]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/ext4/inode.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[thirdparty/kernel/stable.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87 {
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108 {
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125 {
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147 /*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173 {
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190 }
191
192 /*
193 * Called at the last iput() if i_nlink is zero.
194 */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338 no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355 {
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 !inode_is_open_for_write(inode))
395 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401 {
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403 map->m_len)) {
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock %llu "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_pblk, map->m_len);
408 return -EFSCORRUPTED;
409 }
410 return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414 ext4_lblk_t len)
415 {
416 int ret;
417
418 if (IS_ENCRYPTED(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422 if (ret > 0)
423 ret = 0;
424
425 return ret;
426 }
427
428 #define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433 struct inode *inode,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
436 int flags)
437 {
438 int retval;
439
440 map->m_flags = 0;
441 /*
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
447 */
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 } else {
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
455 }
456 up_read((&EXT4_I(inode)->i_data_sem));
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
479 *
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486 * based files
487 *
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491 *
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
495 *
496 * It returns the error in case of allocation failure.
497 */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
500 {
501 struct extent_status es;
502 int retval;
503 int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
506
507 memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510 map->m_flags = 0;
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
514
515 /*
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 */
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
520
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
524
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 map->m_pblk = 0;
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
540 retval = map->m_len;
541 map->m_len = retval;
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549 #endif
550 goto found;
551 }
552
553 /*
554 * Try to see if we can get the block without requesting a new
555 * file system block.
556 */
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
561 } else {
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
564 }
565 if (retval > 0) {
566 unsigned int status;
567
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
573 WARN_ON(1);
574 }
575
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
588 up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
593 if (ret != 0)
594 return ret;
595 }
596
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599 return retval;
600
601 /*
602 * Returns if the blocks have already allocated
603 *
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
607 */
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609 /*
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
613 */
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615 return retval;
616
617 /*
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
620 */
621 map->m_flags &= ~EXT4_MAP_FLAGS;
622
623 /*
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
628 */
629 down_write(&EXT4_I(inode)->i_data_sem);
630
631 /*
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
634 */
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637 } else {
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641 /*
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
645 */
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647 }
648
649 /*
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
654 */
655 if ((retval > 0) &&
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
658 }
659
660 if (retval > 0) {
661 unsigned int status;
662
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
668 WARN_ON(1);
669 }
670
671 /*
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
677 */
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 ret = ext4_issue_zeroout(inode, map->m_lblk,
682 map->m_pblk, map->m_len);
683 if (ret) {
684 retval = ret;
685 goto out_sem;
686 }
687 }
688
689 /*
690 * If the extent has been zeroed out, we don't need to update
691 * extent status tree.
692 */
693 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
695 if (ext4_es_is_written(&es))
696 goto out_sem;
697 }
698 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701 !(status & EXTENT_STATUS_WRITTEN) &&
702 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703 map->m_lblk + map->m_len - 1))
704 status |= EXTENT_STATUS_DELAYED;
705 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706 map->m_pblk, status);
707 if (ret < 0) {
708 retval = ret;
709 goto out_sem;
710 }
711 }
712
713 out_sem:
714 up_write((&EXT4_I(inode)->i_data_sem));
715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 ret = check_block_validity(inode, map);
717 if (ret != 0)
718 return ret;
719
720 /*
721 * Inodes with freshly allocated blocks where contents will be
722 * visible after transaction commit must be on transaction's
723 * ordered data list.
724 */
725 if (map->m_flags & EXT4_MAP_NEW &&
726 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 !ext4_is_quota_file(inode) &&
729 ext4_should_order_data(inode)) {
730 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
731 ret = ext4_jbd2_inode_add_wait(handle, inode);
732 else
733 ret = ext4_jbd2_inode_add_write(handle, inode);
734 if (ret)
735 return ret;
736 }
737 }
738 return retval;
739 }
740
741 /*
742 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743 * we have to be careful as someone else may be manipulating b_state as well.
744 */
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 {
747 unsigned long old_state;
748 unsigned long new_state;
749
750 flags &= EXT4_MAP_FLAGS;
751
752 /* Dummy buffer_head? Set non-atomically. */
753 if (!bh->b_page) {
754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
755 return;
756 }
757 /*
758 * Someone else may be modifying b_state. Be careful! This is ugly but
759 * once we get rid of using bh as a container for mapping information
760 * to pass to / from get_block functions, this can go away.
761 */
762 do {
763 old_state = READ_ONCE(bh->b_state);
764 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
765 } while (unlikely(
766 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 struct buffer_head *bh, int flags)
771 {
772 struct ext4_map_blocks map;
773 int ret = 0;
774
775 if (ext4_has_inline_data(inode))
776 return -ERANGE;
777
778 map.m_lblk = iblock;
779 map.m_len = bh->b_size >> inode->i_blkbits;
780
781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782 flags);
783 if (ret > 0) {
784 map_bh(bh, inode->i_sb, map.m_pblk);
785 ext4_update_bh_state(bh, map.m_flags);
786 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787 ret = 0;
788 } else if (ret == 0) {
789 /* hole case, need to fill in bh->b_size */
790 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 }
792 return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796 struct buffer_head *bh, int create)
797 {
798 return _ext4_get_block(inode, iblock, bh,
799 create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803 * Get block function used when preparing for buffered write if we require
804 * creating an unwritten extent if blocks haven't been allocated. The extent
805 * will be converted to written after the IO is complete.
806 */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh_result, int create)
809 {
810 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811 inode->i_ino, create);
812 return _ext4_get_block(inode, iblock, bh_result,
813 EXT4_GET_BLOCKS_IO_CREATE_EXT);
814 }
815
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
818
819 /*
820 * Get blocks function for the cases that need to start a transaction -
821 * generally difference cases of direct IO and DAX IO. It also handles retries
822 * in case of ENOSPC.
823 */
824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
825 struct buffer_head *bh_result, int flags)
826 {
827 int dio_credits;
828 handle_t *handle;
829 int retries = 0;
830 int ret;
831
832 /* Trim mapping request to maximum we can map at once for DIO */
833 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
834 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
835 dio_credits = ext4_chunk_trans_blocks(inode,
836 bh_result->b_size >> inode->i_blkbits);
837 retry:
838 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
839 if (IS_ERR(handle))
840 return PTR_ERR(handle);
841
842 ret = _ext4_get_block(inode, iblock, bh_result, flags);
843 ext4_journal_stop(handle);
844
845 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
846 goto retry;
847 return ret;
848 }
849
850 /* Get block function for DIO reads and writes to inodes without extents */
851 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
852 struct buffer_head *bh, int create)
853 {
854 /* We don't expect handle for direct IO */
855 WARN_ON_ONCE(ext4_journal_current_handle());
856
857 if (!create)
858 return _ext4_get_block(inode, iblock, bh, 0);
859 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
860 }
861
862 /*
863 * Get block function for AIO DIO writes when we create unwritten extent if
864 * blocks are not allocated yet. The extent will be converted to written
865 * after IO is complete.
866 */
867 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
868 sector_t iblock, struct buffer_head *bh_result, int create)
869 {
870 int ret;
871
872 /* We don't expect handle for direct IO */
873 WARN_ON_ONCE(ext4_journal_current_handle());
874
875 ret = ext4_get_block_trans(inode, iblock, bh_result,
876 EXT4_GET_BLOCKS_IO_CREATE_EXT);
877
878 /*
879 * When doing DIO using unwritten extents, we need io_end to convert
880 * unwritten extents to written on IO completion. We allocate io_end
881 * once we spot unwritten extent and store it in b_private. Generic
882 * DIO code keeps b_private set and furthermore passes the value to
883 * our completion callback in 'private' argument.
884 */
885 if (!ret && buffer_unwritten(bh_result)) {
886 if (!bh_result->b_private) {
887 ext4_io_end_t *io_end;
888
889 io_end = ext4_init_io_end(inode, GFP_KERNEL);
890 if (!io_end)
891 return -ENOMEM;
892 bh_result->b_private = io_end;
893 ext4_set_io_unwritten_flag(inode, io_end);
894 }
895 set_buffer_defer_completion(bh_result);
896 }
897
898 return ret;
899 }
900
901 /*
902 * Get block function for non-AIO DIO writes when we create unwritten extent if
903 * blocks are not allocated yet. The extent will be converted to written
904 * after IO is complete by ext4_direct_IO_write().
905 */
906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
907 sector_t iblock, struct buffer_head *bh_result, int create)
908 {
909 int ret;
910
911 /* We don't expect handle for direct IO */
912 WARN_ON_ONCE(ext4_journal_current_handle());
913
914 ret = ext4_get_block_trans(inode, iblock, bh_result,
915 EXT4_GET_BLOCKS_IO_CREATE_EXT);
916
917 /*
918 * Mark inode as having pending DIO writes to unwritten extents.
919 * ext4_direct_IO_write() checks this flag and converts extents to
920 * written.
921 */
922 if (!ret && buffer_unwritten(bh_result))
923 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
924
925 return ret;
926 }
927
928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
929 struct buffer_head *bh_result, int create)
930 {
931 int ret;
932
933 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
934 inode->i_ino, create);
935 /* We don't expect handle for direct IO */
936 WARN_ON_ONCE(ext4_journal_current_handle());
937
938 ret = _ext4_get_block(inode, iblock, bh_result, 0);
939 /*
940 * Blocks should have been preallocated! ext4_file_write_iter() checks
941 * that.
942 */
943 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
944
945 return ret;
946 }
947
948
949 /*
950 * `handle' can be NULL if create is zero
951 */
952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
953 ext4_lblk_t block, int map_flags)
954 {
955 struct ext4_map_blocks map;
956 struct buffer_head *bh;
957 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
958 int err;
959
960 J_ASSERT(handle != NULL || create == 0);
961
962 map.m_lblk = block;
963 map.m_len = 1;
964 err = ext4_map_blocks(handle, inode, &map, map_flags);
965
966 if (err == 0)
967 return create ? ERR_PTR(-ENOSPC) : NULL;
968 if (err < 0)
969 return ERR_PTR(err);
970
971 bh = sb_getblk(inode->i_sb, map.m_pblk);
972 if (unlikely(!bh))
973 return ERR_PTR(-ENOMEM);
974 if (map.m_flags & EXT4_MAP_NEW) {
975 J_ASSERT(create != 0);
976 J_ASSERT(handle != NULL);
977
978 /*
979 * Now that we do not always journal data, we should
980 * keep in mind whether this should always journal the
981 * new buffer as metadata. For now, regular file
982 * writes use ext4_get_block instead, so it's not a
983 * problem.
984 */
985 lock_buffer(bh);
986 BUFFER_TRACE(bh, "call get_create_access");
987 err = ext4_journal_get_create_access(handle, bh);
988 if (unlikely(err)) {
989 unlock_buffer(bh);
990 goto errout;
991 }
992 if (!buffer_uptodate(bh)) {
993 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
994 set_buffer_uptodate(bh);
995 }
996 unlock_buffer(bh);
997 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
998 err = ext4_handle_dirty_metadata(handle, inode, bh);
999 if (unlikely(err))
1000 goto errout;
1001 } else
1002 BUFFER_TRACE(bh, "not a new buffer");
1003 return bh;
1004 errout:
1005 brelse(bh);
1006 return ERR_PTR(err);
1007 }
1008
1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1010 ext4_lblk_t block, int map_flags)
1011 {
1012 struct buffer_head *bh;
1013
1014 bh = ext4_getblk(handle, inode, block, map_flags);
1015 if (IS_ERR(bh))
1016 return bh;
1017 if (!bh || buffer_uptodate(bh))
1018 return bh;
1019 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1020 wait_on_buffer(bh);
1021 if (buffer_uptodate(bh))
1022 return bh;
1023 put_bh(bh);
1024 return ERR_PTR(-EIO);
1025 }
1026
1027 /* Read a contiguous batch of blocks. */
1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1029 bool wait, struct buffer_head **bhs)
1030 {
1031 int i, err;
1032
1033 for (i = 0; i < bh_count; i++) {
1034 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1035 if (IS_ERR(bhs[i])) {
1036 err = PTR_ERR(bhs[i]);
1037 bh_count = i;
1038 goto out_brelse;
1039 }
1040 }
1041
1042 for (i = 0; i < bh_count; i++)
1043 /* Note that NULL bhs[i] is valid because of holes. */
1044 if (bhs[i] && !buffer_uptodate(bhs[i]))
1045 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1046 &bhs[i]);
1047
1048 if (!wait)
1049 return 0;
1050
1051 for (i = 0; i < bh_count; i++)
1052 if (bhs[i])
1053 wait_on_buffer(bhs[i]);
1054
1055 for (i = 0; i < bh_count; i++) {
1056 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1057 err = -EIO;
1058 goto out_brelse;
1059 }
1060 }
1061 return 0;
1062
1063 out_brelse:
1064 for (i = 0; i < bh_count; i++) {
1065 brelse(bhs[i]);
1066 bhs[i] = NULL;
1067 }
1068 return err;
1069 }
1070
1071 int ext4_walk_page_buffers(handle_t *handle,
1072 struct buffer_head *head,
1073 unsigned from,
1074 unsigned to,
1075 int *partial,
1076 int (*fn)(handle_t *handle,
1077 struct buffer_head *bh))
1078 {
1079 struct buffer_head *bh;
1080 unsigned block_start, block_end;
1081 unsigned blocksize = head->b_size;
1082 int err, ret = 0;
1083 struct buffer_head *next;
1084
1085 for (bh = head, block_start = 0;
1086 ret == 0 && (bh != head || !block_start);
1087 block_start = block_end, bh = next) {
1088 next = bh->b_this_page;
1089 block_end = block_start + blocksize;
1090 if (block_end <= from || block_start >= to) {
1091 if (partial && !buffer_uptodate(bh))
1092 *partial = 1;
1093 continue;
1094 }
1095 err = (*fn)(handle, bh);
1096 if (!ret)
1097 ret = err;
1098 }
1099 return ret;
1100 }
1101
1102 /*
1103 * To preserve ordering, it is essential that the hole instantiation and
1104 * the data write be encapsulated in a single transaction. We cannot
1105 * close off a transaction and start a new one between the ext4_get_block()
1106 * and the commit_write(). So doing the jbd2_journal_start at the start of
1107 * prepare_write() is the right place.
1108 *
1109 * Also, this function can nest inside ext4_writepage(). In that case, we
1110 * *know* that ext4_writepage() has generated enough buffer credits to do the
1111 * whole page. So we won't block on the journal in that case, which is good,
1112 * because the caller may be PF_MEMALLOC.
1113 *
1114 * By accident, ext4 can be reentered when a transaction is open via
1115 * quota file writes. If we were to commit the transaction while thus
1116 * reentered, there can be a deadlock - we would be holding a quota
1117 * lock, and the commit would never complete if another thread had a
1118 * transaction open and was blocking on the quota lock - a ranking
1119 * violation.
1120 *
1121 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1122 * will _not_ run commit under these circumstances because handle->h_ref
1123 * is elevated. We'll still have enough credits for the tiny quotafile
1124 * write.
1125 */
1126 int do_journal_get_write_access(handle_t *handle,
1127 struct buffer_head *bh)
1128 {
1129 int dirty = buffer_dirty(bh);
1130 int ret;
1131
1132 if (!buffer_mapped(bh) || buffer_freed(bh))
1133 return 0;
1134 /*
1135 * __block_write_begin() could have dirtied some buffers. Clean
1136 * the dirty bit as jbd2_journal_get_write_access() could complain
1137 * otherwise about fs integrity issues. Setting of the dirty bit
1138 * by __block_write_begin() isn't a real problem here as we clear
1139 * the bit before releasing a page lock and thus writeback cannot
1140 * ever write the buffer.
1141 */
1142 if (dirty)
1143 clear_buffer_dirty(bh);
1144 BUFFER_TRACE(bh, "get write access");
1145 ret = ext4_journal_get_write_access(handle, bh);
1146 if (!ret && dirty)
1147 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1148 return ret;
1149 }
1150
1151 #ifdef CONFIG_FS_ENCRYPTION
1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1153 get_block_t *get_block)
1154 {
1155 unsigned from = pos & (PAGE_SIZE - 1);
1156 unsigned to = from + len;
1157 struct inode *inode = page->mapping->host;
1158 unsigned block_start, block_end;
1159 sector_t block;
1160 int err = 0;
1161 unsigned blocksize = inode->i_sb->s_blocksize;
1162 unsigned bbits;
1163 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1164 bool decrypt = false;
1165
1166 BUG_ON(!PageLocked(page));
1167 BUG_ON(from > PAGE_SIZE);
1168 BUG_ON(to > PAGE_SIZE);
1169 BUG_ON(from > to);
1170
1171 if (!page_has_buffers(page))
1172 create_empty_buffers(page, blocksize, 0);
1173 head = page_buffers(page);
1174 bbits = ilog2(blocksize);
1175 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1176
1177 for (bh = head, block_start = 0; bh != head || !block_start;
1178 block++, block_start = block_end, bh = bh->b_this_page) {
1179 block_end = block_start + blocksize;
1180 if (block_end <= from || block_start >= to) {
1181 if (PageUptodate(page)) {
1182 if (!buffer_uptodate(bh))
1183 set_buffer_uptodate(bh);
1184 }
1185 continue;
1186 }
1187 if (buffer_new(bh))
1188 clear_buffer_new(bh);
1189 if (!buffer_mapped(bh)) {
1190 WARN_ON(bh->b_size != blocksize);
1191 err = get_block(inode, block, bh, 1);
1192 if (err)
1193 break;
1194 if (buffer_new(bh)) {
1195 if (PageUptodate(page)) {
1196 clear_buffer_new(bh);
1197 set_buffer_uptodate(bh);
1198 mark_buffer_dirty(bh);
1199 continue;
1200 }
1201 if (block_end > to || block_start < from)
1202 zero_user_segments(page, to, block_end,
1203 block_start, from);
1204 continue;
1205 }
1206 }
1207 if (PageUptodate(page)) {
1208 if (!buffer_uptodate(bh))
1209 set_buffer_uptodate(bh);
1210 continue;
1211 }
1212 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1213 !buffer_unwritten(bh) &&
1214 (block_start < from || block_end > to)) {
1215 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1216 *wait_bh++ = bh;
1217 decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1218 }
1219 }
1220 /*
1221 * If we issued read requests, let them complete.
1222 */
1223 while (wait_bh > wait) {
1224 wait_on_buffer(*--wait_bh);
1225 if (!buffer_uptodate(*wait_bh))
1226 err = -EIO;
1227 }
1228 if (unlikely(err))
1229 page_zero_new_buffers(page, from, to);
1230 else if (decrypt)
1231 err = fscrypt_decrypt_page(page->mapping->host, page,
1232 PAGE_SIZE, 0, page->index);
1233 return err;
1234 }
1235 #endif
1236
1237 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1238 loff_t pos, unsigned len, unsigned flags,
1239 struct page **pagep, void **fsdata)
1240 {
1241 struct inode *inode = mapping->host;
1242 int ret, needed_blocks;
1243 handle_t *handle;
1244 int retries = 0;
1245 struct page *page;
1246 pgoff_t index;
1247 unsigned from, to;
1248
1249 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1250 return -EIO;
1251
1252 trace_ext4_write_begin(inode, pos, len, flags);
1253 /*
1254 * Reserve one block more for addition to orphan list in case
1255 * we allocate blocks but write fails for some reason
1256 */
1257 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1258 index = pos >> PAGE_SHIFT;
1259 from = pos & (PAGE_SIZE - 1);
1260 to = from + len;
1261
1262 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1263 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1264 flags, pagep);
1265 if (ret < 0)
1266 return ret;
1267 if (ret == 1)
1268 return 0;
1269 }
1270
1271 /*
1272 * grab_cache_page_write_begin() can take a long time if the
1273 * system is thrashing due to memory pressure, or if the page
1274 * is being written back. So grab it first before we start
1275 * the transaction handle. This also allows us to allocate
1276 * the page (if needed) without using GFP_NOFS.
1277 */
1278 retry_grab:
1279 page = grab_cache_page_write_begin(mapping, index, flags);
1280 if (!page)
1281 return -ENOMEM;
1282 unlock_page(page);
1283
1284 retry_journal:
1285 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1286 if (IS_ERR(handle)) {
1287 put_page(page);
1288 return PTR_ERR(handle);
1289 }
1290
1291 lock_page(page);
1292 if (page->mapping != mapping) {
1293 /* The page got truncated from under us */
1294 unlock_page(page);
1295 put_page(page);
1296 ext4_journal_stop(handle);
1297 goto retry_grab;
1298 }
1299 /* In case writeback began while the page was unlocked */
1300 wait_for_stable_page(page);
1301
1302 #ifdef CONFIG_FS_ENCRYPTION
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = ext4_block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1306 else
1307 ret = ext4_block_write_begin(page, pos, len,
1308 ext4_get_block);
1309 #else
1310 if (ext4_should_dioread_nolock(inode))
1311 ret = __block_write_begin(page, pos, len,
1312 ext4_get_block_unwritten);
1313 else
1314 ret = __block_write_begin(page, pos, len, ext4_get_block);
1315 #endif
1316 if (!ret && ext4_should_journal_data(inode)) {
1317 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1318 from, to, NULL,
1319 do_journal_get_write_access);
1320 }
1321
1322 if (ret) {
1323 unlock_page(page);
1324 /*
1325 * __block_write_begin may have instantiated a few blocks
1326 * outside i_size. Trim these off again. Don't need
1327 * i_size_read because we hold i_mutex.
1328 *
1329 * Add inode to orphan list in case we crash before
1330 * truncate finishes
1331 */
1332 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1333 ext4_orphan_add(handle, inode);
1334
1335 ext4_journal_stop(handle);
1336 if (pos + len > inode->i_size) {
1337 ext4_truncate_failed_write(inode);
1338 /*
1339 * If truncate failed early the inode might
1340 * still be on the orphan list; we need to
1341 * make sure the inode is removed from the
1342 * orphan list in that case.
1343 */
1344 if (inode->i_nlink)
1345 ext4_orphan_del(NULL, inode);
1346 }
1347
1348 if (ret == -ENOSPC &&
1349 ext4_should_retry_alloc(inode->i_sb, &retries))
1350 goto retry_journal;
1351 put_page(page);
1352 return ret;
1353 }
1354 *pagep = page;
1355 return ret;
1356 }
1357
1358 /* For write_end() in data=journal mode */
1359 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1360 {
1361 int ret;
1362 if (!buffer_mapped(bh) || buffer_freed(bh))
1363 return 0;
1364 set_buffer_uptodate(bh);
1365 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1366 clear_buffer_meta(bh);
1367 clear_buffer_prio(bh);
1368 return ret;
1369 }
1370
1371 /*
1372 * We need to pick up the new inode size which generic_commit_write gave us
1373 * `file' can be NULL - eg, when called from page_symlink().
1374 *
1375 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1376 * buffers are managed internally.
1377 */
1378 static int ext4_write_end(struct file *file,
1379 struct address_space *mapping,
1380 loff_t pos, unsigned len, unsigned copied,
1381 struct page *page, void *fsdata)
1382 {
1383 handle_t *handle = ext4_journal_current_handle();
1384 struct inode *inode = mapping->host;
1385 loff_t old_size = inode->i_size;
1386 int ret = 0, ret2;
1387 int i_size_changed = 0;
1388 int inline_data = ext4_has_inline_data(inode);
1389
1390 trace_ext4_write_end(inode, pos, len, copied);
1391 if (inline_data) {
1392 ret = ext4_write_inline_data_end(inode, pos, len,
1393 copied, page);
1394 if (ret < 0) {
1395 unlock_page(page);
1396 put_page(page);
1397 goto errout;
1398 }
1399 copied = ret;
1400 } else
1401 copied = block_write_end(file, mapping, pos,
1402 len, copied, page, fsdata);
1403 /*
1404 * it's important to update i_size while still holding page lock:
1405 * page writeout could otherwise come in and zero beyond i_size.
1406 */
1407 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1408 unlock_page(page);
1409 put_page(page);
1410
1411 if (old_size < pos)
1412 pagecache_isize_extended(inode, old_size, pos);
1413 /*
1414 * Don't mark the inode dirty under page lock. First, it unnecessarily
1415 * makes the holding time of page lock longer. Second, it forces lock
1416 * ordering of page lock and transaction start for journaling
1417 * filesystems.
1418 */
1419 if (i_size_changed || inline_data)
1420 ext4_mark_inode_dirty(handle, inode);
1421
1422 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1423 /* if we have allocated more blocks and copied
1424 * less. We will have blocks allocated outside
1425 * inode->i_size. So truncate them
1426 */
1427 ext4_orphan_add(handle, inode);
1428 errout:
1429 ret2 = ext4_journal_stop(handle);
1430 if (!ret)
1431 ret = ret2;
1432
1433 if (pos + len > inode->i_size) {
1434 ext4_truncate_failed_write(inode);
1435 /*
1436 * If truncate failed early the inode might still be
1437 * on the orphan list; we need to make sure the inode
1438 * is removed from the orphan list in that case.
1439 */
1440 if (inode->i_nlink)
1441 ext4_orphan_del(NULL, inode);
1442 }
1443
1444 return ret ? ret : copied;
1445 }
1446
1447 /*
1448 * This is a private version of page_zero_new_buffers() which doesn't
1449 * set the buffer to be dirty, since in data=journalled mode we need
1450 * to call ext4_handle_dirty_metadata() instead.
1451 */
1452 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1453 struct page *page,
1454 unsigned from, unsigned to)
1455 {
1456 unsigned int block_start = 0, block_end;
1457 struct buffer_head *head, *bh;
1458
1459 bh = head = page_buffers(page);
1460 do {
1461 block_end = block_start + bh->b_size;
1462 if (buffer_new(bh)) {
1463 if (block_end > from && block_start < to) {
1464 if (!PageUptodate(page)) {
1465 unsigned start, size;
1466
1467 start = max(from, block_start);
1468 size = min(to, block_end) - start;
1469
1470 zero_user(page, start, size);
1471 write_end_fn(handle, bh);
1472 }
1473 clear_buffer_new(bh);
1474 }
1475 }
1476 block_start = block_end;
1477 bh = bh->b_this_page;
1478 } while (bh != head);
1479 }
1480
1481 static int ext4_journalled_write_end(struct file *file,
1482 struct address_space *mapping,
1483 loff_t pos, unsigned len, unsigned copied,
1484 struct page *page, void *fsdata)
1485 {
1486 handle_t *handle = ext4_journal_current_handle();
1487 struct inode *inode = mapping->host;
1488 loff_t old_size = inode->i_size;
1489 int ret = 0, ret2;
1490 int partial = 0;
1491 unsigned from, to;
1492 int size_changed = 0;
1493 int inline_data = ext4_has_inline_data(inode);
1494
1495 trace_ext4_journalled_write_end(inode, pos, len, copied);
1496 from = pos & (PAGE_SIZE - 1);
1497 to = from + len;
1498
1499 BUG_ON(!ext4_handle_valid(handle));
1500
1501 if (inline_data) {
1502 ret = ext4_write_inline_data_end(inode, pos, len,
1503 copied, page);
1504 if (ret < 0) {
1505 unlock_page(page);
1506 put_page(page);
1507 goto errout;
1508 }
1509 copied = ret;
1510 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1511 copied = 0;
1512 ext4_journalled_zero_new_buffers(handle, page, from, to);
1513 } else {
1514 if (unlikely(copied < len))
1515 ext4_journalled_zero_new_buffers(handle, page,
1516 from + copied, to);
1517 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1518 from + copied, &partial,
1519 write_end_fn);
1520 if (!partial)
1521 SetPageUptodate(page);
1522 }
1523 size_changed = ext4_update_inode_size(inode, pos + copied);
1524 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1525 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1526 unlock_page(page);
1527 put_page(page);
1528
1529 if (old_size < pos)
1530 pagecache_isize_extended(inode, old_size, pos);
1531
1532 if (size_changed || inline_data) {
1533 ret2 = ext4_mark_inode_dirty(handle, inode);
1534 if (!ret)
1535 ret = ret2;
1536 }
1537
1538 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1539 /* if we have allocated more blocks and copied
1540 * less. We will have blocks allocated outside
1541 * inode->i_size. So truncate them
1542 */
1543 ext4_orphan_add(handle, inode);
1544
1545 errout:
1546 ret2 = ext4_journal_stop(handle);
1547 if (!ret)
1548 ret = ret2;
1549 if (pos + len > inode->i_size) {
1550 ext4_truncate_failed_write(inode);
1551 /*
1552 * If truncate failed early the inode might still be
1553 * on the orphan list; we need to make sure the inode
1554 * is removed from the orphan list in that case.
1555 */
1556 if (inode->i_nlink)
1557 ext4_orphan_del(NULL, inode);
1558 }
1559
1560 return ret ? ret : copied;
1561 }
1562
1563 /*
1564 * Reserve space for a single cluster
1565 */
1566 static int ext4_da_reserve_space(struct inode *inode)
1567 {
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 struct ext4_inode_info *ei = EXT4_I(inode);
1570 int ret;
1571
1572 /*
1573 * We will charge metadata quota at writeout time; this saves
1574 * us from metadata over-estimation, though we may go over by
1575 * a small amount in the end. Here we just reserve for data.
1576 */
1577 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1578 if (ret)
1579 return ret;
1580
1581 spin_lock(&ei->i_block_reservation_lock);
1582 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1583 spin_unlock(&ei->i_block_reservation_lock);
1584 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1585 return -ENOSPC;
1586 }
1587 ei->i_reserved_data_blocks++;
1588 trace_ext4_da_reserve_space(inode);
1589 spin_unlock(&ei->i_block_reservation_lock);
1590
1591 return 0; /* success */
1592 }
1593
1594 void ext4_da_release_space(struct inode *inode, int to_free)
1595 {
1596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1597 struct ext4_inode_info *ei = EXT4_I(inode);
1598
1599 if (!to_free)
1600 return; /* Nothing to release, exit */
1601
1602 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1603
1604 trace_ext4_da_release_space(inode, to_free);
1605 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1606 /*
1607 * if there aren't enough reserved blocks, then the
1608 * counter is messed up somewhere. Since this
1609 * function is called from invalidate page, it's
1610 * harmless to return without any action.
1611 */
1612 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1613 "ino %lu, to_free %d with only %d reserved "
1614 "data blocks", inode->i_ino, to_free,
1615 ei->i_reserved_data_blocks);
1616 WARN_ON(1);
1617 to_free = ei->i_reserved_data_blocks;
1618 }
1619 ei->i_reserved_data_blocks -= to_free;
1620
1621 /* update fs dirty data blocks counter */
1622 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1623
1624 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1625
1626 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1627 }
1628
1629 static void ext4_da_page_release_reservation(struct page *page,
1630 unsigned int offset,
1631 unsigned int length)
1632 {
1633 int contiguous_blks = 0;
1634 struct buffer_head *head, *bh;
1635 unsigned int curr_off = 0;
1636 struct inode *inode = page->mapping->host;
1637 unsigned int stop = offset + length;
1638 ext4_fsblk_t lblk;
1639
1640 BUG_ON(stop > PAGE_SIZE || stop < length);
1641
1642 head = page_buffers(page);
1643 bh = head;
1644 do {
1645 unsigned int next_off = curr_off + bh->b_size;
1646
1647 if (next_off > stop)
1648 break;
1649
1650 if ((offset <= curr_off) && (buffer_delay(bh))) {
1651 contiguous_blks++;
1652 clear_buffer_delay(bh);
1653 } else if (contiguous_blks) {
1654 lblk = page->index <<
1655 (PAGE_SHIFT - inode->i_blkbits);
1656 lblk += (curr_off >> inode->i_blkbits) -
1657 contiguous_blks;
1658 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1659 contiguous_blks = 0;
1660 }
1661 curr_off = next_off;
1662 } while ((bh = bh->b_this_page) != head);
1663
1664 if (contiguous_blks) {
1665 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1666 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1667 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1668 }
1669
1670 }
1671
1672 /*
1673 * Delayed allocation stuff
1674 */
1675
1676 struct mpage_da_data {
1677 struct inode *inode;
1678 struct writeback_control *wbc;
1679
1680 pgoff_t first_page; /* The first page to write */
1681 pgoff_t next_page; /* Current page to examine */
1682 pgoff_t last_page; /* Last page to examine */
1683 /*
1684 * Extent to map - this can be after first_page because that can be
1685 * fully mapped. We somewhat abuse m_flags to store whether the extent
1686 * is delalloc or unwritten.
1687 */
1688 struct ext4_map_blocks map;
1689 struct ext4_io_submit io_submit; /* IO submission data */
1690 unsigned int do_map:1;
1691 };
1692
1693 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1694 bool invalidate)
1695 {
1696 int nr_pages, i;
1697 pgoff_t index, end;
1698 struct pagevec pvec;
1699 struct inode *inode = mpd->inode;
1700 struct address_space *mapping = inode->i_mapping;
1701
1702 /* This is necessary when next_page == 0. */
1703 if (mpd->first_page >= mpd->next_page)
1704 return;
1705
1706 index = mpd->first_page;
1707 end = mpd->next_page - 1;
1708 if (invalidate) {
1709 ext4_lblk_t start, last;
1710 start = index << (PAGE_SHIFT - inode->i_blkbits);
1711 last = end << (PAGE_SHIFT - inode->i_blkbits);
1712 ext4_es_remove_extent(inode, start, last - start + 1);
1713 }
1714
1715 pagevec_init(&pvec);
1716 while (index <= end) {
1717 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1718 if (nr_pages == 0)
1719 break;
1720 for (i = 0; i < nr_pages; i++) {
1721 struct page *page = pvec.pages[i];
1722
1723 BUG_ON(!PageLocked(page));
1724 BUG_ON(PageWriteback(page));
1725 if (invalidate) {
1726 if (page_mapped(page))
1727 clear_page_dirty_for_io(page);
1728 block_invalidatepage(page, 0, PAGE_SIZE);
1729 ClearPageUptodate(page);
1730 }
1731 unlock_page(page);
1732 }
1733 pagevec_release(&pvec);
1734 }
1735 }
1736
1737 static void ext4_print_free_blocks(struct inode *inode)
1738 {
1739 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1740 struct super_block *sb = inode->i_sb;
1741 struct ext4_inode_info *ei = EXT4_I(inode);
1742
1743 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1744 EXT4_C2B(EXT4_SB(inode->i_sb),
1745 ext4_count_free_clusters(sb)));
1746 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1747 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1748 (long long) EXT4_C2B(EXT4_SB(sb),
1749 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1750 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1751 (long long) EXT4_C2B(EXT4_SB(sb),
1752 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1753 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1754 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1755 ei->i_reserved_data_blocks);
1756 return;
1757 }
1758
1759 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1760 {
1761 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1762 }
1763
1764 /*
1765 * ext4_insert_delayed_block - adds a delayed block to the extents status
1766 * tree, incrementing the reserved cluster/block
1767 * count or making a pending reservation
1768 * where needed
1769 *
1770 * @inode - file containing the newly added block
1771 * @lblk - logical block to be added
1772 *
1773 * Returns 0 on success, negative error code on failure.
1774 */
1775 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1776 {
1777 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1778 int ret;
1779 bool allocated = false;
1780
1781 /*
1782 * If the cluster containing lblk is shared with a delayed,
1783 * written, or unwritten extent in a bigalloc file system, it's
1784 * already been accounted for and does not need to be reserved.
1785 * A pending reservation must be made for the cluster if it's
1786 * shared with a written or unwritten extent and doesn't already
1787 * have one. Written and unwritten extents can be purged from the
1788 * extents status tree if the system is under memory pressure, so
1789 * it's necessary to examine the extent tree if a search of the
1790 * extents status tree doesn't get a match.
1791 */
1792 if (sbi->s_cluster_ratio == 1) {
1793 ret = ext4_da_reserve_space(inode);
1794 if (ret != 0) /* ENOSPC */
1795 goto errout;
1796 } else { /* bigalloc */
1797 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1798 if (!ext4_es_scan_clu(inode,
1799 &ext4_es_is_mapped, lblk)) {
1800 ret = ext4_clu_mapped(inode,
1801 EXT4_B2C(sbi, lblk));
1802 if (ret < 0)
1803 goto errout;
1804 if (ret == 0) {
1805 ret = ext4_da_reserve_space(inode);
1806 if (ret != 0) /* ENOSPC */
1807 goto errout;
1808 } else {
1809 allocated = true;
1810 }
1811 } else {
1812 allocated = true;
1813 }
1814 }
1815 }
1816
1817 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1818
1819 errout:
1820 return ret;
1821 }
1822
1823 /*
1824 * This function is grabs code from the very beginning of
1825 * ext4_map_blocks, but assumes that the caller is from delayed write
1826 * time. This function looks up the requested blocks and sets the
1827 * buffer delay bit under the protection of i_data_sem.
1828 */
1829 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1830 struct ext4_map_blocks *map,
1831 struct buffer_head *bh)
1832 {
1833 struct extent_status es;
1834 int retval;
1835 sector_t invalid_block = ~((sector_t) 0xffff);
1836 #ifdef ES_AGGRESSIVE_TEST
1837 struct ext4_map_blocks orig_map;
1838
1839 memcpy(&orig_map, map, sizeof(*map));
1840 #endif
1841
1842 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1843 invalid_block = ~0;
1844
1845 map->m_flags = 0;
1846 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1847 "logical block %lu\n", inode->i_ino, map->m_len,
1848 (unsigned long) map->m_lblk);
1849
1850 /* Lookup extent status tree firstly */
1851 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1852 if (ext4_es_is_hole(&es)) {
1853 retval = 0;
1854 down_read(&EXT4_I(inode)->i_data_sem);
1855 goto add_delayed;
1856 }
1857
1858 /*
1859 * Delayed extent could be allocated by fallocate.
1860 * So we need to check it.
1861 */
1862 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1863 map_bh(bh, inode->i_sb, invalid_block);
1864 set_buffer_new(bh);
1865 set_buffer_delay(bh);
1866 return 0;
1867 }
1868
1869 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1870 retval = es.es_len - (iblock - es.es_lblk);
1871 if (retval > map->m_len)
1872 retval = map->m_len;
1873 map->m_len = retval;
1874 if (ext4_es_is_written(&es))
1875 map->m_flags |= EXT4_MAP_MAPPED;
1876 else if (ext4_es_is_unwritten(&es))
1877 map->m_flags |= EXT4_MAP_UNWRITTEN;
1878 else
1879 BUG_ON(1);
1880
1881 #ifdef ES_AGGRESSIVE_TEST
1882 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1883 #endif
1884 return retval;
1885 }
1886
1887 /*
1888 * Try to see if we can get the block without requesting a new
1889 * file system block.
1890 */
1891 down_read(&EXT4_I(inode)->i_data_sem);
1892 if (ext4_has_inline_data(inode))
1893 retval = 0;
1894 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1895 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1896 else
1897 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1898
1899 add_delayed:
1900 if (retval == 0) {
1901 int ret;
1902
1903 /*
1904 * XXX: __block_prepare_write() unmaps passed block,
1905 * is it OK?
1906 */
1907
1908 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1909 if (ret != 0) {
1910 retval = ret;
1911 goto out_unlock;
1912 }
1913
1914 map_bh(bh, inode->i_sb, invalid_block);
1915 set_buffer_new(bh);
1916 set_buffer_delay(bh);
1917 } else if (retval > 0) {
1918 int ret;
1919 unsigned int status;
1920
1921 if (unlikely(retval != map->m_len)) {
1922 ext4_warning(inode->i_sb,
1923 "ES len assertion failed for inode "
1924 "%lu: retval %d != map->m_len %d",
1925 inode->i_ino, retval, map->m_len);
1926 WARN_ON(1);
1927 }
1928
1929 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1930 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1931 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1932 map->m_pblk, status);
1933 if (ret != 0)
1934 retval = ret;
1935 }
1936
1937 out_unlock:
1938 up_read((&EXT4_I(inode)->i_data_sem));
1939
1940 return retval;
1941 }
1942
1943 /*
1944 * This is a special get_block_t callback which is used by
1945 * ext4_da_write_begin(). It will either return mapped block or
1946 * reserve space for a single block.
1947 *
1948 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1949 * We also have b_blocknr = -1 and b_bdev initialized properly
1950 *
1951 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1952 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1953 * initialized properly.
1954 */
1955 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1956 struct buffer_head *bh, int create)
1957 {
1958 struct ext4_map_blocks map;
1959 int ret = 0;
1960
1961 BUG_ON(create == 0);
1962 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1963
1964 map.m_lblk = iblock;
1965 map.m_len = 1;
1966
1967 /*
1968 * first, we need to know whether the block is allocated already
1969 * preallocated blocks are unmapped but should treated
1970 * the same as allocated blocks.
1971 */
1972 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1973 if (ret <= 0)
1974 return ret;
1975
1976 map_bh(bh, inode->i_sb, map.m_pblk);
1977 ext4_update_bh_state(bh, map.m_flags);
1978
1979 if (buffer_unwritten(bh)) {
1980 /* A delayed write to unwritten bh should be marked
1981 * new and mapped. Mapped ensures that we don't do
1982 * get_block multiple times when we write to the same
1983 * offset and new ensures that we do proper zero out
1984 * for partial write.
1985 */
1986 set_buffer_new(bh);
1987 set_buffer_mapped(bh);
1988 }
1989 return 0;
1990 }
1991
1992 static int bget_one(handle_t *handle, struct buffer_head *bh)
1993 {
1994 get_bh(bh);
1995 return 0;
1996 }
1997
1998 static int bput_one(handle_t *handle, struct buffer_head *bh)
1999 {
2000 put_bh(bh);
2001 return 0;
2002 }
2003
2004 static int __ext4_journalled_writepage(struct page *page,
2005 unsigned int len)
2006 {
2007 struct address_space *mapping = page->mapping;
2008 struct inode *inode = mapping->host;
2009 struct buffer_head *page_bufs = NULL;
2010 handle_t *handle = NULL;
2011 int ret = 0, err = 0;
2012 int inline_data = ext4_has_inline_data(inode);
2013 struct buffer_head *inode_bh = NULL;
2014
2015 ClearPageChecked(page);
2016
2017 if (inline_data) {
2018 BUG_ON(page->index != 0);
2019 BUG_ON(len > ext4_get_max_inline_size(inode));
2020 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2021 if (inode_bh == NULL)
2022 goto out;
2023 } else {
2024 page_bufs = page_buffers(page);
2025 if (!page_bufs) {
2026 BUG();
2027 goto out;
2028 }
2029 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2030 NULL, bget_one);
2031 }
2032 /*
2033 * We need to release the page lock before we start the
2034 * journal, so grab a reference so the page won't disappear
2035 * out from under us.
2036 */
2037 get_page(page);
2038 unlock_page(page);
2039
2040 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2041 ext4_writepage_trans_blocks(inode));
2042 if (IS_ERR(handle)) {
2043 ret = PTR_ERR(handle);
2044 put_page(page);
2045 goto out_no_pagelock;
2046 }
2047 BUG_ON(!ext4_handle_valid(handle));
2048
2049 lock_page(page);
2050 put_page(page);
2051 if (page->mapping != mapping) {
2052 /* The page got truncated from under us */
2053 ext4_journal_stop(handle);
2054 ret = 0;
2055 goto out;
2056 }
2057
2058 if (inline_data) {
2059 ret = ext4_mark_inode_dirty(handle, inode);
2060 } else {
2061 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2062 do_journal_get_write_access);
2063
2064 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2065 write_end_fn);
2066 }
2067 if (ret == 0)
2068 ret = err;
2069 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2070 err = ext4_journal_stop(handle);
2071 if (!ret)
2072 ret = err;
2073
2074 if (!ext4_has_inline_data(inode))
2075 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2076 NULL, bput_one);
2077 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2078 out:
2079 unlock_page(page);
2080 out_no_pagelock:
2081 brelse(inode_bh);
2082 return ret;
2083 }
2084
2085 /*
2086 * Note that we don't need to start a transaction unless we're journaling data
2087 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2088 * need to file the inode to the transaction's list in ordered mode because if
2089 * we are writing back data added by write(), the inode is already there and if
2090 * we are writing back data modified via mmap(), no one guarantees in which
2091 * transaction the data will hit the disk. In case we are journaling data, we
2092 * cannot start transaction directly because transaction start ranks above page
2093 * lock so we have to do some magic.
2094 *
2095 * This function can get called via...
2096 * - ext4_writepages after taking page lock (have journal handle)
2097 * - journal_submit_inode_data_buffers (no journal handle)
2098 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2099 * - grab_page_cache when doing write_begin (have journal handle)
2100 *
2101 * We don't do any block allocation in this function. If we have page with
2102 * multiple blocks we need to write those buffer_heads that are mapped. This
2103 * is important for mmaped based write. So if we do with blocksize 1K
2104 * truncate(f, 1024);
2105 * a = mmap(f, 0, 4096);
2106 * a[0] = 'a';
2107 * truncate(f, 4096);
2108 * we have in the page first buffer_head mapped via page_mkwrite call back
2109 * but other buffer_heads would be unmapped but dirty (dirty done via the
2110 * do_wp_page). So writepage should write the first block. If we modify
2111 * the mmap area beyond 1024 we will again get a page_fault and the
2112 * page_mkwrite callback will do the block allocation and mark the
2113 * buffer_heads mapped.
2114 *
2115 * We redirty the page if we have any buffer_heads that is either delay or
2116 * unwritten in the page.
2117 *
2118 * We can get recursively called as show below.
2119 *
2120 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2121 * ext4_writepage()
2122 *
2123 * But since we don't do any block allocation we should not deadlock.
2124 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2125 */
2126 static int ext4_writepage(struct page *page,
2127 struct writeback_control *wbc)
2128 {
2129 int ret = 0;
2130 loff_t size;
2131 unsigned int len;
2132 struct buffer_head *page_bufs = NULL;
2133 struct inode *inode = page->mapping->host;
2134 struct ext4_io_submit io_submit;
2135 bool keep_towrite = false;
2136
2137 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2138 ext4_invalidatepage(page, 0, PAGE_SIZE);
2139 unlock_page(page);
2140 return -EIO;
2141 }
2142
2143 trace_ext4_writepage(page);
2144 size = i_size_read(inode);
2145 if (page->index == size >> PAGE_SHIFT)
2146 len = size & ~PAGE_MASK;
2147 else
2148 len = PAGE_SIZE;
2149
2150 page_bufs = page_buffers(page);
2151 /*
2152 * We cannot do block allocation or other extent handling in this
2153 * function. If there are buffers needing that, we have to redirty
2154 * the page. But we may reach here when we do a journal commit via
2155 * journal_submit_inode_data_buffers() and in that case we must write
2156 * allocated buffers to achieve data=ordered mode guarantees.
2157 *
2158 * Also, if there is only one buffer per page (the fs block
2159 * size == the page size), if one buffer needs block
2160 * allocation or needs to modify the extent tree to clear the
2161 * unwritten flag, we know that the page can't be written at
2162 * all, so we might as well refuse the write immediately.
2163 * Unfortunately if the block size != page size, we can't as
2164 * easily detect this case using ext4_walk_page_buffers(), but
2165 * for the extremely common case, this is an optimization that
2166 * skips a useless round trip through ext4_bio_write_page().
2167 */
2168 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2169 ext4_bh_delay_or_unwritten)) {
2170 redirty_page_for_writepage(wbc, page);
2171 if ((current->flags & PF_MEMALLOC) ||
2172 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2173 /*
2174 * For memory cleaning there's no point in writing only
2175 * some buffers. So just bail out. Warn if we came here
2176 * from direct reclaim.
2177 */
2178 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2179 == PF_MEMALLOC);
2180 unlock_page(page);
2181 return 0;
2182 }
2183 keep_towrite = true;
2184 }
2185
2186 if (PageChecked(page) && ext4_should_journal_data(inode))
2187 /*
2188 * It's mmapped pagecache. Add buffers and journal it. There
2189 * doesn't seem much point in redirtying the page here.
2190 */
2191 return __ext4_journalled_writepage(page, len);
2192
2193 ext4_io_submit_init(&io_submit, wbc);
2194 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2195 if (!io_submit.io_end) {
2196 redirty_page_for_writepage(wbc, page);
2197 unlock_page(page);
2198 return -ENOMEM;
2199 }
2200 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2201 ext4_io_submit(&io_submit);
2202 /* Drop io_end reference we got from init */
2203 ext4_put_io_end_defer(io_submit.io_end);
2204 return ret;
2205 }
2206
2207 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2208 {
2209 int len;
2210 loff_t size;
2211 int err;
2212
2213 BUG_ON(page->index != mpd->first_page);
2214 clear_page_dirty_for_io(page);
2215 /*
2216 * We have to be very careful here! Nothing protects writeback path
2217 * against i_size changes and the page can be writeably mapped into
2218 * page tables. So an application can be growing i_size and writing
2219 * data through mmap while writeback runs. clear_page_dirty_for_io()
2220 * write-protects our page in page tables and the page cannot get
2221 * written to again until we release page lock. So only after
2222 * clear_page_dirty_for_io() we are safe to sample i_size for
2223 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2224 * on the barrier provided by TestClearPageDirty in
2225 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2226 * after page tables are updated.
2227 */
2228 size = i_size_read(mpd->inode);
2229 if (page->index == size >> PAGE_SHIFT)
2230 len = size & ~PAGE_MASK;
2231 else
2232 len = PAGE_SIZE;
2233 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2234 if (!err)
2235 mpd->wbc->nr_to_write--;
2236 mpd->first_page++;
2237
2238 return err;
2239 }
2240
2241 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2242
2243 /*
2244 * mballoc gives us at most this number of blocks...
2245 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2246 * The rest of mballoc seems to handle chunks up to full group size.
2247 */
2248 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2249
2250 /*
2251 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2252 *
2253 * @mpd - extent of blocks
2254 * @lblk - logical number of the block in the file
2255 * @bh - buffer head we want to add to the extent
2256 *
2257 * The function is used to collect contig. blocks in the same state. If the
2258 * buffer doesn't require mapping for writeback and we haven't started the
2259 * extent of buffers to map yet, the function returns 'true' immediately - the
2260 * caller can write the buffer right away. Otherwise the function returns true
2261 * if the block has been added to the extent, false if the block couldn't be
2262 * added.
2263 */
2264 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2265 struct buffer_head *bh)
2266 {
2267 struct ext4_map_blocks *map = &mpd->map;
2268
2269 /* Buffer that doesn't need mapping for writeback? */
2270 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2271 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2272 /* So far no extent to map => we write the buffer right away */
2273 if (map->m_len == 0)
2274 return true;
2275 return false;
2276 }
2277
2278 /* First block in the extent? */
2279 if (map->m_len == 0) {
2280 /* We cannot map unless handle is started... */
2281 if (!mpd->do_map)
2282 return false;
2283 map->m_lblk = lblk;
2284 map->m_len = 1;
2285 map->m_flags = bh->b_state & BH_FLAGS;
2286 return true;
2287 }
2288
2289 /* Don't go larger than mballoc is willing to allocate */
2290 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2291 return false;
2292
2293 /* Can we merge the block to our big extent? */
2294 if (lblk == map->m_lblk + map->m_len &&
2295 (bh->b_state & BH_FLAGS) == map->m_flags) {
2296 map->m_len++;
2297 return true;
2298 }
2299 return false;
2300 }
2301
2302 /*
2303 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2304 *
2305 * @mpd - extent of blocks for mapping
2306 * @head - the first buffer in the page
2307 * @bh - buffer we should start processing from
2308 * @lblk - logical number of the block in the file corresponding to @bh
2309 *
2310 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2311 * the page for IO if all buffers in this page were mapped and there's no
2312 * accumulated extent of buffers to map or add buffers in the page to the
2313 * extent of buffers to map. The function returns 1 if the caller can continue
2314 * by processing the next page, 0 if it should stop adding buffers to the
2315 * extent to map because we cannot extend it anymore. It can also return value
2316 * < 0 in case of error during IO submission.
2317 */
2318 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2319 struct buffer_head *head,
2320 struct buffer_head *bh,
2321 ext4_lblk_t lblk)
2322 {
2323 struct inode *inode = mpd->inode;
2324 int err;
2325 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2326 >> inode->i_blkbits;
2327
2328 do {
2329 BUG_ON(buffer_locked(bh));
2330
2331 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2332 /* Found extent to map? */
2333 if (mpd->map.m_len)
2334 return 0;
2335 /* Buffer needs mapping and handle is not started? */
2336 if (!mpd->do_map)
2337 return 0;
2338 /* Everything mapped so far and we hit EOF */
2339 break;
2340 }
2341 } while (lblk++, (bh = bh->b_this_page) != head);
2342 /* So far everything mapped? Submit the page for IO. */
2343 if (mpd->map.m_len == 0) {
2344 err = mpage_submit_page(mpd, head->b_page);
2345 if (err < 0)
2346 return err;
2347 }
2348 return lblk < blocks;
2349 }
2350
2351 /*
2352 * mpage_map_buffers - update buffers corresponding to changed extent and
2353 * submit fully mapped pages for IO
2354 *
2355 * @mpd - description of extent to map, on return next extent to map
2356 *
2357 * Scan buffers corresponding to changed extent (we expect corresponding pages
2358 * to be already locked) and update buffer state according to new extent state.
2359 * We map delalloc buffers to their physical location, clear unwritten bits,
2360 * and mark buffers as uninit when we perform writes to unwritten extents
2361 * and do extent conversion after IO is finished. If the last page is not fully
2362 * mapped, we update @map to the next extent in the last page that needs
2363 * mapping. Otherwise we submit the page for IO.
2364 */
2365 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2366 {
2367 struct pagevec pvec;
2368 int nr_pages, i;
2369 struct inode *inode = mpd->inode;
2370 struct buffer_head *head, *bh;
2371 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2372 pgoff_t start, end;
2373 ext4_lblk_t lblk;
2374 sector_t pblock;
2375 int err;
2376
2377 start = mpd->map.m_lblk >> bpp_bits;
2378 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2379 lblk = start << bpp_bits;
2380 pblock = mpd->map.m_pblk;
2381
2382 pagevec_init(&pvec);
2383 while (start <= end) {
2384 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2385 &start, end);
2386 if (nr_pages == 0)
2387 break;
2388 for (i = 0; i < nr_pages; i++) {
2389 struct page *page = pvec.pages[i];
2390
2391 bh = head = page_buffers(page);
2392 do {
2393 if (lblk < mpd->map.m_lblk)
2394 continue;
2395 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2396 /*
2397 * Buffer after end of mapped extent.
2398 * Find next buffer in the page to map.
2399 */
2400 mpd->map.m_len = 0;
2401 mpd->map.m_flags = 0;
2402 /*
2403 * FIXME: If dioread_nolock supports
2404 * blocksize < pagesize, we need to make
2405 * sure we add size mapped so far to
2406 * io_end->size as the following call
2407 * can submit the page for IO.
2408 */
2409 err = mpage_process_page_bufs(mpd, head,
2410 bh, lblk);
2411 pagevec_release(&pvec);
2412 if (err > 0)
2413 err = 0;
2414 return err;
2415 }
2416 if (buffer_delay(bh)) {
2417 clear_buffer_delay(bh);
2418 bh->b_blocknr = pblock++;
2419 }
2420 clear_buffer_unwritten(bh);
2421 } while (lblk++, (bh = bh->b_this_page) != head);
2422
2423 /*
2424 * FIXME: This is going to break if dioread_nolock
2425 * supports blocksize < pagesize as we will try to
2426 * convert potentially unmapped parts of inode.
2427 */
2428 mpd->io_submit.io_end->size += PAGE_SIZE;
2429 /* Page fully mapped - let IO run! */
2430 err = mpage_submit_page(mpd, page);
2431 if (err < 0) {
2432 pagevec_release(&pvec);
2433 return err;
2434 }
2435 }
2436 pagevec_release(&pvec);
2437 }
2438 /* Extent fully mapped and matches with page boundary. We are done. */
2439 mpd->map.m_len = 0;
2440 mpd->map.m_flags = 0;
2441 return 0;
2442 }
2443
2444 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2445 {
2446 struct inode *inode = mpd->inode;
2447 struct ext4_map_blocks *map = &mpd->map;
2448 int get_blocks_flags;
2449 int err, dioread_nolock;
2450
2451 trace_ext4_da_write_pages_extent(inode, map);
2452 /*
2453 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2454 * to convert an unwritten extent to be initialized (in the case
2455 * where we have written into one or more preallocated blocks). It is
2456 * possible that we're going to need more metadata blocks than
2457 * previously reserved. However we must not fail because we're in
2458 * writeback and there is nothing we can do about it so it might result
2459 * in data loss. So use reserved blocks to allocate metadata if
2460 * possible.
2461 *
2462 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2463 * the blocks in question are delalloc blocks. This indicates
2464 * that the blocks and quotas has already been checked when
2465 * the data was copied into the page cache.
2466 */
2467 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2468 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2469 EXT4_GET_BLOCKS_IO_SUBMIT;
2470 dioread_nolock = ext4_should_dioread_nolock(inode);
2471 if (dioread_nolock)
2472 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2473 if (map->m_flags & (1 << BH_Delay))
2474 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2475
2476 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2477 if (err < 0)
2478 return err;
2479 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2480 if (!mpd->io_submit.io_end->handle &&
2481 ext4_handle_valid(handle)) {
2482 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2483 handle->h_rsv_handle = NULL;
2484 }
2485 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2486 }
2487
2488 BUG_ON(map->m_len == 0);
2489 return 0;
2490 }
2491
2492 /*
2493 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2494 * mpd->len and submit pages underlying it for IO
2495 *
2496 * @handle - handle for journal operations
2497 * @mpd - extent to map
2498 * @give_up_on_write - we set this to true iff there is a fatal error and there
2499 * is no hope of writing the data. The caller should discard
2500 * dirty pages to avoid infinite loops.
2501 *
2502 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2503 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2504 * them to initialized or split the described range from larger unwritten
2505 * extent. Note that we need not map all the described range since allocation
2506 * can return less blocks or the range is covered by more unwritten extents. We
2507 * cannot map more because we are limited by reserved transaction credits. On
2508 * the other hand we always make sure that the last touched page is fully
2509 * mapped so that it can be written out (and thus forward progress is
2510 * guaranteed). After mapping we submit all mapped pages for IO.
2511 */
2512 static int mpage_map_and_submit_extent(handle_t *handle,
2513 struct mpage_da_data *mpd,
2514 bool *give_up_on_write)
2515 {
2516 struct inode *inode = mpd->inode;
2517 struct ext4_map_blocks *map = &mpd->map;
2518 int err;
2519 loff_t disksize;
2520 int progress = 0;
2521
2522 mpd->io_submit.io_end->offset =
2523 ((loff_t)map->m_lblk) << inode->i_blkbits;
2524 do {
2525 err = mpage_map_one_extent(handle, mpd);
2526 if (err < 0) {
2527 struct super_block *sb = inode->i_sb;
2528
2529 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2530 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2531 goto invalidate_dirty_pages;
2532 /*
2533 * Let the uper layers retry transient errors.
2534 * In the case of ENOSPC, if ext4_count_free_blocks()
2535 * is non-zero, a commit should free up blocks.
2536 */
2537 if ((err == -ENOMEM) ||
2538 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2539 if (progress)
2540 goto update_disksize;
2541 return err;
2542 }
2543 ext4_msg(sb, KERN_CRIT,
2544 "Delayed block allocation failed for "
2545 "inode %lu at logical offset %llu with"
2546 " max blocks %u with error %d",
2547 inode->i_ino,
2548 (unsigned long long)map->m_lblk,
2549 (unsigned)map->m_len, -err);
2550 ext4_msg(sb, KERN_CRIT,
2551 "This should not happen!! Data will "
2552 "be lost\n");
2553 if (err == -ENOSPC)
2554 ext4_print_free_blocks(inode);
2555 invalidate_dirty_pages:
2556 *give_up_on_write = true;
2557 return err;
2558 }
2559 progress = 1;
2560 /*
2561 * Update buffer state, submit mapped pages, and get us new
2562 * extent to map
2563 */
2564 err = mpage_map_and_submit_buffers(mpd);
2565 if (err < 0)
2566 goto update_disksize;
2567 } while (map->m_len);
2568
2569 update_disksize:
2570 /*
2571 * Update on-disk size after IO is submitted. Races with
2572 * truncate are avoided by checking i_size under i_data_sem.
2573 */
2574 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2575 if (disksize > EXT4_I(inode)->i_disksize) {
2576 int err2;
2577 loff_t i_size;
2578
2579 down_write(&EXT4_I(inode)->i_data_sem);
2580 i_size = i_size_read(inode);
2581 if (disksize > i_size)
2582 disksize = i_size;
2583 if (disksize > EXT4_I(inode)->i_disksize)
2584 EXT4_I(inode)->i_disksize = disksize;
2585 up_write(&EXT4_I(inode)->i_data_sem);
2586 err2 = ext4_mark_inode_dirty(handle, inode);
2587 if (err2)
2588 ext4_error(inode->i_sb,
2589 "Failed to mark inode %lu dirty",
2590 inode->i_ino);
2591 if (!err)
2592 err = err2;
2593 }
2594 return err;
2595 }
2596
2597 /*
2598 * Calculate the total number of credits to reserve for one writepages
2599 * iteration. This is called from ext4_writepages(). We map an extent of
2600 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2601 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2602 * bpp - 1 blocks in bpp different extents.
2603 */
2604 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2605 {
2606 int bpp = ext4_journal_blocks_per_page(inode);
2607
2608 return ext4_meta_trans_blocks(inode,
2609 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2610 }
2611
2612 /*
2613 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2614 * and underlying extent to map
2615 *
2616 * @mpd - where to look for pages
2617 *
2618 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2619 * IO immediately. When we find a page which isn't mapped we start accumulating
2620 * extent of buffers underlying these pages that needs mapping (formed by
2621 * either delayed or unwritten buffers). We also lock the pages containing
2622 * these buffers. The extent found is returned in @mpd structure (starting at
2623 * mpd->lblk with length mpd->len blocks).
2624 *
2625 * Note that this function can attach bios to one io_end structure which are
2626 * neither logically nor physically contiguous. Although it may seem as an
2627 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2628 * case as we need to track IO to all buffers underlying a page in one io_end.
2629 */
2630 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2631 {
2632 struct address_space *mapping = mpd->inode->i_mapping;
2633 struct pagevec pvec;
2634 unsigned int nr_pages;
2635 long left = mpd->wbc->nr_to_write;
2636 pgoff_t index = mpd->first_page;
2637 pgoff_t end = mpd->last_page;
2638 xa_mark_t tag;
2639 int i, err = 0;
2640 int blkbits = mpd->inode->i_blkbits;
2641 ext4_lblk_t lblk;
2642 struct buffer_head *head;
2643
2644 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2645 tag = PAGECACHE_TAG_TOWRITE;
2646 else
2647 tag = PAGECACHE_TAG_DIRTY;
2648
2649 pagevec_init(&pvec);
2650 mpd->map.m_len = 0;
2651 mpd->next_page = index;
2652 while (index <= end) {
2653 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2654 tag);
2655 if (nr_pages == 0)
2656 goto out;
2657
2658 for (i = 0; i < nr_pages; i++) {
2659 struct page *page = pvec.pages[i];
2660
2661 /*
2662 * Accumulated enough dirty pages? This doesn't apply
2663 * to WB_SYNC_ALL mode. For integrity sync we have to
2664 * keep going because someone may be concurrently
2665 * dirtying pages, and we might have synced a lot of
2666 * newly appeared dirty pages, but have not synced all
2667 * of the old dirty pages.
2668 */
2669 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2670 goto out;
2671
2672 /* If we can't merge this page, we are done. */
2673 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2674 goto out;
2675
2676 lock_page(page);
2677 /*
2678 * If the page is no longer dirty, or its mapping no
2679 * longer corresponds to inode we are writing (which
2680 * means it has been truncated or invalidated), or the
2681 * page is already under writeback and we are not doing
2682 * a data integrity writeback, skip the page
2683 */
2684 if (!PageDirty(page) ||
2685 (PageWriteback(page) &&
2686 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2687 unlikely(page->mapping != mapping)) {
2688 unlock_page(page);
2689 continue;
2690 }
2691
2692 wait_on_page_writeback(page);
2693 BUG_ON(PageWriteback(page));
2694
2695 if (mpd->map.m_len == 0)
2696 mpd->first_page = page->index;
2697 mpd->next_page = page->index + 1;
2698 /* Add all dirty buffers to mpd */
2699 lblk = ((ext4_lblk_t)page->index) <<
2700 (PAGE_SHIFT - blkbits);
2701 head = page_buffers(page);
2702 err = mpage_process_page_bufs(mpd, head, head, lblk);
2703 if (err <= 0)
2704 goto out;
2705 err = 0;
2706 left--;
2707 }
2708 pagevec_release(&pvec);
2709 cond_resched();
2710 }
2711 return 0;
2712 out:
2713 pagevec_release(&pvec);
2714 return err;
2715 }
2716
2717 static int ext4_writepages(struct address_space *mapping,
2718 struct writeback_control *wbc)
2719 {
2720 pgoff_t writeback_index = 0;
2721 long nr_to_write = wbc->nr_to_write;
2722 int range_whole = 0;
2723 int cycled = 1;
2724 handle_t *handle = NULL;
2725 struct mpage_da_data mpd;
2726 struct inode *inode = mapping->host;
2727 int needed_blocks, rsv_blocks = 0, ret = 0;
2728 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2729 bool done;
2730 struct blk_plug plug;
2731 bool give_up_on_write = false;
2732
2733 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2734 return -EIO;
2735
2736 percpu_down_read(&sbi->s_journal_flag_rwsem);
2737 trace_ext4_writepages(inode, wbc);
2738
2739 /*
2740 * No pages to write? This is mainly a kludge to avoid starting
2741 * a transaction for special inodes like journal inode on last iput()
2742 * because that could violate lock ordering on umount
2743 */
2744 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2745 goto out_writepages;
2746
2747 if (ext4_should_journal_data(inode)) {
2748 ret = generic_writepages(mapping, wbc);
2749 goto out_writepages;
2750 }
2751
2752 /*
2753 * If the filesystem has aborted, it is read-only, so return
2754 * right away instead of dumping stack traces later on that
2755 * will obscure the real source of the problem. We test
2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2757 * the latter could be true if the filesystem is mounted
2758 * read-only, and in that case, ext4_writepages should
2759 * *never* be called, so if that ever happens, we would want
2760 * the stack trace.
2761 */
2762 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2763 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2764 ret = -EROFS;
2765 goto out_writepages;
2766 }
2767
2768 if (ext4_should_dioread_nolock(inode)) {
2769 /*
2770 * We may need to convert up to one extent per block in
2771 * the page and we may dirty the inode.
2772 */
2773 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2774 PAGE_SIZE >> inode->i_blkbits);
2775 }
2776
2777 /*
2778 * If we have inline data and arrive here, it means that
2779 * we will soon create the block for the 1st page, so
2780 * we'd better clear the inline data here.
2781 */
2782 if (ext4_has_inline_data(inode)) {
2783 /* Just inode will be modified... */
2784 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2785 if (IS_ERR(handle)) {
2786 ret = PTR_ERR(handle);
2787 goto out_writepages;
2788 }
2789 BUG_ON(ext4_test_inode_state(inode,
2790 EXT4_STATE_MAY_INLINE_DATA));
2791 ext4_destroy_inline_data(handle, inode);
2792 ext4_journal_stop(handle);
2793 }
2794
2795 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2796 range_whole = 1;
2797
2798 if (wbc->range_cyclic) {
2799 writeback_index = mapping->writeback_index;
2800 if (writeback_index)
2801 cycled = 0;
2802 mpd.first_page = writeback_index;
2803 mpd.last_page = -1;
2804 } else {
2805 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2806 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2807 }
2808
2809 mpd.inode = inode;
2810 mpd.wbc = wbc;
2811 ext4_io_submit_init(&mpd.io_submit, wbc);
2812 retry:
2813 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2815 done = false;
2816 blk_start_plug(&plug);
2817
2818 /*
2819 * First writeback pages that don't need mapping - we can avoid
2820 * starting a transaction unnecessarily and also avoid being blocked
2821 * in the block layer on device congestion while having transaction
2822 * started.
2823 */
2824 mpd.do_map = 0;
2825 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826 if (!mpd.io_submit.io_end) {
2827 ret = -ENOMEM;
2828 goto unplug;
2829 }
2830 ret = mpage_prepare_extent_to_map(&mpd);
2831 /* Unlock pages we didn't use */
2832 mpage_release_unused_pages(&mpd, false);
2833 /* Submit prepared bio */
2834 ext4_io_submit(&mpd.io_submit);
2835 ext4_put_io_end_defer(mpd.io_submit.io_end);
2836 mpd.io_submit.io_end = NULL;
2837 if (ret < 0)
2838 goto unplug;
2839
2840 while (!done && mpd.first_page <= mpd.last_page) {
2841 /* For each extent of pages we use new io_end */
2842 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843 if (!mpd.io_submit.io_end) {
2844 ret = -ENOMEM;
2845 break;
2846 }
2847
2848 /*
2849 * We have two constraints: We find one extent to map and we
2850 * must always write out whole page (makes a difference when
2851 * blocksize < pagesize) so that we don't block on IO when we
2852 * try to write out the rest of the page. Journalled mode is
2853 * not supported by delalloc.
2854 */
2855 BUG_ON(ext4_should_journal_data(inode));
2856 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2857
2858 /* start a new transaction */
2859 handle = ext4_journal_start_with_reserve(inode,
2860 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861 if (IS_ERR(handle)) {
2862 ret = PTR_ERR(handle);
2863 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864 "%ld pages, ino %lu; err %d", __func__,
2865 wbc->nr_to_write, inode->i_ino, ret);
2866 /* Release allocated io_end */
2867 ext4_put_io_end(mpd.io_submit.io_end);
2868 mpd.io_submit.io_end = NULL;
2869 break;
2870 }
2871 mpd.do_map = 1;
2872
2873 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2874 ret = mpage_prepare_extent_to_map(&mpd);
2875 if (!ret) {
2876 if (mpd.map.m_len)
2877 ret = mpage_map_and_submit_extent(handle, &mpd,
2878 &give_up_on_write);
2879 else {
2880 /*
2881 * We scanned the whole range (or exhausted
2882 * nr_to_write), submitted what was mapped and
2883 * didn't find anything needing mapping. We are
2884 * done.
2885 */
2886 done = true;
2887 }
2888 }
2889 /*
2890 * Caution: If the handle is synchronous,
2891 * ext4_journal_stop() can wait for transaction commit
2892 * to finish which may depend on writeback of pages to
2893 * complete or on page lock to be released. In that
2894 * case, we have to wait until after after we have
2895 * submitted all the IO, released page locks we hold,
2896 * and dropped io_end reference (for extent conversion
2897 * to be able to complete) before stopping the handle.
2898 */
2899 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2900 ext4_journal_stop(handle);
2901 handle = NULL;
2902 mpd.do_map = 0;
2903 }
2904 /* Unlock pages we didn't use */
2905 mpage_release_unused_pages(&mpd, give_up_on_write);
2906 /* Submit prepared bio */
2907 ext4_io_submit(&mpd.io_submit);
2908
2909 /*
2910 * Drop our io_end reference we got from init. We have
2911 * to be careful and use deferred io_end finishing if
2912 * we are still holding the transaction as we can
2913 * release the last reference to io_end which may end
2914 * up doing unwritten extent conversion.
2915 */
2916 if (handle) {
2917 ext4_put_io_end_defer(mpd.io_submit.io_end);
2918 ext4_journal_stop(handle);
2919 } else
2920 ext4_put_io_end(mpd.io_submit.io_end);
2921 mpd.io_submit.io_end = NULL;
2922
2923 if (ret == -ENOSPC && sbi->s_journal) {
2924 /*
2925 * Commit the transaction which would
2926 * free blocks released in the transaction
2927 * and try again
2928 */
2929 jbd2_journal_force_commit_nested(sbi->s_journal);
2930 ret = 0;
2931 continue;
2932 }
2933 /* Fatal error - ENOMEM, EIO... */
2934 if (ret)
2935 break;
2936 }
2937 unplug:
2938 blk_finish_plug(&plug);
2939 if (!ret && !cycled && wbc->nr_to_write > 0) {
2940 cycled = 1;
2941 mpd.last_page = writeback_index - 1;
2942 mpd.first_page = 0;
2943 goto retry;
2944 }
2945
2946 /* Update index */
2947 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2948 /*
2949 * Set the writeback_index so that range_cyclic
2950 * mode will write it back later
2951 */
2952 mapping->writeback_index = mpd.first_page;
2953
2954 out_writepages:
2955 trace_ext4_writepages_result(inode, wbc, ret,
2956 nr_to_write - wbc->nr_to_write);
2957 percpu_up_read(&sbi->s_journal_flag_rwsem);
2958 return ret;
2959 }
2960
2961 static int ext4_dax_writepages(struct address_space *mapping,
2962 struct writeback_control *wbc)
2963 {
2964 int ret;
2965 long nr_to_write = wbc->nr_to_write;
2966 struct inode *inode = mapping->host;
2967 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2968
2969 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2970 return -EIO;
2971
2972 percpu_down_read(&sbi->s_journal_flag_rwsem);
2973 trace_ext4_writepages(inode, wbc);
2974
2975 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2976 trace_ext4_writepages_result(inode, wbc, ret,
2977 nr_to_write - wbc->nr_to_write);
2978 percpu_up_read(&sbi->s_journal_flag_rwsem);
2979 return ret;
2980 }
2981
2982 static int ext4_nonda_switch(struct super_block *sb)
2983 {
2984 s64 free_clusters, dirty_clusters;
2985 struct ext4_sb_info *sbi = EXT4_SB(sb);
2986
2987 /*
2988 * switch to non delalloc mode if we are running low
2989 * on free block. The free block accounting via percpu
2990 * counters can get slightly wrong with percpu_counter_batch getting
2991 * accumulated on each CPU without updating global counters
2992 * Delalloc need an accurate free block accounting. So switch
2993 * to non delalloc when we are near to error range.
2994 */
2995 free_clusters =
2996 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2997 dirty_clusters =
2998 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2999 /*
3000 * Start pushing delalloc when 1/2 of free blocks are dirty.
3001 */
3002 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3003 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3004
3005 if (2 * free_clusters < 3 * dirty_clusters ||
3006 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3007 /*
3008 * free block count is less than 150% of dirty blocks
3009 * or free blocks is less than watermark
3010 */
3011 return 1;
3012 }
3013 return 0;
3014 }
3015
3016 /* We always reserve for an inode update; the superblock could be there too */
3017 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3018 {
3019 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3020 return 1;
3021
3022 if (pos + len <= 0x7fffffffULL)
3023 return 1;
3024
3025 /* We might need to update the superblock to set LARGE_FILE */
3026 return 2;
3027 }
3028
3029 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3030 loff_t pos, unsigned len, unsigned flags,
3031 struct page **pagep, void **fsdata)
3032 {
3033 int ret, retries = 0;
3034 struct page *page;
3035 pgoff_t index;
3036 struct inode *inode = mapping->host;
3037 handle_t *handle;
3038
3039 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3040 return -EIO;
3041
3042 index = pos >> PAGE_SHIFT;
3043
3044 if (ext4_nonda_switch(inode->i_sb) ||
3045 S_ISLNK(inode->i_mode)) {
3046 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3047 return ext4_write_begin(file, mapping, pos,
3048 len, flags, pagep, fsdata);
3049 }
3050 *fsdata = (void *)0;
3051 trace_ext4_da_write_begin(inode, pos, len, flags);
3052
3053 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3054 ret = ext4_da_write_inline_data_begin(mapping, inode,
3055 pos, len, flags,
3056 pagep, fsdata);
3057 if (ret < 0)
3058 return ret;
3059 if (ret == 1)
3060 return 0;
3061 }
3062
3063 /*
3064 * grab_cache_page_write_begin() can take a long time if the
3065 * system is thrashing due to memory pressure, or if the page
3066 * is being written back. So grab it first before we start
3067 * the transaction handle. This also allows us to allocate
3068 * the page (if needed) without using GFP_NOFS.
3069 */
3070 retry_grab:
3071 page = grab_cache_page_write_begin(mapping, index, flags);
3072 if (!page)
3073 return -ENOMEM;
3074 unlock_page(page);
3075
3076 /*
3077 * With delayed allocation, we don't log the i_disksize update
3078 * if there is delayed block allocation. But we still need
3079 * to journalling the i_disksize update if writes to the end
3080 * of file which has an already mapped buffer.
3081 */
3082 retry_journal:
3083 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3084 ext4_da_write_credits(inode, pos, len));
3085 if (IS_ERR(handle)) {
3086 put_page(page);
3087 return PTR_ERR(handle);
3088 }
3089
3090 lock_page(page);
3091 if (page->mapping != mapping) {
3092 /* The page got truncated from under us */
3093 unlock_page(page);
3094 put_page(page);
3095 ext4_journal_stop(handle);
3096 goto retry_grab;
3097 }
3098 /* In case writeback began while the page was unlocked */
3099 wait_for_stable_page(page);
3100
3101 #ifdef CONFIG_FS_ENCRYPTION
3102 ret = ext4_block_write_begin(page, pos, len,
3103 ext4_da_get_block_prep);
3104 #else
3105 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3106 #endif
3107 if (ret < 0) {
3108 unlock_page(page);
3109 ext4_journal_stop(handle);
3110 /*
3111 * block_write_begin may have instantiated a few blocks
3112 * outside i_size. Trim these off again. Don't need
3113 * i_size_read because we hold i_mutex.
3114 */
3115 if (pos + len > inode->i_size)
3116 ext4_truncate_failed_write(inode);
3117
3118 if (ret == -ENOSPC &&
3119 ext4_should_retry_alloc(inode->i_sb, &retries))
3120 goto retry_journal;
3121
3122 put_page(page);
3123 return ret;
3124 }
3125
3126 *pagep = page;
3127 return ret;
3128 }
3129
3130 /*
3131 * Check if we should update i_disksize
3132 * when write to the end of file but not require block allocation
3133 */
3134 static int ext4_da_should_update_i_disksize(struct page *page,
3135 unsigned long offset)
3136 {
3137 struct buffer_head *bh;
3138 struct inode *inode = page->mapping->host;
3139 unsigned int idx;
3140 int i;
3141
3142 bh = page_buffers(page);
3143 idx = offset >> inode->i_blkbits;
3144
3145 for (i = 0; i < idx; i++)
3146 bh = bh->b_this_page;
3147
3148 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3149 return 0;
3150 return 1;
3151 }
3152
3153 static int ext4_da_write_end(struct file *file,
3154 struct address_space *mapping,
3155 loff_t pos, unsigned len, unsigned copied,
3156 struct page *page, void *fsdata)
3157 {
3158 struct inode *inode = mapping->host;
3159 int ret = 0, ret2;
3160 handle_t *handle = ext4_journal_current_handle();
3161 loff_t new_i_size;
3162 unsigned long start, end;
3163 int write_mode = (int)(unsigned long)fsdata;
3164
3165 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3166 return ext4_write_end(file, mapping, pos,
3167 len, copied, page, fsdata);
3168
3169 trace_ext4_da_write_end(inode, pos, len, copied);
3170 start = pos & (PAGE_SIZE - 1);
3171 end = start + copied - 1;
3172
3173 /*
3174 * generic_write_end() will run mark_inode_dirty() if i_size
3175 * changes. So let's piggyback the i_disksize mark_inode_dirty
3176 * into that.
3177 */
3178 new_i_size = pos + copied;
3179 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3180 if (ext4_has_inline_data(inode) ||
3181 ext4_da_should_update_i_disksize(page, end)) {
3182 ext4_update_i_disksize(inode, new_i_size);
3183 /* We need to mark inode dirty even if
3184 * new_i_size is less that inode->i_size
3185 * bu greater than i_disksize.(hint delalloc)
3186 */
3187 ext4_mark_inode_dirty(handle, inode);
3188 }
3189 }
3190
3191 if (write_mode != CONVERT_INLINE_DATA &&
3192 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3193 ext4_has_inline_data(inode))
3194 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3195 page);
3196 else
3197 ret2 = generic_write_end(file, mapping, pos, len, copied,
3198 page, fsdata);
3199
3200 copied = ret2;
3201 if (ret2 < 0)
3202 ret = ret2;
3203 ret2 = ext4_journal_stop(handle);
3204 if (!ret)
3205 ret = ret2;
3206
3207 return ret ? ret : copied;
3208 }
3209
3210 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3211 unsigned int length)
3212 {
3213 /*
3214 * Drop reserved blocks
3215 */
3216 BUG_ON(!PageLocked(page));
3217 if (!page_has_buffers(page))
3218 goto out;
3219
3220 ext4_da_page_release_reservation(page, offset, length);
3221
3222 out:
3223 ext4_invalidatepage(page, offset, length);
3224
3225 return;
3226 }
3227
3228 /*
3229 * Force all delayed allocation blocks to be allocated for a given inode.
3230 */
3231 int ext4_alloc_da_blocks(struct inode *inode)
3232 {
3233 trace_ext4_alloc_da_blocks(inode);
3234
3235 if (!EXT4_I(inode)->i_reserved_data_blocks)
3236 return 0;
3237
3238 /*
3239 * We do something simple for now. The filemap_flush() will
3240 * also start triggering a write of the data blocks, which is
3241 * not strictly speaking necessary (and for users of
3242 * laptop_mode, not even desirable). However, to do otherwise
3243 * would require replicating code paths in:
3244 *
3245 * ext4_writepages() ->
3246 * write_cache_pages() ---> (via passed in callback function)
3247 * __mpage_da_writepage() -->
3248 * mpage_add_bh_to_extent()
3249 * mpage_da_map_blocks()
3250 *
3251 * The problem is that write_cache_pages(), located in
3252 * mm/page-writeback.c, marks pages clean in preparation for
3253 * doing I/O, which is not desirable if we're not planning on
3254 * doing I/O at all.
3255 *
3256 * We could call write_cache_pages(), and then redirty all of
3257 * the pages by calling redirty_page_for_writepage() but that
3258 * would be ugly in the extreme. So instead we would need to
3259 * replicate parts of the code in the above functions,
3260 * simplifying them because we wouldn't actually intend to
3261 * write out the pages, but rather only collect contiguous
3262 * logical block extents, call the multi-block allocator, and
3263 * then update the buffer heads with the block allocations.
3264 *
3265 * For now, though, we'll cheat by calling filemap_flush(),
3266 * which will map the blocks, and start the I/O, but not
3267 * actually wait for the I/O to complete.
3268 */
3269 return filemap_flush(inode->i_mapping);
3270 }
3271
3272 /*
3273 * bmap() is special. It gets used by applications such as lilo and by
3274 * the swapper to find the on-disk block of a specific piece of data.
3275 *
3276 * Naturally, this is dangerous if the block concerned is still in the
3277 * journal. If somebody makes a swapfile on an ext4 data-journaling
3278 * filesystem and enables swap, then they may get a nasty shock when the
3279 * data getting swapped to that swapfile suddenly gets overwritten by
3280 * the original zero's written out previously to the journal and
3281 * awaiting writeback in the kernel's buffer cache.
3282 *
3283 * So, if we see any bmap calls here on a modified, data-journaled file,
3284 * take extra steps to flush any blocks which might be in the cache.
3285 */
3286 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3287 {
3288 struct inode *inode = mapping->host;
3289 journal_t *journal;
3290 int err;
3291
3292 /*
3293 * We can get here for an inline file via the FIBMAP ioctl
3294 */
3295 if (ext4_has_inline_data(inode))
3296 return 0;
3297
3298 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3299 test_opt(inode->i_sb, DELALLOC)) {
3300 /*
3301 * With delalloc we want to sync the file
3302 * so that we can make sure we allocate
3303 * blocks for file
3304 */
3305 filemap_write_and_wait(mapping);
3306 }
3307
3308 if (EXT4_JOURNAL(inode) &&
3309 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3310 /*
3311 * This is a REALLY heavyweight approach, but the use of
3312 * bmap on dirty files is expected to be extremely rare:
3313 * only if we run lilo or swapon on a freshly made file
3314 * do we expect this to happen.
3315 *
3316 * (bmap requires CAP_SYS_RAWIO so this does not
3317 * represent an unprivileged user DOS attack --- we'd be
3318 * in trouble if mortal users could trigger this path at
3319 * will.)
3320 *
3321 * NB. EXT4_STATE_JDATA is not set on files other than
3322 * regular files. If somebody wants to bmap a directory
3323 * or symlink and gets confused because the buffer
3324 * hasn't yet been flushed to disk, they deserve
3325 * everything they get.
3326 */
3327
3328 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3329 journal = EXT4_JOURNAL(inode);
3330 jbd2_journal_lock_updates(journal);
3331 err = jbd2_journal_flush(journal);
3332 jbd2_journal_unlock_updates(journal);
3333
3334 if (err)
3335 return 0;
3336 }
3337
3338 return generic_block_bmap(mapping, block, ext4_get_block);
3339 }
3340
3341 static int ext4_readpage(struct file *file, struct page *page)
3342 {
3343 int ret = -EAGAIN;
3344 struct inode *inode = page->mapping->host;
3345
3346 trace_ext4_readpage(page);
3347
3348 if (ext4_has_inline_data(inode))
3349 ret = ext4_readpage_inline(inode, page);
3350
3351 if (ret == -EAGAIN)
3352 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3353 false);
3354
3355 return ret;
3356 }
3357
3358 static int
3359 ext4_readpages(struct file *file, struct address_space *mapping,
3360 struct list_head *pages, unsigned nr_pages)
3361 {
3362 struct inode *inode = mapping->host;
3363
3364 /* If the file has inline data, no need to do readpages. */
3365 if (ext4_has_inline_data(inode))
3366 return 0;
3367
3368 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3369 }
3370
3371 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3372 unsigned int length)
3373 {
3374 trace_ext4_invalidatepage(page, offset, length);
3375
3376 /* No journalling happens on data buffers when this function is used */
3377 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3378
3379 block_invalidatepage(page, offset, length);
3380 }
3381
3382 static int __ext4_journalled_invalidatepage(struct page *page,
3383 unsigned int offset,
3384 unsigned int length)
3385 {
3386 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388 trace_ext4_journalled_invalidatepage(page, offset, length);
3389
3390 /*
3391 * If it's a full truncate we just forget about the pending dirtying
3392 */
3393 if (offset == 0 && length == PAGE_SIZE)
3394 ClearPageChecked(page);
3395
3396 return jbd2_journal_invalidatepage(journal, page, offset, length);
3397 }
3398
3399 /* Wrapper for aops... */
3400 static void ext4_journalled_invalidatepage(struct page *page,
3401 unsigned int offset,
3402 unsigned int length)
3403 {
3404 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3405 }
3406
3407 static int ext4_releasepage(struct page *page, gfp_t wait)
3408 {
3409 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3410
3411 trace_ext4_releasepage(page);
3412
3413 /* Page has dirty journalled data -> cannot release */
3414 if (PageChecked(page))
3415 return 0;
3416 if (journal)
3417 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3418 else
3419 return try_to_free_buffers(page);
3420 }
3421
3422 static bool ext4_inode_datasync_dirty(struct inode *inode)
3423 {
3424 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3425
3426 if (journal)
3427 return !jbd2_transaction_committed(journal,
3428 EXT4_I(inode)->i_datasync_tid);
3429 /* Any metadata buffers to write? */
3430 if (!list_empty(&inode->i_mapping->private_list))
3431 return true;
3432 return inode->i_state & I_DIRTY_DATASYNC;
3433 }
3434
3435 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3436 unsigned flags, struct iomap *iomap)
3437 {
3438 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3439 unsigned int blkbits = inode->i_blkbits;
3440 unsigned long first_block, last_block;
3441 struct ext4_map_blocks map;
3442 bool delalloc = false;
3443 int ret;
3444
3445 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3446 return -EINVAL;
3447 first_block = offset >> blkbits;
3448 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3449 EXT4_MAX_LOGICAL_BLOCK);
3450
3451 if (flags & IOMAP_REPORT) {
3452 if (ext4_has_inline_data(inode)) {
3453 ret = ext4_inline_data_iomap(inode, iomap);
3454 if (ret != -EAGAIN) {
3455 if (ret == 0 && offset >= iomap->length)
3456 ret = -ENOENT;
3457 return ret;
3458 }
3459 }
3460 } else {
3461 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3462 return -ERANGE;
3463 }
3464
3465 map.m_lblk = first_block;
3466 map.m_len = last_block - first_block + 1;
3467
3468 if (flags & IOMAP_REPORT) {
3469 ret = ext4_map_blocks(NULL, inode, &map, 0);
3470 if (ret < 0)
3471 return ret;
3472
3473 if (ret == 0) {
3474 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3475 struct extent_status es;
3476
3477 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3478 map.m_lblk, end, &es);
3479
3480 if (!es.es_len || es.es_lblk > end) {
3481 /* entire range is a hole */
3482 } else if (es.es_lblk > map.m_lblk) {
3483 /* range starts with a hole */
3484 map.m_len = es.es_lblk - map.m_lblk;
3485 } else {
3486 ext4_lblk_t offs = 0;
3487
3488 if (es.es_lblk < map.m_lblk)
3489 offs = map.m_lblk - es.es_lblk;
3490 map.m_lblk = es.es_lblk + offs;
3491 map.m_len = es.es_len - offs;
3492 delalloc = true;
3493 }
3494 }
3495 } else if (flags & IOMAP_WRITE) {
3496 int dio_credits;
3497 handle_t *handle;
3498 int retries = 0;
3499
3500 /* Trim mapping request to maximum we can map at once for DIO */
3501 if (map.m_len > DIO_MAX_BLOCKS)
3502 map.m_len = DIO_MAX_BLOCKS;
3503 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3504 retry:
3505 /*
3506 * Either we allocate blocks and then we don't get unwritten
3507 * extent so we have reserved enough credits, or the blocks
3508 * are already allocated and unwritten and in that case
3509 * extent conversion fits in the credits as well.
3510 */
3511 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3512 dio_credits);
3513 if (IS_ERR(handle))
3514 return PTR_ERR(handle);
3515
3516 ret = ext4_map_blocks(handle, inode, &map,
3517 EXT4_GET_BLOCKS_CREATE_ZERO);
3518 if (ret < 0) {
3519 ext4_journal_stop(handle);
3520 if (ret == -ENOSPC &&
3521 ext4_should_retry_alloc(inode->i_sb, &retries))
3522 goto retry;
3523 return ret;
3524 }
3525
3526 /*
3527 * If we added blocks beyond i_size, we need to make sure they
3528 * will get truncated if we crash before updating i_size in
3529 * ext4_iomap_end(). For faults we don't need to do that (and
3530 * even cannot because for orphan list operations inode_lock is
3531 * required) - if we happen to instantiate block beyond i_size,
3532 * it is because we race with truncate which has already added
3533 * the inode to the orphan list.
3534 */
3535 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3536 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3537 int err;
3538
3539 err = ext4_orphan_add(handle, inode);
3540 if (err < 0) {
3541 ext4_journal_stop(handle);
3542 return err;
3543 }
3544 }
3545 ext4_journal_stop(handle);
3546 } else {
3547 ret = ext4_map_blocks(NULL, inode, &map, 0);
3548 if (ret < 0)
3549 return ret;
3550 }
3551
3552 iomap->flags = 0;
3553 if (ext4_inode_datasync_dirty(inode))
3554 iomap->flags |= IOMAP_F_DIRTY;
3555 iomap->bdev = inode->i_sb->s_bdev;
3556 iomap->dax_dev = sbi->s_daxdev;
3557 iomap->offset = (u64)first_block << blkbits;
3558 iomap->length = (u64)map.m_len << blkbits;
3559
3560 if (ret == 0) {
3561 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3562 iomap->addr = IOMAP_NULL_ADDR;
3563 } else {
3564 if (map.m_flags & EXT4_MAP_MAPPED) {
3565 iomap->type = IOMAP_MAPPED;
3566 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3567 iomap->type = IOMAP_UNWRITTEN;
3568 } else {
3569 WARN_ON_ONCE(1);
3570 return -EIO;
3571 }
3572 iomap->addr = (u64)map.m_pblk << blkbits;
3573 }
3574
3575 if (map.m_flags & EXT4_MAP_NEW)
3576 iomap->flags |= IOMAP_F_NEW;
3577
3578 return 0;
3579 }
3580
3581 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3582 ssize_t written, unsigned flags, struct iomap *iomap)
3583 {
3584 int ret = 0;
3585 handle_t *handle;
3586 int blkbits = inode->i_blkbits;
3587 bool truncate = false;
3588
3589 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3590 return 0;
3591
3592 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3593 if (IS_ERR(handle)) {
3594 ret = PTR_ERR(handle);
3595 goto orphan_del;
3596 }
3597 if (ext4_update_inode_size(inode, offset + written))
3598 ext4_mark_inode_dirty(handle, inode);
3599 /*
3600 * We may need to truncate allocated but not written blocks beyond EOF.
3601 */
3602 if (iomap->offset + iomap->length >
3603 ALIGN(inode->i_size, 1 << blkbits)) {
3604 ext4_lblk_t written_blk, end_blk;
3605
3606 written_blk = (offset + written) >> blkbits;
3607 end_blk = (offset + length) >> blkbits;
3608 if (written_blk < end_blk && ext4_can_truncate(inode))
3609 truncate = true;
3610 }
3611 /*
3612 * Remove inode from orphan list if we were extending a inode and
3613 * everything went fine.
3614 */
3615 if (!truncate && inode->i_nlink &&
3616 !list_empty(&EXT4_I(inode)->i_orphan))
3617 ext4_orphan_del(handle, inode);
3618 ext4_journal_stop(handle);
3619 if (truncate) {
3620 ext4_truncate_failed_write(inode);
3621 orphan_del:
3622 /*
3623 * If truncate failed early the inode might still be on the
3624 * orphan list; we need to make sure the inode is removed from
3625 * the orphan list in that case.
3626 */
3627 if (inode->i_nlink)
3628 ext4_orphan_del(NULL, inode);
3629 }
3630 return ret;
3631 }
3632
3633 const struct iomap_ops ext4_iomap_ops = {
3634 .iomap_begin = ext4_iomap_begin,
3635 .iomap_end = ext4_iomap_end,
3636 };
3637
3638 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3639 ssize_t size, void *private)
3640 {
3641 ext4_io_end_t *io_end = private;
3642
3643 /* if not async direct IO just return */
3644 if (!io_end)
3645 return 0;
3646
3647 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3648 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3649 io_end, io_end->inode->i_ino, iocb, offset, size);
3650
3651 /*
3652 * Error during AIO DIO. We cannot convert unwritten extents as the
3653 * data was not written. Just clear the unwritten flag and drop io_end.
3654 */
3655 if (size <= 0) {
3656 ext4_clear_io_unwritten_flag(io_end);
3657 size = 0;
3658 }
3659 io_end->offset = offset;
3660 io_end->size = size;
3661 ext4_put_io_end(io_end);
3662
3663 return 0;
3664 }
3665
3666 /*
3667 * Handling of direct IO writes.
3668 *
3669 * For ext4 extent files, ext4 will do direct-io write even to holes,
3670 * preallocated extents, and those write extend the file, no need to
3671 * fall back to buffered IO.
3672 *
3673 * For holes, we fallocate those blocks, mark them as unwritten
3674 * If those blocks were preallocated, we mark sure they are split, but
3675 * still keep the range to write as unwritten.
3676 *
3677 * The unwritten extents will be converted to written when DIO is completed.
3678 * For async direct IO, since the IO may still pending when return, we
3679 * set up an end_io call back function, which will do the conversion
3680 * when async direct IO completed.
3681 *
3682 * If the O_DIRECT write will extend the file then add this inode to the
3683 * orphan list. So recovery will truncate it back to the original size
3684 * if the machine crashes during the write.
3685 *
3686 */
3687 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3688 {
3689 struct file *file = iocb->ki_filp;
3690 struct inode *inode = file->f_mapping->host;
3691 struct ext4_inode_info *ei = EXT4_I(inode);
3692 ssize_t ret;
3693 loff_t offset = iocb->ki_pos;
3694 size_t count = iov_iter_count(iter);
3695 int overwrite = 0;
3696 get_block_t *get_block_func = NULL;
3697 int dio_flags = 0;
3698 loff_t final_size = offset + count;
3699 int orphan = 0;
3700 handle_t *handle;
3701
3702 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3703 /* Credits for sb + inode write */
3704 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3705 if (IS_ERR(handle)) {
3706 ret = PTR_ERR(handle);
3707 goto out;
3708 }
3709 ret = ext4_orphan_add(handle, inode);
3710 if (ret) {
3711 ext4_journal_stop(handle);
3712 goto out;
3713 }
3714 orphan = 1;
3715 ext4_update_i_disksize(inode, inode->i_size);
3716 ext4_journal_stop(handle);
3717 }
3718
3719 BUG_ON(iocb->private == NULL);
3720
3721 /*
3722 * Make all waiters for direct IO properly wait also for extent
3723 * conversion. This also disallows race between truncate() and
3724 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3725 */
3726 inode_dio_begin(inode);
3727
3728 /* If we do a overwrite dio, i_mutex locking can be released */
3729 overwrite = *((int *)iocb->private);
3730
3731 if (overwrite)
3732 inode_unlock(inode);
3733
3734 /*
3735 * For extent mapped files we could direct write to holes and fallocate.
3736 *
3737 * Allocated blocks to fill the hole are marked as unwritten to prevent
3738 * parallel buffered read to expose the stale data before DIO complete
3739 * the data IO.
3740 *
3741 * As to previously fallocated extents, ext4 get_block will just simply
3742 * mark the buffer mapped but still keep the extents unwritten.
3743 *
3744 * For non AIO case, we will convert those unwritten extents to written
3745 * after return back from blockdev_direct_IO. That way we save us from
3746 * allocating io_end structure and also the overhead of offloading
3747 * the extent convertion to a workqueue.
3748 *
3749 * For async DIO, the conversion needs to be deferred when the
3750 * IO is completed. The ext4 end_io callback function will be
3751 * called to take care of the conversion work. Here for async
3752 * case, we allocate an io_end structure to hook to the iocb.
3753 */
3754 iocb->private = NULL;
3755 if (overwrite)
3756 get_block_func = ext4_dio_get_block_overwrite;
3757 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3758 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3759 get_block_func = ext4_dio_get_block;
3760 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3761 } else if (is_sync_kiocb(iocb)) {
3762 get_block_func = ext4_dio_get_block_unwritten_sync;
3763 dio_flags = DIO_LOCKING;
3764 } else {
3765 get_block_func = ext4_dio_get_block_unwritten_async;
3766 dio_flags = DIO_LOCKING;
3767 }
3768 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3769 get_block_func, ext4_end_io_dio, NULL,
3770 dio_flags);
3771
3772 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3773 EXT4_STATE_DIO_UNWRITTEN)) {
3774 int err;
3775 /*
3776 * for non AIO case, since the IO is already
3777 * completed, we could do the conversion right here
3778 */
3779 err = ext4_convert_unwritten_extents(NULL, inode,
3780 offset, ret);
3781 if (err < 0)
3782 ret = err;
3783 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3784 }
3785
3786 inode_dio_end(inode);
3787 /* take i_mutex locking again if we do a ovewrite dio */
3788 if (overwrite)
3789 inode_lock(inode);
3790
3791 if (ret < 0 && final_size > inode->i_size)
3792 ext4_truncate_failed_write(inode);
3793
3794 /* Handle extending of i_size after direct IO write */
3795 if (orphan) {
3796 int err;
3797
3798 /* Credits for sb + inode write */
3799 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3800 if (IS_ERR(handle)) {
3801 /*
3802 * We wrote the data but cannot extend
3803 * i_size. Bail out. In async io case, we do
3804 * not return error here because we have
3805 * already submmitted the corresponding
3806 * bio. Returning error here makes the caller
3807 * think that this IO is done and failed
3808 * resulting in race with bio's completion
3809 * handler.
3810 */
3811 if (!ret)
3812 ret = PTR_ERR(handle);
3813 if (inode->i_nlink)
3814 ext4_orphan_del(NULL, inode);
3815
3816 goto out;
3817 }
3818 if (inode->i_nlink)
3819 ext4_orphan_del(handle, inode);
3820 if (ret > 0) {
3821 loff_t end = offset + ret;
3822 if (end > inode->i_size || end > ei->i_disksize) {
3823 ext4_update_i_disksize(inode, end);
3824 if (end > inode->i_size)
3825 i_size_write(inode, end);
3826 /*
3827 * We're going to return a positive `ret'
3828 * here due to non-zero-length I/O, so there's
3829 * no way of reporting error returns from
3830 * ext4_mark_inode_dirty() to userspace. So
3831 * ignore it.
3832 */
3833 ext4_mark_inode_dirty(handle, inode);
3834 }
3835 }
3836 err = ext4_journal_stop(handle);
3837 if (ret == 0)
3838 ret = err;
3839 }
3840 out:
3841 return ret;
3842 }
3843
3844 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3845 {
3846 struct address_space *mapping = iocb->ki_filp->f_mapping;
3847 struct inode *inode = mapping->host;
3848 size_t count = iov_iter_count(iter);
3849 ssize_t ret;
3850
3851 /*
3852 * Shared inode_lock is enough for us - it protects against concurrent
3853 * writes & truncates and since we take care of writing back page cache,
3854 * we are protected against page writeback as well.
3855 */
3856 inode_lock_shared(inode);
3857 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3858 iocb->ki_pos + count - 1);
3859 if (ret)
3860 goto out_unlock;
3861 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3862 iter, ext4_dio_get_block, NULL, NULL, 0);
3863 out_unlock:
3864 inode_unlock_shared(inode);
3865 return ret;
3866 }
3867
3868 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3869 {
3870 struct file *file = iocb->ki_filp;
3871 struct inode *inode = file->f_mapping->host;
3872 size_t count = iov_iter_count(iter);
3873 loff_t offset = iocb->ki_pos;
3874 ssize_t ret;
3875
3876 #ifdef CONFIG_FS_ENCRYPTION
3877 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3878 return 0;
3879 #endif
3880
3881 /*
3882 * If we are doing data journalling we don't support O_DIRECT
3883 */
3884 if (ext4_should_journal_data(inode))
3885 return 0;
3886
3887 /* Let buffer I/O handle the inline data case. */
3888 if (ext4_has_inline_data(inode))
3889 return 0;
3890
3891 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3892 if (iov_iter_rw(iter) == READ)
3893 ret = ext4_direct_IO_read(iocb, iter);
3894 else
3895 ret = ext4_direct_IO_write(iocb, iter);
3896 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3897 return ret;
3898 }
3899
3900 /*
3901 * Pages can be marked dirty completely asynchronously from ext4's journalling
3902 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3903 * much here because ->set_page_dirty is called under VFS locks. The page is
3904 * not necessarily locked.
3905 *
3906 * We cannot just dirty the page and leave attached buffers clean, because the
3907 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3908 * or jbddirty because all the journalling code will explode.
3909 *
3910 * So what we do is to mark the page "pending dirty" and next time writepage
3911 * is called, propagate that into the buffers appropriately.
3912 */
3913 static int ext4_journalled_set_page_dirty(struct page *page)
3914 {
3915 SetPageChecked(page);
3916 return __set_page_dirty_nobuffers(page);
3917 }
3918
3919 static int ext4_set_page_dirty(struct page *page)
3920 {
3921 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3922 WARN_ON_ONCE(!page_has_buffers(page));
3923 return __set_page_dirty_buffers(page);
3924 }
3925
3926 static const struct address_space_operations ext4_aops = {
3927 .readpage = ext4_readpage,
3928 .readpages = ext4_readpages,
3929 .writepage = ext4_writepage,
3930 .writepages = ext4_writepages,
3931 .write_begin = ext4_write_begin,
3932 .write_end = ext4_write_end,
3933 .set_page_dirty = ext4_set_page_dirty,
3934 .bmap = ext4_bmap,
3935 .invalidatepage = ext4_invalidatepage,
3936 .releasepage = ext4_releasepage,
3937 .direct_IO = ext4_direct_IO,
3938 .migratepage = buffer_migrate_page,
3939 .is_partially_uptodate = block_is_partially_uptodate,
3940 .error_remove_page = generic_error_remove_page,
3941 };
3942
3943 static const struct address_space_operations ext4_journalled_aops = {
3944 .readpage = ext4_readpage,
3945 .readpages = ext4_readpages,
3946 .writepage = ext4_writepage,
3947 .writepages = ext4_writepages,
3948 .write_begin = ext4_write_begin,
3949 .write_end = ext4_journalled_write_end,
3950 .set_page_dirty = ext4_journalled_set_page_dirty,
3951 .bmap = ext4_bmap,
3952 .invalidatepage = ext4_journalled_invalidatepage,
3953 .releasepage = ext4_releasepage,
3954 .direct_IO = ext4_direct_IO,
3955 .is_partially_uptodate = block_is_partially_uptodate,
3956 .error_remove_page = generic_error_remove_page,
3957 };
3958
3959 static const struct address_space_operations ext4_da_aops = {
3960 .readpage = ext4_readpage,
3961 .readpages = ext4_readpages,
3962 .writepage = ext4_writepage,
3963 .writepages = ext4_writepages,
3964 .write_begin = ext4_da_write_begin,
3965 .write_end = ext4_da_write_end,
3966 .set_page_dirty = ext4_set_page_dirty,
3967 .bmap = ext4_bmap,
3968 .invalidatepage = ext4_da_invalidatepage,
3969 .releasepage = ext4_releasepage,
3970 .direct_IO = ext4_direct_IO,
3971 .migratepage = buffer_migrate_page,
3972 .is_partially_uptodate = block_is_partially_uptodate,
3973 .error_remove_page = generic_error_remove_page,
3974 };
3975
3976 static const struct address_space_operations ext4_dax_aops = {
3977 .writepages = ext4_dax_writepages,
3978 .direct_IO = noop_direct_IO,
3979 .set_page_dirty = noop_set_page_dirty,
3980 .bmap = ext4_bmap,
3981 .invalidatepage = noop_invalidatepage,
3982 };
3983
3984 void ext4_set_aops(struct inode *inode)
3985 {
3986 switch (ext4_inode_journal_mode(inode)) {
3987 case EXT4_INODE_ORDERED_DATA_MODE:
3988 case EXT4_INODE_WRITEBACK_DATA_MODE:
3989 break;
3990 case EXT4_INODE_JOURNAL_DATA_MODE:
3991 inode->i_mapping->a_ops = &ext4_journalled_aops;
3992 return;
3993 default:
3994 BUG();
3995 }
3996 if (IS_DAX(inode))
3997 inode->i_mapping->a_ops = &ext4_dax_aops;
3998 else if (test_opt(inode->i_sb, DELALLOC))
3999 inode->i_mapping->a_ops = &ext4_da_aops;
4000 else
4001 inode->i_mapping->a_ops = &ext4_aops;
4002 }
4003
4004 static int __ext4_block_zero_page_range(handle_t *handle,
4005 struct address_space *mapping, loff_t from, loff_t length)
4006 {
4007 ext4_fsblk_t index = from >> PAGE_SHIFT;
4008 unsigned offset = from & (PAGE_SIZE-1);
4009 unsigned blocksize, pos;
4010 ext4_lblk_t iblock;
4011 struct inode *inode = mapping->host;
4012 struct buffer_head *bh;
4013 struct page *page;
4014 int err = 0;
4015
4016 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4017 mapping_gfp_constraint(mapping, ~__GFP_FS));
4018 if (!page)
4019 return -ENOMEM;
4020
4021 blocksize = inode->i_sb->s_blocksize;
4022
4023 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4024
4025 if (!page_has_buffers(page))
4026 create_empty_buffers(page, blocksize, 0);
4027
4028 /* Find the buffer that contains "offset" */
4029 bh = page_buffers(page);
4030 pos = blocksize;
4031 while (offset >= pos) {
4032 bh = bh->b_this_page;
4033 iblock++;
4034 pos += blocksize;
4035 }
4036 if (buffer_freed(bh)) {
4037 BUFFER_TRACE(bh, "freed: skip");
4038 goto unlock;
4039 }
4040 if (!buffer_mapped(bh)) {
4041 BUFFER_TRACE(bh, "unmapped");
4042 ext4_get_block(inode, iblock, bh, 0);
4043 /* unmapped? It's a hole - nothing to do */
4044 if (!buffer_mapped(bh)) {
4045 BUFFER_TRACE(bh, "still unmapped");
4046 goto unlock;
4047 }
4048 }
4049
4050 /* Ok, it's mapped. Make sure it's up-to-date */
4051 if (PageUptodate(page))
4052 set_buffer_uptodate(bh);
4053
4054 if (!buffer_uptodate(bh)) {
4055 err = -EIO;
4056 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4057 wait_on_buffer(bh);
4058 /* Uhhuh. Read error. Complain and punt. */
4059 if (!buffer_uptodate(bh))
4060 goto unlock;
4061 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4062 /* We expect the key to be set. */
4063 BUG_ON(!fscrypt_has_encryption_key(inode));
4064 BUG_ON(blocksize != PAGE_SIZE);
4065 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4066 page, PAGE_SIZE, 0, page->index));
4067 }
4068 }
4069 if (ext4_should_journal_data(inode)) {
4070 BUFFER_TRACE(bh, "get write access");
4071 err = ext4_journal_get_write_access(handle, bh);
4072 if (err)
4073 goto unlock;
4074 }
4075 zero_user(page, offset, length);
4076 BUFFER_TRACE(bh, "zeroed end of block");
4077
4078 if (ext4_should_journal_data(inode)) {
4079 err = ext4_handle_dirty_metadata(handle, inode, bh);
4080 } else {
4081 err = 0;
4082 mark_buffer_dirty(bh);
4083 if (ext4_should_order_data(inode))
4084 err = ext4_jbd2_inode_add_write(handle, inode);
4085 }
4086
4087 unlock:
4088 unlock_page(page);
4089 put_page(page);
4090 return err;
4091 }
4092
4093 /*
4094 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4095 * starting from file offset 'from'. The range to be zero'd must
4096 * be contained with in one block. If the specified range exceeds
4097 * the end of the block it will be shortened to end of the block
4098 * that cooresponds to 'from'
4099 */
4100 static int ext4_block_zero_page_range(handle_t *handle,
4101 struct address_space *mapping, loff_t from, loff_t length)
4102 {
4103 struct inode *inode = mapping->host;
4104 unsigned offset = from & (PAGE_SIZE-1);
4105 unsigned blocksize = inode->i_sb->s_blocksize;
4106 unsigned max = blocksize - (offset & (blocksize - 1));
4107
4108 /*
4109 * correct length if it does not fall between
4110 * 'from' and the end of the block
4111 */
4112 if (length > max || length < 0)
4113 length = max;
4114
4115 if (IS_DAX(inode)) {
4116 return iomap_zero_range(inode, from, length, NULL,
4117 &ext4_iomap_ops);
4118 }
4119 return __ext4_block_zero_page_range(handle, mapping, from, length);
4120 }
4121
4122 /*
4123 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4124 * up to the end of the block which corresponds to `from'.
4125 * This required during truncate. We need to physically zero the tail end
4126 * of that block so it doesn't yield old data if the file is later grown.
4127 */
4128 static int ext4_block_truncate_page(handle_t *handle,
4129 struct address_space *mapping, loff_t from)
4130 {
4131 unsigned offset = from & (PAGE_SIZE-1);
4132 unsigned length;
4133 unsigned blocksize;
4134 struct inode *inode = mapping->host;
4135
4136 /* If we are processing an encrypted inode during orphan list handling */
4137 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4138 return 0;
4139
4140 blocksize = inode->i_sb->s_blocksize;
4141 length = blocksize - (offset & (blocksize - 1));
4142
4143 return ext4_block_zero_page_range(handle, mapping, from, length);
4144 }
4145
4146 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4147 loff_t lstart, loff_t length)
4148 {
4149 struct super_block *sb = inode->i_sb;
4150 struct address_space *mapping = inode->i_mapping;
4151 unsigned partial_start, partial_end;
4152 ext4_fsblk_t start, end;
4153 loff_t byte_end = (lstart + length - 1);
4154 int err = 0;
4155
4156 partial_start = lstart & (sb->s_blocksize - 1);
4157 partial_end = byte_end & (sb->s_blocksize - 1);
4158
4159 start = lstart >> sb->s_blocksize_bits;
4160 end = byte_end >> sb->s_blocksize_bits;
4161
4162 /* Handle partial zero within the single block */
4163 if (start == end &&
4164 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4165 err = ext4_block_zero_page_range(handle, mapping,
4166 lstart, length);
4167 return err;
4168 }
4169 /* Handle partial zero out on the start of the range */
4170 if (partial_start) {
4171 err = ext4_block_zero_page_range(handle, mapping,
4172 lstart, sb->s_blocksize);
4173 if (err)
4174 return err;
4175 }
4176 /* Handle partial zero out on the end of the range */
4177 if (partial_end != sb->s_blocksize - 1)
4178 err = ext4_block_zero_page_range(handle, mapping,
4179 byte_end - partial_end,
4180 partial_end + 1);
4181 return err;
4182 }
4183
4184 int ext4_can_truncate(struct inode *inode)
4185 {
4186 if (S_ISREG(inode->i_mode))
4187 return 1;
4188 if (S_ISDIR(inode->i_mode))
4189 return 1;
4190 if (S_ISLNK(inode->i_mode))
4191 return !ext4_inode_is_fast_symlink(inode);
4192 return 0;
4193 }
4194
4195 /*
4196 * We have to make sure i_disksize gets properly updated before we truncate
4197 * page cache due to hole punching or zero range. Otherwise i_disksize update
4198 * can get lost as it may have been postponed to submission of writeback but
4199 * that will never happen after we truncate page cache.
4200 */
4201 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4202 loff_t len)
4203 {
4204 handle_t *handle;
4205 loff_t size = i_size_read(inode);
4206
4207 WARN_ON(!inode_is_locked(inode));
4208 if (offset > size || offset + len < size)
4209 return 0;
4210
4211 if (EXT4_I(inode)->i_disksize >= size)
4212 return 0;
4213
4214 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4215 if (IS_ERR(handle))
4216 return PTR_ERR(handle);
4217 ext4_update_i_disksize(inode, size);
4218 ext4_mark_inode_dirty(handle, inode);
4219 ext4_journal_stop(handle);
4220
4221 return 0;
4222 }
4223
4224 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4225 {
4226 up_write(&ei->i_mmap_sem);
4227 schedule();
4228 down_write(&ei->i_mmap_sem);
4229 }
4230
4231 int ext4_break_layouts(struct inode *inode)
4232 {
4233 struct ext4_inode_info *ei = EXT4_I(inode);
4234 struct page *page;
4235 int error;
4236
4237 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4238 return -EINVAL;
4239
4240 do {
4241 page = dax_layout_busy_page(inode->i_mapping);
4242 if (!page)
4243 return 0;
4244
4245 error = ___wait_var_event(&page->_refcount,
4246 atomic_read(&page->_refcount) == 1,
4247 TASK_INTERRUPTIBLE, 0, 0,
4248 ext4_wait_dax_page(ei));
4249 } while (error == 0);
4250
4251 return error;
4252 }
4253
4254 /*
4255 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4256 * associated with the given offset and length
4257 *
4258 * @inode: File inode
4259 * @offset: The offset where the hole will begin
4260 * @len: The length of the hole
4261 *
4262 * Returns: 0 on success or negative on failure
4263 */
4264
4265 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4266 {
4267 struct super_block *sb = inode->i_sb;
4268 ext4_lblk_t first_block, stop_block;
4269 struct address_space *mapping = inode->i_mapping;
4270 loff_t first_block_offset, last_block_offset;
4271 handle_t *handle;
4272 unsigned int credits;
4273 int ret = 0;
4274
4275 if (!S_ISREG(inode->i_mode))
4276 return -EOPNOTSUPP;
4277
4278 trace_ext4_punch_hole(inode, offset, length, 0);
4279
4280 /*
4281 * Write out all dirty pages to avoid race conditions
4282 * Then release them.
4283 */
4284 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4285 ret = filemap_write_and_wait_range(mapping, offset,
4286 offset + length - 1);
4287 if (ret)
4288 return ret;
4289 }
4290
4291 inode_lock(inode);
4292
4293 /* No need to punch hole beyond i_size */
4294 if (offset >= inode->i_size)
4295 goto out_mutex;
4296
4297 /*
4298 * If the hole extends beyond i_size, set the hole
4299 * to end after the page that contains i_size
4300 */
4301 if (offset + length > inode->i_size) {
4302 length = inode->i_size +
4303 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4304 offset;
4305 }
4306
4307 if (offset & (sb->s_blocksize - 1) ||
4308 (offset + length) & (sb->s_blocksize - 1)) {
4309 /*
4310 * Attach jinode to inode for jbd2 if we do any zeroing of
4311 * partial block
4312 */
4313 ret = ext4_inode_attach_jinode(inode);
4314 if (ret < 0)
4315 goto out_mutex;
4316
4317 }
4318
4319 /* Wait all existing dio workers, newcomers will block on i_mutex */
4320 inode_dio_wait(inode);
4321
4322 /*
4323 * Prevent page faults from reinstantiating pages we have released from
4324 * page cache.
4325 */
4326 down_write(&EXT4_I(inode)->i_mmap_sem);
4327
4328 ret = ext4_break_layouts(inode);
4329 if (ret)
4330 goto out_dio;
4331
4332 first_block_offset = round_up(offset, sb->s_blocksize);
4333 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4334
4335 /* Now release the pages and zero block aligned part of pages*/
4336 if (last_block_offset > first_block_offset) {
4337 ret = ext4_update_disksize_before_punch(inode, offset, length);
4338 if (ret)
4339 goto out_dio;
4340 truncate_pagecache_range(inode, first_block_offset,
4341 last_block_offset);
4342 }
4343
4344 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4345 credits = ext4_writepage_trans_blocks(inode);
4346 else
4347 credits = ext4_blocks_for_truncate(inode);
4348 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4349 if (IS_ERR(handle)) {
4350 ret = PTR_ERR(handle);
4351 ext4_std_error(sb, ret);
4352 goto out_dio;
4353 }
4354
4355 ret = ext4_zero_partial_blocks(handle, inode, offset,
4356 length);
4357 if (ret)
4358 goto out_stop;
4359
4360 first_block = (offset + sb->s_blocksize - 1) >>
4361 EXT4_BLOCK_SIZE_BITS(sb);
4362 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4363
4364 /* If there are blocks to remove, do it */
4365 if (stop_block > first_block) {
4366
4367 down_write(&EXT4_I(inode)->i_data_sem);
4368 ext4_discard_preallocations(inode);
4369
4370 ret = ext4_es_remove_extent(inode, first_block,
4371 stop_block - first_block);
4372 if (ret) {
4373 up_write(&EXT4_I(inode)->i_data_sem);
4374 goto out_stop;
4375 }
4376
4377 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4378 ret = ext4_ext_remove_space(inode, first_block,
4379 stop_block - 1);
4380 else
4381 ret = ext4_ind_remove_space(handle, inode, first_block,
4382 stop_block);
4383
4384 up_write(&EXT4_I(inode)->i_data_sem);
4385 }
4386 if (IS_SYNC(inode))
4387 ext4_handle_sync(handle);
4388
4389 inode->i_mtime = inode->i_ctime = current_time(inode);
4390 ext4_mark_inode_dirty(handle, inode);
4391 if (ret >= 0)
4392 ext4_update_inode_fsync_trans(handle, inode, 1);
4393 out_stop:
4394 ext4_journal_stop(handle);
4395 out_dio:
4396 up_write(&EXT4_I(inode)->i_mmap_sem);
4397 out_mutex:
4398 inode_unlock(inode);
4399 return ret;
4400 }
4401
4402 int ext4_inode_attach_jinode(struct inode *inode)
4403 {
4404 struct ext4_inode_info *ei = EXT4_I(inode);
4405 struct jbd2_inode *jinode;
4406
4407 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4408 return 0;
4409
4410 jinode = jbd2_alloc_inode(GFP_KERNEL);
4411 spin_lock(&inode->i_lock);
4412 if (!ei->jinode) {
4413 if (!jinode) {
4414 spin_unlock(&inode->i_lock);
4415 return -ENOMEM;
4416 }
4417 ei->jinode = jinode;
4418 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4419 jinode = NULL;
4420 }
4421 spin_unlock(&inode->i_lock);
4422 if (unlikely(jinode != NULL))
4423 jbd2_free_inode(jinode);
4424 return 0;
4425 }
4426
4427 /*
4428 * ext4_truncate()
4429 *
4430 * We block out ext4_get_block() block instantiations across the entire
4431 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4432 * simultaneously on behalf of the same inode.
4433 *
4434 * As we work through the truncate and commit bits of it to the journal there
4435 * is one core, guiding principle: the file's tree must always be consistent on
4436 * disk. We must be able to restart the truncate after a crash.
4437 *
4438 * The file's tree may be transiently inconsistent in memory (although it
4439 * probably isn't), but whenever we close off and commit a journal transaction,
4440 * the contents of (the filesystem + the journal) must be consistent and
4441 * restartable. It's pretty simple, really: bottom up, right to left (although
4442 * left-to-right works OK too).
4443 *
4444 * Note that at recovery time, journal replay occurs *before* the restart of
4445 * truncate against the orphan inode list.
4446 *
4447 * The committed inode has the new, desired i_size (which is the same as
4448 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4449 * that this inode's truncate did not complete and it will again call
4450 * ext4_truncate() to have another go. So there will be instantiated blocks
4451 * to the right of the truncation point in a crashed ext4 filesystem. But
4452 * that's fine - as long as they are linked from the inode, the post-crash
4453 * ext4_truncate() run will find them and release them.
4454 */
4455 int ext4_truncate(struct inode *inode)
4456 {
4457 struct ext4_inode_info *ei = EXT4_I(inode);
4458 unsigned int credits;
4459 int err = 0;
4460 handle_t *handle;
4461 struct address_space *mapping = inode->i_mapping;
4462
4463 /*
4464 * There is a possibility that we're either freeing the inode
4465 * or it's a completely new inode. In those cases we might not
4466 * have i_mutex locked because it's not necessary.
4467 */
4468 if (!(inode->i_state & (I_NEW|I_FREEING)))
4469 WARN_ON(!inode_is_locked(inode));
4470 trace_ext4_truncate_enter(inode);
4471
4472 if (!ext4_can_truncate(inode))
4473 return 0;
4474
4475 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4476
4477 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4478 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4479
4480 if (ext4_has_inline_data(inode)) {
4481 int has_inline = 1;
4482
4483 err = ext4_inline_data_truncate(inode, &has_inline);
4484 if (err)
4485 return err;
4486 if (has_inline)
4487 return 0;
4488 }
4489
4490 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4491 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4492 if (ext4_inode_attach_jinode(inode) < 0)
4493 return 0;
4494 }
4495
4496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4497 credits = ext4_writepage_trans_blocks(inode);
4498 else
4499 credits = ext4_blocks_for_truncate(inode);
4500
4501 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4502 if (IS_ERR(handle))
4503 return PTR_ERR(handle);
4504
4505 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4506 ext4_block_truncate_page(handle, mapping, inode->i_size);
4507
4508 /*
4509 * We add the inode to the orphan list, so that if this
4510 * truncate spans multiple transactions, and we crash, we will
4511 * resume the truncate when the filesystem recovers. It also
4512 * marks the inode dirty, to catch the new size.
4513 *
4514 * Implication: the file must always be in a sane, consistent
4515 * truncatable state while each transaction commits.
4516 */
4517 err = ext4_orphan_add(handle, inode);
4518 if (err)
4519 goto out_stop;
4520
4521 down_write(&EXT4_I(inode)->i_data_sem);
4522
4523 ext4_discard_preallocations(inode);
4524
4525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4526 err = ext4_ext_truncate(handle, inode);
4527 else
4528 ext4_ind_truncate(handle, inode);
4529
4530 up_write(&ei->i_data_sem);
4531 if (err)
4532 goto out_stop;
4533
4534 if (IS_SYNC(inode))
4535 ext4_handle_sync(handle);
4536
4537 out_stop:
4538 /*
4539 * If this was a simple ftruncate() and the file will remain alive,
4540 * then we need to clear up the orphan record which we created above.
4541 * However, if this was a real unlink then we were called by
4542 * ext4_evict_inode(), and we allow that function to clean up the
4543 * orphan info for us.
4544 */
4545 if (inode->i_nlink)
4546 ext4_orphan_del(handle, inode);
4547
4548 inode->i_mtime = inode->i_ctime = current_time(inode);
4549 ext4_mark_inode_dirty(handle, inode);
4550 ext4_journal_stop(handle);
4551
4552 trace_ext4_truncate_exit(inode);
4553 return err;
4554 }
4555
4556 /*
4557 * ext4_get_inode_loc returns with an extra refcount against the inode's
4558 * underlying buffer_head on success. If 'in_mem' is true, we have all
4559 * data in memory that is needed to recreate the on-disk version of this
4560 * inode.
4561 */
4562 static int __ext4_get_inode_loc(struct inode *inode,
4563 struct ext4_iloc *iloc, int in_mem)
4564 {
4565 struct ext4_group_desc *gdp;
4566 struct buffer_head *bh;
4567 struct super_block *sb = inode->i_sb;
4568 ext4_fsblk_t block;
4569 int inodes_per_block, inode_offset;
4570
4571 iloc->bh = NULL;
4572 if (inode->i_ino < EXT4_ROOT_INO ||
4573 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4574 return -EFSCORRUPTED;
4575
4576 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4577 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4578 if (!gdp)
4579 return -EIO;
4580
4581 /*
4582 * Figure out the offset within the block group inode table
4583 */
4584 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4585 inode_offset = ((inode->i_ino - 1) %
4586 EXT4_INODES_PER_GROUP(sb));
4587 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4588 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4589
4590 bh = sb_getblk(sb, block);
4591 if (unlikely(!bh))
4592 return -ENOMEM;
4593 if (!buffer_uptodate(bh)) {
4594 lock_buffer(bh);
4595
4596 /*
4597 * If the buffer has the write error flag, we have failed
4598 * to write out another inode in the same block. In this
4599 * case, we don't have to read the block because we may
4600 * read the old inode data successfully.
4601 */
4602 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4603 set_buffer_uptodate(bh);
4604
4605 if (buffer_uptodate(bh)) {
4606 /* someone brought it uptodate while we waited */
4607 unlock_buffer(bh);
4608 goto has_buffer;
4609 }
4610
4611 /*
4612 * If we have all information of the inode in memory and this
4613 * is the only valid inode in the block, we need not read the
4614 * block.
4615 */
4616 if (in_mem) {
4617 struct buffer_head *bitmap_bh;
4618 int i, start;
4619
4620 start = inode_offset & ~(inodes_per_block - 1);
4621
4622 /* Is the inode bitmap in cache? */
4623 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4624 if (unlikely(!bitmap_bh))
4625 goto make_io;
4626
4627 /*
4628 * If the inode bitmap isn't in cache then the
4629 * optimisation may end up performing two reads instead
4630 * of one, so skip it.
4631 */
4632 if (!buffer_uptodate(bitmap_bh)) {
4633 brelse(bitmap_bh);
4634 goto make_io;
4635 }
4636 for (i = start; i < start + inodes_per_block; i++) {
4637 if (i == inode_offset)
4638 continue;
4639 if (ext4_test_bit(i, bitmap_bh->b_data))
4640 break;
4641 }
4642 brelse(bitmap_bh);
4643 if (i == start + inodes_per_block) {
4644 /* all other inodes are free, so skip I/O */
4645 memset(bh->b_data, 0, bh->b_size);
4646 set_buffer_uptodate(bh);
4647 unlock_buffer(bh);
4648 goto has_buffer;
4649 }
4650 }
4651
4652 make_io:
4653 /*
4654 * If we need to do any I/O, try to pre-readahead extra
4655 * blocks from the inode table.
4656 */
4657 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4658 ext4_fsblk_t b, end, table;
4659 unsigned num;
4660 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4661
4662 table = ext4_inode_table(sb, gdp);
4663 /* s_inode_readahead_blks is always a power of 2 */
4664 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4665 if (table > b)
4666 b = table;
4667 end = b + ra_blks;
4668 num = EXT4_INODES_PER_GROUP(sb);
4669 if (ext4_has_group_desc_csum(sb))
4670 num -= ext4_itable_unused_count(sb, gdp);
4671 table += num / inodes_per_block;
4672 if (end > table)
4673 end = table;
4674 while (b <= end)
4675 sb_breadahead(sb, b++);
4676 }
4677
4678 /*
4679 * There are other valid inodes in the buffer, this inode
4680 * has in-inode xattrs, or we don't have this inode in memory.
4681 * Read the block from disk.
4682 */
4683 trace_ext4_load_inode(inode);
4684 get_bh(bh);
4685 bh->b_end_io = end_buffer_read_sync;
4686 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4687 wait_on_buffer(bh);
4688 if (!buffer_uptodate(bh)) {
4689 EXT4_ERROR_INODE_BLOCK(inode, block,
4690 "unable to read itable block");
4691 brelse(bh);
4692 return -EIO;
4693 }
4694 }
4695 has_buffer:
4696 iloc->bh = bh;
4697 return 0;
4698 }
4699
4700 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4701 {
4702 /* We have all inode data except xattrs in memory here. */
4703 return __ext4_get_inode_loc(inode, iloc,
4704 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4705 }
4706
4707 static bool ext4_should_use_dax(struct inode *inode)
4708 {
4709 if (!test_opt(inode->i_sb, DAX))
4710 return false;
4711 if (!S_ISREG(inode->i_mode))
4712 return false;
4713 if (ext4_should_journal_data(inode))
4714 return false;
4715 if (ext4_has_inline_data(inode))
4716 return false;
4717 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4718 return false;
4719 return true;
4720 }
4721
4722 void ext4_set_inode_flags(struct inode *inode)
4723 {
4724 unsigned int flags = EXT4_I(inode)->i_flags;
4725 unsigned int new_fl = 0;
4726
4727 if (flags & EXT4_SYNC_FL)
4728 new_fl |= S_SYNC;
4729 if (flags & EXT4_APPEND_FL)
4730 new_fl |= S_APPEND;
4731 if (flags & EXT4_IMMUTABLE_FL)
4732 new_fl |= S_IMMUTABLE;
4733 if (flags & EXT4_NOATIME_FL)
4734 new_fl |= S_NOATIME;
4735 if (flags & EXT4_DIRSYNC_FL)
4736 new_fl |= S_DIRSYNC;
4737 if (ext4_should_use_dax(inode))
4738 new_fl |= S_DAX;
4739 if (flags & EXT4_ENCRYPT_FL)
4740 new_fl |= S_ENCRYPTED;
4741 inode_set_flags(inode, new_fl,
4742 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4743 S_ENCRYPTED);
4744 }
4745
4746 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4747 struct ext4_inode_info *ei)
4748 {
4749 blkcnt_t i_blocks ;
4750 struct inode *inode = &(ei->vfs_inode);
4751 struct super_block *sb = inode->i_sb;
4752
4753 if (ext4_has_feature_huge_file(sb)) {
4754 /* we are using combined 48 bit field */
4755 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4756 le32_to_cpu(raw_inode->i_blocks_lo);
4757 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4758 /* i_blocks represent file system block size */
4759 return i_blocks << (inode->i_blkbits - 9);
4760 } else {
4761 return i_blocks;
4762 }
4763 } else {
4764 return le32_to_cpu(raw_inode->i_blocks_lo);
4765 }
4766 }
4767
4768 static inline int ext4_iget_extra_inode(struct inode *inode,
4769 struct ext4_inode *raw_inode,
4770 struct ext4_inode_info *ei)
4771 {
4772 __le32 *magic = (void *)raw_inode +
4773 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4774
4775 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4776 EXT4_INODE_SIZE(inode->i_sb) &&
4777 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4778 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4779 return ext4_find_inline_data_nolock(inode);
4780 } else
4781 EXT4_I(inode)->i_inline_off = 0;
4782 return 0;
4783 }
4784
4785 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4786 {
4787 if (!ext4_has_feature_project(inode->i_sb))
4788 return -EOPNOTSUPP;
4789 *projid = EXT4_I(inode)->i_projid;
4790 return 0;
4791 }
4792
4793 /*
4794 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4795 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4796 * set.
4797 */
4798 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4799 {
4800 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4801 inode_set_iversion_raw(inode, val);
4802 else
4803 inode_set_iversion_queried(inode, val);
4804 }
4805 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4806 {
4807 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4808 return inode_peek_iversion_raw(inode);
4809 else
4810 return inode_peek_iversion(inode);
4811 }
4812
4813 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4814 ext4_iget_flags flags, const char *function,
4815 unsigned int line)
4816 {
4817 struct ext4_iloc iloc;
4818 struct ext4_inode *raw_inode;
4819 struct ext4_inode_info *ei;
4820 struct inode *inode;
4821 journal_t *journal = EXT4_SB(sb)->s_journal;
4822 long ret;
4823 loff_t size;
4824 int block;
4825 uid_t i_uid;
4826 gid_t i_gid;
4827 projid_t i_projid;
4828
4829 if ((!(flags & EXT4_IGET_SPECIAL) &&
4830 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4831 (ino < EXT4_ROOT_INO) ||
4832 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4833 if (flags & EXT4_IGET_HANDLE)
4834 return ERR_PTR(-ESTALE);
4835 __ext4_error(sb, function, line,
4836 "inode #%lu: comm %s: iget: illegal inode #",
4837 ino, current->comm);
4838 return ERR_PTR(-EFSCORRUPTED);
4839 }
4840
4841 inode = iget_locked(sb, ino);
4842 if (!inode)
4843 return ERR_PTR(-ENOMEM);
4844 if (!(inode->i_state & I_NEW))
4845 return inode;
4846
4847 ei = EXT4_I(inode);
4848 iloc.bh = NULL;
4849
4850 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4851 if (ret < 0)
4852 goto bad_inode;
4853 raw_inode = ext4_raw_inode(&iloc);
4854
4855 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4856 ext4_error_inode(inode, function, line, 0,
4857 "iget: root inode unallocated");
4858 ret = -EFSCORRUPTED;
4859 goto bad_inode;
4860 }
4861
4862 if ((flags & EXT4_IGET_HANDLE) &&
4863 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4864 ret = -ESTALE;
4865 goto bad_inode;
4866 }
4867
4868 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4869 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4870 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4871 EXT4_INODE_SIZE(inode->i_sb) ||
4872 (ei->i_extra_isize & 3)) {
4873 ext4_error_inode(inode, function, line, 0,
4874 "iget: bad extra_isize %u "
4875 "(inode size %u)",
4876 ei->i_extra_isize,
4877 EXT4_INODE_SIZE(inode->i_sb));
4878 ret = -EFSCORRUPTED;
4879 goto bad_inode;
4880 }
4881 } else
4882 ei->i_extra_isize = 0;
4883
4884 /* Precompute checksum seed for inode metadata */
4885 if (ext4_has_metadata_csum(sb)) {
4886 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4887 __u32 csum;
4888 __le32 inum = cpu_to_le32(inode->i_ino);
4889 __le32 gen = raw_inode->i_generation;
4890 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4891 sizeof(inum));
4892 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4893 sizeof(gen));
4894 }
4895
4896 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4897 ext4_error_inode(inode, function, line, 0,
4898 "iget: checksum invalid");
4899 ret = -EFSBADCRC;
4900 goto bad_inode;
4901 }
4902
4903 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4904 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4905 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4906 if (ext4_has_feature_project(sb) &&
4907 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4908 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4909 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4910 else
4911 i_projid = EXT4_DEF_PROJID;
4912
4913 if (!(test_opt(inode->i_sb, NO_UID32))) {
4914 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4915 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4916 }
4917 i_uid_write(inode, i_uid);
4918 i_gid_write(inode, i_gid);
4919 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4920 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4921
4922 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4923 ei->i_inline_off = 0;
4924 ei->i_dir_start_lookup = 0;
4925 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4926 /* We now have enough fields to check if the inode was active or not.
4927 * This is needed because nfsd might try to access dead inodes
4928 * the test is that same one that e2fsck uses
4929 * NeilBrown 1999oct15
4930 */
4931 if (inode->i_nlink == 0) {
4932 if ((inode->i_mode == 0 ||
4933 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4934 ino != EXT4_BOOT_LOADER_INO) {
4935 /* this inode is deleted */
4936 ret = -ESTALE;
4937 goto bad_inode;
4938 }
4939 /* The only unlinked inodes we let through here have
4940 * valid i_mode and are being read by the orphan
4941 * recovery code: that's fine, we're about to complete
4942 * the process of deleting those.
4943 * OR it is the EXT4_BOOT_LOADER_INO which is
4944 * not initialized on a new filesystem. */
4945 }
4946 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4947 ext4_set_inode_flags(inode);
4948 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4949 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4950 if (ext4_has_feature_64bit(sb))
4951 ei->i_file_acl |=
4952 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4953 inode->i_size = ext4_isize(sb, raw_inode);
4954 if ((size = i_size_read(inode)) < 0) {
4955 ext4_error_inode(inode, function, line, 0,
4956 "iget: bad i_size value: %lld", size);
4957 ret = -EFSCORRUPTED;
4958 goto bad_inode;
4959 }
4960 ei->i_disksize = inode->i_size;
4961 #ifdef CONFIG_QUOTA
4962 ei->i_reserved_quota = 0;
4963 #endif
4964 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4965 ei->i_block_group = iloc.block_group;
4966 ei->i_last_alloc_group = ~0;
4967 /*
4968 * NOTE! The in-memory inode i_data array is in little-endian order
4969 * even on big-endian machines: we do NOT byteswap the block numbers!
4970 */
4971 for (block = 0; block < EXT4_N_BLOCKS; block++)
4972 ei->i_data[block] = raw_inode->i_block[block];
4973 INIT_LIST_HEAD(&ei->i_orphan);
4974
4975 /*
4976 * Set transaction id's of transactions that have to be committed
4977 * to finish f[data]sync. We set them to currently running transaction
4978 * as we cannot be sure that the inode or some of its metadata isn't
4979 * part of the transaction - the inode could have been reclaimed and
4980 * now it is reread from disk.
4981 */
4982 if (journal) {
4983 transaction_t *transaction;
4984 tid_t tid;
4985
4986 read_lock(&journal->j_state_lock);
4987 if (journal->j_running_transaction)
4988 transaction = journal->j_running_transaction;
4989 else
4990 transaction = journal->j_committing_transaction;
4991 if (transaction)
4992 tid = transaction->t_tid;
4993 else
4994 tid = journal->j_commit_sequence;
4995 read_unlock(&journal->j_state_lock);
4996 ei->i_sync_tid = tid;
4997 ei->i_datasync_tid = tid;
4998 }
4999
5000 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5001 if (ei->i_extra_isize == 0) {
5002 /* The extra space is currently unused. Use it. */
5003 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5004 ei->i_extra_isize = sizeof(struct ext4_inode) -
5005 EXT4_GOOD_OLD_INODE_SIZE;
5006 } else {
5007 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5008 if (ret)
5009 goto bad_inode;
5010 }
5011 }
5012
5013 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5014 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5015 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5016 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5017
5018 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5019 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5020
5021 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5022 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023 ivers |=
5024 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5025 }
5026 ext4_inode_set_iversion_queried(inode, ivers);
5027 }
5028
5029 ret = 0;
5030 if (ei->i_file_acl &&
5031 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5032 ext4_error_inode(inode, function, line, 0,
5033 "iget: bad extended attribute block %llu",
5034 ei->i_file_acl);
5035 ret = -EFSCORRUPTED;
5036 goto bad_inode;
5037 } else if (!ext4_has_inline_data(inode)) {
5038 /* validate the block references in the inode */
5039 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5040 (S_ISLNK(inode->i_mode) &&
5041 !ext4_inode_is_fast_symlink(inode))) {
5042 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5043 ret = ext4_ext_check_inode(inode);
5044 else
5045 ret = ext4_ind_check_inode(inode);
5046 }
5047 }
5048 if (ret)
5049 goto bad_inode;
5050
5051 if (S_ISREG(inode->i_mode)) {
5052 inode->i_op = &ext4_file_inode_operations;
5053 inode->i_fop = &ext4_file_operations;
5054 ext4_set_aops(inode);
5055 } else if (S_ISDIR(inode->i_mode)) {
5056 inode->i_op = &ext4_dir_inode_operations;
5057 inode->i_fop = &ext4_dir_operations;
5058 } else if (S_ISLNK(inode->i_mode)) {
5059 /* VFS does not allow setting these so must be corruption */
5060 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5061 ext4_error_inode(inode, function, line, 0,
5062 "iget: immutable or append flags "
5063 "not allowed on symlinks");
5064 ret = -EFSCORRUPTED;
5065 goto bad_inode;
5066 }
5067 if (IS_ENCRYPTED(inode)) {
5068 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5069 ext4_set_aops(inode);
5070 } else if (ext4_inode_is_fast_symlink(inode)) {
5071 inode->i_link = (char *)ei->i_data;
5072 inode->i_op = &ext4_fast_symlink_inode_operations;
5073 nd_terminate_link(ei->i_data, inode->i_size,
5074 sizeof(ei->i_data) - 1);
5075 } else {
5076 inode->i_op = &ext4_symlink_inode_operations;
5077 ext4_set_aops(inode);
5078 }
5079 inode_nohighmem(inode);
5080 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5081 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5082 inode->i_op = &ext4_special_inode_operations;
5083 if (raw_inode->i_block[0])
5084 init_special_inode(inode, inode->i_mode,
5085 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5086 else
5087 init_special_inode(inode, inode->i_mode,
5088 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5089 } else if (ino == EXT4_BOOT_LOADER_INO) {
5090 make_bad_inode(inode);
5091 } else {
5092 ret = -EFSCORRUPTED;
5093 ext4_error_inode(inode, function, line, 0,
5094 "iget: bogus i_mode (%o)", inode->i_mode);
5095 goto bad_inode;
5096 }
5097 brelse(iloc.bh);
5098
5099 unlock_new_inode(inode);
5100 return inode;
5101
5102 bad_inode:
5103 brelse(iloc.bh);
5104 iget_failed(inode);
5105 return ERR_PTR(ret);
5106 }
5107
5108 static int ext4_inode_blocks_set(handle_t *handle,
5109 struct ext4_inode *raw_inode,
5110 struct ext4_inode_info *ei)
5111 {
5112 struct inode *inode = &(ei->vfs_inode);
5113 u64 i_blocks = inode->i_blocks;
5114 struct super_block *sb = inode->i_sb;
5115
5116 if (i_blocks <= ~0U) {
5117 /*
5118 * i_blocks can be represented in a 32 bit variable
5119 * as multiple of 512 bytes
5120 */
5121 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5122 raw_inode->i_blocks_high = 0;
5123 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5124 return 0;
5125 }
5126 if (!ext4_has_feature_huge_file(sb))
5127 return -EFBIG;
5128
5129 if (i_blocks <= 0xffffffffffffULL) {
5130 /*
5131 * i_blocks can be represented in a 48 bit variable
5132 * as multiple of 512 bytes
5133 */
5134 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5135 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5136 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5137 } else {
5138 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5139 /* i_block is stored in file system block size */
5140 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5141 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5142 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5143 }
5144 return 0;
5145 }
5146
5147 struct other_inode {
5148 unsigned long orig_ino;
5149 struct ext4_inode *raw_inode;
5150 };
5151
5152 static int other_inode_match(struct inode * inode, unsigned long ino,
5153 void *data)
5154 {
5155 struct other_inode *oi = (struct other_inode *) data;
5156
5157 if ((inode->i_ino != ino) ||
5158 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5159 I_DIRTY_INODE)) ||
5160 ((inode->i_state & I_DIRTY_TIME) == 0))
5161 return 0;
5162 spin_lock(&inode->i_lock);
5163 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5164 I_DIRTY_INODE)) == 0) &&
5165 (inode->i_state & I_DIRTY_TIME)) {
5166 struct ext4_inode_info *ei = EXT4_I(inode);
5167
5168 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5169 spin_unlock(&inode->i_lock);
5170
5171 spin_lock(&ei->i_raw_lock);
5172 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5173 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5174 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5175 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5176 spin_unlock(&ei->i_raw_lock);
5177 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5178 return -1;
5179 }
5180 spin_unlock(&inode->i_lock);
5181 return -1;
5182 }
5183
5184 /*
5185 * Opportunistically update the other time fields for other inodes in
5186 * the same inode table block.
5187 */
5188 static void ext4_update_other_inodes_time(struct super_block *sb,
5189 unsigned long orig_ino, char *buf)
5190 {
5191 struct other_inode oi;
5192 unsigned long ino;
5193 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5194 int inode_size = EXT4_INODE_SIZE(sb);
5195
5196 oi.orig_ino = orig_ino;
5197 /*
5198 * Calculate the first inode in the inode table block. Inode
5199 * numbers are one-based. That is, the first inode in a block
5200 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5201 */
5202 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5203 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5204 if (ino == orig_ino)
5205 continue;
5206 oi.raw_inode = (struct ext4_inode *) buf;
5207 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5208 }
5209 }
5210
5211 /*
5212 * Post the struct inode info into an on-disk inode location in the
5213 * buffer-cache. This gobbles the caller's reference to the
5214 * buffer_head in the inode location struct.
5215 *
5216 * The caller must have write access to iloc->bh.
5217 */
5218 static int ext4_do_update_inode(handle_t *handle,
5219 struct inode *inode,
5220 struct ext4_iloc *iloc)
5221 {
5222 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5223 struct ext4_inode_info *ei = EXT4_I(inode);
5224 struct buffer_head *bh = iloc->bh;
5225 struct super_block *sb = inode->i_sb;
5226 int err = 0, rc, block;
5227 int need_datasync = 0, set_large_file = 0;
5228 uid_t i_uid;
5229 gid_t i_gid;
5230 projid_t i_projid;
5231
5232 spin_lock(&ei->i_raw_lock);
5233
5234 /* For fields not tracked in the in-memory inode,
5235 * initialise them to zero for new inodes. */
5236 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5237 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5238
5239 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5240 i_uid = i_uid_read(inode);
5241 i_gid = i_gid_read(inode);
5242 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5243 if (!(test_opt(inode->i_sb, NO_UID32))) {
5244 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5245 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5246 /*
5247 * Fix up interoperability with old kernels. Otherwise, old inodes get
5248 * re-used with the upper 16 bits of the uid/gid intact
5249 */
5250 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5251 raw_inode->i_uid_high = 0;
5252 raw_inode->i_gid_high = 0;
5253 } else {
5254 raw_inode->i_uid_high =
5255 cpu_to_le16(high_16_bits(i_uid));
5256 raw_inode->i_gid_high =
5257 cpu_to_le16(high_16_bits(i_gid));
5258 }
5259 } else {
5260 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5261 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5262 raw_inode->i_uid_high = 0;
5263 raw_inode->i_gid_high = 0;
5264 }
5265 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5266
5267 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5268 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5269 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5270 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5271
5272 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5273 if (err) {
5274 spin_unlock(&ei->i_raw_lock);
5275 goto out_brelse;
5276 }
5277 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5278 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5279 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5280 raw_inode->i_file_acl_high =
5281 cpu_to_le16(ei->i_file_acl >> 32);
5282 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5283 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5284 ext4_isize_set(raw_inode, ei->i_disksize);
5285 need_datasync = 1;
5286 }
5287 if (ei->i_disksize > 0x7fffffffULL) {
5288 if (!ext4_has_feature_large_file(sb) ||
5289 EXT4_SB(sb)->s_es->s_rev_level ==
5290 cpu_to_le32(EXT4_GOOD_OLD_REV))
5291 set_large_file = 1;
5292 }
5293 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5294 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5295 if (old_valid_dev(inode->i_rdev)) {
5296 raw_inode->i_block[0] =
5297 cpu_to_le32(old_encode_dev(inode->i_rdev));
5298 raw_inode->i_block[1] = 0;
5299 } else {
5300 raw_inode->i_block[0] = 0;
5301 raw_inode->i_block[1] =
5302 cpu_to_le32(new_encode_dev(inode->i_rdev));
5303 raw_inode->i_block[2] = 0;
5304 }
5305 } else if (!ext4_has_inline_data(inode)) {
5306 for (block = 0; block < EXT4_N_BLOCKS; block++)
5307 raw_inode->i_block[block] = ei->i_data[block];
5308 }
5309
5310 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5311 u64 ivers = ext4_inode_peek_iversion(inode);
5312
5313 raw_inode->i_disk_version = cpu_to_le32(ivers);
5314 if (ei->i_extra_isize) {
5315 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5316 raw_inode->i_version_hi =
5317 cpu_to_le32(ivers >> 32);
5318 raw_inode->i_extra_isize =
5319 cpu_to_le16(ei->i_extra_isize);
5320 }
5321 }
5322
5323 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5324 i_projid != EXT4_DEF_PROJID);
5325
5326 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5327 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5328 raw_inode->i_projid = cpu_to_le32(i_projid);
5329
5330 ext4_inode_csum_set(inode, raw_inode, ei);
5331 spin_unlock(&ei->i_raw_lock);
5332 if (inode->i_sb->s_flags & SB_LAZYTIME)
5333 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5334 bh->b_data);
5335
5336 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5337 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5338 if (!err)
5339 err = rc;
5340 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5341 if (set_large_file) {
5342 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5343 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5344 if (err)
5345 goto out_brelse;
5346 ext4_set_feature_large_file(sb);
5347 ext4_handle_sync(handle);
5348 err = ext4_handle_dirty_super(handle, sb);
5349 }
5350 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5351 out_brelse:
5352 brelse(bh);
5353 ext4_std_error(inode->i_sb, err);
5354 return err;
5355 }
5356
5357 /*
5358 * ext4_write_inode()
5359 *
5360 * We are called from a few places:
5361 *
5362 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5363 * Here, there will be no transaction running. We wait for any running
5364 * transaction to commit.
5365 *
5366 * - Within flush work (sys_sync(), kupdate and such).
5367 * We wait on commit, if told to.
5368 *
5369 * - Within iput_final() -> write_inode_now()
5370 * We wait on commit, if told to.
5371 *
5372 * In all cases it is actually safe for us to return without doing anything,
5373 * because the inode has been copied into a raw inode buffer in
5374 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5375 * writeback.
5376 *
5377 * Note that we are absolutely dependent upon all inode dirtiers doing the
5378 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5379 * which we are interested.
5380 *
5381 * It would be a bug for them to not do this. The code:
5382 *
5383 * mark_inode_dirty(inode)
5384 * stuff();
5385 * inode->i_size = expr;
5386 *
5387 * is in error because write_inode() could occur while `stuff()' is running,
5388 * and the new i_size will be lost. Plus the inode will no longer be on the
5389 * superblock's dirty inode list.
5390 */
5391 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5392 {
5393 int err;
5394
5395 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5396 sb_rdonly(inode->i_sb))
5397 return 0;
5398
5399 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5400 return -EIO;
5401
5402 if (EXT4_SB(inode->i_sb)->s_journal) {
5403 if (ext4_journal_current_handle()) {
5404 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5405 dump_stack();
5406 return -EIO;
5407 }
5408
5409 /*
5410 * No need to force transaction in WB_SYNC_NONE mode. Also
5411 * ext4_sync_fs() will force the commit after everything is
5412 * written.
5413 */
5414 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5415 return 0;
5416
5417 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5418 EXT4_I(inode)->i_sync_tid);
5419 } else {
5420 struct ext4_iloc iloc;
5421
5422 err = __ext4_get_inode_loc(inode, &iloc, 0);
5423 if (err)
5424 return err;
5425 /*
5426 * sync(2) will flush the whole buffer cache. No need to do
5427 * it here separately for each inode.
5428 */
5429 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5430 sync_dirty_buffer(iloc.bh);
5431 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5432 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5433 "IO error syncing inode");
5434 err = -EIO;
5435 }
5436 brelse(iloc.bh);
5437 }
5438 return err;
5439 }
5440
5441 /*
5442 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5443 * buffers that are attached to a page stradding i_size and are undergoing
5444 * commit. In that case we have to wait for commit to finish and try again.
5445 */
5446 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5447 {
5448 struct page *page;
5449 unsigned offset;
5450 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5451 tid_t commit_tid = 0;
5452 int ret;
5453
5454 offset = inode->i_size & (PAGE_SIZE - 1);
5455 /*
5456 * All buffers in the last page remain valid? Then there's nothing to
5457 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5458 * blocksize case
5459 */
5460 if (offset > PAGE_SIZE - i_blocksize(inode))
5461 return;
5462 while (1) {
5463 page = find_lock_page(inode->i_mapping,
5464 inode->i_size >> PAGE_SHIFT);
5465 if (!page)
5466 return;
5467 ret = __ext4_journalled_invalidatepage(page, offset,
5468 PAGE_SIZE - offset);
5469 unlock_page(page);
5470 put_page(page);
5471 if (ret != -EBUSY)
5472 return;
5473 commit_tid = 0;
5474 read_lock(&journal->j_state_lock);
5475 if (journal->j_committing_transaction)
5476 commit_tid = journal->j_committing_transaction->t_tid;
5477 read_unlock(&journal->j_state_lock);
5478 if (commit_tid)
5479 jbd2_log_wait_commit(journal, commit_tid);
5480 }
5481 }
5482
5483 /*
5484 * ext4_setattr()
5485 *
5486 * Called from notify_change.
5487 *
5488 * We want to trap VFS attempts to truncate the file as soon as
5489 * possible. In particular, we want to make sure that when the VFS
5490 * shrinks i_size, we put the inode on the orphan list and modify
5491 * i_disksize immediately, so that during the subsequent flushing of
5492 * dirty pages and freeing of disk blocks, we can guarantee that any
5493 * commit will leave the blocks being flushed in an unused state on
5494 * disk. (On recovery, the inode will get truncated and the blocks will
5495 * be freed, so we have a strong guarantee that no future commit will
5496 * leave these blocks visible to the user.)
5497 *
5498 * Another thing we have to assure is that if we are in ordered mode
5499 * and inode is still attached to the committing transaction, we must
5500 * we start writeout of all the dirty pages which are being truncated.
5501 * This way we are sure that all the data written in the previous
5502 * transaction are already on disk (truncate waits for pages under
5503 * writeback).
5504 *
5505 * Called with inode->i_mutex down.
5506 */
5507 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5508 {
5509 struct inode *inode = d_inode(dentry);
5510 int error, rc = 0;
5511 int orphan = 0;
5512 const unsigned int ia_valid = attr->ia_valid;
5513
5514 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5515 return -EIO;
5516
5517 error = setattr_prepare(dentry, attr);
5518 if (error)
5519 return error;
5520
5521 error = fscrypt_prepare_setattr(dentry, attr);
5522 if (error)
5523 return error;
5524
5525 if (is_quota_modification(inode, attr)) {
5526 error = dquot_initialize(inode);
5527 if (error)
5528 return error;
5529 }
5530 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5531 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5532 handle_t *handle;
5533
5534 /* (user+group)*(old+new) structure, inode write (sb,
5535 * inode block, ? - but truncate inode update has it) */
5536 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5537 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5538 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5539 if (IS_ERR(handle)) {
5540 error = PTR_ERR(handle);
5541 goto err_out;
5542 }
5543
5544 /* dquot_transfer() calls back ext4_get_inode_usage() which
5545 * counts xattr inode references.
5546 */
5547 down_read(&EXT4_I(inode)->xattr_sem);
5548 error = dquot_transfer(inode, attr);
5549 up_read(&EXT4_I(inode)->xattr_sem);
5550
5551 if (error) {
5552 ext4_journal_stop(handle);
5553 return error;
5554 }
5555 /* Update corresponding info in inode so that everything is in
5556 * one transaction */
5557 if (attr->ia_valid & ATTR_UID)
5558 inode->i_uid = attr->ia_uid;
5559 if (attr->ia_valid & ATTR_GID)
5560 inode->i_gid = attr->ia_gid;
5561 error = ext4_mark_inode_dirty(handle, inode);
5562 ext4_journal_stop(handle);
5563 }
5564
5565 if (attr->ia_valid & ATTR_SIZE) {
5566 handle_t *handle;
5567 loff_t oldsize = inode->i_size;
5568 int shrink = (attr->ia_size <= inode->i_size);
5569
5570 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5572
5573 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5574 return -EFBIG;
5575 }
5576 if (!S_ISREG(inode->i_mode))
5577 return -EINVAL;
5578
5579 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5580 inode_inc_iversion(inode);
5581
5582 if (ext4_should_order_data(inode) &&
5583 (attr->ia_size < inode->i_size)) {
5584 error = ext4_begin_ordered_truncate(inode,
5585 attr->ia_size);
5586 if (error)
5587 goto err_out;
5588 }
5589 if (attr->ia_size != inode->i_size) {
5590 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5591 if (IS_ERR(handle)) {
5592 error = PTR_ERR(handle);
5593 goto err_out;
5594 }
5595 if (ext4_handle_valid(handle) && shrink) {
5596 error = ext4_orphan_add(handle, inode);
5597 orphan = 1;
5598 }
5599 /*
5600 * Update c/mtime on truncate up, ext4_truncate() will
5601 * update c/mtime in shrink case below
5602 */
5603 if (!shrink) {
5604 inode->i_mtime = current_time(inode);
5605 inode->i_ctime = inode->i_mtime;
5606 }
5607 down_write(&EXT4_I(inode)->i_data_sem);
5608 EXT4_I(inode)->i_disksize = attr->ia_size;
5609 rc = ext4_mark_inode_dirty(handle, inode);
5610 if (!error)
5611 error = rc;
5612 /*
5613 * We have to update i_size under i_data_sem together
5614 * with i_disksize to avoid races with writeback code
5615 * running ext4_wb_update_i_disksize().
5616 */
5617 if (!error)
5618 i_size_write(inode, attr->ia_size);
5619 up_write(&EXT4_I(inode)->i_data_sem);
5620 ext4_journal_stop(handle);
5621 if (error) {
5622 if (orphan)
5623 ext4_orphan_del(NULL, inode);
5624 goto err_out;
5625 }
5626 }
5627 if (!shrink)
5628 pagecache_isize_extended(inode, oldsize, inode->i_size);
5629
5630 /*
5631 * Blocks are going to be removed from the inode. Wait
5632 * for dio in flight. Temporarily disable
5633 * dioread_nolock to prevent livelock.
5634 */
5635 if (orphan) {
5636 if (!ext4_should_journal_data(inode)) {
5637 inode_dio_wait(inode);
5638 } else
5639 ext4_wait_for_tail_page_commit(inode);
5640 }
5641 down_write(&EXT4_I(inode)->i_mmap_sem);
5642
5643 rc = ext4_break_layouts(inode);
5644 if (rc) {
5645 up_write(&EXT4_I(inode)->i_mmap_sem);
5646 error = rc;
5647 goto err_out;
5648 }
5649
5650 /*
5651 * Truncate pagecache after we've waited for commit
5652 * in data=journal mode to make pages freeable.
5653 */
5654 truncate_pagecache(inode, inode->i_size);
5655 if (shrink) {
5656 rc = ext4_truncate(inode);
5657 if (rc)
5658 error = rc;
5659 }
5660 up_write(&EXT4_I(inode)->i_mmap_sem);
5661 }
5662
5663 if (!error) {
5664 setattr_copy(inode, attr);
5665 mark_inode_dirty(inode);
5666 }
5667
5668 /*
5669 * If the call to ext4_truncate failed to get a transaction handle at
5670 * all, we need to clean up the in-core orphan list manually.
5671 */
5672 if (orphan && inode->i_nlink)
5673 ext4_orphan_del(NULL, inode);
5674
5675 if (!error && (ia_valid & ATTR_MODE))
5676 rc = posix_acl_chmod(inode, inode->i_mode);
5677
5678 err_out:
5679 ext4_std_error(inode->i_sb, error);
5680 if (!error)
5681 error = rc;
5682 return error;
5683 }
5684
5685 int ext4_getattr(const struct path *path, struct kstat *stat,
5686 u32 request_mask, unsigned int query_flags)
5687 {
5688 struct inode *inode = d_inode(path->dentry);
5689 struct ext4_inode *raw_inode;
5690 struct ext4_inode_info *ei = EXT4_I(inode);
5691 unsigned int flags;
5692
5693 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5694 stat->result_mask |= STATX_BTIME;
5695 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5696 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5697 }
5698
5699 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5700 if (flags & EXT4_APPEND_FL)
5701 stat->attributes |= STATX_ATTR_APPEND;
5702 if (flags & EXT4_COMPR_FL)
5703 stat->attributes |= STATX_ATTR_COMPRESSED;
5704 if (flags & EXT4_ENCRYPT_FL)
5705 stat->attributes |= STATX_ATTR_ENCRYPTED;
5706 if (flags & EXT4_IMMUTABLE_FL)
5707 stat->attributes |= STATX_ATTR_IMMUTABLE;
5708 if (flags & EXT4_NODUMP_FL)
5709 stat->attributes |= STATX_ATTR_NODUMP;
5710
5711 stat->attributes_mask |= (STATX_ATTR_APPEND |
5712 STATX_ATTR_COMPRESSED |
5713 STATX_ATTR_ENCRYPTED |
5714 STATX_ATTR_IMMUTABLE |
5715 STATX_ATTR_NODUMP);
5716
5717 generic_fillattr(inode, stat);
5718 return 0;
5719 }
5720
5721 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5722 u32 request_mask, unsigned int query_flags)
5723 {
5724 struct inode *inode = d_inode(path->dentry);
5725 u64 delalloc_blocks;
5726
5727 ext4_getattr(path, stat, request_mask, query_flags);
5728
5729 /*
5730 * If there is inline data in the inode, the inode will normally not
5731 * have data blocks allocated (it may have an external xattr block).
5732 * Report at least one sector for such files, so tools like tar, rsync,
5733 * others don't incorrectly think the file is completely sparse.
5734 */
5735 if (unlikely(ext4_has_inline_data(inode)))
5736 stat->blocks += (stat->size + 511) >> 9;
5737
5738 /*
5739 * We can't update i_blocks if the block allocation is delayed
5740 * otherwise in the case of system crash before the real block
5741 * allocation is done, we will have i_blocks inconsistent with
5742 * on-disk file blocks.
5743 * We always keep i_blocks updated together with real
5744 * allocation. But to not confuse with user, stat
5745 * will return the blocks that include the delayed allocation
5746 * blocks for this file.
5747 */
5748 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5749 EXT4_I(inode)->i_reserved_data_blocks);
5750 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5751 return 0;
5752 }
5753
5754 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5755 int pextents)
5756 {
5757 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5758 return ext4_ind_trans_blocks(inode, lblocks);
5759 return ext4_ext_index_trans_blocks(inode, pextents);
5760 }
5761
5762 /*
5763 * Account for index blocks, block groups bitmaps and block group
5764 * descriptor blocks if modify datablocks and index blocks
5765 * worse case, the indexs blocks spread over different block groups
5766 *
5767 * If datablocks are discontiguous, they are possible to spread over
5768 * different block groups too. If they are contiguous, with flexbg,
5769 * they could still across block group boundary.
5770 *
5771 * Also account for superblock, inode, quota and xattr blocks
5772 */
5773 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5774 int pextents)
5775 {
5776 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5777 int gdpblocks;
5778 int idxblocks;
5779 int ret = 0;
5780
5781 /*
5782 * How many index blocks need to touch to map @lblocks logical blocks
5783 * to @pextents physical extents?
5784 */
5785 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5786
5787 ret = idxblocks;
5788
5789 /*
5790 * Now let's see how many group bitmaps and group descriptors need
5791 * to account
5792 */
5793 groups = idxblocks + pextents;
5794 gdpblocks = groups;
5795 if (groups > ngroups)
5796 groups = ngroups;
5797 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5798 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5799
5800 /* bitmaps and block group descriptor blocks */
5801 ret += groups + gdpblocks;
5802
5803 /* Blocks for super block, inode, quota and xattr blocks */
5804 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5805
5806 return ret;
5807 }
5808
5809 /*
5810 * Calculate the total number of credits to reserve to fit
5811 * the modification of a single pages into a single transaction,
5812 * which may include multiple chunks of block allocations.
5813 *
5814 * This could be called via ext4_write_begin()
5815 *
5816 * We need to consider the worse case, when
5817 * one new block per extent.
5818 */
5819 int ext4_writepage_trans_blocks(struct inode *inode)
5820 {
5821 int bpp = ext4_journal_blocks_per_page(inode);
5822 int ret;
5823
5824 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5825
5826 /* Account for data blocks for journalled mode */
5827 if (ext4_should_journal_data(inode))
5828 ret += bpp;
5829 return ret;
5830 }
5831
5832 /*
5833 * Calculate the journal credits for a chunk of data modification.
5834 *
5835 * This is called from DIO, fallocate or whoever calling
5836 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5837 *
5838 * journal buffers for data blocks are not included here, as DIO
5839 * and fallocate do no need to journal data buffers.
5840 */
5841 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5842 {
5843 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5844 }
5845
5846 /*
5847 * The caller must have previously called ext4_reserve_inode_write().
5848 * Give this, we know that the caller already has write access to iloc->bh.
5849 */
5850 int ext4_mark_iloc_dirty(handle_t *handle,
5851 struct inode *inode, struct ext4_iloc *iloc)
5852 {
5853 int err = 0;
5854
5855 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5856 put_bh(iloc->bh);
5857 return -EIO;
5858 }
5859 if (IS_I_VERSION(inode))
5860 inode_inc_iversion(inode);
5861
5862 /* the do_update_inode consumes one bh->b_count */
5863 get_bh(iloc->bh);
5864
5865 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5866 err = ext4_do_update_inode(handle, inode, iloc);
5867 put_bh(iloc->bh);
5868 return err;
5869 }
5870
5871 /*
5872 * On success, We end up with an outstanding reference count against
5873 * iloc->bh. This _must_ be cleaned up later.
5874 */
5875
5876 int
5877 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5878 struct ext4_iloc *iloc)
5879 {
5880 int err;
5881
5882 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5883 return -EIO;
5884
5885 err = ext4_get_inode_loc(inode, iloc);
5886 if (!err) {
5887 BUFFER_TRACE(iloc->bh, "get_write_access");
5888 err = ext4_journal_get_write_access(handle, iloc->bh);
5889 if (err) {
5890 brelse(iloc->bh);
5891 iloc->bh = NULL;
5892 }
5893 }
5894 ext4_std_error(inode->i_sb, err);
5895 return err;
5896 }
5897
5898 static int __ext4_expand_extra_isize(struct inode *inode,
5899 unsigned int new_extra_isize,
5900 struct ext4_iloc *iloc,
5901 handle_t *handle, int *no_expand)
5902 {
5903 struct ext4_inode *raw_inode;
5904 struct ext4_xattr_ibody_header *header;
5905 int error;
5906
5907 raw_inode = ext4_raw_inode(iloc);
5908
5909 header = IHDR(inode, raw_inode);
5910
5911 /* No extended attributes present */
5912 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5913 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5914 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5915 EXT4_I(inode)->i_extra_isize, 0,
5916 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5917 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5918 return 0;
5919 }
5920
5921 /* try to expand with EAs present */
5922 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5923 raw_inode, handle);
5924 if (error) {
5925 /*
5926 * Inode size expansion failed; don't try again
5927 */
5928 *no_expand = 1;
5929 }
5930
5931 return error;
5932 }
5933
5934 /*
5935 * Expand an inode by new_extra_isize bytes.
5936 * Returns 0 on success or negative error number on failure.
5937 */
5938 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5939 unsigned int new_extra_isize,
5940 struct ext4_iloc iloc,
5941 handle_t *handle)
5942 {
5943 int no_expand;
5944 int error;
5945
5946 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5947 return -EOVERFLOW;
5948
5949 /*
5950 * In nojournal mode, we can immediately attempt to expand
5951 * the inode. When journaled, we first need to obtain extra
5952 * buffer credits since we may write into the EA block
5953 * with this same handle. If journal_extend fails, then it will
5954 * only result in a minor loss of functionality for that inode.
5955 * If this is felt to be critical, then e2fsck should be run to
5956 * force a large enough s_min_extra_isize.
5957 */
5958 if (ext4_handle_valid(handle) &&
5959 jbd2_journal_extend(handle,
5960 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5961 return -ENOSPC;
5962
5963 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5964 return -EBUSY;
5965
5966 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5967 handle, &no_expand);
5968 ext4_write_unlock_xattr(inode, &no_expand);
5969
5970 return error;
5971 }
5972
5973 int ext4_expand_extra_isize(struct inode *inode,
5974 unsigned int new_extra_isize,
5975 struct ext4_iloc *iloc)
5976 {
5977 handle_t *handle;
5978 int no_expand;
5979 int error, rc;
5980
5981 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5982 brelse(iloc->bh);
5983 return -EOVERFLOW;
5984 }
5985
5986 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5987 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5988 if (IS_ERR(handle)) {
5989 error = PTR_ERR(handle);
5990 brelse(iloc->bh);
5991 return error;
5992 }
5993
5994 ext4_write_lock_xattr(inode, &no_expand);
5995
5996 BUFFER_TRACE(iloc->bh, "get_write_access");
5997 error = ext4_journal_get_write_access(handle, iloc->bh);
5998 if (error) {
5999 brelse(iloc->bh);
6000 goto out_stop;
6001 }
6002
6003 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6004 handle, &no_expand);
6005
6006 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6007 if (!error)
6008 error = rc;
6009
6010 ext4_write_unlock_xattr(inode, &no_expand);
6011 out_stop:
6012 ext4_journal_stop(handle);
6013 return error;
6014 }
6015
6016 /*
6017 * What we do here is to mark the in-core inode as clean with respect to inode
6018 * dirtiness (it may still be data-dirty).
6019 * This means that the in-core inode may be reaped by prune_icache
6020 * without having to perform any I/O. This is a very good thing,
6021 * because *any* task may call prune_icache - even ones which
6022 * have a transaction open against a different journal.
6023 *
6024 * Is this cheating? Not really. Sure, we haven't written the
6025 * inode out, but prune_icache isn't a user-visible syncing function.
6026 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6027 * we start and wait on commits.
6028 */
6029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6030 {
6031 struct ext4_iloc iloc;
6032 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6033 int err;
6034
6035 might_sleep();
6036 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6037 err = ext4_reserve_inode_write(handle, inode, &iloc);
6038 if (err)
6039 return err;
6040
6041 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6042 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6043 iloc, handle);
6044
6045 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6046 }
6047
6048 /*
6049 * ext4_dirty_inode() is called from __mark_inode_dirty()
6050 *
6051 * We're really interested in the case where a file is being extended.
6052 * i_size has been changed by generic_commit_write() and we thus need
6053 * to include the updated inode in the current transaction.
6054 *
6055 * Also, dquot_alloc_block() will always dirty the inode when blocks
6056 * are allocated to the file.
6057 *
6058 * If the inode is marked synchronous, we don't honour that here - doing
6059 * so would cause a commit on atime updates, which we don't bother doing.
6060 * We handle synchronous inodes at the highest possible level.
6061 *
6062 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6063 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6064 * to copy into the on-disk inode structure are the timestamp files.
6065 */
6066 void ext4_dirty_inode(struct inode *inode, int flags)
6067 {
6068 handle_t *handle;
6069
6070 if (flags == I_DIRTY_TIME)
6071 return;
6072 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6073 if (IS_ERR(handle))
6074 goto out;
6075
6076 ext4_mark_inode_dirty(handle, inode);
6077
6078 ext4_journal_stop(handle);
6079 out:
6080 return;
6081 }
6082
6083 #if 0
6084 /*
6085 * Bind an inode's backing buffer_head into this transaction, to prevent
6086 * it from being flushed to disk early. Unlike
6087 * ext4_reserve_inode_write, this leaves behind no bh reference and
6088 * returns no iloc structure, so the caller needs to repeat the iloc
6089 * lookup to mark the inode dirty later.
6090 */
6091 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6092 {
6093 struct ext4_iloc iloc;
6094
6095 int err = 0;
6096 if (handle) {
6097 err = ext4_get_inode_loc(inode, &iloc);
6098 if (!err) {
6099 BUFFER_TRACE(iloc.bh, "get_write_access");
6100 err = jbd2_journal_get_write_access(handle, iloc.bh);
6101 if (!err)
6102 err = ext4_handle_dirty_metadata(handle,
6103 NULL,
6104 iloc.bh);
6105 brelse(iloc.bh);
6106 }
6107 }
6108 ext4_std_error(inode->i_sb, err);
6109 return err;
6110 }
6111 #endif
6112
6113 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6114 {
6115 journal_t *journal;
6116 handle_t *handle;
6117 int err;
6118 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6119
6120 /*
6121 * We have to be very careful here: changing a data block's
6122 * journaling status dynamically is dangerous. If we write a
6123 * data block to the journal, change the status and then delete
6124 * that block, we risk forgetting to revoke the old log record
6125 * from the journal and so a subsequent replay can corrupt data.
6126 * So, first we make sure that the journal is empty and that
6127 * nobody is changing anything.
6128 */
6129
6130 journal = EXT4_JOURNAL(inode);
6131 if (!journal)
6132 return 0;
6133 if (is_journal_aborted(journal))
6134 return -EROFS;
6135
6136 /* Wait for all existing dio workers */
6137 inode_dio_wait(inode);
6138
6139 /*
6140 * Before flushing the journal and switching inode's aops, we have
6141 * to flush all dirty data the inode has. There can be outstanding
6142 * delayed allocations, there can be unwritten extents created by
6143 * fallocate or buffered writes in dioread_nolock mode covered by
6144 * dirty data which can be converted only after flushing the dirty
6145 * data (and journalled aops don't know how to handle these cases).
6146 */
6147 if (val) {
6148 down_write(&EXT4_I(inode)->i_mmap_sem);
6149 err = filemap_write_and_wait(inode->i_mapping);
6150 if (err < 0) {
6151 up_write(&EXT4_I(inode)->i_mmap_sem);
6152 return err;
6153 }
6154 }
6155
6156 percpu_down_write(&sbi->s_journal_flag_rwsem);
6157 jbd2_journal_lock_updates(journal);
6158
6159 /*
6160 * OK, there are no updates running now, and all cached data is
6161 * synced to disk. We are now in a completely consistent state
6162 * which doesn't have anything in the journal, and we know that
6163 * no filesystem updates are running, so it is safe to modify
6164 * the inode's in-core data-journaling state flag now.
6165 */
6166
6167 if (val)
6168 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6169 else {
6170 err = jbd2_journal_flush(journal);
6171 if (err < 0) {
6172 jbd2_journal_unlock_updates(journal);
6173 percpu_up_write(&sbi->s_journal_flag_rwsem);
6174 return err;
6175 }
6176 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6177 }
6178 ext4_set_aops(inode);
6179
6180 jbd2_journal_unlock_updates(journal);
6181 percpu_up_write(&sbi->s_journal_flag_rwsem);
6182
6183 if (val)
6184 up_write(&EXT4_I(inode)->i_mmap_sem);
6185
6186 /* Finally we can mark the inode as dirty. */
6187
6188 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6189 if (IS_ERR(handle))
6190 return PTR_ERR(handle);
6191
6192 err = ext4_mark_inode_dirty(handle, inode);
6193 ext4_handle_sync(handle);
6194 ext4_journal_stop(handle);
6195 ext4_std_error(inode->i_sb, err);
6196
6197 return err;
6198 }
6199
6200 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6201 {
6202 return !buffer_mapped(bh);
6203 }
6204
6205 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6206 {
6207 struct vm_area_struct *vma = vmf->vma;
6208 struct page *page = vmf->page;
6209 loff_t size;
6210 unsigned long len;
6211 int err;
6212 vm_fault_t ret;
6213 struct file *file = vma->vm_file;
6214 struct inode *inode = file_inode(file);
6215 struct address_space *mapping = inode->i_mapping;
6216 handle_t *handle;
6217 get_block_t *get_block;
6218 int retries = 0;
6219
6220 sb_start_pagefault(inode->i_sb);
6221 file_update_time(vma->vm_file);
6222
6223 down_read(&EXT4_I(inode)->i_mmap_sem);
6224
6225 err = ext4_convert_inline_data(inode);
6226 if (err)
6227 goto out_ret;
6228
6229 /* Delalloc case is easy... */
6230 if (test_opt(inode->i_sb, DELALLOC) &&
6231 !ext4_should_journal_data(inode) &&
6232 !ext4_nonda_switch(inode->i_sb)) {
6233 do {
6234 err = block_page_mkwrite(vma, vmf,
6235 ext4_da_get_block_prep);
6236 } while (err == -ENOSPC &&
6237 ext4_should_retry_alloc(inode->i_sb, &retries));
6238 goto out_ret;
6239 }
6240
6241 lock_page(page);
6242 size = i_size_read(inode);
6243 /* Page got truncated from under us? */
6244 if (page->mapping != mapping || page_offset(page) > size) {
6245 unlock_page(page);
6246 ret = VM_FAULT_NOPAGE;
6247 goto out;
6248 }
6249
6250 if (page->index == size >> PAGE_SHIFT)
6251 len = size & ~PAGE_MASK;
6252 else
6253 len = PAGE_SIZE;
6254 /*
6255 * Return if we have all the buffers mapped. This avoids the need to do
6256 * journal_start/journal_stop which can block and take a long time
6257 */
6258 if (page_has_buffers(page)) {
6259 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6260 0, len, NULL,
6261 ext4_bh_unmapped)) {
6262 /* Wait so that we don't change page under IO */
6263 wait_for_stable_page(page);
6264 ret = VM_FAULT_LOCKED;
6265 goto out;
6266 }
6267 }
6268 unlock_page(page);
6269 /* OK, we need to fill the hole... */
6270 if (ext4_should_dioread_nolock(inode))
6271 get_block = ext4_get_block_unwritten;
6272 else
6273 get_block = ext4_get_block;
6274 retry_alloc:
6275 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6276 ext4_writepage_trans_blocks(inode));
6277 if (IS_ERR(handle)) {
6278 ret = VM_FAULT_SIGBUS;
6279 goto out;
6280 }
6281 err = block_page_mkwrite(vma, vmf, get_block);
6282 if (!err && ext4_should_journal_data(inode)) {
6283 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6284 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6285 unlock_page(page);
6286 ret = VM_FAULT_SIGBUS;
6287 ext4_journal_stop(handle);
6288 goto out;
6289 }
6290 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6291 }
6292 ext4_journal_stop(handle);
6293 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6294 goto retry_alloc;
6295 out_ret:
6296 ret = block_page_mkwrite_return(err);
6297 out:
6298 up_read(&EXT4_I(inode)->i_mmap_sem);
6299 sb_end_pagefault(inode->i_sb);
6300 return ret;
6301 }
6302
6303 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6304 {
6305 struct inode *inode = file_inode(vmf->vma->vm_file);
6306 vm_fault_t ret;
6307
6308 down_read(&EXT4_I(inode)->i_mmap_sem);
6309 ret = filemap_fault(vmf);
6310 up_read(&EXT4_I(inode)->i_mmap_sem);
6311
6312 return ret;
6313 }