]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/direct-io.c
block: return on congested block device
[thirdparty/kernel/stable.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
57 */
58
59 /* dio_state only used in the submission path */
60
61 struct dio_submit {
62 struct bio *bio; /* bio under assembly */
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
76 int reap_counter; /* rate limit reaping */
77 sector_t final_block_in_request;/* doesn't change */
78 int boundary; /* prev block is at a boundary */
79 get_block_t *get_block; /* block mapping function */
80 dio_submit_t *submit_io; /* IO submition function */
81
82 loff_t logical_offset_in_bio; /* current first logical block in bio */
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
96 loff_t cur_page_fs_offset; /* Offset in file */
97
98 struct iov_iter *iter;
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
105 size_t from, to;
106 };
107
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 int flags; /* doesn't change */
111 int op;
112 int op_flags;
113 blk_qc_t bio_cookie;
114 struct block_device *bio_bdev;
115 struct inode *inode;
116 loff_t i_size; /* i_size when submitted */
117 dio_iodone_t *end_io; /* IO completion function */
118
119 void *private; /* copy from map_bh.b_private */
120
121 /* BIO completion state */
122 spinlock_t bio_lock; /* protects BIO fields below */
123 int page_errors; /* errno from get_user_pages() */
124 int is_async; /* is IO async ? */
125 bool defer_completion; /* defer AIO completion to workqueue? */
126 bool should_dirty; /* if pages should be dirtied */
127 int io_error; /* IO error in completion path */
128 unsigned long refcount; /* direct_io_worker() and bios */
129 struct bio *bio_list; /* singly linked via bi_private */
130 struct task_struct *waiter; /* waiting task (NULL if none) */
131
132 /* AIO related stuff */
133 struct kiocb *iocb; /* kiocb */
134 ssize_t result; /* IO result */
135
136 /*
137 * pages[] (and any fields placed after it) are not zeroed out at
138 * allocation time. Don't add new fields after pages[] unless you
139 * wish that they not be zeroed.
140 */
141 union {
142 struct page *pages[DIO_PAGES]; /* page buffer */
143 struct work_struct complete_work;/* deferred AIO completion */
144 };
145 } ____cacheline_aligned_in_smp;
146
147 static struct kmem_cache *dio_cache __read_mostly;
148
149 /*
150 * How many pages are in the queue?
151 */
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
153 {
154 return sdio->tail - sdio->head;
155 }
156
157 /*
158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
159 */
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
161 {
162 ssize_t ret;
163
164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
165 &sdio->from);
166
167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
168 struct page *page = ZERO_PAGE(0);
169 /*
170 * A memory fault, but the filesystem has some outstanding
171 * mapped blocks. We need to use those blocks up to avoid
172 * leaking stale data in the file.
173 */
174 if (dio->page_errors == 0)
175 dio->page_errors = ret;
176 get_page(page);
177 dio->pages[0] = page;
178 sdio->head = 0;
179 sdio->tail = 1;
180 sdio->from = 0;
181 sdio->to = PAGE_SIZE;
182 return 0;
183 }
184
185 if (ret >= 0) {
186 iov_iter_advance(sdio->iter, ret);
187 ret += sdio->from;
188 sdio->head = 0;
189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
191 return 0;
192 }
193 return ret;
194 }
195
196 /*
197 * Get another userspace page. Returns an ERR_PTR on error. Pages are
198 * buffered inside the dio so that we can call get_user_pages() against a
199 * decent number of pages, less frequently. To provide nicer use of the
200 * L1 cache.
201 */
202 static inline struct page *dio_get_page(struct dio *dio,
203 struct dio_submit *sdio)
204 {
205 if (dio_pages_present(sdio) == 0) {
206 int ret;
207
208 ret = dio_refill_pages(dio, sdio);
209 if (ret)
210 return ERR_PTR(ret);
211 BUG_ON(dio_pages_present(sdio) == 0);
212 }
213 return dio->pages[sdio->head];
214 }
215
216 /**
217 * dio_complete() - called when all DIO BIO I/O has been completed
218 * @offset: the byte offset in the file of the completed operation
219 *
220 * This drops i_dio_count, lets interested parties know that a DIO operation
221 * has completed, and calculates the resulting return code for the operation.
222 *
223 * It lets the filesystem know if it registered an interest earlier via
224 * get_block. Pass the private field of the map buffer_head so that
225 * filesystems can use it to hold additional state between get_block calls and
226 * dio_complete.
227 */
228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async)
229 {
230 loff_t offset = dio->iocb->ki_pos;
231 ssize_t transferred = 0;
232
233 /*
234 * AIO submission can race with bio completion to get here while
235 * expecting to have the last io completed by bio completion.
236 * In that case -EIOCBQUEUED is in fact not an error we want
237 * to preserve through this call.
238 */
239 if (ret == -EIOCBQUEUED)
240 ret = 0;
241
242 if (dio->result) {
243 transferred = dio->result;
244
245 /* Check for short read case */
246 if ((dio->op == REQ_OP_READ) &&
247 ((offset + transferred) > dio->i_size))
248 transferred = dio->i_size - offset;
249 /* ignore EFAULT if some IO has been done */
250 if (unlikely(ret == -EFAULT) && transferred)
251 ret = 0;
252 }
253
254 if (ret == 0)
255 ret = dio->page_errors;
256 if (ret == 0)
257 ret = dio->io_error;
258 if (ret == 0)
259 ret = transferred;
260
261 if (dio->end_io) {
262 int err;
263
264 // XXX: ki_pos??
265 err = dio->end_io(dio->iocb, offset, ret, dio->private);
266 if (err)
267 ret = err;
268 }
269
270 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
271 inode_dio_end(dio->inode);
272
273 if (is_async) {
274 /*
275 * generic_write_sync expects ki_pos to have been updated
276 * already, but the submission path only does this for
277 * synchronous I/O.
278 */
279 dio->iocb->ki_pos += transferred;
280
281 if (dio->op == REQ_OP_WRITE)
282 ret = generic_write_sync(dio->iocb, transferred);
283 dio->iocb->ki_complete(dio->iocb, ret, 0);
284 }
285
286 kmem_cache_free(dio_cache, dio);
287 return ret;
288 }
289
290 static void dio_aio_complete_work(struct work_struct *work)
291 {
292 struct dio *dio = container_of(work, struct dio, complete_work);
293
294 dio_complete(dio, 0, true);
295 }
296
297 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
298
299 /*
300 * Asynchronous IO callback.
301 */
302 static void dio_bio_end_aio(struct bio *bio)
303 {
304 struct dio *dio = bio->bi_private;
305 unsigned long remaining;
306 unsigned long flags;
307
308 /* cleanup the bio */
309 dio_bio_complete(dio, bio);
310
311 spin_lock_irqsave(&dio->bio_lock, flags);
312 remaining = --dio->refcount;
313 if (remaining == 1 && dio->waiter)
314 wake_up_process(dio->waiter);
315 spin_unlock_irqrestore(&dio->bio_lock, flags);
316
317 if (remaining == 0) {
318 if (dio->result && dio->defer_completion) {
319 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
320 queue_work(dio->inode->i_sb->s_dio_done_wq,
321 &dio->complete_work);
322 } else {
323 dio_complete(dio, 0, true);
324 }
325 }
326 }
327
328 /*
329 * The BIO completion handler simply queues the BIO up for the process-context
330 * handler.
331 *
332 * During I/O bi_private points at the dio. After I/O, bi_private is used to
333 * implement a singly-linked list of completed BIOs, at dio->bio_list.
334 */
335 static void dio_bio_end_io(struct bio *bio)
336 {
337 struct dio *dio = bio->bi_private;
338 unsigned long flags;
339
340 spin_lock_irqsave(&dio->bio_lock, flags);
341 bio->bi_private = dio->bio_list;
342 dio->bio_list = bio;
343 if (--dio->refcount == 1 && dio->waiter)
344 wake_up_process(dio->waiter);
345 spin_unlock_irqrestore(&dio->bio_lock, flags);
346 }
347
348 /**
349 * dio_end_io - handle the end io action for the given bio
350 * @bio: The direct io bio thats being completed
351 *
352 * This is meant to be called by any filesystem that uses their own dio_submit_t
353 * so that the DIO specific endio actions are dealt with after the filesystem
354 * has done it's completion work.
355 */
356 void dio_end_io(struct bio *bio)
357 {
358 struct dio *dio = bio->bi_private;
359
360 if (dio->is_async)
361 dio_bio_end_aio(bio);
362 else
363 dio_bio_end_io(bio);
364 }
365 EXPORT_SYMBOL_GPL(dio_end_io);
366
367 static inline void
368 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
369 struct block_device *bdev,
370 sector_t first_sector, int nr_vecs)
371 {
372 struct bio *bio;
373
374 /*
375 * bio_alloc() is guaranteed to return a bio when called with
376 * __GFP_RECLAIM and we request a valid number of vectors.
377 */
378 bio = bio_alloc(GFP_KERNEL, nr_vecs);
379
380 bio->bi_bdev = bdev;
381 bio->bi_iter.bi_sector = first_sector;
382 bio_set_op_attrs(bio, dio->op, dio->op_flags);
383 if (dio->is_async)
384 bio->bi_end_io = dio_bio_end_aio;
385 else
386 bio->bi_end_io = dio_bio_end_io;
387
388 sdio->bio = bio;
389 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
390 }
391
392 /*
393 * In the AIO read case we speculatively dirty the pages before starting IO.
394 * During IO completion, any of these pages which happen to have been written
395 * back will be redirtied by bio_check_pages_dirty().
396 *
397 * bios hold a dio reference between submit_bio and ->end_io.
398 */
399 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
400 {
401 struct bio *bio = sdio->bio;
402 unsigned long flags;
403
404 bio->bi_private = dio;
405
406 spin_lock_irqsave(&dio->bio_lock, flags);
407 dio->refcount++;
408 spin_unlock_irqrestore(&dio->bio_lock, flags);
409
410 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
411 bio_set_pages_dirty(bio);
412
413 dio->bio_bdev = bio->bi_bdev;
414
415 if (sdio->submit_io) {
416 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
417 dio->bio_cookie = BLK_QC_T_NONE;
418 } else
419 dio->bio_cookie = submit_bio(bio);
420
421 sdio->bio = NULL;
422 sdio->boundary = 0;
423 sdio->logical_offset_in_bio = 0;
424 }
425
426 /*
427 * Release any resources in case of a failure
428 */
429 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
430 {
431 while (sdio->head < sdio->tail)
432 put_page(dio->pages[sdio->head++]);
433 }
434
435 /*
436 * Wait for the next BIO to complete. Remove it and return it. NULL is
437 * returned once all BIOs have been completed. This must only be called once
438 * all bios have been issued so that dio->refcount can only decrease. This
439 * requires that that the caller hold a reference on the dio.
440 */
441 static struct bio *dio_await_one(struct dio *dio)
442 {
443 unsigned long flags;
444 struct bio *bio = NULL;
445
446 spin_lock_irqsave(&dio->bio_lock, flags);
447
448 /*
449 * Wait as long as the list is empty and there are bios in flight. bio
450 * completion drops the count, maybe adds to the list, and wakes while
451 * holding the bio_lock so we don't need set_current_state()'s barrier
452 * and can call it after testing our condition.
453 */
454 while (dio->refcount > 1 && dio->bio_list == NULL) {
455 __set_current_state(TASK_UNINTERRUPTIBLE);
456 dio->waiter = current;
457 spin_unlock_irqrestore(&dio->bio_lock, flags);
458 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
459 !blk_mq_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
460 io_schedule();
461 /* wake up sets us TASK_RUNNING */
462 spin_lock_irqsave(&dio->bio_lock, flags);
463 dio->waiter = NULL;
464 }
465 if (dio->bio_list) {
466 bio = dio->bio_list;
467 dio->bio_list = bio->bi_private;
468 }
469 spin_unlock_irqrestore(&dio->bio_lock, flags);
470 return bio;
471 }
472
473 /*
474 * Process one completed BIO. No locks are held.
475 */
476 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
477 {
478 struct bio_vec *bvec;
479 unsigned i;
480 blk_status_t err = bio->bi_status;
481
482 if (err) {
483 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
484 dio->io_error = -EAGAIN;
485 else
486 dio->io_error = -EIO;
487 }
488
489 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
490 bio_check_pages_dirty(bio); /* transfers ownership */
491 } else {
492 bio_for_each_segment_all(bvec, bio, i) {
493 struct page *page = bvec->bv_page;
494
495 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
496 dio->should_dirty)
497 set_page_dirty_lock(page);
498 put_page(page);
499 }
500 bio_put(bio);
501 }
502 return err;
503 }
504
505 /*
506 * Wait on and process all in-flight BIOs. This must only be called once
507 * all bios have been issued so that the refcount can only decrease.
508 * This just waits for all bios to make it through dio_bio_complete. IO
509 * errors are propagated through dio->io_error and should be propagated via
510 * dio_complete().
511 */
512 static void dio_await_completion(struct dio *dio)
513 {
514 struct bio *bio;
515 do {
516 bio = dio_await_one(dio);
517 if (bio)
518 dio_bio_complete(dio, bio);
519 } while (bio);
520 }
521
522 /*
523 * A really large O_DIRECT read or write can generate a lot of BIOs. So
524 * to keep the memory consumption sane we periodically reap any completed BIOs
525 * during the BIO generation phase.
526 *
527 * This also helps to limit the peak amount of pinned userspace memory.
528 */
529 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
530 {
531 int ret = 0;
532
533 if (sdio->reap_counter++ >= 64) {
534 while (dio->bio_list) {
535 unsigned long flags;
536 struct bio *bio;
537 int ret2;
538
539 spin_lock_irqsave(&dio->bio_lock, flags);
540 bio = dio->bio_list;
541 dio->bio_list = bio->bi_private;
542 spin_unlock_irqrestore(&dio->bio_lock, flags);
543 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
544 if (ret == 0)
545 ret = ret2;
546 }
547 sdio->reap_counter = 0;
548 }
549 return ret;
550 }
551
552 /*
553 * Create workqueue for deferred direct IO completions. We allocate the
554 * workqueue when it's first needed. This avoids creating workqueue for
555 * filesystems that don't need it and also allows us to create the workqueue
556 * late enough so the we can include s_id in the name of the workqueue.
557 */
558 int sb_init_dio_done_wq(struct super_block *sb)
559 {
560 struct workqueue_struct *old;
561 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
562 WQ_MEM_RECLAIM, 0,
563 sb->s_id);
564 if (!wq)
565 return -ENOMEM;
566 /*
567 * This has to be atomic as more DIOs can race to create the workqueue
568 */
569 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
570 /* Someone created workqueue before us? Free ours... */
571 if (old)
572 destroy_workqueue(wq);
573 return 0;
574 }
575
576 static int dio_set_defer_completion(struct dio *dio)
577 {
578 struct super_block *sb = dio->inode->i_sb;
579
580 if (dio->defer_completion)
581 return 0;
582 dio->defer_completion = true;
583 if (!sb->s_dio_done_wq)
584 return sb_init_dio_done_wq(sb);
585 return 0;
586 }
587
588 /*
589 * Call into the fs to map some more disk blocks. We record the current number
590 * of available blocks at sdio->blocks_available. These are in units of the
591 * fs blocksize, i_blocksize(inode).
592 *
593 * The fs is allowed to map lots of blocks at once. If it wants to do that,
594 * it uses the passed inode-relative block number as the file offset, as usual.
595 *
596 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
597 * has remaining to do. The fs should not map more than this number of blocks.
598 *
599 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
600 * indicate how much contiguous disk space has been made available at
601 * bh->b_blocknr.
602 *
603 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
604 * This isn't very efficient...
605 *
606 * In the case of filesystem holes: the fs may return an arbitrarily-large
607 * hole by returning an appropriate value in b_size and by clearing
608 * buffer_mapped(). However the direct-io code will only process holes one
609 * block at a time - it will repeatedly call get_block() as it walks the hole.
610 */
611 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
612 struct buffer_head *map_bh)
613 {
614 int ret;
615 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
616 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
617 unsigned long fs_count; /* Number of filesystem-sized blocks */
618 int create;
619 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
620
621 /*
622 * If there was a memory error and we've overwritten all the
623 * mapped blocks then we can now return that memory error
624 */
625 ret = dio->page_errors;
626 if (ret == 0) {
627 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
628 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
629 fs_endblk = (sdio->final_block_in_request - 1) >>
630 sdio->blkfactor;
631 fs_count = fs_endblk - fs_startblk + 1;
632
633 map_bh->b_state = 0;
634 map_bh->b_size = fs_count << i_blkbits;
635
636 /*
637 * For writes that could fill holes inside i_size on a
638 * DIO_SKIP_HOLES filesystem we forbid block creations: only
639 * overwrites are permitted. We will return early to the caller
640 * once we see an unmapped buffer head returned, and the caller
641 * will fall back to buffered I/O.
642 *
643 * Otherwise the decision is left to the get_blocks method,
644 * which may decide to handle it or also return an unmapped
645 * buffer head.
646 */
647 create = dio->op == REQ_OP_WRITE;
648 if (dio->flags & DIO_SKIP_HOLES) {
649 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
650 i_blkbits))
651 create = 0;
652 }
653
654 ret = (*sdio->get_block)(dio->inode, fs_startblk,
655 map_bh, create);
656
657 /* Store for completion */
658 dio->private = map_bh->b_private;
659
660 if (ret == 0 && buffer_defer_completion(map_bh))
661 ret = dio_set_defer_completion(dio);
662 }
663 return ret;
664 }
665
666 /*
667 * There is no bio. Make one now.
668 */
669 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
670 sector_t start_sector, struct buffer_head *map_bh)
671 {
672 sector_t sector;
673 int ret, nr_pages;
674
675 ret = dio_bio_reap(dio, sdio);
676 if (ret)
677 goto out;
678 sector = start_sector << (sdio->blkbits - 9);
679 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
680 BUG_ON(nr_pages <= 0);
681 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
682 sdio->boundary = 0;
683 out:
684 return ret;
685 }
686
687 /*
688 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
689 * that was successful then update final_block_in_bio and take a ref against
690 * the just-added page.
691 *
692 * Return zero on success. Non-zero means the caller needs to start a new BIO.
693 */
694 static inline int dio_bio_add_page(struct dio_submit *sdio)
695 {
696 int ret;
697
698 ret = bio_add_page(sdio->bio, sdio->cur_page,
699 sdio->cur_page_len, sdio->cur_page_offset);
700 if (ret == sdio->cur_page_len) {
701 /*
702 * Decrement count only, if we are done with this page
703 */
704 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
705 sdio->pages_in_io--;
706 get_page(sdio->cur_page);
707 sdio->final_block_in_bio = sdio->cur_page_block +
708 (sdio->cur_page_len >> sdio->blkbits);
709 ret = 0;
710 } else {
711 ret = 1;
712 }
713 return ret;
714 }
715
716 /*
717 * Put cur_page under IO. The section of cur_page which is described by
718 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
719 * starts on-disk at cur_page_block.
720 *
721 * We take a ref against the page here (on behalf of its presence in the bio).
722 *
723 * The caller of this function is responsible for removing cur_page from the
724 * dio, and for dropping the refcount which came from that presence.
725 */
726 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
727 struct buffer_head *map_bh)
728 {
729 int ret = 0;
730
731 if (sdio->bio) {
732 loff_t cur_offset = sdio->cur_page_fs_offset;
733 loff_t bio_next_offset = sdio->logical_offset_in_bio +
734 sdio->bio->bi_iter.bi_size;
735
736 /*
737 * See whether this new request is contiguous with the old.
738 *
739 * Btrfs cannot handle having logically non-contiguous requests
740 * submitted. For example if you have
741 *
742 * Logical: [0-4095][HOLE][8192-12287]
743 * Physical: [0-4095] [4096-8191]
744 *
745 * We cannot submit those pages together as one BIO. So if our
746 * current logical offset in the file does not equal what would
747 * be the next logical offset in the bio, submit the bio we
748 * have.
749 */
750 if (sdio->final_block_in_bio != sdio->cur_page_block ||
751 cur_offset != bio_next_offset)
752 dio_bio_submit(dio, sdio);
753 }
754
755 if (sdio->bio == NULL) {
756 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
757 if (ret)
758 goto out;
759 }
760
761 if (dio_bio_add_page(sdio) != 0) {
762 dio_bio_submit(dio, sdio);
763 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
764 if (ret == 0) {
765 ret = dio_bio_add_page(sdio);
766 BUG_ON(ret != 0);
767 }
768 }
769 out:
770 return ret;
771 }
772
773 /*
774 * An autonomous function to put a chunk of a page under deferred IO.
775 *
776 * The caller doesn't actually know (or care) whether this piece of page is in
777 * a BIO, or is under IO or whatever. We just take care of all possible
778 * situations here. The separation between the logic of do_direct_IO() and
779 * that of submit_page_section() is important for clarity. Please don't break.
780 *
781 * The chunk of page starts on-disk at blocknr.
782 *
783 * We perform deferred IO, by recording the last-submitted page inside our
784 * private part of the dio structure. If possible, we just expand the IO
785 * across that page here.
786 *
787 * If that doesn't work out then we put the old page into the bio and add this
788 * page to the dio instead.
789 */
790 static inline int
791 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
792 unsigned offset, unsigned len, sector_t blocknr,
793 struct buffer_head *map_bh)
794 {
795 int ret = 0;
796
797 if (dio->op == REQ_OP_WRITE) {
798 /*
799 * Read accounting is performed in submit_bio()
800 */
801 task_io_account_write(len);
802 }
803
804 /*
805 * Can we just grow the current page's presence in the dio?
806 */
807 if (sdio->cur_page == page &&
808 sdio->cur_page_offset + sdio->cur_page_len == offset &&
809 sdio->cur_page_block +
810 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
811 sdio->cur_page_len += len;
812 goto out;
813 }
814
815 /*
816 * If there's a deferred page already there then send it.
817 */
818 if (sdio->cur_page) {
819 ret = dio_send_cur_page(dio, sdio, map_bh);
820 put_page(sdio->cur_page);
821 sdio->cur_page = NULL;
822 if (ret)
823 return ret;
824 }
825
826 get_page(page); /* It is in dio */
827 sdio->cur_page = page;
828 sdio->cur_page_offset = offset;
829 sdio->cur_page_len = len;
830 sdio->cur_page_block = blocknr;
831 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
832 out:
833 /*
834 * If sdio->boundary then we want to schedule the IO now to
835 * avoid metadata seeks.
836 */
837 if (sdio->boundary) {
838 ret = dio_send_cur_page(dio, sdio, map_bh);
839 dio_bio_submit(dio, sdio);
840 put_page(sdio->cur_page);
841 sdio->cur_page = NULL;
842 }
843 return ret;
844 }
845
846 /*
847 * If we are not writing the entire block and get_block() allocated
848 * the block for us, we need to fill-in the unused portion of the
849 * block with zeros. This happens only if user-buffer, fileoffset or
850 * io length is not filesystem block-size multiple.
851 *
852 * `end' is zero if we're doing the start of the IO, 1 at the end of the
853 * IO.
854 */
855 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
856 int end, struct buffer_head *map_bh)
857 {
858 unsigned dio_blocks_per_fs_block;
859 unsigned this_chunk_blocks; /* In dio_blocks */
860 unsigned this_chunk_bytes;
861 struct page *page;
862
863 sdio->start_zero_done = 1;
864 if (!sdio->blkfactor || !buffer_new(map_bh))
865 return;
866
867 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
868 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
869
870 if (!this_chunk_blocks)
871 return;
872
873 /*
874 * We need to zero out part of an fs block. It is either at the
875 * beginning or the end of the fs block.
876 */
877 if (end)
878 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
879
880 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
881
882 page = ZERO_PAGE(0);
883 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
884 sdio->next_block_for_io, map_bh))
885 return;
886
887 sdio->next_block_for_io += this_chunk_blocks;
888 }
889
890 /*
891 * Walk the user pages, and the file, mapping blocks to disk and generating
892 * a sequence of (page,offset,len,block) mappings. These mappings are injected
893 * into submit_page_section(), which takes care of the next stage of submission
894 *
895 * Direct IO against a blockdev is different from a file. Because we can
896 * happily perform page-sized but 512-byte aligned IOs. It is important that
897 * blockdev IO be able to have fine alignment and large sizes.
898 *
899 * So what we do is to permit the ->get_block function to populate bh.b_size
900 * with the size of IO which is permitted at this offset and this i_blkbits.
901 *
902 * For best results, the blockdev should be set up with 512-byte i_blkbits and
903 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
904 * fine alignment but still allows this function to work in PAGE_SIZE units.
905 */
906 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
907 struct buffer_head *map_bh)
908 {
909 const unsigned blkbits = sdio->blkbits;
910 const unsigned i_blkbits = blkbits + sdio->blkfactor;
911 int ret = 0;
912
913 while (sdio->block_in_file < sdio->final_block_in_request) {
914 struct page *page;
915 size_t from, to;
916
917 page = dio_get_page(dio, sdio);
918 if (IS_ERR(page)) {
919 ret = PTR_ERR(page);
920 goto out;
921 }
922 from = sdio->head ? 0 : sdio->from;
923 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
924 sdio->head++;
925
926 while (from < to) {
927 unsigned this_chunk_bytes; /* # of bytes mapped */
928 unsigned this_chunk_blocks; /* # of blocks */
929 unsigned u;
930
931 if (sdio->blocks_available == 0) {
932 /*
933 * Need to go and map some more disk
934 */
935 unsigned long blkmask;
936 unsigned long dio_remainder;
937
938 ret = get_more_blocks(dio, sdio, map_bh);
939 if (ret) {
940 put_page(page);
941 goto out;
942 }
943 if (!buffer_mapped(map_bh))
944 goto do_holes;
945
946 sdio->blocks_available =
947 map_bh->b_size >> blkbits;
948 sdio->next_block_for_io =
949 map_bh->b_blocknr << sdio->blkfactor;
950 if (buffer_new(map_bh)) {
951 clean_bdev_aliases(
952 map_bh->b_bdev,
953 map_bh->b_blocknr,
954 map_bh->b_size >> i_blkbits);
955 }
956
957 if (!sdio->blkfactor)
958 goto do_holes;
959
960 blkmask = (1 << sdio->blkfactor) - 1;
961 dio_remainder = (sdio->block_in_file & blkmask);
962
963 /*
964 * If we are at the start of IO and that IO
965 * starts partway into a fs-block,
966 * dio_remainder will be non-zero. If the IO
967 * is a read then we can simply advance the IO
968 * cursor to the first block which is to be
969 * read. But if the IO is a write and the
970 * block was newly allocated we cannot do that;
971 * the start of the fs block must be zeroed out
972 * on-disk
973 */
974 if (!buffer_new(map_bh))
975 sdio->next_block_for_io += dio_remainder;
976 sdio->blocks_available -= dio_remainder;
977 }
978 do_holes:
979 /* Handle holes */
980 if (!buffer_mapped(map_bh)) {
981 loff_t i_size_aligned;
982
983 /* AKPM: eargh, -ENOTBLK is a hack */
984 if (dio->op == REQ_OP_WRITE) {
985 put_page(page);
986 return -ENOTBLK;
987 }
988
989 /*
990 * Be sure to account for a partial block as the
991 * last block in the file
992 */
993 i_size_aligned = ALIGN(i_size_read(dio->inode),
994 1 << blkbits);
995 if (sdio->block_in_file >=
996 i_size_aligned >> blkbits) {
997 /* We hit eof */
998 put_page(page);
999 goto out;
1000 }
1001 zero_user(page, from, 1 << blkbits);
1002 sdio->block_in_file++;
1003 from += 1 << blkbits;
1004 dio->result += 1 << blkbits;
1005 goto next_block;
1006 }
1007
1008 /*
1009 * If we're performing IO which has an alignment which
1010 * is finer than the underlying fs, go check to see if
1011 * we must zero out the start of this block.
1012 */
1013 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1014 dio_zero_block(dio, sdio, 0, map_bh);
1015
1016 /*
1017 * Work out, in this_chunk_blocks, how much disk we
1018 * can add to this page
1019 */
1020 this_chunk_blocks = sdio->blocks_available;
1021 u = (to - from) >> blkbits;
1022 if (this_chunk_blocks > u)
1023 this_chunk_blocks = u;
1024 u = sdio->final_block_in_request - sdio->block_in_file;
1025 if (this_chunk_blocks > u)
1026 this_chunk_blocks = u;
1027 this_chunk_bytes = this_chunk_blocks << blkbits;
1028 BUG_ON(this_chunk_bytes == 0);
1029
1030 if (this_chunk_blocks == sdio->blocks_available)
1031 sdio->boundary = buffer_boundary(map_bh);
1032 ret = submit_page_section(dio, sdio, page,
1033 from,
1034 this_chunk_bytes,
1035 sdio->next_block_for_io,
1036 map_bh);
1037 if (ret) {
1038 put_page(page);
1039 goto out;
1040 }
1041 sdio->next_block_for_io += this_chunk_blocks;
1042
1043 sdio->block_in_file += this_chunk_blocks;
1044 from += this_chunk_bytes;
1045 dio->result += this_chunk_bytes;
1046 sdio->blocks_available -= this_chunk_blocks;
1047 next_block:
1048 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1049 if (sdio->block_in_file == sdio->final_block_in_request)
1050 break;
1051 }
1052
1053 /* Drop the ref which was taken in get_user_pages() */
1054 put_page(page);
1055 }
1056 out:
1057 return ret;
1058 }
1059
1060 static inline int drop_refcount(struct dio *dio)
1061 {
1062 int ret2;
1063 unsigned long flags;
1064
1065 /*
1066 * Sync will always be dropping the final ref and completing the
1067 * operation. AIO can if it was a broken operation described above or
1068 * in fact if all the bios race to complete before we get here. In
1069 * that case dio_complete() translates the EIOCBQUEUED into the proper
1070 * return code that the caller will hand to ->complete().
1071 *
1072 * This is managed by the bio_lock instead of being an atomic_t so that
1073 * completion paths can drop their ref and use the remaining count to
1074 * decide to wake the submission path atomically.
1075 */
1076 spin_lock_irqsave(&dio->bio_lock, flags);
1077 ret2 = --dio->refcount;
1078 spin_unlock_irqrestore(&dio->bio_lock, flags);
1079 return ret2;
1080 }
1081
1082 /*
1083 * This is a library function for use by filesystem drivers.
1084 *
1085 * The locking rules are governed by the flags parameter:
1086 * - if the flags value contains DIO_LOCKING we use a fancy locking
1087 * scheme for dumb filesystems.
1088 * For writes this function is called under i_mutex and returns with
1089 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1090 * taken and dropped again before returning.
1091 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1092 * internal locking but rather rely on the filesystem to synchronize
1093 * direct I/O reads/writes versus each other and truncate.
1094 *
1095 * To help with locking against truncate we incremented the i_dio_count
1096 * counter before starting direct I/O, and decrement it once we are done.
1097 * Truncate can wait for it to reach zero to provide exclusion. It is
1098 * expected that filesystem provide exclusion between new direct I/O
1099 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1100 * but other filesystems need to take care of this on their own.
1101 *
1102 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1103 * is always inlined. Otherwise gcc is unable to split the structure into
1104 * individual fields and will generate much worse code. This is important
1105 * for the whole file.
1106 */
1107 static inline ssize_t
1108 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1109 struct block_device *bdev, struct iov_iter *iter,
1110 get_block_t get_block, dio_iodone_t end_io,
1111 dio_submit_t submit_io, int flags)
1112 {
1113 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1114 unsigned blkbits = i_blkbits;
1115 unsigned blocksize_mask = (1 << blkbits) - 1;
1116 ssize_t retval = -EINVAL;
1117 size_t count = iov_iter_count(iter);
1118 loff_t offset = iocb->ki_pos;
1119 loff_t end = offset + count;
1120 struct dio *dio;
1121 struct dio_submit sdio = { 0, };
1122 struct buffer_head map_bh = { 0, };
1123 struct blk_plug plug;
1124 unsigned long align = offset | iov_iter_alignment(iter);
1125
1126 /*
1127 * Avoid references to bdev if not absolutely needed to give
1128 * the early prefetch in the caller enough time.
1129 */
1130
1131 if (align & blocksize_mask) {
1132 if (bdev)
1133 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1134 blocksize_mask = (1 << blkbits) - 1;
1135 if (align & blocksize_mask)
1136 goto out;
1137 }
1138
1139 /* watch out for a 0 len io from a tricksy fs */
1140 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1141 return 0;
1142
1143 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1144 retval = -ENOMEM;
1145 if (!dio)
1146 goto out;
1147 /*
1148 * Believe it or not, zeroing out the page array caused a .5%
1149 * performance regression in a database benchmark. So, we take
1150 * care to only zero out what's needed.
1151 */
1152 memset(dio, 0, offsetof(struct dio, pages));
1153
1154 dio->flags = flags;
1155 if (dio->flags & DIO_LOCKING) {
1156 if (iov_iter_rw(iter) == READ) {
1157 struct address_space *mapping =
1158 iocb->ki_filp->f_mapping;
1159
1160 /* will be released by direct_io_worker */
1161 inode_lock(inode);
1162
1163 retval = filemap_write_and_wait_range(mapping, offset,
1164 end - 1);
1165 if (retval) {
1166 inode_unlock(inode);
1167 kmem_cache_free(dio_cache, dio);
1168 goto out;
1169 }
1170 }
1171 }
1172
1173 /* Once we sampled i_size check for reads beyond EOF */
1174 dio->i_size = i_size_read(inode);
1175 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1176 if (dio->flags & DIO_LOCKING)
1177 inode_unlock(inode);
1178 kmem_cache_free(dio_cache, dio);
1179 retval = 0;
1180 goto out;
1181 }
1182
1183 /*
1184 * For file extending writes updating i_size before data writeouts
1185 * complete can expose uninitialized blocks in dumb filesystems.
1186 * In that case we need to wait for I/O completion even if asked
1187 * for an asynchronous write.
1188 */
1189 if (is_sync_kiocb(iocb))
1190 dio->is_async = false;
1191 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1192 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1193 dio->is_async = false;
1194 else
1195 dio->is_async = true;
1196
1197 dio->inode = inode;
1198 if (iov_iter_rw(iter) == WRITE) {
1199 dio->op = REQ_OP_WRITE;
1200 dio->op_flags = REQ_SYNC | REQ_IDLE;
1201 if (iocb->ki_flags & IOCB_NOWAIT)
1202 dio->op_flags |= REQ_NOWAIT;
1203 } else {
1204 dio->op = REQ_OP_READ;
1205 }
1206
1207 /*
1208 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1209 * so that we can call ->fsync.
1210 */
1211 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1212 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1213 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1214 retval = dio_set_defer_completion(dio);
1215 if (retval) {
1216 /*
1217 * We grab i_mutex only for reads so we don't have
1218 * to release it here
1219 */
1220 kmem_cache_free(dio_cache, dio);
1221 goto out;
1222 }
1223 }
1224
1225 /*
1226 * Will be decremented at I/O completion time.
1227 */
1228 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1229 inode_dio_begin(inode);
1230
1231 retval = 0;
1232 sdio.blkbits = blkbits;
1233 sdio.blkfactor = i_blkbits - blkbits;
1234 sdio.block_in_file = offset >> blkbits;
1235
1236 sdio.get_block = get_block;
1237 dio->end_io = end_io;
1238 sdio.submit_io = submit_io;
1239 sdio.final_block_in_bio = -1;
1240 sdio.next_block_for_io = -1;
1241
1242 dio->iocb = iocb;
1243
1244 spin_lock_init(&dio->bio_lock);
1245 dio->refcount = 1;
1246
1247 dio->should_dirty = (iter->type == ITER_IOVEC);
1248 sdio.iter = iter;
1249 sdio.final_block_in_request =
1250 (offset + iov_iter_count(iter)) >> blkbits;
1251
1252 /*
1253 * In case of non-aligned buffers, we may need 2 more
1254 * pages since we need to zero out first and last block.
1255 */
1256 if (unlikely(sdio.blkfactor))
1257 sdio.pages_in_io = 2;
1258
1259 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1260
1261 blk_start_plug(&plug);
1262
1263 retval = do_direct_IO(dio, &sdio, &map_bh);
1264 if (retval)
1265 dio_cleanup(dio, &sdio);
1266
1267 if (retval == -ENOTBLK) {
1268 /*
1269 * The remaining part of the request will be
1270 * be handled by buffered I/O when we return
1271 */
1272 retval = 0;
1273 }
1274 /*
1275 * There may be some unwritten disk at the end of a part-written
1276 * fs-block-sized block. Go zero that now.
1277 */
1278 dio_zero_block(dio, &sdio, 1, &map_bh);
1279
1280 if (sdio.cur_page) {
1281 ssize_t ret2;
1282
1283 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1284 if (retval == 0)
1285 retval = ret2;
1286 put_page(sdio.cur_page);
1287 sdio.cur_page = NULL;
1288 }
1289 if (sdio.bio)
1290 dio_bio_submit(dio, &sdio);
1291
1292 blk_finish_plug(&plug);
1293
1294 /*
1295 * It is possible that, we return short IO due to end of file.
1296 * In that case, we need to release all the pages we got hold on.
1297 */
1298 dio_cleanup(dio, &sdio);
1299
1300 /*
1301 * All block lookups have been performed. For READ requests
1302 * we can let i_mutex go now that its achieved its purpose
1303 * of protecting us from looking up uninitialized blocks.
1304 */
1305 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1306 inode_unlock(dio->inode);
1307
1308 /*
1309 * The only time we want to leave bios in flight is when a successful
1310 * partial aio read or full aio write have been setup. In that case
1311 * bio completion will call aio_complete. The only time it's safe to
1312 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1313 * This had *better* be the only place that raises -EIOCBQUEUED.
1314 */
1315 BUG_ON(retval == -EIOCBQUEUED);
1316 if (dio->is_async && retval == 0 && dio->result &&
1317 (iov_iter_rw(iter) == READ || dio->result == count))
1318 retval = -EIOCBQUEUED;
1319 else
1320 dio_await_completion(dio);
1321
1322 if (drop_refcount(dio) == 0) {
1323 retval = dio_complete(dio, retval, false);
1324 } else
1325 BUG_ON(retval != -EIOCBQUEUED);
1326
1327 out:
1328 return retval;
1329 }
1330
1331 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1332 struct block_device *bdev, struct iov_iter *iter,
1333 get_block_t get_block,
1334 dio_iodone_t end_io, dio_submit_t submit_io,
1335 int flags)
1336 {
1337 /*
1338 * The block device state is needed in the end to finally
1339 * submit everything. Since it's likely to be cache cold
1340 * prefetch it here as first thing to hide some of the
1341 * latency.
1342 *
1343 * Attempt to prefetch the pieces we likely need later.
1344 */
1345 prefetch(&bdev->bd_disk->part_tbl);
1346 prefetch(bdev->bd_queue);
1347 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1348
1349 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1350 end_io, submit_io, flags);
1351 }
1352
1353 EXPORT_SYMBOL(__blockdev_direct_IO);
1354
1355 static __init int dio_init(void)
1356 {
1357 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1358 return 0;
1359 }
1360 module_init(dio_init)