]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/ext4/page-io.c
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[thirdparty/kernel/stable.git] / fs / ext4 / page-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/page-io.c
4 *
5 * This contains the new page_io functions for ext4
6 *
7 * Written by Theodore Ts'o, 2010.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32
33 static struct kmem_cache *io_end_cachep;
34
35 int __init ext4_init_pageio(void)
36 {
37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 if (io_end_cachep == NULL)
39 return -ENOMEM;
40 return 0;
41 }
42
43 void ext4_exit_pageio(void)
44 {
45 kmem_cache_destroy(io_end_cachep);
46 }
47
48 /*
49 * Print an buffer I/O error compatible with the fs/buffer.c. This
50 * provides compatibility with dmesg scrapers that look for a specific
51 * buffer I/O error message. We really need a unified error reporting
52 * structure to userspace ala Digital Unix's uerf system, but it's
53 * probably not going to happen in my lifetime, due to LKML politics...
54 */
55 static void buffer_io_error(struct buffer_head *bh)
56 {
57 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 bh->b_bdev,
59 (unsigned long long)bh->b_blocknr);
60 }
61
62 static void ext4_finish_bio(struct bio *bio)
63 {
64 int i;
65 struct bio_vec *bvec;
66 struct bvec_iter_all iter_all;
67
68 bio_for_each_segment_all(bvec, bio, i, iter_all) {
69 struct page *page = bvec->bv_page;
70 #ifdef CONFIG_FS_ENCRYPTION
71 struct page *data_page = NULL;
72 #endif
73 struct buffer_head *bh, *head;
74 unsigned bio_start = bvec->bv_offset;
75 unsigned bio_end = bio_start + bvec->bv_len;
76 unsigned under_io = 0;
77 unsigned long flags;
78
79 if (!page)
80 continue;
81
82 #ifdef CONFIG_FS_ENCRYPTION
83 if (!page->mapping) {
84 /* The bounce data pages are unmapped. */
85 data_page = page;
86 fscrypt_pullback_bio_page(&page, false);
87 }
88 #endif
89
90 if (bio->bi_status) {
91 SetPageError(page);
92 mapping_set_error(page->mapping, -EIO);
93 }
94 bh = head = page_buffers(page);
95 /*
96 * We check all buffers in the page under BH_Uptodate_Lock
97 * to avoid races with other end io clearing async_write flags
98 */
99 local_irq_save(flags);
100 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101 do {
102 if (bh_offset(bh) < bio_start ||
103 bh_offset(bh) + bh->b_size > bio_end) {
104 if (buffer_async_write(bh))
105 under_io++;
106 continue;
107 }
108 clear_buffer_async_write(bh);
109 if (bio->bi_status)
110 buffer_io_error(bh);
111 } while ((bh = bh->b_this_page) != head);
112 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113 local_irq_restore(flags);
114 if (!under_io) {
115 #ifdef CONFIG_FS_ENCRYPTION
116 if (data_page)
117 fscrypt_restore_control_page(data_page);
118 #endif
119 end_page_writeback(page);
120 }
121 }
122 }
123
124 static void ext4_release_io_end(ext4_io_end_t *io_end)
125 {
126 struct bio *bio, *next_bio;
127
128 BUG_ON(!list_empty(&io_end->list));
129 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130 WARN_ON(io_end->handle);
131
132 for (bio = io_end->bio; bio; bio = next_bio) {
133 next_bio = bio->bi_private;
134 ext4_finish_bio(bio);
135 bio_put(bio);
136 }
137 kmem_cache_free(io_end_cachep, io_end);
138 }
139
140 /*
141 * Check a range of space and convert unwritten extents to written. Note that
142 * we are protected from truncate touching same part of extent tree by the
143 * fact that truncate code waits for all DIO to finish (thus exclusion from
144 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
145 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
146 * completed (happens from ext4_free_ioend()).
147 */
148 static int ext4_end_io(ext4_io_end_t *io)
149 {
150 struct inode *inode = io->inode;
151 loff_t offset = io->offset;
152 ssize_t size = io->size;
153 handle_t *handle = io->handle;
154 int ret = 0;
155
156 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
157 "list->prev 0x%p\n",
158 io, inode->i_ino, io->list.next, io->list.prev);
159
160 io->handle = NULL; /* Following call will use up the handle */
161 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
162 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
163 ext4_msg(inode->i_sb, KERN_EMERG,
164 "failed to convert unwritten extents to written "
165 "extents -- potential data loss! "
166 "(inode %lu, offset %llu, size %zd, error %d)",
167 inode->i_ino, offset, size, ret);
168 }
169 ext4_clear_io_unwritten_flag(io);
170 ext4_release_io_end(io);
171 return ret;
172 }
173
174 static void dump_completed_IO(struct inode *inode, struct list_head *head)
175 {
176 #ifdef EXT4FS_DEBUG
177 struct list_head *cur, *before, *after;
178 ext4_io_end_t *io, *io0, *io1;
179
180 if (list_empty(head))
181 return;
182
183 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
184 list_for_each_entry(io, head, list) {
185 cur = &io->list;
186 before = cur->prev;
187 io0 = container_of(before, ext4_io_end_t, list);
188 after = cur->next;
189 io1 = container_of(after, ext4_io_end_t, list);
190
191 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
192 io, inode->i_ino, io0, io1);
193 }
194 #endif
195 }
196
197 /* Add the io_end to per-inode completed end_io list. */
198 static void ext4_add_complete_io(ext4_io_end_t *io_end)
199 {
200 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
201 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
202 struct workqueue_struct *wq;
203 unsigned long flags;
204
205 /* Only reserved conversions from writeback should enter here */
206 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
207 WARN_ON(!io_end->handle && sbi->s_journal);
208 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
209 wq = sbi->rsv_conversion_wq;
210 if (list_empty(&ei->i_rsv_conversion_list))
211 queue_work(wq, &ei->i_rsv_conversion_work);
212 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
213 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
214 }
215
216 static int ext4_do_flush_completed_IO(struct inode *inode,
217 struct list_head *head)
218 {
219 ext4_io_end_t *io;
220 struct list_head unwritten;
221 unsigned long flags;
222 struct ext4_inode_info *ei = EXT4_I(inode);
223 int err, ret = 0;
224
225 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
226 dump_completed_IO(inode, head);
227 list_replace_init(head, &unwritten);
228 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
229
230 while (!list_empty(&unwritten)) {
231 io = list_entry(unwritten.next, ext4_io_end_t, list);
232 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
233 list_del_init(&io->list);
234
235 err = ext4_end_io(io);
236 if (unlikely(!ret && err))
237 ret = err;
238 }
239 return ret;
240 }
241
242 /*
243 * work on completed IO, to convert unwritten extents to extents
244 */
245 void ext4_end_io_rsv_work(struct work_struct *work)
246 {
247 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
248 i_rsv_conversion_work);
249 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
250 }
251
252 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
253 {
254 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
255 if (io) {
256 io->inode = inode;
257 INIT_LIST_HEAD(&io->list);
258 atomic_set(&io->count, 1);
259 }
260 return io;
261 }
262
263 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
264 {
265 if (atomic_dec_and_test(&io_end->count)) {
266 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
267 ext4_release_io_end(io_end);
268 return;
269 }
270 ext4_add_complete_io(io_end);
271 }
272 }
273
274 int ext4_put_io_end(ext4_io_end_t *io_end)
275 {
276 int err = 0;
277
278 if (atomic_dec_and_test(&io_end->count)) {
279 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
280 err = ext4_convert_unwritten_extents(io_end->handle,
281 io_end->inode, io_end->offset,
282 io_end->size);
283 io_end->handle = NULL;
284 ext4_clear_io_unwritten_flag(io_end);
285 }
286 ext4_release_io_end(io_end);
287 }
288 return err;
289 }
290
291 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
292 {
293 atomic_inc(&io_end->count);
294 return io_end;
295 }
296
297 /* BIO completion function for page writeback */
298 static void ext4_end_bio(struct bio *bio)
299 {
300 ext4_io_end_t *io_end = bio->bi_private;
301 sector_t bi_sector = bio->bi_iter.bi_sector;
302 char b[BDEVNAME_SIZE];
303
304 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
305 bio_devname(bio, b),
306 (long long) bio->bi_iter.bi_sector,
307 (unsigned) bio_sectors(bio),
308 bio->bi_status)) {
309 ext4_finish_bio(bio);
310 bio_put(bio);
311 return;
312 }
313 bio->bi_end_io = NULL;
314
315 if (bio->bi_status) {
316 struct inode *inode = io_end->inode;
317
318 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
319 "(offset %llu size %ld starting block %llu)",
320 bio->bi_status, inode->i_ino,
321 (unsigned long long) io_end->offset,
322 (long) io_end->size,
323 (unsigned long long)
324 bi_sector >> (inode->i_blkbits - 9));
325 mapping_set_error(inode->i_mapping,
326 blk_status_to_errno(bio->bi_status));
327 }
328
329 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
330 /*
331 * Link bio into list hanging from io_end. We have to do it
332 * atomically as bio completions can be racing against each
333 * other.
334 */
335 bio->bi_private = xchg(&io_end->bio, bio);
336 ext4_put_io_end_defer(io_end);
337 } else {
338 /*
339 * Drop io_end reference early. Inode can get freed once
340 * we finish the bio.
341 */
342 ext4_put_io_end_defer(io_end);
343 ext4_finish_bio(bio);
344 bio_put(bio);
345 }
346 }
347
348 void ext4_io_submit(struct ext4_io_submit *io)
349 {
350 struct bio *bio = io->io_bio;
351
352 if (bio) {
353 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
354 REQ_SYNC : 0;
355 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
356 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
357 submit_bio(io->io_bio);
358 }
359 io->io_bio = NULL;
360 }
361
362 void ext4_io_submit_init(struct ext4_io_submit *io,
363 struct writeback_control *wbc)
364 {
365 io->io_wbc = wbc;
366 io->io_bio = NULL;
367 io->io_end = NULL;
368 }
369
370 static int io_submit_init_bio(struct ext4_io_submit *io,
371 struct buffer_head *bh)
372 {
373 struct bio *bio;
374
375 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
376 if (!bio)
377 return -ENOMEM;
378 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
379 bio_set_dev(bio, bh->b_bdev);
380 bio->bi_end_io = ext4_end_bio;
381 bio->bi_private = ext4_get_io_end(io->io_end);
382 io->io_bio = bio;
383 io->io_next_block = bh->b_blocknr;
384 wbc_init_bio(io->io_wbc, bio);
385 return 0;
386 }
387
388 static int io_submit_add_bh(struct ext4_io_submit *io,
389 struct inode *inode,
390 struct page *page,
391 struct buffer_head *bh)
392 {
393 int ret;
394
395 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
396 submit_and_retry:
397 ext4_io_submit(io);
398 }
399 if (io->io_bio == NULL) {
400 ret = io_submit_init_bio(io, bh);
401 if (ret)
402 return ret;
403 io->io_bio->bi_write_hint = inode->i_write_hint;
404 }
405 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
406 if (ret != bh->b_size)
407 goto submit_and_retry;
408 wbc_account_io(io->io_wbc, page, bh->b_size);
409 io->io_next_block++;
410 return 0;
411 }
412
413 int ext4_bio_write_page(struct ext4_io_submit *io,
414 struct page *page,
415 int len,
416 struct writeback_control *wbc,
417 bool keep_towrite)
418 {
419 struct page *data_page = NULL;
420 struct inode *inode = page->mapping->host;
421 unsigned block_start;
422 struct buffer_head *bh, *head;
423 int ret = 0;
424 int nr_submitted = 0;
425 int nr_to_submit = 0;
426
427 BUG_ON(!PageLocked(page));
428 BUG_ON(PageWriteback(page));
429
430 if (keep_towrite)
431 set_page_writeback_keepwrite(page);
432 else
433 set_page_writeback(page);
434 ClearPageError(page);
435
436 /*
437 * Comments copied from block_write_full_page:
438 *
439 * The page straddles i_size. It must be zeroed out on each and every
440 * writepage invocation because it may be mmapped. "A file is mapped
441 * in multiples of the page size. For a file that is not a multiple of
442 * the page size, the remaining memory is zeroed when mapped, and
443 * writes to that region are not written out to the file."
444 */
445 if (len < PAGE_SIZE)
446 zero_user_segment(page, len, PAGE_SIZE);
447 /*
448 * In the first loop we prepare and mark buffers to submit. We have to
449 * mark all buffers in the page before submitting so that
450 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
451 * on the first buffer finishes and we are still working on submitting
452 * the second buffer.
453 */
454 bh = head = page_buffers(page);
455 do {
456 block_start = bh_offset(bh);
457 if (block_start >= len) {
458 clear_buffer_dirty(bh);
459 set_buffer_uptodate(bh);
460 continue;
461 }
462 if (!buffer_dirty(bh) || buffer_delay(bh) ||
463 !buffer_mapped(bh) || buffer_unwritten(bh)) {
464 /* A hole? We can safely clear the dirty bit */
465 if (!buffer_mapped(bh))
466 clear_buffer_dirty(bh);
467 if (io->io_bio)
468 ext4_io_submit(io);
469 continue;
470 }
471 if (buffer_new(bh)) {
472 clear_buffer_new(bh);
473 clean_bdev_bh_alias(bh);
474 }
475 set_buffer_async_write(bh);
476 nr_to_submit++;
477 } while ((bh = bh->b_this_page) != head);
478
479 bh = head = page_buffers(page);
480
481 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) {
482 gfp_t gfp_flags = GFP_NOFS;
483
484 retry_encrypt:
485 data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
486 page->index, gfp_flags);
487 if (IS_ERR(data_page)) {
488 ret = PTR_ERR(data_page);
489 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
490 if (io->io_bio) {
491 ext4_io_submit(io);
492 congestion_wait(BLK_RW_ASYNC, HZ/50);
493 }
494 gfp_flags |= __GFP_NOFAIL;
495 goto retry_encrypt;
496 }
497 data_page = NULL;
498 goto out;
499 }
500 }
501
502 /* Now submit buffers to write */
503 do {
504 if (!buffer_async_write(bh))
505 continue;
506 ret = io_submit_add_bh(io, inode,
507 data_page ? data_page : page, bh);
508 if (ret) {
509 /*
510 * We only get here on ENOMEM. Not much else
511 * we can do but mark the page as dirty, and
512 * better luck next time.
513 */
514 break;
515 }
516 nr_submitted++;
517 clear_buffer_dirty(bh);
518 } while ((bh = bh->b_this_page) != head);
519
520 /* Error stopped previous loop? Clean up buffers... */
521 if (ret) {
522 out:
523 if (data_page)
524 fscrypt_restore_control_page(data_page);
525 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
526 redirty_page_for_writepage(wbc, page);
527 do {
528 clear_buffer_async_write(bh);
529 bh = bh->b_this_page;
530 } while (bh != head);
531 }
532 unlock_page(page);
533 /* Nothing submitted - we have to end page writeback */
534 if (!nr_submitted)
535 end_page_writeback(page);
536 return ret;
537 }