]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/direct-io.c
Merge tag 'pm-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / fs / direct-io.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 #include "internal.h"
43
44 /*
45 * How many user pages to map in one call to get_user_pages(). This determines
46 * the size of a structure in the slab cache
47 */
48 #define DIO_PAGES 64
49
50 /*
51 * Flags for dio_complete()
52 */
53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
55
56 /*
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68 /* dio_state only used in the submission path */
69
70 struct dio_submit {
71 struct bio *bio; /* bio under assembly */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 sector_t block_in_file; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available; /* At block_in_file. changes */
85 int reap_counter; /* rate limit reaping */
86 sector_t final_block_in_request;/* doesn't change */
87 int boundary; /* prev block is at a boundary */
88 get_block_t *get_block; /* block mapping function */
89 dio_submit_t *submit_io; /* IO submition function */
90
91 loff_t logical_offset_in_bio; /* current first logical block in bio */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95
96 /*
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
99 * dio_bio_add_page().
100 */
101 struct page *cur_page; /* The page */
102 unsigned cur_page_offset; /* Offset into it, in bytes */
103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block; /* Where it starts */
105 loff_t cur_page_fs_offset; /* Offset in file */
106
107 struct iov_iter *iter;
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
114 size_t from, to;
115 };
116
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 int flags; /* doesn't change */
120 int op;
121 int op_flags;
122 blk_qc_t bio_cookie;
123 struct gendisk *bio_disk;
124 struct inode *inode;
125 loff_t i_size; /* i_size when submitted */
126 dio_iodone_t *end_io; /* IO completion function */
127
128 void *private; /* copy from map_bh.b_private */
129
130 /* BIO completion state */
131 spinlock_t bio_lock; /* protects BIO fields below */
132 int page_errors; /* errno from get_user_pages() */
133 int is_async; /* is IO async ? */
134 bool defer_completion; /* defer AIO completion to workqueue? */
135 bool should_dirty; /* if pages should be dirtied */
136 int io_error; /* IO error in completion path */
137 unsigned long refcount; /* direct_io_worker() and bios */
138 struct bio *bio_list; /* singly linked via bi_private */
139 struct task_struct *waiter; /* waiting task (NULL if none) */
140
141 /* AIO related stuff */
142 struct kiocb *iocb; /* kiocb */
143 ssize_t result; /* IO result */
144
145 /*
146 * pages[] (and any fields placed after it) are not zeroed out at
147 * allocation time. Don't add new fields after pages[] unless you
148 * wish that they not be zeroed.
149 */
150 union {
151 struct page *pages[DIO_PAGES]; /* page buffer */
152 struct work_struct complete_work;/* deferred AIO completion */
153 };
154 } ____cacheline_aligned_in_smp;
155
156 static struct kmem_cache *dio_cache __read_mostly;
157
158 /*
159 * How many pages are in the queue?
160 */
161 static inline unsigned dio_pages_present(struct dio_submit *sdio)
162 {
163 return sdio->tail - sdio->head;
164 }
165
166 /*
167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
168 */
169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
170 {
171 ssize_t ret;
172
173 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
174 &sdio->from);
175
176 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
177 struct page *page = ZERO_PAGE(0);
178 /*
179 * A memory fault, but the filesystem has some outstanding
180 * mapped blocks. We need to use those blocks up to avoid
181 * leaking stale data in the file.
182 */
183 if (dio->page_errors == 0)
184 dio->page_errors = ret;
185 get_page(page);
186 dio->pages[0] = page;
187 sdio->head = 0;
188 sdio->tail = 1;
189 sdio->from = 0;
190 sdio->to = PAGE_SIZE;
191 return 0;
192 }
193
194 if (ret >= 0) {
195 iov_iter_advance(sdio->iter, ret);
196 ret += sdio->from;
197 sdio->head = 0;
198 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
199 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
200 return 0;
201 }
202 return ret;
203 }
204
205 /*
206 * Get another userspace page. Returns an ERR_PTR on error. Pages are
207 * buffered inside the dio so that we can call get_user_pages() against a
208 * decent number of pages, less frequently. To provide nicer use of the
209 * L1 cache.
210 */
211 static inline struct page *dio_get_page(struct dio *dio,
212 struct dio_submit *sdio)
213 {
214 if (dio_pages_present(sdio) == 0) {
215 int ret;
216
217 ret = dio_refill_pages(dio, sdio);
218 if (ret)
219 return ERR_PTR(ret);
220 BUG_ON(dio_pages_present(sdio) == 0);
221 }
222 return dio->pages[sdio->head];
223 }
224
225 /*
226 * dio_complete() - called when all DIO BIO I/O has been completed
227 *
228 * This drops i_dio_count, lets interested parties know that a DIO operation
229 * has completed, and calculates the resulting return code for the operation.
230 *
231 * It lets the filesystem know if it registered an interest earlier via
232 * get_block. Pass the private field of the map buffer_head so that
233 * filesystems can use it to hold additional state between get_block calls and
234 * dio_complete.
235 */
236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
237 {
238 loff_t offset = dio->iocb->ki_pos;
239 ssize_t transferred = 0;
240 int err;
241
242 /*
243 * AIO submission can race with bio completion to get here while
244 * expecting to have the last io completed by bio completion.
245 * In that case -EIOCBQUEUED is in fact not an error we want
246 * to preserve through this call.
247 */
248 if (ret == -EIOCBQUEUED)
249 ret = 0;
250
251 if (dio->result) {
252 transferred = dio->result;
253
254 /* Check for short read case */
255 if ((dio->op == REQ_OP_READ) &&
256 ((offset + transferred) > dio->i_size))
257 transferred = dio->i_size - offset;
258 /* ignore EFAULT if some IO has been done */
259 if (unlikely(ret == -EFAULT) && transferred)
260 ret = 0;
261 }
262
263 if (ret == 0)
264 ret = dio->page_errors;
265 if (ret == 0)
266 ret = dio->io_error;
267 if (ret == 0)
268 ret = transferred;
269
270 if (dio->end_io) {
271 // XXX: ki_pos??
272 err = dio->end_io(dio->iocb, offset, ret, dio->private);
273 if (err)
274 ret = err;
275 }
276
277 /*
278 * Try again to invalidate clean pages which might have been cached by
279 * non-direct readahead, or faulted in by get_user_pages() if the source
280 * of the write was an mmap'ed region of the file we're writing. Either
281 * one is a pretty crazy thing to do, so we don't support it 100%. If
282 * this invalidation fails, tough, the write still worked...
283 *
284 * And this page cache invalidation has to be after dio->end_io(), as
285 * some filesystems convert unwritten extents to real allocations in
286 * end_io() when necessary, otherwise a racing buffer read would cache
287 * zeros from unwritten extents.
288 */
289 if (flags & DIO_COMPLETE_INVALIDATE &&
290 ret > 0 && dio->op == REQ_OP_WRITE &&
291 dio->inode->i_mapping->nrpages) {
292 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
293 offset >> PAGE_SHIFT,
294 (offset + ret - 1) >> PAGE_SHIFT);
295 if (err)
296 dio_warn_stale_pagecache(dio->iocb->ki_filp);
297 }
298
299 inode_dio_end(dio->inode);
300
301 if (flags & DIO_COMPLETE_ASYNC) {
302 /*
303 * generic_write_sync expects ki_pos to have been updated
304 * already, but the submission path only does this for
305 * synchronous I/O.
306 */
307 dio->iocb->ki_pos += transferred;
308
309 if (ret > 0 && dio->op == REQ_OP_WRITE)
310 ret = generic_write_sync(dio->iocb, ret);
311 dio->iocb->ki_complete(dio->iocb, ret, 0);
312 }
313
314 kmem_cache_free(dio_cache, dio);
315 return ret;
316 }
317
318 static void dio_aio_complete_work(struct work_struct *work)
319 {
320 struct dio *dio = container_of(work, struct dio, complete_work);
321
322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
323 }
324
325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
326
327 /*
328 * Asynchronous IO callback.
329 */
330 static void dio_bio_end_aio(struct bio *bio)
331 {
332 struct dio *dio = bio->bi_private;
333 unsigned long remaining;
334 unsigned long flags;
335 bool defer_completion = false;
336
337 /* cleanup the bio */
338 dio_bio_complete(dio, bio);
339
340 spin_lock_irqsave(&dio->bio_lock, flags);
341 remaining = --dio->refcount;
342 if (remaining == 1 && dio->waiter)
343 wake_up_process(dio->waiter);
344 spin_unlock_irqrestore(&dio->bio_lock, flags);
345
346 if (remaining == 0) {
347 /*
348 * Defer completion when defer_completion is set or
349 * when the inode has pages mapped and this is AIO write.
350 * We need to invalidate those pages because there is a
351 * chance they contain stale data in the case buffered IO
352 * went in between AIO submission and completion into the
353 * same region.
354 */
355 if (dio->result)
356 defer_completion = dio->defer_completion ||
357 (dio->op == REQ_OP_WRITE &&
358 dio->inode->i_mapping->nrpages);
359 if (defer_completion) {
360 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
361 queue_work(dio->inode->i_sb->s_dio_done_wq,
362 &dio->complete_work);
363 } else {
364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
365 }
366 }
367 }
368
369 /*
370 * The BIO completion handler simply queues the BIO up for the process-context
371 * handler.
372 *
373 * During I/O bi_private points at the dio. After I/O, bi_private is used to
374 * implement a singly-linked list of completed BIOs, at dio->bio_list.
375 */
376 static void dio_bio_end_io(struct bio *bio)
377 {
378 struct dio *dio = bio->bi_private;
379 unsigned long flags;
380
381 spin_lock_irqsave(&dio->bio_lock, flags);
382 bio->bi_private = dio->bio_list;
383 dio->bio_list = bio;
384 if (--dio->refcount == 1 && dio->waiter)
385 wake_up_process(dio->waiter);
386 spin_unlock_irqrestore(&dio->bio_lock, flags);
387 }
388
389 /**
390 * dio_end_io - handle the end io action for the given bio
391 * @bio: The direct io bio thats being completed
392 *
393 * This is meant to be called by any filesystem that uses their own dio_submit_t
394 * so that the DIO specific endio actions are dealt with after the filesystem
395 * has done it's completion work.
396 */
397 void dio_end_io(struct bio *bio)
398 {
399 struct dio *dio = bio->bi_private;
400
401 if (dio->is_async)
402 dio_bio_end_aio(bio);
403 else
404 dio_bio_end_io(bio);
405 }
406 EXPORT_SYMBOL_GPL(dio_end_io);
407
408 static inline void
409 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
410 struct block_device *bdev,
411 sector_t first_sector, int nr_vecs)
412 {
413 struct bio *bio;
414
415 /*
416 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
417 * we request a valid number of vectors.
418 */
419 bio = bio_alloc(GFP_KERNEL, nr_vecs);
420
421 bio_set_dev(bio, bdev);
422 bio->bi_iter.bi_sector = first_sector;
423 bio_set_op_attrs(bio, dio->op, dio->op_flags);
424 if (dio->is_async)
425 bio->bi_end_io = dio_bio_end_aio;
426 else
427 bio->bi_end_io = dio_bio_end_io;
428
429 bio->bi_write_hint = dio->iocb->ki_hint;
430
431 sdio->bio = bio;
432 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
433 }
434
435 /*
436 * In the AIO read case we speculatively dirty the pages before starting IO.
437 * During IO completion, any of these pages which happen to have been written
438 * back will be redirtied by bio_check_pages_dirty().
439 *
440 * bios hold a dio reference between submit_bio and ->end_io.
441 */
442 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
443 {
444 struct bio *bio = sdio->bio;
445 unsigned long flags;
446
447 bio->bi_private = dio;
448
449 spin_lock_irqsave(&dio->bio_lock, flags);
450 dio->refcount++;
451 spin_unlock_irqrestore(&dio->bio_lock, flags);
452
453 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
454 bio_set_pages_dirty(bio);
455
456 dio->bio_disk = bio->bi_disk;
457
458 if (sdio->submit_io) {
459 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
460 dio->bio_cookie = BLK_QC_T_NONE;
461 } else
462 dio->bio_cookie = submit_bio(bio);
463
464 sdio->bio = NULL;
465 sdio->boundary = 0;
466 sdio->logical_offset_in_bio = 0;
467 }
468
469 /*
470 * Release any resources in case of a failure
471 */
472 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
473 {
474 while (sdio->head < sdio->tail)
475 put_page(dio->pages[sdio->head++]);
476 }
477
478 /*
479 * Wait for the next BIO to complete. Remove it and return it. NULL is
480 * returned once all BIOs have been completed. This must only be called once
481 * all bios have been issued so that dio->refcount can only decrease. This
482 * requires that that the caller hold a reference on the dio.
483 */
484 static struct bio *dio_await_one(struct dio *dio)
485 {
486 unsigned long flags;
487 struct bio *bio = NULL;
488
489 spin_lock_irqsave(&dio->bio_lock, flags);
490
491 /*
492 * Wait as long as the list is empty and there are bios in flight. bio
493 * completion drops the count, maybe adds to the list, and wakes while
494 * holding the bio_lock so we don't need set_current_state()'s barrier
495 * and can call it after testing our condition.
496 */
497 while (dio->refcount > 1 && dio->bio_list == NULL) {
498 __set_current_state(TASK_UNINTERRUPTIBLE);
499 dio->waiter = current;
500 spin_unlock_irqrestore(&dio->bio_lock, flags);
501 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
502 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
503 io_schedule();
504 /* wake up sets us TASK_RUNNING */
505 spin_lock_irqsave(&dio->bio_lock, flags);
506 dio->waiter = NULL;
507 }
508 if (dio->bio_list) {
509 bio = dio->bio_list;
510 dio->bio_list = bio->bi_private;
511 }
512 spin_unlock_irqrestore(&dio->bio_lock, flags);
513 return bio;
514 }
515
516 /*
517 * Process one completed BIO. No locks are held.
518 */
519 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
520 {
521 blk_status_t err = bio->bi_status;
522 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
523
524 if (err) {
525 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
526 dio->io_error = -EAGAIN;
527 else
528 dio->io_error = -EIO;
529 }
530
531 if (dio->is_async && should_dirty) {
532 bio_check_pages_dirty(bio); /* transfers ownership */
533 } else {
534 bio_release_pages(bio, should_dirty);
535 bio_put(bio);
536 }
537 return err;
538 }
539
540 /*
541 * Wait on and process all in-flight BIOs. This must only be called once
542 * all bios have been issued so that the refcount can only decrease.
543 * This just waits for all bios to make it through dio_bio_complete. IO
544 * errors are propagated through dio->io_error and should be propagated via
545 * dio_complete().
546 */
547 static void dio_await_completion(struct dio *dio)
548 {
549 struct bio *bio;
550 do {
551 bio = dio_await_one(dio);
552 if (bio)
553 dio_bio_complete(dio, bio);
554 } while (bio);
555 }
556
557 /*
558 * A really large O_DIRECT read or write can generate a lot of BIOs. So
559 * to keep the memory consumption sane we periodically reap any completed BIOs
560 * during the BIO generation phase.
561 *
562 * This also helps to limit the peak amount of pinned userspace memory.
563 */
564 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
565 {
566 int ret = 0;
567
568 if (sdio->reap_counter++ >= 64) {
569 while (dio->bio_list) {
570 unsigned long flags;
571 struct bio *bio;
572 int ret2;
573
574 spin_lock_irqsave(&dio->bio_lock, flags);
575 bio = dio->bio_list;
576 dio->bio_list = bio->bi_private;
577 spin_unlock_irqrestore(&dio->bio_lock, flags);
578 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
579 if (ret == 0)
580 ret = ret2;
581 }
582 sdio->reap_counter = 0;
583 }
584 return ret;
585 }
586
587 /*
588 * Create workqueue for deferred direct IO completions. We allocate the
589 * workqueue when it's first needed. This avoids creating workqueue for
590 * filesystems that don't need it and also allows us to create the workqueue
591 * late enough so the we can include s_id in the name of the workqueue.
592 */
593 int sb_init_dio_done_wq(struct super_block *sb)
594 {
595 struct workqueue_struct *old;
596 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
597 WQ_MEM_RECLAIM, 0,
598 sb->s_id);
599 if (!wq)
600 return -ENOMEM;
601 /*
602 * This has to be atomic as more DIOs can race to create the workqueue
603 */
604 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
605 /* Someone created workqueue before us? Free ours... */
606 if (old)
607 destroy_workqueue(wq);
608 return 0;
609 }
610
611 static int dio_set_defer_completion(struct dio *dio)
612 {
613 struct super_block *sb = dio->inode->i_sb;
614
615 if (dio->defer_completion)
616 return 0;
617 dio->defer_completion = true;
618 if (!sb->s_dio_done_wq)
619 return sb_init_dio_done_wq(sb);
620 return 0;
621 }
622
623 /*
624 * Call into the fs to map some more disk blocks. We record the current number
625 * of available blocks at sdio->blocks_available. These are in units of the
626 * fs blocksize, i_blocksize(inode).
627 *
628 * The fs is allowed to map lots of blocks at once. If it wants to do that,
629 * it uses the passed inode-relative block number as the file offset, as usual.
630 *
631 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
632 * has remaining to do. The fs should not map more than this number of blocks.
633 *
634 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
635 * indicate how much contiguous disk space has been made available at
636 * bh->b_blocknr.
637 *
638 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
639 * This isn't very efficient...
640 *
641 * In the case of filesystem holes: the fs may return an arbitrarily-large
642 * hole by returning an appropriate value in b_size and by clearing
643 * buffer_mapped(). However the direct-io code will only process holes one
644 * block at a time - it will repeatedly call get_block() as it walks the hole.
645 */
646 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
647 struct buffer_head *map_bh)
648 {
649 int ret;
650 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
651 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
652 unsigned long fs_count; /* Number of filesystem-sized blocks */
653 int create;
654 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
655 loff_t i_size;
656
657 /*
658 * If there was a memory error and we've overwritten all the
659 * mapped blocks then we can now return that memory error
660 */
661 ret = dio->page_errors;
662 if (ret == 0) {
663 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
664 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
665 fs_endblk = (sdio->final_block_in_request - 1) >>
666 sdio->blkfactor;
667 fs_count = fs_endblk - fs_startblk + 1;
668
669 map_bh->b_state = 0;
670 map_bh->b_size = fs_count << i_blkbits;
671
672 /*
673 * For writes that could fill holes inside i_size on a
674 * DIO_SKIP_HOLES filesystem we forbid block creations: only
675 * overwrites are permitted. We will return early to the caller
676 * once we see an unmapped buffer head returned, and the caller
677 * will fall back to buffered I/O.
678 *
679 * Otherwise the decision is left to the get_blocks method,
680 * which may decide to handle it or also return an unmapped
681 * buffer head.
682 */
683 create = dio->op == REQ_OP_WRITE;
684 if (dio->flags & DIO_SKIP_HOLES) {
685 i_size = i_size_read(dio->inode);
686 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
687 create = 0;
688 }
689
690 ret = (*sdio->get_block)(dio->inode, fs_startblk,
691 map_bh, create);
692
693 /* Store for completion */
694 dio->private = map_bh->b_private;
695
696 if (ret == 0 && buffer_defer_completion(map_bh))
697 ret = dio_set_defer_completion(dio);
698 }
699 return ret;
700 }
701
702 /*
703 * There is no bio. Make one now.
704 */
705 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
706 sector_t start_sector, struct buffer_head *map_bh)
707 {
708 sector_t sector;
709 int ret, nr_pages;
710
711 ret = dio_bio_reap(dio, sdio);
712 if (ret)
713 goto out;
714 sector = start_sector << (sdio->blkbits - 9);
715 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
716 BUG_ON(nr_pages <= 0);
717 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
718 sdio->boundary = 0;
719 out:
720 return ret;
721 }
722
723 /*
724 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
725 * that was successful then update final_block_in_bio and take a ref against
726 * the just-added page.
727 *
728 * Return zero on success. Non-zero means the caller needs to start a new BIO.
729 */
730 static inline int dio_bio_add_page(struct dio_submit *sdio)
731 {
732 int ret;
733
734 ret = bio_add_page(sdio->bio, sdio->cur_page,
735 sdio->cur_page_len, sdio->cur_page_offset);
736 if (ret == sdio->cur_page_len) {
737 /*
738 * Decrement count only, if we are done with this page
739 */
740 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
741 sdio->pages_in_io--;
742 get_page(sdio->cur_page);
743 sdio->final_block_in_bio = sdio->cur_page_block +
744 (sdio->cur_page_len >> sdio->blkbits);
745 ret = 0;
746 } else {
747 ret = 1;
748 }
749 return ret;
750 }
751
752 /*
753 * Put cur_page under IO. The section of cur_page which is described by
754 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
755 * starts on-disk at cur_page_block.
756 *
757 * We take a ref against the page here (on behalf of its presence in the bio).
758 *
759 * The caller of this function is responsible for removing cur_page from the
760 * dio, and for dropping the refcount which came from that presence.
761 */
762 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
763 struct buffer_head *map_bh)
764 {
765 int ret = 0;
766
767 if (sdio->bio) {
768 loff_t cur_offset = sdio->cur_page_fs_offset;
769 loff_t bio_next_offset = sdio->logical_offset_in_bio +
770 sdio->bio->bi_iter.bi_size;
771
772 /*
773 * See whether this new request is contiguous with the old.
774 *
775 * Btrfs cannot handle having logically non-contiguous requests
776 * submitted. For example if you have
777 *
778 * Logical: [0-4095][HOLE][8192-12287]
779 * Physical: [0-4095] [4096-8191]
780 *
781 * We cannot submit those pages together as one BIO. So if our
782 * current logical offset in the file does not equal what would
783 * be the next logical offset in the bio, submit the bio we
784 * have.
785 */
786 if (sdio->final_block_in_bio != sdio->cur_page_block ||
787 cur_offset != bio_next_offset)
788 dio_bio_submit(dio, sdio);
789 }
790
791 if (sdio->bio == NULL) {
792 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
793 if (ret)
794 goto out;
795 }
796
797 if (dio_bio_add_page(sdio) != 0) {
798 dio_bio_submit(dio, sdio);
799 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
800 if (ret == 0) {
801 ret = dio_bio_add_page(sdio);
802 BUG_ON(ret != 0);
803 }
804 }
805 out:
806 return ret;
807 }
808
809 /*
810 * An autonomous function to put a chunk of a page under deferred IO.
811 *
812 * The caller doesn't actually know (or care) whether this piece of page is in
813 * a BIO, or is under IO or whatever. We just take care of all possible
814 * situations here. The separation between the logic of do_direct_IO() and
815 * that of submit_page_section() is important for clarity. Please don't break.
816 *
817 * The chunk of page starts on-disk at blocknr.
818 *
819 * We perform deferred IO, by recording the last-submitted page inside our
820 * private part of the dio structure. If possible, we just expand the IO
821 * across that page here.
822 *
823 * If that doesn't work out then we put the old page into the bio and add this
824 * page to the dio instead.
825 */
826 static inline int
827 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
828 unsigned offset, unsigned len, sector_t blocknr,
829 struct buffer_head *map_bh)
830 {
831 int ret = 0;
832
833 if (dio->op == REQ_OP_WRITE) {
834 /*
835 * Read accounting is performed in submit_bio()
836 */
837 task_io_account_write(len);
838 }
839
840 /*
841 * Can we just grow the current page's presence in the dio?
842 */
843 if (sdio->cur_page == page &&
844 sdio->cur_page_offset + sdio->cur_page_len == offset &&
845 sdio->cur_page_block +
846 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
847 sdio->cur_page_len += len;
848 goto out;
849 }
850
851 /*
852 * If there's a deferred page already there then send it.
853 */
854 if (sdio->cur_page) {
855 ret = dio_send_cur_page(dio, sdio, map_bh);
856 put_page(sdio->cur_page);
857 sdio->cur_page = NULL;
858 if (ret)
859 return ret;
860 }
861
862 get_page(page); /* It is in dio */
863 sdio->cur_page = page;
864 sdio->cur_page_offset = offset;
865 sdio->cur_page_len = len;
866 sdio->cur_page_block = blocknr;
867 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
868 out:
869 /*
870 * If sdio->boundary then we want to schedule the IO now to
871 * avoid metadata seeks.
872 */
873 if (sdio->boundary) {
874 ret = dio_send_cur_page(dio, sdio, map_bh);
875 if (sdio->bio)
876 dio_bio_submit(dio, sdio);
877 put_page(sdio->cur_page);
878 sdio->cur_page = NULL;
879 }
880 return ret;
881 }
882
883 /*
884 * If we are not writing the entire block and get_block() allocated
885 * the block for us, we need to fill-in the unused portion of the
886 * block with zeros. This happens only if user-buffer, fileoffset or
887 * io length is not filesystem block-size multiple.
888 *
889 * `end' is zero if we're doing the start of the IO, 1 at the end of the
890 * IO.
891 */
892 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
893 int end, struct buffer_head *map_bh)
894 {
895 unsigned dio_blocks_per_fs_block;
896 unsigned this_chunk_blocks; /* In dio_blocks */
897 unsigned this_chunk_bytes;
898 struct page *page;
899
900 sdio->start_zero_done = 1;
901 if (!sdio->blkfactor || !buffer_new(map_bh))
902 return;
903
904 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
905 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
906
907 if (!this_chunk_blocks)
908 return;
909
910 /*
911 * We need to zero out part of an fs block. It is either at the
912 * beginning or the end of the fs block.
913 */
914 if (end)
915 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
916
917 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
918
919 page = ZERO_PAGE(0);
920 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
921 sdio->next_block_for_io, map_bh))
922 return;
923
924 sdio->next_block_for_io += this_chunk_blocks;
925 }
926
927 /*
928 * Walk the user pages, and the file, mapping blocks to disk and generating
929 * a sequence of (page,offset,len,block) mappings. These mappings are injected
930 * into submit_page_section(), which takes care of the next stage of submission
931 *
932 * Direct IO against a blockdev is different from a file. Because we can
933 * happily perform page-sized but 512-byte aligned IOs. It is important that
934 * blockdev IO be able to have fine alignment and large sizes.
935 *
936 * So what we do is to permit the ->get_block function to populate bh.b_size
937 * with the size of IO which is permitted at this offset and this i_blkbits.
938 *
939 * For best results, the blockdev should be set up with 512-byte i_blkbits and
940 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
941 * fine alignment but still allows this function to work in PAGE_SIZE units.
942 */
943 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
944 struct buffer_head *map_bh)
945 {
946 const unsigned blkbits = sdio->blkbits;
947 const unsigned i_blkbits = blkbits + sdio->blkfactor;
948 int ret = 0;
949
950 while (sdio->block_in_file < sdio->final_block_in_request) {
951 struct page *page;
952 size_t from, to;
953
954 page = dio_get_page(dio, sdio);
955 if (IS_ERR(page)) {
956 ret = PTR_ERR(page);
957 goto out;
958 }
959 from = sdio->head ? 0 : sdio->from;
960 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
961 sdio->head++;
962
963 while (from < to) {
964 unsigned this_chunk_bytes; /* # of bytes mapped */
965 unsigned this_chunk_blocks; /* # of blocks */
966 unsigned u;
967
968 if (sdio->blocks_available == 0) {
969 /*
970 * Need to go and map some more disk
971 */
972 unsigned long blkmask;
973 unsigned long dio_remainder;
974
975 ret = get_more_blocks(dio, sdio, map_bh);
976 if (ret) {
977 put_page(page);
978 goto out;
979 }
980 if (!buffer_mapped(map_bh))
981 goto do_holes;
982
983 sdio->blocks_available =
984 map_bh->b_size >> blkbits;
985 sdio->next_block_for_io =
986 map_bh->b_blocknr << sdio->blkfactor;
987 if (buffer_new(map_bh)) {
988 clean_bdev_aliases(
989 map_bh->b_bdev,
990 map_bh->b_blocknr,
991 map_bh->b_size >> i_blkbits);
992 }
993
994 if (!sdio->blkfactor)
995 goto do_holes;
996
997 blkmask = (1 << sdio->blkfactor) - 1;
998 dio_remainder = (sdio->block_in_file & blkmask);
999
1000 /*
1001 * If we are at the start of IO and that IO
1002 * starts partway into a fs-block,
1003 * dio_remainder will be non-zero. If the IO
1004 * is a read then we can simply advance the IO
1005 * cursor to the first block which is to be
1006 * read. But if the IO is a write and the
1007 * block was newly allocated we cannot do that;
1008 * the start of the fs block must be zeroed out
1009 * on-disk
1010 */
1011 if (!buffer_new(map_bh))
1012 sdio->next_block_for_io += dio_remainder;
1013 sdio->blocks_available -= dio_remainder;
1014 }
1015 do_holes:
1016 /* Handle holes */
1017 if (!buffer_mapped(map_bh)) {
1018 loff_t i_size_aligned;
1019
1020 /* AKPM: eargh, -ENOTBLK is a hack */
1021 if (dio->op == REQ_OP_WRITE) {
1022 put_page(page);
1023 return -ENOTBLK;
1024 }
1025
1026 /*
1027 * Be sure to account for a partial block as the
1028 * last block in the file
1029 */
1030 i_size_aligned = ALIGN(i_size_read(dio->inode),
1031 1 << blkbits);
1032 if (sdio->block_in_file >=
1033 i_size_aligned >> blkbits) {
1034 /* We hit eof */
1035 put_page(page);
1036 goto out;
1037 }
1038 zero_user(page, from, 1 << blkbits);
1039 sdio->block_in_file++;
1040 from += 1 << blkbits;
1041 dio->result += 1 << blkbits;
1042 goto next_block;
1043 }
1044
1045 /*
1046 * If we're performing IO which has an alignment which
1047 * is finer than the underlying fs, go check to see if
1048 * we must zero out the start of this block.
1049 */
1050 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1051 dio_zero_block(dio, sdio, 0, map_bh);
1052
1053 /*
1054 * Work out, in this_chunk_blocks, how much disk we
1055 * can add to this page
1056 */
1057 this_chunk_blocks = sdio->blocks_available;
1058 u = (to - from) >> blkbits;
1059 if (this_chunk_blocks > u)
1060 this_chunk_blocks = u;
1061 u = sdio->final_block_in_request - sdio->block_in_file;
1062 if (this_chunk_blocks > u)
1063 this_chunk_blocks = u;
1064 this_chunk_bytes = this_chunk_blocks << blkbits;
1065 BUG_ON(this_chunk_bytes == 0);
1066
1067 if (this_chunk_blocks == sdio->blocks_available)
1068 sdio->boundary = buffer_boundary(map_bh);
1069 ret = submit_page_section(dio, sdio, page,
1070 from,
1071 this_chunk_bytes,
1072 sdio->next_block_for_io,
1073 map_bh);
1074 if (ret) {
1075 put_page(page);
1076 goto out;
1077 }
1078 sdio->next_block_for_io += this_chunk_blocks;
1079
1080 sdio->block_in_file += this_chunk_blocks;
1081 from += this_chunk_bytes;
1082 dio->result += this_chunk_bytes;
1083 sdio->blocks_available -= this_chunk_blocks;
1084 next_block:
1085 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1086 if (sdio->block_in_file == sdio->final_block_in_request)
1087 break;
1088 }
1089
1090 /* Drop the ref which was taken in get_user_pages() */
1091 put_page(page);
1092 }
1093 out:
1094 return ret;
1095 }
1096
1097 static inline int drop_refcount(struct dio *dio)
1098 {
1099 int ret2;
1100 unsigned long flags;
1101
1102 /*
1103 * Sync will always be dropping the final ref and completing the
1104 * operation. AIO can if it was a broken operation described above or
1105 * in fact if all the bios race to complete before we get here. In
1106 * that case dio_complete() translates the EIOCBQUEUED into the proper
1107 * return code that the caller will hand to ->complete().
1108 *
1109 * This is managed by the bio_lock instead of being an atomic_t so that
1110 * completion paths can drop their ref and use the remaining count to
1111 * decide to wake the submission path atomically.
1112 */
1113 spin_lock_irqsave(&dio->bio_lock, flags);
1114 ret2 = --dio->refcount;
1115 spin_unlock_irqrestore(&dio->bio_lock, flags);
1116 return ret2;
1117 }
1118
1119 /*
1120 * This is a library function for use by filesystem drivers.
1121 *
1122 * The locking rules are governed by the flags parameter:
1123 * - if the flags value contains DIO_LOCKING we use a fancy locking
1124 * scheme for dumb filesystems.
1125 * For writes this function is called under i_mutex and returns with
1126 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1127 * taken and dropped again before returning.
1128 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1129 * internal locking but rather rely on the filesystem to synchronize
1130 * direct I/O reads/writes versus each other and truncate.
1131 *
1132 * To help with locking against truncate we incremented the i_dio_count
1133 * counter before starting direct I/O, and decrement it once we are done.
1134 * Truncate can wait for it to reach zero to provide exclusion. It is
1135 * expected that filesystem provide exclusion between new direct I/O
1136 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1137 * but other filesystems need to take care of this on their own.
1138 *
1139 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1140 * is always inlined. Otherwise gcc is unable to split the structure into
1141 * individual fields and will generate much worse code. This is important
1142 * for the whole file.
1143 */
1144 static inline ssize_t
1145 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1146 struct block_device *bdev, struct iov_iter *iter,
1147 get_block_t get_block, dio_iodone_t end_io,
1148 dio_submit_t submit_io, int flags)
1149 {
1150 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1151 unsigned blkbits = i_blkbits;
1152 unsigned blocksize_mask = (1 << blkbits) - 1;
1153 ssize_t retval = -EINVAL;
1154 const size_t count = iov_iter_count(iter);
1155 loff_t offset = iocb->ki_pos;
1156 const loff_t end = offset + count;
1157 struct dio *dio;
1158 struct dio_submit sdio = { 0, };
1159 struct buffer_head map_bh = { 0, };
1160 struct blk_plug plug;
1161 unsigned long align = offset | iov_iter_alignment(iter);
1162
1163 /*
1164 * Avoid references to bdev if not absolutely needed to give
1165 * the early prefetch in the caller enough time.
1166 */
1167
1168 if (align & blocksize_mask) {
1169 if (bdev)
1170 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1171 blocksize_mask = (1 << blkbits) - 1;
1172 if (align & blocksize_mask)
1173 goto out;
1174 }
1175
1176 /* watch out for a 0 len io from a tricksy fs */
1177 if (iov_iter_rw(iter) == READ && !count)
1178 return 0;
1179
1180 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1181 retval = -ENOMEM;
1182 if (!dio)
1183 goto out;
1184 /*
1185 * Believe it or not, zeroing out the page array caused a .5%
1186 * performance regression in a database benchmark. So, we take
1187 * care to only zero out what's needed.
1188 */
1189 memset(dio, 0, offsetof(struct dio, pages));
1190
1191 dio->flags = flags;
1192 if (dio->flags & DIO_LOCKING) {
1193 if (iov_iter_rw(iter) == READ) {
1194 struct address_space *mapping =
1195 iocb->ki_filp->f_mapping;
1196
1197 /* will be released by direct_io_worker */
1198 inode_lock(inode);
1199
1200 retval = filemap_write_and_wait_range(mapping, offset,
1201 end - 1);
1202 if (retval) {
1203 inode_unlock(inode);
1204 kmem_cache_free(dio_cache, dio);
1205 goto out;
1206 }
1207 }
1208 }
1209
1210 /* Once we sampled i_size check for reads beyond EOF */
1211 dio->i_size = i_size_read(inode);
1212 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1213 if (dio->flags & DIO_LOCKING)
1214 inode_unlock(inode);
1215 kmem_cache_free(dio_cache, dio);
1216 retval = 0;
1217 goto out;
1218 }
1219
1220 /*
1221 * For file extending writes updating i_size before data writeouts
1222 * complete can expose uninitialized blocks in dumb filesystems.
1223 * In that case we need to wait for I/O completion even if asked
1224 * for an asynchronous write.
1225 */
1226 if (is_sync_kiocb(iocb))
1227 dio->is_async = false;
1228 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1229 dio->is_async = false;
1230 else
1231 dio->is_async = true;
1232
1233 dio->inode = inode;
1234 if (iov_iter_rw(iter) == WRITE) {
1235 dio->op = REQ_OP_WRITE;
1236 dio->op_flags = REQ_SYNC | REQ_IDLE;
1237 if (iocb->ki_flags & IOCB_NOWAIT)
1238 dio->op_flags |= REQ_NOWAIT;
1239 } else {
1240 dio->op = REQ_OP_READ;
1241 }
1242 if (iocb->ki_flags & IOCB_HIPRI)
1243 dio->op_flags |= REQ_HIPRI;
1244
1245 /*
1246 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1247 * so that we can call ->fsync.
1248 */
1249 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1250 retval = 0;
1251 if (iocb->ki_flags & IOCB_DSYNC)
1252 retval = dio_set_defer_completion(dio);
1253 else if (!dio->inode->i_sb->s_dio_done_wq) {
1254 /*
1255 * In case of AIO write racing with buffered read we
1256 * need to defer completion. We can't decide this now,
1257 * however the workqueue needs to be initialized here.
1258 */
1259 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1260 }
1261 if (retval) {
1262 /*
1263 * We grab i_mutex only for reads so we don't have
1264 * to release it here
1265 */
1266 kmem_cache_free(dio_cache, dio);
1267 goto out;
1268 }
1269 }
1270
1271 /*
1272 * Will be decremented at I/O completion time.
1273 */
1274 inode_dio_begin(inode);
1275
1276 retval = 0;
1277 sdio.blkbits = blkbits;
1278 sdio.blkfactor = i_blkbits - blkbits;
1279 sdio.block_in_file = offset >> blkbits;
1280
1281 sdio.get_block = get_block;
1282 dio->end_io = end_io;
1283 sdio.submit_io = submit_io;
1284 sdio.final_block_in_bio = -1;
1285 sdio.next_block_for_io = -1;
1286
1287 dio->iocb = iocb;
1288
1289 spin_lock_init(&dio->bio_lock);
1290 dio->refcount = 1;
1291
1292 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1293 sdio.iter = iter;
1294 sdio.final_block_in_request = end >> blkbits;
1295
1296 /*
1297 * In case of non-aligned buffers, we may need 2 more
1298 * pages since we need to zero out first and last block.
1299 */
1300 if (unlikely(sdio.blkfactor))
1301 sdio.pages_in_io = 2;
1302
1303 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1304
1305 blk_start_plug(&plug);
1306
1307 retval = do_direct_IO(dio, &sdio, &map_bh);
1308 if (retval)
1309 dio_cleanup(dio, &sdio);
1310
1311 if (retval == -ENOTBLK) {
1312 /*
1313 * The remaining part of the request will be
1314 * be handled by buffered I/O when we return
1315 */
1316 retval = 0;
1317 }
1318 /*
1319 * There may be some unwritten disk at the end of a part-written
1320 * fs-block-sized block. Go zero that now.
1321 */
1322 dio_zero_block(dio, &sdio, 1, &map_bh);
1323
1324 if (sdio.cur_page) {
1325 ssize_t ret2;
1326
1327 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1328 if (retval == 0)
1329 retval = ret2;
1330 put_page(sdio.cur_page);
1331 sdio.cur_page = NULL;
1332 }
1333 if (sdio.bio)
1334 dio_bio_submit(dio, &sdio);
1335
1336 blk_finish_plug(&plug);
1337
1338 /*
1339 * It is possible that, we return short IO due to end of file.
1340 * In that case, we need to release all the pages we got hold on.
1341 */
1342 dio_cleanup(dio, &sdio);
1343
1344 /*
1345 * All block lookups have been performed. For READ requests
1346 * we can let i_mutex go now that its achieved its purpose
1347 * of protecting us from looking up uninitialized blocks.
1348 */
1349 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1350 inode_unlock(dio->inode);
1351
1352 /*
1353 * The only time we want to leave bios in flight is when a successful
1354 * partial aio read or full aio write have been setup. In that case
1355 * bio completion will call aio_complete. The only time it's safe to
1356 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1357 * This had *better* be the only place that raises -EIOCBQUEUED.
1358 */
1359 BUG_ON(retval == -EIOCBQUEUED);
1360 if (dio->is_async && retval == 0 && dio->result &&
1361 (iov_iter_rw(iter) == READ || dio->result == count))
1362 retval = -EIOCBQUEUED;
1363 else
1364 dio_await_completion(dio);
1365
1366 if (drop_refcount(dio) == 0) {
1367 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1368 } else
1369 BUG_ON(retval != -EIOCBQUEUED);
1370
1371 out:
1372 return retval;
1373 }
1374
1375 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1376 struct block_device *bdev, struct iov_iter *iter,
1377 get_block_t get_block,
1378 dio_iodone_t end_io, dio_submit_t submit_io,
1379 int flags)
1380 {
1381 /*
1382 * The block device state is needed in the end to finally
1383 * submit everything. Since it's likely to be cache cold
1384 * prefetch it here as first thing to hide some of the
1385 * latency.
1386 *
1387 * Attempt to prefetch the pieces we likely need later.
1388 */
1389 prefetch(&bdev->bd_disk->part_tbl);
1390 prefetch(bdev->bd_queue);
1391 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1392
1393 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1394 end_io, submit_io, flags);
1395 }
1396
1397 EXPORT_SYMBOL(__blockdev_direct_IO);
1398
1399 static __init int dio_init(void)
1400 {
1401 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1402 return 0;
1403 }
1404 module_init(dio_init)