]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/eventpoll.c
Merge tag 'sound-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/kernel/linux.git] / fs / eventpoll.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
88 */
89
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
111
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
116
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
128 };
129
130 /*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
135 */
136 struct epitem {
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
156 /* List containing poll wait queues */
157 struct eppoll_entry *pwqlist;
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
162 /* List header used to link this item to the "struct file" items list */
163 struct hlist_node fllink;
164
165 /* wakeup_source used when EPOLLWAKEUP is set */
166 struct wakeup_source __rcu *ws;
167
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
170 };
171
172 /*
173 * This structure is stored inside the "private_data" member of the file
174 * structure and represents the main data structure for the eventpoll
175 * interface.
176 */
177 struct eventpoll {
178 /*
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
183 */
184 struct mutex mtx;
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
198 /* RB tree root used to store monitored fd structs */
199 struct rb_root_cached rbr;
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
203 * happened while transferring ready events to userspace w/out
204 * holding ->lock.
205 */
206 struct epitem *ovflist;
207
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
217 u64 gen;
218 struct hlist_head refs;
219
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 /* used to track busy poll napi_id */
222 unsigned int napi_id;
223 #endif
224
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
227 u8 nests;
228 #endif
229 };
230
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 poll_table pt;
234 struct epitem *epi;
235 };
236
237 /*
238 * Configuration options available inside /proc/sys/fs/epoll/
239 */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242
243 /*
244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
245 */
246 static DEFINE_MUTEX(epmutex);
247
248 static u64 loop_check_gen = 0;
249
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258
259 /*
260 * List of files with newly added links, where we may need to limit the number
261 * of emanating paths. Protected by the epmutex.
262 */
263 struct epitems_head {
264 struct hlist_head epitems;
265 struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268
269 static struct kmem_cache *ephead_cache __read_mostly;
270
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 if (head)
274 kmem_cache_free(ephead_cache, head);
275 }
276
277 static void list_file(struct file *file)
278 {
279 struct epitems_head *head;
280
281 head = container_of(file->f_ep, struct epitems_head, epitems);
282 if (!head->next) {
283 head->next = tfile_check_list;
284 tfile_check_list = head;
285 }
286 }
287
288 static void unlist_file(struct epitems_head *head)
289 {
290 struct epitems_head *to_free = head;
291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 if (p) {
293 struct epitem *epi= container_of(p, struct epitem, fllink);
294 spin_lock(&epi->ffd.file->f_lock);
295 if (!hlist_empty(&head->epitems))
296 to_free = NULL;
297 head->next = NULL;
298 spin_unlock(&epi->ffd.file->f_lock);
299 }
300 free_ephead(to_free);
301 }
302
303 #ifdef CONFIG_SYSCTL
304
305 #include <linux/sysctl.h>
306
307 static long long_zero;
308 static long long_max = LONG_MAX;
309
310 struct ctl_table epoll_table[] = {
311 {
312 .procname = "max_user_watches",
313 .data = &max_user_watches,
314 .maxlen = sizeof(max_user_watches),
315 .mode = 0644,
316 .proc_handler = proc_doulongvec_minmax,
317 .extra1 = &long_zero,
318 .extra2 = &long_max,
319 },
320 { }
321 };
322 #endif /* CONFIG_SYSCTL */
323
324 static const struct file_operations eventpoll_fops;
325
326 static inline int is_file_epoll(struct file *f)
327 {
328 return f->f_op == &eventpoll_fops;
329 }
330
331 /* Setup the structure that is used as key for the RB tree */
332 static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 struct file *file, int fd)
334 {
335 ffd->file = file;
336 ffd->fd = fd;
337 }
338
339 /* Compare RB tree keys */
340 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 struct epoll_filefd *p2)
342 {
343 return (p1->file > p2->file ? +1:
344 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345 }
346
347 /* Tells us if the item is currently linked */
348 static inline int ep_is_linked(struct epitem *epi)
349 {
350 return !list_empty(&epi->rdllink);
351 }
352
353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
354 {
355 return container_of(p, struct eppoll_entry, wait);
356 }
357
358 /* Get the "struct epitem" from a wait queue pointer */
359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
360 {
361 return container_of(p, struct eppoll_entry, wait)->base;
362 }
363
364 /**
365 * ep_events_available - Checks if ready events might be available.
366 *
367 * @ep: Pointer to the eventpoll context.
368 *
369 * Returns: Returns a value different than zero if ready events are available,
370 * or zero otherwise.
371 */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 return !list_empty_careful(&ep->rdllist) ||
375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
376 }
377
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p, unsigned long start_time)
380 {
381 struct eventpoll *ep = p;
382
383 return ep_events_available(ep) || busy_loop_timeout(start_time);
384 }
385
386 /*
387 * Busy poll if globally on and supporting sockets found && no events,
388 * busy loop will return if need_resched or ep_events_available.
389 *
390 * we must do our busy polling with irqs enabled
391 */
392 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
393 {
394 unsigned int napi_id = READ_ONCE(ep->napi_id);
395
396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 BUSY_POLL_BUDGET);
399 if (ep_events_available(ep))
400 return true;
401 /*
402 * Busy poll timed out. Drop NAPI ID for now, we can add
403 * it back in when we have moved a socket with a valid NAPI
404 * ID onto the ready list.
405 */
406 ep->napi_id = 0;
407 return false;
408 }
409 return false;
410 }
411
412 /*
413 * Set epoll busy poll NAPI ID from sk.
414 */
415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 struct eventpoll *ep;
418 unsigned int napi_id;
419 struct socket *sock;
420 struct sock *sk;
421
422 if (!net_busy_loop_on())
423 return;
424
425 sock = sock_from_file(epi->ffd.file);
426 if (!sock)
427 return;
428
429 sk = sock->sk;
430 if (!sk)
431 return;
432
433 napi_id = READ_ONCE(sk->sk_napi_id);
434 ep = epi->ep;
435
436 /* Non-NAPI IDs can be rejected
437 * or
438 * Nothing to do if we already have this ID
439 */
440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 return;
442
443 /* record NAPI ID for use in next busy poll */
444 ep->napi_id = napi_id;
445 }
446
447 #else
448
449 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
450 {
451 return false;
452 }
453
454 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
455 {
456 }
457
458 #endif /* CONFIG_NET_RX_BUSY_POLL */
459
460 /*
461 * As described in commit 0ccf831cb lockdep: annotate epoll
462 * the use of wait queues used by epoll is done in a very controlled
463 * manner. Wake ups can nest inside each other, but are never done
464 * with the same locking. For example:
465 *
466 * dfd = socket(...);
467 * efd1 = epoll_create();
468 * efd2 = epoll_create();
469 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
470 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
471 *
472 * When a packet arrives to the device underneath "dfd", the net code will
473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
474 * callback wakeup entry on that queue, and the wake_up() performed by the
475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
476 * (efd1) notices that it may have some event ready, so it needs to wake up
477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
478 * that ends up in another wake_up(), after having checked about the
479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
480 * avoid stack blasting.
481 *
482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
483 * this special case of epoll.
484 */
485 #ifdef CONFIG_DEBUG_LOCK_ALLOC
486
487 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
488 {
489 struct eventpoll *ep_src;
490 unsigned long flags;
491 u8 nests = 0;
492
493 /*
494 * To set the subclass or nesting level for spin_lock_irqsave_nested()
495 * it might be natural to create a per-cpu nest count. However, since
496 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
497 * schedule() in the -rt kernel, the per-cpu variable are no longer
498 * protected. Thus, we are introducing a per eventpoll nest field.
499 * If we are not being call from ep_poll_callback(), epi is NULL and
500 * we are at the first level of nesting, 0. Otherwise, we are being
501 * called from ep_poll_callback() and if a previous wakeup source is
502 * not an epoll file itself, we are at depth 1 since the wakeup source
503 * is depth 0. If the wakeup source is a previous epoll file in the
504 * wakeup chain then we use its nests value and record ours as
505 * nests + 1. The previous epoll file nests value is stable since its
506 * already holding its own poll_wait.lock.
507 */
508 if (epi) {
509 if ((is_file_epoll(epi->ffd.file))) {
510 ep_src = epi->ffd.file->private_data;
511 nests = ep_src->nests;
512 } else {
513 nests = 1;
514 }
515 }
516 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
517 ep->nests = nests + 1;
518 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
519 ep->nests = 0;
520 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
521 }
522
523 #else
524
525 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
526 {
527 wake_up_poll(&ep->poll_wait, EPOLLIN);
528 }
529
530 #endif
531
532 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
533 {
534 wait_queue_head_t *whead;
535
536 rcu_read_lock();
537 /*
538 * If it is cleared by POLLFREE, it should be rcu-safe.
539 * If we read NULL we need a barrier paired with
540 * smp_store_release() in ep_poll_callback(), otherwise
541 * we rely on whead->lock.
542 */
543 whead = smp_load_acquire(&pwq->whead);
544 if (whead)
545 remove_wait_queue(whead, &pwq->wait);
546 rcu_read_unlock();
547 }
548
549 /*
550 * This function unregisters poll callbacks from the associated file
551 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
552 * ep_free).
553 */
554 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
555 {
556 struct eppoll_entry **p = &epi->pwqlist;
557 struct eppoll_entry *pwq;
558
559 while ((pwq = *p) != NULL) {
560 *p = pwq->next;
561 ep_remove_wait_queue(pwq);
562 kmem_cache_free(pwq_cache, pwq);
563 }
564 }
565
566 /* call only when ep->mtx is held */
567 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
568 {
569 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
570 }
571
572 /* call only when ep->mtx is held */
573 static inline void ep_pm_stay_awake(struct epitem *epi)
574 {
575 struct wakeup_source *ws = ep_wakeup_source(epi);
576
577 if (ws)
578 __pm_stay_awake(ws);
579 }
580
581 static inline bool ep_has_wakeup_source(struct epitem *epi)
582 {
583 return rcu_access_pointer(epi->ws) ? true : false;
584 }
585
586 /* call when ep->mtx cannot be held (ep_poll_callback) */
587 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
588 {
589 struct wakeup_source *ws;
590
591 rcu_read_lock();
592 ws = rcu_dereference(epi->ws);
593 if (ws)
594 __pm_stay_awake(ws);
595 rcu_read_unlock();
596 }
597
598
599 /*
600 * ep->mutex needs to be held because we could be hit by
601 * eventpoll_release_file() and epoll_ctl().
602 */
603 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
604 {
605 /*
606 * Steal the ready list, and re-init the original one to the
607 * empty list. Also, set ep->ovflist to NULL so that events
608 * happening while looping w/out locks, are not lost. We cannot
609 * have the poll callback to queue directly on ep->rdllist,
610 * because we want the "sproc" callback to be able to do it
611 * in a lockless way.
612 */
613 lockdep_assert_irqs_enabled();
614 write_lock_irq(&ep->lock);
615 list_splice_init(&ep->rdllist, txlist);
616 WRITE_ONCE(ep->ovflist, NULL);
617 write_unlock_irq(&ep->lock);
618 }
619
620 static void ep_done_scan(struct eventpoll *ep,
621 struct list_head *txlist)
622 {
623 struct epitem *epi, *nepi;
624
625 write_lock_irq(&ep->lock);
626 /*
627 * During the time we spent inside the "sproc" callback, some
628 * other events might have been queued by the poll callback.
629 * We re-insert them inside the main ready-list here.
630 */
631 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
632 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
633 /*
634 * We need to check if the item is already in the list.
635 * During the "sproc" callback execution time, items are
636 * queued into ->ovflist but the "txlist" might already
637 * contain them, and the list_splice() below takes care of them.
638 */
639 if (!ep_is_linked(epi)) {
640 /*
641 * ->ovflist is LIFO, so we have to reverse it in order
642 * to keep in FIFO.
643 */
644 list_add(&epi->rdllink, &ep->rdllist);
645 ep_pm_stay_awake(epi);
646 }
647 }
648 /*
649 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
650 * releasing the lock, events will be queued in the normal way inside
651 * ep->rdllist.
652 */
653 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
654
655 /*
656 * Quickly re-inject items left on "txlist".
657 */
658 list_splice(txlist, &ep->rdllist);
659 __pm_relax(ep->ws);
660 write_unlock_irq(&ep->lock);
661 }
662
663 static void epi_rcu_free(struct rcu_head *head)
664 {
665 struct epitem *epi = container_of(head, struct epitem, rcu);
666 kmem_cache_free(epi_cache, epi);
667 }
668
669 /*
670 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
671 * all the associated resources. Must be called with "mtx" held.
672 */
673 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
674 {
675 struct file *file = epi->ffd.file;
676 struct epitems_head *to_free;
677 struct hlist_head *head;
678
679 lockdep_assert_irqs_enabled();
680
681 /*
682 * Removes poll wait queue hooks.
683 */
684 ep_unregister_pollwait(ep, epi);
685
686 /* Remove the current item from the list of epoll hooks */
687 spin_lock(&file->f_lock);
688 to_free = NULL;
689 head = file->f_ep;
690 if (head->first == &epi->fllink && !epi->fllink.next) {
691 file->f_ep = NULL;
692 if (!is_file_epoll(file)) {
693 struct epitems_head *v;
694 v = container_of(head, struct epitems_head, epitems);
695 if (!smp_load_acquire(&v->next))
696 to_free = v;
697 }
698 }
699 hlist_del_rcu(&epi->fllink);
700 spin_unlock(&file->f_lock);
701 free_ephead(to_free);
702
703 rb_erase_cached(&epi->rbn, &ep->rbr);
704
705 write_lock_irq(&ep->lock);
706 if (ep_is_linked(epi))
707 list_del_init(&epi->rdllink);
708 write_unlock_irq(&ep->lock);
709
710 wakeup_source_unregister(ep_wakeup_source(epi));
711 /*
712 * At this point it is safe to free the eventpoll item. Use the union
713 * field epi->rcu, since we are trying to minimize the size of
714 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
715 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
716 * use of the rbn field.
717 */
718 call_rcu(&epi->rcu, epi_rcu_free);
719
720 atomic_long_dec(&ep->user->epoll_watches);
721
722 return 0;
723 }
724
725 static void ep_free(struct eventpoll *ep)
726 {
727 struct rb_node *rbp;
728 struct epitem *epi;
729
730 /* We need to release all tasks waiting for these file */
731 if (waitqueue_active(&ep->poll_wait))
732 ep_poll_safewake(ep, NULL);
733
734 /*
735 * We need to lock this because we could be hit by
736 * eventpoll_release_file() while we're freeing the "struct eventpoll".
737 * We do not need to hold "ep->mtx" here because the epoll file
738 * is on the way to be removed and no one has references to it
739 * anymore. The only hit might come from eventpoll_release_file() but
740 * holding "epmutex" is sufficient here.
741 */
742 mutex_lock(&epmutex);
743
744 /*
745 * Walks through the whole tree by unregistering poll callbacks.
746 */
747 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
748 epi = rb_entry(rbp, struct epitem, rbn);
749
750 ep_unregister_pollwait(ep, epi);
751 cond_resched();
752 }
753
754 /*
755 * Walks through the whole tree by freeing each "struct epitem". At this
756 * point we are sure no poll callbacks will be lingering around, and also by
757 * holding "epmutex" we can be sure that no file cleanup code will hit
758 * us during this operation. So we can avoid the lock on "ep->lock".
759 * We do not need to lock ep->mtx, either, we only do it to prevent
760 * a lockdep warning.
761 */
762 mutex_lock(&ep->mtx);
763 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
764 epi = rb_entry(rbp, struct epitem, rbn);
765 ep_remove(ep, epi);
766 cond_resched();
767 }
768 mutex_unlock(&ep->mtx);
769
770 mutex_unlock(&epmutex);
771 mutex_destroy(&ep->mtx);
772 free_uid(ep->user);
773 wakeup_source_unregister(ep->ws);
774 kfree(ep);
775 }
776
777 static int ep_eventpoll_release(struct inode *inode, struct file *file)
778 {
779 struct eventpoll *ep = file->private_data;
780
781 if (ep)
782 ep_free(ep);
783
784 return 0;
785 }
786
787 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
788
789 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
790 {
791 struct eventpoll *ep = file->private_data;
792 LIST_HEAD(txlist);
793 struct epitem *epi, *tmp;
794 poll_table pt;
795 __poll_t res = 0;
796
797 init_poll_funcptr(&pt, NULL);
798
799 /* Insert inside our poll wait queue */
800 poll_wait(file, &ep->poll_wait, wait);
801
802 /*
803 * Proceed to find out if wanted events are really available inside
804 * the ready list.
805 */
806 mutex_lock_nested(&ep->mtx, depth);
807 ep_start_scan(ep, &txlist);
808 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
809 if (ep_item_poll(epi, &pt, depth + 1)) {
810 res = EPOLLIN | EPOLLRDNORM;
811 break;
812 } else {
813 /*
814 * Item has been dropped into the ready list by the poll
815 * callback, but it's not actually ready, as far as
816 * caller requested events goes. We can remove it here.
817 */
818 __pm_relax(ep_wakeup_source(epi));
819 list_del_init(&epi->rdllink);
820 }
821 }
822 ep_done_scan(ep, &txlist);
823 mutex_unlock(&ep->mtx);
824 return res;
825 }
826
827 /*
828 * Differs from ep_eventpoll_poll() in that internal callers already have
829 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
830 * is correctly annotated.
831 */
832 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
833 int depth)
834 {
835 struct file *file = epi->ffd.file;
836 __poll_t res;
837
838 pt->_key = epi->event.events;
839 if (!is_file_epoll(file))
840 res = vfs_poll(file, pt);
841 else
842 res = __ep_eventpoll_poll(file, pt, depth);
843 return res & epi->event.events;
844 }
845
846 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
847 {
848 return __ep_eventpoll_poll(file, wait, 0);
849 }
850
851 #ifdef CONFIG_PROC_FS
852 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
853 {
854 struct eventpoll *ep = f->private_data;
855 struct rb_node *rbp;
856
857 mutex_lock(&ep->mtx);
858 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
859 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
860 struct inode *inode = file_inode(epi->ffd.file);
861
862 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
863 " pos:%lli ino:%lx sdev:%x\n",
864 epi->ffd.fd, epi->event.events,
865 (long long)epi->event.data,
866 (long long)epi->ffd.file->f_pos,
867 inode->i_ino, inode->i_sb->s_dev);
868 if (seq_has_overflowed(m))
869 break;
870 }
871 mutex_unlock(&ep->mtx);
872 }
873 #endif
874
875 /* File callbacks that implement the eventpoll file behaviour */
876 static const struct file_operations eventpoll_fops = {
877 #ifdef CONFIG_PROC_FS
878 .show_fdinfo = ep_show_fdinfo,
879 #endif
880 .release = ep_eventpoll_release,
881 .poll = ep_eventpoll_poll,
882 .llseek = noop_llseek,
883 };
884
885 /*
886 * This is called from eventpoll_release() to unlink files from the eventpoll
887 * interface. We need to have this facility to cleanup correctly files that are
888 * closed without being removed from the eventpoll interface.
889 */
890 void eventpoll_release_file(struct file *file)
891 {
892 struct eventpoll *ep;
893 struct epitem *epi;
894 struct hlist_node *next;
895
896 /*
897 * We don't want to get "file->f_lock" because it is not
898 * necessary. It is not necessary because we're in the "struct file"
899 * cleanup path, and this means that no one is using this file anymore.
900 * So, for example, epoll_ctl() cannot hit here since if we reach this
901 * point, the file counter already went to zero and fget() would fail.
902 * The only hit might come from ep_free() but by holding the mutex
903 * will correctly serialize the operation. We do need to acquire
904 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
905 * from anywhere but ep_free().
906 *
907 * Besides, ep_remove() acquires the lock, so we can't hold it here.
908 */
909 mutex_lock(&epmutex);
910 if (unlikely(!file->f_ep)) {
911 mutex_unlock(&epmutex);
912 return;
913 }
914 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
915 ep = epi->ep;
916 mutex_lock_nested(&ep->mtx, 0);
917 ep_remove(ep, epi);
918 mutex_unlock(&ep->mtx);
919 }
920 mutex_unlock(&epmutex);
921 }
922
923 static int ep_alloc(struct eventpoll **pep)
924 {
925 int error;
926 struct user_struct *user;
927 struct eventpoll *ep;
928
929 user = get_current_user();
930 error = -ENOMEM;
931 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
932 if (unlikely(!ep))
933 goto free_uid;
934
935 mutex_init(&ep->mtx);
936 rwlock_init(&ep->lock);
937 init_waitqueue_head(&ep->wq);
938 init_waitqueue_head(&ep->poll_wait);
939 INIT_LIST_HEAD(&ep->rdllist);
940 ep->rbr = RB_ROOT_CACHED;
941 ep->ovflist = EP_UNACTIVE_PTR;
942 ep->user = user;
943
944 *pep = ep;
945
946 return 0;
947
948 free_uid:
949 free_uid(user);
950 return error;
951 }
952
953 /*
954 * Search the file inside the eventpoll tree. The RB tree operations
955 * are protected by the "mtx" mutex, and ep_find() must be called with
956 * "mtx" held.
957 */
958 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
959 {
960 int kcmp;
961 struct rb_node *rbp;
962 struct epitem *epi, *epir = NULL;
963 struct epoll_filefd ffd;
964
965 ep_set_ffd(&ffd, file, fd);
966 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
967 epi = rb_entry(rbp, struct epitem, rbn);
968 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
969 if (kcmp > 0)
970 rbp = rbp->rb_right;
971 else if (kcmp < 0)
972 rbp = rbp->rb_left;
973 else {
974 epir = epi;
975 break;
976 }
977 }
978
979 return epir;
980 }
981
982 #ifdef CONFIG_KCMP
983 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
984 {
985 struct rb_node *rbp;
986 struct epitem *epi;
987
988 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
989 epi = rb_entry(rbp, struct epitem, rbn);
990 if (epi->ffd.fd == tfd) {
991 if (toff == 0)
992 return epi;
993 else
994 toff--;
995 }
996 cond_resched();
997 }
998
999 return NULL;
1000 }
1001
1002 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1003 unsigned long toff)
1004 {
1005 struct file *file_raw;
1006 struct eventpoll *ep;
1007 struct epitem *epi;
1008
1009 if (!is_file_epoll(file))
1010 return ERR_PTR(-EINVAL);
1011
1012 ep = file->private_data;
1013
1014 mutex_lock(&ep->mtx);
1015 epi = ep_find_tfd(ep, tfd, toff);
1016 if (epi)
1017 file_raw = epi->ffd.file;
1018 else
1019 file_raw = ERR_PTR(-ENOENT);
1020 mutex_unlock(&ep->mtx);
1021
1022 return file_raw;
1023 }
1024 #endif /* CONFIG_KCMP */
1025
1026 /**
1027 * Adds a new entry to the tail of the list in a lockless way, i.e.
1028 * multiple CPUs are allowed to call this function concurrently.
1029 *
1030 * Beware: it is necessary to prevent any other modifications of the
1031 * existing list until all changes are completed, in other words
1032 * concurrent list_add_tail_lockless() calls should be protected
1033 * with a read lock, where write lock acts as a barrier which
1034 * makes sure all list_add_tail_lockless() calls are fully
1035 * completed.
1036 *
1037 * Also an element can be locklessly added to the list only in one
1038 * direction i.e. either to the tail either to the head, otherwise
1039 * concurrent access will corrupt the list.
1040 *
1041 * Returns %false if element has been already added to the list, %true
1042 * otherwise.
1043 */
1044 static inline bool list_add_tail_lockless(struct list_head *new,
1045 struct list_head *head)
1046 {
1047 struct list_head *prev;
1048
1049 /*
1050 * This is simple 'new->next = head' operation, but cmpxchg()
1051 * is used in order to detect that same element has been just
1052 * added to the list from another CPU: the winner observes
1053 * new->next == new.
1054 */
1055 if (cmpxchg(&new->next, new, head) != new)
1056 return false;
1057
1058 /*
1059 * Initially ->next of a new element must be updated with the head
1060 * (we are inserting to the tail) and only then pointers are atomically
1061 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1062 * updated before pointers are actually swapped and pointers are
1063 * swapped before prev->next is updated.
1064 */
1065
1066 prev = xchg(&head->prev, new);
1067
1068 /*
1069 * It is safe to modify prev->next and new->prev, because a new element
1070 * is added only to the tail and new->next is updated before XCHG.
1071 */
1072
1073 prev->next = new;
1074 new->prev = prev;
1075
1076 return true;
1077 }
1078
1079 /**
1080 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1081 * i.e. multiple CPUs are allowed to call this function concurrently.
1082 *
1083 * Returns %false if epi element has been already chained, %true otherwise.
1084 */
1085 static inline bool chain_epi_lockless(struct epitem *epi)
1086 {
1087 struct eventpoll *ep = epi->ep;
1088
1089 /* Fast preliminary check */
1090 if (epi->next != EP_UNACTIVE_PTR)
1091 return false;
1092
1093 /* Check that the same epi has not been just chained from another CPU */
1094 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1095 return false;
1096
1097 /* Atomically exchange tail */
1098 epi->next = xchg(&ep->ovflist, epi);
1099
1100 return true;
1101 }
1102
1103 /*
1104 * This is the callback that is passed to the wait queue wakeup
1105 * mechanism. It is called by the stored file descriptors when they
1106 * have events to report.
1107 *
1108 * This callback takes a read lock in order not to content with concurrent
1109 * events from another file descriptors, thus all modifications to ->rdllist
1110 * or ->ovflist are lockless. Read lock is paired with the write lock from
1111 * ep_scan_ready_list(), which stops all list modifications and guarantees
1112 * that lists state is seen correctly.
1113 *
1114 * Another thing worth to mention is that ep_poll_callback() can be called
1115 * concurrently for the same @epi from different CPUs if poll table was inited
1116 * with several wait queues entries. Plural wakeup from different CPUs of a
1117 * single wait queue is serialized by wq.lock, but the case when multiple wait
1118 * queues are used should be detected accordingly. This is detected using
1119 * cmpxchg() operation.
1120 */
1121 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1122 {
1123 int pwake = 0;
1124 struct epitem *epi = ep_item_from_wait(wait);
1125 struct eventpoll *ep = epi->ep;
1126 __poll_t pollflags = key_to_poll(key);
1127 unsigned long flags;
1128 int ewake = 0;
1129
1130 read_lock_irqsave(&ep->lock, flags);
1131
1132 ep_set_busy_poll_napi_id(epi);
1133
1134 /*
1135 * If the event mask does not contain any poll(2) event, we consider the
1136 * descriptor to be disabled. This condition is likely the effect of the
1137 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1138 * until the next EPOLL_CTL_MOD will be issued.
1139 */
1140 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1141 goto out_unlock;
1142
1143 /*
1144 * Check the events coming with the callback. At this stage, not
1145 * every device reports the events in the "key" parameter of the
1146 * callback. We need to be able to handle both cases here, hence the
1147 * test for "key" != NULL before the event match test.
1148 */
1149 if (pollflags && !(pollflags & epi->event.events))
1150 goto out_unlock;
1151
1152 /*
1153 * If we are transferring events to userspace, we can hold no locks
1154 * (because we're accessing user memory, and because of linux f_op->poll()
1155 * semantics). All the events that happen during that period of time are
1156 * chained in ep->ovflist and requeued later on.
1157 */
1158 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1159 if (chain_epi_lockless(epi))
1160 ep_pm_stay_awake_rcu(epi);
1161 } else if (!ep_is_linked(epi)) {
1162 /* In the usual case, add event to ready list. */
1163 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1164 ep_pm_stay_awake_rcu(epi);
1165 }
1166
1167 /*
1168 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1169 * wait list.
1170 */
1171 if (waitqueue_active(&ep->wq)) {
1172 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1173 !(pollflags & POLLFREE)) {
1174 switch (pollflags & EPOLLINOUT_BITS) {
1175 case EPOLLIN:
1176 if (epi->event.events & EPOLLIN)
1177 ewake = 1;
1178 break;
1179 case EPOLLOUT:
1180 if (epi->event.events & EPOLLOUT)
1181 ewake = 1;
1182 break;
1183 case 0:
1184 ewake = 1;
1185 break;
1186 }
1187 }
1188 wake_up(&ep->wq);
1189 }
1190 if (waitqueue_active(&ep->poll_wait))
1191 pwake++;
1192
1193 out_unlock:
1194 read_unlock_irqrestore(&ep->lock, flags);
1195
1196 /* We have to call this outside the lock */
1197 if (pwake)
1198 ep_poll_safewake(ep, epi);
1199
1200 if (!(epi->event.events & EPOLLEXCLUSIVE))
1201 ewake = 1;
1202
1203 if (pollflags & POLLFREE) {
1204 /*
1205 * If we race with ep_remove_wait_queue() it can miss
1206 * ->whead = NULL and do another remove_wait_queue() after
1207 * us, so we can't use __remove_wait_queue().
1208 */
1209 list_del_init(&wait->entry);
1210 /*
1211 * ->whead != NULL protects us from the race with ep_free()
1212 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1213 * held by the caller. Once we nullify it, nothing protects
1214 * ep/epi or even wait.
1215 */
1216 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1217 }
1218
1219 return ewake;
1220 }
1221
1222 /*
1223 * This is the callback that is used to add our wait queue to the
1224 * target file wakeup lists.
1225 */
1226 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1227 poll_table *pt)
1228 {
1229 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1230 struct epitem *epi = epq->epi;
1231 struct eppoll_entry *pwq;
1232
1233 if (unlikely(!epi)) // an earlier allocation has failed
1234 return;
1235
1236 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1237 if (unlikely(!pwq)) {
1238 epq->epi = NULL;
1239 return;
1240 }
1241
1242 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243 pwq->whead = whead;
1244 pwq->base = epi;
1245 if (epi->event.events & EPOLLEXCLUSIVE)
1246 add_wait_queue_exclusive(whead, &pwq->wait);
1247 else
1248 add_wait_queue(whead, &pwq->wait);
1249 pwq->next = epi->pwqlist;
1250 epi->pwqlist = pwq;
1251 }
1252
1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254 {
1255 int kcmp;
1256 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1257 struct epitem *epic;
1258 bool leftmost = true;
1259
1260 while (*p) {
1261 parent = *p;
1262 epic = rb_entry(parent, struct epitem, rbn);
1263 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1264 if (kcmp > 0) {
1265 p = &parent->rb_right;
1266 leftmost = false;
1267 } else
1268 p = &parent->rb_left;
1269 }
1270 rb_link_node(&epi->rbn, parent, p);
1271 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1272 }
1273
1274
1275
1276 #define PATH_ARR_SIZE 5
1277 /*
1278 * These are the number paths of length 1 to 5, that we are allowing to emanate
1279 * from a single file of interest. For example, we allow 1000 paths of length
1280 * 1, to emanate from each file of interest. This essentially represents the
1281 * potential wakeup paths, which need to be limited in order to avoid massive
1282 * uncontrolled wakeup storms. The common use case should be a single ep which
1283 * is connected to n file sources. In this case each file source has 1 path
1284 * of length 1. Thus, the numbers below should be more than sufficient. These
1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286 * and delete can't add additional paths. Protected by the epmutex.
1287 */
1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289 static int path_count[PATH_ARR_SIZE];
1290
1291 static int path_count_inc(int nests)
1292 {
1293 /* Allow an arbitrary number of depth 1 paths */
1294 if (nests == 0)
1295 return 0;
1296
1297 if (++path_count[nests] > path_limits[nests])
1298 return -1;
1299 return 0;
1300 }
1301
1302 static void path_count_init(void)
1303 {
1304 int i;
1305
1306 for (i = 0; i < PATH_ARR_SIZE; i++)
1307 path_count[i] = 0;
1308 }
1309
1310 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1311 {
1312 int error = 0;
1313 struct epitem *epi;
1314
1315 if (depth > EP_MAX_NESTS) /* too deep nesting */
1316 return -1;
1317
1318 /* CTL_DEL can remove links here, but that can't increase our count */
1319 hlist_for_each_entry_rcu(epi, refs, fllink) {
1320 struct hlist_head *refs = &epi->ep->refs;
1321 if (hlist_empty(refs))
1322 error = path_count_inc(depth);
1323 else
1324 error = reverse_path_check_proc(refs, depth + 1);
1325 if (error != 0)
1326 break;
1327 }
1328 return error;
1329 }
1330
1331 /**
1332 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1333 * links that are proposed to be newly added. We need to
1334 * make sure that those added links don't add too many
1335 * paths such that we will spend all our time waking up
1336 * eventpoll objects.
1337 *
1338 * Returns: Returns zero if the proposed links don't create too many paths,
1339 * -1 otherwise.
1340 */
1341 static int reverse_path_check(void)
1342 {
1343 struct epitems_head *p;
1344
1345 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1346 int error;
1347 path_count_init();
1348 rcu_read_lock();
1349 error = reverse_path_check_proc(&p->epitems, 0);
1350 rcu_read_unlock();
1351 if (error)
1352 return error;
1353 }
1354 return 0;
1355 }
1356
1357 static int ep_create_wakeup_source(struct epitem *epi)
1358 {
1359 struct name_snapshot n;
1360 struct wakeup_source *ws;
1361
1362 if (!epi->ep->ws) {
1363 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1364 if (!epi->ep->ws)
1365 return -ENOMEM;
1366 }
1367
1368 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1369 ws = wakeup_source_register(NULL, n.name.name);
1370 release_dentry_name_snapshot(&n);
1371
1372 if (!ws)
1373 return -ENOMEM;
1374 rcu_assign_pointer(epi->ws, ws);
1375
1376 return 0;
1377 }
1378
1379 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1380 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1381 {
1382 struct wakeup_source *ws = ep_wakeup_source(epi);
1383
1384 RCU_INIT_POINTER(epi->ws, NULL);
1385
1386 /*
1387 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1388 * used internally by wakeup_source_remove, too (called by
1389 * wakeup_source_unregister), so we cannot use call_rcu
1390 */
1391 synchronize_rcu();
1392 wakeup_source_unregister(ws);
1393 }
1394
1395 static int attach_epitem(struct file *file, struct epitem *epi)
1396 {
1397 struct epitems_head *to_free = NULL;
1398 struct hlist_head *head = NULL;
1399 struct eventpoll *ep = NULL;
1400
1401 if (is_file_epoll(file))
1402 ep = file->private_data;
1403
1404 if (ep) {
1405 head = &ep->refs;
1406 } else if (!READ_ONCE(file->f_ep)) {
1407 allocate:
1408 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1409 if (!to_free)
1410 return -ENOMEM;
1411 head = &to_free->epitems;
1412 }
1413 spin_lock(&file->f_lock);
1414 if (!file->f_ep) {
1415 if (unlikely(!head)) {
1416 spin_unlock(&file->f_lock);
1417 goto allocate;
1418 }
1419 file->f_ep = head;
1420 to_free = NULL;
1421 }
1422 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1423 spin_unlock(&file->f_lock);
1424 free_ephead(to_free);
1425 return 0;
1426 }
1427
1428 /*
1429 * Must be called with "mtx" held.
1430 */
1431 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1432 struct file *tfile, int fd, int full_check)
1433 {
1434 int error, pwake = 0;
1435 __poll_t revents;
1436 long user_watches;
1437 struct epitem *epi;
1438 struct ep_pqueue epq;
1439 struct eventpoll *tep = NULL;
1440
1441 if (is_file_epoll(tfile))
1442 tep = tfile->private_data;
1443
1444 lockdep_assert_irqs_enabled();
1445
1446 user_watches = atomic_long_read(&ep->user->epoll_watches);
1447 if (unlikely(user_watches >= max_user_watches))
1448 return -ENOSPC;
1449 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1450 return -ENOMEM;
1451
1452 /* Item initialization follow here ... */
1453 INIT_LIST_HEAD(&epi->rdllink);
1454 epi->ep = ep;
1455 ep_set_ffd(&epi->ffd, tfile, fd);
1456 epi->event = *event;
1457 epi->next = EP_UNACTIVE_PTR;
1458
1459 if (tep)
1460 mutex_lock_nested(&tep->mtx, 1);
1461 /* Add the current item to the list of active epoll hook for this file */
1462 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1463 kmem_cache_free(epi_cache, epi);
1464 if (tep)
1465 mutex_unlock(&tep->mtx);
1466 return -ENOMEM;
1467 }
1468
1469 if (full_check && !tep)
1470 list_file(tfile);
1471
1472 atomic_long_inc(&ep->user->epoll_watches);
1473
1474 /*
1475 * Add the current item to the RB tree. All RB tree operations are
1476 * protected by "mtx", and ep_insert() is called with "mtx" held.
1477 */
1478 ep_rbtree_insert(ep, epi);
1479 if (tep)
1480 mutex_unlock(&tep->mtx);
1481
1482 /* now check if we've created too many backpaths */
1483 if (unlikely(full_check && reverse_path_check())) {
1484 ep_remove(ep, epi);
1485 return -EINVAL;
1486 }
1487
1488 if (epi->event.events & EPOLLWAKEUP) {
1489 error = ep_create_wakeup_source(epi);
1490 if (error) {
1491 ep_remove(ep, epi);
1492 return error;
1493 }
1494 }
1495
1496 /* Initialize the poll table using the queue callback */
1497 epq.epi = epi;
1498 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1499
1500 /*
1501 * Attach the item to the poll hooks and get current event bits.
1502 * We can safely use the file* here because its usage count has
1503 * been increased by the caller of this function. Note that after
1504 * this operation completes, the poll callback can start hitting
1505 * the new item.
1506 */
1507 revents = ep_item_poll(epi, &epq.pt, 1);
1508
1509 /*
1510 * We have to check if something went wrong during the poll wait queue
1511 * install process. Namely an allocation for a wait queue failed due
1512 * high memory pressure.
1513 */
1514 if (unlikely(!epq.epi)) {
1515 ep_remove(ep, epi);
1516 return -ENOMEM;
1517 }
1518
1519 /* We have to drop the new item inside our item list to keep track of it */
1520 write_lock_irq(&ep->lock);
1521
1522 /* record NAPI ID of new item if present */
1523 ep_set_busy_poll_napi_id(epi);
1524
1525 /* If the file is already "ready" we drop it inside the ready list */
1526 if (revents && !ep_is_linked(epi)) {
1527 list_add_tail(&epi->rdllink, &ep->rdllist);
1528 ep_pm_stay_awake(epi);
1529
1530 /* Notify waiting tasks that events are available */
1531 if (waitqueue_active(&ep->wq))
1532 wake_up(&ep->wq);
1533 if (waitqueue_active(&ep->poll_wait))
1534 pwake++;
1535 }
1536
1537 write_unlock_irq(&ep->lock);
1538
1539 /* We have to call this outside the lock */
1540 if (pwake)
1541 ep_poll_safewake(ep, NULL);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Modify the interest event mask by dropping an event if the new mask
1548 * has a match in the current file status. Must be called with "mtx" held.
1549 */
1550 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551 const struct epoll_event *event)
1552 {
1553 int pwake = 0;
1554 poll_table pt;
1555
1556 lockdep_assert_irqs_enabled();
1557
1558 init_poll_funcptr(&pt, NULL);
1559
1560 /*
1561 * Set the new event interest mask before calling f_op->poll();
1562 * otherwise we might miss an event that happens between the
1563 * f_op->poll() call and the new event set registering.
1564 */
1565 epi->event.events = event->events; /* need barrier below */
1566 epi->event.data = event->data; /* protected by mtx */
1567 if (epi->event.events & EPOLLWAKEUP) {
1568 if (!ep_has_wakeup_source(epi))
1569 ep_create_wakeup_source(epi);
1570 } else if (ep_has_wakeup_source(epi)) {
1571 ep_destroy_wakeup_source(epi);
1572 }
1573
1574 /*
1575 * The following barrier has two effects:
1576 *
1577 * 1) Flush epi changes above to other CPUs. This ensures
1578 * we do not miss events from ep_poll_callback if an
1579 * event occurs immediately after we call f_op->poll().
1580 * We need this because we did not take ep->lock while
1581 * changing epi above (but ep_poll_callback does take
1582 * ep->lock).
1583 *
1584 * 2) We also need to ensure we do not miss _past_ events
1585 * when calling f_op->poll(). This barrier also
1586 * pairs with the barrier in wq_has_sleeper (see
1587 * comments for wq_has_sleeper).
1588 *
1589 * This barrier will now guarantee ep_poll_callback or f_op->poll
1590 * (or both) will notice the readiness of an item.
1591 */
1592 smp_mb();
1593
1594 /*
1595 * Get current event bits. We can safely use the file* here because
1596 * its usage count has been increased by the caller of this function.
1597 * If the item is "hot" and it is not registered inside the ready
1598 * list, push it inside.
1599 */
1600 if (ep_item_poll(epi, &pt, 1)) {
1601 write_lock_irq(&ep->lock);
1602 if (!ep_is_linked(epi)) {
1603 list_add_tail(&epi->rdllink, &ep->rdllist);
1604 ep_pm_stay_awake(epi);
1605
1606 /* Notify waiting tasks that events are available */
1607 if (waitqueue_active(&ep->wq))
1608 wake_up(&ep->wq);
1609 if (waitqueue_active(&ep->poll_wait))
1610 pwake++;
1611 }
1612 write_unlock_irq(&ep->lock);
1613 }
1614
1615 /* We have to call this outside the lock */
1616 if (pwake)
1617 ep_poll_safewake(ep, NULL);
1618
1619 return 0;
1620 }
1621
1622 static int ep_send_events(struct eventpoll *ep,
1623 struct epoll_event __user *events, int maxevents)
1624 {
1625 struct epitem *epi, *tmp;
1626 LIST_HEAD(txlist);
1627 poll_table pt;
1628 int res = 0;
1629
1630 /*
1631 * Always short-circuit for fatal signals to allow threads to make a
1632 * timely exit without the chance of finding more events available and
1633 * fetching repeatedly.
1634 */
1635 if (fatal_signal_pending(current))
1636 return -EINTR;
1637
1638 init_poll_funcptr(&pt, NULL);
1639
1640 mutex_lock(&ep->mtx);
1641 ep_start_scan(ep, &txlist);
1642
1643 /*
1644 * We can loop without lock because we are passed a task private list.
1645 * Items cannot vanish during the loop we are holding ep->mtx.
1646 */
1647 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1648 struct wakeup_source *ws;
1649 __poll_t revents;
1650
1651 if (res >= maxevents)
1652 break;
1653
1654 /*
1655 * Activate ep->ws before deactivating epi->ws to prevent
1656 * triggering auto-suspend here (in case we reactive epi->ws
1657 * below).
1658 *
1659 * This could be rearranged to delay the deactivation of epi->ws
1660 * instead, but then epi->ws would temporarily be out of sync
1661 * with ep_is_linked().
1662 */
1663 ws = ep_wakeup_source(epi);
1664 if (ws) {
1665 if (ws->active)
1666 __pm_stay_awake(ep->ws);
1667 __pm_relax(ws);
1668 }
1669
1670 list_del_init(&epi->rdllink);
1671
1672 /*
1673 * If the event mask intersect the caller-requested one,
1674 * deliver the event to userspace. Again, we are holding ep->mtx,
1675 * so no operations coming from userspace can change the item.
1676 */
1677 revents = ep_item_poll(epi, &pt, 1);
1678 if (!revents)
1679 continue;
1680
1681 if (__put_user(revents, &events->events) ||
1682 __put_user(epi->event.data, &events->data)) {
1683 list_add(&epi->rdllink, &txlist);
1684 ep_pm_stay_awake(epi);
1685 if (!res)
1686 res = -EFAULT;
1687 break;
1688 }
1689 res++;
1690 events++;
1691 if (epi->event.events & EPOLLONESHOT)
1692 epi->event.events &= EP_PRIVATE_BITS;
1693 else if (!(epi->event.events & EPOLLET)) {
1694 /*
1695 * If this file has been added with Level
1696 * Trigger mode, we need to insert back inside
1697 * the ready list, so that the next call to
1698 * epoll_wait() will check again the events
1699 * availability. At this point, no one can insert
1700 * into ep->rdllist besides us. The epoll_ctl()
1701 * callers are locked out by
1702 * ep_scan_ready_list() holding "mtx" and the
1703 * poll callback will queue them in ep->ovflist.
1704 */
1705 list_add_tail(&epi->rdllink, &ep->rdllist);
1706 ep_pm_stay_awake(epi);
1707 }
1708 }
1709 ep_done_scan(ep, &txlist);
1710 mutex_unlock(&ep->mtx);
1711
1712 return res;
1713 }
1714
1715 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1716 {
1717 struct timespec64 now;
1718
1719 if (ms < 0)
1720 return NULL;
1721
1722 if (!ms) {
1723 to->tv_sec = 0;
1724 to->tv_nsec = 0;
1725 return to;
1726 }
1727
1728 to->tv_sec = ms / MSEC_PER_SEC;
1729 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1730
1731 ktime_get_ts64(&now);
1732 *to = timespec64_add_safe(now, *to);
1733 return to;
1734 }
1735
1736 /**
1737 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1738 * event buffer.
1739 *
1740 * @ep: Pointer to the eventpoll context.
1741 * @events: Pointer to the userspace buffer where the ready events should be
1742 * stored.
1743 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1744 * @timeout: Maximum timeout for the ready events fetch operation, in
1745 * timespec. If the timeout is zero, the function will not block,
1746 * while if the @timeout ptr is NULL, the function will block
1747 * until at least one event has been retrieved (or an error
1748 * occurred).
1749 *
1750 * Returns: Returns the number of ready events which have been fetched, or an
1751 * error code, in case of error.
1752 */
1753 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1754 int maxevents, struct timespec64 *timeout)
1755 {
1756 int res, eavail, timed_out = 0;
1757 u64 slack = 0;
1758 wait_queue_entry_t wait;
1759 ktime_t expires, *to = NULL;
1760
1761 lockdep_assert_irqs_enabled();
1762
1763 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1764 slack = select_estimate_accuracy(timeout);
1765 to = &expires;
1766 *to = timespec64_to_ktime(*timeout);
1767 } else if (timeout) {
1768 /*
1769 * Avoid the unnecessary trip to the wait queue loop, if the
1770 * caller specified a non blocking operation.
1771 */
1772 timed_out = 1;
1773 }
1774
1775 /*
1776 * This call is racy: We may or may not see events that are being added
1777 * to the ready list under the lock (e.g., in IRQ callbacks). For, cases
1778 * with a non-zero timeout, this thread will check the ready list under
1779 * lock and will added to the wait queue. For, cases with a zero
1780 * timeout, the user by definition should not care and will have to
1781 * recheck again.
1782 */
1783 eavail = ep_events_available(ep);
1784
1785 while (1) {
1786 if (eavail) {
1787 /*
1788 * Try to transfer events to user space. In case we get
1789 * 0 events and there's still timeout left over, we go
1790 * trying again in search of more luck.
1791 */
1792 res = ep_send_events(ep, events, maxevents);
1793 if (res)
1794 return res;
1795 }
1796
1797 if (timed_out)
1798 return 0;
1799
1800 eavail = ep_busy_loop(ep, timed_out);
1801 if (eavail)
1802 continue;
1803
1804 if (signal_pending(current))
1805 return -EINTR;
1806
1807 /*
1808 * Internally init_wait() uses autoremove_wake_function(),
1809 * thus wait entry is removed from the wait queue on each
1810 * wakeup. Why it is important? In case of several waiters
1811 * each new wakeup will hit the next waiter, giving it the
1812 * chance to harvest new event. Otherwise wakeup can be
1813 * lost. This is also good performance-wise, because on
1814 * normal wakeup path no need to call __remove_wait_queue()
1815 * explicitly, thus ep->lock is not taken, which halts the
1816 * event delivery.
1817 */
1818 init_wait(&wait);
1819
1820 write_lock_irq(&ep->lock);
1821 /*
1822 * Barrierless variant, waitqueue_active() is called under
1823 * the same lock on wakeup ep_poll_callback() side, so it
1824 * is safe to avoid an explicit barrier.
1825 */
1826 __set_current_state(TASK_INTERRUPTIBLE);
1827
1828 /*
1829 * Do the final check under the lock. ep_scan_ready_list()
1830 * plays with two lists (->rdllist and ->ovflist) and there
1831 * is always a race when both lists are empty for short
1832 * period of time although events are pending, so lock is
1833 * important.
1834 */
1835 eavail = ep_events_available(ep);
1836 if (!eavail)
1837 __add_wait_queue_exclusive(&ep->wq, &wait);
1838
1839 write_unlock_irq(&ep->lock);
1840
1841 if (!eavail)
1842 timed_out = !schedule_hrtimeout_range(to, slack,
1843 HRTIMER_MODE_ABS);
1844 __set_current_state(TASK_RUNNING);
1845
1846 /*
1847 * We were woken up, thus go and try to harvest some events.
1848 * If timed out and still on the wait queue, recheck eavail
1849 * carefully under lock, below.
1850 */
1851 eavail = 1;
1852
1853 if (!list_empty_careful(&wait.entry)) {
1854 write_lock_irq(&ep->lock);
1855 /*
1856 * If the thread timed out and is not on the wait queue,
1857 * it means that the thread was woken up after its
1858 * timeout expired before it could reacquire the lock.
1859 * Thus, when wait.entry is empty, it needs to harvest
1860 * events.
1861 */
1862 if (timed_out)
1863 eavail = list_empty(&wait.entry);
1864 __remove_wait_queue(&ep->wq, &wait);
1865 write_unlock_irq(&ep->lock);
1866 }
1867 }
1868 }
1869
1870 /**
1871 * ep_loop_check_proc - verify that adding an epoll file inside another
1872 * epoll structure, does not violate the constraints, in
1873 * terms of closed loops, or too deep chains (which can
1874 * result in excessive stack usage).
1875 *
1876 * @priv: Pointer to the epoll file to be currently checked.
1877 * @depth: Current depth of the path being checked.
1878 *
1879 * Returns: Returns zero if adding the epoll @file inside current epoll
1880 * structure @ep does not violate the constraints, or -1 otherwise.
1881 */
1882 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1883 {
1884 int error = 0;
1885 struct rb_node *rbp;
1886 struct epitem *epi;
1887
1888 mutex_lock_nested(&ep->mtx, depth + 1);
1889 ep->gen = loop_check_gen;
1890 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1891 epi = rb_entry(rbp, struct epitem, rbn);
1892 if (unlikely(is_file_epoll(epi->ffd.file))) {
1893 struct eventpoll *ep_tovisit;
1894 ep_tovisit = epi->ffd.file->private_data;
1895 if (ep_tovisit->gen == loop_check_gen)
1896 continue;
1897 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1898 error = -1;
1899 else
1900 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1901 if (error != 0)
1902 break;
1903 } else {
1904 /*
1905 * If we've reached a file that is not associated with
1906 * an ep, then we need to check if the newly added
1907 * links are going to add too many wakeup paths. We do
1908 * this by adding it to the tfile_check_list, if it's
1909 * not already there, and calling reverse_path_check()
1910 * during ep_insert().
1911 */
1912 list_file(epi->ffd.file);
1913 }
1914 }
1915 mutex_unlock(&ep->mtx);
1916
1917 return error;
1918 }
1919
1920 /**
1921 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1922 * into another epoll file (represented by @from) does not create
1923 * closed loops or too deep chains.
1924 *
1925 * @from: Pointer to the epoll we are inserting into.
1926 * @to: Pointer to the epoll to be inserted.
1927 *
1928 * Returns: Returns zero if adding the epoll @to inside the epoll @from
1929 * does not violate the constraints, or -1 otherwise.
1930 */
1931 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1932 {
1933 inserting_into = ep;
1934 return ep_loop_check_proc(to, 0);
1935 }
1936
1937 static void clear_tfile_check_list(void)
1938 {
1939 rcu_read_lock();
1940 while (tfile_check_list != EP_UNACTIVE_PTR) {
1941 struct epitems_head *head = tfile_check_list;
1942 tfile_check_list = head->next;
1943 unlist_file(head);
1944 }
1945 rcu_read_unlock();
1946 }
1947
1948 /*
1949 * Open an eventpoll file descriptor.
1950 */
1951 static int do_epoll_create(int flags)
1952 {
1953 int error, fd;
1954 struct eventpoll *ep = NULL;
1955 struct file *file;
1956
1957 /* Check the EPOLL_* constant for consistency. */
1958 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1959
1960 if (flags & ~EPOLL_CLOEXEC)
1961 return -EINVAL;
1962 /*
1963 * Create the internal data structure ("struct eventpoll").
1964 */
1965 error = ep_alloc(&ep);
1966 if (error < 0)
1967 return error;
1968 /*
1969 * Creates all the items needed to setup an eventpoll file. That is,
1970 * a file structure and a free file descriptor.
1971 */
1972 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1973 if (fd < 0) {
1974 error = fd;
1975 goto out_free_ep;
1976 }
1977 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1978 O_RDWR | (flags & O_CLOEXEC));
1979 if (IS_ERR(file)) {
1980 error = PTR_ERR(file);
1981 goto out_free_fd;
1982 }
1983 ep->file = file;
1984 fd_install(fd, file);
1985 return fd;
1986
1987 out_free_fd:
1988 put_unused_fd(fd);
1989 out_free_ep:
1990 ep_free(ep);
1991 return error;
1992 }
1993
1994 SYSCALL_DEFINE1(epoll_create1, int, flags)
1995 {
1996 return do_epoll_create(flags);
1997 }
1998
1999 SYSCALL_DEFINE1(epoll_create, int, size)
2000 {
2001 if (size <= 0)
2002 return -EINVAL;
2003
2004 return do_epoll_create(0);
2005 }
2006
2007 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2008 bool nonblock)
2009 {
2010 if (!nonblock) {
2011 mutex_lock_nested(mutex, depth);
2012 return 0;
2013 }
2014 if (mutex_trylock(mutex))
2015 return 0;
2016 return -EAGAIN;
2017 }
2018
2019 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2020 bool nonblock)
2021 {
2022 int error;
2023 int full_check = 0;
2024 struct fd f, tf;
2025 struct eventpoll *ep;
2026 struct epitem *epi;
2027 struct eventpoll *tep = NULL;
2028
2029 error = -EBADF;
2030 f = fdget(epfd);
2031 if (!f.file)
2032 goto error_return;
2033
2034 /* Get the "struct file *" for the target file */
2035 tf = fdget(fd);
2036 if (!tf.file)
2037 goto error_fput;
2038
2039 /* The target file descriptor must support poll */
2040 error = -EPERM;
2041 if (!file_can_poll(tf.file))
2042 goto error_tgt_fput;
2043
2044 /* Check if EPOLLWAKEUP is allowed */
2045 if (ep_op_has_event(op))
2046 ep_take_care_of_epollwakeup(epds);
2047
2048 /*
2049 * We have to check that the file structure underneath the file descriptor
2050 * the user passed to us _is_ an eventpoll file. And also we do not permit
2051 * adding an epoll file descriptor inside itself.
2052 */
2053 error = -EINVAL;
2054 if (f.file == tf.file || !is_file_epoll(f.file))
2055 goto error_tgt_fput;
2056
2057 /*
2058 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2059 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2060 * Also, we do not currently supported nested exclusive wakeups.
2061 */
2062 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2063 if (op == EPOLL_CTL_MOD)
2064 goto error_tgt_fput;
2065 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2066 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2067 goto error_tgt_fput;
2068 }
2069
2070 /*
2071 * At this point it is safe to assume that the "private_data" contains
2072 * our own data structure.
2073 */
2074 ep = f.file->private_data;
2075
2076 /*
2077 * When we insert an epoll file descriptor, inside another epoll file
2078 * descriptor, there is the change of creating closed loops, which are
2079 * better be handled here, than in more critical paths. While we are
2080 * checking for loops we also determine the list of files reachable
2081 * and hang them on the tfile_check_list, so we can check that we
2082 * haven't created too many possible wakeup paths.
2083 *
2084 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2085 * the epoll file descriptor is attaching directly to a wakeup source,
2086 * unless the epoll file descriptor is nested. The purpose of taking the
2087 * 'epmutex' on add is to prevent complex toplogies such as loops and
2088 * deep wakeup paths from forming in parallel through multiple
2089 * EPOLL_CTL_ADD operations.
2090 */
2091 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2092 if (error)
2093 goto error_tgt_fput;
2094 if (op == EPOLL_CTL_ADD) {
2095 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2096 is_file_epoll(tf.file)) {
2097 mutex_unlock(&ep->mtx);
2098 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2099 if (error)
2100 goto error_tgt_fput;
2101 loop_check_gen++;
2102 full_check = 1;
2103 if (is_file_epoll(tf.file)) {
2104 tep = tf.file->private_data;
2105 error = -ELOOP;
2106 if (ep_loop_check(ep, tep) != 0)
2107 goto error_tgt_fput;
2108 }
2109 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2110 if (error)
2111 goto error_tgt_fput;
2112 }
2113 }
2114
2115 /*
2116 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2117 * above, we can be sure to be able to use the item looked up by
2118 * ep_find() till we release the mutex.
2119 */
2120 epi = ep_find(ep, tf.file, fd);
2121
2122 error = -EINVAL;
2123 switch (op) {
2124 case EPOLL_CTL_ADD:
2125 if (!epi) {
2126 epds->events |= EPOLLERR | EPOLLHUP;
2127 error = ep_insert(ep, epds, tf.file, fd, full_check);
2128 } else
2129 error = -EEXIST;
2130 break;
2131 case EPOLL_CTL_DEL:
2132 if (epi)
2133 error = ep_remove(ep, epi);
2134 else
2135 error = -ENOENT;
2136 break;
2137 case EPOLL_CTL_MOD:
2138 if (epi) {
2139 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2140 epds->events |= EPOLLERR | EPOLLHUP;
2141 error = ep_modify(ep, epi, epds);
2142 }
2143 } else
2144 error = -ENOENT;
2145 break;
2146 }
2147 mutex_unlock(&ep->mtx);
2148
2149 error_tgt_fput:
2150 if (full_check) {
2151 clear_tfile_check_list();
2152 loop_check_gen++;
2153 mutex_unlock(&epmutex);
2154 }
2155
2156 fdput(tf);
2157 error_fput:
2158 fdput(f);
2159 error_return:
2160
2161 return error;
2162 }
2163
2164 /*
2165 * The following function implements the controller interface for
2166 * the eventpoll file that enables the insertion/removal/change of
2167 * file descriptors inside the interest set.
2168 */
2169 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2170 struct epoll_event __user *, event)
2171 {
2172 struct epoll_event epds;
2173
2174 if (ep_op_has_event(op) &&
2175 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2176 return -EFAULT;
2177
2178 return do_epoll_ctl(epfd, op, fd, &epds, false);
2179 }
2180
2181 /*
2182 * Implement the event wait interface for the eventpoll file. It is the kernel
2183 * part of the user space epoll_wait(2).
2184 */
2185 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2186 int maxevents, struct timespec64 *to)
2187 {
2188 int error;
2189 struct fd f;
2190 struct eventpoll *ep;
2191
2192 /* The maximum number of event must be greater than zero */
2193 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2194 return -EINVAL;
2195
2196 /* Verify that the area passed by the user is writeable */
2197 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2198 return -EFAULT;
2199
2200 /* Get the "struct file *" for the eventpoll file */
2201 f = fdget(epfd);
2202 if (!f.file)
2203 return -EBADF;
2204
2205 /*
2206 * We have to check that the file structure underneath the fd
2207 * the user passed to us _is_ an eventpoll file.
2208 */
2209 error = -EINVAL;
2210 if (!is_file_epoll(f.file))
2211 goto error_fput;
2212
2213 /*
2214 * At this point it is safe to assume that the "private_data" contains
2215 * our own data structure.
2216 */
2217 ep = f.file->private_data;
2218
2219 /* Time to fish for events ... */
2220 error = ep_poll(ep, events, maxevents, to);
2221
2222 error_fput:
2223 fdput(f);
2224 return error;
2225 }
2226
2227 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2228 int, maxevents, int, timeout)
2229 {
2230 struct timespec64 to;
2231
2232 return do_epoll_wait(epfd, events, maxevents,
2233 ep_timeout_to_timespec(&to, timeout));
2234 }
2235
2236 /*
2237 * Implement the event wait interface for the eventpoll file. It is the kernel
2238 * part of the user space epoll_pwait(2).
2239 */
2240 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2241 int maxevents, struct timespec64 *to,
2242 const sigset_t __user *sigmask, size_t sigsetsize)
2243 {
2244 int error;
2245
2246 /*
2247 * If the caller wants a certain signal mask to be set during the wait,
2248 * we apply it here.
2249 */
2250 error = set_user_sigmask(sigmask, sigsetsize);
2251 if (error)
2252 return error;
2253
2254 error = do_epoll_wait(epfd, events, maxevents, to);
2255
2256 restore_saved_sigmask_unless(error == -EINTR);
2257
2258 return error;
2259 }
2260
2261 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2262 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2263 size_t, sigsetsize)
2264 {
2265 struct timespec64 to;
2266
2267 return do_epoll_pwait(epfd, events, maxevents,
2268 ep_timeout_to_timespec(&to, timeout),
2269 sigmask, sigsetsize);
2270 }
2271
2272 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2273 int, maxevents, const struct __kernel_timespec __user *, timeout,
2274 const sigset_t __user *, sigmask, size_t, sigsetsize)
2275 {
2276 struct timespec64 ts, *to = NULL;
2277
2278 if (timeout) {
2279 if (get_timespec64(&ts, timeout))
2280 return -EFAULT;
2281 to = &ts;
2282 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2283 return -EINVAL;
2284 }
2285
2286 return do_epoll_pwait(epfd, events, maxevents, to,
2287 sigmask, sigsetsize);
2288 }
2289
2290 #ifdef CONFIG_COMPAT
2291 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2292 int maxevents, struct timespec64 *timeout,
2293 const compat_sigset_t __user *sigmask,
2294 compat_size_t sigsetsize)
2295 {
2296 long err;
2297
2298 /*
2299 * If the caller wants a certain signal mask to be set during the wait,
2300 * we apply it here.
2301 */
2302 err = set_compat_user_sigmask(sigmask, sigsetsize);
2303 if (err)
2304 return err;
2305
2306 err = do_epoll_wait(epfd, events, maxevents, timeout);
2307
2308 restore_saved_sigmask_unless(err == -EINTR);
2309
2310 return err;
2311 }
2312
2313 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2314 struct epoll_event __user *, events,
2315 int, maxevents, int, timeout,
2316 const compat_sigset_t __user *, sigmask,
2317 compat_size_t, sigsetsize)
2318 {
2319 struct timespec64 to;
2320
2321 return do_compat_epoll_pwait(epfd, events, maxevents,
2322 ep_timeout_to_timespec(&to, timeout),
2323 sigmask, sigsetsize);
2324 }
2325
2326 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2327 struct epoll_event __user *, events,
2328 int, maxevents,
2329 const struct __kernel_timespec __user *, timeout,
2330 const compat_sigset_t __user *, sigmask,
2331 compat_size_t, sigsetsize)
2332 {
2333 struct timespec64 ts, *to = NULL;
2334
2335 if (timeout) {
2336 if (get_timespec64(&ts, timeout))
2337 return -EFAULT;
2338 to = &ts;
2339 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2340 return -EINVAL;
2341 }
2342
2343 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2344 sigmask, sigsetsize);
2345 }
2346
2347 #endif
2348
2349 static int __init eventpoll_init(void)
2350 {
2351 struct sysinfo si;
2352
2353 si_meminfo(&si);
2354 /*
2355 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2356 */
2357 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2358 EP_ITEM_COST;
2359 BUG_ON(max_user_watches < 0);
2360
2361 /*
2362 * We can have many thousands of epitems, so prevent this from
2363 * using an extra cache line on 64-bit (and smaller) CPUs
2364 */
2365 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2366
2367 /* Allocates slab cache used to allocate "struct epitem" items */
2368 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2369 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2370
2371 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2372 pwq_cache = kmem_cache_create("eventpoll_pwq",
2373 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2374
2375 ephead_cache = kmem_cache_create("ep_head",
2376 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2377
2378 return 0;
2379 }
2380 fs_initcall(eventpoll_init);