]> git.ipfire.org Git - people/ms/linux.git/blob - fs/direct-io.c
Merge tag 'for-5.19/dm-fixes-4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[people/ms/linux.git] / fs / direct-io.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 #include "internal.h"
43
44 /*
45 * How many user pages to map in one call to get_user_pages(). This determines
46 * the size of a structure in the slab cache
47 */
48 #define DIO_PAGES 64
49
50 /*
51 * Flags for dio_complete()
52 */
53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
55
56 /*
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68 /* dio_state only used in the submission path */
69
70 struct dio_submit {
71 struct bio *bio; /* bio under assembly */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 sector_t block_in_file; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available; /* At block_in_file. changes */
85 int reap_counter; /* rate limit reaping */
86 sector_t final_block_in_request;/* doesn't change */
87 int boundary; /* prev block is at a boundary */
88 get_block_t *get_block; /* block mapping function */
89 dio_submit_t *submit_io; /* IO submition function */
90
91 loff_t logical_offset_in_bio; /* current first logical block in bio */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95
96 /*
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
99 * dio_bio_add_page().
100 */
101 struct page *cur_page; /* The page */
102 unsigned cur_page_offset; /* Offset into it, in bytes */
103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block; /* Where it starts */
105 loff_t cur_page_fs_offset; /* Offset in file */
106
107 struct iov_iter *iter;
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
114 size_t from, to;
115 };
116
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 int flags; /* doesn't change */
120 int op;
121 int op_flags;
122 struct gendisk *bio_disk;
123 struct inode *inode;
124 loff_t i_size; /* i_size when submitted */
125 dio_iodone_t *end_io; /* IO completion function */
126
127 void *private; /* copy from map_bh.b_private */
128
129 /* BIO completion state */
130 spinlock_t bio_lock; /* protects BIO fields below */
131 int page_errors; /* errno from get_user_pages() */
132 int is_async; /* is IO async ? */
133 bool defer_completion; /* defer AIO completion to workqueue? */
134 bool should_dirty; /* if pages should be dirtied */
135 int io_error; /* IO error in completion path */
136 unsigned long refcount; /* direct_io_worker() and bios */
137 struct bio *bio_list; /* singly linked via bi_private */
138 struct task_struct *waiter; /* waiting task (NULL if none) */
139
140 /* AIO related stuff */
141 struct kiocb *iocb; /* kiocb */
142 ssize_t result; /* IO result */
143
144 /*
145 * pages[] (and any fields placed after it) are not zeroed out at
146 * allocation time. Don't add new fields after pages[] unless you
147 * wish that they not be zeroed.
148 */
149 union {
150 struct page *pages[DIO_PAGES]; /* page buffer */
151 struct work_struct complete_work;/* deferred AIO completion */
152 };
153 } ____cacheline_aligned_in_smp;
154
155 static struct kmem_cache *dio_cache __read_mostly;
156
157 /*
158 * How many pages are in the queue?
159 */
160 static inline unsigned dio_pages_present(struct dio_submit *sdio)
161 {
162 return sdio->tail - sdio->head;
163 }
164
165 /*
166 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
167 */
168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
169 {
170 ssize_t ret;
171
172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 &sdio->from);
174
175 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
176 struct page *page = ZERO_PAGE(0);
177 /*
178 * A memory fault, but the filesystem has some outstanding
179 * mapped blocks. We need to use those blocks up to avoid
180 * leaking stale data in the file.
181 */
182 if (dio->page_errors == 0)
183 dio->page_errors = ret;
184 get_page(page);
185 dio->pages[0] = page;
186 sdio->head = 0;
187 sdio->tail = 1;
188 sdio->from = 0;
189 sdio->to = PAGE_SIZE;
190 return 0;
191 }
192
193 if (ret >= 0) {
194 iov_iter_advance(sdio->iter, ret);
195 ret += sdio->from;
196 sdio->head = 0;
197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
199 return 0;
200 }
201 return ret;
202 }
203
204 /*
205 * Get another userspace page. Returns an ERR_PTR on error. Pages are
206 * buffered inside the dio so that we can call get_user_pages() against a
207 * decent number of pages, less frequently. To provide nicer use of the
208 * L1 cache.
209 */
210 static inline struct page *dio_get_page(struct dio *dio,
211 struct dio_submit *sdio)
212 {
213 if (dio_pages_present(sdio) == 0) {
214 int ret;
215
216 ret = dio_refill_pages(dio, sdio);
217 if (ret)
218 return ERR_PTR(ret);
219 BUG_ON(dio_pages_present(sdio) == 0);
220 }
221 return dio->pages[sdio->head];
222 }
223
224 /*
225 * dio_complete() - called when all DIO BIO I/O has been completed
226 *
227 * This drops i_dio_count, lets interested parties know that a DIO operation
228 * has completed, and calculates the resulting return code for the operation.
229 *
230 * It lets the filesystem know if it registered an interest earlier via
231 * get_block. Pass the private field of the map buffer_head so that
232 * filesystems can use it to hold additional state between get_block calls and
233 * dio_complete.
234 */
235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
236 {
237 loff_t offset = dio->iocb->ki_pos;
238 ssize_t transferred = 0;
239 int err;
240
241 /*
242 * AIO submission can race with bio completion to get here while
243 * expecting to have the last io completed by bio completion.
244 * In that case -EIOCBQUEUED is in fact not an error we want
245 * to preserve through this call.
246 */
247 if (ret == -EIOCBQUEUED)
248 ret = 0;
249
250 if (dio->result) {
251 transferred = dio->result;
252
253 /* Check for short read case */
254 if ((dio->op == REQ_OP_READ) &&
255 ((offset + transferred) > dio->i_size))
256 transferred = dio->i_size - offset;
257 /* ignore EFAULT if some IO has been done */
258 if (unlikely(ret == -EFAULT) && transferred)
259 ret = 0;
260 }
261
262 if (ret == 0)
263 ret = dio->page_errors;
264 if (ret == 0)
265 ret = dio->io_error;
266 if (ret == 0)
267 ret = transferred;
268
269 if (dio->end_io) {
270 // XXX: ki_pos??
271 err = dio->end_io(dio->iocb, offset, ret, dio->private);
272 if (err)
273 ret = err;
274 }
275
276 /*
277 * Try again to invalidate clean pages which might have been cached by
278 * non-direct readahead, or faulted in by get_user_pages() if the source
279 * of the write was an mmap'ed region of the file we're writing. Either
280 * one is a pretty crazy thing to do, so we don't support it 100%. If
281 * this invalidation fails, tough, the write still worked...
282 *
283 * And this page cache invalidation has to be after dio->end_io(), as
284 * some filesystems convert unwritten extents to real allocations in
285 * end_io() when necessary, otherwise a racing buffer read would cache
286 * zeros from unwritten extents.
287 */
288 if (flags & DIO_COMPLETE_INVALIDATE &&
289 ret > 0 && dio->op == REQ_OP_WRITE &&
290 dio->inode->i_mapping->nrpages) {
291 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
292 offset >> PAGE_SHIFT,
293 (offset + ret - 1) >> PAGE_SHIFT);
294 if (err)
295 dio_warn_stale_pagecache(dio->iocb->ki_filp);
296 }
297
298 inode_dio_end(dio->inode);
299
300 if (flags & DIO_COMPLETE_ASYNC) {
301 /*
302 * generic_write_sync expects ki_pos to have been updated
303 * already, but the submission path only does this for
304 * synchronous I/O.
305 */
306 dio->iocb->ki_pos += transferred;
307
308 if (ret > 0 && dio->op == REQ_OP_WRITE)
309 ret = generic_write_sync(dio->iocb, ret);
310 dio->iocb->ki_complete(dio->iocb, ret);
311 }
312
313 kmem_cache_free(dio_cache, dio);
314 return ret;
315 }
316
317 static void dio_aio_complete_work(struct work_struct *work)
318 {
319 struct dio *dio = container_of(work, struct dio, complete_work);
320
321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
322 }
323
324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
325
326 /*
327 * Asynchronous IO callback.
328 */
329 static void dio_bio_end_aio(struct bio *bio)
330 {
331 struct dio *dio = bio->bi_private;
332 unsigned long remaining;
333 unsigned long flags;
334 bool defer_completion = false;
335
336 /* cleanup the bio */
337 dio_bio_complete(dio, bio);
338
339 spin_lock_irqsave(&dio->bio_lock, flags);
340 remaining = --dio->refcount;
341 if (remaining == 1 && dio->waiter)
342 wake_up_process(dio->waiter);
343 spin_unlock_irqrestore(&dio->bio_lock, flags);
344
345 if (remaining == 0) {
346 /*
347 * Defer completion when defer_completion is set or
348 * when the inode has pages mapped and this is AIO write.
349 * We need to invalidate those pages because there is a
350 * chance they contain stale data in the case buffered IO
351 * went in between AIO submission and completion into the
352 * same region.
353 */
354 if (dio->result)
355 defer_completion = dio->defer_completion ||
356 (dio->op == REQ_OP_WRITE &&
357 dio->inode->i_mapping->nrpages);
358 if (defer_completion) {
359 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
360 queue_work(dio->inode->i_sb->s_dio_done_wq,
361 &dio->complete_work);
362 } else {
363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
364 }
365 }
366 }
367
368 /*
369 * The BIO completion handler simply queues the BIO up for the process-context
370 * handler.
371 *
372 * During I/O bi_private points at the dio. After I/O, bi_private is used to
373 * implement a singly-linked list of completed BIOs, at dio->bio_list.
374 */
375 static void dio_bio_end_io(struct bio *bio)
376 {
377 struct dio *dio = bio->bi_private;
378 unsigned long flags;
379
380 spin_lock_irqsave(&dio->bio_lock, flags);
381 bio->bi_private = dio->bio_list;
382 dio->bio_list = bio;
383 if (--dio->refcount == 1 && dio->waiter)
384 wake_up_process(dio->waiter);
385 spin_unlock_irqrestore(&dio->bio_lock, flags);
386 }
387
388 static inline void
389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
390 struct block_device *bdev,
391 sector_t first_sector, int nr_vecs)
392 {
393 struct bio *bio;
394
395 /*
396 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
397 * we request a valid number of vectors.
398 */
399 bio = bio_alloc(bdev, nr_vecs, dio->op | dio->op_flags, GFP_KERNEL);
400 bio->bi_iter.bi_sector = first_sector;
401 if (dio->is_async)
402 bio->bi_end_io = dio_bio_end_aio;
403 else
404 bio->bi_end_io = dio_bio_end_io;
405 sdio->bio = bio;
406 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
407 }
408
409 /*
410 * In the AIO read case we speculatively dirty the pages before starting IO.
411 * During IO completion, any of these pages which happen to have been written
412 * back will be redirtied by bio_check_pages_dirty().
413 *
414 * bios hold a dio reference between submit_bio and ->end_io.
415 */
416 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
417 {
418 struct bio *bio = sdio->bio;
419 unsigned long flags;
420
421 bio->bi_private = dio;
422 /* don't account direct I/O as memory stall */
423 bio_clear_flag(bio, BIO_WORKINGSET);
424
425 spin_lock_irqsave(&dio->bio_lock, flags);
426 dio->refcount++;
427 spin_unlock_irqrestore(&dio->bio_lock, flags);
428
429 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
430 bio_set_pages_dirty(bio);
431
432 dio->bio_disk = bio->bi_bdev->bd_disk;
433
434 if (sdio->submit_io)
435 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
436 else
437 submit_bio(bio);
438
439 sdio->bio = NULL;
440 sdio->boundary = 0;
441 sdio->logical_offset_in_bio = 0;
442 }
443
444 /*
445 * Release any resources in case of a failure
446 */
447 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
448 {
449 while (sdio->head < sdio->tail)
450 put_page(dio->pages[sdio->head++]);
451 }
452
453 /*
454 * Wait for the next BIO to complete. Remove it and return it. NULL is
455 * returned once all BIOs have been completed. This must only be called once
456 * all bios have been issued so that dio->refcount can only decrease. This
457 * requires that the caller hold a reference on the dio.
458 */
459 static struct bio *dio_await_one(struct dio *dio)
460 {
461 unsigned long flags;
462 struct bio *bio = NULL;
463
464 spin_lock_irqsave(&dio->bio_lock, flags);
465
466 /*
467 * Wait as long as the list is empty and there are bios in flight. bio
468 * completion drops the count, maybe adds to the list, and wakes while
469 * holding the bio_lock so we don't need set_current_state()'s barrier
470 * and can call it after testing our condition.
471 */
472 while (dio->refcount > 1 && dio->bio_list == NULL) {
473 __set_current_state(TASK_UNINTERRUPTIBLE);
474 dio->waiter = current;
475 spin_unlock_irqrestore(&dio->bio_lock, flags);
476 blk_io_schedule();
477 /* wake up sets us TASK_RUNNING */
478 spin_lock_irqsave(&dio->bio_lock, flags);
479 dio->waiter = NULL;
480 }
481 if (dio->bio_list) {
482 bio = dio->bio_list;
483 dio->bio_list = bio->bi_private;
484 }
485 spin_unlock_irqrestore(&dio->bio_lock, flags);
486 return bio;
487 }
488
489 /*
490 * Process one completed BIO. No locks are held.
491 */
492 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
493 {
494 blk_status_t err = bio->bi_status;
495 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
496
497 if (err) {
498 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
499 dio->io_error = -EAGAIN;
500 else
501 dio->io_error = -EIO;
502 }
503
504 if (dio->is_async && should_dirty) {
505 bio_check_pages_dirty(bio); /* transfers ownership */
506 } else {
507 bio_release_pages(bio, should_dirty);
508 bio_put(bio);
509 }
510 return err;
511 }
512
513 /*
514 * Wait on and process all in-flight BIOs. This must only be called once
515 * all bios have been issued so that the refcount can only decrease.
516 * This just waits for all bios to make it through dio_bio_complete. IO
517 * errors are propagated through dio->io_error and should be propagated via
518 * dio_complete().
519 */
520 static void dio_await_completion(struct dio *dio)
521 {
522 struct bio *bio;
523 do {
524 bio = dio_await_one(dio);
525 if (bio)
526 dio_bio_complete(dio, bio);
527 } while (bio);
528 }
529
530 /*
531 * A really large O_DIRECT read or write can generate a lot of BIOs. So
532 * to keep the memory consumption sane we periodically reap any completed BIOs
533 * during the BIO generation phase.
534 *
535 * This also helps to limit the peak amount of pinned userspace memory.
536 */
537 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
538 {
539 int ret = 0;
540
541 if (sdio->reap_counter++ >= 64) {
542 while (dio->bio_list) {
543 unsigned long flags;
544 struct bio *bio;
545 int ret2;
546
547 spin_lock_irqsave(&dio->bio_lock, flags);
548 bio = dio->bio_list;
549 dio->bio_list = bio->bi_private;
550 spin_unlock_irqrestore(&dio->bio_lock, flags);
551 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
552 if (ret == 0)
553 ret = ret2;
554 }
555 sdio->reap_counter = 0;
556 }
557 return ret;
558 }
559
560 /*
561 * Create workqueue for deferred direct IO completions. We allocate the
562 * workqueue when it's first needed. This avoids creating workqueue for
563 * filesystems that don't need it and also allows us to create the workqueue
564 * late enough so the we can include s_id in the name of the workqueue.
565 */
566 int sb_init_dio_done_wq(struct super_block *sb)
567 {
568 struct workqueue_struct *old;
569 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
570 WQ_MEM_RECLAIM, 0,
571 sb->s_id);
572 if (!wq)
573 return -ENOMEM;
574 /*
575 * This has to be atomic as more DIOs can race to create the workqueue
576 */
577 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
578 /* Someone created workqueue before us? Free ours... */
579 if (old)
580 destroy_workqueue(wq);
581 return 0;
582 }
583
584 static int dio_set_defer_completion(struct dio *dio)
585 {
586 struct super_block *sb = dio->inode->i_sb;
587
588 if (dio->defer_completion)
589 return 0;
590 dio->defer_completion = true;
591 if (!sb->s_dio_done_wq)
592 return sb_init_dio_done_wq(sb);
593 return 0;
594 }
595
596 /*
597 * Call into the fs to map some more disk blocks. We record the current number
598 * of available blocks at sdio->blocks_available. These are in units of the
599 * fs blocksize, i_blocksize(inode).
600 *
601 * The fs is allowed to map lots of blocks at once. If it wants to do that,
602 * it uses the passed inode-relative block number as the file offset, as usual.
603 *
604 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
605 * has remaining to do. The fs should not map more than this number of blocks.
606 *
607 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
608 * indicate how much contiguous disk space has been made available at
609 * bh->b_blocknr.
610 *
611 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
612 * This isn't very efficient...
613 *
614 * In the case of filesystem holes: the fs may return an arbitrarily-large
615 * hole by returning an appropriate value in b_size and by clearing
616 * buffer_mapped(). However the direct-io code will only process holes one
617 * block at a time - it will repeatedly call get_block() as it walks the hole.
618 */
619 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
620 struct buffer_head *map_bh)
621 {
622 int ret;
623 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
624 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
625 unsigned long fs_count; /* Number of filesystem-sized blocks */
626 int create;
627 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
628 loff_t i_size;
629
630 /*
631 * If there was a memory error and we've overwritten all the
632 * mapped blocks then we can now return that memory error
633 */
634 ret = dio->page_errors;
635 if (ret == 0) {
636 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
637 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
638 fs_endblk = (sdio->final_block_in_request - 1) >>
639 sdio->blkfactor;
640 fs_count = fs_endblk - fs_startblk + 1;
641
642 map_bh->b_state = 0;
643 map_bh->b_size = fs_count << i_blkbits;
644
645 /*
646 * For writes that could fill holes inside i_size on a
647 * DIO_SKIP_HOLES filesystem we forbid block creations: only
648 * overwrites are permitted. We will return early to the caller
649 * once we see an unmapped buffer head returned, and the caller
650 * will fall back to buffered I/O.
651 *
652 * Otherwise the decision is left to the get_blocks method,
653 * which may decide to handle it or also return an unmapped
654 * buffer head.
655 */
656 create = dio->op == REQ_OP_WRITE;
657 if (dio->flags & DIO_SKIP_HOLES) {
658 i_size = i_size_read(dio->inode);
659 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
660 create = 0;
661 }
662
663 ret = (*sdio->get_block)(dio->inode, fs_startblk,
664 map_bh, create);
665
666 /* Store for completion */
667 dio->private = map_bh->b_private;
668
669 if (ret == 0 && buffer_defer_completion(map_bh))
670 ret = dio_set_defer_completion(dio);
671 }
672 return ret;
673 }
674
675 /*
676 * There is no bio. Make one now.
677 */
678 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
679 sector_t start_sector, struct buffer_head *map_bh)
680 {
681 sector_t sector;
682 int ret, nr_pages;
683
684 ret = dio_bio_reap(dio, sdio);
685 if (ret)
686 goto out;
687 sector = start_sector << (sdio->blkbits - 9);
688 nr_pages = bio_max_segs(sdio->pages_in_io);
689 BUG_ON(nr_pages <= 0);
690 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
691 sdio->boundary = 0;
692 out:
693 return ret;
694 }
695
696 /*
697 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
698 * that was successful then update final_block_in_bio and take a ref against
699 * the just-added page.
700 *
701 * Return zero on success. Non-zero means the caller needs to start a new BIO.
702 */
703 static inline int dio_bio_add_page(struct dio_submit *sdio)
704 {
705 int ret;
706
707 ret = bio_add_page(sdio->bio, sdio->cur_page,
708 sdio->cur_page_len, sdio->cur_page_offset);
709 if (ret == sdio->cur_page_len) {
710 /*
711 * Decrement count only, if we are done with this page
712 */
713 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
714 sdio->pages_in_io--;
715 get_page(sdio->cur_page);
716 sdio->final_block_in_bio = sdio->cur_page_block +
717 (sdio->cur_page_len >> sdio->blkbits);
718 ret = 0;
719 } else {
720 ret = 1;
721 }
722 return ret;
723 }
724
725 /*
726 * Put cur_page under IO. The section of cur_page which is described by
727 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
728 * starts on-disk at cur_page_block.
729 *
730 * We take a ref against the page here (on behalf of its presence in the bio).
731 *
732 * The caller of this function is responsible for removing cur_page from the
733 * dio, and for dropping the refcount which came from that presence.
734 */
735 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
736 struct buffer_head *map_bh)
737 {
738 int ret = 0;
739
740 if (sdio->bio) {
741 loff_t cur_offset = sdio->cur_page_fs_offset;
742 loff_t bio_next_offset = sdio->logical_offset_in_bio +
743 sdio->bio->bi_iter.bi_size;
744
745 /*
746 * See whether this new request is contiguous with the old.
747 *
748 * Btrfs cannot handle having logically non-contiguous requests
749 * submitted. For example if you have
750 *
751 * Logical: [0-4095][HOLE][8192-12287]
752 * Physical: [0-4095] [4096-8191]
753 *
754 * We cannot submit those pages together as one BIO. So if our
755 * current logical offset in the file does not equal what would
756 * be the next logical offset in the bio, submit the bio we
757 * have.
758 */
759 if (sdio->final_block_in_bio != sdio->cur_page_block ||
760 cur_offset != bio_next_offset)
761 dio_bio_submit(dio, sdio);
762 }
763
764 if (sdio->bio == NULL) {
765 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
766 if (ret)
767 goto out;
768 }
769
770 if (dio_bio_add_page(sdio) != 0) {
771 dio_bio_submit(dio, sdio);
772 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
773 if (ret == 0) {
774 ret = dio_bio_add_page(sdio);
775 BUG_ON(ret != 0);
776 }
777 }
778 out:
779 return ret;
780 }
781
782 /*
783 * An autonomous function to put a chunk of a page under deferred IO.
784 *
785 * The caller doesn't actually know (or care) whether this piece of page is in
786 * a BIO, or is under IO or whatever. We just take care of all possible
787 * situations here. The separation between the logic of do_direct_IO() and
788 * that of submit_page_section() is important for clarity. Please don't break.
789 *
790 * The chunk of page starts on-disk at blocknr.
791 *
792 * We perform deferred IO, by recording the last-submitted page inside our
793 * private part of the dio structure. If possible, we just expand the IO
794 * across that page here.
795 *
796 * If that doesn't work out then we put the old page into the bio and add this
797 * page to the dio instead.
798 */
799 static inline int
800 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
801 unsigned offset, unsigned len, sector_t blocknr,
802 struct buffer_head *map_bh)
803 {
804 int ret = 0;
805 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
806
807 if (dio->op == REQ_OP_WRITE) {
808 /*
809 * Read accounting is performed in submit_bio()
810 */
811 task_io_account_write(len);
812 }
813
814 /*
815 * Can we just grow the current page's presence in the dio?
816 */
817 if (sdio->cur_page == page &&
818 sdio->cur_page_offset + sdio->cur_page_len == offset &&
819 sdio->cur_page_block +
820 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
821 sdio->cur_page_len += len;
822 goto out;
823 }
824
825 /*
826 * If there's a deferred page already there then send it.
827 */
828 if (sdio->cur_page) {
829 ret = dio_send_cur_page(dio, sdio, map_bh);
830 put_page(sdio->cur_page);
831 sdio->cur_page = NULL;
832 if (ret)
833 return ret;
834 }
835
836 get_page(page); /* It is in dio */
837 sdio->cur_page = page;
838 sdio->cur_page_offset = offset;
839 sdio->cur_page_len = len;
840 sdio->cur_page_block = blocknr;
841 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
842 out:
843 /*
844 * If boundary then we want to schedule the IO now to
845 * avoid metadata seeks.
846 */
847 if (boundary) {
848 ret = dio_send_cur_page(dio, sdio, map_bh);
849 if (sdio->bio)
850 dio_bio_submit(dio, sdio);
851 put_page(sdio->cur_page);
852 sdio->cur_page = NULL;
853 }
854 return ret;
855 }
856
857 /*
858 * If we are not writing the entire block and get_block() allocated
859 * the block for us, we need to fill-in the unused portion of the
860 * block with zeros. This happens only if user-buffer, fileoffset or
861 * io length is not filesystem block-size multiple.
862 *
863 * `end' is zero if we're doing the start of the IO, 1 at the end of the
864 * IO.
865 */
866 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
867 int end, struct buffer_head *map_bh)
868 {
869 unsigned dio_blocks_per_fs_block;
870 unsigned this_chunk_blocks; /* In dio_blocks */
871 unsigned this_chunk_bytes;
872 struct page *page;
873
874 sdio->start_zero_done = 1;
875 if (!sdio->blkfactor || !buffer_new(map_bh))
876 return;
877
878 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
879 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
880
881 if (!this_chunk_blocks)
882 return;
883
884 /*
885 * We need to zero out part of an fs block. It is either at the
886 * beginning or the end of the fs block.
887 */
888 if (end)
889 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
890
891 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
892
893 page = ZERO_PAGE(0);
894 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
895 sdio->next_block_for_io, map_bh))
896 return;
897
898 sdio->next_block_for_io += this_chunk_blocks;
899 }
900
901 /*
902 * Walk the user pages, and the file, mapping blocks to disk and generating
903 * a sequence of (page,offset,len,block) mappings. These mappings are injected
904 * into submit_page_section(), which takes care of the next stage of submission
905 *
906 * Direct IO against a blockdev is different from a file. Because we can
907 * happily perform page-sized but 512-byte aligned IOs. It is important that
908 * blockdev IO be able to have fine alignment and large sizes.
909 *
910 * So what we do is to permit the ->get_block function to populate bh.b_size
911 * with the size of IO which is permitted at this offset and this i_blkbits.
912 *
913 * For best results, the blockdev should be set up with 512-byte i_blkbits and
914 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
915 * fine alignment but still allows this function to work in PAGE_SIZE units.
916 */
917 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
918 struct buffer_head *map_bh)
919 {
920 const unsigned blkbits = sdio->blkbits;
921 const unsigned i_blkbits = blkbits + sdio->blkfactor;
922 int ret = 0;
923
924 while (sdio->block_in_file < sdio->final_block_in_request) {
925 struct page *page;
926 size_t from, to;
927
928 page = dio_get_page(dio, sdio);
929 if (IS_ERR(page)) {
930 ret = PTR_ERR(page);
931 goto out;
932 }
933 from = sdio->head ? 0 : sdio->from;
934 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
935 sdio->head++;
936
937 while (from < to) {
938 unsigned this_chunk_bytes; /* # of bytes mapped */
939 unsigned this_chunk_blocks; /* # of blocks */
940 unsigned u;
941
942 if (sdio->blocks_available == 0) {
943 /*
944 * Need to go and map some more disk
945 */
946 unsigned long blkmask;
947 unsigned long dio_remainder;
948
949 ret = get_more_blocks(dio, sdio, map_bh);
950 if (ret) {
951 put_page(page);
952 goto out;
953 }
954 if (!buffer_mapped(map_bh))
955 goto do_holes;
956
957 sdio->blocks_available =
958 map_bh->b_size >> blkbits;
959 sdio->next_block_for_io =
960 map_bh->b_blocknr << sdio->blkfactor;
961 if (buffer_new(map_bh)) {
962 clean_bdev_aliases(
963 map_bh->b_bdev,
964 map_bh->b_blocknr,
965 map_bh->b_size >> i_blkbits);
966 }
967
968 if (!sdio->blkfactor)
969 goto do_holes;
970
971 blkmask = (1 << sdio->blkfactor) - 1;
972 dio_remainder = (sdio->block_in_file & blkmask);
973
974 /*
975 * If we are at the start of IO and that IO
976 * starts partway into a fs-block,
977 * dio_remainder will be non-zero. If the IO
978 * is a read then we can simply advance the IO
979 * cursor to the first block which is to be
980 * read. But if the IO is a write and the
981 * block was newly allocated we cannot do that;
982 * the start of the fs block must be zeroed out
983 * on-disk
984 */
985 if (!buffer_new(map_bh))
986 sdio->next_block_for_io += dio_remainder;
987 sdio->blocks_available -= dio_remainder;
988 }
989 do_holes:
990 /* Handle holes */
991 if (!buffer_mapped(map_bh)) {
992 loff_t i_size_aligned;
993
994 /* AKPM: eargh, -ENOTBLK is a hack */
995 if (dio->op == REQ_OP_WRITE) {
996 put_page(page);
997 return -ENOTBLK;
998 }
999
1000 /*
1001 * Be sure to account for a partial block as the
1002 * last block in the file
1003 */
1004 i_size_aligned = ALIGN(i_size_read(dio->inode),
1005 1 << blkbits);
1006 if (sdio->block_in_file >=
1007 i_size_aligned >> blkbits) {
1008 /* We hit eof */
1009 put_page(page);
1010 goto out;
1011 }
1012 zero_user(page, from, 1 << blkbits);
1013 sdio->block_in_file++;
1014 from += 1 << blkbits;
1015 dio->result += 1 << blkbits;
1016 goto next_block;
1017 }
1018
1019 /*
1020 * If we're performing IO which has an alignment which
1021 * is finer than the underlying fs, go check to see if
1022 * we must zero out the start of this block.
1023 */
1024 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1025 dio_zero_block(dio, sdio, 0, map_bh);
1026
1027 /*
1028 * Work out, in this_chunk_blocks, how much disk we
1029 * can add to this page
1030 */
1031 this_chunk_blocks = sdio->blocks_available;
1032 u = (to - from) >> blkbits;
1033 if (this_chunk_blocks > u)
1034 this_chunk_blocks = u;
1035 u = sdio->final_block_in_request - sdio->block_in_file;
1036 if (this_chunk_blocks > u)
1037 this_chunk_blocks = u;
1038 this_chunk_bytes = this_chunk_blocks << blkbits;
1039 BUG_ON(this_chunk_bytes == 0);
1040
1041 if (this_chunk_blocks == sdio->blocks_available)
1042 sdio->boundary = buffer_boundary(map_bh);
1043 ret = submit_page_section(dio, sdio, page,
1044 from,
1045 this_chunk_bytes,
1046 sdio->next_block_for_io,
1047 map_bh);
1048 if (ret) {
1049 put_page(page);
1050 goto out;
1051 }
1052 sdio->next_block_for_io += this_chunk_blocks;
1053
1054 sdio->block_in_file += this_chunk_blocks;
1055 from += this_chunk_bytes;
1056 dio->result += this_chunk_bytes;
1057 sdio->blocks_available -= this_chunk_blocks;
1058 next_block:
1059 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1060 if (sdio->block_in_file == sdio->final_block_in_request)
1061 break;
1062 }
1063
1064 /* Drop the ref which was taken in get_user_pages() */
1065 put_page(page);
1066 }
1067 out:
1068 return ret;
1069 }
1070
1071 static inline int drop_refcount(struct dio *dio)
1072 {
1073 int ret2;
1074 unsigned long flags;
1075
1076 /*
1077 * Sync will always be dropping the final ref and completing the
1078 * operation. AIO can if it was a broken operation described above or
1079 * in fact if all the bios race to complete before we get here. In
1080 * that case dio_complete() translates the EIOCBQUEUED into the proper
1081 * return code that the caller will hand to ->complete().
1082 *
1083 * This is managed by the bio_lock instead of being an atomic_t so that
1084 * completion paths can drop their ref and use the remaining count to
1085 * decide to wake the submission path atomically.
1086 */
1087 spin_lock_irqsave(&dio->bio_lock, flags);
1088 ret2 = --dio->refcount;
1089 spin_unlock_irqrestore(&dio->bio_lock, flags);
1090 return ret2;
1091 }
1092
1093 /*
1094 * This is a library function for use by filesystem drivers.
1095 *
1096 * The locking rules are governed by the flags parameter:
1097 * - if the flags value contains DIO_LOCKING we use a fancy locking
1098 * scheme for dumb filesystems.
1099 * For writes this function is called under i_mutex and returns with
1100 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1101 * taken and dropped again before returning.
1102 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1103 * internal locking but rather rely on the filesystem to synchronize
1104 * direct I/O reads/writes versus each other and truncate.
1105 *
1106 * To help with locking against truncate we incremented the i_dio_count
1107 * counter before starting direct I/O, and decrement it once we are done.
1108 * Truncate can wait for it to reach zero to provide exclusion. It is
1109 * expected that filesystem provide exclusion between new direct I/O
1110 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1111 * but other filesystems need to take care of this on their own.
1112 *
1113 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1114 * is always inlined. Otherwise gcc is unable to split the structure into
1115 * individual fields and will generate much worse code. This is important
1116 * for the whole file.
1117 */
1118 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1119 struct block_device *bdev, struct iov_iter *iter,
1120 get_block_t get_block, dio_iodone_t end_io,
1121 dio_submit_t submit_io, int flags)
1122 {
1123 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1124 unsigned blkbits = i_blkbits;
1125 unsigned blocksize_mask = (1 << blkbits) - 1;
1126 ssize_t retval = -EINVAL;
1127 const size_t count = iov_iter_count(iter);
1128 loff_t offset = iocb->ki_pos;
1129 const loff_t end = offset + count;
1130 struct dio *dio;
1131 struct dio_submit sdio = { 0, };
1132 struct buffer_head map_bh = { 0, };
1133 struct blk_plug plug;
1134 unsigned long align = offset | iov_iter_alignment(iter);
1135
1136 /*
1137 * Avoid references to bdev if not absolutely needed to give
1138 * the early prefetch in the caller enough time.
1139 */
1140
1141 /* watch out for a 0 len io from a tricksy fs */
1142 if (iov_iter_rw(iter) == READ && !count)
1143 return 0;
1144
1145 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1146 if (!dio)
1147 return -ENOMEM;
1148 /*
1149 * Believe it or not, zeroing out the page array caused a .5%
1150 * performance regression in a database benchmark. So, we take
1151 * care to only zero out what's needed.
1152 */
1153 memset(dio, 0, offsetof(struct dio, pages));
1154
1155 dio->flags = flags;
1156 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1157 /* will be released by direct_io_worker */
1158 inode_lock(inode);
1159 }
1160
1161 /* Once we sampled i_size check for reads beyond EOF */
1162 dio->i_size = i_size_read(inode);
1163 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1164 retval = 0;
1165 goto fail_dio;
1166 }
1167
1168 if (align & blocksize_mask) {
1169 if (bdev)
1170 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1171 blocksize_mask = (1 << blkbits) - 1;
1172 if (align & blocksize_mask)
1173 goto fail_dio;
1174 }
1175
1176 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1177 struct address_space *mapping = iocb->ki_filp->f_mapping;
1178
1179 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1180 if (retval)
1181 goto fail_dio;
1182 }
1183
1184 /*
1185 * For file extending writes updating i_size before data writeouts
1186 * complete can expose uninitialized blocks in dumb filesystems.
1187 * In that case we need to wait for I/O completion even if asked
1188 * for an asynchronous write.
1189 */
1190 if (is_sync_kiocb(iocb))
1191 dio->is_async = false;
1192 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1193 dio->is_async = false;
1194 else
1195 dio->is_async = true;
1196
1197 dio->inode = inode;
1198 if (iov_iter_rw(iter) == WRITE) {
1199 dio->op = REQ_OP_WRITE;
1200 dio->op_flags = REQ_SYNC | REQ_IDLE;
1201 if (iocb->ki_flags & IOCB_NOWAIT)
1202 dio->op_flags |= REQ_NOWAIT;
1203 } else {
1204 dio->op = REQ_OP_READ;
1205 }
1206
1207 /*
1208 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1209 * so that we can call ->fsync.
1210 */
1211 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1212 retval = 0;
1213 if (iocb->ki_flags & IOCB_DSYNC)
1214 retval = dio_set_defer_completion(dio);
1215 else if (!dio->inode->i_sb->s_dio_done_wq) {
1216 /*
1217 * In case of AIO write racing with buffered read we
1218 * need to defer completion. We can't decide this now,
1219 * however the workqueue needs to be initialized here.
1220 */
1221 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1222 }
1223 if (retval)
1224 goto fail_dio;
1225 }
1226
1227 /*
1228 * Will be decremented at I/O completion time.
1229 */
1230 inode_dio_begin(inode);
1231
1232 retval = 0;
1233 sdio.blkbits = blkbits;
1234 sdio.blkfactor = i_blkbits - blkbits;
1235 sdio.block_in_file = offset >> blkbits;
1236
1237 sdio.get_block = get_block;
1238 dio->end_io = end_io;
1239 sdio.submit_io = submit_io;
1240 sdio.final_block_in_bio = -1;
1241 sdio.next_block_for_io = -1;
1242
1243 dio->iocb = iocb;
1244
1245 spin_lock_init(&dio->bio_lock);
1246 dio->refcount = 1;
1247
1248 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1249 sdio.iter = iter;
1250 sdio.final_block_in_request = end >> blkbits;
1251
1252 /*
1253 * In case of non-aligned buffers, we may need 2 more
1254 * pages since we need to zero out first and last block.
1255 */
1256 if (unlikely(sdio.blkfactor))
1257 sdio.pages_in_io = 2;
1258
1259 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1260
1261 blk_start_plug(&plug);
1262
1263 retval = do_direct_IO(dio, &sdio, &map_bh);
1264 if (retval)
1265 dio_cleanup(dio, &sdio);
1266
1267 if (retval == -ENOTBLK) {
1268 /*
1269 * The remaining part of the request will be
1270 * handled by buffered I/O when we return
1271 */
1272 retval = 0;
1273 }
1274 /*
1275 * There may be some unwritten disk at the end of a part-written
1276 * fs-block-sized block. Go zero that now.
1277 */
1278 dio_zero_block(dio, &sdio, 1, &map_bh);
1279
1280 if (sdio.cur_page) {
1281 ssize_t ret2;
1282
1283 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1284 if (retval == 0)
1285 retval = ret2;
1286 put_page(sdio.cur_page);
1287 sdio.cur_page = NULL;
1288 }
1289 if (sdio.bio)
1290 dio_bio_submit(dio, &sdio);
1291
1292 blk_finish_plug(&plug);
1293
1294 /*
1295 * It is possible that, we return short IO due to end of file.
1296 * In that case, we need to release all the pages we got hold on.
1297 */
1298 dio_cleanup(dio, &sdio);
1299
1300 /*
1301 * All block lookups have been performed. For READ requests
1302 * we can let i_mutex go now that its achieved its purpose
1303 * of protecting us from looking up uninitialized blocks.
1304 */
1305 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1306 inode_unlock(dio->inode);
1307
1308 /*
1309 * The only time we want to leave bios in flight is when a successful
1310 * partial aio read or full aio write have been setup. In that case
1311 * bio completion will call aio_complete. The only time it's safe to
1312 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1313 * This had *better* be the only place that raises -EIOCBQUEUED.
1314 */
1315 BUG_ON(retval == -EIOCBQUEUED);
1316 if (dio->is_async && retval == 0 && dio->result &&
1317 (iov_iter_rw(iter) == READ || dio->result == count))
1318 retval = -EIOCBQUEUED;
1319 else
1320 dio_await_completion(dio);
1321
1322 if (drop_refcount(dio) == 0) {
1323 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1324 } else
1325 BUG_ON(retval != -EIOCBQUEUED);
1326
1327 return retval;
1328
1329 fail_dio:
1330 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1331 inode_unlock(inode);
1332
1333 kmem_cache_free(dio_cache, dio);
1334 return retval;
1335 }
1336 EXPORT_SYMBOL(__blockdev_direct_IO);
1337
1338 static __init int dio_init(void)
1339 {
1340 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1341 return 0;
1342 }
1343 module_init(dio_init)