]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/eventpoll.c
Merge tag '6.3-rc2-smb3-client-fixes' of git://git.samba.org/sfrench/cifs-2.6
[thirdparty/linux.git] / fs / eventpoll.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
88 */
89
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
111
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
116
117 /* The "base" pointer is set to the container "struct epitem" */
118 struct epitem *base;
119
120 /*
121 * Wait queue item that will be linked to the target file wait
122 * queue head.
123 */
124 wait_queue_entry_t wait;
125
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
128 };
129
130 /*
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
135 */
136 struct epitem {
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
142 };
143
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
146
147 /*
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
150 */
151 struct epitem *next;
152
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
155
156 /* List containing poll wait queues */
157 struct eppoll_entry *pwqlist;
158
159 /* The "container" of this item */
160 struct eventpoll *ep;
161
162 /* List header used to link this item to the "struct file" items list */
163 struct hlist_node fllink;
164
165 /* wakeup_source used when EPOLLWAKEUP is set */
166 struct wakeup_source __rcu *ws;
167
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
170 };
171
172 /*
173 * This structure is stored inside the "private_data" member of the file
174 * structure and represents the main data structure for the eventpoll
175 * interface.
176 */
177 struct eventpoll {
178 /*
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
183 */
184 struct mutex mtx;
185
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
188
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
191
192 /* List of ready file descriptors */
193 struct list_head rdllist;
194
195 /* Lock which protects rdllist and ovflist */
196 rwlock_t lock;
197
198 /* RB tree root used to store monitored fd structs */
199 struct rb_root_cached rbr;
200
201 /*
202 * This is a single linked list that chains all the "struct epitem" that
203 * happened while transferring ready events to userspace w/out
204 * holding ->lock.
205 */
206 struct epitem *ovflist;
207
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
210
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
213
214 struct file *file;
215
216 /* used to optimize loop detection check */
217 u64 gen;
218 struct hlist_head refs;
219
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 /* used to track busy poll napi_id */
222 unsigned int napi_id;
223 #endif
224
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
227 u8 nests;
228 #endif
229 };
230
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 poll_table pt;
234 struct epitem *epi;
235 };
236
237 /*
238 * Configuration options available inside /proc/sys/fs/epoll/
239 */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242
243 /*
244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
245 */
246 static DEFINE_MUTEX(epmutex);
247
248 static u64 loop_check_gen = 0;
249
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258
259 /*
260 * List of files with newly added links, where we may need to limit the number
261 * of emanating paths. Protected by the epmutex.
262 */
263 struct epitems_head {
264 struct hlist_head epitems;
265 struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268
269 static struct kmem_cache *ephead_cache __read_mostly;
270
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 if (head)
274 kmem_cache_free(ephead_cache, head);
275 }
276
277 static void list_file(struct file *file)
278 {
279 struct epitems_head *head;
280
281 head = container_of(file->f_ep, struct epitems_head, epitems);
282 if (!head->next) {
283 head->next = tfile_check_list;
284 tfile_check_list = head;
285 }
286 }
287
288 static void unlist_file(struct epitems_head *head)
289 {
290 struct epitems_head *to_free = head;
291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 if (p) {
293 struct epitem *epi= container_of(p, struct epitem, fllink);
294 spin_lock(&epi->ffd.file->f_lock);
295 if (!hlist_empty(&head->epitems))
296 to_free = NULL;
297 head->next = NULL;
298 spin_unlock(&epi->ffd.file->f_lock);
299 }
300 free_ephead(to_free);
301 }
302
303 #ifdef CONFIG_SYSCTL
304
305 #include <linux/sysctl.h>
306
307 static long long_zero;
308 static long long_max = LONG_MAX;
309
310 static struct ctl_table epoll_table[] = {
311 {
312 .procname = "max_user_watches",
313 .data = &max_user_watches,
314 .maxlen = sizeof(max_user_watches),
315 .mode = 0644,
316 .proc_handler = proc_doulongvec_minmax,
317 .extra1 = &long_zero,
318 .extra2 = &long_max,
319 },
320 { }
321 };
322
323 static void __init epoll_sysctls_init(void)
324 {
325 register_sysctl("fs/epoll", epoll_table);
326 }
327 #else
328 #define epoll_sysctls_init() do { } while (0)
329 #endif /* CONFIG_SYSCTL */
330
331 static const struct file_operations eventpoll_fops;
332
333 static inline int is_file_epoll(struct file *f)
334 {
335 return f->f_op == &eventpoll_fops;
336 }
337
338 /* Setup the structure that is used as key for the RB tree */
339 static inline void ep_set_ffd(struct epoll_filefd *ffd,
340 struct file *file, int fd)
341 {
342 ffd->file = file;
343 ffd->fd = fd;
344 }
345
346 /* Compare RB tree keys */
347 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
348 struct epoll_filefd *p2)
349 {
350 return (p1->file > p2->file ? +1:
351 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
352 }
353
354 /* Tells us if the item is currently linked */
355 static inline int ep_is_linked(struct epitem *epi)
356 {
357 return !list_empty(&epi->rdllink);
358 }
359
360 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
361 {
362 return container_of(p, struct eppoll_entry, wait);
363 }
364
365 /* Get the "struct epitem" from a wait queue pointer */
366 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
367 {
368 return container_of(p, struct eppoll_entry, wait)->base;
369 }
370
371 /**
372 * ep_events_available - Checks if ready events might be available.
373 *
374 * @ep: Pointer to the eventpoll context.
375 *
376 * Return: a value different than %zero if ready events are available,
377 * or %zero otherwise.
378 */
379 static inline int ep_events_available(struct eventpoll *ep)
380 {
381 return !list_empty_careful(&ep->rdllist) ||
382 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
383 }
384
385 #ifdef CONFIG_NET_RX_BUSY_POLL
386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 {
388 struct eventpoll *ep = p;
389
390 return ep_events_available(ep) || busy_loop_timeout(start_time);
391 }
392
393 /*
394 * Busy poll if globally on and supporting sockets found && no events,
395 * busy loop will return if need_resched or ep_events_available.
396 *
397 * we must do our busy polling with irqs enabled
398 */
399 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
400 {
401 unsigned int napi_id = READ_ONCE(ep->napi_id);
402
403 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
404 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
405 BUSY_POLL_BUDGET);
406 if (ep_events_available(ep))
407 return true;
408 /*
409 * Busy poll timed out. Drop NAPI ID for now, we can add
410 * it back in when we have moved a socket with a valid NAPI
411 * ID onto the ready list.
412 */
413 ep->napi_id = 0;
414 return false;
415 }
416 return false;
417 }
418
419 /*
420 * Set epoll busy poll NAPI ID from sk.
421 */
422 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
423 {
424 struct eventpoll *ep;
425 unsigned int napi_id;
426 struct socket *sock;
427 struct sock *sk;
428
429 if (!net_busy_loop_on())
430 return;
431
432 sock = sock_from_file(epi->ffd.file);
433 if (!sock)
434 return;
435
436 sk = sock->sk;
437 if (!sk)
438 return;
439
440 napi_id = READ_ONCE(sk->sk_napi_id);
441 ep = epi->ep;
442
443 /* Non-NAPI IDs can be rejected
444 * or
445 * Nothing to do if we already have this ID
446 */
447 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
448 return;
449
450 /* record NAPI ID for use in next busy poll */
451 ep->napi_id = napi_id;
452 }
453
454 #else
455
456 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
457 {
458 return false;
459 }
460
461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
462 {
463 }
464
465 #endif /* CONFIG_NET_RX_BUSY_POLL */
466
467 /*
468 * As described in commit 0ccf831cb lockdep: annotate epoll
469 * the use of wait queues used by epoll is done in a very controlled
470 * manner. Wake ups can nest inside each other, but are never done
471 * with the same locking. For example:
472 *
473 * dfd = socket(...);
474 * efd1 = epoll_create();
475 * efd2 = epoll_create();
476 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
477 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
478 *
479 * When a packet arrives to the device underneath "dfd", the net code will
480 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
481 * callback wakeup entry on that queue, and the wake_up() performed by the
482 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
483 * (efd1) notices that it may have some event ready, so it needs to wake up
484 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
485 * that ends up in another wake_up(), after having checked about the
486 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
487 * avoid stack blasting.
488 *
489 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
490 * this special case of epoll.
491 */
492 #ifdef CONFIG_DEBUG_LOCK_ALLOC
493
494 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
495 unsigned pollflags)
496 {
497 struct eventpoll *ep_src;
498 unsigned long flags;
499 u8 nests = 0;
500
501 /*
502 * To set the subclass or nesting level for spin_lock_irqsave_nested()
503 * it might be natural to create a per-cpu nest count. However, since
504 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
505 * schedule() in the -rt kernel, the per-cpu variable are no longer
506 * protected. Thus, we are introducing a per eventpoll nest field.
507 * If we are not being call from ep_poll_callback(), epi is NULL and
508 * we are at the first level of nesting, 0. Otherwise, we are being
509 * called from ep_poll_callback() and if a previous wakeup source is
510 * not an epoll file itself, we are at depth 1 since the wakeup source
511 * is depth 0. If the wakeup source is a previous epoll file in the
512 * wakeup chain then we use its nests value and record ours as
513 * nests + 1. The previous epoll file nests value is stable since its
514 * already holding its own poll_wait.lock.
515 */
516 if (epi) {
517 if ((is_file_epoll(epi->ffd.file))) {
518 ep_src = epi->ffd.file->private_data;
519 nests = ep_src->nests;
520 } else {
521 nests = 1;
522 }
523 }
524 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
525 ep->nests = nests + 1;
526 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
527 ep->nests = 0;
528 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
529 }
530
531 #else
532
533 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
534 unsigned pollflags)
535 {
536 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
537 }
538
539 #endif
540
541 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
542 {
543 wait_queue_head_t *whead;
544
545 rcu_read_lock();
546 /*
547 * If it is cleared by POLLFREE, it should be rcu-safe.
548 * If we read NULL we need a barrier paired with
549 * smp_store_release() in ep_poll_callback(), otherwise
550 * we rely on whead->lock.
551 */
552 whead = smp_load_acquire(&pwq->whead);
553 if (whead)
554 remove_wait_queue(whead, &pwq->wait);
555 rcu_read_unlock();
556 }
557
558 /*
559 * This function unregisters poll callbacks from the associated file
560 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
561 * ep_free).
562 */
563 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
564 {
565 struct eppoll_entry **p = &epi->pwqlist;
566 struct eppoll_entry *pwq;
567
568 while ((pwq = *p) != NULL) {
569 *p = pwq->next;
570 ep_remove_wait_queue(pwq);
571 kmem_cache_free(pwq_cache, pwq);
572 }
573 }
574
575 /* call only when ep->mtx is held */
576 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
577 {
578 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
579 }
580
581 /* call only when ep->mtx is held */
582 static inline void ep_pm_stay_awake(struct epitem *epi)
583 {
584 struct wakeup_source *ws = ep_wakeup_source(epi);
585
586 if (ws)
587 __pm_stay_awake(ws);
588 }
589
590 static inline bool ep_has_wakeup_source(struct epitem *epi)
591 {
592 return rcu_access_pointer(epi->ws) ? true : false;
593 }
594
595 /* call when ep->mtx cannot be held (ep_poll_callback) */
596 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
597 {
598 struct wakeup_source *ws;
599
600 rcu_read_lock();
601 ws = rcu_dereference(epi->ws);
602 if (ws)
603 __pm_stay_awake(ws);
604 rcu_read_unlock();
605 }
606
607
608 /*
609 * ep->mutex needs to be held because we could be hit by
610 * eventpoll_release_file() and epoll_ctl().
611 */
612 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
613 {
614 /*
615 * Steal the ready list, and re-init the original one to the
616 * empty list. Also, set ep->ovflist to NULL so that events
617 * happening while looping w/out locks, are not lost. We cannot
618 * have the poll callback to queue directly on ep->rdllist,
619 * because we want the "sproc" callback to be able to do it
620 * in a lockless way.
621 */
622 lockdep_assert_irqs_enabled();
623 write_lock_irq(&ep->lock);
624 list_splice_init(&ep->rdllist, txlist);
625 WRITE_ONCE(ep->ovflist, NULL);
626 write_unlock_irq(&ep->lock);
627 }
628
629 static void ep_done_scan(struct eventpoll *ep,
630 struct list_head *txlist)
631 {
632 struct epitem *epi, *nepi;
633
634 write_lock_irq(&ep->lock);
635 /*
636 * During the time we spent inside the "sproc" callback, some
637 * other events might have been queued by the poll callback.
638 * We re-insert them inside the main ready-list here.
639 */
640 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
641 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
642 /*
643 * We need to check if the item is already in the list.
644 * During the "sproc" callback execution time, items are
645 * queued into ->ovflist but the "txlist" might already
646 * contain them, and the list_splice() below takes care of them.
647 */
648 if (!ep_is_linked(epi)) {
649 /*
650 * ->ovflist is LIFO, so we have to reverse it in order
651 * to keep in FIFO.
652 */
653 list_add(&epi->rdllink, &ep->rdllist);
654 ep_pm_stay_awake(epi);
655 }
656 }
657 /*
658 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 * releasing the lock, events will be queued in the normal way inside
660 * ep->rdllist.
661 */
662 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
663
664 /*
665 * Quickly re-inject items left on "txlist".
666 */
667 list_splice(txlist, &ep->rdllist);
668 __pm_relax(ep->ws);
669
670 if (!list_empty(&ep->rdllist)) {
671 if (waitqueue_active(&ep->wq))
672 wake_up(&ep->wq);
673 }
674
675 write_unlock_irq(&ep->lock);
676 }
677
678 static void epi_rcu_free(struct rcu_head *head)
679 {
680 struct epitem *epi = container_of(head, struct epitem, rcu);
681 kmem_cache_free(epi_cache, epi);
682 }
683
684 /*
685 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
686 * all the associated resources. Must be called with "mtx" held.
687 */
688 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
689 {
690 struct file *file = epi->ffd.file;
691 struct epitems_head *to_free;
692 struct hlist_head *head;
693
694 lockdep_assert_irqs_enabled();
695
696 /*
697 * Removes poll wait queue hooks.
698 */
699 ep_unregister_pollwait(ep, epi);
700
701 /* Remove the current item from the list of epoll hooks */
702 spin_lock(&file->f_lock);
703 to_free = NULL;
704 head = file->f_ep;
705 if (head->first == &epi->fllink && !epi->fllink.next) {
706 file->f_ep = NULL;
707 if (!is_file_epoll(file)) {
708 struct epitems_head *v;
709 v = container_of(head, struct epitems_head, epitems);
710 if (!smp_load_acquire(&v->next))
711 to_free = v;
712 }
713 }
714 hlist_del_rcu(&epi->fllink);
715 spin_unlock(&file->f_lock);
716 free_ephead(to_free);
717
718 rb_erase_cached(&epi->rbn, &ep->rbr);
719
720 write_lock_irq(&ep->lock);
721 if (ep_is_linked(epi))
722 list_del_init(&epi->rdllink);
723 write_unlock_irq(&ep->lock);
724
725 wakeup_source_unregister(ep_wakeup_source(epi));
726 /*
727 * At this point it is safe to free the eventpoll item. Use the union
728 * field epi->rcu, since we are trying to minimize the size of
729 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
730 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
731 * use of the rbn field.
732 */
733 call_rcu(&epi->rcu, epi_rcu_free);
734
735 percpu_counter_dec(&ep->user->epoll_watches);
736
737 return 0;
738 }
739
740 static void ep_free(struct eventpoll *ep)
741 {
742 struct rb_node *rbp;
743 struct epitem *epi;
744
745 /* We need to release all tasks waiting for these file */
746 if (waitqueue_active(&ep->poll_wait))
747 ep_poll_safewake(ep, NULL, 0);
748
749 /*
750 * We need to lock this because we could be hit by
751 * eventpoll_release_file() while we're freeing the "struct eventpoll".
752 * We do not need to hold "ep->mtx" here because the epoll file
753 * is on the way to be removed and no one has references to it
754 * anymore. The only hit might come from eventpoll_release_file() but
755 * holding "epmutex" is sufficient here.
756 */
757 mutex_lock(&epmutex);
758
759 /*
760 * Walks through the whole tree by unregistering poll callbacks.
761 */
762 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
763 epi = rb_entry(rbp, struct epitem, rbn);
764
765 ep_unregister_pollwait(ep, epi);
766 cond_resched();
767 }
768
769 /*
770 * Walks through the whole tree by freeing each "struct epitem". At this
771 * point we are sure no poll callbacks will be lingering around, and also by
772 * holding "epmutex" we can be sure that no file cleanup code will hit
773 * us during this operation. So we can avoid the lock on "ep->lock".
774 * We do not need to lock ep->mtx, either, we only do it to prevent
775 * a lockdep warning.
776 */
777 mutex_lock(&ep->mtx);
778 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
779 epi = rb_entry(rbp, struct epitem, rbn);
780 ep_remove(ep, epi);
781 cond_resched();
782 }
783 mutex_unlock(&ep->mtx);
784
785 mutex_unlock(&epmutex);
786 mutex_destroy(&ep->mtx);
787 free_uid(ep->user);
788 wakeup_source_unregister(ep->ws);
789 kfree(ep);
790 }
791
792 static int ep_eventpoll_release(struct inode *inode, struct file *file)
793 {
794 struct eventpoll *ep = file->private_data;
795
796 if (ep)
797 ep_free(ep);
798
799 return 0;
800 }
801
802 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
803
804 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
805 {
806 struct eventpoll *ep = file->private_data;
807 LIST_HEAD(txlist);
808 struct epitem *epi, *tmp;
809 poll_table pt;
810 __poll_t res = 0;
811
812 init_poll_funcptr(&pt, NULL);
813
814 /* Insert inside our poll wait queue */
815 poll_wait(file, &ep->poll_wait, wait);
816
817 /*
818 * Proceed to find out if wanted events are really available inside
819 * the ready list.
820 */
821 mutex_lock_nested(&ep->mtx, depth);
822 ep_start_scan(ep, &txlist);
823 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
824 if (ep_item_poll(epi, &pt, depth + 1)) {
825 res = EPOLLIN | EPOLLRDNORM;
826 break;
827 } else {
828 /*
829 * Item has been dropped into the ready list by the poll
830 * callback, but it's not actually ready, as far as
831 * caller requested events goes. We can remove it here.
832 */
833 __pm_relax(ep_wakeup_source(epi));
834 list_del_init(&epi->rdllink);
835 }
836 }
837 ep_done_scan(ep, &txlist);
838 mutex_unlock(&ep->mtx);
839 return res;
840 }
841
842 /*
843 * Differs from ep_eventpoll_poll() in that internal callers already have
844 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
845 * is correctly annotated.
846 */
847 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
848 int depth)
849 {
850 struct file *file = epi->ffd.file;
851 __poll_t res;
852
853 pt->_key = epi->event.events;
854 if (!is_file_epoll(file))
855 res = vfs_poll(file, pt);
856 else
857 res = __ep_eventpoll_poll(file, pt, depth);
858 return res & epi->event.events;
859 }
860
861 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
862 {
863 return __ep_eventpoll_poll(file, wait, 0);
864 }
865
866 #ifdef CONFIG_PROC_FS
867 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
868 {
869 struct eventpoll *ep = f->private_data;
870 struct rb_node *rbp;
871
872 mutex_lock(&ep->mtx);
873 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
874 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
875 struct inode *inode = file_inode(epi->ffd.file);
876
877 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
878 " pos:%lli ino:%lx sdev:%x\n",
879 epi->ffd.fd, epi->event.events,
880 (long long)epi->event.data,
881 (long long)epi->ffd.file->f_pos,
882 inode->i_ino, inode->i_sb->s_dev);
883 if (seq_has_overflowed(m))
884 break;
885 }
886 mutex_unlock(&ep->mtx);
887 }
888 #endif
889
890 /* File callbacks that implement the eventpoll file behaviour */
891 static const struct file_operations eventpoll_fops = {
892 #ifdef CONFIG_PROC_FS
893 .show_fdinfo = ep_show_fdinfo,
894 #endif
895 .release = ep_eventpoll_release,
896 .poll = ep_eventpoll_poll,
897 .llseek = noop_llseek,
898 };
899
900 /*
901 * This is called from eventpoll_release() to unlink files from the eventpoll
902 * interface. We need to have this facility to cleanup correctly files that are
903 * closed without being removed from the eventpoll interface.
904 */
905 void eventpoll_release_file(struct file *file)
906 {
907 struct eventpoll *ep;
908 struct epitem *epi;
909 struct hlist_node *next;
910
911 /*
912 * We don't want to get "file->f_lock" because it is not
913 * necessary. It is not necessary because we're in the "struct file"
914 * cleanup path, and this means that no one is using this file anymore.
915 * So, for example, epoll_ctl() cannot hit here since if we reach this
916 * point, the file counter already went to zero and fget() would fail.
917 * The only hit might come from ep_free() but by holding the mutex
918 * will correctly serialize the operation. We do need to acquire
919 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
920 * from anywhere but ep_free().
921 *
922 * Besides, ep_remove() acquires the lock, so we can't hold it here.
923 */
924 mutex_lock(&epmutex);
925 if (unlikely(!file->f_ep)) {
926 mutex_unlock(&epmutex);
927 return;
928 }
929 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
930 ep = epi->ep;
931 mutex_lock_nested(&ep->mtx, 0);
932 ep_remove(ep, epi);
933 mutex_unlock(&ep->mtx);
934 }
935 mutex_unlock(&epmutex);
936 }
937
938 static int ep_alloc(struct eventpoll **pep)
939 {
940 int error;
941 struct user_struct *user;
942 struct eventpoll *ep;
943
944 user = get_current_user();
945 error = -ENOMEM;
946 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
947 if (unlikely(!ep))
948 goto free_uid;
949
950 mutex_init(&ep->mtx);
951 rwlock_init(&ep->lock);
952 init_waitqueue_head(&ep->wq);
953 init_waitqueue_head(&ep->poll_wait);
954 INIT_LIST_HEAD(&ep->rdllist);
955 ep->rbr = RB_ROOT_CACHED;
956 ep->ovflist = EP_UNACTIVE_PTR;
957 ep->user = user;
958
959 *pep = ep;
960
961 return 0;
962
963 free_uid:
964 free_uid(user);
965 return error;
966 }
967
968 /*
969 * Search the file inside the eventpoll tree. The RB tree operations
970 * are protected by the "mtx" mutex, and ep_find() must be called with
971 * "mtx" held.
972 */
973 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
974 {
975 int kcmp;
976 struct rb_node *rbp;
977 struct epitem *epi, *epir = NULL;
978 struct epoll_filefd ffd;
979
980 ep_set_ffd(&ffd, file, fd);
981 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
982 epi = rb_entry(rbp, struct epitem, rbn);
983 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
984 if (kcmp > 0)
985 rbp = rbp->rb_right;
986 else if (kcmp < 0)
987 rbp = rbp->rb_left;
988 else {
989 epir = epi;
990 break;
991 }
992 }
993
994 return epir;
995 }
996
997 #ifdef CONFIG_KCMP
998 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
999 {
1000 struct rb_node *rbp;
1001 struct epitem *epi;
1002
1003 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1004 epi = rb_entry(rbp, struct epitem, rbn);
1005 if (epi->ffd.fd == tfd) {
1006 if (toff == 0)
1007 return epi;
1008 else
1009 toff--;
1010 }
1011 cond_resched();
1012 }
1013
1014 return NULL;
1015 }
1016
1017 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1018 unsigned long toff)
1019 {
1020 struct file *file_raw;
1021 struct eventpoll *ep;
1022 struct epitem *epi;
1023
1024 if (!is_file_epoll(file))
1025 return ERR_PTR(-EINVAL);
1026
1027 ep = file->private_data;
1028
1029 mutex_lock(&ep->mtx);
1030 epi = ep_find_tfd(ep, tfd, toff);
1031 if (epi)
1032 file_raw = epi->ffd.file;
1033 else
1034 file_raw = ERR_PTR(-ENOENT);
1035 mutex_unlock(&ep->mtx);
1036
1037 return file_raw;
1038 }
1039 #endif /* CONFIG_KCMP */
1040
1041 /*
1042 * Adds a new entry to the tail of the list in a lockless way, i.e.
1043 * multiple CPUs are allowed to call this function concurrently.
1044 *
1045 * Beware: it is necessary to prevent any other modifications of the
1046 * existing list until all changes are completed, in other words
1047 * concurrent list_add_tail_lockless() calls should be protected
1048 * with a read lock, where write lock acts as a barrier which
1049 * makes sure all list_add_tail_lockless() calls are fully
1050 * completed.
1051 *
1052 * Also an element can be locklessly added to the list only in one
1053 * direction i.e. either to the tail or to the head, otherwise
1054 * concurrent access will corrupt the list.
1055 *
1056 * Return: %false if element has been already added to the list, %true
1057 * otherwise.
1058 */
1059 static inline bool list_add_tail_lockless(struct list_head *new,
1060 struct list_head *head)
1061 {
1062 struct list_head *prev;
1063
1064 /*
1065 * This is simple 'new->next = head' operation, but cmpxchg()
1066 * is used in order to detect that same element has been just
1067 * added to the list from another CPU: the winner observes
1068 * new->next == new.
1069 */
1070 if (!try_cmpxchg(&new->next, &new, head))
1071 return false;
1072
1073 /*
1074 * Initially ->next of a new element must be updated with the head
1075 * (we are inserting to the tail) and only then pointers are atomically
1076 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1077 * updated before pointers are actually swapped and pointers are
1078 * swapped before prev->next is updated.
1079 */
1080
1081 prev = xchg(&head->prev, new);
1082
1083 /*
1084 * It is safe to modify prev->next and new->prev, because a new element
1085 * is added only to the tail and new->next is updated before XCHG.
1086 */
1087
1088 prev->next = new;
1089 new->prev = prev;
1090
1091 return true;
1092 }
1093
1094 /*
1095 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1096 * i.e. multiple CPUs are allowed to call this function concurrently.
1097 *
1098 * Return: %false if epi element has been already chained, %true otherwise.
1099 */
1100 static inline bool chain_epi_lockless(struct epitem *epi)
1101 {
1102 struct eventpoll *ep = epi->ep;
1103
1104 /* Fast preliminary check */
1105 if (epi->next != EP_UNACTIVE_PTR)
1106 return false;
1107
1108 /* Check that the same epi has not been just chained from another CPU */
1109 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1110 return false;
1111
1112 /* Atomically exchange tail */
1113 epi->next = xchg(&ep->ovflist, epi);
1114
1115 return true;
1116 }
1117
1118 /*
1119 * This is the callback that is passed to the wait queue wakeup
1120 * mechanism. It is called by the stored file descriptors when they
1121 * have events to report.
1122 *
1123 * This callback takes a read lock in order not to contend with concurrent
1124 * events from another file descriptor, thus all modifications to ->rdllist
1125 * or ->ovflist are lockless. Read lock is paired with the write lock from
1126 * ep_scan_ready_list(), which stops all list modifications and guarantees
1127 * that lists state is seen correctly.
1128 *
1129 * Another thing worth to mention is that ep_poll_callback() can be called
1130 * concurrently for the same @epi from different CPUs if poll table was inited
1131 * with several wait queues entries. Plural wakeup from different CPUs of a
1132 * single wait queue is serialized by wq.lock, but the case when multiple wait
1133 * queues are used should be detected accordingly. This is detected using
1134 * cmpxchg() operation.
1135 */
1136 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1137 {
1138 int pwake = 0;
1139 struct epitem *epi = ep_item_from_wait(wait);
1140 struct eventpoll *ep = epi->ep;
1141 __poll_t pollflags = key_to_poll(key);
1142 unsigned long flags;
1143 int ewake = 0;
1144
1145 read_lock_irqsave(&ep->lock, flags);
1146
1147 ep_set_busy_poll_napi_id(epi);
1148
1149 /*
1150 * If the event mask does not contain any poll(2) event, we consider the
1151 * descriptor to be disabled. This condition is likely the effect of the
1152 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1153 * until the next EPOLL_CTL_MOD will be issued.
1154 */
1155 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1156 goto out_unlock;
1157
1158 /*
1159 * Check the events coming with the callback. At this stage, not
1160 * every device reports the events in the "key" parameter of the
1161 * callback. We need to be able to handle both cases here, hence the
1162 * test for "key" != NULL before the event match test.
1163 */
1164 if (pollflags && !(pollflags & epi->event.events))
1165 goto out_unlock;
1166
1167 /*
1168 * If we are transferring events to userspace, we can hold no locks
1169 * (because we're accessing user memory, and because of linux f_op->poll()
1170 * semantics). All the events that happen during that period of time are
1171 * chained in ep->ovflist and requeued later on.
1172 */
1173 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1174 if (chain_epi_lockless(epi))
1175 ep_pm_stay_awake_rcu(epi);
1176 } else if (!ep_is_linked(epi)) {
1177 /* In the usual case, add event to ready list. */
1178 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1179 ep_pm_stay_awake_rcu(epi);
1180 }
1181
1182 /*
1183 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1184 * wait list.
1185 */
1186 if (waitqueue_active(&ep->wq)) {
1187 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1188 !(pollflags & POLLFREE)) {
1189 switch (pollflags & EPOLLINOUT_BITS) {
1190 case EPOLLIN:
1191 if (epi->event.events & EPOLLIN)
1192 ewake = 1;
1193 break;
1194 case EPOLLOUT:
1195 if (epi->event.events & EPOLLOUT)
1196 ewake = 1;
1197 break;
1198 case 0:
1199 ewake = 1;
1200 break;
1201 }
1202 }
1203 wake_up(&ep->wq);
1204 }
1205 if (waitqueue_active(&ep->poll_wait))
1206 pwake++;
1207
1208 out_unlock:
1209 read_unlock_irqrestore(&ep->lock, flags);
1210
1211 /* We have to call this outside the lock */
1212 if (pwake)
1213 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1214
1215 if (!(epi->event.events & EPOLLEXCLUSIVE))
1216 ewake = 1;
1217
1218 if (pollflags & POLLFREE) {
1219 /*
1220 * If we race with ep_remove_wait_queue() it can miss
1221 * ->whead = NULL and do another remove_wait_queue() after
1222 * us, so we can't use __remove_wait_queue().
1223 */
1224 list_del_init(&wait->entry);
1225 /*
1226 * ->whead != NULL protects us from the race with ep_free()
1227 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1228 * held by the caller. Once we nullify it, nothing protects
1229 * ep/epi or even wait.
1230 */
1231 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1232 }
1233
1234 return ewake;
1235 }
1236
1237 /*
1238 * This is the callback that is used to add our wait queue to the
1239 * target file wakeup lists.
1240 */
1241 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1242 poll_table *pt)
1243 {
1244 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1245 struct epitem *epi = epq->epi;
1246 struct eppoll_entry *pwq;
1247
1248 if (unlikely(!epi)) // an earlier allocation has failed
1249 return;
1250
1251 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1252 if (unlikely(!pwq)) {
1253 epq->epi = NULL;
1254 return;
1255 }
1256
1257 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1258 pwq->whead = whead;
1259 pwq->base = epi;
1260 if (epi->event.events & EPOLLEXCLUSIVE)
1261 add_wait_queue_exclusive(whead, &pwq->wait);
1262 else
1263 add_wait_queue(whead, &pwq->wait);
1264 pwq->next = epi->pwqlist;
1265 epi->pwqlist = pwq;
1266 }
1267
1268 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1269 {
1270 int kcmp;
1271 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1272 struct epitem *epic;
1273 bool leftmost = true;
1274
1275 while (*p) {
1276 parent = *p;
1277 epic = rb_entry(parent, struct epitem, rbn);
1278 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1279 if (kcmp > 0) {
1280 p = &parent->rb_right;
1281 leftmost = false;
1282 } else
1283 p = &parent->rb_left;
1284 }
1285 rb_link_node(&epi->rbn, parent, p);
1286 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1287 }
1288
1289
1290
1291 #define PATH_ARR_SIZE 5
1292 /*
1293 * These are the number paths of length 1 to 5, that we are allowing to emanate
1294 * from a single file of interest. For example, we allow 1000 paths of length
1295 * 1, to emanate from each file of interest. This essentially represents the
1296 * potential wakeup paths, which need to be limited in order to avoid massive
1297 * uncontrolled wakeup storms. The common use case should be a single ep which
1298 * is connected to n file sources. In this case each file source has 1 path
1299 * of length 1. Thus, the numbers below should be more than sufficient. These
1300 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1301 * and delete can't add additional paths. Protected by the epmutex.
1302 */
1303 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1304 static int path_count[PATH_ARR_SIZE];
1305
1306 static int path_count_inc(int nests)
1307 {
1308 /* Allow an arbitrary number of depth 1 paths */
1309 if (nests == 0)
1310 return 0;
1311
1312 if (++path_count[nests] > path_limits[nests])
1313 return -1;
1314 return 0;
1315 }
1316
1317 static void path_count_init(void)
1318 {
1319 int i;
1320
1321 for (i = 0; i < PATH_ARR_SIZE; i++)
1322 path_count[i] = 0;
1323 }
1324
1325 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1326 {
1327 int error = 0;
1328 struct epitem *epi;
1329
1330 if (depth > EP_MAX_NESTS) /* too deep nesting */
1331 return -1;
1332
1333 /* CTL_DEL can remove links here, but that can't increase our count */
1334 hlist_for_each_entry_rcu(epi, refs, fllink) {
1335 struct hlist_head *refs = &epi->ep->refs;
1336 if (hlist_empty(refs))
1337 error = path_count_inc(depth);
1338 else
1339 error = reverse_path_check_proc(refs, depth + 1);
1340 if (error != 0)
1341 break;
1342 }
1343 return error;
1344 }
1345
1346 /**
1347 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1348 * links that are proposed to be newly added. We need to
1349 * make sure that those added links don't add too many
1350 * paths such that we will spend all our time waking up
1351 * eventpoll objects.
1352 *
1353 * Return: %zero if the proposed links don't create too many paths,
1354 * %-1 otherwise.
1355 */
1356 static int reverse_path_check(void)
1357 {
1358 struct epitems_head *p;
1359
1360 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1361 int error;
1362 path_count_init();
1363 rcu_read_lock();
1364 error = reverse_path_check_proc(&p->epitems, 0);
1365 rcu_read_unlock();
1366 if (error)
1367 return error;
1368 }
1369 return 0;
1370 }
1371
1372 static int ep_create_wakeup_source(struct epitem *epi)
1373 {
1374 struct name_snapshot n;
1375 struct wakeup_source *ws;
1376
1377 if (!epi->ep->ws) {
1378 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1379 if (!epi->ep->ws)
1380 return -ENOMEM;
1381 }
1382
1383 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1384 ws = wakeup_source_register(NULL, n.name.name);
1385 release_dentry_name_snapshot(&n);
1386
1387 if (!ws)
1388 return -ENOMEM;
1389 rcu_assign_pointer(epi->ws, ws);
1390
1391 return 0;
1392 }
1393
1394 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1395 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1396 {
1397 struct wakeup_source *ws = ep_wakeup_source(epi);
1398
1399 RCU_INIT_POINTER(epi->ws, NULL);
1400
1401 /*
1402 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1403 * used internally by wakeup_source_remove, too (called by
1404 * wakeup_source_unregister), so we cannot use call_rcu
1405 */
1406 synchronize_rcu();
1407 wakeup_source_unregister(ws);
1408 }
1409
1410 static int attach_epitem(struct file *file, struct epitem *epi)
1411 {
1412 struct epitems_head *to_free = NULL;
1413 struct hlist_head *head = NULL;
1414 struct eventpoll *ep = NULL;
1415
1416 if (is_file_epoll(file))
1417 ep = file->private_data;
1418
1419 if (ep) {
1420 head = &ep->refs;
1421 } else if (!READ_ONCE(file->f_ep)) {
1422 allocate:
1423 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1424 if (!to_free)
1425 return -ENOMEM;
1426 head = &to_free->epitems;
1427 }
1428 spin_lock(&file->f_lock);
1429 if (!file->f_ep) {
1430 if (unlikely(!head)) {
1431 spin_unlock(&file->f_lock);
1432 goto allocate;
1433 }
1434 file->f_ep = head;
1435 to_free = NULL;
1436 }
1437 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1438 spin_unlock(&file->f_lock);
1439 free_ephead(to_free);
1440 return 0;
1441 }
1442
1443 /*
1444 * Must be called with "mtx" held.
1445 */
1446 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1447 struct file *tfile, int fd, int full_check)
1448 {
1449 int error, pwake = 0;
1450 __poll_t revents;
1451 struct epitem *epi;
1452 struct ep_pqueue epq;
1453 struct eventpoll *tep = NULL;
1454
1455 if (is_file_epoll(tfile))
1456 tep = tfile->private_data;
1457
1458 lockdep_assert_irqs_enabled();
1459
1460 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1461 max_user_watches) >= 0))
1462 return -ENOSPC;
1463 percpu_counter_inc(&ep->user->epoll_watches);
1464
1465 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1466 percpu_counter_dec(&ep->user->epoll_watches);
1467 return -ENOMEM;
1468 }
1469
1470 /* Item initialization follow here ... */
1471 INIT_LIST_HEAD(&epi->rdllink);
1472 epi->ep = ep;
1473 ep_set_ffd(&epi->ffd, tfile, fd);
1474 epi->event = *event;
1475 epi->next = EP_UNACTIVE_PTR;
1476
1477 if (tep)
1478 mutex_lock_nested(&tep->mtx, 1);
1479 /* Add the current item to the list of active epoll hook for this file */
1480 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1481 if (tep)
1482 mutex_unlock(&tep->mtx);
1483 kmem_cache_free(epi_cache, epi);
1484 percpu_counter_dec(&ep->user->epoll_watches);
1485 return -ENOMEM;
1486 }
1487
1488 if (full_check && !tep)
1489 list_file(tfile);
1490
1491 /*
1492 * Add the current item to the RB tree. All RB tree operations are
1493 * protected by "mtx", and ep_insert() is called with "mtx" held.
1494 */
1495 ep_rbtree_insert(ep, epi);
1496 if (tep)
1497 mutex_unlock(&tep->mtx);
1498
1499 /* now check if we've created too many backpaths */
1500 if (unlikely(full_check && reverse_path_check())) {
1501 ep_remove(ep, epi);
1502 return -EINVAL;
1503 }
1504
1505 if (epi->event.events & EPOLLWAKEUP) {
1506 error = ep_create_wakeup_source(epi);
1507 if (error) {
1508 ep_remove(ep, epi);
1509 return error;
1510 }
1511 }
1512
1513 /* Initialize the poll table using the queue callback */
1514 epq.epi = epi;
1515 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1516
1517 /*
1518 * Attach the item to the poll hooks and get current event bits.
1519 * We can safely use the file* here because its usage count has
1520 * been increased by the caller of this function. Note that after
1521 * this operation completes, the poll callback can start hitting
1522 * the new item.
1523 */
1524 revents = ep_item_poll(epi, &epq.pt, 1);
1525
1526 /*
1527 * We have to check if something went wrong during the poll wait queue
1528 * install process. Namely an allocation for a wait queue failed due
1529 * high memory pressure.
1530 */
1531 if (unlikely(!epq.epi)) {
1532 ep_remove(ep, epi);
1533 return -ENOMEM;
1534 }
1535
1536 /* We have to drop the new item inside our item list to keep track of it */
1537 write_lock_irq(&ep->lock);
1538
1539 /* record NAPI ID of new item if present */
1540 ep_set_busy_poll_napi_id(epi);
1541
1542 /* If the file is already "ready" we drop it inside the ready list */
1543 if (revents && !ep_is_linked(epi)) {
1544 list_add_tail(&epi->rdllink, &ep->rdllist);
1545 ep_pm_stay_awake(epi);
1546
1547 /* Notify waiting tasks that events are available */
1548 if (waitqueue_active(&ep->wq))
1549 wake_up(&ep->wq);
1550 if (waitqueue_active(&ep->poll_wait))
1551 pwake++;
1552 }
1553
1554 write_unlock_irq(&ep->lock);
1555
1556 /* We have to call this outside the lock */
1557 if (pwake)
1558 ep_poll_safewake(ep, NULL, 0);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Modify the interest event mask by dropping an event if the new mask
1565 * has a match in the current file status. Must be called with "mtx" held.
1566 */
1567 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1568 const struct epoll_event *event)
1569 {
1570 int pwake = 0;
1571 poll_table pt;
1572
1573 lockdep_assert_irqs_enabled();
1574
1575 init_poll_funcptr(&pt, NULL);
1576
1577 /*
1578 * Set the new event interest mask before calling f_op->poll();
1579 * otherwise we might miss an event that happens between the
1580 * f_op->poll() call and the new event set registering.
1581 */
1582 epi->event.events = event->events; /* need barrier below */
1583 epi->event.data = event->data; /* protected by mtx */
1584 if (epi->event.events & EPOLLWAKEUP) {
1585 if (!ep_has_wakeup_source(epi))
1586 ep_create_wakeup_source(epi);
1587 } else if (ep_has_wakeup_source(epi)) {
1588 ep_destroy_wakeup_source(epi);
1589 }
1590
1591 /*
1592 * The following barrier has two effects:
1593 *
1594 * 1) Flush epi changes above to other CPUs. This ensures
1595 * we do not miss events from ep_poll_callback if an
1596 * event occurs immediately after we call f_op->poll().
1597 * We need this because we did not take ep->lock while
1598 * changing epi above (but ep_poll_callback does take
1599 * ep->lock).
1600 *
1601 * 2) We also need to ensure we do not miss _past_ events
1602 * when calling f_op->poll(). This barrier also
1603 * pairs with the barrier in wq_has_sleeper (see
1604 * comments for wq_has_sleeper).
1605 *
1606 * This barrier will now guarantee ep_poll_callback or f_op->poll
1607 * (or both) will notice the readiness of an item.
1608 */
1609 smp_mb();
1610
1611 /*
1612 * Get current event bits. We can safely use the file* here because
1613 * its usage count has been increased by the caller of this function.
1614 * If the item is "hot" and it is not registered inside the ready
1615 * list, push it inside.
1616 */
1617 if (ep_item_poll(epi, &pt, 1)) {
1618 write_lock_irq(&ep->lock);
1619 if (!ep_is_linked(epi)) {
1620 list_add_tail(&epi->rdllink, &ep->rdllist);
1621 ep_pm_stay_awake(epi);
1622
1623 /* Notify waiting tasks that events are available */
1624 if (waitqueue_active(&ep->wq))
1625 wake_up(&ep->wq);
1626 if (waitqueue_active(&ep->poll_wait))
1627 pwake++;
1628 }
1629 write_unlock_irq(&ep->lock);
1630 }
1631
1632 /* We have to call this outside the lock */
1633 if (pwake)
1634 ep_poll_safewake(ep, NULL, 0);
1635
1636 return 0;
1637 }
1638
1639 static int ep_send_events(struct eventpoll *ep,
1640 struct epoll_event __user *events, int maxevents)
1641 {
1642 struct epitem *epi, *tmp;
1643 LIST_HEAD(txlist);
1644 poll_table pt;
1645 int res = 0;
1646
1647 /*
1648 * Always short-circuit for fatal signals to allow threads to make a
1649 * timely exit without the chance of finding more events available and
1650 * fetching repeatedly.
1651 */
1652 if (fatal_signal_pending(current))
1653 return -EINTR;
1654
1655 init_poll_funcptr(&pt, NULL);
1656
1657 mutex_lock(&ep->mtx);
1658 ep_start_scan(ep, &txlist);
1659
1660 /*
1661 * We can loop without lock because we are passed a task private list.
1662 * Items cannot vanish during the loop we are holding ep->mtx.
1663 */
1664 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1665 struct wakeup_source *ws;
1666 __poll_t revents;
1667
1668 if (res >= maxevents)
1669 break;
1670
1671 /*
1672 * Activate ep->ws before deactivating epi->ws to prevent
1673 * triggering auto-suspend here (in case we reactive epi->ws
1674 * below).
1675 *
1676 * This could be rearranged to delay the deactivation of epi->ws
1677 * instead, but then epi->ws would temporarily be out of sync
1678 * with ep_is_linked().
1679 */
1680 ws = ep_wakeup_source(epi);
1681 if (ws) {
1682 if (ws->active)
1683 __pm_stay_awake(ep->ws);
1684 __pm_relax(ws);
1685 }
1686
1687 list_del_init(&epi->rdllink);
1688
1689 /*
1690 * If the event mask intersect the caller-requested one,
1691 * deliver the event to userspace. Again, we are holding ep->mtx,
1692 * so no operations coming from userspace can change the item.
1693 */
1694 revents = ep_item_poll(epi, &pt, 1);
1695 if (!revents)
1696 continue;
1697
1698 events = epoll_put_uevent(revents, epi->event.data, events);
1699 if (!events) {
1700 list_add(&epi->rdllink, &txlist);
1701 ep_pm_stay_awake(epi);
1702 if (!res)
1703 res = -EFAULT;
1704 break;
1705 }
1706 res++;
1707 if (epi->event.events & EPOLLONESHOT)
1708 epi->event.events &= EP_PRIVATE_BITS;
1709 else if (!(epi->event.events & EPOLLET)) {
1710 /*
1711 * If this file has been added with Level
1712 * Trigger mode, we need to insert back inside
1713 * the ready list, so that the next call to
1714 * epoll_wait() will check again the events
1715 * availability. At this point, no one can insert
1716 * into ep->rdllist besides us. The epoll_ctl()
1717 * callers are locked out by
1718 * ep_scan_ready_list() holding "mtx" and the
1719 * poll callback will queue them in ep->ovflist.
1720 */
1721 list_add_tail(&epi->rdllink, &ep->rdllist);
1722 ep_pm_stay_awake(epi);
1723 }
1724 }
1725 ep_done_scan(ep, &txlist);
1726 mutex_unlock(&ep->mtx);
1727
1728 return res;
1729 }
1730
1731 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1732 {
1733 struct timespec64 now;
1734
1735 if (ms < 0)
1736 return NULL;
1737
1738 if (!ms) {
1739 to->tv_sec = 0;
1740 to->tv_nsec = 0;
1741 return to;
1742 }
1743
1744 to->tv_sec = ms / MSEC_PER_SEC;
1745 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1746
1747 ktime_get_ts64(&now);
1748 *to = timespec64_add_safe(now, *to);
1749 return to;
1750 }
1751
1752 /*
1753 * autoremove_wake_function, but remove even on failure to wake up, because we
1754 * know that default_wake_function/ttwu will only fail if the thread is already
1755 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1756 * try to reuse it.
1757 */
1758 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1759 unsigned int mode, int sync, void *key)
1760 {
1761 int ret = default_wake_function(wq_entry, mode, sync, key);
1762
1763 list_del_init(&wq_entry->entry);
1764 return ret;
1765 }
1766
1767 /**
1768 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1769 * event buffer.
1770 *
1771 * @ep: Pointer to the eventpoll context.
1772 * @events: Pointer to the userspace buffer where the ready events should be
1773 * stored.
1774 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1775 * @timeout: Maximum timeout for the ready events fetch operation, in
1776 * timespec. If the timeout is zero, the function will not block,
1777 * while if the @timeout ptr is NULL, the function will block
1778 * until at least one event has been retrieved (or an error
1779 * occurred).
1780 *
1781 * Return: the number of ready events which have been fetched, or an
1782 * error code, in case of error.
1783 */
1784 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1785 int maxevents, struct timespec64 *timeout)
1786 {
1787 int res, eavail, timed_out = 0;
1788 u64 slack = 0;
1789 wait_queue_entry_t wait;
1790 ktime_t expires, *to = NULL;
1791
1792 lockdep_assert_irqs_enabled();
1793
1794 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1795 slack = select_estimate_accuracy(timeout);
1796 to = &expires;
1797 *to = timespec64_to_ktime(*timeout);
1798 } else if (timeout) {
1799 /*
1800 * Avoid the unnecessary trip to the wait queue loop, if the
1801 * caller specified a non blocking operation.
1802 */
1803 timed_out = 1;
1804 }
1805
1806 /*
1807 * This call is racy: We may or may not see events that are being added
1808 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1809 * with a non-zero timeout, this thread will check the ready list under
1810 * lock and will add to the wait queue. For cases with a zero
1811 * timeout, the user by definition should not care and will have to
1812 * recheck again.
1813 */
1814 eavail = ep_events_available(ep);
1815
1816 while (1) {
1817 if (eavail) {
1818 /*
1819 * Try to transfer events to user space. In case we get
1820 * 0 events and there's still timeout left over, we go
1821 * trying again in search of more luck.
1822 */
1823 res = ep_send_events(ep, events, maxevents);
1824 if (res)
1825 return res;
1826 }
1827
1828 if (timed_out)
1829 return 0;
1830
1831 eavail = ep_busy_loop(ep, timed_out);
1832 if (eavail)
1833 continue;
1834
1835 if (signal_pending(current))
1836 return -EINTR;
1837
1838 /*
1839 * Internally init_wait() uses autoremove_wake_function(),
1840 * thus wait entry is removed from the wait queue on each
1841 * wakeup. Why it is important? In case of several waiters
1842 * each new wakeup will hit the next waiter, giving it the
1843 * chance to harvest new event. Otherwise wakeup can be
1844 * lost. This is also good performance-wise, because on
1845 * normal wakeup path no need to call __remove_wait_queue()
1846 * explicitly, thus ep->lock is not taken, which halts the
1847 * event delivery.
1848 *
1849 * In fact, we now use an even more aggressive function that
1850 * unconditionally removes, because we don't reuse the wait
1851 * entry between loop iterations. This lets us also avoid the
1852 * performance issue if a process is killed, causing all of its
1853 * threads to wake up without being removed normally.
1854 */
1855 init_wait(&wait);
1856 wait.func = ep_autoremove_wake_function;
1857
1858 write_lock_irq(&ep->lock);
1859 /*
1860 * Barrierless variant, waitqueue_active() is called under
1861 * the same lock on wakeup ep_poll_callback() side, so it
1862 * is safe to avoid an explicit barrier.
1863 */
1864 __set_current_state(TASK_INTERRUPTIBLE);
1865
1866 /*
1867 * Do the final check under the lock. ep_scan_ready_list()
1868 * plays with two lists (->rdllist and ->ovflist) and there
1869 * is always a race when both lists are empty for short
1870 * period of time although events are pending, so lock is
1871 * important.
1872 */
1873 eavail = ep_events_available(ep);
1874 if (!eavail)
1875 __add_wait_queue_exclusive(&ep->wq, &wait);
1876
1877 write_unlock_irq(&ep->lock);
1878
1879 if (!eavail)
1880 timed_out = !schedule_hrtimeout_range(to, slack,
1881 HRTIMER_MODE_ABS);
1882 __set_current_state(TASK_RUNNING);
1883
1884 /*
1885 * We were woken up, thus go and try to harvest some events.
1886 * If timed out and still on the wait queue, recheck eavail
1887 * carefully under lock, below.
1888 */
1889 eavail = 1;
1890
1891 if (!list_empty_careful(&wait.entry)) {
1892 write_lock_irq(&ep->lock);
1893 /*
1894 * If the thread timed out and is not on the wait queue,
1895 * it means that the thread was woken up after its
1896 * timeout expired before it could reacquire the lock.
1897 * Thus, when wait.entry is empty, it needs to harvest
1898 * events.
1899 */
1900 if (timed_out)
1901 eavail = list_empty(&wait.entry);
1902 __remove_wait_queue(&ep->wq, &wait);
1903 write_unlock_irq(&ep->lock);
1904 }
1905 }
1906 }
1907
1908 /**
1909 * ep_loop_check_proc - verify that adding an epoll file inside another
1910 * epoll structure does not violate the constraints, in
1911 * terms of closed loops, or too deep chains (which can
1912 * result in excessive stack usage).
1913 *
1914 * @ep: the &struct eventpoll to be currently checked.
1915 * @depth: Current depth of the path being checked.
1916 *
1917 * Return: %zero if adding the epoll @file inside current epoll
1918 * structure @ep does not violate the constraints, or %-1 otherwise.
1919 */
1920 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1921 {
1922 int error = 0;
1923 struct rb_node *rbp;
1924 struct epitem *epi;
1925
1926 mutex_lock_nested(&ep->mtx, depth + 1);
1927 ep->gen = loop_check_gen;
1928 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1929 epi = rb_entry(rbp, struct epitem, rbn);
1930 if (unlikely(is_file_epoll(epi->ffd.file))) {
1931 struct eventpoll *ep_tovisit;
1932 ep_tovisit = epi->ffd.file->private_data;
1933 if (ep_tovisit->gen == loop_check_gen)
1934 continue;
1935 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1936 error = -1;
1937 else
1938 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1939 if (error != 0)
1940 break;
1941 } else {
1942 /*
1943 * If we've reached a file that is not associated with
1944 * an ep, then we need to check if the newly added
1945 * links are going to add too many wakeup paths. We do
1946 * this by adding it to the tfile_check_list, if it's
1947 * not already there, and calling reverse_path_check()
1948 * during ep_insert().
1949 */
1950 list_file(epi->ffd.file);
1951 }
1952 }
1953 mutex_unlock(&ep->mtx);
1954
1955 return error;
1956 }
1957
1958 /**
1959 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1960 * into another epoll file (represented by @ep) does not create
1961 * closed loops or too deep chains.
1962 *
1963 * @ep: Pointer to the epoll we are inserting into.
1964 * @to: Pointer to the epoll to be inserted.
1965 *
1966 * Return: %zero if adding the epoll @to inside the epoll @from
1967 * does not violate the constraints, or %-1 otherwise.
1968 */
1969 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1970 {
1971 inserting_into = ep;
1972 return ep_loop_check_proc(to, 0);
1973 }
1974
1975 static void clear_tfile_check_list(void)
1976 {
1977 rcu_read_lock();
1978 while (tfile_check_list != EP_UNACTIVE_PTR) {
1979 struct epitems_head *head = tfile_check_list;
1980 tfile_check_list = head->next;
1981 unlist_file(head);
1982 }
1983 rcu_read_unlock();
1984 }
1985
1986 /*
1987 * Open an eventpoll file descriptor.
1988 */
1989 static int do_epoll_create(int flags)
1990 {
1991 int error, fd;
1992 struct eventpoll *ep = NULL;
1993 struct file *file;
1994
1995 /* Check the EPOLL_* constant for consistency. */
1996 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1997
1998 if (flags & ~EPOLL_CLOEXEC)
1999 return -EINVAL;
2000 /*
2001 * Create the internal data structure ("struct eventpoll").
2002 */
2003 error = ep_alloc(&ep);
2004 if (error < 0)
2005 return error;
2006 /*
2007 * Creates all the items needed to setup an eventpoll file. That is,
2008 * a file structure and a free file descriptor.
2009 */
2010 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2011 if (fd < 0) {
2012 error = fd;
2013 goto out_free_ep;
2014 }
2015 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2016 O_RDWR | (flags & O_CLOEXEC));
2017 if (IS_ERR(file)) {
2018 error = PTR_ERR(file);
2019 goto out_free_fd;
2020 }
2021 ep->file = file;
2022 fd_install(fd, file);
2023 return fd;
2024
2025 out_free_fd:
2026 put_unused_fd(fd);
2027 out_free_ep:
2028 ep_free(ep);
2029 return error;
2030 }
2031
2032 SYSCALL_DEFINE1(epoll_create1, int, flags)
2033 {
2034 return do_epoll_create(flags);
2035 }
2036
2037 SYSCALL_DEFINE1(epoll_create, int, size)
2038 {
2039 if (size <= 0)
2040 return -EINVAL;
2041
2042 return do_epoll_create(0);
2043 }
2044
2045 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2046 bool nonblock)
2047 {
2048 if (!nonblock) {
2049 mutex_lock_nested(mutex, depth);
2050 return 0;
2051 }
2052 if (mutex_trylock(mutex))
2053 return 0;
2054 return -EAGAIN;
2055 }
2056
2057 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2058 bool nonblock)
2059 {
2060 int error;
2061 int full_check = 0;
2062 struct fd f, tf;
2063 struct eventpoll *ep;
2064 struct epitem *epi;
2065 struct eventpoll *tep = NULL;
2066
2067 error = -EBADF;
2068 f = fdget(epfd);
2069 if (!f.file)
2070 goto error_return;
2071
2072 /* Get the "struct file *" for the target file */
2073 tf = fdget(fd);
2074 if (!tf.file)
2075 goto error_fput;
2076
2077 /* The target file descriptor must support poll */
2078 error = -EPERM;
2079 if (!file_can_poll(tf.file))
2080 goto error_tgt_fput;
2081
2082 /* Check if EPOLLWAKEUP is allowed */
2083 if (ep_op_has_event(op))
2084 ep_take_care_of_epollwakeup(epds);
2085
2086 /*
2087 * We have to check that the file structure underneath the file descriptor
2088 * the user passed to us _is_ an eventpoll file. And also we do not permit
2089 * adding an epoll file descriptor inside itself.
2090 */
2091 error = -EINVAL;
2092 if (f.file == tf.file || !is_file_epoll(f.file))
2093 goto error_tgt_fput;
2094
2095 /*
2096 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2097 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2098 * Also, we do not currently supported nested exclusive wakeups.
2099 */
2100 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2101 if (op == EPOLL_CTL_MOD)
2102 goto error_tgt_fput;
2103 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2104 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2105 goto error_tgt_fput;
2106 }
2107
2108 /*
2109 * At this point it is safe to assume that the "private_data" contains
2110 * our own data structure.
2111 */
2112 ep = f.file->private_data;
2113
2114 /*
2115 * When we insert an epoll file descriptor inside another epoll file
2116 * descriptor, there is the chance of creating closed loops, which are
2117 * better be handled here, than in more critical paths. While we are
2118 * checking for loops we also determine the list of files reachable
2119 * and hang them on the tfile_check_list, so we can check that we
2120 * haven't created too many possible wakeup paths.
2121 *
2122 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2123 * the epoll file descriptor is attaching directly to a wakeup source,
2124 * unless the epoll file descriptor is nested. The purpose of taking the
2125 * 'epmutex' on add is to prevent complex toplogies such as loops and
2126 * deep wakeup paths from forming in parallel through multiple
2127 * EPOLL_CTL_ADD operations.
2128 */
2129 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2130 if (error)
2131 goto error_tgt_fput;
2132 if (op == EPOLL_CTL_ADD) {
2133 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2134 is_file_epoll(tf.file)) {
2135 mutex_unlock(&ep->mtx);
2136 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2137 if (error)
2138 goto error_tgt_fput;
2139 loop_check_gen++;
2140 full_check = 1;
2141 if (is_file_epoll(tf.file)) {
2142 tep = tf.file->private_data;
2143 error = -ELOOP;
2144 if (ep_loop_check(ep, tep) != 0)
2145 goto error_tgt_fput;
2146 }
2147 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2148 if (error)
2149 goto error_tgt_fput;
2150 }
2151 }
2152
2153 /*
2154 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2155 * above, we can be sure to be able to use the item looked up by
2156 * ep_find() till we release the mutex.
2157 */
2158 epi = ep_find(ep, tf.file, fd);
2159
2160 error = -EINVAL;
2161 switch (op) {
2162 case EPOLL_CTL_ADD:
2163 if (!epi) {
2164 epds->events |= EPOLLERR | EPOLLHUP;
2165 error = ep_insert(ep, epds, tf.file, fd, full_check);
2166 } else
2167 error = -EEXIST;
2168 break;
2169 case EPOLL_CTL_DEL:
2170 if (epi)
2171 error = ep_remove(ep, epi);
2172 else
2173 error = -ENOENT;
2174 break;
2175 case EPOLL_CTL_MOD:
2176 if (epi) {
2177 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2178 epds->events |= EPOLLERR | EPOLLHUP;
2179 error = ep_modify(ep, epi, epds);
2180 }
2181 } else
2182 error = -ENOENT;
2183 break;
2184 }
2185 mutex_unlock(&ep->mtx);
2186
2187 error_tgt_fput:
2188 if (full_check) {
2189 clear_tfile_check_list();
2190 loop_check_gen++;
2191 mutex_unlock(&epmutex);
2192 }
2193
2194 fdput(tf);
2195 error_fput:
2196 fdput(f);
2197 error_return:
2198
2199 return error;
2200 }
2201
2202 /*
2203 * The following function implements the controller interface for
2204 * the eventpoll file that enables the insertion/removal/change of
2205 * file descriptors inside the interest set.
2206 */
2207 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2208 struct epoll_event __user *, event)
2209 {
2210 struct epoll_event epds;
2211
2212 if (ep_op_has_event(op) &&
2213 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2214 return -EFAULT;
2215
2216 return do_epoll_ctl(epfd, op, fd, &epds, false);
2217 }
2218
2219 /*
2220 * Implement the event wait interface for the eventpoll file. It is the kernel
2221 * part of the user space epoll_wait(2).
2222 */
2223 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2224 int maxevents, struct timespec64 *to)
2225 {
2226 int error;
2227 struct fd f;
2228 struct eventpoll *ep;
2229
2230 /* The maximum number of event must be greater than zero */
2231 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2232 return -EINVAL;
2233
2234 /* Verify that the area passed by the user is writeable */
2235 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2236 return -EFAULT;
2237
2238 /* Get the "struct file *" for the eventpoll file */
2239 f = fdget(epfd);
2240 if (!f.file)
2241 return -EBADF;
2242
2243 /*
2244 * We have to check that the file structure underneath the fd
2245 * the user passed to us _is_ an eventpoll file.
2246 */
2247 error = -EINVAL;
2248 if (!is_file_epoll(f.file))
2249 goto error_fput;
2250
2251 /*
2252 * At this point it is safe to assume that the "private_data" contains
2253 * our own data structure.
2254 */
2255 ep = f.file->private_data;
2256
2257 /* Time to fish for events ... */
2258 error = ep_poll(ep, events, maxevents, to);
2259
2260 error_fput:
2261 fdput(f);
2262 return error;
2263 }
2264
2265 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2266 int, maxevents, int, timeout)
2267 {
2268 struct timespec64 to;
2269
2270 return do_epoll_wait(epfd, events, maxevents,
2271 ep_timeout_to_timespec(&to, timeout));
2272 }
2273
2274 /*
2275 * Implement the event wait interface for the eventpoll file. It is the kernel
2276 * part of the user space epoll_pwait(2).
2277 */
2278 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2279 int maxevents, struct timespec64 *to,
2280 const sigset_t __user *sigmask, size_t sigsetsize)
2281 {
2282 int error;
2283
2284 /*
2285 * If the caller wants a certain signal mask to be set during the wait,
2286 * we apply it here.
2287 */
2288 error = set_user_sigmask(sigmask, sigsetsize);
2289 if (error)
2290 return error;
2291
2292 error = do_epoll_wait(epfd, events, maxevents, to);
2293
2294 restore_saved_sigmask_unless(error == -EINTR);
2295
2296 return error;
2297 }
2298
2299 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2300 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2301 size_t, sigsetsize)
2302 {
2303 struct timespec64 to;
2304
2305 return do_epoll_pwait(epfd, events, maxevents,
2306 ep_timeout_to_timespec(&to, timeout),
2307 sigmask, sigsetsize);
2308 }
2309
2310 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2311 int, maxevents, const struct __kernel_timespec __user *, timeout,
2312 const sigset_t __user *, sigmask, size_t, sigsetsize)
2313 {
2314 struct timespec64 ts, *to = NULL;
2315
2316 if (timeout) {
2317 if (get_timespec64(&ts, timeout))
2318 return -EFAULT;
2319 to = &ts;
2320 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2321 return -EINVAL;
2322 }
2323
2324 return do_epoll_pwait(epfd, events, maxevents, to,
2325 sigmask, sigsetsize);
2326 }
2327
2328 #ifdef CONFIG_COMPAT
2329 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2330 int maxevents, struct timespec64 *timeout,
2331 const compat_sigset_t __user *sigmask,
2332 compat_size_t sigsetsize)
2333 {
2334 long err;
2335
2336 /*
2337 * If the caller wants a certain signal mask to be set during the wait,
2338 * we apply it here.
2339 */
2340 err = set_compat_user_sigmask(sigmask, sigsetsize);
2341 if (err)
2342 return err;
2343
2344 err = do_epoll_wait(epfd, events, maxevents, timeout);
2345
2346 restore_saved_sigmask_unless(err == -EINTR);
2347
2348 return err;
2349 }
2350
2351 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2352 struct epoll_event __user *, events,
2353 int, maxevents, int, timeout,
2354 const compat_sigset_t __user *, sigmask,
2355 compat_size_t, sigsetsize)
2356 {
2357 struct timespec64 to;
2358
2359 return do_compat_epoll_pwait(epfd, events, maxevents,
2360 ep_timeout_to_timespec(&to, timeout),
2361 sigmask, sigsetsize);
2362 }
2363
2364 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2365 struct epoll_event __user *, events,
2366 int, maxevents,
2367 const struct __kernel_timespec __user *, timeout,
2368 const compat_sigset_t __user *, sigmask,
2369 compat_size_t, sigsetsize)
2370 {
2371 struct timespec64 ts, *to = NULL;
2372
2373 if (timeout) {
2374 if (get_timespec64(&ts, timeout))
2375 return -EFAULT;
2376 to = &ts;
2377 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2378 return -EINVAL;
2379 }
2380
2381 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2382 sigmask, sigsetsize);
2383 }
2384
2385 #endif
2386
2387 static int __init eventpoll_init(void)
2388 {
2389 struct sysinfo si;
2390
2391 si_meminfo(&si);
2392 /*
2393 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2394 */
2395 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2396 EP_ITEM_COST;
2397 BUG_ON(max_user_watches < 0);
2398
2399 /*
2400 * We can have many thousands of epitems, so prevent this from
2401 * using an extra cache line on 64-bit (and smaller) CPUs
2402 */
2403 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2404
2405 /* Allocates slab cache used to allocate "struct epitem" items */
2406 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2407 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2408
2409 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2410 pwq_cache = kmem_cache_create("eventpoll_pwq",
2411 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2412 epoll_sysctls_init();
2413
2414 ephead_cache = kmem_cache_create("ep_head",
2415 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2416
2417 return 0;
2418 }
2419 fs_initcall(eventpoll_init);