]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/ext4/inode.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155 if (ext4_has_inline_data(inode))
156 return 0;
157
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 }
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165 * Called at the last iput() if i_nlink is zero.
166 */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 handle_t *handle;
170 int err;
171 /*
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 */
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179 trace_ext4_evict_inode(inode);
180
181 if (inode->i_nlink) {
182 /*
183 * When journalling data dirty buffers are tracked only in the
184 * journal. So although mm thinks everything is clean and
185 * ready for reaping the inode might still have some pages to
186 * write in the running transaction or waiting to be
187 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 * (via truncate_inode_pages()) to discard these buffers can
189 * cause data loss. Also even if we did not discard these
190 * buffers, we would have no way to find them after the inode
191 * is reaped and thus user could see stale data if he tries to
192 * read them before the transaction is checkpointed. So be
193 * careful and force everything to disk here... We use
194 * ei->i_datasync_tid to store the newest transaction
195 * containing inode's data.
196 *
197 * Note that directories do not have this problem because they
198 * don't use page cache.
199 */
200 if (inode->i_ino != EXT4_JOURNAL_INO &&
201 ext4_should_journal_data(inode) &&
202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * Protect us against freezing - iput() caller didn't have to have any
225 * protection against it
226 */
227 sb_start_intwrite(inode->i_sb);
228
229 if (!IS_NOQUOTA(inode))
230 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231
232 /*
233 * Block bitmap, group descriptor, and inode are accounted in both
234 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235 */
236 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237 ext4_blocks_for_truncate(inode) + extra_credits - 3);
238 if (IS_ERR(handle)) {
239 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 /*
241 * If we're going to skip the normal cleanup, we still need to
242 * make sure that the in-core orphan linked list is properly
243 * cleaned up.
244 */
245 ext4_orphan_del(NULL, inode);
246 sb_end_intwrite(inode->i_sb);
247 goto no_delete;
248 }
249
250 if (IS_SYNC(inode))
251 ext4_handle_sync(handle);
252
253 /*
254 * Set inode->i_size to 0 before calling ext4_truncate(). We need
255 * special handling of symlinks here because i_size is used to
256 * determine whether ext4_inode_info->i_data contains symlink data or
257 * block mappings. Setting i_size to 0 will remove its fast symlink
258 * status. Erase i_data so that it becomes a valid empty block map.
259 */
260 if (ext4_inode_is_fast_symlink(inode))
261 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262 inode->i_size = 0;
263 err = ext4_mark_inode_dirty(handle, inode);
264 if (err) {
265 ext4_warning(inode->i_sb,
266 "couldn't mark inode dirty (err %d)", err);
267 goto stop_handle;
268 }
269 if (inode->i_blocks) {
270 err = ext4_truncate(inode);
271 if (err) {
272 ext4_error_err(inode->i_sb, -err,
273 "couldn't truncate inode %lu (err %d)",
274 inode->i_ino, err);
275 goto stop_handle;
276 }
277 }
278
279 /* Remove xattr references. */
280 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
281 extra_credits);
282 if (err) {
283 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
284 stop_handle:
285 ext4_journal_stop(handle);
286 ext4_orphan_del(NULL, inode);
287 sb_end_intwrite(inode->i_sb);
288 ext4_xattr_inode_array_free(ea_inode_array);
289 goto no_delete;
290 }
291
292 /*
293 * Kill off the orphan record which ext4_truncate created.
294 * AKPM: I think this can be inside the above `if'.
295 * Note that ext4_orphan_del() has to be able to cope with the
296 * deletion of a non-existent orphan - this is because we don't
297 * know if ext4_truncate() actually created an orphan record.
298 * (Well, we could do this if we need to, but heck - it works)
299 */
300 ext4_orphan_del(handle, inode);
301 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
302
303 /*
304 * One subtle ordering requirement: if anything has gone wrong
305 * (transaction abort, IO errors, whatever), then we can still
306 * do these next steps (the fs will already have been marked as
307 * having errors), but we can't free the inode if the mark_dirty
308 * fails.
309 */
310 if (ext4_mark_inode_dirty(handle, inode))
311 /* If that failed, just do the required in-core inode clear. */
312 ext4_clear_inode(inode);
313 else
314 ext4_free_inode(handle, inode);
315 ext4_journal_stop(handle);
316 sb_end_intwrite(inode->i_sb);
317 ext4_xattr_inode_array_free(ea_inode_array);
318 return;
319 no_delete:
320 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
321 }
322
323 #ifdef CONFIG_QUOTA
324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326 return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329
330 /*
331 * Called with i_data_sem down, which is important since we can call
332 * ext4_discard_preallocations() from here.
333 */
334 void ext4_da_update_reserve_space(struct inode *inode,
335 int used, int quota_claim)
336 {
337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338 struct ext4_inode_info *ei = EXT4_I(inode);
339
340 spin_lock(&ei->i_block_reservation_lock);
341 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342 if (unlikely(used > ei->i_reserved_data_blocks)) {
343 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344 "with only %d reserved data blocks",
345 __func__, inode->i_ino, used,
346 ei->i_reserved_data_blocks);
347 WARN_ON(1);
348 used = ei->i_reserved_data_blocks;
349 }
350
351 /* Update per-inode reservations */
352 ei->i_reserved_data_blocks -= used;
353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354
355 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
356
357 /* Update quota subsystem for data blocks */
358 if (quota_claim)
359 dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 else {
361 /*
362 * We did fallocate with an offset that is already delayed
363 * allocated. So on delayed allocated writeback we should
364 * not re-claim the quota for fallocated blocks.
365 */
366 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 }
368
369 /*
370 * If we have done all the pending block allocations and if
371 * there aren't any writers on the inode, we can discard the
372 * inode's preallocations.
373 */
374 if ((ei->i_reserved_data_blocks == 0) &&
375 !inode_is_open_for_write(inode))
376 ext4_discard_preallocations(inode);
377 }
378
379 static int __check_block_validity(struct inode *inode, const char *func,
380 unsigned int line,
381 struct ext4_map_blocks *map)
382 {
383 if (ext4_has_feature_journal(inode->i_sb) &&
384 (inode->i_ino ==
385 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
386 return 0;
387 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
388 map->m_len)) {
389 ext4_error_inode(inode, func, line, map->m_pblk,
390 "lblock %lu mapped to illegal pblock %llu "
391 "(length %d)", (unsigned long) map->m_lblk,
392 map->m_pblk, map->m_len);
393 return -EFSCORRUPTED;
394 }
395 return 0;
396 }
397
398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399 ext4_lblk_t len)
400 {
401 int ret;
402
403 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404 return fscrypt_zeroout_range(inode, lblk, pblk, len);
405
406 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407 if (ret > 0)
408 ret = 0;
409
410 return ret;
411 }
412
413 #define check_block_validity(inode, map) \
414 __check_block_validity((inode), __func__, __LINE__, (map))
415
416 #ifdef ES_AGGRESSIVE_TEST
417 static void ext4_map_blocks_es_recheck(handle_t *handle,
418 struct inode *inode,
419 struct ext4_map_blocks *es_map,
420 struct ext4_map_blocks *map,
421 int flags)
422 {
423 int retval;
424
425 map->m_flags = 0;
426 /*
427 * There is a race window that the result is not the same.
428 * e.g. xfstests #223 when dioread_nolock enables. The reason
429 * is that we lookup a block mapping in extent status tree with
430 * out taking i_data_sem. So at the time the unwritten extent
431 * could be converted.
432 */
433 down_read(&EXT4_I(inode)->i_data_sem);
434 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 retval = ext4_ext_map_blocks(handle, inode, map, flags &
436 EXT4_GET_BLOCKS_KEEP_SIZE);
437 } else {
438 retval = ext4_ind_map_blocks(handle, inode, map, flags &
439 EXT4_GET_BLOCKS_KEEP_SIZE);
440 }
441 up_read((&EXT4_I(inode)->i_data_sem));
442
443 /*
444 * We don't check m_len because extent will be collpased in status
445 * tree. So the m_len might not equal.
446 */
447 if (es_map->m_lblk != map->m_lblk ||
448 es_map->m_flags != map->m_flags ||
449 es_map->m_pblk != map->m_pblk) {
450 printk("ES cache assertion failed for inode: %lu "
451 "es_cached ex [%d/%d/%llu/%x] != "
452 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 inode->i_ino, es_map->m_lblk, es_map->m_len,
454 es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 map->m_len, map->m_pblk, map->m_flags,
456 retval, flags);
457 }
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460
461 /*
462 * The ext4_map_blocks() function tries to look up the requested blocks,
463 * and returns if the blocks are already mapped.
464 *
465 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
466 * and store the allocated blocks in the result buffer head and mark it
467 * mapped.
468 *
469 * If file type is extents based, it will call ext4_ext_map_blocks(),
470 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
471 * based files
472 *
473 * On success, it returns the number of blocks being mapped or allocated. if
474 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
475 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
476 *
477 * It returns 0 if plain look up failed (blocks have not been allocated), in
478 * that case, @map is returned as unmapped but we still do fill map->m_len to
479 * indicate the length of a hole starting at map->m_lblk.
480 *
481 * It returns the error in case of allocation failure.
482 */
483 int ext4_map_blocks(handle_t *handle, struct inode *inode,
484 struct ext4_map_blocks *map, int flags)
485 {
486 struct extent_status es;
487 int retval;
488 int ret = 0;
489 #ifdef ES_AGGRESSIVE_TEST
490 struct ext4_map_blocks orig_map;
491
492 memcpy(&orig_map, map, sizeof(*map));
493 #endif
494
495 map->m_flags = 0;
496 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
497 "logical block %lu\n", inode->i_ino, flags, map->m_len,
498 (unsigned long) map->m_lblk);
499
500 /*
501 * ext4_map_blocks returns an int, and m_len is an unsigned int
502 */
503 if (unlikely(map->m_len > INT_MAX))
504 map->m_len = INT_MAX;
505
506 /* We can handle the block number less than EXT_MAX_BLOCKS */
507 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
508 return -EFSCORRUPTED;
509
510 /* Lookup extent status tree firstly */
511 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
512 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
513 map->m_pblk = ext4_es_pblock(&es) +
514 map->m_lblk - es.es_lblk;
515 map->m_flags |= ext4_es_is_written(&es) ?
516 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
517 retval = es.es_len - (map->m_lblk - es.es_lblk);
518 if (retval > map->m_len)
519 retval = map->m_len;
520 map->m_len = retval;
521 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
522 map->m_pblk = 0;
523 retval = es.es_len - (map->m_lblk - es.es_lblk);
524 if (retval > map->m_len)
525 retval = map->m_len;
526 map->m_len = retval;
527 retval = 0;
528 } else {
529 BUG();
530 }
531 #ifdef ES_AGGRESSIVE_TEST
532 ext4_map_blocks_es_recheck(handle, inode, map,
533 &orig_map, flags);
534 #endif
535 goto found;
536 }
537
538 /*
539 * Try to see if we can get the block without requesting a new
540 * file system block.
541 */
542 down_read(&EXT4_I(inode)->i_data_sem);
543 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545 EXT4_GET_BLOCKS_KEEP_SIZE);
546 } else {
547 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548 EXT4_GET_BLOCKS_KEEP_SIZE);
549 }
550 if (retval > 0) {
551 unsigned int status;
552
553 if (unlikely(retval != map->m_len)) {
554 ext4_warning(inode->i_sb,
555 "ES len assertion failed for inode "
556 "%lu: retval %d != map->m_len %d",
557 inode->i_ino, retval, map->m_len);
558 WARN_ON(1);
559 }
560
561 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
562 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
563 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
564 !(status & EXTENT_STATUS_WRITTEN) &&
565 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
566 map->m_lblk + map->m_len - 1))
567 status |= EXTENT_STATUS_DELAYED;
568 ret = ext4_es_insert_extent(inode, map->m_lblk,
569 map->m_len, map->m_pblk, status);
570 if (ret < 0)
571 retval = ret;
572 }
573 up_read((&EXT4_I(inode)->i_data_sem));
574
575 found:
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 ret = check_block_validity(inode, map);
578 if (ret != 0)
579 return ret;
580 }
581
582 /* If it is only a block(s) look up */
583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 return retval;
585
586 /*
587 * Returns if the blocks have already allocated
588 *
589 * Note that if blocks have been preallocated
590 * ext4_ext_get_block() returns the create = 0
591 * with buffer head unmapped.
592 */
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 /*
595 * If we need to convert extent to unwritten
596 * we continue and do the actual work in
597 * ext4_ext_map_blocks()
598 */
599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600 return retval;
601
602 /*
603 * Here we clear m_flags because after allocating an new extent,
604 * it will be set again.
605 */
606 map->m_flags &= ~EXT4_MAP_FLAGS;
607
608 /*
609 * New blocks allocate and/or writing to unwritten extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_block()
612 * with create == 1 flag.
613 */
614 down_write(&EXT4_I(inode)->i_data_sem);
615
616 /*
617 * We need to check for EXT4 here because migrate
618 * could have changed the inode type in between
619 */
620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 } else {
623 retval = ext4_ind_map_blocks(handle, inode, map, flags);
624
625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 /*
627 * We allocated new blocks which will result in
628 * i_data's format changing. Force the migrate
629 * to fail by clearing migrate flags
630 */
631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632 }
633
634 /*
635 * Update reserved blocks/metadata blocks after successful
636 * block allocation which had been deferred till now. We don't
637 * support fallocate for non extent files. So we can update
638 * reserve space here.
639 */
640 if ((retval > 0) &&
641 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
642 ext4_da_update_reserve_space(inode, retval, 1);
643 }
644
645 if (retval > 0) {
646 unsigned int status;
647
648 if (unlikely(retval != map->m_len)) {
649 ext4_warning(inode->i_sb,
650 "ES len assertion failed for inode "
651 "%lu: retval %d != map->m_len %d",
652 inode->i_ino, retval, map->m_len);
653 WARN_ON(1);
654 }
655
656 /*
657 * We have to zeroout blocks before inserting them into extent
658 * status tree. Otherwise someone could look them up there and
659 * use them before they are really zeroed. We also have to
660 * unmap metadata before zeroing as otherwise writeback can
661 * overwrite zeros with stale data from block device.
662 */
663 if (flags & EXT4_GET_BLOCKS_ZERO &&
664 map->m_flags & EXT4_MAP_MAPPED &&
665 map->m_flags & EXT4_MAP_NEW) {
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !ext4_is_quota_file(inode) &&
714 ext4_should_order_data(inode)) {
715 loff_t start_byte =
716 (loff_t)map->m_lblk << inode->i_blkbits;
717 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
718
719 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 ret = ext4_jbd2_inode_add_wait(handle, inode,
721 start_byte, length);
722 else
723 ret = ext4_jbd2_inode_add_write(handle, inode,
724 start_byte, length);
725 if (ret)
726 return ret;
727 }
728 }
729 return retval;
730 }
731
732 /*
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
735 */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 unsigned long old_state;
739 unsigned long new_state;
740
741 flags &= EXT4_MAP_FLAGS;
742
743 /* Dummy buffer_head? Set non-atomically. */
744 if (!bh->b_page) {
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 return;
747 }
748 /*
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
752 */
753 do {
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 } while (unlikely(
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
762 {
763 struct ext4_map_blocks map;
764 int ret = 0;
765
766 if (ext4_has_inline_data(inode))
767 return -ERANGE;
768
769 map.m_lblk = iblock;
770 map.m_len = bh->b_size >> inode->i_blkbits;
771
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 flags);
774 if (ret > 0) {
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 ret = 0;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 }
783 return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
788 {
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
797 */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
800 {
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811 * `handle' can be NULL if create is zero
812 */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814 ext4_lblk_t block, int map_flags)
815 {
816 struct ext4_map_blocks map;
817 struct buffer_head *bh;
818 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
819 int err;
820
821 J_ASSERT(handle != NULL || create == 0);
822
823 map.m_lblk = block;
824 map.m_len = 1;
825 err = ext4_map_blocks(handle, inode, &map, map_flags);
826
827 if (err == 0)
828 return create ? ERR_PTR(-ENOSPC) : NULL;
829 if (err < 0)
830 return ERR_PTR(err);
831
832 bh = sb_getblk(inode->i_sb, map.m_pblk);
833 if (unlikely(!bh))
834 return ERR_PTR(-ENOMEM);
835 if (map.m_flags & EXT4_MAP_NEW) {
836 J_ASSERT(create != 0);
837 J_ASSERT(handle != NULL);
838
839 /*
840 * Now that we do not always journal data, we should
841 * keep in mind whether this should always journal the
842 * new buffer as metadata. For now, regular file
843 * writes use ext4_get_block instead, so it's not a
844 * problem.
845 */
846 lock_buffer(bh);
847 BUFFER_TRACE(bh, "call get_create_access");
848 err = ext4_journal_get_create_access(handle, bh);
849 if (unlikely(err)) {
850 unlock_buffer(bh);
851 goto errout;
852 }
853 if (!buffer_uptodate(bh)) {
854 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 set_buffer_uptodate(bh);
856 }
857 unlock_buffer(bh);
858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 err = ext4_handle_dirty_metadata(handle, inode, bh);
860 if (unlikely(err))
861 goto errout;
862 } else
863 BUFFER_TRACE(bh, "not a new buffer");
864 return bh;
865 errout:
866 brelse(bh);
867 return ERR_PTR(err);
868 }
869
870 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
871 ext4_lblk_t block, int map_flags)
872 {
873 struct buffer_head *bh;
874
875 bh = ext4_getblk(handle, inode, block, map_flags);
876 if (IS_ERR(bh))
877 return bh;
878 if (!bh || ext4_buffer_uptodate(bh))
879 return bh;
880 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
881 wait_on_buffer(bh);
882 if (buffer_uptodate(bh))
883 return bh;
884 put_bh(bh);
885 return ERR_PTR(-EIO);
886 }
887
888 /* Read a contiguous batch of blocks. */
889 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
890 bool wait, struct buffer_head **bhs)
891 {
892 int i, err;
893
894 for (i = 0; i < bh_count; i++) {
895 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
896 if (IS_ERR(bhs[i])) {
897 err = PTR_ERR(bhs[i]);
898 bh_count = i;
899 goto out_brelse;
900 }
901 }
902
903 for (i = 0; i < bh_count; i++)
904 /* Note that NULL bhs[i] is valid because of holes. */
905 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
906 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
907 &bhs[i]);
908
909 if (!wait)
910 return 0;
911
912 for (i = 0; i < bh_count; i++)
913 if (bhs[i])
914 wait_on_buffer(bhs[i]);
915
916 for (i = 0; i < bh_count; i++) {
917 if (bhs[i] && !buffer_uptodate(bhs[i])) {
918 err = -EIO;
919 goto out_brelse;
920 }
921 }
922 return 0;
923
924 out_brelse:
925 for (i = 0; i < bh_count; i++) {
926 brelse(bhs[i]);
927 bhs[i] = NULL;
928 }
929 return err;
930 }
931
932 int ext4_walk_page_buffers(handle_t *handle,
933 struct buffer_head *head,
934 unsigned from,
935 unsigned to,
936 int *partial,
937 int (*fn)(handle_t *handle,
938 struct buffer_head *bh))
939 {
940 struct buffer_head *bh;
941 unsigned block_start, block_end;
942 unsigned blocksize = head->b_size;
943 int err, ret = 0;
944 struct buffer_head *next;
945
946 for (bh = head, block_start = 0;
947 ret == 0 && (bh != head || !block_start);
948 block_start = block_end, bh = next) {
949 next = bh->b_this_page;
950 block_end = block_start + blocksize;
951 if (block_end <= from || block_start >= to) {
952 if (partial && !buffer_uptodate(bh))
953 *partial = 1;
954 continue;
955 }
956 err = (*fn)(handle, bh);
957 if (!ret)
958 ret = err;
959 }
960 return ret;
961 }
962
963 /*
964 * To preserve ordering, it is essential that the hole instantiation and
965 * the data write be encapsulated in a single transaction. We cannot
966 * close off a transaction and start a new one between the ext4_get_block()
967 * and the commit_write(). So doing the jbd2_journal_start at the start of
968 * prepare_write() is the right place.
969 *
970 * Also, this function can nest inside ext4_writepage(). In that case, we
971 * *know* that ext4_writepage() has generated enough buffer credits to do the
972 * whole page. So we won't block on the journal in that case, which is good,
973 * because the caller may be PF_MEMALLOC.
974 *
975 * By accident, ext4 can be reentered when a transaction is open via
976 * quota file writes. If we were to commit the transaction while thus
977 * reentered, there can be a deadlock - we would be holding a quota
978 * lock, and the commit would never complete if another thread had a
979 * transaction open and was blocking on the quota lock - a ranking
980 * violation.
981 *
982 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
983 * will _not_ run commit under these circumstances because handle->h_ref
984 * is elevated. We'll still have enough credits for the tiny quotafile
985 * write.
986 */
987 int do_journal_get_write_access(handle_t *handle,
988 struct buffer_head *bh)
989 {
990 int dirty = buffer_dirty(bh);
991 int ret;
992
993 if (!buffer_mapped(bh) || buffer_freed(bh))
994 return 0;
995 /*
996 * __block_write_begin() could have dirtied some buffers. Clean
997 * the dirty bit as jbd2_journal_get_write_access() could complain
998 * otherwise about fs integrity issues. Setting of the dirty bit
999 * by __block_write_begin() isn't a real problem here as we clear
1000 * the bit before releasing a page lock and thus writeback cannot
1001 * ever write the buffer.
1002 */
1003 if (dirty)
1004 clear_buffer_dirty(bh);
1005 BUFFER_TRACE(bh, "get write access");
1006 ret = ext4_journal_get_write_access(handle, bh);
1007 if (!ret && dirty)
1008 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1009 return ret;
1010 }
1011
1012 #ifdef CONFIG_FS_ENCRYPTION
1013 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1014 get_block_t *get_block)
1015 {
1016 unsigned from = pos & (PAGE_SIZE - 1);
1017 unsigned to = from + len;
1018 struct inode *inode = page->mapping->host;
1019 unsigned block_start, block_end;
1020 sector_t block;
1021 int err = 0;
1022 unsigned blocksize = inode->i_sb->s_blocksize;
1023 unsigned bbits;
1024 struct buffer_head *bh, *head, *wait[2];
1025 int nr_wait = 0;
1026 int i;
1027
1028 BUG_ON(!PageLocked(page));
1029 BUG_ON(from > PAGE_SIZE);
1030 BUG_ON(to > PAGE_SIZE);
1031 BUG_ON(from > to);
1032
1033 if (!page_has_buffers(page))
1034 create_empty_buffers(page, blocksize, 0);
1035 head = page_buffers(page);
1036 bbits = ilog2(blocksize);
1037 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1038
1039 for (bh = head, block_start = 0; bh != head || !block_start;
1040 block++, block_start = block_end, bh = bh->b_this_page) {
1041 block_end = block_start + blocksize;
1042 if (block_end <= from || block_start >= to) {
1043 if (PageUptodate(page)) {
1044 if (!buffer_uptodate(bh))
1045 set_buffer_uptodate(bh);
1046 }
1047 continue;
1048 }
1049 if (buffer_new(bh))
1050 clear_buffer_new(bh);
1051 if (!buffer_mapped(bh)) {
1052 WARN_ON(bh->b_size != blocksize);
1053 err = get_block(inode, block, bh, 1);
1054 if (err)
1055 break;
1056 if (buffer_new(bh)) {
1057 if (PageUptodate(page)) {
1058 clear_buffer_new(bh);
1059 set_buffer_uptodate(bh);
1060 mark_buffer_dirty(bh);
1061 continue;
1062 }
1063 if (block_end > to || block_start < from)
1064 zero_user_segments(page, to, block_end,
1065 block_start, from);
1066 continue;
1067 }
1068 }
1069 if (PageUptodate(page)) {
1070 if (!buffer_uptodate(bh))
1071 set_buffer_uptodate(bh);
1072 continue;
1073 }
1074 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075 !buffer_unwritten(bh) &&
1076 (block_start < from || block_end > to)) {
1077 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1078 wait[nr_wait++] = bh;
1079 }
1080 }
1081 /*
1082 * If we issued read requests, let them complete.
1083 */
1084 for (i = 0; i < nr_wait; i++) {
1085 wait_on_buffer(wait[i]);
1086 if (!buffer_uptodate(wait[i]))
1087 err = -EIO;
1088 }
1089 if (unlikely(err)) {
1090 page_zero_new_buffers(page, from, to);
1091 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1092 for (i = 0; i < nr_wait; i++) {
1093 int err2;
1094
1095 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1096 bh_offset(wait[i]));
1097 if (err2) {
1098 clear_buffer_uptodate(wait[i]);
1099 err = err2;
1100 }
1101 }
1102 }
1103
1104 return err;
1105 }
1106 #endif
1107
1108 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1109 loff_t pos, unsigned len, unsigned flags,
1110 struct page **pagep, void **fsdata)
1111 {
1112 struct inode *inode = mapping->host;
1113 int ret, needed_blocks;
1114 handle_t *handle;
1115 int retries = 0;
1116 struct page *page;
1117 pgoff_t index;
1118 unsigned from, to;
1119
1120 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1121 return -EIO;
1122
1123 trace_ext4_write_begin(inode, pos, len, flags);
1124 /*
1125 * Reserve one block more for addition to orphan list in case
1126 * we allocate blocks but write fails for some reason
1127 */
1128 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1129 index = pos >> PAGE_SHIFT;
1130 from = pos & (PAGE_SIZE - 1);
1131 to = from + len;
1132
1133 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1134 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1135 flags, pagep);
1136 if (ret < 0)
1137 return ret;
1138 if (ret == 1)
1139 return 0;
1140 }
1141
1142 /*
1143 * grab_cache_page_write_begin() can take a long time if the
1144 * system is thrashing due to memory pressure, or if the page
1145 * is being written back. So grab it first before we start
1146 * the transaction handle. This also allows us to allocate
1147 * the page (if needed) without using GFP_NOFS.
1148 */
1149 retry_grab:
1150 page = grab_cache_page_write_begin(mapping, index, flags);
1151 if (!page)
1152 return -ENOMEM;
1153 unlock_page(page);
1154
1155 retry_journal:
1156 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1157 if (IS_ERR(handle)) {
1158 put_page(page);
1159 return PTR_ERR(handle);
1160 }
1161
1162 lock_page(page);
1163 if (page->mapping != mapping) {
1164 /* The page got truncated from under us */
1165 unlock_page(page);
1166 put_page(page);
1167 ext4_journal_stop(handle);
1168 goto retry_grab;
1169 }
1170 /* In case writeback began while the page was unlocked */
1171 wait_for_stable_page(page);
1172
1173 #ifdef CONFIG_FS_ENCRYPTION
1174 if (ext4_should_dioread_nolock(inode))
1175 ret = ext4_block_write_begin(page, pos, len,
1176 ext4_get_block_unwritten);
1177 else
1178 ret = ext4_block_write_begin(page, pos, len,
1179 ext4_get_block);
1180 #else
1181 if (ext4_should_dioread_nolock(inode))
1182 ret = __block_write_begin(page, pos, len,
1183 ext4_get_block_unwritten);
1184 else
1185 ret = __block_write_begin(page, pos, len, ext4_get_block);
1186 #endif
1187 if (!ret && ext4_should_journal_data(inode)) {
1188 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1189 from, to, NULL,
1190 do_journal_get_write_access);
1191 }
1192
1193 if (ret) {
1194 bool extended = (pos + len > inode->i_size) &&
1195 !ext4_verity_in_progress(inode);
1196
1197 unlock_page(page);
1198 /*
1199 * __block_write_begin may have instantiated a few blocks
1200 * outside i_size. Trim these off again. Don't need
1201 * i_size_read because we hold i_mutex.
1202 *
1203 * Add inode to orphan list in case we crash before
1204 * truncate finishes
1205 */
1206 if (extended && ext4_can_truncate(inode))
1207 ext4_orphan_add(handle, inode);
1208
1209 ext4_journal_stop(handle);
1210 if (extended) {
1211 ext4_truncate_failed_write(inode);
1212 /*
1213 * If truncate failed early the inode might
1214 * still be on the orphan list; we need to
1215 * make sure the inode is removed from the
1216 * orphan list in that case.
1217 */
1218 if (inode->i_nlink)
1219 ext4_orphan_del(NULL, inode);
1220 }
1221
1222 if (ret == -ENOSPC &&
1223 ext4_should_retry_alloc(inode->i_sb, &retries))
1224 goto retry_journal;
1225 put_page(page);
1226 return ret;
1227 }
1228 *pagep = page;
1229 return ret;
1230 }
1231
1232 /* For write_end() in data=journal mode */
1233 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1234 {
1235 int ret;
1236 if (!buffer_mapped(bh) || buffer_freed(bh))
1237 return 0;
1238 set_buffer_uptodate(bh);
1239 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1240 clear_buffer_meta(bh);
1241 clear_buffer_prio(bh);
1242 return ret;
1243 }
1244
1245 /*
1246 * We need to pick up the new inode size which generic_commit_write gave us
1247 * `file' can be NULL - eg, when called from page_symlink().
1248 *
1249 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1250 * buffers are managed internally.
1251 */
1252 static int ext4_write_end(struct file *file,
1253 struct address_space *mapping,
1254 loff_t pos, unsigned len, unsigned copied,
1255 struct page *page, void *fsdata)
1256 {
1257 handle_t *handle = ext4_journal_current_handle();
1258 struct inode *inode = mapping->host;
1259 loff_t old_size = inode->i_size;
1260 int ret = 0, ret2;
1261 int i_size_changed = 0;
1262 int inline_data = ext4_has_inline_data(inode);
1263 bool verity = ext4_verity_in_progress(inode);
1264
1265 trace_ext4_write_end(inode, pos, len, copied);
1266 if (inline_data) {
1267 ret = ext4_write_inline_data_end(inode, pos, len,
1268 copied, page);
1269 if (ret < 0) {
1270 unlock_page(page);
1271 put_page(page);
1272 goto errout;
1273 }
1274 copied = ret;
1275 } else
1276 copied = block_write_end(file, mapping, pos,
1277 len, copied, page, fsdata);
1278 /*
1279 * it's important to update i_size while still holding page lock:
1280 * page writeout could otherwise come in and zero beyond i_size.
1281 *
1282 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283 * blocks are being written past EOF, so skip the i_size update.
1284 */
1285 if (!verity)
1286 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287 unlock_page(page);
1288 put_page(page);
1289
1290 if (old_size < pos && !verity)
1291 pagecache_isize_extended(inode, old_size, pos);
1292 /*
1293 * Don't mark the inode dirty under page lock. First, it unnecessarily
1294 * makes the holding time of page lock longer. Second, it forces lock
1295 * ordering of page lock and transaction start for journaling
1296 * filesystems.
1297 */
1298 if (i_size_changed || inline_data)
1299 ext4_mark_inode_dirty(handle, inode);
1300
1301 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302 /* if we have allocated more blocks and copied
1303 * less. We will have blocks allocated outside
1304 * inode->i_size. So truncate them
1305 */
1306 ext4_orphan_add(handle, inode);
1307 errout:
1308 ret2 = ext4_journal_stop(handle);
1309 if (!ret)
1310 ret = ret2;
1311
1312 if (pos + len > inode->i_size && !verity) {
1313 ext4_truncate_failed_write(inode);
1314 /*
1315 * If truncate failed early the inode might still be
1316 * on the orphan list; we need to make sure the inode
1317 * is removed from the orphan list in that case.
1318 */
1319 if (inode->i_nlink)
1320 ext4_orphan_del(NULL, inode);
1321 }
1322
1323 return ret ? ret : copied;
1324 }
1325
1326 /*
1327 * This is a private version of page_zero_new_buffers() which doesn't
1328 * set the buffer to be dirty, since in data=journalled mode we need
1329 * to call ext4_handle_dirty_metadata() instead.
1330 */
1331 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332 struct page *page,
1333 unsigned from, unsigned to)
1334 {
1335 unsigned int block_start = 0, block_end;
1336 struct buffer_head *head, *bh;
1337
1338 bh = head = page_buffers(page);
1339 do {
1340 block_end = block_start + bh->b_size;
1341 if (buffer_new(bh)) {
1342 if (block_end > from && block_start < to) {
1343 if (!PageUptodate(page)) {
1344 unsigned start, size;
1345
1346 start = max(from, block_start);
1347 size = min(to, block_end) - start;
1348
1349 zero_user(page, start, size);
1350 write_end_fn(handle, bh);
1351 }
1352 clear_buffer_new(bh);
1353 }
1354 }
1355 block_start = block_end;
1356 bh = bh->b_this_page;
1357 } while (bh != head);
1358 }
1359
1360 static int ext4_journalled_write_end(struct file *file,
1361 struct address_space *mapping,
1362 loff_t pos, unsigned len, unsigned copied,
1363 struct page *page, void *fsdata)
1364 {
1365 handle_t *handle = ext4_journal_current_handle();
1366 struct inode *inode = mapping->host;
1367 loff_t old_size = inode->i_size;
1368 int ret = 0, ret2;
1369 int partial = 0;
1370 unsigned from, to;
1371 int size_changed = 0;
1372 int inline_data = ext4_has_inline_data(inode);
1373 bool verity = ext4_verity_in_progress(inode);
1374
1375 trace_ext4_journalled_write_end(inode, pos, len, copied);
1376 from = pos & (PAGE_SIZE - 1);
1377 to = from + len;
1378
1379 BUG_ON(!ext4_handle_valid(handle));
1380
1381 if (inline_data) {
1382 ret = ext4_write_inline_data_end(inode, pos, len,
1383 copied, page);
1384 if (ret < 0) {
1385 unlock_page(page);
1386 put_page(page);
1387 goto errout;
1388 }
1389 copied = ret;
1390 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1391 copied = 0;
1392 ext4_journalled_zero_new_buffers(handle, page, from, to);
1393 } else {
1394 if (unlikely(copied < len))
1395 ext4_journalled_zero_new_buffers(handle, page,
1396 from + copied, to);
1397 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1398 from + copied, &partial,
1399 write_end_fn);
1400 if (!partial)
1401 SetPageUptodate(page);
1402 }
1403 if (!verity)
1404 size_changed = ext4_update_inode_size(inode, pos + copied);
1405 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1406 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1407 unlock_page(page);
1408 put_page(page);
1409
1410 if (old_size < pos && !verity)
1411 pagecache_isize_extended(inode, old_size, pos);
1412
1413 if (size_changed || inline_data) {
1414 ret2 = ext4_mark_inode_dirty(handle, inode);
1415 if (!ret)
1416 ret = ret2;
1417 }
1418
1419 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1420 /* if we have allocated more blocks and copied
1421 * less. We will have blocks allocated outside
1422 * inode->i_size. So truncate them
1423 */
1424 ext4_orphan_add(handle, inode);
1425
1426 errout:
1427 ret2 = ext4_journal_stop(handle);
1428 if (!ret)
1429 ret = ret2;
1430 if (pos + len > inode->i_size && !verity) {
1431 ext4_truncate_failed_write(inode);
1432 /*
1433 * If truncate failed early the inode might still be
1434 * on the orphan list; we need to make sure the inode
1435 * is removed from the orphan list in that case.
1436 */
1437 if (inode->i_nlink)
1438 ext4_orphan_del(NULL, inode);
1439 }
1440
1441 return ret ? ret : copied;
1442 }
1443
1444 /*
1445 * Reserve space for a single cluster
1446 */
1447 static int ext4_da_reserve_space(struct inode *inode)
1448 {
1449 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1450 struct ext4_inode_info *ei = EXT4_I(inode);
1451 int ret;
1452
1453 /*
1454 * We will charge metadata quota at writeout time; this saves
1455 * us from metadata over-estimation, though we may go over by
1456 * a small amount in the end. Here we just reserve for data.
1457 */
1458 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1459 if (ret)
1460 return ret;
1461
1462 spin_lock(&ei->i_block_reservation_lock);
1463 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1464 spin_unlock(&ei->i_block_reservation_lock);
1465 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1466 return -ENOSPC;
1467 }
1468 ei->i_reserved_data_blocks++;
1469 trace_ext4_da_reserve_space(inode);
1470 spin_unlock(&ei->i_block_reservation_lock);
1471
1472 return 0; /* success */
1473 }
1474
1475 void ext4_da_release_space(struct inode *inode, int to_free)
1476 {
1477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478 struct ext4_inode_info *ei = EXT4_I(inode);
1479
1480 if (!to_free)
1481 return; /* Nothing to release, exit */
1482
1483 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1484
1485 trace_ext4_da_release_space(inode, to_free);
1486 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1487 /*
1488 * if there aren't enough reserved blocks, then the
1489 * counter is messed up somewhere. Since this
1490 * function is called from invalidate page, it's
1491 * harmless to return without any action.
1492 */
1493 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1494 "ino %lu, to_free %d with only %d reserved "
1495 "data blocks", inode->i_ino, to_free,
1496 ei->i_reserved_data_blocks);
1497 WARN_ON(1);
1498 to_free = ei->i_reserved_data_blocks;
1499 }
1500 ei->i_reserved_data_blocks -= to_free;
1501
1502 /* update fs dirty data blocks counter */
1503 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1504
1505 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1506
1507 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1508 }
1509
1510 /*
1511 * Delayed allocation stuff
1512 */
1513
1514 struct mpage_da_data {
1515 struct inode *inode;
1516 struct writeback_control *wbc;
1517
1518 pgoff_t first_page; /* The first page to write */
1519 pgoff_t next_page; /* Current page to examine */
1520 pgoff_t last_page; /* Last page to examine */
1521 /*
1522 * Extent to map - this can be after first_page because that can be
1523 * fully mapped. We somewhat abuse m_flags to store whether the extent
1524 * is delalloc or unwritten.
1525 */
1526 struct ext4_map_blocks map;
1527 struct ext4_io_submit io_submit; /* IO submission data */
1528 unsigned int do_map:1;
1529 };
1530
1531 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1532 bool invalidate)
1533 {
1534 int nr_pages, i;
1535 pgoff_t index, end;
1536 struct pagevec pvec;
1537 struct inode *inode = mpd->inode;
1538 struct address_space *mapping = inode->i_mapping;
1539
1540 /* This is necessary when next_page == 0. */
1541 if (mpd->first_page >= mpd->next_page)
1542 return;
1543
1544 index = mpd->first_page;
1545 end = mpd->next_page - 1;
1546 if (invalidate) {
1547 ext4_lblk_t start, last;
1548 start = index << (PAGE_SHIFT - inode->i_blkbits);
1549 last = end << (PAGE_SHIFT - inode->i_blkbits);
1550 ext4_es_remove_extent(inode, start, last - start + 1);
1551 }
1552
1553 pagevec_init(&pvec);
1554 while (index <= end) {
1555 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1556 if (nr_pages == 0)
1557 break;
1558 for (i = 0; i < nr_pages; i++) {
1559 struct page *page = pvec.pages[i];
1560
1561 BUG_ON(!PageLocked(page));
1562 BUG_ON(PageWriteback(page));
1563 if (invalidate) {
1564 if (page_mapped(page))
1565 clear_page_dirty_for_io(page);
1566 block_invalidatepage(page, 0, PAGE_SIZE);
1567 ClearPageUptodate(page);
1568 }
1569 unlock_page(page);
1570 }
1571 pagevec_release(&pvec);
1572 }
1573 }
1574
1575 static void ext4_print_free_blocks(struct inode *inode)
1576 {
1577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578 struct super_block *sb = inode->i_sb;
1579 struct ext4_inode_info *ei = EXT4_I(inode);
1580
1581 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1582 EXT4_C2B(EXT4_SB(inode->i_sb),
1583 ext4_count_free_clusters(sb)));
1584 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1585 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1586 (long long) EXT4_C2B(EXT4_SB(sb),
1587 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1588 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1589 (long long) EXT4_C2B(EXT4_SB(sb),
1590 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1591 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1592 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1593 ei->i_reserved_data_blocks);
1594 return;
1595 }
1596
1597 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1598 {
1599 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1600 }
1601
1602 /*
1603 * ext4_insert_delayed_block - adds a delayed block to the extents status
1604 * tree, incrementing the reserved cluster/block
1605 * count or making a pending reservation
1606 * where needed
1607 *
1608 * @inode - file containing the newly added block
1609 * @lblk - logical block to be added
1610 *
1611 * Returns 0 on success, negative error code on failure.
1612 */
1613 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1614 {
1615 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616 int ret;
1617 bool allocated = false;
1618
1619 /*
1620 * If the cluster containing lblk is shared with a delayed,
1621 * written, or unwritten extent in a bigalloc file system, it's
1622 * already been accounted for and does not need to be reserved.
1623 * A pending reservation must be made for the cluster if it's
1624 * shared with a written or unwritten extent and doesn't already
1625 * have one. Written and unwritten extents can be purged from the
1626 * extents status tree if the system is under memory pressure, so
1627 * it's necessary to examine the extent tree if a search of the
1628 * extents status tree doesn't get a match.
1629 */
1630 if (sbi->s_cluster_ratio == 1) {
1631 ret = ext4_da_reserve_space(inode);
1632 if (ret != 0) /* ENOSPC */
1633 goto errout;
1634 } else { /* bigalloc */
1635 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1636 if (!ext4_es_scan_clu(inode,
1637 &ext4_es_is_mapped, lblk)) {
1638 ret = ext4_clu_mapped(inode,
1639 EXT4_B2C(sbi, lblk));
1640 if (ret < 0)
1641 goto errout;
1642 if (ret == 0) {
1643 ret = ext4_da_reserve_space(inode);
1644 if (ret != 0) /* ENOSPC */
1645 goto errout;
1646 } else {
1647 allocated = true;
1648 }
1649 } else {
1650 allocated = true;
1651 }
1652 }
1653 }
1654
1655 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1656
1657 errout:
1658 return ret;
1659 }
1660
1661 /*
1662 * This function is grabs code from the very beginning of
1663 * ext4_map_blocks, but assumes that the caller is from delayed write
1664 * time. This function looks up the requested blocks and sets the
1665 * buffer delay bit under the protection of i_data_sem.
1666 */
1667 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1668 struct ext4_map_blocks *map,
1669 struct buffer_head *bh)
1670 {
1671 struct extent_status es;
1672 int retval;
1673 sector_t invalid_block = ~((sector_t) 0xffff);
1674 #ifdef ES_AGGRESSIVE_TEST
1675 struct ext4_map_blocks orig_map;
1676
1677 memcpy(&orig_map, map, sizeof(*map));
1678 #endif
1679
1680 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1681 invalid_block = ~0;
1682
1683 map->m_flags = 0;
1684 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1685 "logical block %lu\n", inode->i_ino, map->m_len,
1686 (unsigned long) map->m_lblk);
1687
1688 /* Lookup extent status tree firstly */
1689 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1690 if (ext4_es_is_hole(&es)) {
1691 retval = 0;
1692 down_read(&EXT4_I(inode)->i_data_sem);
1693 goto add_delayed;
1694 }
1695
1696 /*
1697 * Delayed extent could be allocated by fallocate.
1698 * So we need to check it.
1699 */
1700 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1701 map_bh(bh, inode->i_sb, invalid_block);
1702 set_buffer_new(bh);
1703 set_buffer_delay(bh);
1704 return 0;
1705 }
1706
1707 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1708 retval = es.es_len - (iblock - es.es_lblk);
1709 if (retval > map->m_len)
1710 retval = map->m_len;
1711 map->m_len = retval;
1712 if (ext4_es_is_written(&es))
1713 map->m_flags |= EXT4_MAP_MAPPED;
1714 else if (ext4_es_is_unwritten(&es))
1715 map->m_flags |= EXT4_MAP_UNWRITTEN;
1716 else
1717 BUG();
1718
1719 #ifdef ES_AGGRESSIVE_TEST
1720 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1721 #endif
1722 return retval;
1723 }
1724
1725 /*
1726 * Try to see if we can get the block without requesting a new
1727 * file system block.
1728 */
1729 down_read(&EXT4_I(inode)->i_data_sem);
1730 if (ext4_has_inline_data(inode))
1731 retval = 0;
1732 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1733 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1734 else
1735 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1736
1737 add_delayed:
1738 if (retval == 0) {
1739 int ret;
1740
1741 /*
1742 * XXX: __block_prepare_write() unmaps passed block,
1743 * is it OK?
1744 */
1745
1746 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1747 if (ret != 0) {
1748 retval = ret;
1749 goto out_unlock;
1750 }
1751
1752 map_bh(bh, inode->i_sb, invalid_block);
1753 set_buffer_new(bh);
1754 set_buffer_delay(bh);
1755 } else if (retval > 0) {
1756 int ret;
1757 unsigned int status;
1758
1759 if (unlikely(retval != map->m_len)) {
1760 ext4_warning(inode->i_sb,
1761 "ES len assertion failed for inode "
1762 "%lu: retval %d != map->m_len %d",
1763 inode->i_ino, retval, map->m_len);
1764 WARN_ON(1);
1765 }
1766
1767 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1768 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1769 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1770 map->m_pblk, status);
1771 if (ret != 0)
1772 retval = ret;
1773 }
1774
1775 out_unlock:
1776 up_read((&EXT4_I(inode)->i_data_sem));
1777
1778 return retval;
1779 }
1780
1781 /*
1782 * This is a special get_block_t callback which is used by
1783 * ext4_da_write_begin(). It will either return mapped block or
1784 * reserve space for a single block.
1785 *
1786 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1787 * We also have b_blocknr = -1 and b_bdev initialized properly
1788 *
1789 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1790 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1791 * initialized properly.
1792 */
1793 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1794 struct buffer_head *bh, int create)
1795 {
1796 struct ext4_map_blocks map;
1797 int ret = 0;
1798
1799 BUG_ON(create == 0);
1800 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1801
1802 map.m_lblk = iblock;
1803 map.m_len = 1;
1804
1805 /*
1806 * first, we need to know whether the block is allocated already
1807 * preallocated blocks are unmapped but should treated
1808 * the same as allocated blocks.
1809 */
1810 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1811 if (ret <= 0)
1812 return ret;
1813
1814 map_bh(bh, inode->i_sb, map.m_pblk);
1815 ext4_update_bh_state(bh, map.m_flags);
1816
1817 if (buffer_unwritten(bh)) {
1818 /* A delayed write to unwritten bh should be marked
1819 * new and mapped. Mapped ensures that we don't do
1820 * get_block multiple times when we write to the same
1821 * offset and new ensures that we do proper zero out
1822 * for partial write.
1823 */
1824 set_buffer_new(bh);
1825 set_buffer_mapped(bh);
1826 }
1827 return 0;
1828 }
1829
1830 static int bget_one(handle_t *handle, struct buffer_head *bh)
1831 {
1832 get_bh(bh);
1833 return 0;
1834 }
1835
1836 static int bput_one(handle_t *handle, struct buffer_head *bh)
1837 {
1838 put_bh(bh);
1839 return 0;
1840 }
1841
1842 static int __ext4_journalled_writepage(struct page *page,
1843 unsigned int len)
1844 {
1845 struct address_space *mapping = page->mapping;
1846 struct inode *inode = mapping->host;
1847 struct buffer_head *page_bufs = NULL;
1848 handle_t *handle = NULL;
1849 int ret = 0, err = 0;
1850 int inline_data = ext4_has_inline_data(inode);
1851 struct buffer_head *inode_bh = NULL;
1852
1853 ClearPageChecked(page);
1854
1855 if (inline_data) {
1856 BUG_ON(page->index != 0);
1857 BUG_ON(len > ext4_get_max_inline_size(inode));
1858 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1859 if (inode_bh == NULL)
1860 goto out;
1861 } else {
1862 page_bufs = page_buffers(page);
1863 if (!page_bufs) {
1864 BUG();
1865 goto out;
1866 }
1867 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1868 NULL, bget_one);
1869 }
1870 /*
1871 * We need to release the page lock before we start the
1872 * journal, so grab a reference so the page won't disappear
1873 * out from under us.
1874 */
1875 get_page(page);
1876 unlock_page(page);
1877
1878 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1879 ext4_writepage_trans_blocks(inode));
1880 if (IS_ERR(handle)) {
1881 ret = PTR_ERR(handle);
1882 put_page(page);
1883 goto out_no_pagelock;
1884 }
1885 BUG_ON(!ext4_handle_valid(handle));
1886
1887 lock_page(page);
1888 put_page(page);
1889 if (page->mapping != mapping) {
1890 /* The page got truncated from under us */
1891 ext4_journal_stop(handle);
1892 ret = 0;
1893 goto out;
1894 }
1895
1896 if (inline_data) {
1897 ret = ext4_mark_inode_dirty(handle, inode);
1898 } else {
1899 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1900 do_journal_get_write_access);
1901
1902 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1903 write_end_fn);
1904 }
1905 if (ret == 0)
1906 ret = err;
1907 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1908 err = ext4_journal_stop(handle);
1909 if (!ret)
1910 ret = err;
1911
1912 if (!ext4_has_inline_data(inode))
1913 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1914 NULL, bput_one);
1915 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1916 out:
1917 unlock_page(page);
1918 out_no_pagelock:
1919 brelse(inode_bh);
1920 return ret;
1921 }
1922
1923 /*
1924 * Note that we don't need to start a transaction unless we're journaling data
1925 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1926 * need to file the inode to the transaction's list in ordered mode because if
1927 * we are writing back data added by write(), the inode is already there and if
1928 * we are writing back data modified via mmap(), no one guarantees in which
1929 * transaction the data will hit the disk. In case we are journaling data, we
1930 * cannot start transaction directly because transaction start ranks above page
1931 * lock so we have to do some magic.
1932 *
1933 * This function can get called via...
1934 * - ext4_writepages after taking page lock (have journal handle)
1935 * - journal_submit_inode_data_buffers (no journal handle)
1936 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1937 * - grab_page_cache when doing write_begin (have journal handle)
1938 *
1939 * We don't do any block allocation in this function. If we have page with
1940 * multiple blocks we need to write those buffer_heads that are mapped. This
1941 * is important for mmaped based write. So if we do with blocksize 1K
1942 * truncate(f, 1024);
1943 * a = mmap(f, 0, 4096);
1944 * a[0] = 'a';
1945 * truncate(f, 4096);
1946 * we have in the page first buffer_head mapped via page_mkwrite call back
1947 * but other buffer_heads would be unmapped but dirty (dirty done via the
1948 * do_wp_page). So writepage should write the first block. If we modify
1949 * the mmap area beyond 1024 we will again get a page_fault and the
1950 * page_mkwrite callback will do the block allocation and mark the
1951 * buffer_heads mapped.
1952 *
1953 * We redirty the page if we have any buffer_heads that is either delay or
1954 * unwritten in the page.
1955 *
1956 * We can get recursively called as show below.
1957 *
1958 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1959 * ext4_writepage()
1960 *
1961 * But since we don't do any block allocation we should not deadlock.
1962 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1963 */
1964 static int ext4_writepage(struct page *page,
1965 struct writeback_control *wbc)
1966 {
1967 int ret = 0;
1968 loff_t size;
1969 unsigned int len;
1970 struct buffer_head *page_bufs = NULL;
1971 struct inode *inode = page->mapping->host;
1972 struct ext4_io_submit io_submit;
1973 bool keep_towrite = false;
1974
1975 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1976 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1977 unlock_page(page);
1978 return -EIO;
1979 }
1980
1981 trace_ext4_writepage(page);
1982 size = i_size_read(inode);
1983 if (page->index == size >> PAGE_SHIFT &&
1984 !ext4_verity_in_progress(inode))
1985 len = size & ~PAGE_MASK;
1986 else
1987 len = PAGE_SIZE;
1988
1989 page_bufs = page_buffers(page);
1990 /*
1991 * We cannot do block allocation or other extent handling in this
1992 * function. If there are buffers needing that, we have to redirty
1993 * the page. But we may reach here when we do a journal commit via
1994 * journal_submit_inode_data_buffers() and in that case we must write
1995 * allocated buffers to achieve data=ordered mode guarantees.
1996 *
1997 * Also, if there is only one buffer per page (the fs block
1998 * size == the page size), if one buffer needs block
1999 * allocation or needs to modify the extent tree to clear the
2000 * unwritten flag, we know that the page can't be written at
2001 * all, so we might as well refuse the write immediately.
2002 * Unfortunately if the block size != page size, we can't as
2003 * easily detect this case using ext4_walk_page_buffers(), but
2004 * for the extremely common case, this is an optimization that
2005 * skips a useless round trip through ext4_bio_write_page().
2006 */
2007 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2008 ext4_bh_delay_or_unwritten)) {
2009 redirty_page_for_writepage(wbc, page);
2010 if ((current->flags & PF_MEMALLOC) ||
2011 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2012 /*
2013 * For memory cleaning there's no point in writing only
2014 * some buffers. So just bail out. Warn if we came here
2015 * from direct reclaim.
2016 */
2017 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2018 == PF_MEMALLOC);
2019 unlock_page(page);
2020 return 0;
2021 }
2022 keep_towrite = true;
2023 }
2024
2025 if (PageChecked(page) && ext4_should_journal_data(inode))
2026 /*
2027 * It's mmapped pagecache. Add buffers and journal it. There
2028 * doesn't seem much point in redirtying the page here.
2029 */
2030 return __ext4_journalled_writepage(page, len);
2031
2032 ext4_io_submit_init(&io_submit, wbc);
2033 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2034 if (!io_submit.io_end) {
2035 redirty_page_for_writepage(wbc, page);
2036 unlock_page(page);
2037 return -ENOMEM;
2038 }
2039 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2040 ext4_io_submit(&io_submit);
2041 /* Drop io_end reference we got from init */
2042 ext4_put_io_end_defer(io_submit.io_end);
2043 return ret;
2044 }
2045
2046 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2047 {
2048 int len;
2049 loff_t size;
2050 int err;
2051
2052 BUG_ON(page->index != mpd->first_page);
2053 clear_page_dirty_for_io(page);
2054 /*
2055 * We have to be very careful here! Nothing protects writeback path
2056 * against i_size changes and the page can be writeably mapped into
2057 * page tables. So an application can be growing i_size and writing
2058 * data through mmap while writeback runs. clear_page_dirty_for_io()
2059 * write-protects our page in page tables and the page cannot get
2060 * written to again until we release page lock. So only after
2061 * clear_page_dirty_for_io() we are safe to sample i_size for
2062 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2063 * on the barrier provided by TestClearPageDirty in
2064 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2065 * after page tables are updated.
2066 */
2067 size = i_size_read(mpd->inode);
2068 if (page->index == size >> PAGE_SHIFT &&
2069 !ext4_verity_in_progress(mpd->inode))
2070 len = size & ~PAGE_MASK;
2071 else
2072 len = PAGE_SIZE;
2073 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2074 if (!err)
2075 mpd->wbc->nr_to_write--;
2076 mpd->first_page++;
2077
2078 return err;
2079 }
2080
2081 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2082
2083 /*
2084 * mballoc gives us at most this number of blocks...
2085 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2086 * The rest of mballoc seems to handle chunks up to full group size.
2087 */
2088 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2089
2090 /*
2091 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2092 *
2093 * @mpd - extent of blocks
2094 * @lblk - logical number of the block in the file
2095 * @bh - buffer head we want to add to the extent
2096 *
2097 * The function is used to collect contig. blocks in the same state. If the
2098 * buffer doesn't require mapping for writeback and we haven't started the
2099 * extent of buffers to map yet, the function returns 'true' immediately - the
2100 * caller can write the buffer right away. Otherwise the function returns true
2101 * if the block has been added to the extent, false if the block couldn't be
2102 * added.
2103 */
2104 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2105 struct buffer_head *bh)
2106 {
2107 struct ext4_map_blocks *map = &mpd->map;
2108
2109 /* Buffer that doesn't need mapping for writeback? */
2110 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2111 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2112 /* So far no extent to map => we write the buffer right away */
2113 if (map->m_len == 0)
2114 return true;
2115 return false;
2116 }
2117
2118 /* First block in the extent? */
2119 if (map->m_len == 0) {
2120 /* We cannot map unless handle is started... */
2121 if (!mpd->do_map)
2122 return false;
2123 map->m_lblk = lblk;
2124 map->m_len = 1;
2125 map->m_flags = bh->b_state & BH_FLAGS;
2126 return true;
2127 }
2128
2129 /* Don't go larger than mballoc is willing to allocate */
2130 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2131 return false;
2132
2133 /* Can we merge the block to our big extent? */
2134 if (lblk == map->m_lblk + map->m_len &&
2135 (bh->b_state & BH_FLAGS) == map->m_flags) {
2136 map->m_len++;
2137 return true;
2138 }
2139 return false;
2140 }
2141
2142 /*
2143 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2144 *
2145 * @mpd - extent of blocks for mapping
2146 * @head - the first buffer in the page
2147 * @bh - buffer we should start processing from
2148 * @lblk - logical number of the block in the file corresponding to @bh
2149 *
2150 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2151 * the page for IO if all buffers in this page were mapped and there's no
2152 * accumulated extent of buffers to map or add buffers in the page to the
2153 * extent of buffers to map. The function returns 1 if the caller can continue
2154 * by processing the next page, 0 if it should stop adding buffers to the
2155 * extent to map because we cannot extend it anymore. It can also return value
2156 * < 0 in case of error during IO submission.
2157 */
2158 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2159 struct buffer_head *head,
2160 struct buffer_head *bh,
2161 ext4_lblk_t lblk)
2162 {
2163 struct inode *inode = mpd->inode;
2164 int err;
2165 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2166 >> inode->i_blkbits;
2167
2168 if (ext4_verity_in_progress(inode))
2169 blocks = EXT_MAX_BLOCKS;
2170
2171 do {
2172 BUG_ON(buffer_locked(bh));
2173
2174 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2175 /* Found extent to map? */
2176 if (mpd->map.m_len)
2177 return 0;
2178 /* Buffer needs mapping and handle is not started? */
2179 if (!mpd->do_map)
2180 return 0;
2181 /* Everything mapped so far and we hit EOF */
2182 break;
2183 }
2184 } while (lblk++, (bh = bh->b_this_page) != head);
2185 /* So far everything mapped? Submit the page for IO. */
2186 if (mpd->map.m_len == 0) {
2187 err = mpage_submit_page(mpd, head->b_page);
2188 if (err < 0)
2189 return err;
2190 }
2191 return lblk < blocks;
2192 }
2193
2194 /*
2195 * mpage_process_page - update page buffers corresponding to changed extent and
2196 * may submit fully mapped page for IO
2197 *
2198 * @mpd - description of extent to map, on return next extent to map
2199 * @m_lblk - logical block mapping.
2200 * @m_pblk - corresponding physical mapping.
2201 * @map_bh - determines on return whether this page requires any further
2202 * mapping or not.
2203 * Scan given page buffers corresponding to changed extent and update buffer
2204 * state according to new extent state.
2205 * We map delalloc buffers to their physical location, clear unwritten bits.
2206 * If the given page is not fully mapped, we update @map to the next extent in
2207 * the given page that needs mapping & return @map_bh as true.
2208 */
2209 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2210 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2211 bool *map_bh)
2212 {
2213 struct buffer_head *head, *bh;
2214 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215 ext4_lblk_t lblk = *m_lblk;
2216 ext4_fsblk_t pblock = *m_pblk;
2217 int err = 0;
2218 int blkbits = mpd->inode->i_blkbits;
2219 ssize_t io_end_size = 0;
2220 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2221
2222 bh = head = page_buffers(page);
2223 do {
2224 if (lblk < mpd->map.m_lblk)
2225 continue;
2226 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2227 /*
2228 * Buffer after end of mapped extent.
2229 * Find next buffer in the page to map.
2230 */
2231 mpd->map.m_len = 0;
2232 mpd->map.m_flags = 0;
2233 io_end_vec->size += io_end_size;
2234 io_end_size = 0;
2235
2236 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2237 if (err > 0)
2238 err = 0;
2239 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2240 io_end_vec = ext4_alloc_io_end_vec(io_end);
2241 if (IS_ERR(io_end_vec)) {
2242 err = PTR_ERR(io_end_vec);
2243 goto out;
2244 }
2245 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2246 }
2247 *map_bh = true;
2248 goto out;
2249 }
2250 if (buffer_delay(bh)) {
2251 clear_buffer_delay(bh);
2252 bh->b_blocknr = pblock++;
2253 }
2254 clear_buffer_unwritten(bh);
2255 io_end_size += (1 << blkbits);
2256 } while (lblk++, (bh = bh->b_this_page) != head);
2257
2258 io_end_vec->size += io_end_size;
2259 io_end_size = 0;
2260 *map_bh = false;
2261 out:
2262 *m_lblk = lblk;
2263 *m_pblk = pblock;
2264 return err;
2265 }
2266
2267 /*
2268 * mpage_map_buffers - update buffers corresponding to changed extent and
2269 * submit fully mapped pages for IO
2270 *
2271 * @mpd - description of extent to map, on return next extent to map
2272 *
2273 * Scan buffers corresponding to changed extent (we expect corresponding pages
2274 * to be already locked) and update buffer state according to new extent state.
2275 * We map delalloc buffers to their physical location, clear unwritten bits,
2276 * and mark buffers as uninit when we perform writes to unwritten extents
2277 * and do extent conversion after IO is finished. If the last page is not fully
2278 * mapped, we update @map to the next extent in the last page that needs
2279 * mapping. Otherwise we submit the page for IO.
2280 */
2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282 {
2283 struct pagevec pvec;
2284 int nr_pages, i;
2285 struct inode *inode = mpd->inode;
2286 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2287 pgoff_t start, end;
2288 ext4_lblk_t lblk;
2289 ext4_fsblk_t pblock;
2290 int err;
2291 bool map_bh = false;
2292
2293 start = mpd->map.m_lblk >> bpp_bits;
2294 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295 lblk = start << bpp_bits;
2296 pblock = mpd->map.m_pblk;
2297
2298 pagevec_init(&pvec);
2299 while (start <= end) {
2300 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2301 &start, end);
2302 if (nr_pages == 0)
2303 break;
2304 for (i = 0; i < nr_pages; i++) {
2305 struct page *page = pvec.pages[i];
2306
2307 err = mpage_process_page(mpd, page, &lblk, &pblock,
2308 &map_bh);
2309 /*
2310 * If map_bh is true, means page may require further bh
2311 * mapping, or maybe the page was submitted for IO.
2312 * So we return to call further extent mapping.
2313 */
2314 if (err < 0 || map_bh == true)
2315 goto out;
2316 /* Page fully mapped - let IO run! */
2317 err = mpage_submit_page(mpd, page);
2318 if (err < 0)
2319 goto out;
2320 }
2321 pagevec_release(&pvec);
2322 }
2323 /* Extent fully mapped and matches with page boundary. We are done. */
2324 mpd->map.m_len = 0;
2325 mpd->map.m_flags = 0;
2326 return 0;
2327 out:
2328 pagevec_release(&pvec);
2329 return err;
2330 }
2331
2332 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2333 {
2334 struct inode *inode = mpd->inode;
2335 struct ext4_map_blocks *map = &mpd->map;
2336 int get_blocks_flags;
2337 int err, dioread_nolock;
2338
2339 trace_ext4_da_write_pages_extent(inode, map);
2340 /*
2341 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2342 * to convert an unwritten extent to be initialized (in the case
2343 * where we have written into one or more preallocated blocks). It is
2344 * possible that we're going to need more metadata blocks than
2345 * previously reserved. However we must not fail because we're in
2346 * writeback and there is nothing we can do about it so it might result
2347 * in data loss. So use reserved blocks to allocate metadata if
2348 * possible.
2349 *
2350 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2351 * the blocks in question are delalloc blocks. This indicates
2352 * that the blocks and quotas has already been checked when
2353 * the data was copied into the page cache.
2354 */
2355 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2356 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2357 EXT4_GET_BLOCKS_IO_SUBMIT;
2358 dioread_nolock = ext4_should_dioread_nolock(inode);
2359 if (dioread_nolock)
2360 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2361 if (map->m_flags & (1 << BH_Delay))
2362 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2363
2364 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2365 if (err < 0)
2366 return err;
2367 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2368 if (!mpd->io_submit.io_end->handle &&
2369 ext4_handle_valid(handle)) {
2370 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2371 handle->h_rsv_handle = NULL;
2372 }
2373 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2374 }
2375
2376 BUG_ON(map->m_len == 0);
2377 return 0;
2378 }
2379
2380 /*
2381 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2382 * mpd->len and submit pages underlying it for IO
2383 *
2384 * @handle - handle for journal operations
2385 * @mpd - extent to map
2386 * @give_up_on_write - we set this to true iff there is a fatal error and there
2387 * is no hope of writing the data. The caller should discard
2388 * dirty pages to avoid infinite loops.
2389 *
2390 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2391 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2392 * them to initialized or split the described range from larger unwritten
2393 * extent. Note that we need not map all the described range since allocation
2394 * can return less blocks or the range is covered by more unwritten extents. We
2395 * cannot map more because we are limited by reserved transaction credits. On
2396 * the other hand we always make sure that the last touched page is fully
2397 * mapped so that it can be written out (and thus forward progress is
2398 * guaranteed). After mapping we submit all mapped pages for IO.
2399 */
2400 static int mpage_map_and_submit_extent(handle_t *handle,
2401 struct mpage_da_data *mpd,
2402 bool *give_up_on_write)
2403 {
2404 struct inode *inode = mpd->inode;
2405 struct ext4_map_blocks *map = &mpd->map;
2406 int err;
2407 loff_t disksize;
2408 int progress = 0;
2409 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2410 struct ext4_io_end_vec *io_end_vec;
2411
2412 io_end_vec = ext4_alloc_io_end_vec(io_end);
2413 if (IS_ERR(io_end_vec))
2414 return PTR_ERR(io_end_vec);
2415 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2416 do {
2417 err = mpage_map_one_extent(handle, mpd);
2418 if (err < 0) {
2419 struct super_block *sb = inode->i_sb;
2420
2421 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2422 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2423 goto invalidate_dirty_pages;
2424 /*
2425 * Let the uper layers retry transient errors.
2426 * In the case of ENOSPC, if ext4_count_free_blocks()
2427 * is non-zero, a commit should free up blocks.
2428 */
2429 if ((err == -ENOMEM) ||
2430 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2431 if (progress)
2432 goto update_disksize;
2433 return err;
2434 }
2435 ext4_msg(sb, KERN_CRIT,
2436 "Delayed block allocation failed for "
2437 "inode %lu at logical offset %llu with"
2438 " max blocks %u with error %d",
2439 inode->i_ino,
2440 (unsigned long long)map->m_lblk,
2441 (unsigned)map->m_len, -err);
2442 ext4_msg(sb, KERN_CRIT,
2443 "This should not happen!! Data will "
2444 "be lost\n");
2445 if (err == -ENOSPC)
2446 ext4_print_free_blocks(inode);
2447 invalidate_dirty_pages:
2448 *give_up_on_write = true;
2449 return err;
2450 }
2451 progress = 1;
2452 /*
2453 * Update buffer state, submit mapped pages, and get us new
2454 * extent to map
2455 */
2456 err = mpage_map_and_submit_buffers(mpd);
2457 if (err < 0)
2458 goto update_disksize;
2459 } while (map->m_len);
2460
2461 update_disksize:
2462 /*
2463 * Update on-disk size after IO is submitted. Races with
2464 * truncate are avoided by checking i_size under i_data_sem.
2465 */
2466 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2467 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2468 int err2;
2469 loff_t i_size;
2470
2471 down_write(&EXT4_I(inode)->i_data_sem);
2472 i_size = i_size_read(inode);
2473 if (disksize > i_size)
2474 disksize = i_size;
2475 if (disksize > EXT4_I(inode)->i_disksize)
2476 EXT4_I(inode)->i_disksize = disksize;
2477 up_write(&EXT4_I(inode)->i_data_sem);
2478 err2 = ext4_mark_inode_dirty(handle, inode);
2479 if (err2) {
2480 ext4_error_err(inode->i_sb, -err2,
2481 "Failed to mark inode %lu dirty",
2482 inode->i_ino);
2483 }
2484 if (!err)
2485 err = err2;
2486 }
2487 return err;
2488 }
2489
2490 /*
2491 * Calculate the total number of credits to reserve for one writepages
2492 * iteration. This is called from ext4_writepages(). We map an extent of
2493 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2494 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2495 * bpp - 1 blocks in bpp different extents.
2496 */
2497 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2498 {
2499 int bpp = ext4_journal_blocks_per_page(inode);
2500
2501 return ext4_meta_trans_blocks(inode,
2502 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2503 }
2504
2505 /*
2506 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2507 * and underlying extent to map
2508 *
2509 * @mpd - where to look for pages
2510 *
2511 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2512 * IO immediately. When we find a page which isn't mapped we start accumulating
2513 * extent of buffers underlying these pages that needs mapping (formed by
2514 * either delayed or unwritten buffers). We also lock the pages containing
2515 * these buffers. The extent found is returned in @mpd structure (starting at
2516 * mpd->lblk with length mpd->len blocks).
2517 *
2518 * Note that this function can attach bios to one io_end structure which are
2519 * neither logically nor physically contiguous. Although it may seem as an
2520 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2521 * case as we need to track IO to all buffers underlying a page in one io_end.
2522 */
2523 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2524 {
2525 struct address_space *mapping = mpd->inode->i_mapping;
2526 struct pagevec pvec;
2527 unsigned int nr_pages;
2528 long left = mpd->wbc->nr_to_write;
2529 pgoff_t index = mpd->first_page;
2530 pgoff_t end = mpd->last_page;
2531 xa_mark_t tag;
2532 int i, err = 0;
2533 int blkbits = mpd->inode->i_blkbits;
2534 ext4_lblk_t lblk;
2535 struct buffer_head *head;
2536
2537 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2538 tag = PAGECACHE_TAG_TOWRITE;
2539 else
2540 tag = PAGECACHE_TAG_DIRTY;
2541
2542 pagevec_init(&pvec);
2543 mpd->map.m_len = 0;
2544 mpd->next_page = index;
2545 while (index <= end) {
2546 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2547 tag);
2548 if (nr_pages == 0)
2549 goto out;
2550
2551 for (i = 0; i < nr_pages; i++) {
2552 struct page *page = pvec.pages[i];
2553
2554 /*
2555 * Accumulated enough dirty pages? This doesn't apply
2556 * to WB_SYNC_ALL mode. For integrity sync we have to
2557 * keep going because someone may be concurrently
2558 * dirtying pages, and we might have synced a lot of
2559 * newly appeared dirty pages, but have not synced all
2560 * of the old dirty pages.
2561 */
2562 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2563 goto out;
2564
2565 /* If we can't merge this page, we are done. */
2566 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2567 goto out;
2568
2569 lock_page(page);
2570 /*
2571 * If the page is no longer dirty, or its mapping no
2572 * longer corresponds to inode we are writing (which
2573 * means it has been truncated or invalidated), or the
2574 * page is already under writeback and we are not doing
2575 * a data integrity writeback, skip the page
2576 */
2577 if (!PageDirty(page) ||
2578 (PageWriteback(page) &&
2579 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2580 unlikely(page->mapping != mapping)) {
2581 unlock_page(page);
2582 continue;
2583 }
2584
2585 wait_on_page_writeback(page);
2586 BUG_ON(PageWriteback(page));
2587
2588 if (mpd->map.m_len == 0)
2589 mpd->first_page = page->index;
2590 mpd->next_page = page->index + 1;
2591 /* Add all dirty buffers to mpd */
2592 lblk = ((ext4_lblk_t)page->index) <<
2593 (PAGE_SHIFT - blkbits);
2594 head = page_buffers(page);
2595 err = mpage_process_page_bufs(mpd, head, head, lblk);
2596 if (err <= 0)
2597 goto out;
2598 err = 0;
2599 left--;
2600 }
2601 pagevec_release(&pvec);
2602 cond_resched();
2603 }
2604 return 0;
2605 out:
2606 pagevec_release(&pvec);
2607 return err;
2608 }
2609
2610 static int ext4_writepages(struct address_space *mapping,
2611 struct writeback_control *wbc)
2612 {
2613 pgoff_t writeback_index = 0;
2614 long nr_to_write = wbc->nr_to_write;
2615 int range_whole = 0;
2616 int cycled = 1;
2617 handle_t *handle = NULL;
2618 struct mpage_da_data mpd;
2619 struct inode *inode = mapping->host;
2620 int needed_blocks, rsv_blocks = 0, ret = 0;
2621 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2622 bool done;
2623 struct blk_plug plug;
2624 bool give_up_on_write = false;
2625
2626 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2627 return -EIO;
2628
2629 percpu_down_read(&sbi->s_writepages_rwsem);
2630 trace_ext4_writepages(inode, wbc);
2631
2632 /*
2633 * No pages to write? This is mainly a kludge to avoid starting
2634 * a transaction for special inodes like journal inode on last iput()
2635 * because that could violate lock ordering on umount
2636 */
2637 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2638 goto out_writepages;
2639
2640 if (ext4_should_journal_data(inode)) {
2641 ret = generic_writepages(mapping, wbc);
2642 goto out_writepages;
2643 }
2644
2645 /*
2646 * If the filesystem has aborted, it is read-only, so return
2647 * right away instead of dumping stack traces later on that
2648 * will obscure the real source of the problem. We test
2649 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2650 * the latter could be true if the filesystem is mounted
2651 * read-only, and in that case, ext4_writepages should
2652 * *never* be called, so if that ever happens, we would want
2653 * the stack trace.
2654 */
2655 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2656 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2657 ret = -EROFS;
2658 goto out_writepages;
2659 }
2660
2661 /*
2662 * If we have inline data and arrive here, it means that
2663 * we will soon create the block for the 1st page, so
2664 * we'd better clear the inline data here.
2665 */
2666 if (ext4_has_inline_data(inode)) {
2667 /* Just inode will be modified... */
2668 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2669 if (IS_ERR(handle)) {
2670 ret = PTR_ERR(handle);
2671 goto out_writepages;
2672 }
2673 BUG_ON(ext4_test_inode_state(inode,
2674 EXT4_STATE_MAY_INLINE_DATA));
2675 ext4_destroy_inline_data(handle, inode);
2676 ext4_journal_stop(handle);
2677 }
2678
2679 if (ext4_should_dioread_nolock(inode)) {
2680 /*
2681 * We may need to convert up to one extent per block in
2682 * the page and we may dirty the inode.
2683 */
2684 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2685 PAGE_SIZE >> inode->i_blkbits);
2686 }
2687
2688 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689 range_whole = 1;
2690
2691 if (wbc->range_cyclic) {
2692 writeback_index = mapping->writeback_index;
2693 if (writeback_index)
2694 cycled = 0;
2695 mpd.first_page = writeback_index;
2696 mpd.last_page = -1;
2697 } else {
2698 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700 }
2701
2702 mpd.inode = inode;
2703 mpd.wbc = wbc;
2704 ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708 done = false;
2709 blk_start_plug(&plug);
2710
2711 /*
2712 * First writeback pages that don't need mapping - we can avoid
2713 * starting a transaction unnecessarily and also avoid being blocked
2714 * in the block layer on device congestion while having transaction
2715 * started.
2716 */
2717 mpd.do_map = 0;
2718 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2719 if (!mpd.io_submit.io_end) {
2720 ret = -ENOMEM;
2721 goto unplug;
2722 }
2723 ret = mpage_prepare_extent_to_map(&mpd);
2724 /* Unlock pages we didn't use */
2725 mpage_release_unused_pages(&mpd, false);
2726 /* Submit prepared bio */
2727 ext4_io_submit(&mpd.io_submit);
2728 ext4_put_io_end_defer(mpd.io_submit.io_end);
2729 mpd.io_submit.io_end = NULL;
2730 if (ret < 0)
2731 goto unplug;
2732
2733 while (!done && mpd.first_page <= mpd.last_page) {
2734 /* For each extent of pages we use new io_end */
2735 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2736 if (!mpd.io_submit.io_end) {
2737 ret = -ENOMEM;
2738 break;
2739 }
2740
2741 /*
2742 * We have two constraints: We find one extent to map and we
2743 * must always write out whole page (makes a difference when
2744 * blocksize < pagesize) so that we don't block on IO when we
2745 * try to write out the rest of the page. Journalled mode is
2746 * not supported by delalloc.
2747 */
2748 BUG_ON(ext4_should_journal_data(inode));
2749 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2750
2751 /* start a new transaction */
2752 handle = ext4_journal_start_with_reserve(inode,
2753 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2754 if (IS_ERR(handle)) {
2755 ret = PTR_ERR(handle);
2756 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2757 "%ld pages, ino %lu; err %d", __func__,
2758 wbc->nr_to_write, inode->i_ino, ret);
2759 /* Release allocated io_end */
2760 ext4_put_io_end(mpd.io_submit.io_end);
2761 mpd.io_submit.io_end = NULL;
2762 break;
2763 }
2764 mpd.do_map = 1;
2765
2766 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2767 ret = mpage_prepare_extent_to_map(&mpd);
2768 if (!ret) {
2769 if (mpd.map.m_len)
2770 ret = mpage_map_and_submit_extent(handle, &mpd,
2771 &give_up_on_write);
2772 else {
2773 /*
2774 * We scanned the whole range (or exhausted
2775 * nr_to_write), submitted what was mapped and
2776 * didn't find anything needing mapping. We are
2777 * done.
2778 */
2779 done = true;
2780 }
2781 }
2782 /*
2783 * Caution: If the handle is synchronous,
2784 * ext4_journal_stop() can wait for transaction commit
2785 * to finish which may depend on writeback of pages to
2786 * complete or on page lock to be released. In that
2787 * case, we have to wait until after after we have
2788 * submitted all the IO, released page locks we hold,
2789 * and dropped io_end reference (for extent conversion
2790 * to be able to complete) before stopping the handle.
2791 */
2792 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2793 ext4_journal_stop(handle);
2794 handle = NULL;
2795 mpd.do_map = 0;
2796 }
2797 /* Unlock pages we didn't use */
2798 mpage_release_unused_pages(&mpd, give_up_on_write);
2799 /* Submit prepared bio */
2800 ext4_io_submit(&mpd.io_submit);
2801
2802 /*
2803 * Drop our io_end reference we got from init. We have
2804 * to be careful and use deferred io_end finishing if
2805 * we are still holding the transaction as we can
2806 * release the last reference to io_end which may end
2807 * up doing unwritten extent conversion.
2808 */
2809 if (handle) {
2810 ext4_put_io_end_defer(mpd.io_submit.io_end);
2811 ext4_journal_stop(handle);
2812 } else
2813 ext4_put_io_end(mpd.io_submit.io_end);
2814 mpd.io_submit.io_end = NULL;
2815
2816 if (ret == -ENOSPC && sbi->s_journal) {
2817 /*
2818 * Commit the transaction which would
2819 * free blocks released in the transaction
2820 * and try again
2821 */
2822 jbd2_journal_force_commit_nested(sbi->s_journal);
2823 ret = 0;
2824 continue;
2825 }
2826 /* Fatal error - ENOMEM, EIO... */
2827 if (ret)
2828 break;
2829 }
2830 unplug:
2831 blk_finish_plug(&plug);
2832 if (!ret && !cycled && wbc->nr_to_write > 0) {
2833 cycled = 1;
2834 mpd.last_page = writeback_index - 1;
2835 mpd.first_page = 0;
2836 goto retry;
2837 }
2838
2839 /* Update index */
2840 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2841 /*
2842 * Set the writeback_index so that range_cyclic
2843 * mode will write it back later
2844 */
2845 mapping->writeback_index = mpd.first_page;
2846
2847 out_writepages:
2848 trace_ext4_writepages_result(inode, wbc, ret,
2849 nr_to_write - wbc->nr_to_write);
2850 percpu_up_read(&sbi->s_writepages_rwsem);
2851 return ret;
2852 }
2853
2854 static int ext4_dax_writepages(struct address_space *mapping,
2855 struct writeback_control *wbc)
2856 {
2857 int ret;
2858 long nr_to_write = wbc->nr_to_write;
2859 struct inode *inode = mapping->host;
2860 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2861
2862 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2863 return -EIO;
2864
2865 percpu_down_read(&sbi->s_writepages_rwsem);
2866 trace_ext4_writepages(inode, wbc);
2867
2868 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2869 trace_ext4_writepages_result(inode, wbc, ret,
2870 nr_to_write - wbc->nr_to_write);
2871 percpu_up_read(&sbi->s_writepages_rwsem);
2872 return ret;
2873 }
2874
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877 s64 free_clusters, dirty_clusters;
2878 struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880 /*
2881 * switch to non delalloc mode if we are running low
2882 * on free block. The free block accounting via percpu
2883 * counters can get slightly wrong with percpu_counter_batch getting
2884 * accumulated on each CPU without updating global counters
2885 * Delalloc need an accurate free block accounting. So switch
2886 * to non delalloc when we are near to error range.
2887 */
2888 free_clusters =
2889 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 dirty_clusters =
2891 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 /*
2893 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 */
2895 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898 if (2 * free_clusters < 3 * dirty_clusters ||
2899 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 /*
2901 * free block count is less than 150% of dirty blocks
2902 * or free blocks is less than watermark
2903 */
2904 return 1;
2905 }
2906 return 0;
2907 }
2908
2909 /* We always reserve for an inode update; the superblock could be there too */
2910 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2911 {
2912 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2913 return 1;
2914
2915 if (pos + len <= 0x7fffffffULL)
2916 return 1;
2917
2918 /* We might need to update the superblock to set LARGE_FILE */
2919 return 2;
2920 }
2921
2922 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2923 loff_t pos, unsigned len, unsigned flags,
2924 struct page **pagep, void **fsdata)
2925 {
2926 int ret, retries = 0;
2927 struct page *page;
2928 pgoff_t index;
2929 struct inode *inode = mapping->host;
2930 handle_t *handle;
2931
2932 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2933 return -EIO;
2934
2935 index = pos >> PAGE_SHIFT;
2936
2937 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2938 ext4_verity_in_progress(inode)) {
2939 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2940 return ext4_write_begin(file, mapping, pos,
2941 len, flags, pagep, fsdata);
2942 }
2943 *fsdata = (void *)0;
2944 trace_ext4_da_write_begin(inode, pos, len, flags);
2945
2946 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2947 ret = ext4_da_write_inline_data_begin(mapping, inode,
2948 pos, len, flags,
2949 pagep, fsdata);
2950 if (ret < 0)
2951 return ret;
2952 if (ret == 1)
2953 return 0;
2954 }
2955
2956 /*
2957 * grab_cache_page_write_begin() can take a long time if the
2958 * system is thrashing due to memory pressure, or if the page
2959 * is being written back. So grab it first before we start
2960 * the transaction handle. This also allows us to allocate
2961 * the page (if needed) without using GFP_NOFS.
2962 */
2963 retry_grab:
2964 page = grab_cache_page_write_begin(mapping, index, flags);
2965 if (!page)
2966 return -ENOMEM;
2967 unlock_page(page);
2968
2969 /*
2970 * With delayed allocation, we don't log the i_disksize update
2971 * if there is delayed block allocation. But we still need
2972 * to journalling the i_disksize update if writes to the end
2973 * of file which has an already mapped buffer.
2974 */
2975 retry_journal:
2976 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2977 ext4_da_write_credits(inode, pos, len));
2978 if (IS_ERR(handle)) {
2979 put_page(page);
2980 return PTR_ERR(handle);
2981 }
2982
2983 lock_page(page);
2984 if (page->mapping != mapping) {
2985 /* The page got truncated from under us */
2986 unlock_page(page);
2987 put_page(page);
2988 ext4_journal_stop(handle);
2989 goto retry_grab;
2990 }
2991 /* In case writeback began while the page was unlocked */
2992 wait_for_stable_page(page);
2993
2994 #ifdef CONFIG_FS_ENCRYPTION
2995 ret = ext4_block_write_begin(page, pos, len,
2996 ext4_da_get_block_prep);
2997 #else
2998 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2999 #endif
3000 if (ret < 0) {
3001 unlock_page(page);
3002 ext4_journal_stop(handle);
3003 /*
3004 * block_write_begin may have instantiated a few blocks
3005 * outside i_size. Trim these off again. Don't need
3006 * i_size_read because we hold i_mutex.
3007 */
3008 if (pos + len > inode->i_size)
3009 ext4_truncate_failed_write(inode);
3010
3011 if (ret == -ENOSPC &&
3012 ext4_should_retry_alloc(inode->i_sb, &retries))
3013 goto retry_journal;
3014
3015 put_page(page);
3016 return ret;
3017 }
3018
3019 *pagep = page;
3020 return ret;
3021 }
3022
3023 /*
3024 * Check if we should update i_disksize
3025 * when write to the end of file but not require block allocation
3026 */
3027 static int ext4_da_should_update_i_disksize(struct page *page,
3028 unsigned long offset)
3029 {
3030 struct buffer_head *bh;
3031 struct inode *inode = page->mapping->host;
3032 unsigned int idx;
3033 int i;
3034
3035 bh = page_buffers(page);
3036 idx = offset >> inode->i_blkbits;
3037
3038 for (i = 0; i < idx; i++)
3039 bh = bh->b_this_page;
3040
3041 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3042 return 0;
3043 return 1;
3044 }
3045
3046 static int ext4_da_write_end(struct file *file,
3047 struct address_space *mapping,
3048 loff_t pos, unsigned len, unsigned copied,
3049 struct page *page, void *fsdata)
3050 {
3051 struct inode *inode = mapping->host;
3052 int ret = 0, ret2;
3053 handle_t *handle = ext4_journal_current_handle();
3054 loff_t new_i_size;
3055 unsigned long start, end;
3056 int write_mode = (int)(unsigned long)fsdata;
3057
3058 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3059 return ext4_write_end(file, mapping, pos,
3060 len, copied, page, fsdata);
3061
3062 trace_ext4_da_write_end(inode, pos, len, copied);
3063 start = pos & (PAGE_SIZE - 1);
3064 end = start + copied - 1;
3065
3066 /*
3067 * generic_write_end() will run mark_inode_dirty() if i_size
3068 * changes. So let's piggyback the i_disksize mark_inode_dirty
3069 * into that.
3070 */
3071 new_i_size = pos + copied;
3072 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3073 if (ext4_has_inline_data(inode) ||
3074 ext4_da_should_update_i_disksize(page, end)) {
3075 ext4_update_i_disksize(inode, new_i_size);
3076 /* We need to mark inode dirty even if
3077 * new_i_size is less that inode->i_size
3078 * bu greater than i_disksize.(hint delalloc)
3079 */
3080 ext4_mark_inode_dirty(handle, inode);
3081 }
3082 }
3083
3084 if (write_mode != CONVERT_INLINE_DATA &&
3085 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3086 ext4_has_inline_data(inode))
3087 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3088 page);
3089 else
3090 ret2 = generic_write_end(file, mapping, pos, len, copied,
3091 page, fsdata);
3092
3093 copied = ret2;
3094 if (ret2 < 0)
3095 ret = ret2;
3096 ret2 = ext4_journal_stop(handle);
3097 if (!ret)
3098 ret = ret2;
3099
3100 return ret ? ret : copied;
3101 }
3102
3103 /*
3104 * Force all delayed allocation blocks to be allocated for a given inode.
3105 */
3106 int ext4_alloc_da_blocks(struct inode *inode)
3107 {
3108 trace_ext4_alloc_da_blocks(inode);
3109
3110 if (!EXT4_I(inode)->i_reserved_data_blocks)
3111 return 0;
3112
3113 /*
3114 * We do something simple for now. The filemap_flush() will
3115 * also start triggering a write of the data blocks, which is
3116 * not strictly speaking necessary (and for users of
3117 * laptop_mode, not even desirable). However, to do otherwise
3118 * would require replicating code paths in:
3119 *
3120 * ext4_writepages() ->
3121 * write_cache_pages() ---> (via passed in callback function)
3122 * __mpage_da_writepage() -->
3123 * mpage_add_bh_to_extent()
3124 * mpage_da_map_blocks()
3125 *
3126 * The problem is that write_cache_pages(), located in
3127 * mm/page-writeback.c, marks pages clean in preparation for
3128 * doing I/O, which is not desirable if we're not planning on
3129 * doing I/O at all.
3130 *
3131 * We could call write_cache_pages(), and then redirty all of
3132 * the pages by calling redirty_page_for_writepage() but that
3133 * would be ugly in the extreme. So instead we would need to
3134 * replicate parts of the code in the above functions,
3135 * simplifying them because we wouldn't actually intend to
3136 * write out the pages, but rather only collect contiguous
3137 * logical block extents, call the multi-block allocator, and
3138 * then update the buffer heads with the block allocations.
3139 *
3140 * For now, though, we'll cheat by calling filemap_flush(),
3141 * which will map the blocks, and start the I/O, but not
3142 * actually wait for the I/O to complete.
3143 */
3144 return filemap_flush(inode->i_mapping);
3145 }
3146
3147 /*
3148 * bmap() is special. It gets used by applications such as lilo and by
3149 * the swapper to find the on-disk block of a specific piece of data.
3150 *
3151 * Naturally, this is dangerous if the block concerned is still in the
3152 * journal. If somebody makes a swapfile on an ext4 data-journaling
3153 * filesystem and enables swap, then they may get a nasty shock when the
3154 * data getting swapped to that swapfile suddenly gets overwritten by
3155 * the original zero's written out previously to the journal and
3156 * awaiting writeback in the kernel's buffer cache.
3157 *
3158 * So, if we see any bmap calls here on a modified, data-journaled file,
3159 * take extra steps to flush any blocks which might be in the cache.
3160 */
3161 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3162 {
3163 struct inode *inode = mapping->host;
3164 journal_t *journal;
3165 int err;
3166
3167 /*
3168 * We can get here for an inline file via the FIBMAP ioctl
3169 */
3170 if (ext4_has_inline_data(inode))
3171 return 0;
3172
3173 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3174 test_opt(inode->i_sb, DELALLOC)) {
3175 /*
3176 * With delalloc we want to sync the file
3177 * so that we can make sure we allocate
3178 * blocks for file
3179 */
3180 filemap_write_and_wait(mapping);
3181 }
3182
3183 if (EXT4_JOURNAL(inode) &&
3184 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3185 /*
3186 * This is a REALLY heavyweight approach, but the use of
3187 * bmap on dirty files is expected to be extremely rare:
3188 * only if we run lilo or swapon on a freshly made file
3189 * do we expect this to happen.
3190 *
3191 * (bmap requires CAP_SYS_RAWIO so this does not
3192 * represent an unprivileged user DOS attack --- we'd be
3193 * in trouble if mortal users could trigger this path at
3194 * will.)
3195 *
3196 * NB. EXT4_STATE_JDATA is not set on files other than
3197 * regular files. If somebody wants to bmap a directory
3198 * or symlink and gets confused because the buffer
3199 * hasn't yet been flushed to disk, they deserve
3200 * everything they get.
3201 */
3202
3203 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3204 journal = EXT4_JOURNAL(inode);
3205 jbd2_journal_lock_updates(journal);
3206 err = jbd2_journal_flush(journal);
3207 jbd2_journal_unlock_updates(journal);
3208
3209 if (err)
3210 return 0;
3211 }
3212
3213 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3214 }
3215
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218 int ret = -EAGAIN;
3219 struct inode *inode = page->mapping->host;
3220
3221 trace_ext4_readpage(page);
3222
3223 if (ext4_has_inline_data(inode))
3224 ret = ext4_readpage_inline(inode, page);
3225
3226 if (ret == -EAGAIN)
3227 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3228 false);
3229
3230 return ret;
3231 }
3232
3233 static int
3234 ext4_readpages(struct file *file, struct address_space *mapping,
3235 struct list_head *pages, unsigned nr_pages)
3236 {
3237 struct inode *inode = mapping->host;
3238
3239 /* If the file has inline data, no need to do readpages. */
3240 if (ext4_has_inline_data(inode))
3241 return 0;
3242
3243 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3244 }
3245
3246 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3247 unsigned int length)
3248 {
3249 trace_ext4_invalidatepage(page, offset, length);
3250
3251 /* No journalling happens on data buffers when this function is used */
3252 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3253
3254 block_invalidatepage(page, offset, length);
3255 }
3256
3257 static int __ext4_journalled_invalidatepage(struct page *page,
3258 unsigned int offset,
3259 unsigned int length)
3260 {
3261 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262
3263 trace_ext4_journalled_invalidatepage(page, offset, length);
3264
3265 /*
3266 * If it's a full truncate we just forget about the pending dirtying
3267 */
3268 if (offset == 0 && length == PAGE_SIZE)
3269 ClearPageChecked(page);
3270
3271 return jbd2_journal_invalidatepage(journal, page, offset, length);
3272 }
3273
3274 /* Wrapper for aops... */
3275 static void ext4_journalled_invalidatepage(struct page *page,
3276 unsigned int offset,
3277 unsigned int length)
3278 {
3279 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3280 }
3281
3282 static int ext4_releasepage(struct page *page, gfp_t wait)
3283 {
3284 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285
3286 trace_ext4_releasepage(page);
3287
3288 /* Page has dirty journalled data -> cannot release */
3289 if (PageChecked(page))
3290 return 0;
3291 if (journal)
3292 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3293 else
3294 return try_to_free_buffers(page);
3295 }
3296
3297 static bool ext4_inode_datasync_dirty(struct inode *inode)
3298 {
3299 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3300
3301 if (journal)
3302 return !jbd2_transaction_committed(journal,
3303 EXT4_I(inode)->i_datasync_tid);
3304 /* Any metadata buffers to write? */
3305 if (!list_empty(&inode->i_mapping->private_list))
3306 return true;
3307 return inode->i_state & I_DIRTY_DATASYNC;
3308 }
3309
3310 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3311 struct ext4_map_blocks *map, loff_t offset,
3312 loff_t length)
3313 {
3314 u8 blkbits = inode->i_blkbits;
3315
3316 /*
3317 * Writes that span EOF might trigger an I/O size update on completion,
3318 * so consider them to be dirty for the purpose of O_DSYNC, even if
3319 * there is no other metadata changes being made or are pending.
3320 */
3321 iomap->flags = 0;
3322 if (ext4_inode_datasync_dirty(inode) ||
3323 offset + length > i_size_read(inode))
3324 iomap->flags |= IOMAP_F_DIRTY;
3325
3326 if (map->m_flags & EXT4_MAP_NEW)
3327 iomap->flags |= IOMAP_F_NEW;
3328
3329 iomap->bdev = inode->i_sb->s_bdev;
3330 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3331 iomap->offset = (u64) map->m_lblk << blkbits;
3332 iomap->length = (u64) map->m_len << blkbits;
3333
3334 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3335 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3336 iomap->flags |= IOMAP_F_MERGED;
3337
3338 /*
3339 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341 * set. In order for any allocated unwritten extents to be converted
3342 * into written extents correctly within the ->end_io() handler, we
3343 * need to ensure that the iomap->type is set appropriately. Hence, the
3344 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345 * been set first.
3346 */
3347 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348 iomap->type = IOMAP_UNWRITTEN;
3349 iomap->addr = (u64) map->m_pblk << blkbits;
3350 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3351 iomap->type = IOMAP_MAPPED;
3352 iomap->addr = (u64) map->m_pblk << blkbits;
3353 } else {
3354 iomap->type = IOMAP_HOLE;
3355 iomap->addr = IOMAP_NULL_ADDR;
3356 }
3357 }
3358
3359 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3360 unsigned int flags)
3361 {
3362 handle_t *handle;
3363 u8 blkbits = inode->i_blkbits;
3364 int ret, dio_credits, m_flags = 0, retries = 0;
3365
3366 /*
3367 * Trim the mapping request to the maximum value that we can map at
3368 * once for direct I/O.
3369 */
3370 if (map->m_len > DIO_MAX_BLOCKS)
3371 map->m_len = DIO_MAX_BLOCKS;
3372 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3373
3374 retry:
3375 /*
3376 * Either we allocate blocks and then don't get an unwritten extent, so
3377 * in that case we have reserved enough credits. Or, the blocks are
3378 * already allocated and unwritten. In that case, the extent conversion
3379 * fits into the credits as well.
3380 */
3381 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3382 if (IS_ERR(handle))
3383 return PTR_ERR(handle);
3384
3385 /*
3386 * DAX and direct I/O are the only two operations that are currently
3387 * supported with IOMAP_WRITE.
3388 */
3389 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3390 if (IS_DAX(inode))
3391 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3392 /*
3393 * We use i_size instead of i_disksize here because delalloc writeback
3394 * can complete at any point during the I/O and subsequently push the
3395 * i_disksize out to i_size. This could be beyond where direct I/O is
3396 * happening and thus expose allocated blocks to direct I/O reads.
3397 */
3398 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3399 m_flags = EXT4_GET_BLOCKS_CREATE;
3400 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3401 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3402
3403 ret = ext4_map_blocks(handle, inode, map, m_flags);
3404
3405 /*
3406 * We cannot fill holes in indirect tree based inodes as that could
3407 * expose stale data in the case of a crash. Use the magic error code
3408 * to fallback to buffered I/O.
3409 */
3410 if (!m_flags && !ret)
3411 ret = -ENOTBLK;
3412
3413 ext4_journal_stop(handle);
3414 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3415 goto retry;
3416
3417 return ret;
3418 }
3419
3420
3421 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3422 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3423 {
3424 int ret;
3425 struct ext4_map_blocks map;
3426 u8 blkbits = inode->i_blkbits;
3427
3428 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3429 return -EINVAL;
3430
3431 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 return -ERANGE;
3433
3434 /*
3435 * Calculate the first and last logical blocks respectively.
3436 */
3437 map.m_lblk = offset >> blkbits;
3438 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3439 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3440
3441 if (flags & IOMAP_WRITE)
3442 ret = ext4_iomap_alloc(inode, &map, flags);
3443 else
3444 ret = ext4_map_blocks(NULL, inode, &map, 0);
3445
3446 if (ret < 0)
3447 return ret;
3448
3449 ext4_set_iomap(inode, iomap, &map, offset, length);
3450
3451 return 0;
3452 }
3453
3454 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3455 loff_t length, unsigned flags, struct iomap *iomap,
3456 struct iomap *srcmap)
3457 {
3458 int ret;
3459
3460 /*
3461 * Even for writes we don't need to allocate blocks, so just pretend
3462 * we are reading to save overhead of starting a transaction.
3463 */
3464 flags &= ~IOMAP_WRITE;
3465 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3466 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3467 return ret;
3468 }
3469
3470 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3471 ssize_t written, unsigned flags, struct iomap *iomap)
3472 {
3473 /*
3474 * Check to see whether an error occurred while writing out the data to
3475 * the allocated blocks. If so, return the magic error code so that we
3476 * fallback to buffered I/O and attempt to complete the remainder of
3477 * the I/O. Any blocks that may have been allocated in preparation for
3478 * the direct I/O will be reused during buffered I/O.
3479 */
3480 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3481 return -ENOTBLK;
3482
3483 return 0;
3484 }
3485
3486 const struct iomap_ops ext4_iomap_ops = {
3487 .iomap_begin = ext4_iomap_begin,
3488 .iomap_end = ext4_iomap_end,
3489 };
3490
3491 const struct iomap_ops ext4_iomap_overwrite_ops = {
3492 .iomap_begin = ext4_iomap_overwrite_begin,
3493 .iomap_end = ext4_iomap_end,
3494 };
3495
3496 static bool ext4_iomap_is_delalloc(struct inode *inode,
3497 struct ext4_map_blocks *map)
3498 {
3499 struct extent_status es;
3500 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3501
3502 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3503 map->m_lblk, end, &es);
3504
3505 if (!es.es_len || es.es_lblk > end)
3506 return false;
3507
3508 if (es.es_lblk > map->m_lblk) {
3509 map->m_len = es.es_lblk - map->m_lblk;
3510 return false;
3511 }
3512
3513 offset = map->m_lblk - es.es_lblk;
3514 map->m_len = es.es_len - offset;
3515
3516 return true;
3517 }
3518
3519 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3520 loff_t length, unsigned int flags,
3521 struct iomap *iomap, struct iomap *srcmap)
3522 {
3523 int ret;
3524 bool delalloc = false;
3525 struct ext4_map_blocks map;
3526 u8 blkbits = inode->i_blkbits;
3527
3528 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3529 return -EINVAL;
3530
3531 if (ext4_has_inline_data(inode)) {
3532 ret = ext4_inline_data_iomap(inode, iomap);
3533 if (ret != -EAGAIN) {
3534 if (ret == 0 && offset >= iomap->length)
3535 ret = -ENOENT;
3536 return ret;
3537 }
3538 }
3539
3540 /*
3541 * Calculate the first and last logical block respectively.
3542 */
3543 map.m_lblk = offset >> blkbits;
3544 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3545 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3546
3547 /*
3548 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3549 * So handle it here itself instead of querying ext4_map_blocks().
3550 * Since ext4_map_blocks() will warn about it and will return
3551 * -EIO error.
3552 */
3553 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3555
3556 if (offset >= sbi->s_bitmap_maxbytes) {
3557 map.m_flags = 0;
3558 goto set_iomap;
3559 }
3560 }
3561
3562 ret = ext4_map_blocks(NULL, inode, &map, 0);
3563 if (ret < 0)
3564 return ret;
3565 if (ret == 0)
3566 delalloc = ext4_iomap_is_delalloc(inode, &map);
3567
3568 set_iomap:
3569 ext4_set_iomap(inode, iomap, &map, offset, length);
3570 if (delalloc && iomap->type == IOMAP_HOLE)
3571 iomap->type = IOMAP_DELALLOC;
3572
3573 return 0;
3574 }
3575
3576 const struct iomap_ops ext4_iomap_report_ops = {
3577 .iomap_begin = ext4_iomap_begin_report,
3578 };
3579
3580 /*
3581 * Pages can be marked dirty completely asynchronously from ext4's journalling
3582 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3583 * much here because ->set_page_dirty is called under VFS locks. The page is
3584 * not necessarily locked.
3585 *
3586 * We cannot just dirty the page and leave attached buffers clean, because the
3587 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3588 * or jbddirty because all the journalling code will explode.
3589 *
3590 * So what we do is to mark the page "pending dirty" and next time writepage
3591 * is called, propagate that into the buffers appropriately.
3592 */
3593 static int ext4_journalled_set_page_dirty(struct page *page)
3594 {
3595 SetPageChecked(page);
3596 return __set_page_dirty_nobuffers(page);
3597 }
3598
3599 static int ext4_set_page_dirty(struct page *page)
3600 {
3601 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3602 WARN_ON_ONCE(!page_has_buffers(page));
3603 return __set_page_dirty_buffers(page);
3604 }
3605
3606 static const struct address_space_operations ext4_aops = {
3607 .readpage = ext4_readpage,
3608 .readpages = ext4_readpages,
3609 .writepage = ext4_writepage,
3610 .writepages = ext4_writepages,
3611 .write_begin = ext4_write_begin,
3612 .write_end = ext4_write_end,
3613 .set_page_dirty = ext4_set_page_dirty,
3614 .bmap = ext4_bmap,
3615 .invalidatepage = ext4_invalidatepage,
3616 .releasepage = ext4_releasepage,
3617 .direct_IO = noop_direct_IO,
3618 .migratepage = buffer_migrate_page,
3619 .is_partially_uptodate = block_is_partially_uptodate,
3620 .error_remove_page = generic_error_remove_page,
3621 };
3622
3623 static const struct address_space_operations ext4_journalled_aops = {
3624 .readpage = ext4_readpage,
3625 .readpages = ext4_readpages,
3626 .writepage = ext4_writepage,
3627 .writepages = ext4_writepages,
3628 .write_begin = ext4_write_begin,
3629 .write_end = ext4_journalled_write_end,
3630 .set_page_dirty = ext4_journalled_set_page_dirty,
3631 .bmap = ext4_bmap,
3632 .invalidatepage = ext4_journalled_invalidatepage,
3633 .releasepage = ext4_releasepage,
3634 .direct_IO = noop_direct_IO,
3635 .is_partially_uptodate = block_is_partially_uptodate,
3636 .error_remove_page = generic_error_remove_page,
3637 };
3638
3639 static const struct address_space_operations ext4_da_aops = {
3640 .readpage = ext4_readpage,
3641 .readpages = ext4_readpages,
3642 .writepage = ext4_writepage,
3643 .writepages = ext4_writepages,
3644 .write_begin = ext4_da_write_begin,
3645 .write_end = ext4_da_write_end,
3646 .set_page_dirty = ext4_set_page_dirty,
3647 .bmap = ext4_bmap,
3648 .invalidatepage = ext4_invalidatepage,
3649 .releasepage = ext4_releasepage,
3650 .direct_IO = noop_direct_IO,
3651 .migratepage = buffer_migrate_page,
3652 .is_partially_uptodate = block_is_partially_uptodate,
3653 .error_remove_page = generic_error_remove_page,
3654 };
3655
3656 static const struct address_space_operations ext4_dax_aops = {
3657 .writepages = ext4_dax_writepages,
3658 .direct_IO = noop_direct_IO,
3659 .set_page_dirty = noop_set_page_dirty,
3660 .bmap = ext4_bmap,
3661 .invalidatepage = noop_invalidatepage,
3662 };
3663
3664 void ext4_set_aops(struct inode *inode)
3665 {
3666 switch (ext4_inode_journal_mode(inode)) {
3667 case EXT4_INODE_ORDERED_DATA_MODE:
3668 case EXT4_INODE_WRITEBACK_DATA_MODE:
3669 break;
3670 case EXT4_INODE_JOURNAL_DATA_MODE:
3671 inode->i_mapping->a_ops = &ext4_journalled_aops;
3672 return;
3673 default:
3674 BUG();
3675 }
3676 if (IS_DAX(inode))
3677 inode->i_mapping->a_ops = &ext4_dax_aops;
3678 else if (test_opt(inode->i_sb, DELALLOC))
3679 inode->i_mapping->a_ops = &ext4_da_aops;
3680 else
3681 inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683
3684 static int __ext4_block_zero_page_range(handle_t *handle,
3685 struct address_space *mapping, loff_t from, loff_t length)
3686 {
3687 ext4_fsblk_t index = from >> PAGE_SHIFT;
3688 unsigned offset = from & (PAGE_SIZE-1);
3689 unsigned blocksize, pos;
3690 ext4_lblk_t iblock;
3691 struct inode *inode = mapping->host;
3692 struct buffer_head *bh;
3693 struct page *page;
3694 int err = 0;
3695
3696 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697 mapping_gfp_constraint(mapping, ~__GFP_FS));
3698 if (!page)
3699 return -ENOMEM;
3700
3701 blocksize = inode->i_sb->s_blocksize;
3702
3703 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704
3705 if (!page_has_buffers(page))
3706 create_empty_buffers(page, blocksize, 0);
3707
3708 /* Find the buffer that contains "offset" */
3709 bh = page_buffers(page);
3710 pos = blocksize;
3711 while (offset >= pos) {
3712 bh = bh->b_this_page;
3713 iblock++;
3714 pos += blocksize;
3715 }
3716 if (buffer_freed(bh)) {
3717 BUFFER_TRACE(bh, "freed: skip");
3718 goto unlock;
3719 }
3720 if (!buffer_mapped(bh)) {
3721 BUFFER_TRACE(bh, "unmapped");
3722 ext4_get_block(inode, iblock, bh, 0);
3723 /* unmapped? It's a hole - nothing to do */
3724 if (!buffer_mapped(bh)) {
3725 BUFFER_TRACE(bh, "still unmapped");
3726 goto unlock;
3727 }
3728 }
3729
3730 /* Ok, it's mapped. Make sure it's up-to-date */
3731 if (PageUptodate(page))
3732 set_buffer_uptodate(bh);
3733
3734 if (!buffer_uptodate(bh)) {
3735 err = -EIO;
3736 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737 wait_on_buffer(bh);
3738 /* Uhhuh. Read error. Complain and punt. */
3739 if (!buffer_uptodate(bh))
3740 goto unlock;
3741 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3742 /* We expect the key to be set. */
3743 BUG_ON(!fscrypt_has_encryption_key(inode));
3744 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3745 bh_offset(bh));
3746 if (err) {
3747 clear_buffer_uptodate(bh);
3748 goto unlock;
3749 }
3750 }
3751 }
3752 if (ext4_should_journal_data(inode)) {
3753 BUFFER_TRACE(bh, "get write access");
3754 err = ext4_journal_get_write_access(handle, bh);
3755 if (err)
3756 goto unlock;
3757 }
3758 zero_user(page, offset, length);
3759 BUFFER_TRACE(bh, "zeroed end of block");
3760
3761 if (ext4_should_journal_data(inode)) {
3762 err = ext4_handle_dirty_metadata(handle, inode, bh);
3763 } else {
3764 err = 0;
3765 mark_buffer_dirty(bh);
3766 if (ext4_should_order_data(inode))
3767 err = ext4_jbd2_inode_add_write(handle, inode, from,
3768 length);
3769 }
3770
3771 unlock:
3772 unlock_page(page);
3773 put_page(page);
3774 return err;
3775 }
3776
3777 /*
3778 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3779 * starting from file offset 'from'. The range to be zero'd must
3780 * be contained with in one block. If the specified range exceeds
3781 * the end of the block it will be shortened to end of the block
3782 * that cooresponds to 'from'
3783 */
3784 static int ext4_block_zero_page_range(handle_t *handle,
3785 struct address_space *mapping, loff_t from, loff_t length)
3786 {
3787 struct inode *inode = mapping->host;
3788 unsigned offset = from & (PAGE_SIZE-1);
3789 unsigned blocksize = inode->i_sb->s_blocksize;
3790 unsigned max = blocksize - (offset & (blocksize - 1));
3791
3792 /*
3793 * correct length if it does not fall between
3794 * 'from' and the end of the block
3795 */
3796 if (length > max || length < 0)
3797 length = max;
3798
3799 if (IS_DAX(inode)) {
3800 return iomap_zero_range(inode, from, length, NULL,
3801 &ext4_iomap_ops);
3802 }
3803 return __ext4_block_zero_page_range(handle, mapping, from, length);
3804 }
3805
3806 /*
3807 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3808 * up to the end of the block which corresponds to `from'.
3809 * This required during truncate. We need to physically zero the tail end
3810 * of that block so it doesn't yield old data if the file is later grown.
3811 */
3812 static int ext4_block_truncate_page(handle_t *handle,
3813 struct address_space *mapping, loff_t from)
3814 {
3815 unsigned offset = from & (PAGE_SIZE-1);
3816 unsigned length;
3817 unsigned blocksize;
3818 struct inode *inode = mapping->host;
3819
3820 /* If we are processing an encrypted inode during orphan list handling */
3821 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3822 return 0;
3823
3824 blocksize = inode->i_sb->s_blocksize;
3825 length = blocksize - (offset & (blocksize - 1));
3826
3827 return ext4_block_zero_page_range(handle, mapping, from, length);
3828 }
3829
3830 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3831 loff_t lstart, loff_t length)
3832 {
3833 struct super_block *sb = inode->i_sb;
3834 struct address_space *mapping = inode->i_mapping;
3835 unsigned partial_start, partial_end;
3836 ext4_fsblk_t start, end;
3837 loff_t byte_end = (lstart + length - 1);
3838 int err = 0;
3839
3840 partial_start = lstart & (sb->s_blocksize - 1);
3841 partial_end = byte_end & (sb->s_blocksize - 1);
3842
3843 start = lstart >> sb->s_blocksize_bits;
3844 end = byte_end >> sb->s_blocksize_bits;
3845
3846 /* Handle partial zero within the single block */
3847 if (start == end &&
3848 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3849 err = ext4_block_zero_page_range(handle, mapping,
3850 lstart, length);
3851 return err;
3852 }
3853 /* Handle partial zero out on the start of the range */
3854 if (partial_start) {
3855 err = ext4_block_zero_page_range(handle, mapping,
3856 lstart, sb->s_blocksize);
3857 if (err)
3858 return err;
3859 }
3860 /* Handle partial zero out on the end of the range */
3861 if (partial_end != sb->s_blocksize - 1)
3862 err = ext4_block_zero_page_range(handle, mapping,
3863 byte_end - partial_end,
3864 partial_end + 1);
3865 return err;
3866 }
3867
3868 int ext4_can_truncate(struct inode *inode)
3869 {
3870 if (S_ISREG(inode->i_mode))
3871 return 1;
3872 if (S_ISDIR(inode->i_mode))
3873 return 1;
3874 if (S_ISLNK(inode->i_mode))
3875 return !ext4_inode_is_fast_symlink(inode);
3876 return 0;
3877 }
3878
3879 /*
3880 * We have to make sure i_disksize gets properly updated before we truncate
3881 * page cache due to hole punching or zero range. Otherwise i_disksize update
3882 * can get lost as it may have been postponed to submission of writeback but
3883 * that will never happen after we truncate page cache.
3884 */
3885 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3886 loff_t len)
3887 {
3888 handle_t *handle;
3889 loff_t size = i_size_read(inode);
3890
3891 WARN_ON(!inode_is_locked(inode));
3892 if (offset > size || offset + len < size)
3893 return 0;
3894
3895 if (EXT4_I(inode)->i_disksize >= size)
3896 return 0;
3897
3898 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899 if (IS_ERR(handle))
3900 return PTR_ERR(handle);
3901 ext4_update_i_disksize(inode, size);
3902 ext4_mark_inode_dirty(handle, inode);
3903 ext4_journal_stop(handle);
3904
3905 return 0;
3906 }
3907
3908 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909 {
3910 up_write(&ei->i_mmap_sem);
3911 schedule();
3912 down_write(&ei->i_mmap_sem);
3913 }
3914
3915 int ext4_break_layouts(struct inode *inode)
3916 {
3917 struct ext4_inode_info *ei = EXT4_I(inode);
3918 struct page *page;
3919 int error;
3920
3921 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922 return -EINVAL;
3923
3924 do {
3925 page = dax_layout_busy_page(inode->i_mapping);
3926 if (!page)
3927 return 0;
3928
3929 error = ___wait_var_event(&page->_refcount,
3930 atomic_read(&page->_refcount) == 1,
3931 TASK_INTERRUPTIBLE, 0, 0,
3932 ext4_wait_dax_page(ei));
3933 } while (error == 0);
3934
3935 return error;
3936 }
3937
3938 /*
3939 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940 * associated with the given offset and length
3941 *
3942 * @inode: File inode
3943 * @offset: The offset where the hole will begin
3944 * @len: The length of the hole
3945 *
3946 * Returns: 0 on success or negative on failure
3947 */
3948
3949 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950 {
3951 struct super_block *sb = inode->i_sb;
3952 ext4_lblk_t first_block, stop_block;
3953 struct address_space *mapping = inode->i_mapping;
3954 loff_t first_block_offset, last_block_offset;
3955 handle_t *handle;
3956 unsigned int credits;
3957 int ret = 0;
3958
3959 trace_ext4_punch_hole(inode, offset, length, 0);
3960
3961 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962 if (ext4_has_inline_data(inode)) {
3963 down_write(&EXT4_I(inode)->i_mmap_sem);
3964 ret = ext4_convert_inline_data(inode);
3965 up_write(&EXT4_I(inode)->i_mmap_sem);
3966 if (ret)
3967 return ret;
3968 }
3969
3970 /*
3971 * Write out all dirty pages to avoid race conditions
3972 * Then release them.
3973 */
3974 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975 ret = filemap_write_and_wait_range(mapping, offset,
3976 offset + length - 1);
3977 if (ret)
3978 return ret;
3979 }
3980
3981 inode_lock(inode);
3982
3983 /* No need to punch hole beyond i_size */
3984 if (offset >= inode->i_size)
3985 goto out_mutex;
3986
3987 /*
3988 * If the hole extends beyond i_size, set the hole
3989 * to end after the page that contains i_size
3990 */
3991 if (offset + length > inode->i_size) {
3992 length = inode->i_size +
3993 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994 offset;
3995 }
3996
3997 if (offset & (sb->s_blocksize - 1) ||
3998 (offset + length) & (sb->s_blocksize - 1)) {
3999 /*
4000 * Attach jinode to inode for jbd2 if we do any zeroing of
4001 * partial block
4002 */
4003 ret = ext4_inode_attach_jinode(inode);
4004 if (ret < 0)
4005 goto out_mutex;
4006
4007 }
4008
4009 /* Wait all existing dio workers, newcomers will block on i_mutex */
4010 inode_dio_wait(inode);
4011
4012 /*
4013 * Prevent page faults from reinstantiating pages we have released from
4014 * page cache.
4015 */
4016 down_write(&EXT4_I(inode)->i_mmap_sem);
4017
4018 ret = ext4_break_layouts(inode);
4019 if (ret)
4020 goto out_dio;
4021
4022 first_block_offset = round_up(offset, sb->s_blocksize);
4023 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024
4025 /* Now release the pages and zero block aligned part of pages*/
4026 if (last_block_offset > first_block_offset) {
4027 ret = ext4_update_disksize_before_punch(inode, offset, length);
4028 if (ret)
4029 goto out_dio;
4030 truncate_pagecache_range(inode, first_block_offset,
4031 last_block_offset);
4032 }
4033
4034 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 credits = ext4_writepage_trans_blocks(inode);
4036 else
4037 credits = ext4_blocks_for_truncate(inode);
4038 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039 if (IS_ERR(handle)) {
4040 ret = PTR_ERR(handle);
4041 ext4_std_error(sb, ret);
4042 goto out_dio;
4043 }
4044
4045 ret = ext4_zero_partial_blocks(handle, inode, offset,
4046 length);
4047 if (ret)
4048 goto out_stop;
4049
4050 first_block = (offset + sb->s_blocksize - 1) >>
4051 EXT4_BLOCK_SIZE_BITS(sb);
4052 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053
4054 /* If there are blocks to remove, do it */
4055 if (stop_block > first_block) {
4056
4057 down_write(&EXT4_I(inode)->i_data_sem);
4058 ext4_discard_preallocations(inode);
4059
4060 ret = ext4_es_remove_extent(inode, first_block,
4061 stop_block - first_block);
4062 if (ret) {
4063 up_write(&EXT4_I(inode)->i_data_sem);
4064 goto out_stop;
4065 }
4066
4067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068 ret = ext4_ext_remove_space(inode, first_block,
4069 stop_block - 1);
4070 else
4071 ret = ext4_ind_remove_space(handle, inode, first_block,
4072 stop_block);
4073
4074 up_write(&EXT4_I(inode)->i_data_sem);
4075 }
4076 if (IS_SYNC(inode))
4077 ext4_handle_sync(handle);
4078
4079 inode->i_mtime = inode->i_ctime = current_time(inode);
4080 ext4_mark_inode_dirty(handle, inode);
4081 if (ret >= 0)
4082 ext4_update_inode_fsync_trans(handle, inode, 1);
4083 out_stop:
4084 ext4_journal_stop(handle);
4085 out_dio:
4086 up_write(&EXT4_I(inode)->i_mmap_sem);
4087 out_mutex:
4088 inode_unlock(inode);
4089 return ret;
4090 }
4091
4092 int ext4_inode_attach_jinode(struct inode *inode)
4093 {
4094 struct ext4_inode_info *ei = EXT4_I(inode);
4095 struct jbd2_inode *jinode;
4096
4097 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4098 return 0;
4099
4100 jinode = jbd2_alloc_inode(GFP_KERNEL);
4101 spin_lock(&inode->i_lock);
4102 if (!ei->jinode) {
4103 if (!jinode) {
4104 spin_unlock(&inode->i_lock);
4105 return -ENOMEM;
4106 }
4107 ei->jinode = jinode;
4108 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4109 jinode = NULL;
4110 }
4111 spin_unlock(&inode->i_lock);
4112 if (unlikely(jinode != NULL))
4113 jbd2_free_inode(jinode);
4114 return 0;
4115 }
4116
4117 /*
4118 * ext4_truncate()
4119 *
4120 * We block out ext4_get_block() block instantiations across the entire
4121 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4122 * simultaneously on behalf of the same inode.
4123 *
4124 * As we work through the truncate and commit bits of it to the journal there
4125 * is one core, guiding principle: the file's tree must always be consistent on
4126 * disk. We must be able to restart the truncate after a crash.
4127 *
4128 * The file's tree may be transiently inconsistent in memory (although it
4129 * probably isn't), but whenever we close off and commit a journal transaction,
4130 * the contents of (the filesystem + the journal) must be consistent and
4131 * restartable. It's pretty simple, really: bottom up, right to left (although
4132 * left-to-right works OK too).
4133 *
4134 * Note that at recovery time, journal replay occurs *before* the restart of
4135 * truncate against the orphan inode list.
4136 *
4137 * The committed inode has the new, desired i_size (which is the same as
4138 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4139 * that this inode's truncate did not complete and it will again call
4140 * ext4_truncate() to have another go. So there will be instantiated blocks
4141 * to the right of the truncation point in a crashed ext4 filesystem. But
4142 * that's fine - as long as they are linked from the inode, the post-crash
4143 * ext4_truncate() run will find them and release them.
4144 */
4145 int ext4_truncate(struct inode *inode)
4146 {
4147 struct ext4_inode_info *ei = EXT4_I(inode);
4148 unsigned int credits;
4149 int err = 0;
4150 handle_t *handle;
4151 struct address_space *mapping = inode->i_mapping;
4152
4153 /*
4154 * There is a possibility that we're either freeing the inode
4155 * or it's a completely new inode. In those cases we might not
4156 * have i_mutex locked because it's not necessary.
4157 */
4158 if (!(inode->i_state & (I_NEW|I_FREEING)))
4159 WARN_ON(!inode_is_locked(inode));
4160 trace_ext4_truncate_enter(inode);
4161
4162 if (!ext4_can_truncate(inode))
4163 return 0;
4164
4165 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4166 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4167
4168 if (ext4_has_inline_data(inode)) {
4169 int has_inline = 1;
4170
4171 err = ext4_inline_data_truncate(inode, &has_inline);
4172 if (err)
4173 return err;
4174 if (has_inline)
4175 return 0;
4176 }
4177
4178 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 if (ext4_inode_attach_jinode(inode) < 0)
4181 return 0;
4182 }
4183
4184 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185 credits = ext4_writepage_trans_blocks(inode);
4186 else
4187 credits = ext4_blocks_for_truncate(inode);
4188
4189 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190 if (IS_ERR(handle))
4191 return PTR_ERR(handle);
4192
4193 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4194 ext4_block_truncate_page(handle, mapping, inode->i_size);
4195
4196 /*
4197 * We add the inode to the orphan list, so that if this
4198 * truncate spans multiple transactions, and we crash, we will
4199 * resume the truncate when the filesystem recovers. It also
4200 * marks the inode dirty, to catch the new size.
4201 *
4202 * Implication: the file must always be in a sane, consistent
4203 * truncatable state while each transaction commits.
4204 */
4205 err = ext4_orphan_add(handle, inode);
4206 if (err)
4207 goto out_stop;
4208
4209 down_write(&EXT4_I(inode)->i_data_sem);
4210
4211 ext4_discard_preallocations(inode);
4212
4213 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214 err = ext4_ext_truncate(handle, inode);
4215 else
4216 ext4_ind_truncate(handle, inode);
4217
4218 up_write(&ei->i_data_sem);
4219 if (err)
4220 goto out_stop;
4221
4222 if (IS_SYNC(inode))
4223 ext4_handle_sync(handle);
4224
4225 out_stop:
4226 /*
4227 * If this was a simple ftruncate() and the file will remain alive,
4228 * then we need to clear up the orphan record which we created above.
4229 * However, if this was a real unlink then we were called by
4230 * ext4_evict_inode(), and we allow that function to clean up the
4231 * orphan info for us.
4232 */
4233 if (inode->i_nlink)
4234 ext4_orphan_del(handle, inode);
4235
4236 inode->i_mtime = inode->i_ctime = current_time(inode);
4237 ext4_mark_inode_dirty(handle, inode);
4238 ext4_journal_stop(handle);
4239
4240 trace_ext4_truncate_exit(inode);
4241 return err;
4242 }
4243
4244 /*
4245 * ext4_get_inode_loc returns with an extra refcount against the inode's
4246 * underlying buffer_head on success. If 'in_mem' is true, we have all
4247 * data in memory that is needed to recreate the on-disk version of this
4248 * inode.
4249 */
4250 static int __ext4_get_inode_loc(struct inode *inode,
4251 struct ext4_iloc *iloc, int in_mem)
4252 {
4253 struct ext4_group_desc *gdp;
4254 struct buffer_head *bh;
4255 struct super_block *sb = inode->i_sb;
4256 ext4_fsblk_t block;
4257 struct blk_plug plug;
4258 int inodes_per_block, inode_offset;
4259
4260 iloc->bh = NULL;
4261 if (inode->i_ino < EXT4_ROOT_INO ||
4262 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4263 return -EFSCORRUPTED;
4264
4265 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4266 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4267 if (!gdp)
4268 return -EIO;
4269
4270 /*
4271 * Figure out the offset within the block group inode table
4272 */
4273 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4274 inode_offset = ((inode->i_ino - 1) %
4275 EXT4_INODES_PER_GROUP(sb));
4276 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4277 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4278
4279 bh = sb_getblk(sb, block);
4280 if (unlikely(!bh))
4281 return -ENOMEM;
4282 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4283 goto simulate_eio;
4284 if (!buffer_uptodate(bh)) {
4285 lock_buffer(bh);
4286
4287 /*
4288 * If the buffer has the write error flag, we have failed
4289 * to write out another inode in the same block. In this
4290 * case, we don't have to read the block because we may
4291 * read the old inode data successfully.
4292 */
4293 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4294 set_buffer_uptodate(bh);
4295
4296 if (buffer_uptodate(bh)) {
4297 /* someone brought it uptodate while we waited */
4298 unlock_buffer(bh);
4299 goto has_buffer;
4300 }
4301
4302 /*
4303 * If we have all information of the inode in memory and this
4304 * is the only valid inode in the block, we need not read the
4305 * block.
4306 */
4307 if (in_mem) {
4308 struct buffer_head *bitmap_bh;
4309 int i, start;
4310
4311 start = inode_offset & ~(inodes_per_block - 1);
4312
4313 /* Is the inode bitmap in cache? */
4314 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4315 if (unlikely(!bitmap_bh))
4316 goto make_io;
4317
4318 /*
4319 * If the inode bitmap isn't in cache then the
4320 * optimisation may end up performing two reads instead
4321 * of one, so skip it.
4322 */
4323 if (!buffer_uptodate(bitmap_bh)) {
4324 brelse(bitmap_bh);
4325 goto make_io;
4326 }
4327 for (i = start; i < start + inodes_per_block; i++) {
4328 if (i == inode_offset)
4329 continue;
4330 if (ext4_test_bit(i, bitmap_bh->b_data))
4331 break;
4332 }
4333 brelse(bitmap_bh);
4334 if (i == start + inodes_per_block) {
4335 /* all other inodes are free, so skip I/O */
4336 memset(bh->b_data, 0, bh->b_size);
4337 set_buffer_uptodate(bh);
4338 unlock_buffer(bh);
4339 goto has_buffer;
4340 }
4341 }
4342
4343 make_io:
4344 /*
4345 * If we need to do any I/O, try to pre-readahead extra
4346 * blocks from the inode table.
4347 */
4348 blk_start_plug(&plug);
4349 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4350 ext4_fsblk_t b, end, table;
4351 unsigned num;
4352 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4353
4354 table = ext4_inode_table(sb, gdp);
4355 /* s_inode_readahead_blks is always a power of 2 */
4356 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4357 if (table > b)
4358 b = table;
4359 end = b + ra_blks;
4360 num = EXT4_INODES_PER_GROUP(sb);
4361 if (ext4_has_group_desc_csum(sb))
4362 num -= ext4_itable_unused_count(sb, gdp);
4363 table += num / inodes_per_block;
4364 if (end > table)
4365 end = table;
4366 while (b <= end)
4367 sb_breadahead_unmovable(sb, b++);
4368 }
4369
4370 /*
4371 * There are other valid inodes in the buffer, this inode
4372 * has in-inode xattrs, or we don't have this inode in memory.
4373 * Read the block from disk.
4374 */
4375 trace_ext4_load_inode(inode);
4376 get_bh(bh);
4377 bh->b_end_io = end_buffer_read_sync;
4378 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4379 blk_finish_plug(&plug);
4380 wait_on_buffer(bh);
4381 if (!buffer_uptodate(bh)) {
4382 simulate_eio:
4383 ext4_error_inode_block(inode, block, EIO,
4384 "unable to read itable block");
4385 brelse(bh);
4386 return -EIO;
4387 }
4388 }
4389 has_buffer:
4390 iloc->bh = bh;
4391 return 0;
4392 }
4393
4394 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4395 {
4396 /* We have all inode data except xattrs in memory here. */
4397 return __ext4_get_inode_loc(inode, iloc,
4398 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4399 }
4400
4401 static bool ext4_should_use_dax(struct inode *inode)
4402 {
4403 if (!test_opt(inode->i_sb, DAX))
4404 return false;
4405 if (!S_ISREG(inode->i_mode))
4406 return false;
4407 if (ext4_should_journal_data(inode))
4408 return false;
4409 if (ext4_has_inline_data(inode))
4410 return false;
4411 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4412 return false;
4413 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4414 return false;
4415 return true;
4416 }
4417
4418 void ext4_set_inode_flags(struct inode *inode)
4419 {
4420 unsigned int flags = EXT4_I(inode)->i_flags;
4421 unsigned int new_fl = 0;
4422
4423 if (flags & EXT4_SYNC_FL)
4424 new_fl |= S_SYNC;
4425 if (flags & EXT4_APPEND_FL)
4426 new_fl |= S_APPEND;
4427 if (flags & EXT4_IMMUTABLE_FL)
4428 new_fl |= S_IMMUTABLE;
4429 if (flags & EXT4_NOATIME_FL)
4430 new_fl |= S_NOATIME;
4431 if (flags & EXT4_DIRSYNC_FL)
4432 new_fl |= S_DIRSYNC;
4433 if (ext4_should_use_dax(inode))
4434 new_fl |= S_DAX;
4435 if (flags & EXT4_ENCRYPT_FL)
4436 new_fl |= S_ENCRYPTED;
4437 if (flags & EXT4_CASEFOLD_FL)
4438 new_fl |= S_CASEFOLD;
4439 if (flags & EXT4_VERITY_FL)
4440 new_fl |= S_VERITY;
4441 inode_set_flags(inode, new_fl,
4442 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4443 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4444 }
4445
4446 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4447 struct ext4_inode_info *ei)
4448 {
4449 blkcnt_t i_blocks ;
4450 struct inode *inode = &(ei->vfs_inode);
4451 struct super_block *sb = inode->i_sb;
4452
4453 if (ext4_has_feature_huge_file(sb)) {
4454 /* we are using combined 48 bit field */
4455 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4456 le32_to_cpu(raw_inode->i_blocks_lo);
4457 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4458 /* i_blocks represent file system block size */
4459 return i_blocks << (inode->i_blkbits - 9);
4460 } else {
4461 return i_blocks;
4462 }
4463 } else {
4464 return le32_to_cpu(raw_inode->i_blocks_lo);
4465 }
4466 }
4467
4468 static inline int ext4_iget_extra_inode(struct inode *inode,
4469 struct ext4_inode *raw_inode,
4470 struct ext4_inode_info *ei)
4471 {
4472 __le32 *magic = (void *)raw_inode +
4473 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4474
4475 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4476 EXT4_INODE_SIZE(inode->i_sb) &&
4477 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4478 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4479 return ext4_find_inline_data_nolock(inode);
4480 } else
4481 EXT4_I(inode)->i_inline_off = 0;
4482 return 0;
4483 }
4484
4485 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4486 {
4487 if (!ext4_has_feature_project(inode->i_sb))
4488 return -EOPNOTSUPP;
4489 *projid = EXT4_I(inode)->i_projid;
4490 return 0;
4491 }
4492
4493 /*
4494 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4495 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4496 * set.
4497 */
4498 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4499 {
4500 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4501 inode_set_iversion_raw(inode, val);
4502 else
4503 inode_set_iversion_queried(inode, val);
4504 }
4505 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4506 {
4507 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4508 return inode_peek_iversion_raw(inode);
4509 else
4510 return inode_peek_iversion(inode);
4511 }
4512
4513 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4514 ext4_iget_flags flags, const char *function,
4515 unsigned int line)
4516 {
4517 struct ext4_iloc iloc;
4518 struct ext4_inode *raw_inode;
4519 struct ext4_inode_info *ei;
4520 struct inode *inode;
4521 journal_t *journal = EXT4_SB(sb)->s_journal;
4522 long ret;
4523 loff_t size;
4524 int block;
4525 uid_t i_uid;
4526 gid_t i_gid;
4527 projid_t i_projid;
4528
4529 if ((!(flags & EXT4_IGET_SPECIAL) &&
4530 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4531 (ino < EXT4_ROOT_INO) ||
4532 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4533 if (flags & EXT4_IGET_HANDLE)
4534 return ERR_PTR(-ESTALE);
4535 __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4536 "inode #%lu: comm %s: iget: illegal inode #",
4537 ino, current->comm);
4538 return ERR_PTR(-EFSCORRUPTED);
4539 }
4540
4541 inode = iget_locked(sb, ino);
4542 if (!inode)
4543 return ERR_PTR(-ENOMEM);
4544 if (!(inode->i_state & I_NEW))
4545 return inode;
4546
4547 ei = EXT4_I(inode);
4548 iloc.bh = NULL;
4549
4550 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4551 if (ret < 0)
4552 goto bad_inode;
4553 raw_inode = ext4_raw_inode(&iloc);
4554
4555 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4556 ext4_error_inode(inode, function, line, 0,
4557 "iget: root inode unallocated");
4558 ret = -EFSCORRUPTED;
4559 goto bad_inode;
4560 }
4561
4562 if ((flags & EXT4_IGET_HANDLE) &&
4563 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4564 ret = -ESTALE;
4565 goto bad_inode;
4566 }
4567
4568 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4569 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4570 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4571 EXT4_INODE_SIZE(inode->i_sb) ||
4572 (ei->i_extra_isize & 3)) {
4573 ext4_error_inode(inode, function, line, 0,
4574 "iget: bad extra_isize %u "
4575 "(inode size %u)",
4576 ei->i_extra_isize,
4577 EXT4_INODE_SIZE(inode->i_sb));
4578 ret = -EFSCORRUPTED;
4579 goto bad_inode;
4580 }
4581 } else
4582 ei->i_extra_isize = 0;
4583
4584 /* Precompute checksum seed for inode metadata */
4585 if (ext4_has_metadata_csum(sb)) {
4586 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4587 __u32 csum;
4588 __le32 inum = cpu_to_le32(inode->i_ino);
4589 __le32 gen = raw_inode->i_generation;
4590 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4591 sizeof(inum));
4592 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4593 sizeof(gen));
4594 }
4595
4596 if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4597 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4598 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4599 "iget: checksum invalid");
4600 ret = -EFSBADCRC;
4601 goto bad_inode;
4602 }
4603
4604 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4605 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4606 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4607 if (ext4_has_feature_project(sb) &&
4608 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4609 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4610 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4611 else
4612 i_projid = EXT4_DEF_PROJID;
4613
4614 if (!(test_opt(inode->i_sb, NO_UID32))) {
4615 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4616 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4617 }
4618 i_uid_write(inode, i_uid);
4619 i_gid_write(inode, i_gid);
4620 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4621 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4622
4623 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4624 ei->i_inline_off = 0;
4625 ei->i_dir_start_lookup = 0;
4626 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4627 /* We now have enough fields to check if the inode was active or not.
4628 * This is needed because nfsd might try to access dead inodes
4629 * the test is that same one that e2fsck uses
4630 * NeilBrown 1999oct15
4631 */
4632 if (inode->i_nlink == 0) {
4633 if ((inode->i_mode == 0 ||
4634 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4635 ino != EXT4_BOOT_LOADER_INO) {
4636 /* this inode is deleted */
4637 ret = -ESTALE;
4638 goto bad_inode;
4639 }
4640 /* The only unlinked inodes we let through here have
4641 * valid i_mode and are being read by the orphan
4642 * recovery code: that's fine, we're about to complete
4643 * the process of deleting those.
4644 * OR it is the EXT4_BOOT_LOADER_INO which is
4645 * not initialized on a new filesystem. */
4646 }
4647 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4648 ext4_set_inode_flags(inode);
4649 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4650 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4651 if (ext4_has_feature_64bit(sb))
4652 ei->i_file_acl |=
4653 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4654 inode->i_size = ext4_isize(sb, raw_inode);
4655 if ((size = i_size_read(inode)) < 0) {
4656 ext4_error_inode(inode, function, line, 0,
4657 "iget: bad i_size value: %lld", size);
4658 ret = -EFSCORRUPTED;
4659 goto bad_inode;
4660 }
4661 /*
4662 * If dir_index is not enabled but there's dir with INDEX flag set,
4663 * we'd normally treat htree data as empty space. But with metadata
4664 * checksumming that corrupts checksums so forbid that.
4665 */
4666 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4667 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4668 ext4_error_inode(inode, function, line, 0,
4669 "iget: Dir with htree data on filesystem without dir_index feature.");
4670 ret = -EFSCORRUPTED;
4671 goto bad_inode;
4672 }
4673 ei->i_disksize = inode->i_size;
4674 #ifdef CONFIG_QUOTA
4675 ei->i_reserved_quota = 0;
4676 #endif
4677 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4678 ei->i_block_group = iloc.block_group;
4679 ei->i_last_alloc_group = ~0;
4680 /*
4681 * NOTE! The in-memory inode i_data array is in little-endian order
4682 * even on big-endian machines: we do NOT byteswap the block numbers!
4683 */
4684 for (block = 0; block < EXT4_N_BLOCKS; block++)
4685 ei->i_data[block] = raw_inode->i_block[block];
4686 INIT_LIST_HEAD(&ei->i_orphan);
4687
4688 /*
4689 * Set transaction id's of transactions that have to be committed
4690 * to finish f[data]sync. We set them to currently running transaction
4691 * as we cannot be sure that the inode or some of its metadata isn't
4692 * part of the transaction - the inode could have been reclaimed and
4693 * now it is reread from disk.
4694 */
4695 if (journal) {
4696 transaction_t *transaction;
4697 tid_t tid;
4698
4699 read_lock(&journal->j_state_lock);
4700 if (journal->j_running_transaction)
4701 transaction = journal->j_running_transaction;
4702 else
4703 transaction = journal->j_committing_transaction;
4704 if (transaction)
4705 tid = transaction->t_tid;
4706 else
4707 tid = journal->j_commit_sequence;
4708 read_unlock(&journal->j_state_lock);
4709 ei->i_sync_tid = tid;
4710 ei->i_datasync_tid = tid;
4711 }
4712
4713 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714 if (ei->i_extra_isize == 0) {
4715 /* The extra space is currently unused. Use it. */
4716 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4717 ei->i_extra_isize = sizeof(struct ext4_inode) -
4718 EXT4_GOOD_OLD_INODE_SIZE;
4719 } else {
4720 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4721 if (ret)
4722 goto bad_inode;
4723 }
4724 }
4725
4726 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4727 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4728 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4729 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4730
4731 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4732 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4733
4734 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4735 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4736 ivers |=
4737 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4738 }
4739 ext4_inode_set_iversion_queried(inode, ivers);
4740 }
4741
4742 ret = 0;
4743 if (ei->i_file_acl &&
4744 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4745 ext4_error_inode(inode, function, line, 0,
4746 "iget: bad extended attribute block %llu",
4747 ei->i_file_acl);
4748 ret = -EFSCORRUPTED;
4749 goto bad_inode;
4750 } else if (!ext4_has_inline_data(inode)) {
4751 /* validate the block references in the inode */
4752 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4753 (S_ISLNK(inode->i_mode) &&
4754 !ext4_inode_is_fast_symlink(inode))) {
4755 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4756 ret = ext4_ext_check_inode(inode);
4757 else
4758 ret = ext4_ind_check_inode(inode);
4759 }
4760 }
4761 if (ret)
4762 goto bad_inode;
4763
4764 if (S_ISREG(inode->i_mode)) {
4765 inode->i_op = &ext4_file_inode_operations;
4766 inode->i_fop = &ext4_file_operations;
4767 ext4_set_aops(inode);
4768 } else if (S_ISDIR(inode->i_mode)) {
4769 inode->i_op = &ext4_dir_inode_operations;
4770 inode->i_fop = &ext4_dir_operations;
4771 } else if (S_ISLNK(inode->i_mode)) {
4772 /* VFS does not allow setting these so must be corruption */
4773 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4774 ext4_error_inode(inode, function, line, 0,
4775 "iget: immutable or append flags "
4776 "not allowed on symlinks");
4777 ret = -EFSCORRUPTED;
4778 goto bad_inode;
4779 }
4780 if (IS_ENCRYPTED(inode)) {
4781 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4782 ext4_set_aops(inode);
4783 } else if (ext4_inode_is_fast_symlink(inode)) {
4784 inode->i_link = (char *)ei->i_data;
4785 inode->i_op = &ext4_fast_symlink_inode_operations;
4786 nd_terminate_link(ei->i_data, inode->i_size,
4787 sizeof(ei->i_data) - 1);
4788 } else {
4789 inode->i_op = &ext4_symlink_inode_operations;
4790 ext4_set_aops(inode);
4791 }
4792 inode_nohighmem(inode);
4793 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4794 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4795 inode->i_op = &ext4_special_inode_operations;
4796 if (raw_inode->i_block[0])
4797 init_special_inode(inode, inode->i_mode,
4798 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4799 else
4800 init_special_inode(inode, inode->i_mode,
4801 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4802 } else if (ino == EXT4_BOOT_LOADER_INO) {
4803 make_bad_inode(inode);
4804 } else {
4805 ret = -EFSCORRUPTED;
4806 ext4_error_inode(inode, function, line, 0,
4807 "iget: bogus i_mode (%o)", inode->i_mode);
4808 goto bad_inode;
4809 }
4810 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4811 ext4_error_inode(inode, function, line, 0,
4812 "casefold flag without casefold feature");
4813 brelse(iloc.bh);
4814
4815 unlock_new_inode(inode);
4816 return inode;
4817
4818 bad_inode:
4819 brelse(iloc.bh);
4820 iget_failed(inode);
4821 return ERR_PTR(ret);
4822 }
4823
4824 static int ext4_inode_blocks_set(handle_t *handle,
4825 struct ext4_inode *raw_inode,
4826 struct ext4_inode_info *ei)
4827 {
4828 struct inode *inode = &(ei->vfs_inode);
4829 u64 i_blocks = READ_ONCE(inode->i_blocks);
4830 struct super_block *sb = inode->i_sb;
4831
4832 if (i_blocks <= ~0U) {
4833 /*
4834 * i_blocks can be represented in a 32 bit variable
4835 * as multiple of 512 bytes
4836 */
4837 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4838 raw_inode->i_blocks_high = 0;
4839 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4840 return 0;
4841 }
4842 if (!ext4_has_feature_huge_file(sb))
4843 return -EFBIG;
4844
4845 if (i_blocks <= 0xffffffffffffULL) {
4846 /*
4847 * i_blocks can be represented in a 48 bit variable
4848 * as multiple of 512 bytes
4849 */
4850 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4851 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4852 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4853 } else {
4854 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4855 /* i_block is stored in file system block size */
4856 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4857 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4858 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4859 }
4860 return 0;
4861 }
4862
4863 struct other_inode {
4864 unsigned long orig_ino;
4865 struct ext4_inode *raw_inode;
4866 };
4867
4868 static int other_inode_match(struct inode * inode, unsigned long ino,
4869 void *data)
4870 {
4871 struct other_inode *oi = (struct other_inode *) data;
4872
4873 if ((inode->i_ino != ino) ||
4874 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4875 I_DIRTY_INODE)) ||
4876 ((inode->i_state & I_DIRTY_TIME) == 0))
4877 return 0;
4878 spin_lock(&inode->i_lock);
4879 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4880 I_DIRTY_INODE)) == 0) &&
4881 (inode->i_state & I_DIRTY_TIME)) {
4882 struct ext4_inode_info *ei = EXT4_I(inode);
4883
4884 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4885 spin_unlock(&inode->i_lock);
4886
4887 spin_lock(&ei->i_raw_lock);
4888 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4889 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4890 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4891 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4892 spin_unlock(&ei->i_raw_lock);
4893 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4894 return -1;
4895 }
4896 spin_unlock(&inode->i_lock);
4897 return -1;
4898 }
4899
4900 /*
4901 * Opportunistically update the other time fields for other inodes in
4902 * the same inode table block.
4903 */
4904 static void ext4_update_other_inodes_time(struct super_block *sb,
4905 unsigned long orig_ino, char *buf)
4906 {
4907 struct other_inode oi;
4908 unsigned long ino;
4909 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4910 int inode_size = EXT4_INODE_SIZE(sb);
4911
4912 oi.orig_ino = orig_ino;
4913 /*
4914 * Calculate the first inode in the inode table block. Inode
4915 * numbers are one-based. That is, the first inode in a block
4916 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4917 */
4918 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4919 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4920 if (ino == orig_ino)
4921 continue;
4922 oi.raw_inode = (struct ext4_inode *) buf;
4923 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4924 }
4925 }
4926
4927 /*
4928 * Post the struct inode info into an on-disk inode location in the
4929 * buffer-cache. This gobbles the caller's reference to the
4930 * buffer_head in the inode location struct.
4931 *
4932 * The caller must have write access to iloc->bh.
4933 */
4934 static int ext4_do_update_inode(handle_t *handle,
4935 struct inode *inode,
4936 struct ext4_iloc *iloc)
4937 {
4938 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4939 struct ext4_inode_info *ei = EXT4_I(inode);
4940 struct buffer_head *bh = iloc->bh;
4941 struct super_block *sb = inode->i_sb;
4942 int err = 0, rc, block;
4943 int need_datasync = 0, set_large_file = 0;
4944 uid_t i_uid;
4945 gid_t i_gid;
4946 projid_t i_projid;
4947
4948 spin_lock(&ei->i_raw_lock);
4949
4950 /* For fields not tracked in the in-memory inode,
4951 * initialise them to zero for new inodes. */
4952 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4953 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4954
4955 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4956 i_uid = i_uid_read(inode);
4957 i_gid = i_gid_read(inode);
4958 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4959 if (!(test_opt(inode->i_sb, NO_UID32))) {
4960 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4961 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4962 /*
4963 * Fix up interoperability with old kernels. Otherwise, old inodes get
4964 * re-used with the upper 16 bits of the uid/gid intact
4965 */
4966 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4967 raw_inode->i_uid_high = 0;
4968 raw_inode->i_gid_high = 0;
4969 } else {
4970 raw_inode->i_uid_high =
4971 cpu_to_le16(high_16_bits(i_uid));
4972 raw_inode->i_gid_high =
4973 cpu_to_le16(high_16_bits(i_gid));
4974 }
4975 } else {
4976 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4977 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4978 raw_inode->i_uid_high = 0;
4979 raw_inode->i_gid_high = 0;
4980 }
4981 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4982
4983 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4987
4988 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4989 if (err) {
4990 spin_unlock(&ei->i_raw_lock);
4991 goto out_brelse;
4992 }
4993 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4994 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4995 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4996 raw_inode->i_file_acl_high =
4997 cpu_to_le16(ei->i_file_acl >> 32);
4998 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4999 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5000 ext4_isize_set(raw_inode, ei->i_disksize);
5001 need_datasync = 1;
5002 }
5003 if (ei->i_disksize > 0x7fffffffULL) {
5004 if (!ext4_has_feature_large_file(sb) ||
5005 EXT4_SB(sb)->s_es->s_rev_level ==
5006 cpu_to_le32(EXT4_GOOD_OLD_REV))
5007 set_large_file = 1;
5008 }
5009 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5010 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5011 if (old_valid_dev(inode->i_rdev)) {
5012 raw_inode->i_block[0] =
5013 cpu_to_le32(old_encode_dev(inode->i_rdev));
5014 raw_inode->i_block[1] = 0;
5015 } else {
5016 raw_inode->i_block[0] = 0;
5017 raw_inode->i_block[1] =
5018 cpu_to_le32(new_encode_dev(inode->i_rdev));
5019 raw_inode->i_block[2] = 0;
5020 }
5021 } else if (!ext4_has_inline_data(inode)) {
5022 for (block = 0; block < EXT4_N_BLOCKS; block++)
5023 raw_inode->i_block[block] = ei->i_data[block];
5024 }
5025
5026 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5027 u64 ivers = ext4_inode_peek_iversion(inode);
5028
5029 raw_inode->i_disk_version = cpu_to_le32(ivers);
5030 if (ei->i_extra_isize) {
5031 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5032 raw_inode->i_version_hi =
5033 cpu_to_le32(ivers >> 32);
5034 raw_inode->i_extra_isize =
5035 cpu_to_le16(ei->i_extra_isize);
5036 }
5037 }
5038
5039 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5040 i_projid != EXT4_DEF_PROJID);
5041
5042 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5043 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5044 raw_inode->i_projid = cpu_to_le32(i_projid);
5045
5046 ext4_inode_csum_set(inode, raw_inode, ei);
5047 spin_unlock(&ei->i_raw_lock);
5048 if (inode->i_sb->s_flags & SB_LAZYTIME)
5049 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5050 bh->b_data);
5051
5052 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5053 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5054 if (!err)
5055 err = rc;
5056 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5057 if (set_large_file) {
5058 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5059 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5060 if (err)
5061 goto out_brelse;
5062 ext4_set_feature_large_file(sb);
5063 ext4_handle_sync(handle);
5064 err = ext4_handle_dirty_super(handle, sb);
5065 }
5066 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5067 out_brelse:
5068 brelse(bh);
5069 ext4_std_error(inode->i_sb, err);
5070 return err;
5071 }
5072
5073 /*
5074 * ext4_write_inode()
5075 *
5076 * We are called from a few places:
5077 *
5078 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5079 * Here, there will be no transaction running. We wait for any running
5080 * transaction to commit.
5081 *
5082 * - Within flush work (sys_sync(), kupdate and such).
5083 * We wait on commit, if told to.
5084 *
5085 * - Within iput_final() -> write_inode_now()
5086 * We wait on commit, if told to.
5087 *
5088 * In all cases it is actually safe for us to return without doing anything,
5089 * because the inode has been copied into a raw inode buffer in
5090 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5091 * writeback.
5092 *
5093 * Note that we are absolutely dependent upon all inode dirtiers doing the
5094 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5095 * which we are interested.
5096 *
5097 * It would be a bug for them to not do this. The code:
5098 *
5099 * mark_inode_dirty(inode)
5100 * stuff();
5101 * inode->i_size = expr;
5102 *
5103 * is in error because write_inode() could occur while `stuff()' is running,
5104 * and the new i_size will be lost. Plus the inode will no longer be on the
5105 * superblock's dirty inode list.
5106 */
5107 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5108 {
5109 int err;
5110
5111 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5112 sb_rdonly(inode->i_sb))
5113 return 0;
5114
5115 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5116 return -EIO;
5117
5118 if (EXT4_SB(inode->i_sb)->s_journal) {
5119 if (ext4_journal_current_handle()) {
5120 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5121 dump_stack();
5122 return -EIO;
5123 }
5124
5125 /*
5126 * No need to force transaction in WB_SYNC_NONE mode. Also
5127 * ext4_sync_fs() will force the commit after everything is
5128 * written.
5129 */
5130 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5131 return 0;
5132
5133 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5134 EXT4_I(inode)->i_sync_tid);
5135 } else {
5136 struct ext4_iloc iloc;
5137
5138 err = __ext4_get_inode_loc(inode, &iloc, 0);
5139 if (err)
5140 return err;
5141 /*
5142 * sync(2) will flush the whole buffer cache. No need to do
5143 * it here separately for each inode.
5144 */
5145 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5146 sync_dirty_buffer(iloc.bh);
5147 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5148 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5149 "IO error syncing inode");
5150 err = -EIO;
5151 }
5152 brelse(iloc.bh);
5153 }
5154 return err;
5155 }
5156
5157 /*
5158 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5159 * buffers that are attached to a page stradding i_size and are undergoing
5160 * commit. In that case we have to wait for commit to finish and try again.
5161 */
5162 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5163 {
5164 struct page *page;
5165 unsigned offset;
5166 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5167 tid_t commit_tid = 0;
5168 int ret;
5169
5170 offset = inode->i_size & (PAGE_SIZE - 1);
5171 /*
5172 * If the page is fully truncated, we don't need to wait for any commit
5173 * (and we even should not as __ext4_journalled_invalidatepage() may
5174 * strip all buffers from the page but keep the page dirty which can then
5175 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5176 * buffers). Also we don't need to wait for any commit if all buffers in
5177 * the page remain valid. This is most beneficial for the common case of
5178 * blocksize == PAGESIZE.
5179 */
5180 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5181 return;
5182 while (1) {
5183 page = find_lock_page(inode->i_mapping,
5184 inode->i_size >> PAGE_SHIFT);
5185 if (!page)
5186 return;
5187 ret = __ext4_journalled_invalidatepage(page, offset,
5188 PAGE_SIZE - offset);
5189 unlock_page(page);
5190 put_page(page);
5191 if (ret != -EBUSY)
5192 return;
5193 commit_tid = 0;
5194 read_lock(&journal->j_state_lock);
5195 if (journal->j_committing_transaction)
5196 commit_tid = journal->j_committing_transaction->t_tid;
5197 read_unlock(&journal->j_state_lock);
5198 if (commit_tid)
5199 jbd2_log_wait_commit(journal, commit_tid);
5200 }
5201 }
5202
5203 /*
5204 * ext4_setattr()
5205 *
5206 * Called from notify_change.
5207 *
5208 * We want to trap VFS attempts to truncate the file as soon as
5209 * possible. In particular, we want to make sure that when the VFS
5210 * shrinks i_size, we put the inode on the orphan list and modify
5211 * i_disksize immediately, so that during the subsequent flushing of
5212 * dirty pages and freeing of disk blocks, we can guarantee that any
5213 * commit will leave the blocks being flushed in an unused state on
5214 * disk. (On recovery, the inode will get truncated and the blocks will
5215 * be freed, so we have a strong guarantee that no future commit will
5216 * leave these blocks visible to the user.)
5217 *
5218 * Another thing we have to assure is that if we are in ordered mode
5219 * and inode is still attached to the committing transaction, we must
5220 * we start writeout of all the dirty pages which are being truncated.
5221 * This way we are sure that all the data written in the previous
5222 * transaction are already on disk (truncate waits for pages under
5223 * writeback).
5224 *
5225 * Called with inode->i_mutex down.
5226 */
5227 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5228 {
5229 struct inode *inode = d_inode(dentry);
5230 int error, rc = 0;
5231 int orphan = 0;
5232 const unsigned int ia_valid = attr->ia_valid;
5233
5234 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5235 return -EIO;
5236
5237 if (unlikely(IS_IMMUTABLE(inode)))
5238 return -EPERM;
5239
5240 if (unlikely(IS_APPEND(inode) &&
5241 (ia_valid & (ATTR_MODE | ATTR_UID |
5242 ATTR_GID | ATTR_TIMES_SET))))
5243 return -EPERM;
5244
5245 error = setattr_prepare(dentry, attr);
5246 if (error)
5247 return error;
5248
5249 error = fscrypt_prepare_setattr(dentry, attr);
5250 if (error)
5251 return error;
5252
5253 error = fsverity_prepare_setattr(dentry, attr);
5254 if (error)
5255 return error;
5256
5257 if (is_quota_modification(inode, attr)) {
5258 error = dquot_initialize(inode);
5259 if (error)
5260 return error;
5261 }
5262 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5263 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5264 handle_t *handle;
5265
5266 /* (user+group)*(old+new) structure, inode write (sb,
5267 * inode block, ? - but truncate inode update has it) */
5268 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5269 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5270 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5271 if (IS_ERR(handle)) {
5272 error = PTR_ERR(handle);
5273 goto err_out;
5274 }
5275
5276 /* dquot_transfer() calls back ext4_get_inode_usage() which
5277 * counts xattr inode references.
5278 */
5279 down_read(&EXT4_I(inode)->xattr_sem);
5280 error = dquot_transfer(inode, attr);
5281 up_read(&EXT4_I(inode)->xattr_sem);
5282
5283 if (error) {
5284 ext4_journal_stop(handle);
5285 return error;
5286 }
5287 /* Update corresponding info in inode so that everything is in
5288 * one transaction */
5289 if (attr->ia_valid & ATTR_UID)
5290 inode->i_uid = attr->ia_uid;
5291 if (attr->ia_valid & ATTR_GID)
5292 inode->i_gid = attr->ia_gid;
5293 error = ext4_mark_inode_dirty(handle, inode);
5294 ext4_journal_stop(handle);
5295 }
5296
5297 if (attr->ia_valid & ATTR_SIZE) {
5298 handle_t *handle;
5299 loff_t oldsize = inode->i_size;
5300 int shrink = (attr->ia_size < inode->i_size);
5301
5302 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5303 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5304
5305 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5306 return -EFBIG;
5307 }
5308 if (!S_ISREG(inode->i_mode))
5309 return -EINVAL;
5310
5311 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5312 inode_inc_iversion(inode);
5313
5314 if (shrink) {
5315 if (ext4_should_order_data(inode)) {
5316 error = ext4_begin_ordered_truncate(inode,
5317 attr->ia_size);
5318 if (error)
5319 goto err_out;
5320 }
5321 /*
5322 * Blocks are going to be removed from the inode. Wait
5323 * for dio in flight.
5324 */
5325 inode_dio_wait(inode);
5326 }
5327
5328 down_write(&EXT4_I(inode)->i_mmap_sem);
5329
5330 rc = ext4_break_layouts(inode);
5331 if (rc) {
5332 up_write(&EXT4_I(inode)->i_mmap_sem);
5333 return rc;
5334 }
5335
5336 if (attr->ia_size != inode->i_size) {
5337 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5338 if (IS_ERR(handle)) {
5339 error = PTR_ERR(handle);
5340 goto out_mmap_sem;
5341 }
5342 if (ext4_handle_valid(handle) && shrink) {
5343 error = ext4_orphan_add(handle, inode);
5344 orphan = 1;
5345 }
5346 /*
5347 * Update c/mtime on truncate up, ext4_truncate() will
5348 * update c/mtime in shrink case below
5349 */
5350 if (!shrink) {
5351 inode->i_mtime = current_time(inode);
5352 inode->i_ctime = inode->i_mtime;
5353 }
5354 down_write(&EXT4_I(inode)->i_data_sem);
5355 EXT4_I(inode)->i_disksize = attr->ia_size;
5356 rc = ext4_mark_inode_dirty(handle, inode);
5357 if (!error)
5358 error = rc;
5359 /*
5360 * We have to update i_size under i_data_sem together
5361 * with i_disksize to avoid races with writeback code
5362 * running ext4_wb_update_i_disksize().
5363 */
5364 if (!error)
5365 i_size_write(inode, attr->ia_size);
5366 up_write(&EXT4_I(inode)->i_data_sem);
5367 ext4_journal_stop(handle);
5368 if (error)
5369 goto out_mmap_sem;
5370 if (!shrink) {
5371 pagecache_isize_extended(inode, oldsize,
5372 inode->i_size);
5373 } else if (ext4_should_journal_data(inode)) {
5374 ext4_wait_for_tail_page_commit(inode);
5375 }
5376 }
5377
5378 /*
5379 * Truncate pagecache after we've waited for commit
5380 * in data=journal mode to make pages freeable.
5381 */
5382 truncate_pagecache(inode, inode->i_size);
5383 /*
5384 * Call ext4_truncate() even if i_size didn't change to
5385 * truncate possible preallocated blocks.
5386 */
5387 if (attr->ia_size <= oldsize) {
5388 rc = ext4_truncate(inode);
5389 if (rc)
5390 error = rc;
5391 }
5392 out_mmap_sem:
5393 up_write(&EXT4_I(inode)->i_mmap_sem);
5394 }
5395
5396 if (!error) {
5397 setattr_copy(inode, attr);
5398 mark_inode_dirty(inode);
5399 }
5400
5401 /*
5402 * If the call to ext4_truncate failed to get a transaction handle at
5403 * all, we need to clean up the in-core orphan list manually.
5404 */
5405 if (orphan && inode->i_nlink)
5406 ext4_orphan_del(NULL, inode);
5407
5408 if (!error && (ia_valid & ATTR_MODE))
5409 rc = posix_acl_chmod(inode, inode->i_mode);
5410
5411 err_out:
5412 ext4_std_error(inode->i_sb, error);
5413 if (!error)
5414 error = rc;
5415 return error;
5416 }
5417
5418 int ext4_getattr(const struct path *path, struct kstat *stat,
5419 u32 request_mask, unsigned int query_flags)
5420 {
5421 struct inode *inode = d_inode(path->dentry);
5422 struct ext4_inode *raw_inode;
5423 struct ext4_inode_info *ei = EXT4_I(inode);
5424 unsigned int flags;
5425
5426 if ((request_mask & STATX_BTIME) &&
5427 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5428 stat->result_mask |= STATX_BTIME;
5429 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5430 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5431 }
5432
5433 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5434 if (flags & EXT4_APPEND_FL)
5435 stat->attributes |= STATX_ATTR_APPEND;
5436 if (flags & EXT4_COMPR_FL)
5437 stat->attributes |= STATX_ATTR_COMPRESSED;
5438 if (flags & EXT4_ENCRYPT_FL)
5439 stat->attributes |= STATX_ATTR_ENCRYPTED;
5440 if (flags & EXT4_IMMUTABLE_FL)
5441 stat->attributes |= STATX_ATTR_IMMUTABLE;
5442 if (flags & EXT4_NODUMP_FL)
5443 stat->attributes |= STATX_ATTR_NODUMP;
5444 if (flags & EXT4_VERITY_FL)
5445 stat->attributes |= STATX_ATTR_VERITY;
5446
5447 stat->attributes_mask |= (STATX_ATTR_APPEND |
5448 STATX_ATTR_COMPRESSED |
5449 STATX_ATTR_ENCRYPTED |
5450 STATX_ATTR_IMMUTABLE |
5451 STATX_ATTR_NODUMP |
5452 STATX_ATTR_VERITY);
5453
5454 generic_fillattr(inode, stat);
5455 return 0;
5456 }
5457
5458 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5459 u32 request_mask, unsigned int query_flags)
5460 {
5461 struct inode *inode = d_inode(path->dentry);
5462 u64 delalloc_blocks;
5463
5464 ext4_getattr(path, stat, request_mask, query_flags);
5465
5466 /*
5467 * If there is inline data in the inode, the inode will normally not
5468 * have data blocks allocated (it may have an external xattr block).
5469 * Report at least one sector for such files, so tools like tar, rsync,
5470 * others don't incorrectly think the file is completely sparse.
5471 */
5472 if (unlikely(ext4_has_inline_data(inode)))
5473 stat->blocks += (stat->size + 511) >> 9;
5474
5475 /*
5476 * We can't update i_blocks if the block allocation is delayed
5477 * otherwise in the case of system crash before the real block
5478 * allocation is done, we will have i_blocks inconsistent with
5479 * on-disk file blocks.
5480 * We always keep i_blocks updated together with real
5481 * allocation. But to not confuse with user, stat
5482 * will return the blocks that include the delayed allocation
5483 * blocks for this file.
5484 */
5485 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5486 EXT4_I(inode)->i_reserved_data_blocks);
5487 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5488 return 0;
5489 }
5490
5491 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5492 int pextents)
5493 {
5494 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5495 return ext4_ind_trans_blocks(inode, lblocks);
5496 return ext4_ext_index_trans_blocks(inode, pextents);
5497 }
5498
5499 /*
5500 * Account for index blocks, block groups bitmaps and block group
5501 * descriptor blocks if modify datablocks and index blocks
5502 * worse case, the indexs blocks spread over different block groups
5503 *
5504 * If datablocks are discontiguous, they are possible to spread over
5505 * different block groups too. If they are contiguous, with flexbg,
5506 * they could still across block group boundary.
5507 *
5508 * Also account for superblock, inode, quota and xattr blocks
5509 */
5510 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5511 int pextents)
5512 {
5513 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5514 int gdpblocks;
5515 int idxblocks;
5516 int ret = 0;
5517
5518 /*
5519 * How many index blocks need to touch to map @lblocks logical blocks
5520 * to @pextents physical extents?
5521 */
5522 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5523
5524 ret = idxblocks;
5525
5526 /*
5527 * Now let's see how many group bitmaps and group descriptors need
5528 * to account
5529 */
5530 groups = idxblocks + pextents;
5531 gdpblocks = groups;
5532 if (groups > ngroups)
5533 groups = ngroups;
5534 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5535 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5536
5537 /* bitmaps and block group descriptor blocks */
5538 ret += groups + gdpblocks;
5539
5540 /* Blocks for super block, inode, quota and xattr blocks */
5541 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5542
5543 return ret;
5544 }
5545
5546 /*
5547 * Calculate the total number of credits to reserve to fit
5548 * the modification of a single pages into a single transaction,
5549 * which may include multiple chunks of block allocations.
5550 *
5551 * This could be called via ext4_write_begin()
5552 *
5553 * We need to consider the worse case, when
5554 * one new block per extent.
5555 */
5556 int ext4_writepage_trans_blocks(struct inode *inode)
5557 {
5558 int bpp = ext4_journal_blocks_per_page(inode);
5559 int ret;
5560
5561 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5562
5563 /* Account for data blocks for journalled mode */
5564 if (ext4_should_journal_data(inode))
5565 ret += bpp;
5566 return ret;
5567 }
5568
5569 /*
5570 * Calculate the journal credits for a chunk of data modification.
5571 *
5572 * This is called from DIO, fallocate or whoever calling
5573 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5574 *
5575 * journal buffers for data blocks are not included here, as DIO
5576 * and fallocate do no need to journal data buffers.
5577 */
5578 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5579 {
5580 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5581 }
5582
5583 /*
5584 * The caller must have previously called ext4_reserve_inode_write().
5585 * Give this, we know that the caller already has write access to iloc->bh.
5586 */
5587 int ext4_mark_iloc_dirty(handle_t *handle,
5588 struct inode *inode, struct ext4_iloc *iloc)
5589 {
5590 int err = 0;
5591
5592 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5593 put_bh(iloc->bh);
5594 return -EIO;
5595 }
5596 if (IS_I_VERSION(inode))
5597 inode_inc_iversion(inode);
5598
5599 /* the do_update_inode consumes one bh->b_count */
5600 get_bh(iloc->bh);
5601
5602 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5603 err = ext4_do_update_inode(handle, inode, iloc);
5604 put_bh(iloc->bh);
5605 return err;
5606 }
5607
5608 /*
5609 * On success, We end up with an outstanding reference count against
5610 * iloc->bh. This _must_ be cleaned up later.
5611 */
5612
5613 int
5614 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5615 struct ext4_iloc *iloc)
5616 {
5617 int err;
5618
5619 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620 return -EIO;
5621
5622 err = ext4_get_inode_loc(inode, iloc);
5623 if (!err) {
5624 BUFFER_TRACE(iloc->bh, "get_write_access");
5625 err = ext4_journal_get_write_access(handle, iloc->bh);
5626 if (err) {
5627 brelse(iloc->bh);
5628 iloc->bh = NULL;
5629 }
5630 }
5631 ext4_std_error(inode->i_sb, err);
5632 return err;
5633 }
5634
5635 static int __ext4_expand_extra_isize(struct inode *inode,
5636 unsigned int new_extra_isize,
5637 struct ext4_iloc *iloc,
5638 handle_t *handle, int *no_expand)
5639 {
5640 struct ext4_inode *raw_inode;
5641 struct ext4_xattr_ibody_header *header;
5642 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5643 struct ext4_inode_info *ei = EXT4_I(inode);
5644 int error;
5645
5646 /* this was checked at iget time, but double check for good measure */
5647 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5648 (ei->i_extra_isize & 3)) {
5649 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5650 ei->i_extra_isize,
5651 EXT4_INODE_SIZE(inode->i_sb));
5652 return -EFSCORRUPTED;
5653 }
5654 if ((new_extra_isize < ei->i_extra_isize) ||
5655 (new_extra_isize < 4) ||
5656 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5657 return -EINVAL; /* Should never happen */
5658
5659 raw_inode = ext4_raw_inode(iloc);
5660
5661 header = IHDR(inode, raw_inode);
5662
5663 /* No extended attributes present */
5664 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5665 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5666 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5667 EXT4_I(inode)->i_extra_isize, 0,
5668 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5669 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5670 return 0;
5671 }
5672
5673 /* try to expand with EAs present */
5674 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5675 raw_inode, handle);
5676 if (error) {
5677 /*
5678 * Inode size expansion failed; don't try again
5679 */
5680 *no_expand = 1;
5681 }
5682
5683 return error;
5684 }
5685
5686 /*
5687 * Expand an inode by new_extra_isize bytes.
5688 * Returns 0 on success or negative error number on failure.
5689 */
5690 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5691 unsigned int new_extra_isize,
5692 struct ext4_iloc iloc,
5693 handle_t *handle)
5694 {
5695 int no_expand;
5696 int error;
5697
5698 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5699 return -EOVERFLOW;
5700
5701 /*
5702 * In nojournal mode, we can immediately attempt to expand
5703 * the inode. When journaled, we first need to obtain extra
5704 * buffer credits since we may write into the EA block
5705 * with this same handle. If journal_extend fails, then it will
5706 * only result in a minor loss of functionality for that inode.
5707 * If this is felt to be critical, then e2fsck should be run to
5708 * force a large enough s_min_extra_isize.
5709 */
5710 if (ext4_journal_extend(handle,
5711 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5712 return -ENOSPC;
5713
5714 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5715 return -EBUSY;
5716
5717 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5718 handle, &no_expand);
5719 ext4_write_unlock_xattr(inode, &no_expand);
5720
5721 return error;
5722 }
5723
5724 int ext4_expand_extra_isize(struct inode *inode,
5725 unsigned int new_extra_isize,
5726 struct ext4_iloc *iloc)
5727 {
5728 handle_t *handle;
5729 int no_expand;
5730 int error, rc;
5731
5732 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5733 brelse(iloc->bh);
5734 return -EOVERFLOW;
5735 }
5736
5737 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5738 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5739 if (IS_ERR(handle)) {
5740 error = PTR_ERR(handle);
5741 brelse(iloc->bh);
5742 return error;
5743 }
5744
5745 ext4_write_lock_xattr(inode, &no_expand);
5746
5747 BUFFER_TRACE(iloc->bh, "get_write_access");
5748 error = ext4_journal_get_write_access(handle, iloc->bh);
5749 if (error) {
5750 brelse(iloc->bh);
5751 goto out_unlock;
5752 }
5753
5754 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5755 handle, &no_expand);
5756
5757 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5758 if (!error)
5759 error = rc;
5760
5761 out_unlock:
5762 ext4_write_unlock_xattr(inode, &no_expand);
5763 ext4_journal_stop(handle);
5764 return error;
5765 }
5766
5767 /*
5768 * What we do here is to mark the in-core inode as clean with respect to inode
5769 * dirtiness (it may still be data-dirty).
5770 * This means that the in-core inode may be reaped by prune_icache
5771 * without having to perform any I/O. This is a very good thing,
5772 * because *any* task may call prune_icache - even ones which
5773 * have a transaction open against a different journal.
5774 *
5775 * Is this cheating? Not really. Sure, we haven't written the
5776 * inode out, but prune_icache isn't a user-visible syncing function.
5777 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5778 * we start and wait on commits.
5779 */
5780 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5781 {
5782 struct ext4_iloc iloc;
5783 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5784 int err;
5785
5786 might_sleep();
5787 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5788 err = ext4_reserve_inode_write(handle, inode, &iloc);
5789 if (err)
5790 return err;
5791
5792 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5793 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5794 iloc, handle);
5795
5796 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5797 }
5798
5799 /*
5800 * ext4_dirty_inode() is called from __mark_inode_dirty()
5801 *
5802 * We're really interested in the case where a file is being extended.
5803 * i_size has been changed by generic_commit_write() and we thus need
5804 * to include the updated inode in the current transaction.
5805 *
5806 * Also, dquot_alloc_block() will always dirty the inode when blocks
5807 * are allocated to the file.
5808 *
5809 * If the inode is marked synchronous, we don't honour that here - doing
5810 * so would cause a commit on atime updates, which we don't bother doing.
5811 * We handle synchronous inodes at the highest possible level.
5812 *
5813 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5814 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5815 * to copy into the on-disk inode structure are the timestamp files.
5816 */
5817 void ext4_dirty_inode(struct inode *inode, int flags)
5818 {
5819 handle_t *handle;
5820
5821 if (flags == I_DIRTY_TIME)
5822 return;
5823 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5824 if (IS_ERR(handle))
5825 goto out;
5826
5827 ext4_mark_inode_dirty(handle, inode);
5828
5829 ext4_journal_stop(handle);
5830 out:
5831 return;
5832 }
5833
5834 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5835 {
5836 journal_t *journal;
5837 handle_t *handle;
5838 int err;
5839 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5840
5841 /*
5842 * We have to be very careful here: changing a data block's
5843 * journaling status dynamically is dangerous. If we write a
5844 * data block to the journal, change the status and then delete
5845 * that block, we risk forgetting to revoke the old log record
5846 * from the journal and so a subsequent replay can corrupt data.
5847 * So, first we make sure that the journal is empty and that
5848 * nobody is changing anything.
5849 */
5850
5851 journal = EXT4_JOURNAL(inode);
5852 if (!journal)
5853 return 0;
5854 if (is_journal_aborted(journal))
5855 return -EROFS;
5856
5857 /* Wait for all existing dio workers */
5858 inode_dio_wait(inode);
5859
5860 /*
5861 * Before flushing the journal and switching inode's aops, we have
5862 * to flush all dirty data the inode has. There can be outstanding
5863 * delayed allocations, there can be unwritten extents created by
5864 * fallocate or buffered writes in dioread_nolock mode covered by
5865 * dirty data which can be converted only after flushing the dirty
5866 * data (and journalled aops don't know how to handle these cases).
5867 */
5868 if (val) {
5869 down_write(&EXT4_I(inode)->i_mmap_sem);
5870 err = filemap_write_and_wait(inode->i_mapping);
5871 if (err < 0) {
5872 up_write(&EXT4_I(inode)->i_mmap_sem);
5873 return err;
5874 }
5875 }
5876
5877 percpu_down_write(&sbi->s_writepages_rwsem);
5878 jbd2_journal_lock_updates(journal);
5879
5880 /*
5881 * OK, there are no updates running now, and all cached data is
5882 * synced to disk. We are now in a completely consistent state
5883 * which doesn't have anything in the journal, and we know that
5884 * no filesystem updates are running, so it is safe to modify
5885 * the inode's in-core data-journaling state flag now.
5886 */
5887
5888 if (val)
5889 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5890 else {
5891 err = jbd2_journal_flush(journal);
5892 if (err < 0) {
5893 jbd2_journal_unlock_updates(journal);
5894 percpu_up_write(&sbi->s_writepages_rwsem);
5895 return err;
5896 }
5897 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5898 }
5899 ext4_set_aops(inode);
5900
5901 jbd2_journal_unlock_updates(journal);
5902 percpu_up_write(&sbi->s_writepages_rwsem);
5903
5904 if (val)
5905 up_write(&EXT4_I(inode)->i_mmap_sem);
5906
5907 /* Finally we can mark the inode as dirty. */
5908
5909 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5910 if (IS_ERR(handle))
5911 return PTR_ERR(handle);
5912
5913 err = ext4_mark_inode_dirty(handle, inode);
5914 ext4_handle_sync(handle);
5915 ext4_journal_stop(handle);
5916 ext4_std_error(inode->i_sb, err);
5917
5918 return err;
5919 }
5920
5921 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5922 {
5923 return !buffer_mapped(bh);
5924 }
5925
5926 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5927 {
5928 struct vm_area_struct *vma = vmf->vma;
5929 struct page *page = vmf->page;
5930 loff_t size;
5931 unsigned long len;
5932 int err;
5933 vm_fault_t ret;
5934 struct file *file = vma->vm_file;
5935 struct inode *inode = file_inode(file);
5936 struct address_space *mapping = inode->i_mapping;
5937 handle_t *handle;
5938 get_block_t *get_block;
5939 int retries = 0;
5940
5941 if (unlikely(IS_IMMUTABLE(inode)))
5942 return VM_FAULT_SIGBUS;
5943
5944 sb_start_pagefault(inode->i_sb);
5945 file_update_time(vma->vm_file);
5946
5947 down_read(&EXT4_I(inode)->i_mmap_sem);
5948
5949 err = ext4_convert_inline_data(inode);
5950 if (err)
5951 goto out_ret;
5952
5953 /* Delalloc case is easy... */
5954 if (test_opt(inode->i_sb, DELALLOC) &&
5955 !ext4_should_journal_data(inode) &&
5956 !ext4_nonda_switch(inode->i_sb)) {
5957 do {
5958 err = block_page_mkwrite(vma, vmf,
5959 ext4_da_get_block_prep);
5960 } while (err == -ENOSPC &&
5961 ext4_should_retry_alloc(inode->i_sb, &retries));
5962 goto out_ret;
5963 }
5964
5965 lock_page(page);
5966 size = i_size_read(inode);
5967 /* Page got truncated from under us? */
5968 if (page->mapping != mapping || page_offset(page) > size) {
5969 unlock_page(page);
5970 ret = VM_FAULT_NOPAGE;
5971 goto out;
5972 }
5973
5974 if (page->index == size >> PAGE_SHIFT)
5975 len = size & ~PAGE_MASK;
5976 else
5977 len = PAGE_SIZE;
5978 /*
5979 * Return if we have all the buffers mapped. This avoids the need to do
5980 * journal_start/journal_stop which can block and take a long time
5981 */
5982 if (page_has_buffers(page)) {
5983 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5984 0, len, NULL,
5985 ext4_bh_unmapped)) {
5986 /* Wait so that we don't change page under IO */
5987 wait_for_stable_page(page);
5988 ret = VM_FAULT_LOCKED;
5989 goto out;
5990 }
5991 }
5992 unlock_page(page);
5993 /* OK, we need to fill the hole... */
5994 if (ext4_should_dioread_nolock(inode))
5995 get_block = ext4_get_block_unwritten;
5996 else
5997 get_block = ext4_get_block;
5998 retry_alloc:
5999 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6000 ext4_writepage_trans_blocks(inode));
6001 if (IS_ERR(handle)) {
6002 ret = VM_FAULT_SIGBUS;
6003 goto out;
6004 }
6005 err = block_page_mkwrite(vma, vmf, get_block);
6006 if (!err && ext4_should_journal_data(inode)) {
6007 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6008 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6009 unlock_page(page);
6010 ret = VM_FAULT_SIGBUS;
6011 ext4_journal_stop(handle);
6012 goto out;
6013 }
6014 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6015 }
6016 ext4_journal_stop(handle);
6017 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6018 goto retry_alloc;
6019 out_ret:
6020 ret = block_page_mkwrite_return(err);
6021 out:
6022 up_read(&EXT4_I(inode)->i_mmap_sem);
6023 sb_end_pagefault(inode->i_sb);
6024 return ret;
6025 }
6026
6027 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6028 {
6029 struct inode *inode = file_inode(vmf->vma->vm_file);
6030 vm_fault_t ret;
6031
6032 down_read(&EXT4_I(inode)->i_mmap_sem);
6033 ret = filemap_fault(vmf);
6034 up_read(&EXT4_I(inode)->i_mmap_sem);
6035
6036 return ret;
6037 }