]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/ext4/extents.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / fs / ext4 / extents.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 *
6 * Architecture independence:
7 * Copyright (c) 2005, Bull S.A.
8 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 */
10
11 /*
12 * Extents support for EXT4
13 *
14 * TODO:
15 * - ext4*_error() should be used in some situations
16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
17 * - smart tree reduction
18 */
19
20 #include <linux/fs.h>
21 #include <linux/time.h>
22 #include <linux/jbd2.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/fiemap.h>
30 #include <linux/backing-dev.h>
31 #include <linux/iomap.h>
32 #include "ext4_jbd2.h"
33 #include "ext4_extents.h"
34 #include "xattr.h"
35
36 #include <trace/events/ext4.h>
37
38 /*
39 * used by extent splitting.
40 */
41 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
42 due to ENOSPC */
43 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
44 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
45
46 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
47 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
48
49 static __le32 ext4_extent_block_csum(struct inode *inode,
50 struct ext4_extent_header *eh)
51 {
52 struct ext4_inode_info *ei = EXT4_I(inode);
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55
56 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
57 EXT4_EXTENT_TAIL_OFFSET(eh));
58 return cpu_to_le32(csum);
59 }
60
61 static int ext4_extent_block_csum_verify(struct inode *inode,
62 struct ext4_extent_header *eh)
63 {
64 struct ext4_extent_tail *et;
65
66 if (!ext4_has_metadata_csum(inode->i_sb))
67 return 1;
68
69 et = find_ext4_extent_tail(eh);
70 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
71 return 0;
72 return 1;
73 }
74
75 static void ext4_extent_block_csum_set(struct inode *inode,
76 struct ext4_extent_header *eh)
77 {
78 struct ext4_extent_tail *et;
79
80 if (!ext4_has_metadata_csum(inode->i_sb))
81 return;
82
83 et = find_ext4_extent_tail(eh);
84 et->et_checksum = ext4_extent_block_csum(inode, eh);
85 }
86
87 static int ext4_split_extent_at(handle_t *handle,
88 struct inode *inode,
89 struct ext4_ext_path **ppath,
90 ext4_lblk_t split,
91 int split_flag,
92 int flags);
93
94 static int ext4_ext_trunc_restart_fn(struct inode *inode, int *dropped)
95 {
96 /*
97 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
98 * moment, get_block can be called only for blocks inside i_size since
99 * page cache has been already dropped and writes are blocked by
100 * i_mutex. So we can safely drop the i_data_sem here.
101 */
102 BUG_ON(EXT4_JOURNAL(inode) == NULL);
103 ext4_discard_preallocations(inode);
104 up_write(&EXT4_I(inode)->i_data_sem);
105 *dropped = 1;
106 return 0;
107 }
108
109 /*
110 * Make sure 'handle' has at least 'check_cred' credits. If not, restart
111 * transaction with 'restart_cred' credits. The function drops i_data_sem
112 * when restarting transaction and gets it after transaction is restarted.
113 *
114 * The function returns 0 on success, 1 if transaction had to be restarted,
115 * and < 0 in case of fatal error.
116 */
117 int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode,
118 int check_cred, int restart_cred,
119 int revoke_cred)
120 {
121 int ret;
122 int dropped = 0;
123
124 ret = ext4_journal_ensure_credits_fn(handle, check_cred, restart_cred,
125 revoke_cred, ext4_ext_trunc_restart_fn(inode, &dropped));
126 if (dropped)
127 down_write(&EXT4_I(inode)->i_data_sem);
128 return ret;
129 }
130
131 /*
132 * could return:
133 * - EROFS
134 * - ENOMEM
135 */
136 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
137 struct ext4_ext_path *path)
138 {
139 if (path->p_bh) {
140 /* path points to block */
141 BUFFER_TRACE(path->p_bh, "get_write_access");
142 return ext4_journal_get_write_access(handle, path->p_bh);
143 }
144 /* path points to leaf/index in inode body */
145 /* we use in-core data, no need to protect them */
146 return 0;
147 }
148
149 /*
150 * could return:
151 * - EROFS
152 * - ENOMEM
153 * - EIO
154 */
155 static int __ext4_ext_dirty(const char *where, unsigned int line,
156 handle_t *handle, struct inode *inode,
157 struct ext4_ext_path *path)
158 {
159 int err;
160
161 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
162 if (path->p_bh) {
163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
164 /* path points to block */
165 err = __ext4_handle_dirty_metadata(where, line, handle,
166 inode, path->p_bh);
167 } else {
168 /* path points to leaf/index in inode body */
169 err = ext4_mark_inode_dirty(handle, inode);
170 }
171 return err;
172 }
173
174 #define ext4_ext_dirty(handle, inode, path) \
175 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
176
177 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
178 struct ext4_ext_path *path,
179 ext4_lblk_t block)
180 {
181 if (path) {
182 int depth = path->p_depth;
183 struct ext4_extent *ex;
184
185 /*
186 * Try to predict block placement assuming that we are
187 * filling in a file which will eventually be
188 * non-sparse --- i.e., in the case of libbfd writing
189 * an ELF object sections out-of-order but in a way
190 * the eventually results in a contiguous object or
191 * executable file, or some database extending a table
192 * space file. However, this is actually somewhat
193 * non-ideal if we are writing a sparse file such as
194 * qemu or KVM writing a raw image file that is going
195 * to stay fairly sparse, since it will end up
196 * fragmenting the file system's free space. Maybe we
197 * should have some hueristics or some way to allow
198 * userspace to pass a hint to file system,
199 * especially if the latter case turns out to be
200 * common.
201 */
202 ex = path[depth].p_ext;
203 if (ex) {
204 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
205 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
206
207 if (block > ext_block)
208 return ext_pblk + (block - ext_block);
209 else
210 return ext_pblk - (ext_block - block);
211 }
212
213 /* it looks like index is empty;
214 * try to find starting block from index itself */
215 if (path[depth].p_bh)
216 return path[depth].p_bh->b_blocknr;
217 }
218
219 /* OK. use inode's group */
220 return ext4_inode_to_goal_block(inode);
221 }
222
223 /*
224 * Allocation for a meta data block
225 */
226 static ext4_fsblk_t
227 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
228 struct ext4_ext_path *path,
229 struct ext4_extent *ex, int *err, unsigned int flags)
230 {
231 ext4_fsblk_t goal, newblock;
232
233 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
234 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
235 NULL, err);
236 return newblock;
237 }
238
239 static inline int ext4_ext_space_block(struct inode *inode, int check)
240 {
241 int size;
242
243 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
244 / sizeof(struct ext4_extent);
245 #ifdef AGGRESSIVE_TEST
246 if (!check && size > 6)
247 size = 6;
248 #endif
249 return size;
250 }
251
252 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
253 {
254 int size;
255
256 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
257 / sizeof(struct ext4_extent_idx);
258 #ifdef AGGRESSIVE_TEST
259 if (!check && size > 5)
260 size = 5;
261 #endif
262 return size;
263 }
264
265 static inline int ext4_ext_space_root(struct inode *inode, int check)
266 {
267 int size;
268
269 size = sizeof(EXT4_I(inode)->i_data);
270 size -= sizeof(struct ext4_extent_header);
271 size /= sizeof(struct ext4_extent);
272 #ifdef AGGRESSIVE_TEST
273 if (!check && size > 3)
274 size = 3;
275 #endif
276 return size;
277 }
278
279 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
280 {
281 int size;
282
283 size = sizeof(EXT4_I(inode)->i_data);
284 size -= sizeof(struct ext4_extent_header);
285 size /= sizeof(struct ext4_extent_idx);
286 #ifdef AGGRESSIVE_TEST
287 if (!check && size > 4)
288 size = 4;
289 #endif
290 return size;
291 }
292
293 static inline int
294 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
295 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
296 int nofail)
297 {
298 struct ext4_ext_path *path = *ppath;
299 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
300
301 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
302 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
303 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
304 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
305 }
306
307 static int
308 ext4_ext_max_entries(struct inode *inode, int depth)
309 {
310 int max;
311
312 if (depth == ext_depth(inode)) {
313 if (depth == 0)
314 max = ext4_ext_space_root(inode, 1);
315 else
316 max = ext4_ext_space_root_idx(inode, 1);
317 } else {
318 if (depth == 0)
319 max = ext4_ext_space_block(inode, 1);
320 else
321 max = ext4_ext_space_block_idx(inode, 1);
322 }
323
324 return max;
325 }
326
327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
328 {
329 ext4_fsblk_t block = ext4_ext_pblock(ext);
330 int len = ext4_ext_get_actual_len(ext);
331 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
332
333 /*
334 * We allow neither:
335 * - zero length
336 * - overflow/wrap-around
337 */
338 if (lblock + len <= lblock)
339 return 0;
340 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
341 }
342
343 static int ext4_valid_extent_idx(struct inode *inode,
344 struct ext4_extent_idx *ext_idx)
345 {
346 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
347
348 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
349 }
350
351 static int ext4_valid_extent_entries(struct inode *inode,
352 struct ext4_extent_header *eh,
353 ext4_fsblk_t *pblk, int depth)
354 {
355 unsigned short entries;
356 if (eh->eh_entries == 0)
357 return 1;
358
359 entries = le16_to_cpu(eh->eh_entries);
360
361 if (depth == 0) {
362 /* leaf entries */
363 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
364 ext4_lblk_t lblock = 0;
365 ext4_lblk_t prev = 0;
366 int len = 0;
367 while (entries) {
368 if (!ext4_valid_extent(inode, ext))
369 return 0;
370
371 /* Check for overlapping extents */
372 lblock = le32_to_cpu(ext->ee_block);
373 len = ext4_ext_get_actual_len(ext);
374 if ((lblock <= prev) && prev) {
375 *pblk = ext4_ext_pblock(ext);
376 return 0;
377 }
378 ext++;
379 entries--;
380 prev = lblock + len - 1;
381 }
382 } else {
383 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
384 while (entries) {
385 if (!ext4_valid_extent_idx(inode, ext_idx))
386 return 0;
387 ext_idx++;
388 entries--;
389 }
390 }
391 return 1;
392 }
393
394 static int __ext4_ext_check(const char *function, unsigned int line,
395 struct inode *inode, struct ext4_extent_header *eh,
396 int depth, ext4_fsblk_t pblk)
397 {
398 const char *error_msg;
399 int max = 0, err = -EFSCORRUPTED;
400
401 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
402 error_msg = "invalid magic";
403 goto corrupted;
404 }
405 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
406 error_msg = "unexpected eh_depth";
407 goto corrupted;
408 }
409 if (unlikely(eh->eh_max == 0)) {
410 error_msg = "invalid eh_max";
411 goto corrupted;
412 }
413 max = ext4_ext_max_entries(inode, depth);
414 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
415 error_msg = "too large eh_max";
416 goto corrupted;
417 }
418 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
419 error_msg = "invalid eh_entries";
420 goto corrupted;
421 }
422 if (!ext4_valid_extent_entries(inode, eh, &pblk, depth)) {
423 error_msg = "invalid extent entries";
424 goto corrupted;
425 }
426 if (unlikely(depth > 32)) {
427 error_msg = "too large eh_depth";
428 goto corrupted;
429 }
430 /* Verify checksum on non-root extent tree nodes */
431 if (ext_depth(inode) != depth &&
432 !ext4_extent_block_csum_verify(inode, eh)) {
433 error_msg = "extent tree corrupted";
434 err = -EFSBADCRC;
435 goto corrupted;
436 }
437 return 0;
438
439 corrupted:
440 ext4_error_inode_err(inode, function, line, 0, -err,
441 "pblk %llu bad header/extent: %s - magic %x, "
442 "entries %u, max %u(%u), depth %u(%u)",
443 (unsigned long long) pblk, error_msg,
444 le16_to_cpu(eh->eh_magic),
445 le16_to_cpu(eh->eh_entries),
446 le16_to_cpu(eh->eh_max),
447 max, le16_to_cpu(eh->eh_depth), depth);
448 return err;
449 }
450
451 #define ext4_ext_check(inode, eh, depth, pblk) \
452 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
453
454 int ext4_ext_check_inode(struct inode *inode)
455 {
456 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
457 }
458
459 static void ext4_cache_extents(struct inode *inode,
460 struct ext4_extent_header *eh)
461 {
462 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
463 ext4_lblk_t prev = 0;
464 int i;
465
466 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
467 unsigned int status = EXTENT_STATUS_WRITTEN;
468 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
469 int len = ext4_ext_get_actual_len(ex);
470
471 if (prev && (prev != lblk))
472 ext4_es_cache_extent(inode, prev, lblk - prev, ~0,
473 EXTENT_STATUS_HOLE);
474
475 if (ext4_ext_is_unwritten(ex))
476 status = EXTENT_STATUS_UNWRITTEN;
477 ext4_es_cache_extent(inode, lblk, len,
478 ext4_ext_pblock(ex), status);
479 prev = lblk + len;
480 }
481 }
482
483 static struct buffer_head *
484 __read_extent_tree_block(const char *function, unsigned int line,
485 struct inode *inode, ext4_fsblk_t pblk, int depth,
486 int flags)
487 {
488 struct buffer_head *bh;
489 int err;
490
491 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
492 if (unlikely(!bh))
493 return ERR_PTR(-ENOMEM);
494
495 if (!bh_uptodate_or_lock(bh)) {
496 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
497 err = bh_submit_read(bh);
498 if (err < 0)
499 goto errout;
500 }
501 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
502 return bh;
503 if (!ext4_has_feature_journal(inode->i_sb) ||
504 (inode->i_ino !=
505 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) {
506 err = __ext4_ext_check(function, line, inode,
507 ext_block_hdr(bh), depth, pblk);
508 if (err)
509 goto errout;
510 }
511 set_buffer_verified(bh);
512 /*
513 * If this is a leaf block, cache all of its entries
514 */
515 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
516 struct ext4_extent_header *eh = ext_block_hdr(bh);
517 ext4_cache_extents(inode, eh);
518 }
519 return bh;
520 errout:
521 put_bh(bh);
522 return ERR_PTR(err);
523
524 }
525
526 #define read_extent_tree_block(inode, pblk, depth, flags) \
527 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
528 (depth), (flags))
529
530 /*
531 * This function is called to cache a file's extent information in the
532 * extent status tree
533 */
534 int ext4_ext_precache(struct inode *inode)
535 {
536 struct ext4_inode_info *ei = EXT4_I(inode);
537 struct ext4_ext_path *path = NULL;
538 struct buffer_head *bh;
539 int i = 0, depth, ret = 0;
540
541 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
542 return 0; /* not an extent-mapped inode */
543
544 down_read(&ei->i_data_sem);
545 depth = ext_depth(inode);
546
547 /* Don't cache anything if there are no external extent blocks */
548 if (!depth) {
549 up_read(&ei->i_data_sem);
550 return ret;
551 }
552
553 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
554 GFP_NOFS);
555 if (path == NULL) {
556 up_read(&ei->i_data_sem);
557 return -ENOMEM;
558 }
559
560 path[0].p_hdr = ext_inode_hdr(inode);
561 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
562 if (ret)
563 goto out;
564 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
565 while (i >= 0) {
566 /*
567 * If this is a leaf block or we've reached the end of
568 * the index block, go up
569 */
570 if ((i == depth) ||
571 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
572 brelse(path[i].p_bh);
573 path[i].p_bh = NULL;
574 i--;
575 continue;
576 }
577 bh = read_extent_tree_block(inode,
578 ext4_idx_pblock(path[i].p_idx++),
579 depth - i - 1,
580 EXT4_EX_FORCE_CACHE);
581 if (IS_ERR(bh)) {
582 ret = PTR_ERR(bh);
583 break;
584 }
585 i++;
586 path[i].p_bh = bh;
587 path[i].p_hdr = ext_block_hdr(bh);
588 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
589 }
590 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
591 out:
592 up_read(&ei->i_data_sem);
593 ext4_ext_drop_refs(path);
594 kfree(path);
595 return ret;
596 }
597
598 #ifdef EXT_DEBUG
599 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
600 {
601 int k, l = path->p_depth;
602
603 ext_debug("path:");
604 for (k = 0; k <= l; k++, path++) {
605 if (path->p_idx) {
606 ext_debug(" %d->%llu",
607 le32_to_cpu(path->p_idx->ei_block),
608 ext4_idx_pblock(path->p_idx));
609 } else if (path->p_ext) {
610 ext_debug(" %d:[%d]%d:%llu ",
611 le32_to_cpu(path->p_ext->ee_block),
612 ext4_ext_is_unwritten(path->p_ext),
613 ext4_ext_get_actual_len(path->p_ext),
614 ext4_ext_pblock(path->p_ext));
615 } else
616 ext_debug(" []");
617 }
618 ext_debug("\n");
619 }
620
621 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
622 {
623 int depth = ext_depth(inode);
624 struct ext4_extent_header *eh;
625 struct ext4_extent *ex;
626 int i;
627
628 if (!path)
629 return;
630
631 eh = path[depth].p_hdr;
632 ex = EXT_FIRST_EXTENT(eh);
633
634 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
635
636 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
637 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
638 ext4_ext_is_unwritten(ex),
639 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
640 }
641 ext_debug("\n");
642 }
643
644 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
645 ext4_fsblk_t newblock, int level)
646 {
647 int depth = ext_depth(inode);
648 struct ext4_extent *ex;
649
650 if (depth != level) {
651 struct ext4_extent_idx *idx;
652 idx = path[level].p_idx;
653 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
654 ext_debug("%d: move %d:%llu in new index %llu\n", level,
655 le32_to_cpu(idx->ei_block),
656 ext4_idx_pblock(idx),
657 newblock);
658 idx++;
659 }
660
661 return;
662 }
663
664 ex = path[depth].p_ext;
665 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
666 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
667 le32_to_cpu(ex->ee_block),
668 ext4_ext_pblock(ex),
669 ext4_ext_is_unwritten(ex),
670 ext4_ext_get_actual_len(ex),
671 newblock);
672 ex++;
673 }
674 }
675
676 #else
677 #define ext4_ext_show_path(inode, path)
678 #define ext4_ext_show_leaf(inode, path)
679 #define ext4_ext_show_move(inode, path, newblock, level)
680 #endif
681
682 void ext4_ext_drop_refs(struct ext4_ext_path *path)
683 {
684 int depth, i;
685
686 if (!path)
687 return;
688 depth = path->p_depth;
689 for (i = 0; i <= depth; i++, path++) {
690 if (path->p_bh) {
691 brelse(path->p_bh);
692 path->p_bh = NULL;
693 }
694 }
695 }
696
697 /*
698 * ext4_ext_binsearch_idx:
699 * binary search for the closest index of the given block
700 * the header must be checked before calling this
701 */
702 static void
703 ext4_ext_binsearch_idx(struct inode *inode,
704 struct ext4_ext_path *path, ext4_lblk_t block)
705 {
706 struct ext4_extent_header *eh = path->p_hdr;
707 struct ext4_extent_idx *r, *l, *m;
708
709
710 ext_debug("binsearch for %u(idx): ", block);
711
712 l = EXT_FIRST_INDEX(eh) + 1;
713 r = EXT_LAST_INDEX(eh);
714 while (l <= r) {
715 m = l + (r - l) / 2;
716 if (block < le32_to_cpu(m->ei_block))
717 r = m - 1;
718 else
719 l = m + 1;
720 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
721 m, le32_to_cpu(m->ei_block),
722 r, le32_to_cpu(r->ei_block));
723 }
724
725 path->p_idx = l - 1;
726 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
727 ext4_idx_pblock(path->p_idx));
728
729 #ifdef CHECK_BINSEARCH
730 {
731 struct ext4_extent_idx *chix, *ix;
732 int k;
733
734 chix = ix = EXT_FIRST_INDEX(eh);
735 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
736 if (k != 0 && le32_to_cpu(ix->ei_block) <=
737 le32_to_cpu(ix[-1].ei_block)) {
738 printk(KERN_DEBUG "k=%d, ix=0x%p, "
739 "first=0x%p\n", k,
740 ix, EXT_FIRST_INDEX(eh));
741 printk(KERN_DEBUG "%u <= %u\n",
742 le32_to_cpu(ix->ei_block),
743 le32_to_cpu(ix[-1].ei_block));
744 }
745 BUG_ON(k && le32_to_cpu(ix->ei_block)
746 <= le32_to_cpu(ix[-1].ei_block));
747 if (block < le32_to_cpu(ix->ei_block))
748 break;
749 chix = ix;
750 }
751 BUG_ON(chix != path->p_idx);
752 }
753 #endif
754
755 }
756
757 /*
758 * ext4_ext_binsearch:
759 * binary search for closest extent of the given block
760 * the header must be checked before calling this
761 */
762 static void
763 ext4_ext_binsearch(struct inode *inode,
764 struct ext4_ext_path *path, ext4_lblk_t block)
765 {
766 struct ext4_extent_header *eh = path->p_hdr;
767 struct ext4_extent *r, *l, *m;
768
769 if (eh->eh_entries == 0) {
770 /*
771 * this leaf is empty:
772 * we get such a leaf in split/add case
773 */
774 return;
775 }
776
777 ext_debug("binsearch for %u: ", block);
778
779 l = EXT_FIRST_EXTENT(eh) + 1;
780 r = EXT_LAST_EXTENT(eh);
781
782 while (l <= r) {
783 m = l + (r - l) / 2;
784 if (block < le32_to_cpu(m->ee_block))
785 r = m - 1;
786 else
787 l = m + 1;
788 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
789 m, le32_to_cpu(m->ee_block),
790 r, le32_to_cpu(r->ee_block));
791 }
792
793 path->p_ext = l - 1;
794 ext_debug(" -> %d:%llu:[%d]%d ",
795 le32_to_cpu(path->p_ext->ee_block),
796 ext4_ext_pblock(path->p_ext),
797 ext4_ext_is_unwritten(path->p_ext),
798 ext4_ext_get_actual_len(path->p_ext));
799
800 #ifdef CHECK_BINSEARCH
801 {
802 struct ext4_extent *chex, *ex;
803 int k;
804
805 chex = ex = EXT_FIRST_EXTENT(eh);
806 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
807 BUG_ON(k && le32_to_cpu(ex->ee_block)
808 <= le32_to_cpu(ex[-1].ee_block));
809 if (block < le32_to_cpu(ex->ee_block))
810 break;
811 chex = ex;
812 }
813 BUG_ON(chex != path->p_ext);
814 }
815 #endif
816
817 }
818
819 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
820 {
821 struct ext4_extent_header *eh;
822
823 eh = ext_inode_hdr(inode);
824 eh->eh_depth = 0;
825 eh->eh_entries = 0;
826 eh->eh_magic = EXT4_EXT_MAGIC;
827 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
828 ext4_mark_inode_dirty(handle, inode);
829 return 0;
830 }
831
832 struct ext4_ext_path *
833 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
834 struct ext4_ext_path **orig_path, int flags)
835 {
836 struct ext4_extent_header *eh;
837 struct buffer_head *bh;
838 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
839 short int depth, i, ppos = 0;
840 int ret;
841
842 eh = ext_inode_hdr(inode);
843 depth = ext_depth(inode);
844 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) {
845 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d",
846 depth);
847 ret = -EFSCORRUPTED;
848 goto err;
849 }
850
851 if (path) {
852 ext4_ext_drop_refs(path);
853 if (depth > path[0].p_maxdepth) {
854 kfree(path);
855 *orig_path = path = NULL;
856 }
857 }
858 if (!path) {
859 /* account possible depth increase */
860 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path),
861 GFP_NOFS);
862 if (unlikely(!path))
863 return ERR_PTR(-ENOMEM);
864 path[0].p_maxdepth = depth + 1;
865 }
866 path[0].p_hdr = eh;
867 path[0].p_bh = NULL;
868
869 i = depth;
870 if (!(flags & EXT4_EX_NOCACHE) && depth == 0)
871 ext4_cache_extents(inode, eh);
872 /* walk through the tree */
873 while (i) {
874 ext_debug("depth %d: num %d, max %d\n",
875 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
876
877 ext4_ext_binsearch_idx(inode, path + ppos, block);
878 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
879 path[ppos].p_depth = i;
880 path[ppos].p_ext = NULL;
881
882 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
883 flags);
884 if (IS_ERR(bh)) {
885 ret = PTR_ERR(bh);
886 goto err;
887 }
888
889 eh = ext_block_hdr(bh);
890 ppos++;
891 path[ppos].p_bh = bh;
892 path[ppos].p_hdr = eh;
893 }
894
895 path[ppos].p_depth = i;
896 path[ppos].p_ext = NULL;
897 path[ppos].p_idx = NULL;
898
899 /* find extent */
900 ext4_ext_binsearch(inode, path + ppos, block);
901 /* if not an empty leaf */
902 if (path[ppos].p_ext)
903 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
904
905 ext4_ext_show_path(inode, path);
906
907 return path;
908
909 err:
910 ext4_ext_drop_refs(path);
911 kfree(path);
912 if (orig_path)
913 *orig_path = NULL;
914 return ERR_PTR(ret);
915 }
916
917 /*
918 * ext4_ext_insert_index:
919 * insert new index [@logical;@ptr] into the block at @curp;
920 * check where to insert: before @curp or after @curp
921 */
922 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
923 struct ext4_ext_path *curp,
924 int logical, ext4_fsblk_t ptr)
925 {
926 struct ext4_extent_idx *ix;
927 int len, err;
928
929 err = ext4_ext_get_access(handle, inode, curp);
930 if (err)
931 return err;
932
933 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
934 EXT4_ERROR_INODE(inode,
935 "logical %d == ei_block %d!",
936 logical, le32_to_cpu(curp->p_idx->ei_block));
937 return -EFSCORRUPTED;
938 }
939
940 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
941 >= le16_to_cpu(curp->p_hdr->eh_max))) {
942 EXT4_ERROR_INODE(inode,
943 "eh_entries %d >= eh_max %d!",
944 le16_to_cpu(curp->p_hdr->eh_entries),
945 le16_to_cpu(curp->p_hdr->eh_max));
946 return -EFSCORRUPTED;
947 }
948
949 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
950 /* insert after */
951 ext_debug("insert new index %d after: %llu\n", logical, ptr);
952 ix = curp->p_idx + 1;
953 } else {
954 /* insert before */
955 ext_debug("insert new index %d before: %llu\n", logical, ptr);
956 ix = curp->p_idx;
957 }
958
959 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
960 BUG_ON(len < 0);
961 if (len > 0) {
962 ext_debug("insert new index %d: "
963 "move %d indices from 0x%p to 0x%p\n",
964 logical, len, ix, ix + 1);
965 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
966 }
967
968 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
969 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
970 return -EFSCORRUPTED;
971 }
972
973 ix->ei_block = cpu_to_le32(logical);
974 ext4_idx_store_pblock(ix, ptr);
975 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
976
977 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
978 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
979 return -EFSCORRUPTED;
980 }
981
982 err = ext4_ext_dirty(handle, inode, curp);
983 ext4_std_error(inode->i_sb, err);
984
985 return err;
986 }
987
988 /*
989 * ext4_ext_split:
990 * inserts new subtree into the path, using free index entry
991 * at depth @at:
992 * - allocates all needed blocks (new leaf and all intermediate index blocks)
993 * - makes decision where to split
994 * - moves remaining extents and index entries (right to the split point)
995 * into the newly allocated blocks
996 * - initializes subtree
997 */
998 static int ext4_ext_split(handle_t *handle, struct inode *inode,
999 unsigned int flags,
1000 struct ext4_ext_path *path,
1001 struct ext4_extent *newext, int at)
1002 {
1003 struct buffer_head *bh = NULL;
1004 int depth = ext_depth(inode);
1005 struct ext4_extent_header *neh;
1006 struct ext4_extent_idx *fidx;
1007 int i = at, k, m, a;
1008 ext4_fsblk_t newblock, oldblock;
1009 __le32 border;
1010 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1011 int err = 0;
1012 size_t ext_size = 0;
1013
1014 /* make decision: where to split? */
1015 /* FIXME: now decision is simplest: at current extent */
1016
1017 /* if current leaf will be split, then we should use
1018 * border from split point */
1019 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1020 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1021 return -EFSCORRUPTED;
1022 }
1023 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1024 border = path[depth].p_ext[1].ee_block;
1025 ext_debug("leaf will be split."
1026 " next leaf starts at %d\n",
1027 le32_to_cpu(border));
1028 } else {
1029 border = newext->ee_block;
1030 ext_debug("leaf will be added."
1031 " next leaf starts at %d\n",
1032 le32_to_cpu(border));
1033 }
1034
1035 /*
1036 * If error occurs, then we break processing
1037 * and mark filesystem read-only. index won't
1038 * be inserted and tree will be in consistent
1039 * state. Next mount will repair buffers too.
1040 */
1041
1042 /*
1043 * Get array to track all allocated blocks.
1044 * We need this to handle errors and free blocks
1045 * upon them.
1046 */
1047 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS);
1048 if (!ablocks)
1049 return -ENOMEM;
1050
1051 /* allocate all needed blocks */
1052 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1053 for (a = 0; a < depth - at; a++) {
1054 newblock = ext4_ext_new_meta_block(handle, inode, path,
1055 newext, &err, flags);
1056 if (newblock == 0)
1057 goto cleanup;
1058 ablocks[a] = newblock;
1059 }
1060
1061 /* initialize new leaf */
1062 newblock = ablocks[--a];
1063 if (unlikely(newblock == 0)) {
1064 EXT4_ERROR_INODE(inode, "newblock == 0!");
1065 err = -EFSCORRUPTED;
1066 goto cleanup;
1067 }
1068 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1069 if (unlikely(!bh)) {
1070 err = -ENOMEM;
1071 goto cleanup;
1072 }
1073 lock_buffer(bh);
1074
1075 err = ext4_journal_get_create_access(handle, bh);
1076 if (err)
1077 goto cleanup;
1078
1079 neh = ext_block_hdr(bh);
1080 neh->eh_entries = 0;
1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1082 neh->eh_magic = EXT4_EXT_MAGIC;
1083 neh->eh_depth = 0;
1084
1085 /* move remainder of path[depth] to the new leaf */
1086 if (unlikely(path[depth].p_hdr->eh_entries !=
1087 path[depth].p_hdr->eh_max)) {
1088 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1089 path[depth].p_hdr->eh_entries,
1090 path[depth].p_hdr->eh_max);
1091 err = -EFSCORRUPTED;
1092 goto cleanup;
1093 }
1094 /* start copy from next extent */
1095 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1096 ext4_ext_show_move(inode, path, newblock, depth);
1097 if (m) {
1098 struct ext4_extent *ex;
1099 ex = EXT_FIRST_EXTENT(neh);
1100 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1101 le16_add_cpu(&neh->eh_entries, m);
1102 }
1103
1104 /* zero out unused area in the extent block */
1105 ext_size = sizeof(struct ext4_extent_header) +
1106 sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries);
1107 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size);
1108 ext4_extent_block_csum_set(inode, neh);
1109 set_buffer_uptodate(bh);
1110 unlock_buffer(bh);
1111
1112 err = ext4_handle_dirty_metadata(handle, inode, bh);
1113 if (err)
1114 goto cleanup;
1115 brelse(bh);
1116 bh = NULL;
1117
1118 /* correct old leaf */
1119 if (m) {
1120 err = ext4_ext_get_access(handle, inode, path + depth);
1121 if (err)
1122 goto cleanup;
1123 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1124 err = ext4_ext_dirty(handle, inode, path + depth);
1125 if (err)
1126 goto cleanup;
1127
1128 }
1129
1130 /* create intermediate indexes */
1131 k = depth - at - 1;
1132 if (unlikely(k < 0)) {
1133 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1134 err = -EFSCORRUPTED;
1135 goto cleanup;
1136 }
1137 if (k)
1138 ext_debug("create %d intermediate indices\n", k);
1139 /* insert new index into current index block */
1140 /* current depth stored in i var */
1141 i = depth - 1;
1142 while (k--) {
1143 oldblock = newblock;
1144 newblock = ablocks[--a];
1145 bh = sb_getblk(inode->i_sb, newblock);
1146 if (unlikely(!bh)) {
1147 err = -ENOMEM;
1148 goto cleanup;
1149 }
1150 lock_buffer(bh);
1151
1152 err = ext4_journal_get_create_access(handle, bh);
1153 if (err)
1154 goto cleanup;
1155
1156 neh = ext_block_hdr(bh);
1157 neh->eh_entries = cpu_to_le16(1);
1158 neh->eh_magic = EXT4_EXT_MAGIC;
1159 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1160 neh->eh_depth = cpu_to_le16(depth - i);
1161 fidx = EXT_FIRST_INDEX(neh);
1162 fidx->ei_block = border;
1163 ext4_idx_store_pblock(fidx, oldblock);
1164
1165 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1166 i, newblock, le32_to_cpu(border), oldblock);
1167
1168 /* move remainder of path[i] to the new index block */
1169 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1170 EXT_LAST_INDEX(path[i].p_hdr))) {
1171 EXT4_ERROR_INODE(inode,
1172 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1173 le32_to_cpu(path[i].p_ext->ee_block));
1174 err = -EFSCORRUPTED;
1175 goto cleanup;
1176 }
1177 /* start copy indexes */
1178 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1179 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1180 EXT_MAX_INDEX(path[i].p_hdr));
1181 ext4_ext_show_move(inode, path, newblock, i);
1182 if (m) {
1183 memmove(++fidx, path[i].p_idx,
1184 sizeof(struct ext4_extent_idx) * m);
1185 le16_add_cpu(&neh->eh_entries, m);
1186 }
1187 /* zero out unused area in the extent block */
1188 ext_size = sizeof(struct ext4_extent_header) +
1189 (sizeof(struct ext4_extent) * le16_to_cpu(neh->eh_entries));
1190 memset(bh->b_data + ext_size, 0,
1191 inode->i_sb->s_blocksize - ext_size);
1192 ext4_extent_block_csum_set(inode, neh);
1193 set_buffer_uptodate(bh);
1194 unlock_buffer(bh);
1195
1196 err = ext4_handle_dirty_metadata(handle, inode, bh);
1197 if (err)
1198 goto cleanup;
1199 brelse(bh);
1200 bh = NULL;
1201
1202 /* correct old index */
1203 if (m) {
1204 err = ext4_ext_get_access(handle, inode, path + i);
1205 if (err)
1206 goto cleanup;
1207 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1208 err = ext4_ext_dirty(handle, inode, path + i);
1209 if (err)
1210 goto cleanup;
1211 }
1212
1213 i--;
1214 }
1215
1216 /* insert new index */
1217 err = ext4_ext_insert_index(handle, inode, path + at,
1218 le32_to_cpu(border), newblock);
1219
1220 cleanup:
1221 if (bh) {
1222 if (buffer_locked(bh))
1223 unlock_buffer(bh);
1224 brelse(bh);
1225 }
1226
1227 if (err) {
1228 /* free all allocated blocks in error case */
1229 for (i = 0; i < depth; i++) {
1230 if (!ablocks[i])
1231 continue;
1232 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1233 EXT4_FREE_BLOCKS_METADATA);
1234 }
1235 }
1236 kfree(ablocks);
1237
1238 return err;
1239 }
1240
1241 /*
1242 * ext4_ext_grow_indepth:
1243 * implements tree growing procedure:
1244 * - allocates new block
1245 * - moves top-level data (index block or leaf) into the new block
1246 * - initializes new top-level, creating index that points to the
1247 * just created block
1248 */
1249 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1250 unsigned int flags)
1251 {
1252 struct ext4_extent_header *neh;
1253 struct buffer_head *bh;
1254 ext4_fsblk_t newblock, goal = 0;
1255 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1256 int err = 0;
1257 size_t ext_size = 0;
1258
1259 /* Try to prepend new index to old one */
1260 if (ext_depth(inode))
1261 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1262 if (goal > le32_to_cpu(es->s_first_data_block)) {
1263 flags |= EXT4_MB_HINT_TRY_GOAL;
1264 goal--;
1265 } else
1266 goal = ext4_inode_to_goal_block(inode);
1267 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1268 NULL, &err);
1269 if (newblock == 0)
1270 return err;
1271
1272 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1273 if (unlikely(!bh))
1274 return -ENOMEM;
1275 lock_buffer(bh);
1276
1277 err = ext4_journal_get_create_access(handle, bh);
1278 if (err) {
1279 unlock_buffer(bh);
1280 goto out;
1281 }
1282
1283 ext_size = sizeof(EXT4_I(inode)->i_data);
1284 /* move top-level index/leaf into new block */
1285 memmove(bh->b_data, EXT4_I(inode)->i_data, ext_size);
1286 /* zero out unused area in the extent block */
1287 memset(bh->b_data + ext_size, 0, inode->i_sb->s_blocksize - ext_size);
1288
1289 /* set size of new block */
1290 neh = ext_block_hdr(bh);
1291 /* old root could have indexes or leaves
1292 * so calculate e_max right way */
1293 if (ext_depth(inode))
1294 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1295 else
1296 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1297 neh->eh_magic = EXT4_EXT_MAGIC;
1298 ext4_extent_block_csum_set(inode, neh);
1299 set_buffer_uptodate(bh);
1300 unlock_buffer(bh);
1301
1302 err = ext4_handle_dirty_metadata(handle, inode, bh);
1303 if (err)
1304 goto out;
1305
1306 /* Update top-level index: num,max,pointer */
1307 neh = ext_inode_hdr(inode);
1308 neh->eh_entries = cpu_to_le16(1);
1309 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1310 if (neh->eh_depth == 0) {
1311 /* Root extent block becomes index block */
1312 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1313 EXT_FIRST_INDEX(neh)->ei_block =
1314 EXT_FIRST_EXTENT(neh)->ee_block;
1315 }
1316 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1317 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1318 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1319 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1320
1321 le16_add_cpu(&neh->eh_depth, 1);
1322 ext4_mark_inode_dirty(handle, inode);
1323 out:
1324 brelse(bh);
1325
1326 return err;
1327 }
1328
1329 /*
1330 * ext4_ext_create_new_leaf:
1331 * finds empty index and adds new leaf.
1332 * if no free index is found, then it requests in-depth growing.
1333 */
1334 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1335 unsigned int mb_flags,
1336 unsigned int gb_flags,
1337 struct ext4_ext_path **ppath,
1338 struct ext4_extent *newext)
1339 {
1340 struct ext4_ext_path *path = *ppath;
1341 struct ext4_ext_path *curp;
1342 int depth, i, err = 0;
1343
1344 repeat:
1345 i = depth = ext_depth(inode);
1346
1347 /* walk up to the tree and look for free index entry */
1348 curp = path + depth;
1349 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1350 i--;
1351 curp--;
1352 }
1353
1354 /* we use already allocated block for index block,
1355 * so subsequent data blocks should be contiguous */
1356 if (EXT_HAS_FREE_INDEX(curp)) {
1357 /* if we found index with free entry, then use that
1358 * entry: create all needed subtree and add new leaf */
1359 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1360 if (err)
1361 goto out;
1362
1363 /* refill path */
1364 path = ext4_find_extent(inode,
1365 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1366 ppath, gb_flags);
1367 if (IS_ERR(path))
1368 err = PTR_ERR(path);
1369 } else {
1370 /* tree is full, time to grow in depth */
1371 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1372 if (err)
1373 goto out;
1374
1375 /* refill path */
1376 path = ext4_find_extent(inode,
1377 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1378 ppath, gb_flags);
1379 if (IS_ERR(path)) {
1380 err = PTR_ERR(path);
1381 goto out;
1382 }
1383
1384 /*
1385 * only first (depth 0 -> 1) produces free space;
1386 * in all other cases we have to split the grown tree
1387 */
1388 depth = ext_depth(inode);
1389 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1390 /* now we need to split */
1391 goto repeat;
1392 }
1393 }
1394
1395 out:
1396 return err;
1397 }
1398
1399 /*
1400 * search the closest allocated block to the left for *logical
1401 * and returns it at @logical + it's physical address at @phys
1402 * if *logical is the smallest allocated block, the function
1403 * returns 0 at @phys
1404 * return value contains 0 (success) or error code
1405 */
1406 static int ext4_ext_search_left(struct inode *inode,
1407 struct ext4_ext_path *path,
1408 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1409 {
1410 struct ext4_extent_idx *ix;
1411 struct ext4_extent *ex;
1412 int depth, ee_len;
1413
1414 if (unlikely(path == NULL)) {
1415 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1416 return -EFSCORRUPTED;
1417 }
1418 depth = path->p_depth;
1419 *phys = 0;
1420
1421 if (depth == 0 && path->p_ext == NULL)
1422 return 0;
1423
1424 /* usually extent in the path covers blocks smaller
1425 * then *logical, but it can be that extent is the
1426 * first one in the file */
1427
1428 ex = path[depth].p_ext;
1429 ee_len = ext4_ext_get_actual_len(ex);
1430 if (*logical < le32_to_cpu(ex->ee_block)) {
1431 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1432 EXT4_ERROR_INODE(inode,
1433 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1434 *logical, le32_to_cpu(ex->ee_block));
1435 return -EFSCORRUPTED;
1436 }
1437 while (--depth >= 0) {
1438 ix = path[depth].p_idx;
1439 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1440 EXT4_ERROR_INODE(inode,
1441 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1442 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1443 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1444 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1445 depth);
1446 return -EFSCORRUPTED;
1447 }
1448 }
1449 return 0;
1450 }
1451
1452 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1453 EXT4_ERROR_INODE(inode,
1454 "logical %d < ee_block %d + ee_len %d!",
1455 *logical, le32_to_cpu(ex->ee_block), ee_len);
1456 return -EFSCORRUPTED;
1457 }
1458
1459 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1460 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1461 return 0;
1462 }
1463
1464 /*
1465 * search the closest allocated block to the right for *logical
1466 * and returns it at @logical + it's physical address at @phys
1467 * if *logical is the largest allocated block, the function
1468 * returns 0 at @phys
1469 * return value contains 0 (success) or error code
1470 */
1471 static int ext4_ext_search_right(struct inode *inode,
1472 struct ext4_ext_path *path,
1473 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1474 struct ext4_extent **ret_ex)
1475 {
1476 struct buffer_head *bh = NULL;
1477 struct ext4_extent_header *eh;
1478 struct ext4_extent_idx *ix;
1479 struct ext4_extent *ex;
1480 ext4_fsblk_t block;
1481 int depth; /* Note, NOT eh_depth; depth from top of tree */
1482 int ee_len;
1483
1484 if (unlikely(path == NULL)) {
1485 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1486 return -EFSCORRUPTED;
1487 }
1488 depth = path->p_depth;
1489 *phys = 0;
1490
1491 if (depth == 0 && path->p_ext == NULL)
1492 return 0;
1493
1494 /* usually extent in the path covers blocks smaller
1495 * then *logical, but it can be that extent is the
1496 * first one in the file */
1497
1498 ex = path[depth].p_ext;
1499 ee_len = ext4_ext_get_actual_len(ex);
1500 if (*logical < le32_to_cpu(ex->ee_block)) {
1501 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1502 EXT4_ERROR_INODE(inode,
1503 "first_extent(path[%d].p_hdr) != ex",
1504 depth);
1505 return -EFSCORRUPTED;
1506 }
1507 while (--depth >= 0) {
1508 ix = path[depth].p_idx;
1509 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1510 EXT4_ERROR_INODE(inode,
1511 "ix != EXT_FIRST_INDEX *logical %d!",
1512 *logical);
1513 return -EFSCORRUPTED;
1514 }
1515 }
1516 goto found_extent;
1517 }
1518
1519 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1520 EXT4_ERROR_INODE(inode,
1521 "logical %d < ee_block %d + ee_len %d!",
1522 *logical, le32_to_cpu(ex->ee_block), ee_len);
1523 return -EFSCORRUPTED;
1524 }
1525
1526 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1527 /* next allocated block in this leaf */
1528 ex++;
1529 goto found_extent;
1530 }
1531
1532 /* go up and search for index to the right */
1533 while (--depth >= 0) {
1534 ix = path[depth].p_idx;
1535 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1536 goto got_index;
1537 }
1538
1539 /* we've gone up to the root and found no index to the right */
1540 return 0;
1541
1542 got_index:
1543 /* we've found index to the right, let's
1544 * follow it and find the closest allocated
1545 * block to the right */
1546 ix++;
1547 block = ext4_idx_pblock(ix);
1548 while (++depth < path->p_depth) {
1549 /* subtract from p_depth to get proper eh_depth */
1550 bh = read_extent_tree_block(inode, block,
1551 path->p_depth - depth, 0);
1552 if (IS_ERR(bh))
1553 return PTR_ERR(bh);
1554 eh = ext_block_hdr(bh);
1555 ix = EXT_FIRST_INDEX(eh);
1556 block = ext4_idx_pblock(ix);
1557 put_bh(bh);
1558 }
1559
1560 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1561 if (IS_ERR(bh))
1562 return PTR_ERR(bh);
1563 eh = ext_block_hdr(bh);
1564 ex = EXT_FIRST_EXTENT(eh);
1565 found_extent:
1566 *logical = le32_to_cpu(ex->ee_block);
1567 *phys = ext4_ext_pblock(ex);
1568 *ret_ex = ex;
1569 if (bh)
1570 put_bh(bh);
1571 return 0;
1572 }
1573
1574 /*
1575 * ext4_ext_next_allocated_block:
1576 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1577 * NOTE: it considers block number from index entry as
1578 * allocated block. Thus, index entries have to be consistent
1579 * with leaves.
1580 */
1581 ext4_lblk_t
1582 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1583 {
1584 int depth;
1585
1586 BUG_ON(path == NULL);
1587 depth = path->p_depth;
1588
1589 if (depth == 0 && path->p_ext == NULL)
1590 return EXT_MAX_BLOCKS;
1591
1592 while (depth >= 0) {
1593 struct ext4_ext_path *p = &path[depth];
1594
1595 if (depth == path->p_depth) {
1596 /* leaf */
1597 if (p->p_ext && p->p_ext != EXT_LAST_EXTENT(p->p_hdr))
1598 return le32_to_cpu(p->p_ext[1].ee_block);
1599 } else {
1600 /* index */
1601 if (p->p_idx != EXT_LAST_INDEX(p->p_hdr))
1602 return le32_to_cpu(p->p_idx[1].ei_block);
1603 }
1604 depth--;
1605 }
1606
1607 return EXT_MAX_BLOCKS;
1608 }
1609
1610 /*
1611 * ext4_ext_next_leaf_block:
1612 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1613 */
1614 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1615 {
1616 int depth;
1617
1618 BUG_ON(path == NULL);
1619 depth = path->p_depth;
1620
1621 /* zero-tree has no leaf blocks at all */
1622 if (depth == 0)
1623 return EXT_MAX_BLOCKS;
1624
1625 /* go to index block */
1626 depth--;
1627
1628 while (depth >= 0) {
1629 if (path[depth].p_idx !=
1630 EXT_LAST_INDEX(path[depth].p_hdr))
1631 return (ext4_lblk_t)
1632 le32_to_cpu(path[depth].p_idx[1].ei_block);
1633 depth--;
1634 }
1635
1636 return EXT_MAX_BLOCKS;
1637 }
1638
1639 /*
1640 * ext4_ext_correct_indexes:
1641 * if leaf gets modified and modified extent is first in the leaf,
1642 * then we have to correct all indexes above.
1643 * TODO: do we need to correct tree in all cases?
1644 */
1645 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1646 struct ext4_ext_path *path)
1647 {
1648 struct ext4_extent_header *eh;
1649 int depth = ext_depth(inode);
1650 struct ext4_extent *ex;
1651 __le32 border;
1652 int k, err = 0;
1653
1654 eh = path[depth].p_hdr;
1655 ex = path[depth].p_ext;
1656
1657 if (unlikely(ex == NULL || eh == NULL)) {
1658 EXT4_ERROR_INODE(inode,
1659 "ex %p == NULL or eh %p == NULL", ex, eh);
1660 return -EFSCORRUPTED;
1661 }
1662
1663 if (depth == 0) {
1664 /* there is no tree at all */
1665 return 0;
1666 }
1667
1668 if (ex != EXT_FIRST_EXTENT(eh)) {
1669 /* we correct tree if first leaf got modified only */
1670 return 0;
1671 }
1672
1673 /*
1674 * TODO: we need correction if border is smaller than current one
1675 */
1676 k = depth - 1;
1677 border = path[depth].p_ext->ee_block;
1678 err = ext4_ext_get_access(handle, inode, path + k);
1679 if (err)
1680 return err;
1681 path[k].p_idx->ei_block = border;
1682 err = ext4_ext_dirty(handle, inode, path + k);
1683 if (err)
1684 return err;
1685
1686 while (k--) {
1687 /* change all left-side indexes */
1688 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1689 break;
1690 err = ext4_ext_get_access(handle, inode, path + k);
1691 if (err)
1692 break;
1693 path[k].p_idx->ei_block = border;
1694 err = ext4_ext_dirty(handle, inode, path + k);
1695 if (err)
1696 break;
1697 }
1698
1699 return err;
1700 }
1701
1702 static int ext4_can_extents_be_merged(struct inode *inode,
1703 struct ext4_extent *ex1,
1704 struct ext4_extent *ex2)
1705 {
1706 unsigned short ext1_ee_len, ext2_ee_len;
1707
1708 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1709 return 0;
1710
1711 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1712 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1713
1714 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1715 le32_to_cpu(ex2->ee_block))
1716 return 0;
1717
1718 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1719 return 0;
1720
1721 if (ext4_ext_is_unwritten(ex1) &&
1722 ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)
1723 return 0;
1724 #ifdef AGGRESSIVE_TEST
1725 if (ext1_ee_len >= 4)
1726 return 0;
1727 #endif
1728
1729 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1730 return 1;
1731 return 0;
1732 }
1733
1734 /*
1735 * This function tries to merge the "ex" extent to the next extent in the tree.
1736 * It always tries to merge towards right. If you want to merge towards
1737 * left, pass "ex - 1" as argument instead of "ex".
1738 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1739 * 1 if they got merged.
1740 */
1741 static int ext4_ext_try_to_merge_right(struct inode *inode,
1742 struct ext4_ext_path *path,
1743 struct ext4_extent *ex)
1744 {
1745 struct ext4_extent_header *eh;
1746 unsigned int depth, len;
1747 int merge_done = 0, unwritten;
1748
1749 depth = ext_depth(inode);
1750 BUG_ON(path[depth].p_hdr == NULL);
1751 eh = path[depth].p_hdr;
1752
1753 while (ex < EXT_LAST_EXTENT(eh)) {
1754 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1755 break;
1756 /* merge with next extent! */
1757 unwritten = ext4_ext_is_unwritten(ex);
1758 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1759 + ext4_ext_get_actual_len(ex + 1));
1760 if (unwritten)
1761 ext4_ext_mark_unwritten(ex);
1762
1763 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1764 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1765 * sizeof(struct ext4_extent);
1766 memmove(ex + 1, ex + 2, len);
1767 }
1768 le16_add_cpu(&eh->eh_entries, -1);
1769 merge_done = 1;
1770 WARN_ON(eh->eh_entries == 0);
1771 if (!eh->eh_entries)
1772 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1773 }
1774
1775 return merge_done;
1776 }
1777
1778 /*
1779 * This function does a very simple check to see if we can collapse
1780 * an extent tree with a single extent tree leaf block into the inode.
1781 */
1782 static void ext4_ext_try_to_merge_up(handle_t *handle,
1783 struct inode *inode,
1784 struct ext4_ext_path *path)
1785 {
1786 size_t s;
1787 unsigned max_root = ext4_ext_space_root(inode, 0);
1788 ext4_fsblk_t blk;
1789
1790 if ((path[0].p_depth != 1) ||
1791 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1792 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1793 return;
1794
1795 /*
1796 * We need to modify the block allocation bitmap and the block
1797 * group descriptor to release the extent tree block. If we
1798 * can't get the journal credits, give up.
1799 */
1800 if (ext4_journal_extend(handle, 2,
1801 ext4_free_metadata_revoke_credits(inode->i_sb, 1)))
1802 return;
1803
1804 /*
1805 * Copy the extent data up to the inode
1806 */
1807 blk = ext4_idx_pblock(path[0].p_idx);
1808 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1809 sizeof(struct ext4_extent_idx);
1810 s += sizeof(struct ext4_extent_header);
1811
1812 path[1].p_maxdepth = path[0].p_maxdepth;
1813 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1814 path[0].p_depth = 0;
1815 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1816 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1817 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1818
1819 brelse(path[1].p_bh);
1820 ext4_free_blocks(handle, inode, NULL, blk, 1,
1821 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1822 }
1823
1824 /*
1825 * This function tries to merge the @ex extent to neighbours in the tree, then
1826 * tries to collapse the extent tree into the inode.
1827 */
1828 static void ext4_ext_try_to_merge(handle_t *handle,
1829 struct inode *inode,
1830 struct ext4_ext_path *path,
1831 struct ext4_extent *ex)
1832 {
1833 struct ext4_extent_header *eh;
1834 unsigned int depth;
1835 int merge_done = 0;
1836
1837 depth = ext_depth(inode);
1838 BUG_ON(path[depth].p_hdr == NULL);
1839 eh = path[depth].p_hdr;
1840
1841 if (ex > EXT_FIRST_EXTENT(eh))
1842 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1843
1844 if (!merge_done)
1845 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1846
1847 ext4_ext_try_to_merge_up(handle, inode, path);
1848 }
1849
1850 /*
1851 * check if a portion of the "newext" extent overlaps with an
1852 * existing extent.
1853 *
1854 * If there is an overlap discovered, it updates the length of the newext
1855 * such that there will be no overlap, and then returns 1.
1856 * If there is no overlap found, it returns 0.
1857 */
1858 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1859 struct inode *inode,
1860 struct ext4_extent *newext,
1861 struct ext4_ext_path *path)
1862 {
1863 ext4_lblk_t b1, b2;
1864 unsigned int depth, len1;
1865 unsigned int ret = 0;
1866
1867 b1 = le32_to_cpu(newext->ee_block);
1868 len1 = ext4_ext_get_actual_len(newext);
1869 depth = ext_depth(inode);
1870 if (!path[depth].p_ext)
1871 goto out;
1872 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1873
1874 /*
1875 * get the next allocated block if the extent in the path
1876 * is before the requested block(s)
1877 */
1878 if (b2 < b1) {
1879 b2 = ext4_ext_next_allocated_block(path);
1880 if (b2 == EXT_MAX_BLOCKS)
1881 goto out;
1882 b2 = EXT4_LBLK_CMASK(sbi, b2);
1883 }
1884
1885 /* check for wrap through zero on extent logical start block*/
1886 if (b1 + len1 < b1) {
1887 len1 = EXT_MAX_BLOCKS - b1;
1888 newext->ee_len = cpu_to_le16(len1);
1889 ret = 1;
1890 }
1891
1892 /* check for overlap */
1893 if (b1 + len1 > b2) {
1894 newext->ee_len = cpu_to_le16(b2 - b1);
1895 ret = 1;
1896 }
1897 out:
1898 return ret;
1899 }
1900
1901 /*
1902 * ext4_ext_insert_extent:
1903 * tries to merge requsted extent into the existing extent or
1904 * inserts requested extent as new one into the tree,
1905 * creating new leaf in the no-space case.
1906 */
1907 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1908 struct ext4_ext_path **ppath,
1909 struct ext4_extent *newext, int gb_flags)
1910 {
1911 struct ext4_ext_path *path = *ppath;
1912 struct ext4_extent_header *eh;
1913 struct ext4_extent *ex, *fex;
1914 struct ext4_extent *nearex; /* nearest extent */
1915 struct ext4_ext_path *npath = NULL;
1916 int depth, len, err;
1917 ext4_lblk_t next;
1918 int mb_flags = 0, unwritten;
1919
1920 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1921 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1922 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1923 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1924 return -EFSCORRUPTED;
1925 }
1926 depth = ext_depth(inode);
1927 ex = path[depth].p_ext;
1928 eh = path[depth].p_hdr;
1929 if (unlikely(path[depth].p_hdr == NULL)) {
1930 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1931 return -EFSCORRUPTED;
1932 }
1933
1934 /* try to insert block into found extent and return */
1935 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1936
1937 /*
1938 * Try to see whether we should rather test the extent on
1939 * right from ex, or from the left of ex. This is because
1940 * ext4_find_extent() can return either extent on the
1941 * left, or on the right from the searched position. This
1942 * will make merging more effective.
1943 */
1944 if (ex < EXT_LAST_EXTENT(eh) &&
1945 (le32_to_cpu(ex->ee_block) +
1946 ext4_ext_get_actual_len(ex) <
1947 le32_to_cpu(newext->ee_block))) {
1948 ex += 1;
1949 goto prepend;
1950 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1951 (le32_to_cpu(newext->ee_block) +
1952 ext4_ext_get_actual_len(newext) <
1953 le32_to_cpu(ex->ee_block)))
1954 ex -= 1;
1955
1956 /* Try to append newex to the ex */
1957 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1958 ext_debug("append [%d]%d block to %u:[%d]%d"
1959 "(from %llu)\n",
1960 ext4_ext_is_unwritten(newext),
1961 ext4_ext_get_actual_len(newext),
1962 le32_to_cpu(ex->ee_block),
1963 ext4_ext_is_unwritten(ex),
1964 ext4_ext_get_actual_len(ex),
1965 ext4_ext_pblock(ex));
1966 err = ext4_ext_get_access(handle, inode,
1967 path + depth);
1968 if (err)
1969 return err;
1970 unwritten = ext4_ext_is_unwritten(ex);
1971 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1972 + ext4_ext_get_actual_len(newext));
1973 if (unwritten)
1974 ext4_ext_mark_unwritten(ex);
1975 eh = path[depth].p_hdr;
1976 nearex = ex;
1977 goto merge;
1978 }
1979
1980 prepend:
1981 /* Try to prepend newex to the ex */
1982 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1983 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1984 "(from %llu)\n",
1985 le32_to_cpu(newext->ee_block),
1986 ext4_ext_is_unwritten(newext),
1987 ext4_ext_get_actual_len(newext),
1988 le32_to_cpu(ex->ee_block),
1989 ext4_ext_is_unwritten(ex),
1990 ext4_ext_get_actual_len(ex),
1991 ext4_ext_pblock(ex));
1992 err = ext4_ext_get_access(handle, inode,
1993 path + depth);
1994 if (err)
1995 return err;
1996
1997 unwritten = ext4_ext_is_unwritten(ex);
1998 ex->ee_block = newext->ee_block;
1999 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2000 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2001 + ext4_ext_get_actual_len(newext));
2002 if (unwritten)
2003 ext4_ext_mark_unwritten(ex);
2004 eh = path[depth].p_hdr;
2005 nearex = ex;
2006 goto merge;
2007 }
2008 }
2009
2010 depth = ext_depth(inode);
2011 eh = path[depth].p_hdr;
2012 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2013 goto has_space;
2014
2015 /* probably next leaf has space for us? */
2016 fex = EXT_LAST_EXTENT(eh);
2017 next = EXT_MAX_BLOCKS;
2018 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2019 next = ext4_ext_next_leaf_block(path);
2020 if (next != EXT_MAX_BLOCKS) {
2021 ext_debug("next leaf block - %u\n", next);
2022 BUG_ON(npath != NULL);
2023 npath = ext4_find_extent(inode, next, NULL, 0);
2024 if (IS_ERR(npath))
2025 return PTR_ERR(npath);
2026 BUG_ON(npath->p_depth != path->p_depth);
2027 eh = npath[depth].p_hdr;
2028 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2029 ext_debug("next leaf isn't full(%d)\n",
2030 le16_to_cpu(eh->eh_entries));
2031 path = npath;
2032 goto has_space;
2033 }
2034 ext_debug("next leaf has no free space(%d,%d)\n",
2035 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2036 }
2037
2038 /*
2039 * There is no free space in the found leaf.
2040 * We're gonna add a new leaf in the tree.
2041 */
2042 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2043 mb_flags |= EXT4_MB_USE_RESERVED;
2044 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2045 ppath, newext);
2046 if (err)
2047 goto cleanup;
2048 depth = ext_depth(inode);
2049 eh = path[depth].p_hdr;
2050
2051 has_space:
2052 nearex = path[depth].p_ext;
2053
2054 err = ext4_ext_get_access(handle, inode, path + depth);
2055 if (err)
2056 goto cleanup;
2057
2058 if (!nearex) {
2059 /* there is no extent in this leaf, create first one */
2060 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2061 le32_to_cpu(newext->ee_block),
2062 ext4_ext_pblock(newext),
2063 ext4_ext_is_unwritten(newext),
2064 ext4_ext_get_actual_len(newext));
2065 nearex = EXT_FIRST_EXTENT(eh);
2066 } else {
2067 if (le32_to_cpu(newext->ee_block)
2068 > le32_to_cpu(nearex->ee_block)) {
2069 /* Insert after */
2070 ext_debug("insert %u:%llu:[%d]%d before: "
2071 "nearest %p\n",
2072 le32_to_cpu(newext->ee_block),
2073 ext4_ext_pblock(newext),
2074 ext4_ext_is_unwritten(newext),
2075 ext4_ext_get_actual_len(newext),
2076 nearex);
2077 nearex++;
2078 } else {
2079 /* Insert before */
2080 BUG_ON(newext->ee_block == nearex->ee_block);
2081 ext_debug("insert %u:%llu:[%d]%d after: "
2082 "nearest %p\n",
2083 le32_to_cpu(newext->ee_block),
2084 ext4_ext_pblock(newext),
2085 ext4_ext_is_unwritten(newext),
2086 ext4_ext_get_actual_len(newext),
2087 nearex);
2088 }
2089 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2090 if (len > 0) {
2091 ext_debug("insert %u:%llu:[%d]%d: "
2092 "move %d extents from 0x%p to 0x%p\n",
2093 le32_to_cpu(newext->ee_block),
2094 ext4_ext_pblock(newext),
2095 ext4_ext_is_unwritten(newext),
2096 ext4_ext_get_actual_len(newext),
2097 len, nearex, nearex + 1);
2098 memmove(nearex + 1, nearex,
2099 len * sizeof(struct ext4_extent));
2100 }
2101 }
2102
2103 le16_add_cpu(&eh->eh_entries, 1);
2104 path[depth].p_ext = nearex;
2105 nearex->ee_block = newext->ee_block;
2106 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2107 nearex->ee_len = newext->ee_len;
2108
2109 merge:
2110 /* try to merge extents */
2111 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2112 ext4_ext_try_to_merge(handle, inode, path, nearex);
2113
2114
2115 /* time to correct all indexes above */
2116 err = ext4_ext_correct_indexes(handle, inode, path);
2117 if (err)
2118 goto cleanup;
2119
2120 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2121
2122 cleanup:
2123 ext4_ext_drop_refs(npath);
2124 kfree(npath);
2125 return err;
2126 }
2127
2128 static int ext4_fill_es_cache_info(struct inode *inode,
2129 ext4_lblk_t block, ext4_lblk_t num,
2130 struct fiemap_extent_info *fieinfo)
2131 {
2132 ext4_lblk_t next, end = block + num - 1;
2133 struct extent_status es;
2134 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2135 unsigned int flags;
2136 int err;
2137
2138 while (block <= end) {
2139 next = 0;
2140 flags = 0;
2141 if (!ext4_es_lookup_extent(inode, block, &next, &es))
2142 break;
2143 if (ext4_es_is_unwritten(&es))
2144 flags |= FIEMAP_EXTENT_UNWRITTEN;
2145 if (ext4_es_is_delayed(&es))
2146 flags |= (FIEMAP_EXTENT_DELALLOC |
2147 FIEMAP_EXTENT_UNKNOWN);
2148 if (ext4_es_is_hole(&es))
2149 flags |= EXT4_FIEMAP_EXTENT_HOLE;
2150 if (next == 0)
2151 flags |= FIEMAP_EXTENT_LAST;
2152 if (flags & (FIEMAP_EXTENT_DELALLOC|
2153 EXT4_FIEMAP_EXTENT_HOLE))
2154 es.es_pblk = 0;
2155 else
2156 es.es_pblk = ext4_es_pblock(&es);
2157 err = fiemap_fill_next_extent(fieinfo,
2158 (__u64)es.es_lblk << blksize_bits,
2159 (__u64)es.es_pblk << blksize_bits,
2160 (__u64)es.es_len << blksize_bits,
2161 flags);
2162 if (next == 0)
2163 break;
2164 block = next;
2165 if (err < 0)
2166 return err;
2167 if (err == 1)
2168 return 0;
2169 }
2170 return 0;
2171 }
2172
2173
2174 /*
2175 * ext4_ext_determine_hole - determine hole around given block
2176 * @inode: inode we lookup in
2177 * @path: path in extent tree to @lblk
2178 * @lblk: pointer to logical block around which we want to determine hole
2179 *
2180 * Determine hole length (and start if easily possible) around given logical
2181 * block. We don't try too hard to find the beginning of the hole but @path
2182 * actually points to extent before @lblk, we provide it.
2183 *
2184 * The function returns the length of a hole starting at @lblk. We update @lblk
2185 * to the beginning of the hole if we managed to find it.
2186 */
2187 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2188 struct ext4_ext_path *path,
2189 ext4_lblk_t *lblk)
2190 {
2191 int depth = ext_depth(inode);
2192 struct ext4_extent *ex;
2193 ext4_lblk_t len;
2194
2195 ex = path[depth].p_ext;
2196 if (ex == NULL) {
2197 /* there is no extent yet, so gap is [0;-] */
2198 *lblk = 0;
2199 len = EXT_MAX_BLOCKS;
2200 } else if (*lblk < le32_to_cpu(ex->ee_block)) {
2201 len = le32_to_cpu(ex->ee_block) - *lblk;
2202 } else if (*lblk >= le32_to_cpu(ex->ee_block)
2203 + ext4_ext_get_actual_len(ex)) {
2204 ext4_lblk_t next;
2205
2206 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2207 next = ext4_ext_next_allocated_block(path);
2208 BUG_ON(next == *lblk);
2209 len = next - *lblk;
2210 } else {
2211 BUG();
2212 }
2213 return len;
2214 }
2215
2216 /*
2217 * ext4_ext_put_gap_in_cache:
2218 * calculate boundaries of the gap that the requested block fits into
2219 * and cache this gap
2220 */
2221 static void
2222 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2223 ext4_lblk_t hole_len)
2224 {
2225 struct extent_status es;
2226
2227 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, hole_start,
2228 hole_start + hole_len - 1, &es);
2229 if (es.es_len) {
2230 /* There's delayed extent containing lblock? */
2231 if (es.es_lblk <= hole_start)
2232 return;
2233 hole_len = min(es.es_lblk - hole_start, hole_len);
2234 }
2235 ext_debug(" -> %u:%u\n", hole_start, hole_len);
2236 ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2237 EXTENT_STATUS_HOLE);
2238 }
2239
2240 /*
2241 * ext4_ext_rm_idx:
2242 * removes index from the index block.
2243 */
2244 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2245 struct ext4_ext_path *path, int depth)
2246 {
2247 int err;
2248 ext4_fsblk_t leaf;
2249
2250 /* free index block */
2251 depth--;
2252 path = path + depth;
2253 leaf = ext4_idx_pblock(path->p_idx);
2254 if (unlikely(path->p_hdr->eh_entries == 0)) {
2255 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2256 return -EFSCORRUPTED;
2257 }
2258 err = ext4_ext_get_access(handle, inode, path);
2259 if (err)
2260 return err;
2261
2262 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2263 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2264 len *= sizeof(struct ext4_extent_idx);
2265 memmove(path->p_idx, path->p_idx + 1, len);
2266 }
2267
2268 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2269 err = ext4_ext_dirty(handle, inode, path);
2270 if (err)
2271 return err;
2272 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2273 trace_ext4_ext_rm_idx(inode, leaf);
2274
2275 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2276 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2277
2278 while (--depth >= 0) {
2279 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2280 break;
2281 path--;
2282 err = ext4_ext_get_access(handle, inode, path);
2283 if (err)
2284 break;
2285 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2286 err = ext4_ext_dirty(handle, inode, path);
2287 if (err)
2288 break;
2289 }
2290 return err;
2291 }
2292
2293 /*
2294 * ext4_ext_calc_credits_for_single_extent:
2295 * This routine returns max. credits that needed to insert an extent
2296 * to the extent tree.
2297 * When pass the actual path, the caller should calculate credits
2298 * under i_data_sem.
2299 */
2300 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2301 struct ext4_ext_path *path)
2302 {
2303 if (path) {
2304 int depth = ext_depth(inode);
2305 int ret = 0;
2306
2307 /* probably there is space in leaf? */
2308 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2309 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2310
2311 /*
2312 * There are some space in the leaf tree, no
2313 * need to account for leaf block credit
2314 *
2315 * bitmaps and block group descriptor blocks
2316 * and other metadata blocks still need to be
2317 * accounted.
2318 */
2319 /* 1 bitmap, 1 block group descriptor */
2320 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2321 return ret;
2322 }
2323 }
2324
2325 return ext4_chunk_trans_blocks(inode, nrblocks);
2326 }
2327
2328 /*
2329 * How many index/leaf blocks need to change/allocate to add @extents extents?
2330 *
2331 * If we add a single extent, then in the worse case, each tree level
2332 * index/leaf need to be changed in case of the tree split.
2333 *
2334 * If more extents are inserted, they could cause the whole tree split more
2335 * than once, but this is really rare.
2336 */
2337 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2338 {
2339 int index;
2340 int depth;
2341
2342 /* If we are converting the inline data, only one is needed here. */
2343 if (ext4_has_inline_data(inode))
2344 return 1;
2345
2346 depth = ext_depth(inode);
2347
2348 if (extents <= 1)
2349 index = depth * 2;
2350 else
2351 index = depth * 3;
2352
2353 return index;
2354 }
2355
2356 static inline int get_default_free_blocks_flags(struct inode *inode)
2357 {
2358 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2359 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2360 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2361 else if (ext4_should_journal_data(inode))
2362 return EXT4_FREE_BLOCKS_FORGET;
2363 return 0;
2364 }
2365
2366 /*
2367 * ext4_rereserve_cluster - increment the reserved cluster count when
2368 * freeing a cluster with a pending reservation
2369 *
2370 * @inode - file containing the cluster
2371 * @lblk - logical block in cluster to be reserved
2372 *
2373 * Increments the reserved cluster count and adjusts quota in a bigalloc
2374 * file system when freeing a partial cluster containing at least one
2375 * delayed and unwritten block. A partial cluster meeting that
2376 * requirement will have a pending reservation. If so, the
2377 * RERESERVE_CLUSTER flag is used when calling ext4_free_blocks() to
2378 * defer reserved and allocated space accounting to a subsequent call
2379 * to this function.
2380 */
2381 static void ext4_rereserve_cluster(struct inode *inode, ext4_lblk_t lblk)
2382 {
2383 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2384 struct ext4_inode_info *ei = EXT4_I(inode);
2385
2386 dquot_reclaim_block(inode, EXT4_C2B(sbi, 1));
2387
2388 spin_lock(&ei->i_block_reservation_lock);
2389 ei->i_reserved_data_blocks++;
2390 percpu_counter_add(&sbi->s_dirtyclusters_counter, 1);
2391 spin_unlock(&ei->i_block_reservation_lock);
2392
2393 percpu_counter_add(&sbi->s_freeclusters_counter, 1);
2394 ext4_remove_pending(inode, lblk);
2395 }
2396
2397 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2398 struct ext4_extent *ex,
2399 struct partial_cluster *partial,
2400 ext4_lblk_t from, ext4_lblk_t to)
2401 {
2402 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2403 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2404 ext4_fsblk_t last_pblk, pblk;
2405 ext4_lblk_t num;
2406 int flags;
2407
2408 /* only extent tail removal is allowed */
2409 if (from < le32_to_cpu(ex->ee_block) ||
2410 to != le32_to_cpu(ex->ee_block) + ee_len - 1) {
2411 ext4_error(sbi->s_sb,
2412 "strange request: removal(2) %u-%u from %u:%u",
2413 from, to, le32_to_cpu(ex->ee_block), ee_len);
2414 return 0;
2415 }
2416
2417 #ifdef EXTENTS_STATS
2418 spin_lock(&sbi->s_ext_stats_lock);
2419 sbi->s_ext_blocks += ee_len;
2420 sbi->s_ext_extents++;
2421 if (ee_len < sbi->s_ext_min)
2422 sbi->s_ext_min = ee_len;
2423 if (ee_len > sbi->s_ext_max)
2424 sbi->s_ext_max = ee_len;
2425 if (ext_depth(inode) > sbi->s_depth_max)
2426 sbi->s_depth_max = ext_depth(inode);
2427 spin_unlock(&sbi->s_ext_stats_lock);
2428 #endif
2429
2430 trace_ext4_remove_blocks(inode, ex, from, to, partial);
2431
2432 /*
2433 * if we have a partial cluster, and it's different from the
2434 * cluster of the last block in the extent, we free it
2435 */
2436 last_pblk = ext4_ext_pblock(ex) + ee_len - 1;
2437
2438 if (partial->state != initial &&
2439 partial->pclu != EXT4_B2C(sbi, last_pblk)) {
2440 if (partial->state == tofree) {
2441 flags = get_default_free_blocks_flags(inode);
2442 if (ext4_is_pending(inode, partial->lblk))
2443 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2444 ext4_free_blocks(handle, inode, NULL,
2445 EXT4_C2B(sbi, partial->pclu),
2446 sbi->s_cluster_ratio, flags);
2447 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2448 ext4_rereserve_cluster(inode, partial->lblk);
2449 }
2450 partial->state = initial;
2451 }
2452
2453 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2454 pblk = ext4_ext_pblock(ex) + ee_len - num;
2455
2456 /*
2457 * We free the partial cluster at the end of the extent (if any),
2458 * unless the cluster is used by another extent (partial_cluster
2459 * state is nofree). If a partial cluster exists here, it must be
2460 * shared with the last block in the extent.
2461 */
2462 flags = get_default_free_blocks_flags(inode);
2463
2464 /* partial, left end cluster aligned, right end unaligned */
2465 if ((EXT4_LBLK_COFF(sbi, to) != sbi->s_cluster_ratio - 1) &&
2466 (EXT4_LBLK_CMASK(sbi, to) >= from) &&
2467 (partial->state != nofree)) {
2468 if (ext4_is_pending(inode, to))
2469 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2470 ext4_free_blocks(handle, inode, NULL,
2471 EXT4_PBLK_CMASK(sbi, last_pblk),
2472 sbi->s_cluster_ratio, flags);
2473 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2474 ext4_rereserve_cluster(inode, to);
2475 partial->state = initial;
2476 flags = get_default_free_blocks_flags(inode);
2477 }
2478
2479 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2480
2481 /*
2482 * For bigalloc file systems, we never free a partial cluster
2483 * at the beginning of the extent. Instead, we check to see if we
2484 * need to free it on a subsequent call to ext4_remove_blocks,
2485 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2486 */
2487 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2488 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2489
2490 /* reset the partial cluster if we've freed past it */
2491 if (partial->state != initial && partial->pclu != EXT4_B2C(sbi, pblk))
2492 partial->state = initial;
2493
2494 /*
2495 * If we've freed the entire extent but the beginning is not left
2496 * cluster aligned and is not marked as ineligible for freeing we
2497 * record the partial cluster at the beginning of the extent. It
2498 * wasn't freed by the preceding ext4_free_blocks() call, and we
2499 * need to look farther to the left to determine if it's to be freed
2500 * (not shared with another extent). Else, reset the partial
2501 * cluster - we're either done freeing or the beginning of the
2502 * extent is left cluster aligned.
2503 */
2504 if (EXT4_LBLK_COFF(sbi, from) && num == ee_len) {
2505 if (partial->state == initial) {
2506 partial->pclu = EXT4_B2C(sbi, pblk);
2507 partial->lblk = from;
2508 partial->state = tofree;
2509 }
2510 } else {
2511 partial->state = initial;
2512 }
2513
2514 return 0;
2515 }
2516
2517 /*
2518 * ext4_ext_rm_leaf() Removes the extents associated with the
2519 * blocks appearing between "start" and "end". Both "start"
2520 * and "end" must appear in the same extent or EIO is returned.
2521 *
2522 * @handle: The journal handle
2523 * @inode: The files inode
2524 * @path: The path to the leaf
2525 * @partial_cluster: The cluster which we'll have to free if all extents
2526 * has been released from it. However, if this value is
2527 * negative, it's a cluster just to the right of the
2528 * punched region and it must not be freed.
2529 * @start: The first block to remove
2530 * @end: The last block to remove
2531 */
2532 static int
2533 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2534 struct ext4_ext_path *path,
2535 struct partial_cluster *partial,
2536 ext4_lblk_t start, ext4_lblk_t end)
2537 {
2538 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2539 int err = 0, correct_index = 0;
2540 int depth = ext_depth(inode), credits, revoke_credits;
2541 struct ext4_extent_header *eh;
2542 ext4_lblk_t a, b;
2543 unsigned num;
2544 ext4_lblk_t ex_ee_block;
2545 unsigned short ex_ee_len;
2546 unsigned unwritten = 0;
2547 struct ext4_extent *ex;
2548 ext4_fsblk_t pblk;
2549
2550 /* the header must be checked already in ext4_ext_remove_space() */
2551 ext_debug("truncate since %u in leaf to %u\n", start, end);
2552 if (!path[depth].p_hdr)
2553 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2554 eh = path[depth].p_hdr;
2555 if (unlikely(path[depth].p_hdr == NULL)) {
2556 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2557 return -EFSCORRUPTED;
2558 }
2559 /* find where to start removing */
2560 ex = path[depth].p_ext;
2561 if (!ex)
2562 ex = EXT_LAST_EXTENT(eh);
2563
2564 ex_ee_block = le32_to_cpu(ex->ee_block);
2565 ex_ee_len = ext4_ext_get_actual_len(ex);
2566
2567 trace_ext4_ext_rm_leaf(inode, start, ex, partial);
2568
2569 while (ex >= EXT_FIRST_EXTENT(eh) &&
2570 ex_ee_block + ex_ee_len > start) {
2571
2572 if (ext4_ext_is_unwritten(ex))
2573 unwritten = 1;
2574 else
2575 unwritten = 0;
2576
2577 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2578 unwritten, ex_ee_len);
2579 path[depth].p_ext = ex;
2580
2581 a = ex_ee_block > start ? ex_ee_block : start;
2582 b = ex_ee_block+ex_ee_len - 1 < end ?
2583 ex_ee_block+ex_ee_len - 1 : end;
2584
2585 ext_debug(" border %u:%u\n", a, b);
2586
2587 /* If this extent is beyond the end of the hole, skip it */
2588 if (end < ex_ee_block) {
2589 /*
2590 * We're going to skip this extent and move to another,
2591 * so note that its first cluster is in use to avoid
2592 * freeing it when removing blocks. Eventually, the
2593 * right edge of the truncated/punched region will
2594 * be just to the left.
2595 */
2596 if (sbi->s_cluster_ratio > 1) {
2597 pblk = ext4_ext_pblock(ex);
2598 partial->pclu = EXT4_B2C(sbi, pblk);
2599 partial->state = nofree;
2600 }
2601 ex--;
2602 ex_ee_block = le32_to_cpu(ex->ee_block);
2603 ex_ee_len = ext4_ext_get_actual_len(ex);
2604 continue;
2605 } else if (b != ex_ee_block + ex_ee_len - 1) {
2606 EXT4_ERROR_INODE(inode,
2607 "can not handle truncate %u:%u "
2608 "on extent %u:%u",
2609 start, end, ex_ee_block,
2610 ex_ee_block + ex_ee_len - 1);
2611 err = -EFSCORRUPTED;
2612 goto out;
2613 } else if (a != ex_ee_block) {
2614 /* remove tail of the extent */
2615 num = a - ex_ee_block;
2616 } else {
2617 /* remove whole extent: excellent! */
2618 num = 0;
2619 }
2620 /*
2621 * 3 for leaf, sb, and inode plus 2 (bmap and group
2622 * descriptor) for each block group; assume two block
2623 * groups plus ex_ee_len/blocks_per_block_group for
2624 * the worst case
2625 */
2626 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2627 if (ex == EXT_FIRST_EXTENT(eh)) {
2628 correct_index = 1;
2629 credits += (ext_depth(inode)) + 1;
2630 }
2631 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2632 /*
2633 * We may end up freeing some index blocks and data from the
2634 * punched range. Note that partial clusters are accounted for
2635 * by ext4_free_data_revoke_credits().
2636 */
2637 revoke_credits =
2638 ext4_free_metadata_revoke_credits(inode->i_sb,
2639 ext_depth(inode)) +
2640 ext4_free_data_revoke_credits(inode, b - a + 1);
2641
2642 err = ext4_datasem_ensure_credits(handle, inode, credits,
2643 credits, revoke_credits);
2644 if (err) {
2645 if (err > 0)
2646 err = -EAGAIN;
2647 goto out;
2648 }
2649
2650 err = ext4_ext_get_access(handle, inode, path + depth);
2651 if (err)
2652 goto out;
2653
2654 err = ext4_remove_blocks(handle, inode, ex, partial, a, b);
2655 if (err)
2656 goto out;
2657
2658 if (num == 0)
2659 /* this extent is removed; mark slot entirely unused */
2660 ext4_ext_store_pblock(ex, 0);
2661
2662 ex->ee_len = cpu_to_le16(num);
2663 /*
2664 * Do not mark unwritten if all the blocks in the
2665 * extent have been removed.
2666 */
2667 if (unwritten && num)
2668 ext4_ext_mark_unwritten(ex);
2669 /*
2670 * If the extent was completely released,
2671 * we need to remove it from the leaf
2672 */
2673 if (num == 0) {
2674 if (end != EXT_MAX_BLOCKS - 1) {
2675 /*
2676 * For hole punching, we need to scoot all the
2677 * extents up when an extent is removed so that
2678 * we dont have blank extents in the middle
2679 */
2680 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2681 sizeof(struct ext4_extent));
2682
2683 /* Now get rid of the one at the end */
2684 memset(EXT_LAST_EXTENT(eh), 0,
2685 sizeof(struct ext4_extent));
2686 }
2687 le16_add_cpu(&eh->eh_entries, -1);
2688 }
2689
2690 err = ext4_ext_dirty(handle, inode, path + depth);
2691 if (err)
2692 goto out;
2693
2694 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2695 ext4_ext_pblock(ex));
2696 ex--;
2697 ex_ee_block = le32_to_cpu(ex->ee_block);
2698 ex_ee_len = ext4_ext_get_actual_len(ex);
2699 }
2700
2701 if (correct_index && eh->eh_entries)
2702 err = ext4_ext_correct_indexes(handle, inode, path);
2703
2704 /*
2705 * If there's a partial cluster and at least one extent remains in
2706 * the leaf, free the partial cluster if it isn't shared with the
2707 * current extent. If it is shared with the current extent
2708 * we reset the partial cluster because we've reached the start of the
2709 * truncated/punched region and we're done removing blocks.
2710 */
2711 if (partial->state == tofree && ex >= EXT_FIRST_EXTENT(eh)) {
2712 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2713 if (partial->pclu != EXT4_B2C(sbi, pblk)) {
2714 int flags = get_default_free_blocks_flags(inode);
2715
2716 if (ext4_is_pending(inode, partial->lblk))
2717 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2718 ext4_free_blocks(handle, inode, NULL,
2719 EXT4_C2B(sbi, partial->pclu),
2720 sbi->s_cluster_ratio, flags);
2721 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2722 ext4_rereserve_cluster(inode, partial->lblk);
2723 }
2724 partial->state = initial;
2725 }
2726
2727 /* if this leaf is free, then we should
2728 * remove it from index block above */
2729 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2730 err = ext4_ext_rm_idx(handle, inode, path, depth);
2731
2732 out:
2733 return err;
2734 }
2735
2736 /*
2737 * ext4_ext_more_to_rm:
2738 * returns 1 if current index has to be freed (even partial)
2739 */
2740 static int
2741 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2742 {
2743 BUG_ON(path->p_idx == NULL);
2744
2745 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2746 return 0;
2747
2748 /*
2749 * if truncate on deeper level happened, it wasn't partial,
2750 * so we have to consider current index for truncation
2751 */
2752 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2753 return 0;
2754 return 1;
2755 }
2756
2757 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2758 ext4_lblk_t end)
2759 {
2760 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2761 int depth = ext_depth(inode);
2762 struct ext4_ext_path *path = NULL;
2763 struct partial_cluster partial;
2764 handle_t *handle;
2765 int i = 0, err = 0;
2766
2767 partial.pclu = 0;
2768 partial.lblk = 0;
2769 partial.state = initial;
2770
2771 ext_debug("truncate since %u to %u\n", start, end);
2772
2773 /* probably first extent we're gonna free will be last in block */
2774 handle = ext4_journal_start_with_revoke(inode, EXT4_HT_TRUNCATE,
2775 depth + 1,
2776 ext4_free_metadata_revoke_credits(inode->i_sb, depth));
2777 if (IS_ERR(handle))
2778 return PTR_ERR(handle);
2779
2780 again:
2781 trace_ext4_ext_remove_space(inode, start, end, depth);
2782
2783 /*
2784 * Check if we are removing extents inside the extent tree. If that
2785 * is the case, we are going to punch a hole inside the extent tree
2786 * so we have to check whether we need to split the extent covering
2787 * the last block to remove so we can easily remove the part of it
2788 * in ext4_ext_rm_leaf().
2789 */
2790 if (end < EXT_MAX_BLOCKS - 1) {
2791 struct ext4_extent *ex;
2792 ext4_lblk_t ee_block, ex_end, lblk;
2793 ext4_fsblk_t pblk;
2794
2795 /* find extent for or closest extent to this block */
2796 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2797 if (IS_ERR(path)) {
2798 ext4_journal_stop(handle);
2799 return PTR_ERR(path);
2800 }
2801 depth = ext_depth(inode);
2802 /* Leaf not may not exist only if inode has no blocks at all */
2803 ex = path[depth].p_ext;
2804 if (!ex) {
2805 if (depth) {
2806 EXT4_ERROR_INODE(inode,
2807 "path[%d].p_hdr == NULL",
2808 depth);
2809 err = -EFSCORRUPTED;
2810 }
2811 goto out;
2812 }
2813
2814 ee_block = le32_to_cpu(ex->ee_block);
2815 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2816
2817 /*
2818 * See if the last block is inside the extent, if so split
2819 * the extent at 'end' block so we can easily remove the
2820 * tail of the first part of the split extent in
2821 * ext4_ext_rm_leaf().
2822 */
2823 if (end >= ee_block && end < ex_end) {
2824
2825 /*
2826 * If we're going to split the extent, note that
2827 * the cluster containing the block after 'end' is
2828 * in use to avoid freeing it when removing blocks.
2829 */
2830 if (sbi->s_cluster_ratio > 1) {
2831 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2832 partial.pclu = EXT4_B2C(sbi, pblk);
2833 partial.state = nofree;
2834 }
2835
2836 /*
2837 * Split the extent in two so that 'end' is the last
2838 * block in the first new extent. Also we should not
2839 * fail removing space due to ENOSPC so try to use
2840 * reserved block if that happens.
2841 */
2842 err = ext4_force_split_extent_at(handle, inode, &path,
2843 end + 1, 1);
2844 if (err < 0)
2845 goto out;
2846
2847 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end &&
2848 partial.state == initial) {
2849 /*
2850 * If we're punching, there's an extent to the right.
2851 * If the partial cluster hasn't been set, set it to
2852 * that extent's first cluster and its state to nofree
2853 * so it won't be freed should it contain blocks to be
2854 * removed. If it's already set (tofree/nofree), we're
2855 * retrying and keep the original partial cluster info
2856 * so a cluster marked tofree as a result of earlier
2857 * extent removal is not lost.
2858 */
2859 lblk = ex_end + 1;
2860 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2861 &ex);
2862 if (err)
2863 goto out;
2864 if (pblk) {
2865 partial.pclu = EXT4_B2C(sbi, pblk);
2866 partial.state = nofree;
2867 }
2868 }
2869 }
2870 /*
2871 * We start scanning from right side, freeing all the blocks
2872 * after i_size and walking into the tree depth-wise.
2873 */
2874 depth = ext_depth(inode);
2875 if (path) {
2876 int k = i = depth;
2877 while (--k > 0)
2878 path[k].p_block =
2879 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2880 } else {
2881 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
2882 GFP_NOFS);
2883 if (path == NULL) {
2884 ext4_journal_stop(handle);
2885 return -ENOMEM;
2886 }
2887 path[0].p_maxdepth = path[0].p_depth = depth;
2888 path[0].p_hdr = ext_inode_hdr(inode);
2889 i = 0;
2890
2891 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2892 err = -EFSCORRUPTED;
2893 goto out;
2894 }
2895 }
2896 err = 0;
2897
2898 while (i >= 0 && err == 0) {
2899 if (i == depth) {
2900 /* this is leaf block */
2901 err = ext4_ext_rm_leaf(handle, inode, path,
2902 &partial, start, end);
2903 /* root level has p_bh == NULL, brelse() eats this */
2904 brelse(path[i].p_bh);
2905 path[i].p_bh = NULL;
2906 i--;
2907 continue;
2908 }
2909
2910 /* this is index block */
2911 if (!path[i].p_hdr) {
2912 ext_debug("initialize header\n");
2913 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2914 }
2915
2916 if (!path[i].p_idx) {
2917 /* this level hasn't been touched yet */
2918 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2919 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2920 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2921 path[i].p_hdr,
2922 le16_to_cpu(path[i].p_hdr->eh_entries));
2923 } else {
2924 /* we were already here, see at next index */
2925 path[i].p_idx--;
2926 }
2927
2928 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2929 i, EXT_FIRST_INDEX(path[i].p_hdr),
2930 path[i].p_idx);
2931 if (ext4_ext_more_to_rm(path + i)) {
2932 struct buffer_head *bh;
2933 /* go to the next level */
2934 ext_debug("move to level %d (block %llu)\n",
2935 i + 1, ext4_idx_pblock(path[i].p_idx));
2936 memset(path + i + 1, 0, sizeof(*path));
2937 bh = read_extent_tree_block(inode,
2938 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2939 EXT4_EX_NOCACHE);
2940 if (IS_ERR(bh)) {
2941 /* should we reset i_size? */
2942 err = PTR_ERR(bh);
2943 break;
2944 }
2945 /* Yield here to deal with large extent trees.
2946 * Should be a no-op if we did IO above. */
2947 cond_resched();
2948 if (WARN_ON(i + 1 > depth)) {
2949 err = -EFSCORRUPTED;
2950 break;
2951 }
2952 path[i + 1].p_bh = bh;
2953
2954 /* save actual number of indexes since this
2955 * number is changed at the next iteration */
2956 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2957 i++;
2958 } else {
2959 /* we finished processing this index, go up */
2960 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2961 /* index is empty, remove it;
2962 * handle must be already prepared by the
2963 * truncatei_leaf() */
2964 err = ext4_ext_rm_idx(handle, inode, path, i);
2965 }
2966 /* root level has p_bh == NULL, brelse() eats this */
2967 brelse(path[i].p_bh);
2968 path[i].p_bh = NULL;
2969 i--;
2970 ext_debug("return to level %d\n", i);
2971 }
2972 }
2973
2974 trace_ext4_ext_remove_space_done(inode, start, end, depth, &partial,
2975 path->p_hdr->eh_entries);
2976
2977 /*
2978 * if there's a partial cluster and we have removed the first extent
2979 * in the file, then we also free the partial cluster, if any
2980 */
2981 if (partial.state == tofree && err == 0) {
2982 int flags = get_default_free_blocks_flags(inode);
2983
2984 if (ext4_is_pending(inode, partial.lblk))
2985 flags |= EXT4_FREE_BLOCKS_RERESERVE_CLUSTER;
2986 ext4_free_blocks(handle, inode, NULL,
2987 EXT4_C2B(sbi, partial.pclu),
2988 sbi->s_cluster_ratio, flags);
2989 if (flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)
2990 ext4_rereserve_cluster(inode, partial.lblk);
2991 partial.state = initial;
2992 }
2993
2994 /* TODO: flexible tree reduction should be here */
2995 if (path->p_hdr->eh_entries == 0) {
2996 /*
2997 * truncate to zero freed all the tree,
2998 * so we need to correct eh_depth
2999 */
3000 err = ext4_ext_get_access(handle, inode, path);
3001 if (err == 0) {
3002 ext_inode_hdr(inode)->eh_depth = 0;
3003 ext_inode_hdr(inode)->eh_max =
3004 cpu_to_le16(ext4_ext_space_root(inode, 0));
3005 err = ext4_ext_dirty(handle, inode, path);
3006 }
3007 }
3008 out:
3009 ext4_ext_drop_refs(path);
3010 kfree(path);
3011 path = NULL;
3012 if (err == -EAGAIN)
3013 goto again;
3014 ext4_journal_stop(handle);
3015
3016 return err;
3017 }
3018
3019 /*
3020 * called at mount time
3021 */
3022 void ext4_ext_init(struct super_block *sb)
3023 {
3024 /*
3025 * possible initialization would be here
3026 */
3027
3028 if (ext4_has_feature_extents(sb)) {
3029 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3030 printk(KERN_INFO "EXT4-fs: file extents enabled"
3031 #ifdef AGGRESSIVE_TEST
3032 ", aggressive tests"
3033 #endif
3034 #ifdef CHECK_BINSEARCH
3035 ", check binsearch"
3036 #endif
3037 #ifdef EXTENTS_STATS
3038 ", stats"
3039 #endif
3040 "\n");
3041 #endif
3042 #ifdef EXTENTS_STATS
3043 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3044 EXT4_SB(sb)->s_ext_min = 1 << 30;
3045 EXT4_SB(sb)->s_ext_max = 0;
3046 #endif
3047 }
3048 }
3049
3050 /*
3051 * called at umount time
3052 */
3053 void ext4_ext_release(struct super_block *sb)
3054 {
3055 if (!ext4_has_feature_extents(sb))
3056 return;
3057
3058 #ifdef EXTENTS_STATS
3059 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3060 struct ext4_sb_info *sbi = EXT4_SB(sb);
3061 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3062 sbi->s_ext_blocks, sbi->s_ext_extents,
3063 sbi->s_ext_blocks / sbi->s_ext_extents);
3064 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3065 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3066 }
3067 #endif
3068 }
3069
3070 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3071 {
3072 ext4_lblk_t ee_block;
3073 ext4_fsblk_t ee_pblock;
3074 unsigned int ee_len;
3075
3076 ee_block = le32_to_cpu(ex->ee_block);
3077 ee_len = ext4_ext_get_actual_len(ex);
3078 ee_pblock = ext4_ext_pblock(ex);
3079
3080 if (ee_len == 0)
3081 return 0;
3082
3083 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3084 EXTENT_STATUS_WRITTEN);
3085 }
3086
3087 /* FIXME!! we need to try to merge to left or right after zero-out */
3088 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3089 {
3090 ext4_fsblk_t ee_pblock;
3091 unsigned int ee_len;
3092
3093 ee_len = ext4_ext_get_actual_len(ex);
3094 ee_pblock = ext4_ext_pblock(ex);
3095 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3096 ee_len);
3097 }
3098
3099 /*
3100 * ext4_split_extent_at() splits an extent at given block.
3101 *
3102 * @handle: the journal handle
3103 * @inode: the file inode
3104 * @path: the path to the extent
3105 * @split: the logical block where the extent is splitted.
3106 * @split_flags: indicates if the extent could be zeroout if split fails, and
3107 * the states(init or unwritten) of new extents.
3108 * @flags: flags used to insert new extent to extent tree.
3109 *
3110 *
3111 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3112 * of which are deterimined by split_flag.
3113 *
3114 * There are two cases:
3115 * a> the extent are splitted into two extent.
3116 * b> split is not needed, and just mark the extent.
3117 *
3118 * return 0 on success.
3119 */
3120 static int ext4_split_extent_at(handle_t *handle,
3121 struct inode *inode,
3122 struct ext4_ext_path **ppath,
3123 ext4_lblk_t split,
3124 int split_flag,
3125 int flags)
3126 {
3127 struct ext4_ext_path *path = *ppath;
3128 ext4_fsblk_t newblock;
3129 ext4_lblk_t ee_block;
3130 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3131 struct ext4_extent *ex2 = NULL;
3132 unsigned int ee_len, depth;
3133 int err = 0;
3134
3135 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3136 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3137
3138 ext_debug("ext4_split_extents_at: inode %lu, logical"
3139 "block %llu\n", inode->i_ino, (unsigned long long)split);
3140
3141 ext4_ext_show_leaf(inode, path);
3142
3143 depth = ext_depth(inode);
3144 ex = path[depth].p_ext;
3145 ee_block = le32_to_cpu(ex->ee_block);
3146 ee_len = ext4_ext_get_actual_len(ex);
3147 newblock = split - ee_block + ext4_ext_pblock(ex);
3148
3149 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3150 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3151 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3152 EXT4_EXT_MARK_UNWRIT1 |
3153 EXT4_EXT_MARK_UNWRIT2));
3154
3155 err = ext4_ext_get_access(handle, inode, path + depth);
3156 if (err)
3157 goto out;
3158
3159 if (split == ee_block) {
3160 /*
3161 * case b: block @split is the block that the extent begins with
3162 * then we just change the state of the extent, and splitting
3163 * is not needed.
3164 */
3165 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3166 ext4_ext_mark_unwritten(ex);
3167 else
3168 ext4_ext_mark_initialized(ex);
3169
3170 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3171 ext4_ext_try_to_merge(handle, inode, path, ex);
3172
3173 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3174 goto out;
3175 }
3176
3177 /* case a */
3178 memcpy(&orig_ex, ex, sizeof(orig_ex));
3179 ex->ee_len = cpu_to_le16(split - ee_block);
3180 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3181 ext4_ext_mark_unwritten(ex);
3182
3183 /*
3184 * path may lead to new leaf, not to original leaf any more
3185 * after ext4_ext_insert_extent() returns,
3186 */
3187 err = ext4_ext_dirty(handle, inode, path + depth);
3188 if (err)
3189 goto fix_extent_len;
3190
3191 ex2 = &newex;
3192 ex2->ee_block = cpu_to_le32(split);
3193 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3194 ext4_ext_store_pblock(ex2, newblock);
3195 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3196 ext4_ext_mark_unwritten(ex2);
3197
3198 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3199 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3200 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3201 if (split_flag & EXT4_EXT_DATA_VALID1) {
3202 err = ext4_ext_zeroout(inode, ex2);
3203 zero_ex.ee_block = ex2->ee_block;
3204 zero_ex.ee_len = cpu_to_le16(
3205 ext4_ext_get_actual_len(ex2));
3206 ext4_ext_store_pblock(&zero_ex,
3207 ext4_ext_pblock(ex2));
3208 } else {
3209 err = ext4_ext_zeroout(inode, ex);
3210 zero_ex.ee_block = ex->ee_block;
3211 zero_ex.ee_len = cpu_to_le16(
3212 ext4_ext_get_actual_len(ex));
3213 ext4_ext_store_pblock(&zero_ex,
3214 ext4_ext_pblock(ex));
3215 }
3216 } else {
3217 err = ext4_ext_zeroout(inode, &orig_ex);
3218 zero_ex.ee_block = orig_ex.ee_block;
3219 zero_ex.ee_len = cpu_to_le16(
3220 ext4_ext_get_actual_len(&orig_ex));
3221 ext4_ext_store_pblock(&zero_ex,
3222 ext4_ext_pblock(&orig_ex));
3223 }
3224
3225 if (err)
3226 goto fix_extent_len;
3227 /* update the extent length and mark as initialized */
3228 ex->ee_len = cpu_to_le16(ee_len);
3229 ext4_ext_try_to_merge(handle, inode, path, ex);
3230 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3231 if (err)
3232 goto fix_extent_len;
3233
3234 /* update extent status tree */
3235 err = ext4_zeroout_es(inode, &zero_ex);
3236
3237 goto out;
3238 } else if (err)
3239 goto fix_extent_len;
3240
3241 out:
3242 ext4_ext_show_leaf(inode, path);
3243 return err;
3244
3245 fix_extent_len:
3246 ex->ee_len = orig_ex.ee_len;
3247 ext4_ext_dirty(handle, inode, path + path->p_depth);
3248 return err;
3249 }
3250
3251 /*
3252 * ext4_split_extents() splits an extent and mark extent which is covered
3253 * by @map as split_flags indicates
3254 *
3255 * It may result in splitting the extent into multiple extents (up to three)
3256 * There are three possibilities:
3257 * a> There is no split required
3258 * b> Splits in two extents: Split is happening at either end of the extent
3259 * c> Splits in three extents: Somone is splitting in middle of the extent
3260 *
3261 */
3262 static int ext4_split_extent(handle_t *handle,
3263 struct inode *inode,
3264 struct ext4_ext_path **ppath,
3265 struct ext4_map_blocks *map,
3266 int split_flag,
3267 int flags)
3268 {
3269 struct ext4_ext_path *path = *ppath;
3270 ext4_lblk_t ee_block;
3271 struct ext4_extent *ex;
3272 unsigned int ee_len, depth;
3273 int err = 0;
3274 int unwritten;
3275 int split_flag1, flags1;
3276 int allocated = map->m_len;
3277
3278 depth = ext_depth(inode);
3279 ex = path[depth].p_ext;
3280 ee_block = le32_to_cpu(ex->ee_block);
3281 ee_len = ext4_ext_get_actual_len(ex);
3282 unwritten = ext4_ext_is_unwritten(ex);
3283
3284 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3285 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3286 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3287 if (unwritten)
3288 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3289 EXT4_EXT_MARK_UNWRIT2;
3290 if (split_flag & EXT4_EXT_DATA_VALID2)
3291 split_flag1 |= EXT4_EXT_DATA_VALID1;
3292 err = ext4_split_extent_at(handle, inode, ppath,
3293 map->m_lblk + map->m_len, split_flag1, flags1);
3294 if (err)
3295 goto out;
3296 } else {
3297 allocated = ee_len - (map->m_lblk - ee_block);
3298 }
3299 /*
3300 * Update path is required because previous ext4_split_extent_at() may
3301 * result in split of original leaf or extent zeroout.
3302 */
3303 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3304 if (IS_ERR(path))
3305 return PTR_ERR(path);
3306 depth = ext_depth(inode);
3307 ex = path[depth].p_ext;
3308 if (!ex) {
3309 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3310 (unsigned long) map->m_lblk);
3311 return -EFSCORRUPTED;
3312 }
3313 unwritten = ext4_ext_is_unwritten(ex);
3314 split_flag1 = 0;
3315
3316 if (map->m_lblk >= ee_block) {
3317 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3318 if (unwritten) {
3319 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3320 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3321 EXT4_EXT_MARK_UNWRIT2);
3322 }
3323 err = ext4_split_extent_at(handle, inode, ppath,
3324 map->m_lblk, split_flag1, flags);
3325 if (err)
3326 goto out;
3327 }
3328
3329 ext4_ext_show_leaf(inode, path);
3330 out:
3331 return err ? err : allocated;
3332 }
3333
3334 /*
3335 * This function is called by ext4_ext_map_blocks() if someone tries to write
3336 * to an unwritten extent. It may result in splitting the unwritten
3337 * extent into multiple extents (up to three - one initialized and two
3338 * unwritten).
3339 * There are three possibilities:
3340 * a> There is no split required: Entire extent should be initialized
3341 * b> Splits in two extents: Write is happening at either end of the extent
3342 * c> Splits in three extents: Somone is writing in middle of the extent
3343 *
3344 * Pre-conditions:
3345 * - The extent pointed to by 'path' is unwritten.
3346 * - The extent pointed to by 'path' contains a superset
3347 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3348 *
3349 * Post-conditions on success:
3350 * - the returned value is the number of blocks beyond map->l_lblk
3351 * that are allocated and initialized.
3352 * It is guaranteed to be >= map->m_len.
3353 */
3354 static int ext4_ext_convert_to_initialized(handle_t *handle,
3355 struct inode *inode,
3356 struct ext4_map_blocks *map,
3357 struct ext4_ext_path **ppath,
3358 int flags)
3359 {
3360 struct ext4_ext_path *path = *ppath;
3361 struct ext4_sb_info *sbi;
3362 struct ext4_extent_header *eh;
3363 struct ext4_map_blocks split_map;
3364 struct ext4_extent zero_ex1, zero_ex2;
3365 struct ext4_extent *ex, *abut_ex;
3366 ext4_lblk_t ee_block, eof_block;
3367 unsigned int ee_len, depth, map_len = map->m_len;
3368 int allocated = 0, max_zeroout = 0;
3369 int err = 0;
3370 int split_flag = EXT4_EXT_DATA_VALID2;
3371
3372 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3373 "block %llu, max_blocks %u\n", inode->i_ino,
3374 (unsigned long long)map->m_lblk, map_len);
3375
3376 sbi = EXT4_SB(inode->i_sb);
3377 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1)
3378 >> inode->i_sb->s_blocksize_bits;
3379 if (eof_block < map->m_lblk + map_len)
3380 eof_block = map->m_lblk + map_len;
3381
3382 depth = ext_depth(inode);
3383 eh = path[depth].p_hdr;
3384 ex = path[depth].p_ext;
3385 ee_block = le32_to_cpu(ex->ee_block);
3386 ee_len = ext4_ext_get_actual_len(ex);
3387 zero_ex1.ee_len = 0;
3388 zero_ex2.ee_len = 0;
3389
3390 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3391
3392 /* Pre-conditions */
3393 BUG_ON(!ext4_ext_is_unwritten(ex));
3394 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3395
3396 /*
3397 * Attempt to transfer newly initialized blocks from the currently
3398 * unwritten extent to its neighbor. This is much cheaper
3399 * than an insertion followed by a merge as those involve costly
3400 * memmove() calls. Transferring to the left is the common case in
3401 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3402 * followed by append writes.
3403 *
3404 * Limitations of the current logic:
3405 * - L1: we do not deal with writes covering the whole extent.
3406 * This would require removing the extent if the transfer
3407 * is possible.
3408 * - L2: we only attempt to merge with an extent stored in the
3409 * same extent tree node.
3410 */
3411 if ((map->m_lblk == ee_block) &&
3412 /* See if we can merge left */
3413 (map_len < ee_len) && /*L1*/
3414 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3415 ext4_lblk_t prev_lblk;
3416 ext4_fsblk_t prev_pblk, ee_pblk;
3417 unsigned int prev_len;
3418
3419 abut_ex = ex - 1;
3420 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3421 prev_len = ext4_ext_get_actual_len(abut_ex);
3422 prev_pblk = ext4_ext_pblock(abut_ex);
3423 ee_pblk = ext4_ext_pblock(ex);
3424
3425 /*
3426 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3427 * upon those conditions:
3428 * - C1: abut_ex is initialized,
3429 * - C2: abut_ex is logically abutting ex,
3430 * - C3: abut_ex is physically abutting ex,
3431 * - C4: abut_ex can receive the additional blocks without
3432 * overflowing the (initialized) length limit.
3433 */
3434 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3435 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3436 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3437 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3438 err = ext4_ext_get_access(handle, inode, path + depth);
3439 if (err)
3440 goto out;
3441
3442 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3443 map, ex, abut_ex);
3444
3445 /* Shift the start of ex by 'map_len' blocks */
3446 ex->ee_block = cpu_to_le32(ee_block + map_len);
3447 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3448 ex->ee_len = cpu_to_le16(ee_len - map_len);
3449 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3450
3451 /* Extend abut_ex by 'map_len' blocks */
3452 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3453
3454 /* Result: number of initialized blocks past m_lblk */
3455 allocated = map_len;
3456 }
3457 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3458 (map_len < ee_len) && /*L1*/
3459 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3460 /* See if we can merge right */
3461 ext4_lblk_t next_lblk;
3462 ext4_fsblk_t next_pblk, ee_pblk;
3463 unsigned int next_len;
3464
3465 abut_ex = ex + 1;
3466 next_lblk = le32_to_cpu(abut_ex->ee_block);
3467 next_len = ext4_ext_get_actual_len(abut_ex);
3468 next_pblk = ext4_ext_pblock(abut_ex);
3469 ee_pblk = ext4_ext_pblock(ex);
3470
3471 /*
3472 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3473 * upon those conditions:
3474 * - C1: abut_ex is initialized,
3475 * - C2: abut_ex is logically abutting ex,
3476 * - C3: abut_ex is physically abutting ex,
3477 * - C4: abut_ex can receive the additional blocks without
3478 * overflowing the (initialized) length limit.
3479 */
3480 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3481 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3482 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3483 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3484 err = ext4_ext_get_access(handle, inode, path + depth);
3485 if (err)
3486 goto out;
3487
3488 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3489 map, ex, abut_ex);
3490
3491 /* Shift the start of abut_ex by 'map_len' blocks */
3492 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3493 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3494 ex->ee_len = cpu_to_le16(ee_len - map_len);
3495 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3496
3497 /* Extend abut_ex by 'map_len' blocks */
3498 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3499
3500 /* Result: number of initialized blocks past m_lblk */
3501 allocated = map_len;
3502 }
3503 }
3504 if (allocated) {
3505 /* Mark the block containing both extents as dirty */
3506 ext4_ext_dirty(handle, inode, path + depth);
3507
3508 /* Update path to point to the right extent */
3509 path[depth].p_ext = abut_ex;
3510 goto out;
3511 } else
3512 allocated = ee_len - (map->m_lblk - ee_block);
3513
3514 WARN_ON(map->m_lblk < ee_block);
3515 /*
3516 * It is safe to convert extent to initialized via explicit
3517 * zeroout only if extent is fully inside i_size or new_size.
3518 */
3519 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3520
3521 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3522 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3523 (inode->i_sb->s_blocksize_bits - 10);
3524
3525 /*
3526 * five cases:
3527 * 1. split the extent into three extents.
3528 * 2. split the extent into two extents, zeroout the head of the first
3529 * extent.
3530 * 3. split the extent into two extents, zeroout the tail of the second
3531 * extent.
3532 * 4. split the extent into two extents with out zeroout.
3533 * 5. no splitting needed, just possibly zeroout the head and / or the
3534 * tail of the extent.
3535 */
3536 split_map.m_lblk = map->m_lblk;
3537 split_map.m_len = map->m_len;
3538
3539 if (max_zeroout && (allocated > split_map.m_len)) {
3540 if (allocated <= max_zeroout) {
3541 /* case 3 or 5 */
3542 zero_ex1.ee_block =
3543 cpu_to_le32(split_map.m_lblk +
3544 split_map.m_len);
3545 zero_ex1.ee_len =
3546 cpu_to_le16(allocated - split_map.m_len);
3547 ext4_ext_store_pblock(&zero_ex1,
3548 ext4_ext_pblock(ex) + split_map.m_lblk +
3549 split_map.m_len - ee_block);
3550 err = ext4_ext_zeroout(inode, &zero_ex1);
3551 if (err)
3552 goto out;
3553 split_map.m_len = allocated;
3554 }
3555 if (split_map.m_lblk - ee_block + split_map.m_len <
3556 max_zeroout) {
3557 /* case 2 or 5 */
3558 if (split_map.m_lblk != ee_block) {
3559 zero_ex2.ee_block = ex->ee_block;
3560 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3561 ee_block);
3562 ext4_ext_store_pblock(&zero_ex2,
3563 ext4_ext_pblock(ex));
3564 err = ext4_ext_zeroout(inode, &zero_ex2);
3565 if (err)
3566 goto out;
3567 }
3568
3569 split_map.m_len += split_map.m_lblk - ee_block;
3570 split_map.m_lblk = ee_block;
3571 allocated = map->m_len;
3572 }
3573 }
3574
3575 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3576 flags);
3577 if (err > 0)
3578 err = 0;
3579 out:
3580 /* If we have gotten a failure, don't zero out status tree */
3581 if (!err) {
3582 err = ext4_zeroout_es(inode, &zero_ex1);
3583 if (!err)
3584 err = ext4_zeroout_es(inode, &zero_ex2);
3585 }
3586 return err ? err : allocated;
3587 }
3588
3589 /*
3590 * This function is called by ext4_ext_map_blocks() from
3591 * ext4_get_blocks_dio_write() when DIO to write
3592 * to an unwritten extent.
3593 *
3594 * Writing to an unwritten extent may result in splitting the unwritten
3595 * extent into multiple initialized/unwritten extents (up to three)
3596 * There are three possibilities:
3597 * a> There is no split required: Entire extent should be unwritten
3598 * b> Splits in two extents: Write is happening at either end of the extent
3599 * c> Splits in three extents: Somone is writing in middle of the extent
3600 *
3601 * This works the same way in the case of initialized -> unwritten conversion.
3602 *
3603 * One of more index blocks maybe needed if the extent tree grow after
3604 * the unwritten extent split. To prevent ENOSPC occur at the IO
3605 * complete, we need to split the unwritten extent before DIO submit
3606 * the IO. The unwritten extent called at this time will be split
3607 * into three unwritten extent(at most). After IO complete, the part
3608 * being filled will be convert to initialized by the end_io callback function
3609 * via ext4_convert_unwritten_extents().
3610 *
3611 * Returns the size of unwritten extent to be written on success.
3612 */
3613 static int ext4_split_convert_extents(handle_t *handle,
3614 struct inode *inode,
3615 struct ext4_map_blocks *map,
3616 struct ext4_ext_path **ppath,
3617 int flags)
3618 {
3619 struct ext4_ext_path *path = *ppath;
3620 ext4_lblk_t eof_block;
3621 ext4_lblk_t ee_block;
3622 struct ext4_extent *ex;
3623 unsigned int ee_len;
3624 int split_flag = 0, depth;
3625
3626 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3627 __func__, inode->i_ino,
3628 (unsigned long long)map->m_lblk, map->m_len);
3629
3630 eof_block = (EXT4_I(inode)->i_disksize + inode->i_sb->s_blocksize - 1)
3631 >> inode->i_sb->s_blocksize_bits;
3632 if (eof_block < map->m_lblk + map->m_len)
3633 eof_block = map->m_lblk + map->m_len;
3634 /*
3635 * It is safe to convert extent to initialized via explicit
3636 * zeroout only if extent is fully insde i_size or new_size.
3637 */
3638 depth = ext_depth(inode);
3639 ex = path[depth].p_ext;
3640 ee_block = le32_to_cpu(ex->ee_block);
3641 ee_len = ext4_ext_get_actual_len(ex);
3642
3643 /* Convert to unwritten */
3644 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3645 split_flag |= EXT4_EXT_DATA_VALID1;
3646 /* Convert to initialized */
3647 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3648 split_flag |= ee_block + ee_len <= eof_block ?
3649 EXT4_EXT_MAY_ZEROOUT : 0;
3650 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3651 }
3652 flags |= EXT4_GET_BLOCKS_PRE_IO;
3653 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3654 }
3655
3656 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3657 struct inode *inode,
3658 struct ext4_map_blocks *map,
3659 struct ext4_ext_path **ppath)
3660 {
3661 struct ext4_ext_path *path = *ppath;
3662 struct ext4_extent *ex;
3663 ext4_lblk_t ee_block;
3664 unsigned int ee_len;
3665 int depth;
3666 int err = 0;
3667
3668 depth = ext_depth(inode);
3669 ex = path[depth].p_ext;
3670 ee_block = le32_to_cpu(ex->ee_block);
3671 ee_len = ext4_ext_get_actual_len(ex);
3672
3673 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3674 "block %llu, max_blocks %u\n", inode->i_ino,
3675 (unsigned long long)ee_block, ee_len);
3676
3677 /* If extent is larger than requested it is a clear sign that we still
3678 * have some extent state machine issues left. So extent_split is still
3679 * required.
3680 * TODO: Once all related issues will be fixed this situation should be
3681 * illegal.
3682 */
3683 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3684 #ifdef CONFIG_EXT4_DEBUG
3685 ext4_warning(inode->i_sb, "Inode (%ld) finished: extent logical block %llu,"
3686 " len %u; IO logical block %llu, len %u",
3687 inode->i_ino, (unsigned long long)ee_block, ee_len,
3688 (unsigned long long)map->m_lblk, map->m_len);
3689 #endif
3690 err = ext4_split_convert_extents(handle, inode, map, ppath,
3691 EXT4_GET_BLOCKS_CONVERT);
3692 if (err < 0)
3693 return err;
3694 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3695 if (IS_ERR(path))
3696 return PTR_ERR(path);
3697 depth = ext_depth(inode);
3698 ex = path[depth].p_ext;
3699 }
3700
3701 err = ext4_ext_get_access(handle, inode, path + depth);
3702 if (err)
3703 goto out;
3704 /* first mark the extent as initialized */
3705 ext4_ext_mark_initialized(ex);
3706
3707 /* note: ext4_ext_correct_indexes() isn't needed here because
3708 * borders are not changed
3709 */
3710 ext4_ext_try_to_merge(handle, inode, path, ex);
3711
3712 /* Mark modified extent as dirty */
3713 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3714 out:
3715 ext4_ext_show_leaf(inode, path);
3716 return err;
3717 }
3718
3719 static int
3720 convert_initialized_extent(handle_t *handle, struct inode *inode,
3721 struct ext4_map_blocks *map,
3722 struct ext4_ext_path **ppath,
3723 unsigned int *allocated)
3724 {
3725 struct ext4_ext_path *path = *ppath;
3726 struct ext4_extent *ex;
3727 ext4_lblk_t ee_block;
3728 unsigned int ee_len;
3729 int depth;
3730 int err = 0;
3731
3732 /*
3733 * Make sure that the extent is no bigger than we support with
3734 * unwritten extent
3735 */
3736 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3737 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3738
3739 depth = ext_depth(inode);
3740 ex = path[depth].p_ext;
3741 ee_block = le32_to_cpu(ex->ee_block);
3742 ee_len = ext4_ext_get_actual_len(ex);
3743
3744 ext_debug("%s: inode %lu, logical"
3745 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3746 (unsigned long long)ee_block, ee_len);
3747
3748 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3749 err = ext4_split_convert_extents(handle, inode, map, ppath,
3750 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3751 if (err < 0)
3752 return err;
3753 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3754 if (IS_ERR(path))
3755 return PTR_ERR(path);
3756 depth = ext_depth(inode);
3757 ex = path[depth].p_ext;
3758 if (!ex) {
3759 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3760 (unsigned long) map->m_lblk);
3761 return -EFSCORRUPTED;
3762 }
3763 }
3764
3765 err = ext4_ext_get_access(handle, inode, path + depth);
3766 if (err)
3767 return err;
3768 /* first mark the extent as unwritten */
3769 ext4_ext_mark_unwritten(ex);
3770
3771 /* note: ext4_ext_correct_indexes() isn't needed here because
3772 * borders are not changed
3773 */
3774 ext4_ext_try_to_merge(handle, inode, path, ex);
3775
3776 /* Mark modified extent as dirty */
3777 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3778 if (err)
3779 return err;
3780 ext4_ext_show_leaf(inode, path);
3781
3782 ext4_update_inode_fsync_trans(handle, inode, 1);
3783
3784 map->m_flags |= EXT4_MAP_UNWRITTEN;
3785 if (*allocated > map->m_len)
3786 *allocated = map->m_len;
3787 map->m_len = *allocated;
3788 return 0;
3789 }
3790
3791 static int
3792 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
3793 struct ext4_map_blocks *map,
3794 struct ext4_ext_path **ppath, int flags,
3795 unsigned int allocated, ext4_fsblk_t newblock)
3796 {
3797 #ifdef EXT_DEBUG
3798 struct ext4_ext_path *path = *ppath;
3799 #endif
3800 int ret = 0;
3801 int err = 0;
3802
3803 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
3804 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3805 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3806 flags, allocated);
3807 ext4_ext_show_leaf(inode, path);
3808
3809 /*
3810 * When writing into unwritten space, we should not fail to
3811 * allocate metadata blocks for the new extent block if needed.
3812 */
3813 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
3814
3815 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
3816 allocated, newblock);
3817
3818 /* get_block() before submit the IO, split the extent */
3819 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
3820 ret = ext4_split_convert_extents(handle, inode, map, ppath,
3821 flags | EXT4_GET_BLOCKS_CONVERT);
3822 if (ret <= 0)
3823 goto out;
3824 map->m_flags |= EXT4_MAP_UNWRITTEN;
3825 goto out;
3826 }
3827 /* IO end_io complete, convert the filled extent to written */
3828 if (flags & EXT4_GET_BLOCKS_CONVERT) {
3829 if (flags & EXT4_GET_BLOCKS_ZERO) {
3830 if (allocated > map->m_len)
3831 allocated = map->m_len;
3832 err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
3833 allocated);
3834 if (err < 0)
3835 goto out2;
3836 }
3837 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3838 ppath);
3839 if (ret >= 0)
3840 ext4_update_inode_fsync_trans(handle, inode, 1);
3841 else
3842 err = ret;
3843 map->m_flags |= EXT4_MAP_MAPPED;
3844 map->m_pblk = newblock;
3845 if (allocated > map->m_len)
3846 allocated = map->m_len;
3847 map->m_len = allocated;
3848 goto out2;
3849 }
3850 /* buffered IO case */
3851 /*
3852 * repeat fallocate creation request
3853 * we already have an unwritten extent
3854 */
3855 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
3856 map->m_flags |= EXT4_MAP_UNWRITTEN;
3857 goto map_out;
3858 }
3859
3860 /* buffered READ or buffered write_begin() lookup */
3861 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3862 /*
3863 * We have blocks reserved already. We
3864 * return allocated blocks so that delalloc
3865 * won't do block reservation for us. But
3866 * the buffer head will be unmapped so that
3867 * a read from the block returns 0s.
3868 */
3869 map->m_flags |= EXT4_MAP_UNWRITTEN;
3870 goto out1;
3871 }
3872
3873 /* buffered write, writepage time, convert*/
3874 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
3875 if (ret >= 0)
3876 ext4_update_inode_fsync_trans(handle, inode, 1);
3877 out:
3878 if (ret <= 0) {
3879 err = ret;
3880 goto out2;
3881 } else
3882 allocated = ret;
3883 map->m_flags |= EXT4_MAP_NEW;
3884 if (allocated > map->m_len)
3885 allocated = map->m_len;
3886 map->m_len = allocated;
3887
3888 map_out:
3889 map->m_flags |= EXT4_MAP_MAPPED;
3890 out1:
3891 if (allocated > map->m_len)
3892 allocated = map->m_len;
3893 ext4_ext_show_leaf(inode, path);
3894 map->m_pblk = newblock;
3895 map->m_len = allocated;
3896 out2:
3897 return err ? err : allocated;
3898 }
3899
3900 /*
3901 * get_implied_cluster_alloc - check to see if the requested
3902 * allocation (in the map structure) overlaps with a cluster already
3903 * allocated in an extent.
3904 * @sb The filesystem superblock structure
3905 * @map The requested lblk->pblk mapping
3906 * @ex The extent structure which might contain an implied
3907 * cluster allocation
3908 *
3909 * This function is called by ext4_ext_map_blocks() after we failed to
3910 * find blocks that were already in the inode's extent tree. Hence,
3911 * we know that the beginning of the requested region cannot overlap
3912 * the extent from the inode's extent tree. There are three cases we
3913 * want to catch. The first is this case:
3914 *
3915 * |--- cluster # N--|
3916 * |--- extent ---| |---- requested region ---|
3917 * |==========|
3918 *
3919 * The second case that we need to test for is this one:
3920 *
3921 * |--------- cluster # N ----------------|
3922 * |--- requested region --| |------- extent ----|
3923 * |=======================|
3924 *
3925 * The third case is when the requested region lies between two extents
3926 * within the same cluster:
3927 * |------------- cluster # N-------------|
3928 * |----- ex -----| |---- ex_right ----|
3929 * |------ requested region ------|
3930 * |================|
3931 *
3932 * In each of the above cases, we need to set the map->m_pblk and
3933 * map->m_len so it corresponds to the return the extent labelled as
3934 * "|====|" from cluster #N, since it is already in use for data in
3935 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3936 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3937 * as a new "allocated" block region. Otherwise, we will return 0 and
3938 * ext4_ext_map_blocks() will then allocate one or more new clusters
3939 * by calling ext4_mb_new_blocks().
3940 */
3941 static int get_implied_cluster_alloc(struct super_block *sb,
3942 struct ext4_map_blocks *map,
3943 struct ext4_extent *ex,
3944 struct ext4_ext_path *path)
3945 {
3946 struct ext4_sb_info *sbi = EXT4_SB(sb);
3947 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
3948 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3949 ext4_lblk_t rr_cluster_start;
3950 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3951 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3952 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3953
3954 /* The extent passed in that we are trying to match */
3955 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3956 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3957
3958 /* The requested region passed into ext4_map_blocks() */
3959 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3960
3961 if ((rr_cluster_start == ex_cluster_end) ||
3962 (rr_cluster_start == ex_cluster_start)) {
3963 if (rr_cluster_start == ex_cluster_end)
3964 ee_start += ee_len - 1;
3965 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
3966 map->m_len = min(map->m_len,
3967 (unsigned) sbi->s_cluster_ratio - c_offset);
3968 /*
3969 * Check for and handle this case:
3970 *
3971 * |--------- cluster # N-------------|
3972 * |------- extent ----|
3973 * |--- requested region ---|
3974 * |===========|
3975 */
3976
3977 if (map->m_lblk < ee_block)
3978 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3979
3980 /*
3981 * Check for the case where there is already another allocated
3982 * block to the right of 'ex' but before the end of the cluster.
3983 *
3984 * |------------- cluster # N-------------|
3985 * |----- ex -----| |---- ex_right ----|
3986 * |------ requested region ------|
3987 * |================|
3988 */
3989 if (map->m_lblk > ee_block) {
3990 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3991 map->m_len = min(map->m_len, next - map->m_lblk);
3992 }
3993
3994 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3995 return 1;
3996 }
3997
3998 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3999 return 0;
4000 }
4001
4002
4003 /*
4004 * Block allocation/map/preallocation routine for extents based files
4005 *
4006 *
4007 * Need to be called with
4008 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4009 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4010 *
4011 * return > 0, number of of blocks already mapped/allocated
4012 * if create == 0 and these are pre-allocated blocks
4013 * buffer head is unmapped
4014 * otherwise blocks are mapped
4015 *
4016 * return = 0, if plain look up failed (blocks have not been allocated)
4017 * buffer head is unmapped
4018 *
4019 * return < 0, error case.
4020 */
4021 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4022 struct ext4_map_blocks *map, int flags)
4023 {
4024 struct ext4_ext_path *path = NULL;
4025 struct ext4_extent newex, *ex, *ex2;
4026 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4027 ext4_fsblk_t newblock = 0;
4028 int err = 0, depth, ret;
4029 unsigned int allocated = 0, offset = 0;
4030 unsigned int allocated_clusters = 0;
4031 struct ext4_allocation_request ar;
4032 ext4_lblk_t cluster_offset;
4033
4034 ext_debug("blocks %u/%u requested for inode %lu\n",
4035 map->m_lblk, map->m_len, inode->i_ino);
4036 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4037
4038 /* find extent for this block */
4039 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4040 if (IS_ERR(path)) {
4041 err = PTR_ERR(path);
4042 path = NULL;
4043 goto out2;
4044 }
4045
4046 depth = ext_depth(inode);
4047
4048 /*
4049 * consistent leaf must not be empty;
4050 * this situation is possible, though, _during_ tree modification;
4051 * this is why assert can't be put in ext4_find_extent()
4052 */
4053 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4054 EXT4_ERROR_INODE(inode, "bad extent address "
4055 "lblock: %lu, depth: %d pblock %lld",
4056 (unsigned long) map->m_lblk, depth,
4057 path[depth].p_block);
4058 err = -EFSCORRUPTED;
4059 goto out2;
4060 }
4061
4062 ex = path[depth].p_ext;
4063 if (ex) {
4064 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4065 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4066 unsigned short ee_len;
4067
4068
4069 /*
4070 * unwritten extents are treated as holes, except that
4071 * we split out initialized portions during a write.
4072 */
4073 ee_len = ext4_ext_get_actual_len(ex);
4074
4075 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4076
4077 /* if found extent covers block, simply return it */
4078 if (in_range(map->m_lblk, ee_block, ee_len)) {
4079 newblock = map->m_lblk - ee_block + ee_start;
4080 /* number of remaining blocks in the extent */
4081 allocated = ee_len - (map->m_lblk - ee_block);
4082 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4083 ee_block, ee_len, newblock);
4084
4085 /*
4086 * If the extent is initialized check whether the
4087 * caller wants to convert it to unwritten.
4088 */
4089 if ((!ext4_ext_is_unwritten(ex)) &&
4090 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4091 err = convert_initialized_extent(handle,
4092 inode, map, &path, &allocated);
4093 goto out2;
4094 } else if (!ext4_ext_is_unwritten(ex)) {
4095 goto out;
4096 }
4097
4098 ret = ext4_ext_handle_unwritten_extents(
4099 handle, inode, map, &path, flags,
4100 allocated, newblock);
4101 if (ret < 0)
4102 err = ret;
4103 else
4104 allocated = ret;
4105 goto out2;
4106 }
4107 }
4108
4109 /*
4110 * requested block isn't allocated yet;
4111 * we couldn't try to create block if create flag is zero
4112 */
4113 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4114 ext4_lblk_t hole_start, hole_len;
4115
4116 hole_start = map->m_lblk;
4117 hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4118 /*
4119 * put just found gap into cache to speed up
4120 * subsequent requests
4121 */
4122 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4123
4124 /* Update hole_len to reflect hole size after map->m_lblk */
4125 if (hole_start != map->m_lblk)
4126 hole_len -= map->m_lblk - hole_start;
4127 map->m_pblk = 0;
4128 map->m_len = min_t(unsigned int, map->m_len, hole_len);
4129
4130 goto out2;
4131 }
4132
4133 /*
4134 * Okay, we need to do block allocation.
4135 */
4136 newex.ee_block = cpu_to_le32(map->m_lblk);
4137 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4138
4139 /*
4140 * If we are doing bigalloc, check to see if the extent returned
4141 * by ext4_find_extent() implies a cluster we can use.
4142 */
4143 if (cluster_offset && ex &&
4144 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4145 ar.len = allocated = map->m_len;
4146 newblock = map->m_pblk;
4147 goto got_allocated_blocks;
4148 }
4149
4150 /* find neighbour allocated blocks */
4151 ar.lleft = map->m_lblk;
4152 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4153 if (err)
4154 goto out2;
4155 ar.lright = map->m_lblk;
4156 ex2 = NULL;
4157 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4158 if (err)
4159 goto out2;
4160
4161 /* Check if the extent after searching to the right implies a
4162 * cluster we can use. */
4163 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4164 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4165 ar.len = allocated = map->m_len;
4166 newblock = map->m_pblk;
4167 goto got_allocated_blocks;
4168 }
4169
4170 /*
4171 * See if request is beyond maximum number of blocks we can have in
4172 * a single extent. For an initialized extent this limit is
4173 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4174 * EXT_UNWRITTEN_MAX_LEN.
4175 */
4176 if (map->m_len > EXT_INIT_MAX_LEN &&
4177 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4178 map->m_len = EXT_INIT_MAX_LEN;
4179 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4180 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4181 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4182
4183 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4184 newex.ee_len = cpu_to_le16(map->m_len);
4185 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4186 if (err)
4187 allocated = ext4_ext_get_actual_len(&newex);
4188 else
4189 allocated = map->m_len;
4190
4191 /* allocate new block */
4192 ar.inode = inode;
4193 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4194 ar.logical = map->m_lblk;
4195 /*
4196 * We calculate the offset from the beginning of the cluster
4197 * for the logical block number, since when we allocate a
4198 * physical cluster, the physical block should start at the
4199 * same offset from the beginning of the cluster. This is
4200 * needed so that future calls to get_implied_cluster_alloc()
4201 * work correctly.
4202 */
4203 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4204 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4205 ar.goal -= offset;
4206 ar.logical -= offset;
4207 if (S_ISREG(inode->i_mode))
4208 ar.flags = EXT4_MB_HINT_DATA;
4209 else
4210 /* disable in-core preallocation for non-regular files */
4211 ar.flags = 0;
4212 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4213 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4214 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4215 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4216 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4217 ar.flags |= EXT4_MB_USE_RESERVED;
4218 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4219 if (!newblock)
4220 goto out2;
4221 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4222 ar.goal, newblock, allocated);
4223 allocated_clusters = ar.len;
4224 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4225 if (ar.len > allocated)
4226 ar.len = allocated;
4227
4228 got_allocated_blocks:
4229 /* try to insert new extent into found leaf and return */
4230 ext4_ext_store_pblock(&newex, newblock + offset);
4231 newex.ee_len = cpu_to_le16(ar.len);
4232 /* Mark unwritten */
4233 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4234 ext4_ext_mark_unwritten(&newex);
4235 map->m_flags |= EXT4_MAP_UNWRITTEN;
4236 }
4237
4238 err = ext4_ext_insert_extent(handle, inode, &path, &newex, flags);
4239 if (err) {
4240 if (allocated_clusters) {
4241 int fb_flags = 0;
4242
4243 /*
4244 * free data blocks we just allocated.
4245 * not a good idea to call discard here directly,
4246 * but otherwise we'd need to call it every free().
4247 */
4248 ext4_discard_preallocations(inode);
4249 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4250 fb_flags = EXT4_FREE_BLOCKS_NO_QUOT_UPDATE;
4251 ext4_free_blocks(handle, inode, NULL, newblock,
4252 EXT4_C2B(sbi, allocated_clusters),
4253 fb_flags);
4254 }
4255 goto out2;
4256 }
4257
4258 /* previous routine could use block we allocated */
4259 newblock = ext4_ext_pblock(&newex);
4260 allocated = ext4_ext_get_actual_len(&newex);
4261 if (allocated > map->m_len)
4262 allocated = map->m_len;
4263 map->m_flags |= EXT4_MAP_NEW;
4264
4265 /*
4266 * Reduce the reserved cluster count to reflect successful deferred
4267 * allocation of delayed allocated clusters or direct allocation of
4268 * clusters discovered to be delayed allocated. Once allocated, a
4269 * cluster is not included in the reserved count.
4270 */
4271 if (test_opt(inode->i_sb, DELALLOC) && allocated_clusters) {
4272 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4273 /*
4274 * When allocating delayed allocated clusters, simply
4275 * reduce the reserved cluster count and claim quota
4276 */
4277 ext4_da_update_reserve_space(inode, allocated_clusters,
4278 1);
4279 } else {
4280 ext4_lblk_t lblk, len;
4281 unsigned int n;
4282
4283 /*
4284 * When allocating non-delayed allocated clusters
4285 * (from fallocate, filemap, DIO, or clusters
4286 * allocated when delalloc has been disabled by
4287 * ext4_nonda_switch), reduce the reserved cluster
4288 * count by the number of allocated clusters that
4289 * have previously been delayed allocated. Quota
4290 * has been claimed by ext4_mb_new_blocks() above,
4291 * so release the quota reservations made for any
4292 * previously delayed allocated clusters.
4293 */
4294 lblk = EXT4_LBLK_CMASK(sbi, map->m_lblk);
4295 len = allocated_clusters << sbi->s_cluster_bits;
4296 n = ext4_es_delayed_clu(inode, lblk, len);
4297 if (n > 0)
4298 ext4_da_update_reserve_space(inode, (int) n, 0);
4299 }
4300 }
4301
4302 /*
4303 * Cache the extent and update transaction to commit on fdatasync only
4304 * when it is _not_ an unwritten extent.
4305 */
4306 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4307 ext4_update_inode_fsync_trans(handle, inode, 1);
4308 else
4309 ext4_update_inode_fsync_trans(handle, inode, 0);
4310 out:
4311 if (allocated > map->m_len)
4312 allocated = map->m_len;
4313 ext4_ext_show_leaf(inode, path);
4314 map->m_flags |= EXT4_MAP_MAPPED;
4315 map->m_pblk = newblock;
4316 map->m_len = allocated;
4317 out2:
4318 ext4_ext_drop_refs(path);
4319 kfree(path);
4320
4321 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4322 err ? err : allocated);
4323 return err ? err : allocated;
4324 }
4325
4326 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4327 {
4328 struct super_block *sb = inode->i_sb;
4329 ext4_lblk_t last_block;
4330 int err = 0;
4331
4332 /*
4333 * TODO: optimization is possible here.
4334 * Probably we need not scan at all,
4335 * because page truncation is enough.
4336 */
4337
4338 /* we have to know where to truncate from in crash case */
4339 EXT4_I(inode)->i_disksize = inode->i_size;
4340 err = ext4_mark_inode_dirty(handle, inode);
4341 if (err)
4342 return err;
4343
4344 last_block = (inode->i_size + sb->s_blocksize - 1)
4345 >> EXT4_BLOCK_SIZE_BITS(sb);
4346 retry:
4347 err = ext4_es_remove_extent(inode, last_block,
4348 EXT_MAX_BLOCKS - last_block);
4349 if (err == -ENOMEM) {
4350 cond_resched();
4351 congestion_wait(BLK_RW_ASYNC, HZ/50);
4352 goto retry;
4353 }
4354 if (err)
4355 return err;
4356 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4357 }
4358
4359 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4360 ext4_lblk_t len, loff_t new_size,
4361 int flags)
4362 {
4363 struct inode *inode = file_inode(file);
4364 handle_t *handle;
4365 int ret = 0;
4366 int ret2 = 0;
4367 int retries = 0;
4368 int depth = 0;
4369 struct ext4_map_blocks map;
4370 unsigned int credits;
4371 loff_t epos;
4372
4373 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4374 map.m_lblk = offset;
4375 map.m_len = len;
4376 /*
4377 * Don't normalize the request if it can fit in one extent so
4378 * that it doesn't get unnecessarily split into multiple
4379 * extents.
4380 */
4381 if (len <= EXT_UNWRITTEN_MAX_LEN)
4382 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4383
4384 /*
4385 * credits to insert 1 extent into extent tree
4386 */
4387 credits = ext4_chunk_trans_blocks(inode, len);
4388 depth = ext_depth(inode);
4389
4390 retry:
4391 while (ret >= 0 && len) {
4392 /*
4393 * Recalculate credits when extent tree depth changes.
4394 */
4395 if (depth != ext_depth(inode)) {
4396 credits = ext4_chunk_trans_blocks(inode, len);
4397 depth = ext_depth(inode);
4398 }
4399
4400 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4401 credits);
4402 if (IS_ERR(handle)) {
4403 ret = PTR_ERR(handle);
4404 break;
4405 }
4406 ret = ext4_map_blocks(handle, inode, &map, flags);
4407 if (ret <= 0) {
4408 ext4_debug("inode #%lu: block %u: len %u: "
4409 "ext4_ext_map_blocks returned %d",
4410 inode->i_ino, map.m_lblk,
4411 map.m_len, ret);
4412 ext4_mark_inode_dirty(handle, inode);
4413 ret2 = ext4_journal_stop(handle);
4414 break;
4415 }
4416 map.m_lblk += ret;
4417 map.m_len = len = len - ret;
4418 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4419 inode->i_ctime = current_time(inode);
4420 if (new_size) {
4421 if (epos > new_size)
4422 epos = new_size;
4423 if (ext4_update_inode_size(inode, epos) & 0x1)
4424 inode->i_mtime = inode->i_ctime;
4425 }
4426 ext4_mark_inode_dirty(handle, inode);
4427 ext4_update_inode_fsync_trans(handle, inode, 1);
4428 ret2 = ext4_journal_stop(handle);
4429 if (ret2)
4430 break;
4431 }
4432 if (ret == -ENOSPC &&
4433 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4434 ret = 0;
4435 goto retry;
4436 }
4437
4438 return ret > 0 ? ret2 : ret;
4439 }
4440
4441 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len);
4442
4443 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len);
4444
4445 static long ext4_zero_range(struct file *file, loff_t offset,
4446 loff_t len, int mode)
4447 {
4448 struct inode *inode = file_inode(file);
4449 handle_t *handle = NULL;
4450 unsigned int max_blocks;
4451 loff_t new_size = 0;
4452 int ret = 0;
4453 int flags;
4454 int credits;
4455 int partial_begin, partial_end;
4456 loff_t start, end;
4457 ext4_lblk_t lblk;
4458 unsigned int blkbits = inode->i_blkbits;
4459
4460 trace_ext4_zero_range(inode, offset, len, mode);
4461
4462 /* Call ext4_force_commit to flush all data in case of data=journal. */
4463 if (ext4_should_journal_data(inode)) {
4464 ret = ext4_force_commit(inode->i_sb);
4465 if (ret)
4466 return ret;
4467 }
4468
4469 /*
4470 * Round up offset. This is not fallocate, we neet to zero out
4471 * blocks, so convert interior block aligned part of the range to
4472 * unwritten and possibly manually zero out unaligned parts of the
4473 * range.
4474 */
4475 start = round_up(offset, 1 << blkbits);
4476 end = round_down((offset + len), 1 << blkbits);
4477
4478 if (start < offset || end > offset + len)
4479 return -EINVAL;
4480 partial_begin = offset & ((1 << blkbits) - 1);
4481 partial_end = (offset + len) & ((1 << blkbits) - 1);
4482
4483 lblk = start >> blkbits;
4484 max_blocks = (end >> blkbits);
4485 if (max_blocks < lblk)
4486 max_blocks = 0;
4487 else
4488 max_blocks -= lblk;
4489
4490 inode_lock(inode);
4491
4492 /*
4493 * Indirect files do not support unwritten extnets
4494 */
4495 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4496 ret = -EOPNOTSUPP;
4497 goto out_mutex;
4498 }
4499
4500 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4501 (offset + len > inode->i_size ||
4502 offset + len > EXT4_I(inode)->i_disksize)) {
4503 new_size = offset + len;
4504 ret = inode_newsize_ok(inode, new_size);
4505 if (ret)
4506 goto out_mutex;
4507 }
4508
4509 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4510 if (mode & FALLOC_FL_KEEP_SIZE)
4511 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4512
4513 /* Wait all existing dio workers, newcomers will block on i_mutex */
4514 inode_dio_wait(inode);
4515
4516 /* Preallocate the range including the unaligned edges */
4517 if (partial_begin || partial_end) {
4518 ret = ext4_alloc_file_blocks(file,
4519 round_down(offset, 1 << blkbits) >> blkbits,
4520 (round_up((offset + len), 1 << blkbits) -
4521 round_down(offset, 1 << blkbits)) >> blkbits,
4522 new_size, flags);
4523 if (ret)
4524 goto out_mutex;
4525
4526 }
4527
4528 /* Zero range excluding the unaligned edges */
4529 if (max_blocks > 0) {
4530 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4531 EXT4_EX_NOCACHE);
4532
4533 /*
4534 * Prevent page faults from reinstantiating pages we have
4535 * released from page cache.
4536 */
4537 down_write(&EXT4_I(inode)->i_mmap_sem);
4538
4539 ret = ext4_break_layouts(inode);
4540 if (ret) {
4541 up_write(&EXT4_I(inode)->i_mmap_sem);
4542 goto out_mutex;
4543 }
4544
4545 ret = ext4_update_disksize_before_punch(inode, offset, len);
4546 if (ret) {
4547 up_write(&EXT4_I(inode)->i_mmap_sem);
4548 goto out_mutex;
4549 }
4550 /* Now release the pages and zero block aligned part of pages */
4551 truncate_pagecache_range(inode, start, end - 1);
4552 inode->i_mtime = inode->i_ctime = current_time(inode);
4553
4554 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4555 flags);
4556 up_write(&EXT4_I(inode)->i_mmap_sem);
4557 if (ret)
4558 goto out_mutex;
4559 }
4560 if (!partial_begin && !partial_end)
4561 goto out_mutex;
4562
4563 /*
4564 * In worst case we have to writeout two nonadjacent unwritten
4565 * blocks and update the inode
4566 */
4567 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4568 if (ext4_should_journal_data(inode))
4569 credits += 2;
4570 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4571 if (IS_ERR(handle)) {
4572 ret = PTR_ERR(handle);
4573 ext4_std_error(inode->i_sb, ret);
4574 goto out_mutex;
4575 }
4576
4577 inode->i_mtime = inode->i_ctime = current_time(inode);
4578 if (new_size)
4579 ext4_update_inode_size(inode, new_size);
4580 ext4_mark_inode_dirty(handle, inode);
4581
4582 /* Zero out partial block at the edges of the range */
4583 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4584 if (ret >= 0)
4585 ext4_update_inode_fsync_trans(handle, inode, 1);
4586
4587 if (file->f_flags & O_SYNC)
4588 ext4_handle_sync(handle);
4589
4590 ext4_journal_stop(handle);
4591 out_mutex:
4592 inode_unlock(inode);
4593 return ret;
4594 }
4595
4596 /*
4597 * preallocate space for a file. This implements ext4's fallocate file
4598 * operation, which gets called from sys_fallocate system call.
4599 * For block-mapped files, posix_fallocate should fall back to the method
4600 * of writing zeroes to the required new blocks (the same behavior which is
4601 * expected for file systems which do not support fallocate() system call).
4602 */
4603 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4604 {
4605 struct inode *inode = file_inode(file);
4606 loff_t new_size = 0;
4607 unsigned int max_blocks;
4608 int ret = 0;
4609 int flags;
4610 ext4_lblk_t lblk;
4611 unsigned int blkbits = inode->i_blkbits;
4612
4613 /*
4614 * Encrypted inodes can't handle collapse range or insert
4615 * range since we would need to re-encrypt blocks with a
4616 * different IV or XTS tweak (which are based on the logical
4617 * block number).
4618 */
4619 if (IS_ENCRYPTED(inode) &&
4620 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
4621 return -EOPNOTSUPP;
4622
4623 /* Return error if mode is not supported */
4624 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4625 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4626 FALLOC_FL_INSERT_RANGE))
4627 return -EOPNOTSUPP;
4628
4629 if (mode & FALLOC_FL_PUNCH_HOLE)
4630 return ext4_punch_hole(inode, offset, len);
4631
4632 ret = ext4_convert_inline_data(inode);
4633 if (ret)
4634 return ret;
4635
4636 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4637 return ext4_collapse_range(inode, offset, len);
4638
4639 if (mode & FALLOC_FL_INSERT_RANGE)
4640 return ext4_insert_range(inode, offset, len);
4641
4642 if (mode & FALLOC_FL_ZERO_RANGE)
4643 return ext4_zero_range(file, offset, len, mode);
4644
4645 trace_ext4_fallocate_enter(inode, offset, len, mode);
4646 lblk = offset >> blkbits;
4647
4648 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4649 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4650 if (mode & FALLOC_FL_KEEP_SIZE)
4651 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4652
4653 inode_lock(inode);
4654
4655 /*
4656 * We only support preallocation for extent-based files only
4657 */
4658 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4659 ret = -EOPNOTSUPP;
4660 goto out;
4661 }
4662
4663 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4664 (offset + len > inode->i_size ||
4665 offset + len > EXT4_I(inode)->i_disksize)) {
4666 new_size = offset + len;
4667 ret = inode_newsize_ok(inode, new_size);
4668 if (ret)
4669 goto out;
4670 }
4671
4672 /* Wait all existing dio workers, newcomers will block on i_mutex */
4673 inode_dio_wait(inode);
4674
4675 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4676 if (ret)
4677 goto out;
4678
4679 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4680 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4681 EXT4_I(inode)->i_sync_tid);
4682 }
4683 out:
4684 inode_unlock(inode);
4685 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4686 return ret;
4687 }
4688
4689 /*
4690 * This function convert a range of blocks to written extents
4691 * The caller of this function will pass the start offset and the size.
4692 * all unwritten extents within this range will be converted to
4693 * written extents.
4694 *
4695 * This function is called from the direct IO end io call back
4696 * function, to convert the fallocated extents after IO is completed.
4697 * Returns 0 on success.
4698 */
4699 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4700 loff_t offset, ssize_t len)
4701 {
4702 unsigned int max_blocks;
4703 int ret = 0;
4704 int ret2 = 0;
4705 struct ext4_map_blocks map;
4706 unsigned int blkbits = inode->i_blkbits;
4707 unsigned int credits = 0;
4708
4709 map.m_lblk = offset >> blkbits;
4710 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4711
4712 if (!handle) {
4713 /*
4714 * credits to insert 1 extent into extent tree
4715 */
4716 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4717 }
4718 while (ret >= 0 && ret < max_blocks) {
4719 map.m_lblk += ret;
4720 map.m_len = (max_blocks -= ret);
4721 if (credits) {
4722 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4723 credits);
4724 if (IS_ERR(handle)) {
4725 ret = PTR_ERR(handle);
4726 break;
4727 }
4728 }
4729 ret = ext4_map_blocks(handle, inode, &map,
4730 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4731 if (ret <= 0)
4732 ext4_warning(inode->i_sb,
4733 "inode #%lu: block %u: len %u: "
4734 "ext4_ext_map_blocks returned %d",
4735 inode->i_ino, map.m_lblk,
4736 map.m_len, ret);
4737 ext4_mark_inode_dirty(handle, inode);
4738 if (credits)
4739 ret2 = ext4_journal_stop(handle);
4740 if (ret <= 0 || ret2)
4741 break;
4742 }
4743 return ret > 0 ? ret2 : ret;
4744 }
4745
4746 int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end)
4747 {
4748 int ret, err = 0;
4749 struct ext4_io_end_vec *io_end_vec;
4750
4751 /*
4752 * This is somewhat ugly but the idea is clear: When transaction is
4753 * reserved, everything goes into it. Otherwise we rather start several
4754 * smaller transactions for conversion of each extent separately.
4755 */
4756 if (handle) {
4757 handle = ext4_journal_start_reserved(handle,
4758 EXT4_HT_EXT_CONVERT);
4759 if (IS_ERR(handle))
4760 return PTR_ERR(handle);
4761 }
4762
4763 list_for_each_entry(io_end_vec, &io_end->list_vec, list) {
4764 ret = ext4_convert_unwritten_extents(handle, io_end->inode,
4765 io_end_vec->offset,
4766 io_end_vec->size);
4767 if (ret)
4768 break;
4769 }
4770
4771 if (handle)
4772 err = ext4_journal_stop(handle);
4773
4774 return ret < 0 ? ret : err;
4775 }
4776
4777 static int ext4_iomap_xattr_fiemap(struct inode *inode, struct iomap *iomap)
4778 {
4779 __u64 physical = 0;
4780 __u64 length = 0;
4781 int blockbits = inode->i_sb->s_blocksize_bits;
4782 int error = 0;
4783 u16 iomap_type;
4784
4785 /* in-inode? */
4786 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4787 struct ext4_iloc iloc;
4788 int offset; /* offset of xattr in inode */
4789
4790 error = ext4_get_inode_loc(inode, &iloc);
4791 if (error)
4792 return error;
4793 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4794 offset = EXT4_GOOD_OLD_INODE_SIZE +
4795 EXT4_I(inode)->i_extra_isize;
4796 physical += offset;
4797 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4798 brelse(iloc.bh);
4799 iomap_type = IOMAP_INLINE;
4800 } else if (EXT4_I(inode)->i_file_acl) { /* external block */
4801 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4802 length = inode->i_sb->s_blocksize;
4803 iomap_type = IOMAP_MAPPED;
4804 } else {
4805 /* no in-inode or external block for xattr, so return -ENOENT */
4806 error = -ENOENT;
4807 goto out;
4808 }
4809
4810 iomap->addr = physical;
4811 iomap->offset = 0;
4812 iomap->length = length;
4813 iomap->type = iomap_type;
4814 iomap->flags = 0;
4815 out:
4816 return error;
4817 }
4818
4819 static int ext4_iomap_xattr_begin(struct inode *inode, loff_t offset,
4820 loff_t length, unsigned flags,
4821 struct iomap *iomap, struct iomap *srcmap)
4822 {
4823 int error;
4824
4825 error = ext4_iomap_xattr_fiemap(inode, iomap);
4826 if (error == 0 && (offset >= iomap->length))
4827 error = -ENOENT;
4828 return error;
4829 }
4830
4831 static const struct iomap_ops ext4_iomap_xattr_ops = {
4832 .iomap_begin = ext4_iomap_xattr_begin,
4833 };
4834
4835 static int _ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4836 __u64 start, __u64 len, bool from_es_cache)
4837 {
4838 ext4_lblk_t start_blk;
4839 u32 ext4_fiemap_flags = FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR;
4840 int error = 0;
4841
4842 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
4843 error = ext4_ext_precache(inode);
4844 if (error)
4845 return error;
4846 fieinfo->fi_flags &= ~FIEMAP_FLAG_CACHE;
4847 }
4848
4849 if (from_es_cache)
4850 ext4_fiemap_flags &= FIEMAP_FLAG_XATTR;
4851
4852 if (fiemap_check_flags(fieinfo, ext4_fiemap_flags))
4853 return -EBADR;
4854
4855 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4856 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
4857 error = iomap_fiemap(inode, fieinfo, start, len,
4858 &ext4_iomap_xattr_ops);
4859 } else if (!from_es_cache) {
4860 error = iomap_fiemap(inode, fieinfo, start, len,
4861 &ext4_iomap_report_ops);
4862 } else {
4863 ext4_lblk_t len_blks;
4864 __u64 last_blk;
4865
4866 start_blk = start >> inode->i_sb->s_blocksize_bits;
4867 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4868 if (last_blk >= EXT_MAX_BLOCKS)
4869 last_blk = EXT_MAX_BLOCKS-1;
4870 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4871
4872 /*
4873 * Walk the extent tree gathering extent information
4874 * and pushing extents back to the user.
4875 */
4876 error = ext4_fill_es_cache_info(inode, start_blk, len_blks,
4877 fieinfo);
4878 }
4879 return error;
4880 }
4881
4882 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4883 __u64 start, __u64 len)
4884 {
4885 return _ext4_fiemap(inode, fieinfo, start, len, false);
4886 }
4887
4888 int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo,
4889 __u64 start, __u64 len)
4890 {
4891 if (ext4_has_inline_data(inode)) {
4892 int has_inline;
4893
4894 down_read(&EXT4_I(inode)->xattr_sem);
4895 has_inline = ext4_has_inline_data(inode);
4896 up_read(&EXT4_I(inode)->xattr_sem);
4897 if (has_inline)
4898 return 0;
4899 }
4900
4901 return _ext4_fiemap(inode, fieinfo, start, len, true);
4902 }
4903
4904
4905 /*
4906 * ext4_access_path:
4907 * Function to access the path buffer for marking it dirty.
4908 * It also checks if there are sufficient credits left in the journal handle
4909 * to update path.
4910 */
4911 static int
4912 ext4_access_path(handle_t *handle, struct inode *inode,
4913 struct ext4_ext_path *path)
4914 {
4915 int credits, err;
4916
4917 if (!ext4_handle_valid(handle))
4918 return 0;
4919
4920 /*
4921 * Check if need to extend journal credits
4922 * 3 for leaf, sb, and inode plus 2 (bmap and group
4923 * descriptor) for each block group; assume two block
4924 * groups
4925 */
4926 credits = ext4_writepage_trans_blocks(inode);
4927 err = ext4_datasem_ensure_credits(handle, inode, 7, credits, 0);
4928 if (err < 0)
4929 return err;
4930
4931 err = ext4_ext_get_access(handle, inode, path);
4932 return err;
4933 }
4934
4935 /*
4936 * ext4_ext_shift_path_extents:
4937 * Shift the extents of a path structure lying between path[depth].p_ext
4938 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
4939 * if it is right shift or left shift operation.
4940 */
4941 static int
4942 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
4943 struct inode *inode, handle_t *handle,
4944 enum SHIFT_DIRECTION SHIFT)
4945 {
4946 int depth, err = 0;
4947 struct ext4_extent *ex_start, *ex_last;
4948 bool update = false;
4949 depth = path->p_depth;
4950
4951 while (depth >= 0) {
4952 if (depth == path->p_depth) {
4953 ex_start = path[depth].p_ext;
4954 if (!ex_start)
4955 return -EFSCORRUPTED;
4956
4957 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
4958
4959 err = ext4_access_path(handle, inode, path + depth);
4960 if (err)
4961 goto out;
4962
4963 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
4964 update = true;
4965
4966 while (ex_start <= ex_last) {
4967 if (SHIFT == SHIFT_LEFT) {
4968 le32_add_cpu(&ex_start->ee_block,
4969 -shift);
4970 /* Try to merge to the left. */
4971 if ((ex_start >
4972 EXT_FIRST_EXTENT(path[depth].p_hdr))
4973 &&
4974 ext4_ext_try_to_merge_right(inode,
4975 path, ex_start - 1))
4976 ex_last--;
4977 else
4978 ex_start++;
4979 } else {
4980 le32_add_cpu(&ex_last->ee_block, shift);
4981 ext4_ext_try_to_merge_right(inode, path,
4982 ex_last);
4983 ex_last--;
4984 }
4985 }
4986 err = ext4_ext_dirty(handle, inode, path + depth);
4987 if (err)
4988 goto out;
4989
4990 if (--depth < 0 || !update)
4991 break;
4992 }
4993
4994 /* Update index too */
4995 err = ext4_access_path(handle, inode, path + depth);
4996 if (err)
4997 goto out;
4998
4999 if (SHIFT == SHIFT_LEFT)
5000 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5001 else
5002 le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5003 err = ext4_ext_dirty(handle, inode, path + depth);
5004 if (err)
5005 goto out;
5006
5007 /* we are done if current index is not a starting index */
5008 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5009 break;
5010
5011 depth--;
5012 }
5013
5014 out:
5015 return err;
5016 }
5017
5018 /*
5019 * ext4_ext_shift_extents:
5020 * All the extents which lies in the range from @start to the last allocated
5021 * block for the @inode are shifted either towards left or right (depending
5022 * upon @SHIFT) by @shift blocks.
5023 * On success, 0 is returned, error otherwise.
5024 */
5025 static int
5026 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5027 ext4_lblk_t start, ext4_lblk_t shift,
5028 enum SHIFT_DIRECTION SHIFT)
5029 {
5030 struct ext4_ext_path *path;
5031 int ret = 0, depth;
5032 struct ext4_extent *extent;
5033 ext4_lblk_t stop, *iterator, ex_start, ex_end;
5034
5035 /* Let path point to the last extent */
5036 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5037 EXT4_EX_NOCACHE);
5038 if (IS_ERR(path))
5039 return PTR_ERR(path);
5040
5041 depth = path->p_depth;
5042 extent = path[depth].p_ext;
5043 if (!extent)
5044 goto out;
5045
5046 stop = le32_to_cpu(extent->ee_block);
5047
5048 /*
5049 * For left shifts, make sure the hole on the left is big enough to
5050 * accommodate the shift. For right shifts, make sure the last extent
5051 * won't be shifted beyond EXT_MAX_BLOCKS.
5052 */
5053 if (SHIFT == SHIFT_LEFT) {
5054 path = ext4_find_extent(inode, start - 1, &path,
5055 EXT4_EX_NOCACHE);
5056 if (IS_ERR(path))
5057 return PTR_ERR(path);
5058 depth = path->p_depth;
5059 extent = path[depth].p_ext;
5060 if (extent) {
5061 ex_start = le32_to_cpu(extent->ee_block);
5062 ex_end = le32_to_cpu(extent->ee_block) +
5063 ext4_ext_get_actual_len(extent);
5064 } else {
5065 ex_start = 0;
5066 ex_end = 0;
5067 }
5068
5069 if ((start == ex_start && shift > ex_start) ||
5070 (shift > start - ex_end)) {
5071 ret = -EINVAL;
5072 goto out;
5073 }
5074 } else {
5075 if (shift > EXT_MAX_BLOCKS -
5076 (stop + ext4_ext_get_actual_len(extent))) {
5077 ret = -EINVAL;
5078 goto out;
5079 }
5080 }
5081
5082 /*
5083 * In case of left shift, iterator points to start and it is increased
5084 * till we reach stop. In case of right shift, iterator points to stop
5085 * and it is decreased till we reach start.
5086 */
5087 if (SHIFT == SHIFT_LEFT)
5088 iterator = &start;
5089 else
5090 iterator = &stop;
5091
5092 /*
5093 * Its safe to start updating extents. Start and stop are unsigned, so
5094 * in case of right shift if extent with 0 block is reached, iterator
5095 * becomes NULL to indicate the end of the loop.
5096 */
5097 while (iterator && start <= stop) {
5098 path = ext4_find_extent(inode, *iterator, &path,
5099 EXT4_EX_NOCACHE);
5100 if (IS_ERR(path))
5101 return PTR_ERR(path);
5102 depth = path->p_depth;
5103 extent = path[depth].p_ext;
5104 if (!extent) {
5105 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5106 (unsigned long) *iterator);
5107 return -EFSCORRUPTED;
5108 }
5109 if (SHIFT == SHIFT_LEFT && *iterator >
5110 le32_to_cpu(extent->ee_block)) {
5111 /* Hole, move to the next extent */
5112 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5113 path[depth].p_ext++;
5114 } else {
5115 *iterator = ext4_ext_next_allocated_block(path);
5116 continue;
5117 }
5118 }
5119
5120 if (SHIFT == SHIFT_LEFT) {
5121 extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5122 *iterator = le32_to_cpu(extent->ee_block) +
5123 ext4_ext_get_actual_len(extent);
5124 } else {
5125 extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5126 if (le32_to_cpu(extent->ee_block) > 0)
5127 *iterator = le32_to_cpu(extent->ee_block) - 1;
5128 else
5129 /* Beginning is reached, end of the loop */
5130 iterator = NULL;
5131 /* Update path extent in case we need to stop */
5132 while (le32_to_cpu(extent->ee_block) < start)
5133 extent++;
5134 path[depth].p_ext = extent;
5135 }
5136 ret = ext4_ext_shift_path_extents(path, shift, inode,
5137 handle, SHIFT);
5138 if (ret)
5139 break;
5140 }
5141 out:
5142 ext4_ext_drop_refs(path);
5143 kfree(path);
5144 return ret;
5145 }
5146
5147 /*
5148 * ext4_collapse_range:
5149 * This implements the fallocate's collapse range functionality for ext4
5150 * Returns: 0 and non-zero on error.
5151 */
5152 static int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5153 {
5154 struct super_block *sb = inode->i_sb;
5155 ext4_lblk_t punch_start, punch_stop;
5156 handle_t *handle;
5157 unsigned int credits;
5158 loff_t new_size, ioffset;
5159 int ret;
5160
5161 /*
5162 * We need to test this early because xfstests assumes that a
5163 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5164 * system does not support collapse range.
5165 */
5166 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5167 return -EOPNOTSUPP;
5168
5169 /* Collapse range works only on fs cluster size aligned regions. */
5170 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb)))
5171 return -EINVAL;
5172
5173 trace_ext4_collapse_range(inode, offset, len);
5174
5175 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5176 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5177
5178 /* Call ext4_force_commit to flush all data in case of data=journal. */
5179 if (ext4_should_journal_data(inode)) {
5180 ret = ext4_force_commit(inode->i_sb);
5181 if (ret)
5182 return ret;
5183 }
5184
5185 inode_lock(inode);
5186 /*
5187 * There is no need to overlap collapse range with EOF, in which case
5188 * it is effectively a truncate operation
5189 */
5190 if (offset + len >= inode->i_size) {
5191 ret = -EINVAL;
5192 goto out_mutex;
5193 }
5194
5195 /* Currently just for extent based files */
5196 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5197 ret = -EOPNOTSUPP;
5198 goto out_mutex;
5199 }
5200
5201 /* Wait for existing dio to complete */
5202 inode_dio_wait(inode);
5203
5204 /*
5205 * Prevent page faults from reinstantiating pages we have released from
5206 * page cache.
5207 */
5208 down_write(&EXT4_I(inode)->i_mmap_sem);
5209
5210 ret = ext4_break_layouts(inode);
5211 if (ret)
5212 goto out_mmap;
5213
5214 /*
5215 * Need to round down offset to be aligned with page size boundary
5216 * for page size > block size.
5217 */
5218 ioffset = round_down(offset, PAGE_SIZE);
5219 /*
5220 * Write tail of the last page before removed range since it will get
5221 * removed from the page cache below.
5222 */
5223 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5224 if (ret)
5225 goto out_mmap;
5226 /*
5227 * Write data that will be shifted to preserve them when discarding
5228 * page cache below. We are also protected from pages becoming dirty
5229 * by i_mmap_sem.
5230 */
5231 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5232 LLONG_MAX);
5233 if (ret)
5234 goto out_mmap;
5235 truncate_pagecache(inode, ioffset);
5236
5237 credits = ext4_writepage_trans_blocks(inode);
5238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5239 if (IS_ERR(handle)) {
5240 ret = PTR_ERR(handle);
5241 goto out_mmap;
5242 }
5243
5244 down_write(&EXT4_I(inode)->i_data_sem);
5245 ext4_discard_preallocations(inode);
5246
5247 ret = ext4_es_remove_extent(inode, punch_start,
5248 EXT_MAX_BLOCKS - punch_start);
5249 if (ret) {
5250 up_write(&EXT4_I(inode)->i_data_sem);
5251 goto out_stop;
5252 }
5253
5254 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5255 if (ret) {
5256 up_write(&EXT4_I(inode)->i_data_sem);
5257 goto out_stop;
5258 }
5259 ext4_discard_preallocations(inode);
5260
5261 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5262 punch_stop - punch_start, SHIFT_LEFT);
5263 if (ret) {
5264 up_write(&EXT4_I(inode)->i_data_sem);
5265 goto out_stop;
5266 }
5267
5268 new_size = inode->i_size - len;
5269 i_size_write(inode, new_size);
5270 EXT4_I(inode)->i_disksize = new_size;
5271
5272 up_write(&EXT4_I(inode)->i_data_sem);
5273 if (IS_SYNC(inode))
5274 ext4_handle_sync(handle);
5275 inode->i_mtime = inode->i_ctime = current_time(inode);
5276 ext4_mark_inode_dirty(handle, inode);
5277 ext4_update_inode_fsync_trans(handle, inode, 1);
5278
5279 out_stop:
5280 ext4_journal_stop(handle);
5281 out_mmap:
5282 up_write(&EXT4_I(inode)->i_mmap_sem);
5283 out_mutex:
5284 inode_unlock(inode);
5285 return ret;
5286 }
5287
5288 /*
5289 * ext4_insert_range:
5290 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5291 * The data blocks starting from @offset to the EOF are shifted by @len
5292 * towards right to create a hole in the @inode. Inode size is increased
5293 * by len bytes.
5294 * Returns 0 on success, error otherwise.
5295 */
5296 static int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5297 {
5298 struct super_block *sb = inode->i_sb;
5299 handle_t *handle;
5300 struct ext4_ext_path *path;
5301 struct ext4_extent *extent;
5302 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5303 unsigned int credits, ee_len;
5304 int ret = 0, depth, split_flag = 0;
5305 loff_t ioffset;
5306
5307 /*
5308 * We need to test this early because xfstests assumes that an
5309 * insert range of (0, 1) will return EOPNOTSUPP if the file
5310 * system does not support insert range.
5311 */
5312 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5313 return -EOPNOTSUPP;
5314
5315 /* Insert range works only on fs cluster size aligned regions. */
5316 if (!IS_ALIGNED(offset | len, EXT4_CLUSTER_SIZE(sb)))
5317 return -EINVAL;
5318
5319 trace_ext4_insert_range(inode, offset, len);
5320
5321 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5322 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5323
5324 /* Call ext4_force_commit to flush all data in case of data=journal */
5325 if (ext4_should_journal_data(inode)) {
5326 ret = ext4_force_commit(inode->i_sb);
5327 if (ret)
5328 return ret;
5329 }
5330
5331 inode_lock(inode);
5332 /* Currently just for extent based files */
5333 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5334 ret = -EOPNOTSUPP;
5335 goto out_mutex;
5336 }
5337
5338 /* Check whether the maximum file size would be exceeded */
5339 if (len > inode->i_sb->s_maxbytes - inode->i_size) {
5340 ret = -EFBIG;
5341 goto out_mutex;
5342 }
5343
5344 /* Offset must be less than i_size */
5345 if (offset >= inode->i_size) {
5346 ret = -EINVAL;
5347 goto out_mutex;
5348 }
5349
5350 /* Wait for existing dio to complete */
5351 inode_dio_wait(inode);
5352
5353 /*
5354 * Prevent page faults from reinstantiating pages we have released from
5355 * page cache.
5356 */
5357 down_write(&EXT4_I(inode)->i_mmap_sem);
5358
5359 ret = ext4_break_layouts(inode);
5360 if (ret)
5361 goto out_mmap;
5362
5363 /*
5364 * Need to round down to align start offset to page size boundary
5365 * for page size > block size.
5366 */
5367 ioffset = round_down(offset, PAGE_SIZE);
5368 /* Write out all dirty pages */
5369 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5370 LLONG_MAX);
5371 if (ret)
5372 goto out_mmap;
5373 truncate_pagecache(inode, ioffset);
5374
5375 credits = ext4_writepage_trans_blocks(inode);
5376 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5377 if (IS_ERR(handle)) {
5378 ret = PTR_ERR(handle);
5379 goto out_mmap;
5380 }
5381
5382 /* Expand file to avoid data loss if there is error while shifting */
5383 inode->i_size += len;
5384 EXT4_I(inode)->i_disksize += len;
5385 inode->i_mtime = inode->i_ctime = current_time(inode);
5386 ret = ext4_mark_inode_dirty(handle, inode);
5387 if (ret)
5388 goto out_stop;
5389
5390 down_write(&EXT4_I(inode)->i_data_sem);
5391 ext4_discard_preallocations(inode);
5392
5393 path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5394 if (IS_ERR(path)) {
5395 up_write(&EXT4_I(inode)->i_data_sem);
5396 goto out_stop;
5397 }
5398
5399 depth = ext_depth(inode);
5400 extent = path[depth].p_ext;
5401 if (extent) {
5402 ee_start_lblk = le32_to_cpu(extent->ee_block);
5403 ee_len = ext4_ext_get_actual_len(extent);
5404
5405 /*
5406 * If offset_lblk is not the starting block of extent, split
5407 * the extent @offset_lblk
5408 */
5409 if ((offset_lblk > ee_start_lblk) &&
5410 (offset_lblk < (ee_start_lblk + ee_len))) {
5411 if (ext4_ext_is_unwritten(extent))
5412 split_flag = EXT4_EXT_MARK_UNWRIT1 |
5413 EXT4_EXT_MARK_UNWRIT2;
5414 ret = ext4_split_extent_at(handle, inode, &path,
5415 offset_lblk, split_flag,
5416 EXT4_EX_NOCACHE |
5417 EXT4_GET_BLOCKS_PRE_IO |
5418 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5419 }
5420
5421 ext4_ext_drop_refs(path);
5422 kfree(path);
5423 if (ret < 0) {
5424 up_write(&EXT4_I(inode)->i_data_sem);
5425 goto out_stop;
5426 }
5427 } else {
5428 ext4_ext_drop_refs(path);
5429 kfree(path);
5430 }
5431
5432 ret = ext4_es_remove_extent(inode, offset_lblk,
5433 EXT_MAX_BLOCKS - offset_lblk);
5434 if (ret) {
5435 up_write(&EXT4_I(inode)->i_data_sem);
5436 goto out_stop;
5437 }
5438
5439 /*
5440 * if offset_lblk lies in a hole which is at start of file, use
5441 * ee_start_lblk to shift extents
5442 */
5443 ret = ext4_ext_shift_extents(inode, handle,
5444 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5445 len_lblk, SHIFT_RIGHT);
5446
5447 up_write(&EXT4_I(inode)->i_data_sem);
5448 if (IS_SYNC(inode))
5449 ext4_handle_sync(handle);
5450 if (ret >= 0)
5451 ext4_update_inode_fsync_trans(handle, inode, 1);
5452
5453 out_stop:
5454 ext4_journal_stop(handle);
5455 out_mmap:
5456 up_write(&EXT4_I(inode)->i_mmap_sem);
5457 out_mutex:
5458 inode_unlock(inode);
5459 return ret;
5460 }
5461
5462 /**
5463 * ext4_swap_extents() - Swap extents between two inodes
5464 * @handle: handle for this transaction
5465 * @inode1: First inode
5466 * @inode2: Second inode
5467 * @lblk1: Start block for first inode
5468 * @lblk2: Start block for second inode
5469 * @count: Number of blocks to swap
5470 * @unwritten: Mark second inode's extents as unwritten after swap
5471 * @erp: Pointer to save error value
5472 *
5473 * This helper routine does exactly what is promise "swap extents". All other
5474 * stuff such as page-cache locking consistency, bh mapping consistency or
5475 * extent's data copying must be performed by caller.
5476 * Locking:
5477 * i_mutex is held for both inodes
5478 * i_data_sem is locked for write for both inodes
5479 * Assumptions:
5480 * All pages from requested range are locked for both inodes
5481 */
5482 int
5483 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5484 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5485 ext4_lblk_t count, int unwritten, int *erp)
5486 {
5487 struct ext4_ext_path *path1 = NULL;
5488 struct ext4_ext_path *path2 = NULL;
5489 int replaced_count = 0;
5490
5491 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5492 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5493 BUG_ON(!inode_is_locked(inode1));
5494 BUG_ON(!inode_is_locked(inode2));
5495
5496 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5497 if (unlikely(*erp))
5498 return 0;
5499 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5500 if (unlikely(*erp))
5501 return 0;
5502
5503 while (count) {
5504 struct ext4_extent *ex1, *ex2, tmp_ex;
5505 ext4_lblk_t e1_blk, e2_blk;
5506 int e1_len, e2_len, len;
5507 int split = 0;
5508
5509 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5510 if (IS_ERR(path1)) {
5511 *erp = PTR_ERR(path1);
5512 path1 = NULL;
5513 finish:
5514 count = 0;
5515 goto repeat;
5516 }
5517 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5518 if (IS_ERR(path2)) {
5519 *erp = PTR_ERR(path2);
5520 path2 = NULL;
5521 goto finish;
5522 }
5523 ex1 = path1[path1->p_depth].p_ext;
5524 ex2 = path2[path2->p_depth].p_ext;
5525 /* Do we have somthing to swap ? */
5526 if (unlikely(!ex2 || !ex1))
5527 goto finish;
5528
5529 e1_blk = le32_to_cpu(ex1->ee_block);
5530 e2_blk = le32_to_cpu(ex2->ee_block);
5531 e1_len = ext4_ext_get_actual_len(ex1);
5532 e2_len = ext4_ext_get_actual_len(ex2);
5533
5534 /* Hole handling */
5535 if (!in_range(lblk1, e1_blk, e1_len) ||
5536 !in_range(lblk2, e2_blk, e2_len)) {
5537 ext4_lblk_t next1, next2;
5538
5539 /* if hole after extent, then go to next extent */
5540 next1 = ext4_ext_next_allocated_block(path1);
5541 next2 = ext4_ext_next_allocated_block(path2);
5542 /* If hole before extent, then shift to that extent */
5543 if (e1_blk > lblk1)
5544 next1 = e1_blk;
5545 if (e2_blk > lblk2)
5546 next2 = e2_blk;
5547 /* Do we have something to swap */
5548 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5549 goto finish;
5550 /* Move to the rightest boundary */
5551 len = next1 - lblk1;
5552 if (len < next2 - lblk2)
5553 len = next2 - lblk2;
5554 if (len > count)
5555 len = count;
5556 lblk1 += len;
5557 lblk2 += len;
5558 count -= len;
5559 goto repeat;
5560 }
5561
5562 /* Prepare left boundary */
5563 if (e1_blk < lblk1) {
5564 split = 1;
5565 *erp = ext4_force_split_extent_at(handle, inode1,
5566 &path1, lblk1, 0);
5567 if (unlikely(*erp))
5568 goto finish;
5569 }
5570 if (e2_blk < lblk2) {
5571 split = 1;
5572 *erp = ext4_force_split_extent_at(handle, inode2,
5573 &path2, lblk2, 0);
5574 if (unlikely(*erp))
5575 goto finish;
5576 }
5577 /* ext4_split_extent_at() may result in leaf extent split,
5578 * path must to be revalidated. */
5579 if (split)
5580 goto repeat;
5581
5582 /* Prepare right boundary */
5583 len = count;
5584 if (len > e1_blk + e1_len - lblk1)
5585 len = e1_blk + e1_len - lblk1;
5586 if (len > e2_blk + e2_len - lblk2)
5587 len = e2_blk + e2_len - lblk2;
5588
5589 if (len != e1_len) {
5590 split = 1;
5591 *erp = ext4_force_split_extent_at(handle, inode1,
5592 &path1, lblk1 + len, 0);
5593 if (unlikely(*erp))
5594 goto finish;
5595 }
5596 if (len != e2_len) {
5597 split = 1;
5598 *erp = ext4_force_split_extent_at(handle, inode2,
5599 &path2, lblk2 + len, 0);
5600 if (*erp)
5601 goto finish;
5602 }
5603 /* ext4_split_extent_at() may result in leaf extent split,
5604 * path must to be revalidated. */
5605 if (split)
5606 goto repeat;
5607
5608 BUG_ON(e2_len != e1_len);
5609 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5610 if (unlikely(*erp))
5611 goto finish;
5612 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5613 if (unlikely(*erp))
5614 goto finish;
5615
5616 /* Both extents are fully inside boundaries. Swap it now */
5617 tmp_ex = *ex1;
5618 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5619 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5620 ex1->ee_len = cpu_to_le16(e2_len);
5621 ex2->ee_len = cpu_to_le16(e1_len);
5622 if (unwritten)
5623 ext4_ext_mark_unwritten(ex2);
5624 if (ext4_ext_is_unwritten(&tmp_ex))
5625 ext4_ext_mark_unwritten(ex1);
5626
5627 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5628 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5629 *erp = ext4_ext_dirty(handle, inode2, path2 +
5630 path2->p_depth);
5631 if (unlikely(*erp))
5632 goto finish;
5633 *erp = ext4_ext_dirty(handle, inode1, path1 +
5634 path1->p_depth);
5635 /*
5636 * Looks scarry ah..? second inode already points to new blocks,
5637 * and it was successfully dirtied. But luckily error may happen
5638 * only due to journal error, so full transaction will be
5639 * aborted anyway.
5640 */
5641 if (unlikely(*erp))
5642 goto finish;
5643 lblk1 += len;
5644 lblk2 += len;
5645 replaced_count += len;
5646 count -= len;
5647
5648 repeat:
5649 ext4_ext_drop_refs(path1);
5650 kfree(path1);
5651 ext4_ext_drop_refs(path2);
5652 kfree(path2);
5653 path1 = path2 = NULL;
5654 }
5655 return replaced_count;
5656 }
5657
5658 /*
5659 * ext4_clu_mapped - determine whether any block in a logical cluster has
5660 * been mapped to a physical cluster
5661 *
5662 * @inode - file containing the logical cluster
5663 * @lclu - logical cluster of interest
5664 *
5665 * Returns 1 if any block in the logical cluster is mapped, signifying
5666 * that a physical cluster has been allocated for it. Otherwise,
5667 * returns 0. Can also return negative error codes. Derived from
5668 * ext4_ext_map_blocks().
5669 */
5670 int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu)
5671 {
5672 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5673 struct ext4_ext_path *path;
5674 int depth, mapped = 0, err = 0;
5675 struct ext4_extent *extent;
5676 ext4_lblk_t first_lblk, first_lclu, last_lclu;
5677
5678 /* search for the extent closest to the first block in the cluster */
5679 path = ext4_find_extent(inode, EXT4_C2B(sbi, lclu), NULL, 0);
5680 if (IS_ERR(path)) {
5681 err = PTR_ERR(path);
5682 path = NULL;
5683 goto out;
5684 }
5685
5686 depth = ext_depth(inode);
5687
5688 /*
5689 * A consistent leaf must not be empty. This situation is possible,
5690 * though, _during_ tree modification, and it's why an assert can't
5691 * be put in ext4_find_extent().
5692 */
5693 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
5694 EXT4_ERROR_INODE(inode,
5695 "bad extent address - lblock: %lu, depth: %d, pblock: %lld",
5696 (unsigned long) EXT4_C2B(sbi, lclu),
5697 depth, path[depth].p_block);
5698 err = -EFSCORRUPTED;
5699 goto out;
5700 }
5701
5702 extent = path[depth].p_ext;
5703
5704 /* can't be mapped if the extent tree is empty */
5705 if (extent == NULL)
5706 goto out;
5707
5708 first_lblk = le32_to_cpu(extent->ee_block);
5709 first_lclu = EXT4_B2C(sbi, first_lblk);
5710
5711 /*
5712 * Three possible outcomes at this point - found extent spanning
5713 * the target cluster, to the left of the target cluster, or to the
5714 * right of the target cluster. The first two cases are handled here.
5715 * The last case indicates the target cluster is not mapped.
5716 */
5717 if (lclu >= first_lclu) {
5718 last_lclu = EXT4_B2C(sbi, first_lblk +
5719 ext4_ext_get_actual_len(extent) - 1);
5720 if (lclu <= last_lclu) {
5721 mapped = 1;
5722 } else {
5723 first_lblk = ext4_ext_next_allocated_block(path);
5724 first_lclu = EXT4_B2C(sbi, first_lblk);
5725 if (lclu == first_lclu)
5726 mapped = 1;
5727 }
5728 }
5729
5730 out:
5731 ext4_ext_drop_refs(path);
5732 kfree(path);
5733
5734 return err ? err : mapped;
5735 }