1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/page-io.c
5 * This contains the new page_io functions for ext4
7 * Written by Theodore Ts'o, 2010.
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
27 #include <linux/sched/mm.h>
29 #include "ext4_jbd2.h"
33 static struct kmem_cache
*io_end_cachep
;
34 static struct kmem_cache
*io_end_vec_cachep
;
36 int __init
ext4_init_pageio(void)
38 io_end_cachep
= KMEM_CACHE(ext4_io_end
, SLAB_RECLAIM_ACCOUNT
);
39 if (io_end_cachep
== NULL
)
42 io_end_vec_cachep
= KMEM_CACHE(ext4_io_end_vec
, 0);
43 if (io_end_vec_cachep
== NULL
) {
44 kmem_cache_destroy(io_end_cachep
);
50 void ext4_exit_pageio(void)
52 kmem_cache_destroy(io_end_cachep
);
53 kmem_cache_destroy(io_end_vec_cachep
);
56 struct ext4_io_end_vec
*ext4_alloc_io_end_vec(ext4_io_end_t
*io_end
)
58 struct ext4_io_end_vec
*io_end_vec
;
60 io_end_vec
= kmem_cache_zalloc(io_end_vec_cachep
, GFP_NOFS
);
62 return ERR_PTR(-ENOMEM
);
63 INIT_LIST_HEAD(&io_end_vec
->list
);
64 list_add_tail(&io_end_vec
->list
, &io_end
->list_vec
);
68 static void ext4_free_io_end_vec(ext4_io_end_t
*io_end
)
70 struct ext4_io_end_vec
*io_end_vec
, *tmp
;
72 if (list_empty(&io_end
->list_vec
))
74 list_for_each_entry_safe(io_end_vec
, tmp
, &io_end
->list_vec
, list
) {
75 list_del(&io_end_vec
->list
);
76 kmem_cache_free(io_end_vec_cachep
, io_end_vec
);
80 struct ext4_io_end_vec
*ext4_last_io_end_vec(ext4_io_end_t
*io_end
)
82 BUG_ON(list_empty(&io_end
->list_vec
));
83 return list_last_entry(&io_end
->list_vec
, struct ext4_io_end_vec
, list
);
87 * Print an buffer I/O error compatible with the fs/buffer.c. This
88 * provides compatibility with dmesg scrapers that look for a specific
89 * buffer I/O error message. We really need a unified error reporting
90 * structure to userspace ala Digital Unix's uerf system, but it's
91 * probably not going to happen in my lifetime, due to LKML politics...
93 static void buffer_io_error(struct buffer_head
*bh
)
95 printk_ratelimited(KERN_ERR
"Buffer I/O error on device %pg, logical block %llu\n",
97 (unsigned long long)bh
->b_blocknr
);
100 static void ext4_finish_bio(struct bio
*bio
)
102 struct folio_iter fi
;
104 bio_for_each_folio_all(fi
, bio
) {
105 struct folio
*folio
= fi
.folio
;
106 struct folio
*io_folio
= NULL
;
107 struct buffer_head
*bh
, *head
;
108 size_t bio_start
= fi
.offset
;
109 size_t bio_end
= bio_start
+ fi
.length
;
110 unsigned under_io
= 0;
113 if (fscrypt_is_bounce_folio(folio
)) {
115 folio
= fscrypt_pagecache_folio(folio
);
118 if (bio
->bi_status
) {
119 int err
= blk_status_to_errno(bio
->bi_status
);
120 mapping_set_error(folio
->mapping
, err
);
122 bh
= head
= folio_buffers(folio
);
124 * We check all buffers in the folio under b_uptodate_lock
125 * to avoid races with other end io clearing async_write flags
127 spin_lock_irqsave(&head
->b_uptodate_lock
, flags
);
129 if (bh_offset(bh
) < bio_start
||
130 bh_offset(bh
) + bh
->b_size
> bio_end
) {
131 if (buffer_async_write(bh
))
135 clear_buffer_async_write(bh
);
136 if (bio
->bi_status
) {
137 set_buffer_write_io_error(bh
);
140 } while ((bh
= bh
->b_this_page
) != head
);
141 spin_unlock_irqrestore(&head
->b_uptodate_lock
, flags
);
143 fscrypt_free_bounce_page(&io_folio
->page
);
144 folio_end_writeback(folio
);
149 static void ext4_release_io_end(ext4_io_end_t
*io_end
)
151 struct bio
*bio
, *next_bio
;
153 BUG_ON(!list_empty(&io_end
->list
));
154 BUG_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
155 WARN_ON(io_end
->handle
);
157 for (bio
= io_end
->bio
; bio
; bio
= next_bio
) {
158 next_bio
= bio
->bi_private
;
159 ext4_finish_bio(bio
);
162 ext4_free_io_end_vec(io_end
);
163 kmem_cache_free(io_end_cachep
, io_end
);
167 * On successful IO, check a range of space and convert unwritten extents to
168 * written. On IO failure, check if journal abort is needed. Note that
169 * we are protected from truncate touching same part of extent tree by the
170 * fact that truncate code waits for all DIO to finish (thus exclusion from
171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173 * completed (happens from ext4_free_ioend()).
175 static int ext4_end_io_end(ext4_io_end_t
*io_end
)
177 struct inode
*inode
= io_end
->inode
;
178 handle_t
*handle
= io_end
->handle
;
179 struct super_block
*sb
= inode
->i_sb
;
182 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
184 io_end
, inode
->i_ino
, io_end
->list
.next
, io_end
->list
.prev
);
187 * Do not convert the unwritten extents if data writeback fails,
188 * or stale data may be exposed.
190 io_end
->handle
= NULL
; /* Following call will use up the handle */
191 if (unlikely(io_end
->flag
& EXT4_IO_END_FAILED
)) {
194 jbd2_journal_free_reserved(handle
);
196 if (test_opt(sb
, DATA_ERR_ABORT
))
197 jbd2_journal_abort(EXT4_SB(sb
)->s_journal
, ret
);
199 ret
= ext4_convert_unwritten_io_end_vec(handle
, io_end
);
201 if (ret
< 0 && !ext4_emergency_state(sb
) &&
202 io_end
->flag
& EXT4_IO_END_UNWRITTEN
) {
203 ext4_msg(sb
, KERN_EMERG
,
204 "failed to convert unwritten extents to written "
205 "extents -- potential data loss! "
206 "(inode %lu, error %d)", inode
->i_ino
, ret
);
209 ext4_clear_io_unwritten_flag(io_end
);
210 ext4_release_io_end(io_end
);
214 static void dump_completed_IO(struct inode
*inode
, struct list_head
*head
)
217 struct list_head
*cur
, *before
, *after
;
218 ext4_io_end_t
*io_end
, *io_end0
, *io_end1
;
220 if (list_empty(head
))
223 ext4_debug("Dump inode %lu completed io list\n", inode
->i_ino
);
224 list_for_each_entry(io_end
, head
, list
) {
227 io_end0
= container_of(before
, ext4_io_end_t
, list
);
229 io_end1
= container_of(after
, ext4_io_end_t
, list
);
231 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
232 io_end
, inode
->i_ino
, io_end0
, io_end1
);
237 static bool ext4_io_end_defer_completion(ext4_io_end_t
*io_end
)
239 if (io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
241 if (test_opt(io_end
->inode
->i_sb
, DATA_ERR_ABORT
) &&
242 io_end
->flag
& EXT4_IO_END_FAILED
)
247 /* Add the io_end to per-inode completed end_io list. */
248 static void ext4_add_complete_io(ext4_io_end_t
*io_end
)
250 struct ext4_inode_info
*ei
= EXT4_I(io_end
->inode
);
251 struct ext4_sb_info
*sbi
= EXT4_SB(io_end
->inode
->i_sb
);
252 struct workqueue_struct
*wq
;
255 /* Only reserved conversions or pending IO errors will enter here. */
256 WARN_ON(!(io_end
->flag
& EXT4_IO_END_DEFER_COMPLETION
));
257 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
&&
258 !io_end
->handle
&& sbi
->s_journal
);
260 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
261 wq
= sbi
->rsv_conversion_wq
;
262 if (list_empty(&ei
->i_rsv_conversion_list
))
263 queue_work(wq
, &ei
->i_rsv_conversion_work
);
264 list_add_tail(&io_end
->list
, &ei
->i_rsv_conversion_list
);
265 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
268 static int ext4_do_flush_completed_IO(struct inode
*inode
,
269 struct list_head
*head
)
271 ext4_io_end_t
*io_end
;
272 struct list_head unwritten
;
274 struct ext4_inode_info
*ei
= EXT4_I(inode
);
277 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
278 dump_completed_IO(inode
, head
);
279 list_replace_init(head
, &unwritten
);
280 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
282 while (!list_empty(&unwritten
)) {
283 io_end
= list_entry(unwritten
.next
, ext4_io_end_t
, list
);
284 BUG_ON(!(io_end
->flag
& EXT4_IO_END_DEFER_COMPLETION
));
285 list_del_init(&io_end
->list
);
287 err
= ext4_end_io_end(io_end
);
288 if (unlikely(!ret
&& err
))
295 * Used to convert unwritten extents to written extents upon IO completion,
296 * or used to abort the journal upon IO errors.
298 void ext4_end_io_rsv_work(struct work_struct
*work
)
300 struct ext4_inode_info
*ei
= container_of(work
, struct ext4_inode_info
,
301 i_rsv_conversion_work
);
302 ext4_do_flush_completed_IO(&ei
->vfs_inode
, &ei
->i_rsv_conversion_list
);
305 ext4_io_end_t
*ext4_init_io_end(struct inode
*inode
, gfp_t flags
)
307 ext4_io_end_t
*io_end
= kmem_cache_zalloc(io_end_cachep
, flags
);
310 io_end
->inode
= inode
;
311 INIT_LIST_HEAD(&io_end
->list
);
312 INIT_LIST_HEAD(&io_end
->list_vec
);
313 refcount_set(&io_end
->count
, 1);
318 void ext4_put_io_end_defer(ext4_io_end_t
*io_end
)
320 if (refcount_dec_and_test(&io_end
->count
)) {
321 if (io_end
->flag
& EXT4_IO_END_FAILED
||
322 (io_end
->flag
& EXT4_IO_END_UNWRITTEN
&&
323 !list_empty(&io_end
->list_vec
))) {
324 ext4_add_complete_io(io_end
);
327 ext4_release_io_end(io_end
);
331 int ext4_put_io_end(ext4_io_end_t
*io_end
)
333 if (refcount_dec_and_test(&io_end
->count
)) {
334 if (ext4_io_end_defer_completion(io_end
))
335 return ext4_end_io_end(io_end
);
337 ext4_release_io_end(io_end
);
342 ext4_io_end_t
*ext4_get_io_end(ext4_io_end_t
*io_end
)
344 refcount_inc(&io_end
->count
);
348 /* BIO completion function for page writeback */
349 static void ext4_end_bio(struct bio
*bio
)
351 ext4_io_end_t
*io_end
= bio
->bi_private
;
352 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
354 if (WARN_ONCE(!io_end
, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
356 (long long) bio
->bi_iter
.bi_sector
,
357 (unsigned) bio_sectors(bio
),
359 ext4_finish_bio(bio
);
363 bio
->bi_end_io
= NULL
;
365 if (bio
->bi_status
) {
366 struct inode
*inode
= io_end
->inode
;
368 ext4_warning(inode
->i_sb
, "I/O error %d writing to inode %lu "
369 "starting block %llu)",
370 bio
->bi_status
, inode
->i_ino
,
372 bi_sector
>> (inode
->i_blkbits
- 9));
373 io_end
->flag
|= EXT4_IO_END_FAILED
;
374 mapping_set_error(inode
->i_mapping
,
375 blk_status_to_errno(bio
->bi_status
));
378 if (ext4_io_end_defer_completion(io_end
)) {
380 * Link bio into list hanging from io_end. We have to do it
381 * atomically as bio completions can be racing against each
384 bio
->bi_private
= xchg(&io_end
->bio
, bio
);
385 ext4_put_io_end_defer(io_end
);
388 * Drop io_end reference early. Inode can get freed once
391 ext4_put_io_end_defer(io_end
);
392 ext4_finish_bio(bio
);
397 void ext4_io_submit(struct ext4_io_submit
*io
)
399 struct bio
*bio
= io
->io_bio
;
402 if (io
->io_wbc
->sync_mode
== WB_SYNC_ALL
)
403 io
->io_bio
->bi_opf
|= REQ_SYNC
;
404 submit_bio(io
->io_bio
);
409 void ext4_io_submit_init(struct ext4_io_submit
*io
,
410 struct writeback_control
*wbc
)
417 static void io_submit_init_bio(struct ext4_io_submit
*io
,
418 struct buffer_head
*bh
)
423 * bio_alloc will _always_ be able to allocate a bio if
424 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
426 bio
= bio_alloc(bh
->b_bdev
, BIO_MAX_VECS
, REQ_OP_WRITE
, GFP_NOIO
);
427 fscrypt_set_bio_crypt_ctx_bh(bio
, bh
, GFP_NOIO
);
428 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
429 bio
->bi_end_io
= ext4_end_bio
;
430 bio
->bi_private
= ext4_get_io_end(io
->io_end
);
432 io
->io_next_block
= bh
->b_blocknr
;
433 wbc_init_bio(io
->io_wbc
, bio
);
436 static void io_submit_add_bh(struct ext4_io_submit
*io
,
439 struct folio
*io_folio
,
440 struct buffer_head
*bh
)
442 if (io
->io_bio
&& (bh
->b_blocknr
!= io
->io_next_block
||
443 !fscrypt_mergeable_bio_bh(io
->io_bio
, bh
))) {
447 if (io
->io_bio
== NULL
) {
448 io_submit_init_bio(io
, bh
);
449 io
->io_bio
->bi_write_hint
= inode
->i_write_hint
;
451 if (!bio_add_folio(io
->io_bio
, io_folio
, bh
->b_size
, bh_offset(bh
)))
452 goto submit_and_retry
;
453 wbc_account_cgroup_owner(io
->io_wbc
, folio
, bh
->b_size
);
457 int ext4_bio_write_folio(struct ext4_io_submit
*io
, struct folio
*folio
,
460 struct folio
*io_folio
= folio
;
461 struct inode
*inode
= folio
->mapping
->host
;
462 unsigned block_start
;
463 struct buffer_head
*bh
, *head
;
465 int nr_to_submit
= 0;
466 struct writeback_control
*wbc
= io
->io_wbc
;
467 bool keep_towrite
= false;
469 BUG_ON(!folio_test_locked(folio
));
470 BUG_ON(folio_test_writeback(folio
));
473 * Comments copied from block_write_full_folio:
475 * The folio straddles i_size. It must be zeroed out on each and every
476 * writepage invocation because it may be mmapped. "A file is mapped
477 * in multiples of the page size. For a file that is not a multiple of
478 * the page size, the remaining memory is zeroed when mapped, and
479 * writes to that region are not written out to the file."
481 if (len
< folio_size(folio
))
482 folio_zero_segment(folio
, len
, folio_size(folio
));
484 * In the first loop we prepare and mark buffers to submit. We have to
485 * mark all buffers in the folio before submitting so that
486 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
487 * on the first buffer finishes and we are still working on submitting
490 bh
= head
= folio_buffers(folio
);
492 block_start
= bh_offset(bh
);
493 if (block_start
>= len
) {
494 clear_buffer_dirty(bh
);
495 set_buffer_uptodate(bh
);
498 if (!buffer_dirty(bh
) || buffer_delay(bh
) ||
499 !buffer_mapped(bh
) || buffer_unwritten(bh
)) {
500 /* A hole? We can safely clear the dirty bit */
501 if (!buffer_mapped(bh
))
502 clear_buffer_dirty(bh
);
504 * Keeping dirty some buffer we cannot write? Make sure
505 * to redirty the folio and keep TOWRITE tag so that
506 * racing WB_SYNC_ALL writeback does not skip the folio.
507 * This happens e.g. when doing writeout for
508 * transaction commit or when journalled data is not
511 if (buffer_dirty(bh
) ||
512 (buffer_jbd(bh
) && buffer_jbddirty(bh
))) {
513 if (!folio_test_dirty(folio
))
514 folio_redirty_for_writepage(wbc
, folio
);
520 clear_buffer_new(bh
);
521 set_buffer_async_write(bh
);
522 clear_buffer_dirty(bh
);
524 } while ((bh
= bh
->b_this_page
) != head
);
526 /* Nothing to submit? Just unlock the folio... */
530 bh
= head
= folio_buffers(folio
);
533 * If any blocks are being written to an encrypted file, encrypt them
534 * into a bounce page. For simplicity, just encrypt until the last
535 * block which might be needed. This may cause some unneeded blocks
536 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
537 * can't happen in the common case of blocksize == PAGE_SIZE.
539 if (fscrypt_inode_uses_fs_layer_crypto(inode
)) {
540 gfp_t gfp_flags
= GFP_NOFS
;
541 unsigned int enc_bytes
= round_up(len
, i_blocksize(inode
));
542 struct page
*bounce_page
;
545 * Since bounce page allocation uses a mempool, we can only use
546 * a waiting mask (i.e. request guaranteed allocation) on the
547 * first page of the bio. Otherwise it can deadlock.
550 gfp_flags
= GFP_NOWAIT
| __GFP_NOWARN
;
552 bounce_page
= fscrypt_encrypt_pagecache_blocks(folio
,
553 enc_bytes
, 0, gfp_flags
);
554 if (IS_ERR(bounce_page
)) {
555 ret
= PTR_ERR(bounce_page
);
556 if (ret
== -ENOMEM
&&
557 (io
->io_bio
|| wbc
->sync_mode
== WB_SYNC_ALL
)) {
558 gfp_t new_gfp_flags
= GFP_NOFS
;
562 new_gfp_flags
|= __GFP_NOFAIL
;
563 memalloc_retry_wait(gfp_flags
);
564 gfp_flags
= new_gfp_flags
;
568 printk_ratelimited(KERN_ERR
"%s: ret = %d\n", __func__
, ret
);
569 folio_redirty_for_writepage(wbc
, folio
);
571 if (buffer_async_write(bh
)) {
572 clear_buffer_async_write(bh
);
573 set_buffer_dirty(bh
);
575 bh
= bh
->b_this_page
;
576 } while (bh
!= head
);
580 io_folio
= page_folio(bounce_page
);
583 __folio_start_writeback(folio
, keep_towrite
);
585 /* Now submit buffers to write */
587 if (!buffer_async_write(bh
))
589 io_submit_add_bh(io
, inode
, folio
, io_folio
, bh
);
590 } while ((bh
= bh
->b_this_page
) != head
);