count(tcount);
239 return unlikely(!!((a ^ b) & mask));
240 }
241
242 #else
243
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246 do {
247 if (*cs != *ct)
248 return 1;
249 cs++;
250 ct++;
251 tcount--;
252 } while (tcount);
253 return 0;
254 }
255
256 #endif
257
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260 /*
261 * Be careful about RCU walk racing with rename:
262 * use 'READ_ONCE' to fetch the name pointer.
263 *
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
271 *
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
275 */
276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277
278 return dentry_string_cmp(cs, ct, tcount);
279 }
280
281 struct external_name {
282 union {
283 atomic_t count;
284 struct rcu_head head;
285 } u;
286 unsigned char name[];
287 };
288
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293
294 static void __d_free(struct rcu_head *head)
295 {
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
298 kmem_cache_free(dentry_cache, dentry);
299 }
300
301 static void __d_free_external(struct rcu_head *head)
302 {
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 kfree(external_name(dentry));
305 kmem_cache_free(dentry_cache, dentry);
306 }
307
308 static inline int dname_external(const struct dentry *dentry)
309 {
310 return dentry->d_name.name != dentry->d_iname;
311 }
312
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315 spin_lock(&dentry->d_lock);
316 name->name = dentry->d_name;
317 if (unlikely(dname_external(dentry))) {
318 atomic_inc(&external_name(dentry)->u.count);
319 } else {
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
322 name->name.name = name->inline_name;
323 }
324 spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330 if (unlikely(name->name.name != name->inline_name)) {
331 struct external_name *p;
332 p = container_of(name->name.name, struct external_name, name[0]);
333 if (unlikely(atomic_dec_and_test(&p->u.count)))
334 kfree_rcu(p, u.head);
335 }
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340 struct inode *inode,
341 unsigned type_flags)
342 {
343 unsigned flags;
344
345 dentry->d_inode = inode;
346 flags = READ_ONCE(dentry->d_flags);
347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 flags |= type_flags;
349 smp_store_release(&dentry->d_flags, flags);
350 }
351
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354 unsigned flags = READ_ONCE(dentry->d_flags);
355
356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 WRITE_ONCE(dentry->d_flags, flags);
358 dentry->d_inode = NULL;
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
361 }
362
363 static void dentry_free(struct dentry *dentry)
364 {
365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 return;
371 }
372 }
373 /* if dentry was never visible to RCU, immediate free is OK */
374 if (dentry->d_flags & DCACHE_NORCU)
375 __d_free(&dentry->d_u.d_rcu);
376 else
377 call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379
380 /*
381 * Release the dentry's inode, using the filesystem
382 * d_iput() operation if defined.
383 */
384 static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
386 __releases(dentry->d_inode->i_lock)
387 {
388 struct inode *inode = dentry->d_inode;
389
390 raw_write_seqcount_begin(&dentry->d_seq);
391 __d_clear_type_and_inode(dentry);
392 hlist_del_init(&dentry->d_u.d_alias);
393 raw_write_seqcount_end(&dentry->d_seq);
394 spin_unlock(&dentry->d_lock);
395 spin_unlock(&inode->i_lock);
396 if (!inode->i_nlink)
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
400 else
401 iput(inode);
402 }
403
404 /*
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
408 *
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
411 *
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
414 *
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
419 *
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
422 */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
425 {
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433
434 static void d_lru_del(struct dentry *dentry)
435 {
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442 }
443
444 static void d_shrink_del(struct dentry *dentry)
445 {
446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 list_del_init(&dentry->d_lru);
448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 this_cpu_dec(nr_dentry_unused);
450 }
451
452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453 {
454 D_FLAG_VERIFY(dentry, 0);
455 list_add(&dentry->d_lru, list);
456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 this_cpu_inc(nr_dentry_unused);
458 }
459
460 /*
461 * These can only be called under the global LRU lock, ie during the
462 * callback for freeing the LRU list. "isolate" removes it from the
463 * LRU lists entirely, while shrink_move moves it to the indicated
464 * private list.
465 */
466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467 {
468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 dentry->d_flags &= ~DCACHE_LRU_LIST;
470 this_cpu_dec(nr_dentry_unused);
471 if (d_is_negative(dentry))
472 this_cpu_dec(nr_dentry_negative);
473 list_lru_isolate(lru, &dentry->d_lru);
474 }
475
476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 struct list_head *list)
478 {
479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 dentry->d_flags |= DCACHE_SHRINK_LIST;
481 if (d_is_negative(dentry))
482 this_cpu_dec(nr_dentry_negative);
483 list_lru_isolate_move(lru, &dentry->d_lru, list);
484 }
485
486 static void ___d_drop(struct dentry *dentry)
487 {
488 struct hlist_bl_head *b;
489 /*
490 * Hashed dentries are normally on the dentry hashtable,
491 * with the exception of those newly allocated by
492 * d_obtain_root, which are always IS_ROOT:
493 */
494 if (unlikely(IS_ROOT(dentry)))
495 b = &dentry->d_sb->s_roots;
496 else
497 b = d_hash(dentry->d_name.hash);
498
499 hlist_bl_lock(b);
500 __hlist_bl_del(&dentry->d_hash);
501 hlist_bl_unlock(b);
502 }
503
504 void __d_drop(struct dentry *dentry)
505 {
506 if (!d_unhashed(dentry)) {
507 ___d_drop(dentry);
508 dentry->d_hash.pprev = NULL;
509 write_seqcount_invalidate(&dentry->d_seq);
510 }
511 }
512 EXPORT_SYMBOL(__d_drop);
513
514 /**
515 * d_drop - drop a dentry
516 * @dentry: dentry to drop
517 *
518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519 * be found through a VFS lookup any more. Note that this is different from
520 * deleting the dentry - d_delete will try to mark the dentry negative if
521 * possible, giving a successful _negative_ lookup, while d_drop will
522 * just make the cache lookup fail.
523 *
524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525 * reason (NFS timeouts or autofs deletes).
526 *
527 * __d_drop requires dentry->d_lock
528 *
529 * ___d_drop doesn't mark dentry as "unhashed"
530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531 */
532 void d_drop(struct dentry *dentry)
533 {
534 spin_lock(&dentry->d_lock);
535 __d_drop(dentry);
536 spin_unlock(&dentry->d_lock);
537 }
538 EXPORT_SYMBOL(d_drop);
539
540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541 {
542 struct dentry *next;
543 /*
544 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 * attached to the dentry tree
546 */
547 dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 if (unlikely(list_empty(&dentry->d_child)))
549 return;
550 __list_del_entry(&dentry->d_child);
551 /*
552 * Cursors can move around the list of children. While we'd been
553 * a normal list member, it didn't matter - ->d_child.next would've
554 * been updated. However, from now on it won't be and for the
555 * things like d_walk() it might end up with a nasty surprise.
556 * Normally d_walk() doesn't care about cursors moving around -
557 * ->d_lock on parent prevents that and since a cursor has no children
558 * of its own, we get through it without ever unlocking the parent.
559 * There is one exception, though - if we ascend from a child that
560 * gets killed as soon as we unlock it, the next sibling is found
561 * using the value left in its ->d_child.next. And if _that_
562 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 * before d_walk() regains parent->d_lock, we'll end up skipping
564 * everything the cursor had been moved past.
565 *
566 * Solution: make sure that the pointer left behind in ->d_child.next
567 * points to something that won't be moving around. I.e. skip the
568 * cursors.
569 */
570 while (dentry->d_child.next != &parent->d_subdirs) {
571 next = list_entry(dentry->d_child.next, struct dentry, d_child);
572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573 break;
574 dentry->d_child.next = next->d_child.next;
575 }
576 }
577
578 static void __dentry_kill(struct dentry *dentry)
579 {
580 struct dentry *parent = NULL;
581 bool can_free = true;
582 if (!IS_ROOT(dentry))
583 parent = dentry->d_parent;
584
585 /*
586 * The dentry is now unrecoverably dead to the world.
587 */
588 lockref_mark_dead(&dentry->d_lockref);
589
590 /*
591 * inform the fs via d_prune that this dentry is about to be
592 * unhashed and destroyed.
593 */
594 if (dentry->d_flags & DCACHE_OP_PRUNE)
595 dentry->d_op->d_prune(dentry);
596
597 if (dentry->d_flags & DCACHE_LRU_LIST) {
598 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 d_lru_del(dentry);
600 }
601 /* if it was on the hash then remove it */
602 __d_drop(dentry);
603 dentry_unlist(dentry, parent);
604 if (parent)
605 spin_unlock(&parent->d_lock);
606 if (dentry->d_inode)
607 dentry_unlink_inode(dentry);
608 else
609 spin_unlock(&dentry->d_lock);
610 this_cpu_dec(nr_dentry);
611 if (dentry->d_op && dentry->d_op->d_release)
612 dentry->d_op->d_release(dentry);
613
614 spin_lock(&dentry->d_lock);
615 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 dentry->d_flags |= DCACHE_MAY_FREE;
617 can_free = false;
618 }
619 spin_unlock(&dentry->d_lock);
620 if (likely(can_free))
621 dentry_free(dentry);
622 cond_resched();
623 }
624
625 static struct dentry *__lock_parent(struct dentry *dentry)
626 {
627 struct dentry *parent;
628 rcu_read_lock();
629 spin_unlock(&dentry->d_lock);
630 again:
631 parent = READ_ONCE(dentry->d_parent);
632 spin_lock(&parent->d_lock);
633 /*
634 * We can't blindly lock dentry until we are sure
635 * that we won't violate the locking order.
636 * Any changes of dentry->d_parent must have
637 * been done with parent->d_lock held, so
638 * spin_lock() above is enough of a barrier
639 * for checking if it's still our child.
640 */
641 if (unlikely(parent != dentry->d_parent)) {
642 spin_unlock(&parent->d_lock);
643 goto again;
644 }
645 rcu_read_unlock();
646 if (parent != dentry)
647 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
648 else
649 parent = NULL;
650 return parent;
651 }
652
653 static inline struct dentry *lock_parent(struct dentry *dentry)
654 {
655 struct dentry *parent = dentry->d_parent;
656 if (IS_ROOT(dentry))
657 return NULL;
658 if (likely(spin_trylock(&parent->d_lock)))
659 return parent;
660 return __lock_parent(dentry);
661 }
662
663 static inline bool retain_dentry(struct dentry *dentry)
664 {
665 WARN_ON(d_in_lookup(dentry));
666
667 /* Unreachable? Get rid of it */
668 if (unlikely(d_unhashed(dentry)))
669 return false;
670
671 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672 return false;
673
674 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675 if (dentry->d_op->d_delete(dentry))
676 return false;
677 }
678
679 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680 return false;
681
682 /* retain; LRU fodder */
683 dentry->d_lockref.count--;
684 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685 d_lru_add(dentry);
686 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687 dentry->d_flags |= DCACHE_REFERENCED;
688 return true;
689 }
690
691 void d_mark_dontcache(struct inode *inode)
692 {
693 struct dentry *de;
694
695 spin_lock(&inode->i_lock);
696 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697 spin_lock(&de->d_lock);
698 de->d_flags |= DCACHE_DONTCACHE;
699 spin_unlock(&de->d_lock);
700 }
701 inode->i_state |= I_DONTCACHE;
702 spin_unlock(&inode->i_lock);
703 }
704 EXPORT_SYMBOL(d_mark_dontcache);
705
706 /*
707 * Finish off a dentry we've decided to kill.
708 * dentry->d_lock must be held, returns with it unlocked.
709 * Returns dentry requiring refcount drop, or NULL if we're done.
710 */
711 static struct dentry *dentry_kill(struct dentry *dentry)
712 __releases(dentry->d_lock)
713 {
714 struct inode *inode = dentry->d_inode;
715 struct dentry *parent = NULL;
716
717 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
718 goto slow_positive;
719
720 if (!IS_ROOT(dentry)) {
721 parent = dentry->d_parent;
722 if (unlikely(!spin_trylock(&parent->d_lock))) {
723 parent = __lock_parent(dentry);
724 if (likely(inode || !dentry->d_inode))
725 goto got_locks;
726 /* negative that became positive */
727 if (parent)
728 spin_unlock(&parent->d_lock);
729 inode = dentry->d_inode;
730 goto slow_positive;
731 }
732 }
733 __dentry_kill(dentry);
734 return parent;
735
736 slow_positive:
737 spin_unlock(&dentry->d_lock);
738 spin_lock(&inode->i_lock);
739 spin_lock(&dentry->d_lock);
740 parent = lock_parent(dentry);
741 got_locks:
742 if (unlikely(dentry->d_lockref.count != 1)) {
743 dentry->d_lockref.count--;
744 } else if (likely(!retain_dentry(dentry))) {
745 __dentry_kill(dentry);
746 return parent;
747 }
748 /* we are keeping it, after all */
749 if (inode)
750 spin_unlock(&inode->i_lock);
751 if (parent)
752 spin_unlock(&parent->d_lock);
753 spin_unlock(&dentry->d_lock);
754 return NULL;
755 }
756
757 /*
758 * Try to do a lockless dput(), and return whether that was successful.
759 *
760 * If unsuccessful, we return false, having already taken the dentry lock.
761 *
762 * The caller needs to hold the RCU read lock, so that the dentry is
763 * guaranteed to stay around even if the refcount goes down to zero!
764 */
765 static inline bool fast_dput(struct dentry *dentry)
766 {
767 int ret;
768 unsigned int d_flags;
769
770 /*
771 * If we have a d_op->d_delete() operation, we sould not
772 * let the dentry count go to zero, so use "put_or_lock".
773 */
774 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775 return lockref_put_or_lock(&dentry->d_lockref);
776
777 /*
778 * .. otherwise, we can try to just decrement the
779 * lockref optimistically.
780 */
781 ret = lockref_put_return(&dentry->d_lockref);
782
783 /*
784 * If the lockref_put_return() failed due to the lock being held
785 * by somebody else, the fast path has failed. We will need to
786 * get the lock, and then check the count again.
787 */
788 if (unlikely(ret < 0)) {
789 spin_lock(&dentry->d_lock);
790 if (dentry->d_lockref.count > 1) {
791 dentry->d_lockref.count--;
792 spin_unlock(&dentry->d_lock);
793 return true;
794 }
795 return false;
796 }
797
798 /*
799 * If we weren't the last ref, we're done.
800 */
801 if (ret)
802 return true;
803
804 /*
805 * Careful, careful. The reference count went down
806 * to zero, but we don't hold the dentry lock, so
807 * somebody else could get it again, and do another
808 * dput(), and we need to not race with that.
809 *
810 * However, there is a very special and common case
811 * where we don't care, because there is nothing to
812 * do: the dentry is still hashed, it does not have
813 * a 'delete' op, and it's referenced and already on
814 * the LRU list.
815 *
816 * NOTE! Since we aren't locked, these values are
817 * not "stable". However, it is sufficient that at
818 * some point after we dropped the reference the
819 * dentry was hashed and the flags had the proper
820 * value. Other dentry users may have re-gotten
821 * a reference to the dentry and change that, but
822 * our work is done - we can leave the dentry
823 * around with a zero refcount.
824 *
825 * Nevertheless, there are two cases that we should kill
826 * the dentry anyway.
827 * 1. free disconnected dentries as soon as their refcount
828 * reached zero.
829 * 2. free dentries if they should not be cached.
830 */
831 smp_rmb();
832 d_flags = READ_ONCE(dentry->d_flags);
833 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
835
836 /* Nothing to do? Dropping the reference was all we needed? */
837 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
838 return true;
839
840 /*
841 * Not the fast normal case? Get the lock. We've already decremented
842 * the refcount, but we'll need to re-check the situation after
843 * getting the lock.
844 */
845 spin_lock(&dentry->d_lock);
846
847 /*
848 * Did somebody else grab a reference to it in the meantime, and
849 * we're no longer the last user after all? Alternatively, somebody
850 * else could have killed it and marked it dead. Either way, we
851 * don't need to do anything else.
852 */
853 if (dentry->d_lockref.count) {
854 spin_unlock(&dentry->d_lock);
855 return true;
856 }
857
858 /*
859 * Re-get the reference we optimistically dropped. We hold the
860 * lock, and we just tested that it was zero, so we can just
861 * set it to 1.
862 */
863 dentry->d_lockref.count = 1;
864 return false;
865 }
866
867
868 /*
869 * This is dput
870 *
871 * This is complicated by the fact that we do not want to put
872 * dentries that are no longer on any hash chain on the unused
873 * list: we'd much rather just get rid of them immediately.
874 *
875 * However, that implies that we have to traverse the dentry
876 * tree upwards to the parents which might _also_ now be
877 * scheduled for deletion (it may have been only waiting for
878 * its last child to go away).
879 *
880 * This tail recursion is done by hand as we don't want to depend
881 * on the compiler to always get this right (gcc generally doesn't).
882 * Real recursion would eat up our stack space.
883 */
884
885 /*
886 * dput - release a dentry
887 * @dentry: dentry to release
888 *
889 * Release a dentry. This will drop the usage count and if appropriate
890 * call the dentry unlink method as well as removing it from the queues and
891 * releasing its resources. If the parent dentries were scheduled for release
892 * they too may now get deleted.
893 */
894 void dput(struct dentry *dentry)
895 {
896 while (dentry) {
897 might_sleep();
898
899 rcu_read_lock();
900 if (likely(fast_dput(dentry))) {
901 rcu_read_unlock();
902 return;
903 }
904
905 /* Slow case: now with the dentry lock held */
906 rcu_read_unlock();
907
908 if (likely(retain_dentry(dentry))) {
909 spin_unlock(&dentry->d_lock);
910 return;
911 }
912
913 dentry = dentry_kill(dentry);
914 }
915 }
916 EXPORT_SYMBOL(dput);
917
918 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919 __must_hold(&dentry->d_lock)
920 {
921 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922 /* let the owner of the list it's on deal with it */
923 --dentry->d_lockref.count;
924 } else {
925 if (dentry->d_flags & DCACHE_LRU_LIST)
926 d_lru_del(dentry);
927 if (!--dentry->d_lockref.count)
928 d_shrink_add(dentry, list);
929 }
930 }
931
932 void dput_to_list(struct dentry *dentry, struct list_head *list)
933 {
934 rcu_read_lock();
935 if (likely(fast_dput(dentry))) {
936 rcu_read_unlock();
937 return;
938 }
939 rcu_read_unlock();
940 if (!retain_dentry(dentry))
941 __dput_to_list(dentry, list);
942 spin_unlock(&dentry->d_lock);
943 }
944
945 /* This must be called with d_lock held */
946 static inline void __dget_dlock(struct dentry *dentry)
947 {
948 dentry->d_lockref.count++;
949 }
950
951 static inline void __dget(struct dentry *dentry)
952 {
953 lockref_get(&dentry->d_lockref);
954 }
955
956 struct dentry *dget_parent(struct dentry *dentry)
957 {
958 int gotref;
959 struct dentry *ret;
960 unsigned seq;
961
962 /*
963 * Do optimistic parent lookup without any
964 * locking.
965 */
966 rcu_read_lock();
967 seq = raw_seqcount_begin(&dentry->d_seq);
968 ret = READ_ONCE(dentry->d_parent);
969 gotref = lockref_get_not_zero(&ret->d_lockref);
970 rcu_read_unlock();
971 if (likely(gotref)) {
972 if (!read_seqcount_retry(&dentry->d_seq, seq))
973 return ret;
974 dput(ret);
975 }
976
977 repeat:
978 /*
979 * Don't need rcu_dereference because we re-check it was correct under
980 * the lock.
981 */
982 rcu_read_lock();
983 ret = dentry->d_parent;
984 spin_lock(&ret->d_lock);
985 if (unlikely(ret != dentry->d_parent)) {
986 spin_unlock(&ret->d_lock);
987 rcu_read_unlock();
988 goto repeat;
989 }
990 rcu_read_unlock();
991 BUG_ON(!ret->d_lockref.count);
992 ret->d_lockref.count++;
993 spin_unlock(&ret->d_lock);
994 return ret;
995 }
996 EXPORT_SYMBOL(dget_parent);
997
998 static struct dentry * __d_find_any_alias(struct inode *inode)
999 {
1000 struct dentry *alias;
1001
1002 if (hlist_empty(&inode->i_dentry))
1003 return NULL;
1004 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1005 __dget(alias);
1006 return alias;
1007 }
1008
1009 /**
1010 * d_find_any_alias - find any alias for a given inode
1011 * @inode: inode to find an alias for
1012 *
1013 * If any aliases exist for the given inode, take and return a
1014 * reference for one of them. If no aliases exist, return %NULL.
1015 */
1016 struct dentry *d_find_any_alias(struct inode *inode)
1017 {
1018 struct dentry *de;
1019
1020 spin_lock(&inode->i_lock);
1021 de = __d_find_any_alias(inode);
1022 spin_unlock(&inode->i_lock);
1023 return de;
1024 }
1025 EXPORT_SYMBOL(d_find_any_alias);
1026
1027 static struct dentry *__d_find_alias(struct inode *inode)
1028 {
1029 struct dentry *alias;
1030
1031 if (S_ISDIR(inode->i_mode))
1032 return __d_find_any_alias(inode);
1033
1034 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035 spin_lock(&alias->d_lock);
1036 if (!d_unhashed(alias)) {
1037 __dget_dlock(alias);
1038 spin_unlock(&alias->d_lock);
1039 return alias;
1040 }
1041 spin_unlock(&alias->d_lock);
1042 }
1043 return NULL;
1044 }
1045
1046 /**
1047 * d_find_alias - grab a hashed alias of inode
1048 * @inode: inode in question
1049 *
1050 * If inode has a hashed alias, or is a directory and has any alias,
1051 * acquire the reference to alias and return it. Otherwise return NULL.
1052 * Notice that if inode is a directory there can be only one alias and
1053 * it can be unhashed only if it has no children, or if it is the root
1054 * of a filesystem, or if the directory was renamed and d_revalidate
1055 * was the first vfs operation to notice.
1056 *
1057 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058 * any other hashed alias over that one.
1059 */
1060 struct dentry *d_find_alias(struct inode *inode)
1061 {
1062 struct dentry *de = NULL;
1063
1064 if (!hlist_empty(&inode->i_dentry)) {
1065 spin_lock(&inode->i_lock);
1066 de = __d_find_alias(inode);
1067 spin_unlock(&inode->i_lock);
1068 }
1069 return de;
1070 }
1071 EXPORT_SYMBOL(d_find_alias);
1072
1073 /*
1074 * Caller MUST be holding rcu_read_lock() and be guaranteed
1075 * that inode won't get freed until rcu_read_unlock().
1076 */
1077 struct dentry *d_find_alias_rcu(struct inode *inode)
1078 {
1079 struct hlist_head *l = &inode->i_dentry;
1080 struct dentry *de = NULL;
1081
1082 spin_lock(&inode->i_lock);
1083 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084 // used without having I_FREEING set, which means no aliases left
1085 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086 if (S_ISDIR(inode->i_mode)) {
1087 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1088 } else {
1089 hlist_for_each_entry(de, l, d_u.d_alias)
1090 if (!d_unhashed(de))
1091 break;
1092 }
1093 }
1094 spin_unlock(&inode->i_lock);
1095 return de;
1096 }
1097
1098 /*
1099 * Try to kill dentries associated with this inode.
1100 * WARNING: you must own a reference to inode.
1101 */
1102 void d_prune_aliases(struct inode *inode)
1103 {
1104 struct dentry *dentry;
1105 restart:
1106 spin_lock(&inode->i_lock);
1107 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108 spin_lock(&dentry->d_lock);
1109 if (!dentry->d_lockref.count) {
1110 struct dentry *parent = lock_parent(dentry);
1111 if (likely(!dentry->d_lockref.count)) {
1112 __dentry_kill(dentry);
1113 dput(parent);
1114 goto restart;
1115 }
1116 if (parent)
1117 spin_unlock(&parent->d_lock);
1118 }
1119 spin_unlock(&dentry->d_lock);
1120 }
1121 spin_unlock(&inode->i_lock);
1122 }
1123 EXPORT_SYMBOL(d_prune_aliases);
1124
1125 /*
1126 * Lock a dentry from shrink list.
1127 * Called under rcu_read_lock() and dentry->d_lock; the former
1128 * guarantees that nothing we access will be freed under us.
1129 * Note that dentry is *not* protected from concurrent dentry_kill(),
1130 * d_delete(), etc.
1131 *
1132 * Return false if dentry has been disrupted or grabbed, leaving
1133 * the caller to kick it off-list. Otherwise, return true and have
1134 * that dentry's inode and parent both locked.
1135 */
1136 static bool shrink_lock_dentry(struct dentry *dentry)
1137 {
1138 struct inode *inode;
1139 struct dentry *parent;
1140
1141 if (dentry->d_lockref.count)
1142 return false;
1143
1144 inode = dentry->d_inode;
1145 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146 spin_unlock(&dentry->d_lock);
1147 spin_lock(&inode->i_lock);
1148 spin_lock(&dentry->d_lock);
1149 if (unlikely(dentry->d_lockref.count))
1150 goto out;
1151 /* changed inode means that somebody had grabbed it */
1152 if (unlikely(inode != dentry->d_inode))
1153 goto out;
1154 }
1155
1156 parent = dentry->d_parent;
1157 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1158 return true;
1159
1160 spin_unlock(&dentry->d_lock);
1161 spin_lock(&parent->d_lock);
1162 if (unlikely(parent != dentry->d_parent)) {
1163 spin_unlock(&parent->d_lock);
1164 spin_lock(&dentry->d_lock);
1165 goto out;
1166 }
1167 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168 if (likely(!dentry->d_lockref.count))
1169 return true;
1170 spin_unlock(&parent->d_lock);
1171 out:
1172 if (inode)
1173 spin_unlock(&inode->i_lock);
1174 return false;
1175 }
1176
1177 void shrink_dentry_list(struct list_head *list)
1178 {
1179 while (!list_empty(list)) {
1180 struct dentry *dentry, *parent;
1181
1182 dentry = list_entry(list->prev, struct dentry, d_lru);
1183 spin_lock(&dentry->d_lock);
1184 rcu_read_lock();
1185 if (!shrink_lock_dentry(dentry)) {
1186 bool can_free = false;
1187 rcu_read_unlock();
1188 d_shrink_del(dentry);
1189 if (dentry->d_lockref.count < 0)
1190 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191 spin_unlock(&dentry->d_lock);
1192 if (can_free)
1193 dentry_free(dentry);
1194 continue;
1195 }
1196 rcu_read_unlock();
1197 d_shrink_del(dentry);
1198 parent = dentry->d_parent;
1199 if (parent != dentry)
1200 __dput_to_list(parent, list);
1201 __dentry_kill(dentry);
1202 }
1203 }
1204
1205 static enum lru_status dentry_lru_isolate(struct list_head *item,
1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207 {
1208 struct list_head *freeable = arg;
1209 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1210
1211
1212 /*
1213 * we are inverting the lru lock/dentry->d_lock here,
1214 * so use a trylock. If we fail to get the lock, just skip
1215 * it
1216 */
1217 if (!spin_trylock(&dentry->d_lock))
1218 return LRU_SKIP;
1219
1220 /*
1221 * Referenced dentries are still in use. If they have active
1222 * counts, just remove them from the LRU. Otherwise give them
1223 * another pass through the LRU.
1224 */
1225 if (dentry->d_lockref.count) {
1226 d_lru_isolate(lru, dentry);
1227 spin_unlock(&dentry->d_lock);
1228 return LRU_REMOVED;
1229 }
1230
1231 if (dentry->d_flags & DCACHE_REFERENCED) {
1232 dentry->d_flags &= ~DCACHE_REFERENCED;
1233 spin_unlock(&dentry->d_lock);
1234
1235 /*
1236 * The list move itself will be made by the common LRU code. At
1237 * this point, we've dropped the dentry->d_lock but keep the
1238 * lru lock. This is safe to do, since every list movement is
1239 * protected by the lru lock even if both locks are held.
1240 *
1241 * This is guaranteed by the fact that all LRU management
1242 * functions are intermediated by the LRU API calls like
1243 * list_lru_add and list_lru_del. List movement in this file
1244 * only ever occur through this functions or through callbacks
1245 * like this one, that are called from the LRU API.
1246 *
1247 * The only exceptions to this are functions like
1248 * shrink_dentry_list, and code that first checks for the
1249 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1250 * operating only with stack provided lists after they are
1251 * properly isolated from the main list. It is thus, always a
1252 * local access.
1253 */
1254 return LRU_ROTATE;
1255 }
1256
1257 d_lru_shrink_move(lru, dentry, freeable);
1258 spin_unlock(&dentry->d_lock);
1259
1260 return LRU_REMOVED;
1261 }
1262
1263 /**
1264 * prune_dcache_sb - shrink the dcache
1265 * @sb: superblock
1266 * @sc: shrink control, passed to list_lru_shrink_walk()
1267 *
1268 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269 * is done when we need more memory and called from the superblock shrinker
1270 * function.
1271 *
1272 * This function may fail to free any resources if all the dentries are in
1273 * use.
1274 */
1275 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1276 {
1277 LIST_HEAD(dispose);
1278 long freed;
1279
1280 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1281 dentry_lru_isolate, &dispose);
1282 shrink_dentry_list(&dispose);
1283 return freed;
1284 }
1285
1286 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1288 {
1289 struct list_head *freeable = arg;
1290 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1291
1292 /*
1293 * we are inverting the lru lock/dentry->d_lock here,
1294 * so use a trylock. If we fail to get the lock, just skip
1295 * it
1296 */
1297 if (!spin_trylock(&dentry->d_lock))
1298 return LRU_SKIP;
1299
1300 d_lru_shrink_move(lru, dentry, freeable);
1301 spin_unlock(&dentry->d_lock);
1302
1303 return LRU_REMOVED;
1304 }
1305
1306
1307 /**
1308 * shrink_dcache_sb - shrink dcache for a superblock
1309 * @sb: superblock
1310 *
1311 * Shrink the dcache for the specified super block. This is used to free
1312 * the dcache before unmounting a file system.
1313 */
1314 void shrink_dcache_sb(struct super_block *sb)
1315 {
1316 do {
1317 LIST_HEAD(dispose);
1318
1319 list_lru_walk(&sb->s_dentry_lru,
1320 dentry_lru_isolate_shrink, &dispose, 1024);
1321 shrink_dentry_list(&dispose);
1322 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1323 }
1324 EXPORT_SYMBOL(shrink_dcache_sb);
1325
1326 /**
1327 * enum d_walk_ret - action to talke during tree walk
1328 * @D_WALK_CONTINUE: contrinue walk
1329 * @D_WALK_QUIT: quit walk
1330 * @D_WALK_NORETRY: quit when retry is needed
1331 * @D_WALK_SKIP: skip this dentry and its children
1332 */
1333 enum d_walk_ret {
1334 D_WALK_CONTINUE,
1335 D_WALK_QUIT,
1336 D_WALK_NORETRY,
1337 D_WALK_SKIP,
1338 };
1339
1340 /**
1341 * d_walk - walk the dentry tree
1342 * @parent: start of walk
1343 * @data: data passed to @enter() and @finish()
1344 * @enter: callback when first entering the dentry
1345 *
1346 * The @enter() callbacks are called with d_lock held.
1347 */
1348 static void d_walk(struct dentry *parent, void *data,
1349 enum d_walk_ret (*enter)(void *, struct dentry *))
1350 {
1351 struct dentry *this_parent;
1352 struct list_head *next;
1353 unsigned seq = 0;
1354 enum d_walk_ret ret;
1355 bool retry = true;
1356
1357 again:
1358 read_seqbegin_or_lock(&rename_lock, &seq);
1359 this_parent = parent;
1360 spin_lock(&this_parent->d_lock);
1361
1362 ret = enter(data, this_parent);
1363 switch (ret) {
1364 case D_WALK_CONTINUE:
1365 break;
1366 case D_WALK_QUIT:
1367 case D_WALK_SKIP:
1368 goto out_unlock;
1369 case D_WALK_NORETRY:
1370 retry = false;
1371 break;
1372 }
1373 repeat:
1374 next = this_parent->d_subdirs.next;
1375 resume:
1376 while (next != &this_parent->d_subdirs) {
1377 struct list_head *tmp = next;
1378 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1379 next = tmp->next;
1380
1381 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1382 continue;
1383
1384 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1385
1386 ret = enter(data, dentry);
1387 switch (ret) {
1388 case D_WALK_CONTINUE:
1389 break;
1390 case D_WALK_QUIT:
1391 spin_unlock(&dentry->d_lock);
1392 goto out_unlock;
1393 case D_WALK_NORETRY:
1394 retry = false;
1395 break;
1396 case D_WALK_SKIP:
1397 spin_unlock(&dentry->d_lock);
1398 continue;
1399 }
1400
1401 if (!list_empty(&dentry->d_subdirs)) {
1402 spin_unlock(&this_parent->d_lock);
1403 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404 this_parent = dentry;
1405 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1406 goto repeat;
1407 }
1408 spin_unlock(&dentry->d_lock);
1409 }
1410 /*
1411 * All done at this level ... ascend and resume the search.
1412 */
1413 rcu_read_lock();
1414 ascend:
1415 if (this_parent != parent) {
1416 struct dentry *child = this_parent;
1417 this_parent = child->d_parent;
1418
1419 spin_unlock(&child->d_lock);
1420 spin_lock(&this_parent->d_lock);
1421
1422 /* might go back up the wrong parent if we have had a rename. */
1423 if (need_seqretry(&rename_lock, seq))
1424 goto rename_retry;
1425 /* go into the first sibling still alive */
1426 do {
1427 next = child->d_child.next;
1428 if (next == &this_parent->d_subdirs)
1429 goto ascend;
1430 child = list_entry(next, struct dentry, d_child);
1431 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1432 rcu_read_unlock();
1433 goto resume;
1434 }
1435 if (need_seqretry(&rename_lock, seq))
1436 goto rename_retry;
1437 rcu_read_unlock();
1438
1439 out_unlock:
1440 spin_unlock(&this_parent->d_lock);
1441 done_seqretry(&rename_lock, seq);
1442 return;
1443
1444 rename_retry:
1445 spin_unlock(&this_parent->d_lock);
1446 rcu_read_unlock();
1447 BUG_ON(seq & 1);
1448 if (!retry)
1449 return;
1450 seq = 1;
1451 goto again;
1452 }
1453
1454 struct check_mount {
1455 struct vfsmount *mnt;
1456 unsigned int mounted;
1457 };
1458
1459 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1460 {
1461 struct check_mount *info = data;
1462 struct path path = { .mnt = info->mnt, .dentry = dentry };
1463
1464 if (likely(!d_mountpoint(dentry)))
1465 return D_WALK_CONTINUE;
1466 if (__path_is_mountpoint(&path)) {
1467 info->mounted = 1;
1468 return D_WALK_QUIT;
1469 }
1470 return D_WALK_CONTINUE;
1471 }
1472
1473 /**
1474 * path_has_submounts - check for mounts over a dentry in the
1475 * current namespace.
1476 * @parent: path to check.
1477 *
1478 * Return true if the parent or its subdirectories contain
1479 * a mount point in the current namespace.
1480 */
1481 int path_has_submounts(const struct path *parent)
1482 {
1483 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1484
1485 read_seqlock_excl(&mount_lock);
1486 d_walk(parent->dentry, &data, path_check_mount);
1487 read_sequnlock_excl(&mount_lock);
1488
1489 return data.mounted;
1490 }
1491 EXPORT_SYMBOL(path_has_submounts);
1492
1493 /*
1494 * Called by mount code to set a mountpoint and check if the mountpoint is
1495 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496 * subtree can become unreachable).
1497 *
1498 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1499 * this reason take rename_lock and d_lock on dentry and ancestors.
1500 */
1501 int d_set_mounted(struct dentry *dentry)
1502 {
1503 struct dentry *p;
1504 int ret = -ENOENT;
1505 write_seqlock(&rename_lock);
1506 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507 /* Need exclusion wrt. d_invalidate() */
1508 spin_lock(&p->d_lock);
1509 if (unlikely(d_unhashed(p))) {
1510 spin_unlock(&p->d_lock);
1511 goto out;
1512 }
1513 spin_unlock(&p->d_lock);
1514 }
1515 spin_lock(&dentry->d_lock);
1516 if (!d_unlinked(dentry)) {
1517 ret = -EBUSY;
1518 if (!d_mountpoint(dentry)) {
1519 dentry->d_flags |= DCACHE_MOUNTED;
1520 ret = 0;
1521 }
1522 }
1523 spin_unlock(&dentry->d_lock);
1524 out:
1525 write_sequnlock(&rename_lock);
1526 return ret;
1527 }
1528
1529 /*
1530 * Search the dentry child list of the specified parent,
1531 * and move any unused dentries to the end of the unused
1532 * list for prune_dcache(). We descend to the next level
1533 * whenever the d_subdirs list is non-empty and continue
1534 * searching.
1535 *
1536 * It returns zero iff there are no unused children,
1537 * otherwise it returns the number of children moved to
1538 * the end of the unused list. This may not be the total
1539 * number of unused children, because select_parent can
1540 * drop the lock and return early due to latency
1541 * constraints.
1542 */
1543
1544 struct select_data {
1545 struct dentry *start;
1546 union {
1547 long found;
1548 struct dentry *victim;
1549 };
1550 struct list_head dispose;
1551 };
1552
1553 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1554 {
1555 struct select_data *data = _data;
1556 enum d_walk_ret ret = D_WALK_CONTINUE;
1557
1558 if (data->start == dentry)
1559 goto out;
1560
1561 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1562 data->found++;
1563 } else {
1564 if (dentry->d_flags & DCACHE_LRU_LIST)
1565 d_lru_del(dentry);
1566 if (!dentry->d_lockref.count) {
1567 d_shrink_add(dentry, &data->dispose);
1568 data->found++;
1569 }
1570 }
1571 /*
1572 * We can return to the caller if we have found some (this
1573 * ensures forward progress). We'll be coming back to find
1574 * the rest.
1575 */
1576 if (!list_empty(&data->dispose))
1577 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1578 out:
1579 return ret;
1580 }
1581
1582 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1583 {
1584 struct select_data *data = _data;
1585 enum d_walk_ret ret = D_WALK_CONTINUE;
1586
1587 if (data->start == dentry)
1588 goto out;
1589
1590 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591 if (!dentry->d_lockref.count) {
1592 rcu_read_lock();
1593 data->victim = dentry;
1594 return D_WALK_QUIT;
1595 }
1596 } else {
1597 if (dentry->d_flags & DCACHE_LRU_LIST)
1598 d_lru_del(dentry);
1599 if (!dentry->d_lockref.count)
1600 d_shrink_add(dentry, &data->dispose);
1601 }
1602 /*
1603 * We can return to the caller if we have found some (this
1604 * ensures forward progress). We'll be coming back to find
1605 * the rest.
1606 */
1607 if (!list_empty(&data->dispose))
1608 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1609 out:
1610 return ret;
1611 }
1612
1613 /**
1614 * shrink_dcache_parent - prune dcache
1615 * @parent: parent of entries to prune
1616 *
1617 * Prune the dcache to remove unused children of the parent dentry.
1618 */
1619 void shrink_dcache_parent(struct dentry *parent)
1620 {
1621 for (;;) {
1622 struct select_data data = {.start = parent};
1623
1624 INIT_LIST_HEAD(&data.dispose);
1625 d_walk(parent, &data, select_collect);
1626
1627 if (!list_empty(&data.dispose)) {
1628 shrink_dentry_list(&data.dispose);
1629 continue;
1630 }
1631
1632 cond_resched();
1633 if (!data.found)
1634 break;
1635 data.victim = NULL;
1636 d_walk(parent, &data, select_collect2);
1637 if (data.victim) {
1638 struct dentry *parent;
1639 spin_lock(&data.victim->d_lock);
1640 if (!shrink_lock_dentry(data.victim)) {
1641 spin_unlock(&data.victim->d_lock);
1642 rcu_read_unlock();
1643 } else {
1644 rcu_read_unlock();
1645 parent = data.victim->d_parent;
1646 if (parent != data.victim)
1647 __dput_to_list(parent, &data.dispose);
1648 __dentry_kill(data.victim);
1649 }
1650 }
1651 if (!list_empty(&data.dispose))
1652 shrink_dentry_list(&data.dispose);
1653 }
1654 }
1655 EXPORT_SYMBOL(shrink_dcache_parent);
1656
1657 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1658 {
1659 /* it has busy descendents; complain about those instead */
1660 if (!list_empty(&dentry->d_subdirs))
1661 return D_WALK_CONTINUE;
1662
1663 /* root with refcount 1 is fine */
1664 if (dentry == _data && dentry->d_lockref.count == 1)
1665 return D_WALK_CONTINUE;
1666
1667 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1668 " still in use (%d) [unmount of %s %s]\n",
1669 dentry,
1670 dentry->d_inode ?
1671 dentry->d_inode->i_ino : 0UL,
1672 dentry,
1673 dentry->d_lockref.count,
1674 dentry->d_sb->s_type->name,
1675 dentry->d_sb->s_id);
1676 WARN_ON(1);
1677 return D_WALK_CONTINUE;
1678 }
1679
1680 static void do_one_tree(struct dentry *dentry)
1681 {
1682 shrink_dcache_parent(dentry);
1683 d_walk(dentry, dentry, umount_check);
1684 d_drop(dentry);
1685 dput(dentry);
1686 }
1687
1688 /*
1689 * destroy the dentries attached to a superblock on unmounting
1690 */
1691 void shrink_dcache_for_umount(struct super_block *sb)
1692 {
1693 struct dentry *dentry;
1694
1695 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1696
1697 dentry = sb->s_root;
1698 sb->s_root = NULL;
1699 do_one_tree(dentry);
1700
1701 while (!hlist_bl_empty(&sb->s_roots)) {
1702 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1703 do_one_tree(dentry);
1704 }
1705 }
1706
1707 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1708 {
1709 struct dentry **victim = _data;
1710 if (d_mountpoint(dentry)) {
1711 __dget_dlock(dentry);
1712 *victim = dentry;
1713 return D_WALK_QUIT;
1714 }
1715 return D_WALK_CONTINUE;
1716 }
1717
1718 /**
1719 * d_invalidate - detach submounts, prune dcache, and drop
1720 * @dentry: dentry to invalidate (aka detach, prune and drop)
1721 */
1722 void d_invalidate(struct dentry *dentry)
1723 {
1724 bool had_submounts = false;
1725 spin_lock(&dentry->d_lock);
1726 if (d_unhashed(dentry)) {
1727 spin_unlock(&dentry->d_lock);
1728 return;
1729 }
1730 __d_drop(dentry);
1731 spin_unlock(&dentry->d_lock);
1732
1733 /* Negative dentries can be dropped without further checks */
1734 if (!dentry->d_inode)
1735 return;
1736
1737 shrink_dcache_parent(dentry);
1738 for (;;) {
1739 struct dentry *victim = NULL;
1740 d_walk(dentry, &victim, find_submount);
1741 if (!victim) {
1742 if (had_submounts)
1743 shrink_dcache_parent(dentry);
1744 return;
1745 }
1746 had_submounts = true;
1747 detach_mounts(victim);
1748 dput(victim);
1749 }
1750 }
1751 EXPORT_SYMBOL(d_invalidate);
1752
1753 /**
1754 * __d_alloc - allocate a dcache entry
1755 * @sb: filesystem it will belong to
1756 * @name: qstr of the name
1757 *
1758 * Allocates a dentry. It returns %NULL if there is insufficient memory
1759 * available. On a success the dentry is returned. The name passed in is
1760 * copied and the copy passed in may be reused after this call.
1761 */
1762
1763 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1764 {
1765 struct dentry *dentry;
1766 char *dname;
1767 int err;
1768
1769 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1770 GFP_KERNEL);
1771 if (!dentry)
1772 return NULL;
1773
1774 /*
1775 * We guarantee that the inline name is always NUL-terminated.
1776 * This way the memcpy() done by the name switching in rename
1777 * will still always have a NUL at the end, even if we might
1778 * be overwriting an internal NUL character
1779 */
1780 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1781 if (unlikely(!name)) {
1782 name = &slash_name;
1783 dname = dentry->d_iname;
1784 } else if (name->len > DNAME_INLINE_LEN-1) {
1785 size_t size = offsetof(struct external_name, name[1]);
1786 struct external_name *p = kmalloc(size + name->len,
1787 GFP_KERNEL_ACCOUNT |
1788 __GFP_RECLAIMABLE);
1789 if (!p) {
1790 kmem_cache_free(dentry_cache, dentry);
1791 return NULL;
1792 }
1793 atomic_set(&p->u.count, 1);
1794 dname = p->name;
1795 } else {
1796 dname = dentry->d_iname;
1797 }
1798
1799 dentry->d_name.len = name->len;
1800 dentry->d_name.hash = name->hash;
1801 memcpy(dname, name->name, name->len);
1802 dname[name->len] = 0;
1803
1804 /* Make sure we always see the terminating NUL character */
1805 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1806
1807 dentry->d_lockref.count = 1;
1808 dentry->d_flags = 0;
1809 spin_lock_init(&dentry->d_lock);
1810 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1811 dentry->d_inode = NULL;
1812 dentry->d_parent = dentry;
1813 dentry->d_sb = sb;
1814 dentry->d_op = NULL;
1815 dentry->d_fsdata = NULL;
1816 INIT_HLIST_BL_NODE(&dentry->d_hash);
1817 INIT_LIST_HEAD(&dentry->d_lru);
1818 INIT_LIST_HEAD(&dentry->d_subdirs);
1819 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1820 INIT_LIST_HEAD(&dentry->d_child);
1821 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1822
1823 if (dentry->d_op && dentry->d_op->d_init) {
1824 err = dentry->d_op->d_init(dentry);
1825 if (err) {
1826 if (dname_external(dentry))
1827 kfree(external_name(dentry));
1828 kmem_cache_free(dentry_cache, dentry);
1829 return NULL;
1830 }
1831 }
1832
1833 this_cpu_inc(nr_dentry);
1834
1835 return dentry;
1836 }
1837
1838 /**
1839 * d_alloc - allocate a dcache entry
1840 * @parent: parent of entry to allocate
1841 * @name: qstr of the name
1842 *
1843 * Allocates a dentry. It returns %NULL if there is insufficient memory
1844 * available. On a success the dentry is returned. The name passed in is
1845 * copied and the copy passed in may be reused after this call.
1846 */
1847 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1848 {
1849 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1850 if (!dentry)
1851 return NULL;
1852 spin_lock(&parent->d_lock);
1853 /*
1854 * don't need child lock because it is not subject
1855 * to concurrency here
1856 */
1857 __dget_dlock(parent);
1858 dentry->d_parent = parent;
1859 list_add(&dentry->d_child, &parent->d_subdirs);
1860 spin_unlock(&parent->d_lock);
1861
1862 return dentry;
1863 }
1864 EXPORT_SYMBOL(d_alloc);
1865
1866 struct dentry *d_alloc_anon(struct super_block *sb)
1867 {
1868 return __d_alloc(sb, NULL);
1869 }
1870 EXPORT_SYMBOL(d_alloc_anon);
1871
1872 struct dentry *d_alloc_cursor(struct dentry * parent)
1873 {
1874 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1875 if (dentry) {
1876 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1877 dentry->d_parent = dget(parent);
1878 }
1879 return dentry;
1880 }
1881
1882 /**
1883 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1884 * @sb: the superblock
1885 * @name: qstr of the name
1886 *
1887 * For a filesystem that just pins its dentries in memory and never
1888 * performs lookups at all, return an unhashed IS_ROOT dentry.
1889 * This is used for pipes, sockets et.al. - the stuff that should
1890 * never be anyone's children or parents. Unlike all other
1891 * dentries, these will not have RCU delay between dropping the
1892 * last reference and freeing them.
1893 *
1894 * The only user is alloc_file_pseudo() and that's what should
1895 * be considered a public interface. Don't use directly.
1896 */
1897 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1898 {
1899 struct dentry *dentry = __d_alloc(sb, name);
1900 if (likely(dentry))
1901 dentry->d_flags |= DCACHE_NORCU;
1902 return dentry;
1903 }
1904
1905 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1906 {
1907 struct qstr q;
1908
1909 q.name = name;
1910 q.hash_len = hashlen_string(parent, name);
1911 return d_alloc(parent, &q);
1912 }
1913 EXPORT_SYMBOL(d_alloc_name);
1914
1915 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1916 {
1917 WARN_ON_ONCE(dentry->d_op);
1918 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1919 DCACHE_OP_COMPARE |
1920 DCACHE_OP_REVALIDATE |
1921 DCACHE_OP_WEAK_REVALIDATE |
1922 DCACHE_OP_DELETE |
1923 DCACHE_OP_REAL));
1924 dentry->d_op = op;
1925 if (!op)
1926 return;
1927 if (op->d_hash)
1928 dentry->d_flags |= DCACHE_OP_HASH;
1929 if (op->d_compare)
1930 dentry->d_flags |= DCACHE_OP_COMPARE;
1931 if (op->d_revalidate)
1932 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1933 if (op->d_weak_revalidate)
1934 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1935 if (op->d_delete)
1936 dentry->d_flags |= DCACHE_OP_DELETE;
1937 if (op->d_prune)
1938 dentry->d_flags |= DCACHE_OP_PRUNE;
1939 if (op->d_real)
1940 dentry->d_flags |= DCACHE_OP_REAL;
1941
1942 }
1943 EXPORT_SYMBOL(d_set_d_op);
1944
1945
1946 /*
1947 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1948 * @dentry - The dentry to mark
1949 *
1950 * Mark a dentry as falling through to the lower layer (as set with
1951 * d_pin_lower()). This flag may be recorded on the medium.
1952 */
1953 void d_set_fallthru(struct dentry *dentry)
1954 {
1955 spin_lock(&dentry->d_lock);
1956 dentry->d_flags |= DCACHE_FALLTHRU;
1957 spin_unlock(&dentry->d_lock);
1958 }
1959 EXPORT_SYMBOL(d_set_fallthru);
1960
1961 static unsigned d_flags_for_inode(struct inode *inode)
1962 {
1963 unsigned add_flags = DCACHE_REGULAR_TYPE;
1964
1965 if (!inode)
1966 return DCACHE_MISS_TYPE;
1967
1968 if (S_ISDIR(inode->i_mode)) {
1969 add_flags = DCACHE_DIRECTORY_TYPE;
1970 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1971 if (unlikely(!inode->i_op->lookup))
1972 add_flags = DCACHE_AUTODIR_TYPE;
1973 else
1974 inode->i_opflags |= IOP_LOOKUP;
1975 }
1976 goto type_determined;
1977 }
1978
1979 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1980 if (unlikely(inode->i_op->get_link)) {
1981 add_flags = DCACHE_SYMLINK_TYPE;
1982 goto type_determined;
1983 }
1984 inode->i_opflags |= IOP_NOFOLLOW;
1985 }
1986
1987 if (unlikely(!S_ISREG(inode->i_mode)))
1988 add_flags = DCACHE_SPECIAL_TYPE;
1989
1990 type_determined:
1991 if (unlikely(IS_AUTOMOUNT(inode)))
1992 add_flags |= DCACHE_NEED_AUTOMOUNT;
1993 return add_flags;
1994 }
1995
1996 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1997 {
1998 unsigned add_flags = d_flags_for_inode(inode);
1999 WARN_ON(d_in_lookup(dentry));
2000
2001 spin_lock(&dentry->d_lock);
2002 /*
2003 * Decrement negative dentry count if it was in the LRU list.
2004 */
2005 if (dentry->d_flags & DCACHE_LRU_LIST)
2006 this_cpu_dec(nr_dentry_negative);
2007 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2008 raw_write_seqcount_begin(&dentry->d_seq);
2009 __d_set_inode_and_type(dentry, inode, add_flags);
2010 raw_write_seqcount_end(&dentry->d_seq);
2011 fsnotify_update_flags(dentry);
2012 spin_unlock(&dentry->d_lock);
2013 }
2014
2015 /**
2016 * d_instantiate - fill in inode information for a dentry
2017 * @entry: dentry to complete
2018 * @inode: inode to attach to this dentry
2019 *
2020 * Fill in inode information in the entry.
2021 *
2022 * This turns negative dentries into productive full members
2023 * of society.
2024 *
2025 * NOTE! This assumes that the inode count has been incremented
2026 * (or otherwise set) by the caller to indicate that it is now
2027 * in use by the dcache.
2028 */
2029
2030 void d_instantiate(struct dentry *entry, struct inode * inode)
2031 {
2032 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2033 if (inode) {
2034 security_d_instantiate(entry, inode);
2035 spin_lock(&inode->i_lock);
2036 __d_instantiate(entry, inode);
2037 spin_unlock(&inode->i_lock);
2038 }
2039 }
2040 EXPORT_SYMBOL(d_instantiate);
2041
2042 /*
2043 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2044 * with lockdep-related part of unlock_new_inode() done before
2045 * anything else. Use that instead of open-coding d_instantiate()/
2046 * unlock_new_inode() combinations.
2047 */
2048 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2049 {
2050 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2051 BUG_ON(!inode);
2052 lockdep_annotate_inode_mutex_key(inode);
2053 security_d_instantiate(entry, inode);
2054 spin_lock(&inode->i_lock);
2055 __d_instantiate(entry, inode);
2056 WARN_ON(!(inode->i_state & I_NEW));
2057 inode->i_state &= ~I_NEW & ~I_CREATING;
2058 smp_mb();
2059 wake_up_bit(&inode->i_state, __I_NEW);
2060 spin_unlock(&inode->i_lock);
2061 }
2062 EXPORT_SYMBOL(d_instantiate_new);
2063
2064 struct dentry *d_make_root(struct inode *root_inode)
2065 {
2066 struct dentry *res = NULL;
2067
2068 if (root_inode) {
2069 res = d_alloc_anon(root_inode->i_sb);
2070 if (res)
2071 d_instantiate(res, root_inode);
2072 else
2073 iput(root_inode);
2074 }
2075 return res;
2076 }
2077 EXPORT_SYMBOL(d_make_root);
2078
2079 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2080 struct inode *inode,
2081 bool disconnected)
2082 {
2083 struct dentry *res;
2084 unsigned add_flags;
2085
2086 security_d_instantiate(dentry, inode);
2087 spin_lock(&inode->i_lock);
2088 res = __d_find_any_alias(inode);
2089 if (res) {
2090 spin_unlock(&inode->i_lock);
2091 dput(dentry);
2092 goto out_iput;
2093 }
2094
2095 /* attach a disconnected dentry */
2096 add_flags = d_flags_for_inode(inode);
2097
2098 if (disconnected)
2099 add_flags |= DCACHE_DISCONNECTED;
2100
2101 spin_lock(&dentry->d_lock);
2102 __d_set_inode_and_type(dentry, inode, add_flags);
2103 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2104 if (!disconnected) {
2105 hlist_bl_lock(&dentry->d_sb->s_roots);
2106 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2107 hlist_bl_unlock(&dentry->d_sb->s_roots);
2108 }
2109 spin_unlock(&dentry->d_lock);
2110 spin_unlock(&inode->i_lock);
2111
2112 return dentry;
2113
2114 out_iput:
2115 iput(inode);
2116 return res;
2117 }
2118
2119 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2120 {
2121 return __d_instantiate_anon(dentry, inode, true);
2122 }
2123 EXPORT_SYMBOL(d_instantiate_anon);
2124
2125 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2126 {
2127 struct dentry *tmp;
2128 struct dentry *res;
2129
2130 if (!inode)
2131 return ERR_PTR(-ESTALE);
2132 if (IS_ERR(inode))
2133 return ERR_CAST(inode);
2134
2135 res = d_find_any_alias(inode);
2136 if (res)
2137 goto out_iput;
2138
2139 tmp = d_alloc_anon(inode->i_sb);
2140 if (!tmp) {
2141 res = ERR_PTR(-ENOMEM);
2142 goto out_iput;
2143 }
2144
2145 return __d_instantiate_anon(tmp, inode, disconnected);
2146
2147 out_iput:
2148 iput(inode);
2149 return res;
2150 }
2151
2152 /**
2153 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2154 * @inode: inode to allocate the dentry for
2155 *
2156 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2157 * similar open by handle operations. The returned dentry may be anonymous,
2158 * or may have a full name (if the inode was already in the cache).
2159 *
2160 * When called on a directory inode, we must ensure that the inode only ever
2161 * has one dentry. If a dentry is found, that is returned instead of
2162 * allocating a new one.
2163 *
2164 * On successful return, the reference to the inode has been transferred
2165 * to the dentry. In case of an error the reference on the inode is released.
2166 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2167 * be passed in and the error will be propagated to the return value,
2168 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2169 */
2170 struct dentry *d_obtain_alias(struct inode *inode)
2171 {
2172 return __d_obtain_alias(inode, true);
2173 }
2174 EXPORT_SYMBOL(d_obtain_alias);
2175
2176 /**
2177 * d_obtain_root - find or allocate a dentry for a given inode
2178 * @inode: inode to allocate the dentry for
2179 *
2180 * Obtain an IS_ROOT dentry for the root of a filesystem.
2181 *
2182 * We must ensure that directory inodes only ever have one dentry. If a
2183 * dentry is found, that is returned instead of allocating a new one.
2184 *
2185 * On successful return, the reference to the inode has been transferred
2186 * to the dentry. In case of an error the reference on the inode is
2187 * released. A %NULL or IS_ERR inode may be passed in and will be the
2188 * error will be propagate to the return value, with a %NULL @inode
2189 * replaced by ERR_PTR(-ESTALE).
2190 */
2191 struct dentry *d_obtain_root(struct inode *inode)
2192 {
2193 return __d_obtain_alias(inode, false);
2194 }
2195 EXPORT_SYMBOL(d_obtain_root);
2196
2197 /**
2198 * d_add_ci - lookup or allocate new dentry with case-exact name
2199 * @inode: the inode case-insensitive lookup has found
2200 * @dentry: the negative dentry that was passed to the parent's lookup func
2201 * @name: the case-exact name to be associated with the returned dentry
2202 *
2203 * This is to avoid filling the dcache with case-insensitive names to the
2204 * same inode, only the actual correct case is stored in the dcache for
2205 * case-insensitive filesystems.
2206 *
2207 * For a case-insensitive lookup match and if the case-exact dentry
2208 * already exists in the dcache, use it and return it.
2209 *
2210 * If no entry exists with the exact case name, allocate new dentry with
2211 * the exact case, and return the spliced entry.
2212 */
2213 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2214 struct qstr *name)
2215 {
2216 struct dentry *found, *res;
2217
2218 /*
2219 * First check if a dentry matching the name already exists,
2220 * if not go ahead and create it now.
2221 */
2222 found = d_hash_and_lookup(dentry->d_parent, name);
2223 if (found) {
2224 iput(inode);
2225 return found;
2226 }
2227 if (d_in_lookup(dentry)) {
2228 found = d_alloc_parallel(dentry->d_parent, name,
2229 dentry->d_wait);
2230 if (IS_ERR(found) || !d_in_lookup(found)) {
2231 iput(inode);
2232 return found;
2233 }
2234 } else {
2235 found = d_alloc(dentry->d_parent, name);
2236 if (!found) {
2237 iput(inode);
2238 return ERR_PTR(-ENOMEM);
2239 }
2240 }
2241 res = d_splice_alias(inode, found);
2242 if (res) {
2243 dput(found);
2244 return res;
2245 }
2246 return found;
2247 }
2248 EXPORT_SYMBOL(d_add_ci);
2249
2250
2251 static inline bool d_same_name(const struct dentry *dentry,
2252 const struct dentry *parent,
2253 const struct qstr *name)
2254 {
2255 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2256 if (dentry->d_name.len != name->len)
2257 return false;
2258 return dentry_cmp(dentry, name->name, name->len) == 0;
2259 }
2260 return parent->d_op->d_compare(dentry,
2261 dentry->d_name.len, dentry->d_name.name,
2262 name) == 0;
2263 }
2264
2265 /**
2266 * __d_lookup_rcu - search for a dentry (racy, store-free)
2267 * @parent: parent dentry
2268 * @name: qstr of name we wish to find
2269 * @seqp: returns d_seq value at the point where the dentry was found
2270 * Returns: dentry, or NULL
2271 *
2272 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2273 * resolution (store-free path walking) design described in
2274 * Documentation/filesystems/path-lookup.txt.
2275 *
2276 * This is not to be used outside core vfs.
2277 *
2278 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2279 * held, and rcu_read_lock held. The returned dentry must not be stored into
2280 * without taking d_lock and checking d_seq sequence count against @seq
2281 * returned here.
2282 *
2283 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2284 * function.
2285 *
2286 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2287 * the returned dentry, so long as its parent's seqlock is checked after the
2288 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2289 * is formed, giving integrity down the path walk.
2290 *
2291 * NOTE! The caller *has* to check the resulting dentry against the sequence
2292 * number we've returned before using any of the resulting dentry state!
2293 */
2294 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2295 const struct qstr *name,
2296 unsigned *seqp)
2297 {
2298 u64 hashlen = name->hash_len;
2299 const unsigned char *str = name->name;
2300 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2301 struct hlist_bl_node *node;
2302 struct dentry *dentry;
2303
2304 /*
2305 * Note: There is significant duplication with __d_lookup_rcu which is
2306 * required to prevent single threaded performance regressions
2307 * especially on architectures where smp_rmb (in seqcounts) are costly.
2308 * Keep the two functions in sync.
2309 */
2310
2311 /*
2312 * The hash list is protected using RCU.
2313 *
2314 * Carefully use d_seq when comparing a candidate dentry, to avoid
2315 * races with d_move().
2316 *
2317 * It is possible that concurrent renames can mess up our list
2318 * walk here and result in missing our dentry, resulting in the
2319 * false-negative result. d_lookup() protects against concurrent
2320 * renames using rename_lock seqlock.
2321 *
2322 * See Documentation/filesystems/path-lookup.txt for more details.
2323 */
2324 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2325 unsigned seq;
2326
2327 seqretry:
2328 /*
2329 * The dentry sequence count protects us from concurrent
2330 * renames, and thus protects parent and name fields.
2331 *
2332 * The caller must perform a seqcount check in order
2333 * to do anything useful with the returned dentry.
2334 *
2335 * NOTE! We do a "raw" seqcount_begin here. That means that
2336 * we don't wait for the sequence count to stabilize if it
2337 * is in the middle of a sequence change. If we do the slow
2338 * dentry compare, we will do seqretries until it is stable,
2339 * and if we end up with a successful lookup, we actually
2340 * want to exit RCU lookup anyway.
2341 *
2342 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2343 * we are still guaranteed NUL-termination of ->d_name.name.
2344 */
2345 seq = raw_seqcount_begin(&dentry->d_seq);
2346 if (dentry->d_parent != parent)
2347 continue;
2348 if (d_unhashed(dentry))
2349 continue;
2350
2351 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2352 int tlen;
2353 const char *tname;
2354 if (dentry->d_name.hash != hashlen_hash(hashlen))
2355 continue;
2356 tlen = dentry->d_name.len;
2357 tname = dentry->d_name.name;
2358 /* we want a consistent (name,len) pair */
2359 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2360 cpu_relax();
2361 goto seqretry;
2362 }
2363 if (parent->d_op->d_compare(dentry,
2364 tlen, tname, name) != 0)
2365 continue;
2366 } else {
2367 if (dentry->d_name.hash_len != hashlen)
2368 continue;
2369 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2370 continue;
2371 }
2372 *seqp = seq;
2373 return dentry;
2374 }
2375 return NULL;
2376 }
2377
2378 /**
2379 * d_lookup - search for a dentry
2380 * @parent: parent dentry
2381 * @name: qstr of name we wish to find
2382 * Returns: dentry, or NULL
2383 *
2384 * d_lookup searches the children of the parent dentry for the name in
2385 * question. If the dentry is found its reference count is incremented and the
2386 * dentry is returned. The caller must use dput to free the entry when it has
2387 * finished using it. %NULL is returned if the dentry does not exist.
2388 */
2389 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2390 {
2391 struct dentry *dentry;
2392 unsigned seq;
2393
2394 do {
2395 seq = read_seqbegin(&rename_lock);
2396 dentry = __d_lookup(parent, name);
2397 if (dentry)
2398 break;
2399 } while (read_seqretry(&rename_lock, seq));
2400 return dentry;
2401 }
2402 EXPORT_SYMBOL(d_lookup);
2403
2404 /**
2405 * __d_lookup - search for a dentry (racy)
2406 * @parent: parent dentry
2407 * @name: qstr of name we wish to find
2408 * Returns: dentry, or NULL
2409 *
2410 * __d_lookup is like d_lookup, however it may (rarely) return a
2411 * false-negative result due to unrelated rename activity.
2412 *
2413 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2414 * however it must be used carefully, eg. with a following d_lookup in
2415 * the case of failure.
2416 *
2417 * __d_lookup callers must be commented.
2418 */
2419 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2420 {
2421 unsigned int hash = name->hash;
2422 struct hlist_bl_head *b = d_hash(hash);
2423 struct hlist_bl_node *node;
2424 struct dentry *found = NULL;
2425 struct dentry *dentry;
2426
2427 /*
2428 * Note: There is significant duplication with __d_lookup_rcu which is
2429 * required to prevent single threaded performance regressions
2430 * especially on architectures where smp_rmb (in seqcounts) are costly.
2431 * Keep the two functions in sync.
2432 */
2433
2434 /*
2435 * The hash list is protected using RCU.
2436 *
2437 * Take d_lock when comparing a candidate dentry, to avoid races
2438 * with d_move().
2439 *
2440 * It is possible that concurrent renames can mess up our list
2441 * walk here and result in missing our dentry, resulting in the
2442 * false-negative result. d_lookup() protects against concurrent
2443 * renames using rename_lock seqlock.
2444 *
2445 * See Documentation/filesystems/path-lookup.txt for more details.
2446 */
2447 rcu_read_lock();
2448
2449 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2450
2451 if (dentry->d_name.hash != hash)
2452 continue;
2453
2454 spin_lock(&dentry->d_lock);
2455 if (dentry->d_parent != parent)
2456 goto next;
2457 if (d_unhashed(dentry))
2458 goto next;
2459
2460 if (!d_same_name(dentry, parent, name))
2461 goto next;
2462
2463 dentry->d_lockref.count++;
2464 found = dentry;
2465 spin_unlock(&dentry->d_lock);
2466 break;
2467 next:
2468 spin_unlock(&dentry->d_lock);
2469 }
2470 rcu_read_unlock();
2471
2472 return found;
2473 }
2474
2475 /**
2476 * d_hash_and_lookup - hash the qstr then search for a dentry
2477 * @dir: Directory to search in
2478 * @name: qstr of name we wish to find
2479 *
2480 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2481 */
2482 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2483 {
2484 /*
2485 * Check for a fs-specific hash function. Note that we must
2486 * calculate the standard hash first, as the d_op->d_hash()
2487 * routine may choose to leave the hash value unchanged.
2488 */
2489 name->hash = full_name_hash(dir, name->name, name->len);
2490 if (dir->d_flags & DCACHE_OP_HASH) {
2491 int err = dir->d_op->d_hash(dir, name);
2492 if (unlikely(err < 0))
2493 return ERR_PTR(err);
2494 }
2495 return d_lookup(dir, name);
2496 }
2497 EXPORT_SYMBOL(d_hash_and_lookup);
2498
2499 /*
2500 * When a file is deleted, we have two options:
2501 * - turn this dentry into a negative dentry
2502 * - unhash this dentry and free it.
2503 *
2504 * Usually, we want to just turn this into
2505 * a negative dentry, but if anybody else is
2506 * currently using the dentry or the inode
2507 * we can't do that and we fall back on removing
2508 * it from the hash queues and waiting for
2509 * it to be deleted later when it has no users
2510 */
2511
2512 /**
2513 * d_delete - delete a dentry
2514 * @dentry: The dentry to delete
2515 *
2516 * Turn the dentry into a negative dentry if possible, otherwise
2517 * remove it from the hash queues so it can be deleted later
2518 */
2519
2520 void d_delete(struct dentry * dentry)
2521 {
2522 struct inode *inode = dentry->d_inode;
2523
2524 spin_lock(&inode->i_lock);
2525 spin_lock(&dentry->d_lock);
2526 /*
2527 * Are we the only user?
2528 */
2529 if (dentry->d_lockref.count == 1) {
2530 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2531 dentry_unlink_inode(dentry);
2532 } else {
2533 __d_drop(dentry);
2534 spin_unlock(&dentry->d_lock);
2535 spin_unlock(&inode->i_lock);
2536 }
2537 }
2538 EXPORT_SYMBOL(d_delete);
2539
2540 static void __d_rehash(struct dentry *entry)
2541 {
2542 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2543
2544 hlist_bl_lock(b);
2545 hlist_bl_add_head_rcu(&entry->d_hash, b);
2546 hlist_bl_unlock(b);
2547 }
2548
2549 /**
2550 * d_rehash - add an entry back to the hash
2551 * @entry: dentry to add to the hash
2552 *
2553 * Adds a dentry to the hash according to its name.
2554 */
2555
2556 void d_rehash(struct dentry * entry)
2557 {
2558 spin_lock(&entry->d_lock);
2559 __d_rehash(entry);
2560 spin_unlock(&entry->d_lock);
2561 }
2562 EXPORT_SYMBOL(d_rehash);
2563
2564 static inline unsigned start_dir_add(struct inode *dir)
2565 {
2566
2567 for (;;) {
2568 unsigned n = dir->i_dir_seq;
2569 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2570 return n;
2571 cpu_relax();
2572 }
2573 }
2574
2575 static inline void end_dir_add(struct inode *dir, unsigned n)
2576 {
2577 smp_store_release(&dir->i_dir_seq, n + 2);
2578 }
2579
2580 static void d_wait_lookup(struct dentry *dentry)
2581 {
2582 if (d_in_lookup(dentry)) {
2583 DECLARE_WAITQUEUE(wait, current);
2584 add_wait_queue(dentry->d_wait, &wait);
2585 do {
2586 set_current_state(TASK_UNINTERRUPTIBLE);
2587 spin_unlock(&dentry->d_lock);
2588 schedule();
2589 spin_lock(&dentry->d_lock);
2590 } while (d_in_lookup(dentry));
2591 }
2592 }
2593
2594 struct dentry *d_alloc_parallel(struct dentry *parent,
2595 const struct qstr *name,
2596 wait_queue_head_t *wq)
2597 {
2598 unsigned int hash = name->hash;
2599 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2600 struct hlist_bl_node *node;
2601 struct dentry *new = d_alloc(parent, name);
2602 struct dentry *dentry;
2603 unsigned seq, r_seq, d_seq;
2604
2605 if (unlikely(!new))
2606 return ERR_PTR(-ENOMEM);
2607
2608 retry:
2609 rcu_read_lock();
2610 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2611 r_seq = read_seqbegin(&rename_lock);
2612 dentry = __d_lookup_rcu(parent, name, &d_seq);
2613 if (unlikely(dentry)) {
2614 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2615 rcu_read_unlock();
2616 goto retry;
2617 }
2618 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2619 rcu_read_unlock();
2620 dput(dentry);
2621 goto retry;
2622 }
2623 rcu_read_unlock();
2624 dput(new);
2625 return dentry;
2626 }
2627 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2628 rcu_read_unlock();
2629 goto retry;
2630 }
2631
2632 if (unlikely(seq & 1)) {
2633 rcu_read_unlock();
2634 goto retry;
2635 }
2636
2637 hlist_bl_lock(b);
2638 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2639 hlist_bl_unlock(b);
2640 rcu_read_unlock();
2641 goto retry;
2642 }
2643 /*
2644 * No changes for the parent since the beginning of d_lookup().
2645 * Since all removals from the chain happen with hlist_bl_lock(),
2646 * any potential in-lookup matches are going to stay here until
2647 * we unlock the chain. All fields are stable in everything
2648 * we encounter.
2649 */
2650 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2651 if (dentry->d_name.hash != hash)
2652 continue;
2653 if (dentry->d_parent != parent)
2654 continue;
2655 if (!d_same_name(dentry, parent, name))
2656 continue;
2657 hlist_bl_unlock(b);
2658 /* now we can try to grab a reference */
2659 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2660 rcu_read_unlock();
2661 goto retry;
2662 }
2663
2664 rcu_read_unlock();
2665 /*
2666 * somebody is likely to be still doing lookup for it;
2667 * wait for them to finish
2668 */
2669 spin_lock(&dentry->d_lock);
2670 d_wait_lookup(dentry);
2671 /*
2672 * it's not in-lookup anymore; in principle we should repeat
2673 * everything from dcache lookup, but it's likely to be what
2674 * d_lookup() would've found anyway. If it is, just return it;
2675 * otherwise we really have to repeat the whole thing.
2676 */
2677 if (unlikely(dentry->d_name.hash != hash))
2678 goto mismatch;
2679 if (unlikely(dentry->d_parent != parent))
2680 goto mismatch;
2681 if (unlikely(d_unhashed(dentry)))
2682 goto mismatch;
2683 if (unlikely(!d_same_name(dentry, parent, name)))
2684 goto mismatch;
2685 /* OK, it *is* a hashed match; return it */
2686 spin_unlock(&dentry->d_lock);
2687 dput(new);
2688 return dentry;
2689 }
2690 rcu_read_unlock();
2691 /* we can't take ->d_lock here; it's OK, though. */
2692 new->d_flags |= DCACHE_PAR_LOOKUP;
2693 new->d_wait = wq;
2694 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2695 hlist_bl_unlock(b);
2696 return new;
2697 mismatch:
2698 spin_unlock(&dentry->d_lock);
2699 dput(dentry);
2700 goto retry;
2701 }
2702 EXPORT_SYMBOL(d_alloc_parallel);
2703
2704 void __d_lookup_done(struct dentry *dentry)
2705 {
2706 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2707 dentry->d_name.hash);
2708 hlist_bl_lock(b);
2709 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2710 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2711 wake_up_all(dentry->d_wait);
2712 dentry->d_wait = NULL;
2713 hlist_bl_unlock(b);
2714 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2715 INIT_LIST_HEAD(&dentry->d_lru);
2716 }
2717 EXPORT_SYMBOL(__d_lookup_done);
2718
2719 /* inode->i_lock held if inode is non-NULL */
2720
2721 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2722 {
2723 struct inode *dir = NULL;
2724 unsigned n;
2725 spin_lock(&dentry->d_lock);
2726 if (unlikely(d_in_lookup(dentry))) {
2727 dir = dentry->d_parent->d_inode;
2728 n = start_dir_add(dir);
2729 __d_lookup_done(dentry);
2730 }
2731 if (inode) {
2732 unsigned add_flags = d_flags_for_inode(inode);
2733 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2734 raw_write_seqcount_begin(&dentry->d_seq);
2735 __d_set_inode_and_type(dentry, inode, add_flags);
2736 raw_write_seqcount_end(&dentry->d_seq);
2737 fsnotify_update_flags(dentry);
2738 }
2739 __d_rehash(dentry);
2740 if (dir)
2741 end_dir_add(dir, n);
2742 spin_unlock(&dentry->d_lock);
2743 if (inode)
2744 spin_unlock(&inode->i_lock);
2745 }
2746
2747 /**
2748 * d_add - add dentry to hash queues
2749 * @entry: dentry to add
2750 * @inode: The inode to attach to this dentry
2751 *
2752 * This adds the entry to the hash queues and initializes @inode.
2753 * The entry was actually filled in earlier during d_alloc().
2754 */
2755
2756 void d_add(struct dentry *entry, struct inode *inode)
2757 {
2758 if (inode) {
2759 security_d_instantiate(entry, inode);
2760 spin_lock(&inode->i_lock);
2761 }
2762 __d_add(entry, inode);
2763 }
2764 EXPORT_SYMBOL(d_add);
2765
2766 /**
2767 * d_exact_alias - find and hash an exact unhashed alias
2768 * @entry: dentry to add
2769 * @inode: The inode to go with this dentry
2770 *
2771 * If an unhashed dentry with the same name/parent and desired
2772 * inode already exists, hash and return it. Otherwise, return
2773 * NULL.
2774 *
2775 * Parent directory should be locked.
2776 */
2777 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2778 {
2779 struct dentry *alias;
2780 unsigned int hash = entry->d_name.hash;
2781
2782 spin_lock(&inode->i_lock);
2783 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2784 /*
2785 * Don't need alias->d_lock here, because aliases with
2786 * d_parent == entry->d_parent are not subject to name or
2787 * parent changes, because the parent inode i_mutex is held.
2788 */
2789 if (alias->d_name.hash != hash)
2790 continue;
2791 if (alias->d_parent != entry->d_parent)
2792 continue;
2793 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2794 continue;
2795 spin_lock(&alias->d_lock);
2796 if (!d_unhashed(alias)) {
2797 spin_unlock(&alias->d_lock);
2798 alias = NULL;
2799 } else {
2800 __dget_dlock(alias);
2801 __d_rehash(alias);
2802 spin_unlock(&alias->d_lock);
2803 }
2804 spin_unlock(&inode->i_lock);
2805 return alias;
2806 }
2807 spin_unlock(&inode->i_lock);
2808 return NULL;
2809 }
2810 EXPORT_SYMBOL(d_exact_alias);
2811
2812 static void swap_names(struct dentry *dentry, struct dentry *target)
2813 {
2814 if (unlikely(dname_external(target))) {
2815 if (unlikely(dname_external(dentry))) {
2816 /*
2817 * Both external: swap the pointers
2818 */
2819 swap(target->d_name.name, dentry->d_name.name);
2820 } else {
2821 /*
2822 * dentry:internal, target:external. Steal target's
2823 * storage and make target internal.
2824 */
2825 memcpy(target->d_iname, dentry->d_name.name,
2826 dentry->d_name.len + 1);
2827 dentry->d_name.name = target->d_name.name;
2828 target->d_name.name = target->d_iname;
2829 }
2830 } else {
2831 if (unlikely(dname_external(dentry))) {
2832 /*
2833 * dentry:external, target:internal. Give dentry's
2834 * storage to target and make dentry internal
2835 */
2836 memcpy(dentry->d_iname, target->d_name.name,
2837 target->d_name.len + 1);
2838 target->d_name.name = dentry->d_name.name;
2839 dentry->d_name.name = dentry->d_iname;
2840 } else {
2841 /*
2842 * Both are internal.
2843 */
2844 unsigned int i;
2845 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2846 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2847 swap(((long *) &dentry->d_iname)[i],
2848 ((long *) &target->d_iname)[i]);
2849 }
2850 }
2851 }
2852 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2853 }
2854
2855 static void copy_name(struct dentry *dentry, struct dentry *target)
2856 {
2857 struct external_name *old_name = NULL;
2858 if (unlikely(dname_external(dentry)))
2859 old_name = external_name(dentry);
2860 if (unlikely(dname_external(target))) {
2861 atomic_inc(&external_name(target)->u.count);
2862 dentry->d_name = target->d_name;
2863 } else {
2864 memcpy(dentry->d_iname, target->d_name.name,
2865 target->d_name.len + 1);
2866 dentry->d_name.name = dentry->d_iname;
2867 dentry->d_name.hash_len = target->d_name.hash_len;
2868 }
2869 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2870 kfree_rcu(old_name, u.head);
2871 }
2872
2873 /*
2874 * __d_move - move a dentry
2875 * @dentry: entry to move
2876 * @target: new dentry
2877 * @exchange: exchange the two dentries
2878 *
2879 * Update the dcache to reflect the move of a file name. Negative
2880 * dcache entries should not be moved in this way. Caller must hold
2881 * rename_lock, the i_mutex of the source and target directories,
2882 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2883 */
2884 static void __d_move(struct dentry *dentry, struct dentry *target,
2885 bool exchange)
2886 {
2887 struct dentry *old_parent, *p;
2888 struct inode *dir = NULL;
2889 unsigned n;
2890
2891 WARN_ON(!dentry->d_inode);
2892 if (WARN_ON(dentry == target))
2893 return;
2894
2895 BUG_ON(d_ancestor(target, dentry));
2896 old_parent = dentry->d_parent;
2897 p = d_ancestor(old_parent, target);
2898 if (IS_ROOT(dentry)) {
2899 BUG_ON(p);
2900 spin_lock(&target->d_parent->d_lock);
2901 } else if (!p) {
2902 /* target is not a descendent of dentry->d_parent */
2903 spin_lock(&target->d_parent->d_lock);
2904 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2905 } else {
2906 BUG_ON(p == dentry);
2907 spin_lock(&old_parent->d_lock);
2908 if (p != target)
2909 spin_lock_nested(&target->d_parent->d_lock,
2910 DENTRY_D_LOCK_NESTED);
2911 }
2912 spin_lock_nested(&dentry->d_lock, 2);
2913 spin_lock_nested(&target->d_lock, 3);
2914
2915 if (unlikely(d_in_lookup(target))) {
2916 dir = target->d_parent->d_inode;
2917 n = start_dir_add(dir);
2918 __d_lookup_done(target);
2919 }
2920
2921 write_seqcount_begin(&dentry->d_seq);
2922 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2923
2924 /* unhash both */
2925 if (!d_unhashed(dentry))
2926 ___d_drop(dentry);
2927 if (!d_unhashed(target))
2928 ___d_drop(target);
2929
2930 /* ... and switch them in the tree */
2931 dentry->d_parent = target->d_parent;
2932 if (!exchange) {
2933 copy_name(dentry, target);
2934 target->d_hash.pprev = NULL;
2935 dentry->d_parent->d_lockref.count++;
2936 if (dentry != old_parent) /* wasn't IS_ROOT */
2937 WARN_ON(!--old_parent->d_lockref.count);
2938 } else {
2939 target->d_parent = old_parent;
2940 swap_names(dentry, target);
2941 list_move(&target->d_child, &target->d_parent->d_subdirs);
2942 __d_rehash(target);
2943 fsnotify_update_flags(target);
2944 }
2945 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2946 __d_rehash(dentry);
2947 fsnotify_update_flags(dentry);
2948 fscrypt_handle_d_move(dentry);
2949
2950 write_seqcount_end(&target->d_seq);
2951 write_seqcount_end(&dentry->d_seq);
2952
2953 if (dir)
2954 end_dir_add(dir, n);
2955
2956 if (dentry->d_parent != old_parent)
2957 spin_unlock(&dentry->d_parent->d_lock);
2958 if (dentry != old_parent)
2959 spin_unlock(&old_parent->d_lock);
2960 spin_unlock(&target->d_lock);
2961 spin_unlock(&dentry->d_lock);
2962 }
2963
2964 /*
2965 * d_move - move a dentry
2966 * @dentry: entry to move
2967 * @target: new dentry
2968 *
2969 * Update the dcache to reflect the move of a file name. Negative
2970 * dcache entries should not be moved in this way. See the locking
2971 * requirements for __d_move.
2972 */
2973 void d_move(struct dentry *dentry, struct dentry *target)
2974 {
2975 write_seqlock(&rename_lock);
2976 __d_move(dentry, target, false);
2977 write_sequnlock(&rename_lock);
2978 }
2979 EXPORT_SYMBOL(d_move);
2980
2981 /*
2982 * d_exchange - exchange two dentries
2983 * @dentry1: first dentry
2984 * @dentry2: second dentry
2985 */
2986 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2987 {
2988 write_seqlock(&rename_lock);
2989
2990 WARN_ON(!dentry1->d_inode);
2991 WARN_ON(!dentry2->d_inode);
2992 WARN_ON(IS_ROOT(dentry1));
2993 WARN_ON(IS_ROOT(dentry2));
2994
2995 __d_move(dentry1, dentry2, true);
2996
2997 write_sequnlock(&rename_lock);
2998 }
2999
3000 /**
3001 * d_ancestor - search for an ancestor
3002 * @p1: ancestor dentry
3003 * @p2: child dentry
3004 *
3005 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3006 * an ancestor of p2, else NULL.
3007 */
3008 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3009 {
3010 struct dentry *p;
3011
3012 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3013 if (p->d_parent == p1)
3014 return p;
3015 }
3016 return NULL;
3017 }
3018
3019 /*
3020 * This helper attempts to cope with remotely renamed directories
3021 *
3022 * It assumes that the caller is already holding
3023 * dentry->d_parent->d_inode->i_mutex, and rename_lock
3024 *
3025 * Note: If ever the locking in lock_rename() changes, then please
3026 * remember to update this too...
3027 */
3028 static int __d_unalias(struct inode *inode,
3029 struct dentry *dentry, struct dentry *alias)
3030 {
3031 struct mutex *m1 = NULL;
3032 struct rw_semaphore *m2 = NULL;
3033 int ret = -ESTALE;
3034
3035 /* If alias and dentry share a parent, then no extra locks required */
3036 if (alias->d_parent == dentry->d_parent)
3037 goto out_unalias;
3038
3039 /* See lock_rename() */
3040 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3041 goto out_err;
3042 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3043 if (!inode_trylock_shared(alias->d_parent->d_inode))
3044 goto out_err;
3045 m2 = &alias->d_parent->d_inode->i_rwsem;
3046 out_unalias:
3047 __d_move(alias, dentry, false);
3048 ret = 0;
3049 out_err:
3050 if (m2)
3051 up_read(m2);
3052 if (m1)
3053 mutex_unlock(m1);
3054 return ret;
3055 }
3056
3057 /**
3058 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3059 * @inode: the inode which may have a disconnected dentry
3060 * @dentry: a negative dentry which we want to point to the inode.
3061 *
3062 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3063 * place of the given dentry and return it, else simply d_add the inode
3064 * to the dentry and return NULL.
3065 *
3066 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3067 * we should error out: directories can't have multiple aliases.
3068 *
3069 * This is needed in the lookup routine of any filesystem that is exportable
3070 * (via knfsd) so that we can build dcache paths to directories effectively.
3071 *
3072 * If a dentry was found and moved, then it is returned. Otherwise NULL
3073 * is returned. This matches the expected return value of ->lookup.
3074 *
3075 * Cluster filesystems may call this function with a negative, hashed dentry.
3076 * In that case, we know that the inode will be a regular file, and also this
3077 * will only occur during atomic_open. So we need to check for the dentry
3078 * being already hashed only in the final case.
3079 */
3080 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3081 {
3082 if (IS_ERR(inode))
3083 return ERR_CAST(inode);
3084
3085 BUG_ON(!d_unhashed(dentry));
3086
3087 if (!inode)
3088 goto out;
3089
3090 security_d_instantiate(dentry, inode);
3091 spin_lock(&inode->i_lock);
3092 if (S_ISDIR(inode->i_mode)) {
3093 struct dentry *new = __d_find_any_alias(inode);
3094 if (unlikely(new)) {
3095 /* The reference to new ensures it remains an alias */
3096 spin_unlock(&inode->i_lock);
3097 write_seqlock(&rename_lock);
3098 if (unlikely(d_ancestor(new, dentry))) {
3099 write_sequnlock(&rename_lock);
3100 dput(new);
3101 new = ERR_PTR(-ELOOP);
3102 pr_warn_ratelimited(
3103 "VFS: Lookup of '%s' in %s %s"
3104 " would have caused loop\n",
3105 dentry->d_name.name,
3106 inode->i_sb->s_type->name,
3107 inode->i_sb->s_id);
3108 } else if (!IS_ROOT(new)) {
3109 struct dentry *old_parent = dget(new->d_parent);
3110 int err = __d_unalias(inode, dentry, new);
3111 write_sequnlock(&rename_lock);
3112 if (err) {
3113 dput(new);
3114 new = ERR_PTR(err);
3115 }
3116 dput(old_parent);
3117 } else {
3118 __d_move(new, dentry, false);
3119 write_sequnlock(&rename_lock);
3120 }
3121 iput(inode);
3122 return new;
3123 }
3124 }
3125 out:
3126 __d_add(dentry, inode);
3127 return NULL;
3128 }
3129 EXPORT_SYMBOL(d_splice_alias);
3130
3131 /*
3132 * Test whether new_dentry is a subdirectory of old_dentry.
3133 *
3134 * Trivially implemented using the dcache structure
3135 */
3136
3137 /**
3138 * is_subdir - is new dentry a subdirectory of old_dentry
3139 * @new_dentry: new dentry
3140 * @old_dentry: old dentry
3141 *
3142 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3143 * Returns false otherwise.
3144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3145 */
3146
3147 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3148 {
3149 bool result;
3150 unsigned seq;
3151
3152 if (new_dentry == old_dentry)
3153 return true;
3154
3155 do {
3156 /* for restarting inner loop in case of seq retry */
3157 seq = read_seqbegin(&rename_lock);
3158 /*
3159 * Need rcu_readlock to protect against the d_parent trashing
3160 * due to d_move
3161 */
3162 rcu_read_lock();
3163 if (d_ancestor(old_dentry, new_dentry))
3164 result = true;
3165 else
3166 result = false;
3167 rcu_read_unlock();
3168 } while (read_seqretry(&rename_lock, seq));
3169
3170 return result;
3171 }
3172 EXPORT_SYMBOL(is_subdir);
3173
3174 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3175 {
3176 struct dentry *root = data;
3177 if (dentry != root) {
3178 if (d_unhashed(dentry) || !dentry->d_inode)
3179 return D_WALK_SKIP;
3180
3181 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3182 dentry->d_flags |= DCACHE_GENOCIDE;
3183 dentry->d_lockref.count--;
3184 }
3185 }
3186 return D_WALK_CONTINUE;
3187 }
3188
3189 void d_genocide(struct dentry *parent)
3190 {
3191 d_walk(parent, parent, d_genocide_kill);
3192 }
3193
3194 EXPORT_SYMBOL(d_genocide);
3195
3196 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3197 {
3198 inode_dec_link_count(inode);
3199 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3200 !hlist_unhashed(&dentry->d_u.d_alias) ||
3201 !d_unlinked(dentry));
3202 spin_lock(&dentry->d_parent->d_lock);
3203 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3204 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3205 (unsigned long long)inode->i_ino);
3206 spin_unlock(&dentry->d_lock);
3207 spin_unlock(&dentry->d_parent->d_lock);
3208 d_instantiate(dentry, inode);
3209 }
3210 EXPORT_SYMBOL(d_tmpfile);
3211
3212 static __initdata unsigned long dhash_entries;
3213 static int __init set_dhash_entries(char *str)
3214 {
3215 if (!str)
3216 return 0;
3217 dhash_entries = simple_strtoul(str, &str, 0);
3218 return 1;
3219 }
3220 __setup("dhash_entries=", set_dhash_entries);
3221
3222 static void __init dcache_init_early(void)
3223 {
3224 /* If hashes are distributed across NUMA nodes, defer
3225 * hash allocation until vmalloc space is available.
3226 */
3227 if (hashdist)
3228 return;
3229
3230 dentry_hashtable =
3231 alloc_large_system_hash("Dentry cache",
3232 sizeof(struct hlist_bl_head),
3233 dhash_entries,
3234 13,
3235 HASH_EARLY | HASH_ZERO,
3236 &d_hash_shift,
3237 NULL,
3238 0,
3239 0);
3240 d_hash_shift = 32 - d_hash_shift;
3241 }
3242
3243 static void __init dcache_init(void)
3244 {
3245 /*
3246 * A constructor could be added for stable state like the lists,
3247 * but it is probably not worth it because of the cache nature
3248 * of the dcache.
3249 */
3250 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3251 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3252 d_iname);
3253
3254 /* Hash may have been set up in dcache_init_early */
3255 if (!hashdist)
3256 return;
3257
3258 dentry_hashtable =
3259 alloc_large_system_hash("Dentry cache",
3260 sizeof(struct hlist_bl_head),
3261 dhash_entries,
3262 13,
3263 HASH_ZERO,
3264 &d_hash_shift,
3265 NULL,
3266 0,
3267 0);
3268 d_hash_shift = 32 - d_hash_shift;
3269 }
3270
3271 /* SLAB cache for __getname() consumers */
3272 struct kmem_cache *names_cachep __read_mostly;
3273 EXPORT_SYMBOL(names_cachep);
3274
3275 void __init vfs_caches_init_early(void)
3276 {
3277 int i;
3278
3279 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3280 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3281
3282 dcache_init_early();
3283 inode_init_early();
3284 }
3285
3286 void __init vfs_caches_init(void)
3287 {
3288 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3289 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3290
3291 dcache_init();
3292 inode_init();
3293 files_init();
3294 files_maxfiles_init();
3295 mnt_init();
3296 bdev_cache_init();
3297 chrdev_init();
3298 }