]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/ext4/super.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89 /*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144 /*
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
148 * return.
149 */
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153 struct buffer_head *bh = sb_getblk(sb, block);
154
155 if (bh == NULL)
156 return ERR_PTR(-ENOMEM);
157 if (ext4_buffer_uptodate(bh))
158 return bh;
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160 wait_on_buffer(bh);
161 if (buffer_uptodate(bh))
162 return bh;
163 put_bh(bh);
164 return ERR_PTR(-EIO);
165 }
166
167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
169 {
170 if (!ext4_has_feature_metadata_csum(sb))
171 return 1;
172
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
178 {
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
181 __u32 csum;
182
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185 return cpu_to_le32(csum);
186 }
187
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
190 {
191 if (!ext4_has_metadata_csum(sb))
192 return 1;
193
194 return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196
197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201 if (!ext4_has_metadata_csum(sb))
202 return;
203
204 es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206
207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le32_to_cpu(bg->bg_block_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
213 }
214
215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
221 }
222
223 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le32_to_cpu(bg->bg_inode_table_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
229 }
230
231 __u32 ext4_free_group_clusters(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_free_inodes_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
245 }
246
247 __u32 ext4_used_dirs_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249 {
250 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
253 }
254
255 __u32 ext4_itable_unused_count(struct super_block *sb,
256 struct ext4_group_desc *bg)
257 {
258 return le16_to_cpu(bg->bg_itable_unused_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
261 }
262
263 void ext4_block_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_inode_bitmap_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273 {
274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
277 }
278
279 void ext4_inode_table_set(struct super_block *sb,
280 struct ext4_group_desc *bg, ext4_fsblk_t blk)
281 {
282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
285 }
286
287 void ext4_free_group_clusters_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289 {
290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_free_inodes_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297 {
298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
301 }
302
303 void ext4_used_dirs_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305 {
306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
309 }
310
311 void ext4_itable_unused_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
313 {
314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
317 }
318
319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
320 {
321 time64_t now = ktime_get_real_seconds();
322
323 now = clamp_val(now, 0, (1ull << 40) - 1);
324
325 *lo = cpu_to_le32(lower_32_bits(now));
326 *hi = upper_32_bits(now);
327 }
328
329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
330 {
331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
332 }
333 #define ext4_update_tstamp(es, tstamp) \
334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
335 #define ext4_get_tstamp(es, tstamp) \
336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
337
338 static void __save_error_info(struct super_block *sb, int error,
339 __u32 ino, __u64 block,
340 const char *func, unsigned int line)
341 {
342 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
343 int err;
344
345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
346 if (bdev_read_only(sb->s_bdev))
347 return;
348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
349 ext4_update_tstamp(es, s_last_error_time);
350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
351 es->s_last_error_line = cpu_to_le32(line);
352 es->s_last_error_ino = cpu_to_le32(ino);
353 es->s_last_error_block = cpu_to_le64(block);
354 switch (error) {
355 case EIO:
356 err = EXT4_ERR_EIO;
357 break;
358 case ENOMEM:
359 err = EXT4_ERR_ENOMEM;
360 break;
361 case EFSBADCRC:
362 err = EXT4_ERR_EFSBADCRC;
363 break;
364 case 0:
365 case EFSCORRUPTED:
366 err = EXT4_ERR_EFSCORRUPTED;
367 break;
368 case ENOSPC:
369 err = EXT4_ERR_ENOSPC;
370 break;
371 case ENOKEY:
372 err = EXT4_ERR_ENOKEY;
373 break;
374 case EROFS:
375 err = EXT4_ERR_EROFS;
376 break;
377 case EFBIG:
378 err = EXT4_ERR_EFBIG;
379 break;
380 case EEXIST:
381 err = EXT4_ERR_EEXIST;
382 break;
383 case ERANGE:
384 err = EXT4_ERR_ERANGE;
385 break;
386 case EOVERFLOW:
387 err = EXT4_ERR_EOVERFLOW;
388 break;
389 case EBUSY:
390 err = EXT4_ERR_EBUSY;
391 break;
392 case ENOTDIR:
393 err = EXT4_ERR_ENOTDIR;
394 break;
395 case ENOTEMPTY:
396 err = EXT4_ERR_ENOTEMPTY;
397 break;
398 case ESHUTDOWN:
399 err = EXT4_ERR_ESHUTDOWN;
400 break;
401 case EFAULT:
402 err = EXT4_ERR_EFAULT;
403 break;
404 default:
405 err = EXT4_ERR_UNKNOWN;
406 }
407 es->s_last_error_errcode = err;
408 if (!es->s_first_error_time) {
409 es->s_first_error_time = es->s_last_error_time;
410 es->s_first_error_time_hi = es->s_last_error_time_hi;
411 strncpy(es->s_first_error_func, func,
412 sizeof(es->s_first_error_func));
413 es->s_first_error_line = cpu_to_le32(line);
414 es->s_first_error_ino = es->s_last_error_ino;
415 es->s_first_error_block = es->s_last_error_block;
416 es->s_first_error_errcode = es->s_last_error_errcode;
417 }
418 /*
419 * Start the daily error reporting function if it hasn't been
420 * started already
421 */
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
425 }
426
427 static void save_error_info(struct super_block *sb, int error,
428 __u32 ino, __u64 block,
429 const char *func, unsigned int line)
430 {
431 __save_error_info(sb, error, ino, block, func, line);
432 if (!bdev_read_only(sb->s_bdev))
433 ext4_commit_super(sb, 1);
434 }
435
436 /*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444 static int block_device_ejected(struct super_block *sb)
445 {
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450 }
451
452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453 {
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473 }
474
475 static bool system_going_down(void)
476 {
477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
478 || system_state == SYSTEM_RESTART;
479 }
480
481 /* Deal with the reporting of failure conditions on a filesystem such as
482 * inconsistencies detected or read IO failures.
483 *
484 * On ext2, we can store the error state of the filesystem in the
485 * superblock. That is not possible on ext4, because we may have other
486 * write ordering constraints on the superblock which prevent us from
487 * writing it out straight away; and given that the journal is about to
488 * be aborted, we can't rely on the current, or future, transactions to
489 * write out the superblock safely.
490 *
491 * We'll just use the jbd2_journal_abort() error code to record an error in
492 * the journal instead. On recovery, the journal will complain about
493 * that error until we've noted it down and cleared it.
494 */
495
496 static void ext4_handle_error(struct super_block *sb)
497 {
498 if (test_opt(sb, WARN_ON_ERROR))
499 WARN_ON_ONCE(1);
500
501 if (sb_rdonly(sb))
502 return;
503
504 if (!test_opt(sb, ERRORS_CONT)) {
505 journal_t *journal = EXT4_SB(sb)->s_journal;
506
507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
508 if (journal)
509 jbd2_journal_abort(journal, -EIO);
510 }
511 /*
512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
513 * could panic during 'reboot -f' as the underlying device got already
514 * disabled.
515 */
516 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
518 /*
519 * Make sure updated value of ->s_mount_flags will be visible
520 * before ->s_flags update
521 */
522 smp_wmb();
523 sb->s_flags |= SB_RDONLY;
524 } else if (test_opt(sb, ERRORS_PANIC)) {
525 if (EXT4_SB(sb)->s_journal &&
526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
527 return;
528 panic("EXT4-fs (device %s): panic forced after error\n",
529 sb->s_id);
530 }
531 }
532
533 #define ext4_error_ratelimit(sb) \
534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
535 "EXT4-fs error")
536
537 void __ext4_error(struct super_block *sb, const char *function,
538 unsigned int line, int error, __u64 block,
539 const char *fmt, ...)
540 {
541 struct va_format vaf;
542 va_list args;
543
544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
545 return;
546
547 trace_ext4_error(sb, function, line);
548 if (ext4_error_ratelimit(sb)) {
549 va_start(args, fmt);
550 vaf.fmt = fmt;
551 vaf.va = &args;
552 printk(KERN_CRIT
553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
554 sb->s_id, function, line, current->comm, &vaf);
555 va_end(args);
556 }
557 save_error_info(sb, error, 0, block, function, line);
558 ext4_handle_error(sb);
559 }
560
561 void __ext4_error_inode(struct inode *inode, const char *function,
562 unsigned int line, ext4_fsblk_t block, int error,
563 const char *fmt, ...)
564 {
565 va_list args;
566 struct va_format vaf;
567
568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
569 return;
570
571 trace_ext4_error(inode->i_sb, function, line);
572 if (ext4_error_ratelimit(inode->i_sb)) {
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 if (block)
577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
578 "inode #%lu: block %llu: comm %s: %pV\n",
579 inode->i_sb->s_id, function, line, inode->i_ino,
580 block, current->comm, &vaf);
581 else
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
583 "inode #%lu: comm %s: %pV\n",
584 inode->i_sb->s_id, function, line, inode->i_ino,
585 current->comm, &vaf);
586 va_end(args);
587 }
588 save_error_info(inode->i_sb, error, inode->i_ino, block,
589 function, line);
590 ext4_handle_error(inode->i_sb);
591 }
592
593 void __ext4_error_file(struct file *file, const char *function,
594 unsigned int line, ext4_fsblk_t block,
595 const char *fmt, ...)
596 {
597 va_list args;
598 struct va_format vaf;
599 struct inode *inode = file_inode(file);
600 char pathname[80], *path;
601
602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
603 return;
604
605 trace_ext4_error(inode->i_sb, function, line);
606 if (ext4_error_ratelimit(inode->i_sb)) {
607 path = file_path(file, pathname, sizeof(pathname));
608 if (IS_ERR(path))
609 path = "(unknown)";
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 if (block)
614 printk(KERN_CRIT
615 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
616 "block %llu: comm %s: path %s: %pV\n",
617 inode->i_sb->s_id, function, line, inode->i_ino,
618 block, current->comm, path, &vaf);
619 else
620 printk(KERN_CRIT
621 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
622 "comm %s: path %s: %pV\n",
623 inode->i_sb->s_id, function, line, inode->i_ino,
624 current->comm, path, &vaf);
625 va_end(args);
626 }
627 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
628 function, line);
629 ext4_handle_error(inode->i_sb);
630 }
631
632 const char *ext4_decode_error(struct super_block *sb, int errno,
633 char nbuf[16])
634 {
635 char *errstr = NULL;
636
637 switch (errno) {
638 case -EFSCORRUPTED:
639 errstr = "Corrupt filesystem";
640 break;
641 case -EFSBADCRC:
642 errstr = "Filesystem failed CRC";
643 break;
644 case -EIO:
645 errstr = "IO failure";
646 break;
647 case -ENOMEM:
648 errstr = "Out of memory";
649 break;
650 case -EROFS:
651 if (!sb || (EXT4_SB(sb)->s_journal &&
652 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
653 errstr = "Journal has aborted";
654 else
655 errstr = "Readonly filesystem";
656 break;
657 default:
658 /* If the caller passed in an extra buffer for unknown
659 * errors, textualise them now. Else we just return
660 * NULL. */
661 if (nbuf) {
662 /* Check for truncated error codes... */
663 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
664 errstr = nbuf;
665 }
666 break;
667 }
668
669 return errstr;
670 }
671
672 /* __ext4_std_error decodes expected errors from journaling functions
673 * automatically and invokes the appropriate error response. */
674
675 void __ext4_std_error(struct super_block *sb, const char *function,
676 unsigned int line, int errno)
677 {
678 char nbuf[16];
679 const char *errstr;
680
681 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
682 return;
683
684 /* Special case: if the error is EROFS, and we're not already
685 * inside a transaction, then there's really no point in logging
686 * an error. */
687 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
688 return;
689
690 if (ext4_error_ratelimit(sb)) {
691 errstr = ext4_decode_error(sb, errno, nbuf);
692 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
693 sb->s_id, function, line, errstr);
694 }
695
696 save_error_info(sb, -errno, 0, 0, function, line);
697 ext4_handle_error(sb);
698 }
699
700 /*
701 * ext4_abort is a much stronger failure handler than ext4_error. The
702 * abort function may be used to deal with unrecoverable failures such
703 * as journal IO errors or ENOMEM at a critical moment in log management.
704 *
705 * We unconditionally force the filesystem into an ABORT|READONLY state,
706 * unless the error response on the fs has been set to panic in which
707 * case we take the easy way out and panic immediately.
708 */
709
710 void __ext4_abort(struct super_block *sb, const char *function,
711 unsigned int line, int error, const char *fmt, ...)
712 {
713 struct va_format vaf;
714 va_list args;
715
716 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
717 return;
718
719 save_error_info(sb, error, 0, 0, function, line);
720 va_start(args, fmt);
721 vaf.fmt = fmt;
722 vaf.va = &args;
723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
724 sb->s_id, function, line, &vaf);
725 va_end(args);
726
727 if (sb_rdonly(sb) == 0) {
728 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
729 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
730 /*
731 * Make sure updated value of ->s_mount_flags will be visible
732 * before ->s_flags update
733 */
734 smp_wmb();
735 sb->s_flags |= SB_RDONLY;
736 if (EXT4_SB(sb)->s_journal)
737 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
738 }
739 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
740 if (EXT4_SB(sb)->s_journal &&
741 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
742 return;
743 panic("EXT4-fs panic from previous error\n");
744 }
745 }
746
747 void __ext4_msg(struct super_block *sb,
748 const char *prefix, const char *fmt, ...)
749 {
750 struct va_format vaf;
751 va_list args;
752
753 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
754 return;
755
756 va_start(args, fmt);
757 vaf.fmt = fmt;
758 vaf.va = &args;
759 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
760 va_end(args);
761 }
762
763 #define ext4_warning_ratelimit(sb) \
764 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
765 "EXT4-fs warning")
766
767 void __ext4_warning(struct super_block *sb, const char *function,
768 unsigned int line, const char *fmt, ...)
769 {
770 struct va_format vaf;
771 va_list args;
772
773 if (!ext4_warning_ratelimit(sb))
774 return;
775
776 va_start(args, fmt);
777 vaf.fmt = fmt;
778 vaf.va = &args;
779 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
780 sb->s_id, function, line, &vaf);
781 va_end(args);
782 }
783
784 void __ext4_warning_inode(const struct inode *inode, const char *function,
785 unsigned int line, const char *fmt, ...)
786 {
787 struct va_format vaf;
788 va_list args;
789
790 if (!ext4_warning_ratelimit(inode->i_sb))
791 return;
792
793 va_start(args, fmt);
794 vaf.fmt = fmt;
795 vaf.va = &args;
796 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
797 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
798 function, line, inode->i_ino, current->comm, &vaf);
799 va_end(args);
800 }
801
802 void __ext4_grp_locked_error(const char *function, unsigned int line,
803 struct super_block *sb, ext4_group_t grp,
804 unsigned long ino, ext4_fsblk_t block,
805 const char *fmt, ...)
806 __releases(bitlock)
807 __acquires(bitlock)
808 {
809 struct va_format vaf;
810 va_list args;
811
812 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
813 return;
814
815 trace_ext4_error(sb, function, line);
816 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
817
818 if (ext4_error_ratelimit(sb)) {
819 va_start(args, fmt);
820 vaf.fmt = fmt;
821 vaf.va = &args;
822 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
823 sb->s_id, function, line, grp);
824 if (ino)
825 printk(KERN_CONT "inode %lu: ", ino);
826 if (block)
827 printk(KERN_CONT "block %llu:",
828 (unsigned long long) block);
829 printk(KERN_CONT "%pV\n", &vaf);
830 va_end(args);
831 }
832
833 if (test_opt(sb, WARN_ON_ERROR))
834 WARN_ON_ONCE(1);
835
836 if (test_opt(sb, ERRORS_CONT)) {
837 ext4_commit_super(sb, 0);
838 return;
839 }
840
841 ext4_unlock_group(sb, grp);
842 ext4_commit_super(sb, 1);
843 ext4_handle_error(sb);
844 /*
845 * We only get here in the ERRORS_RO case; relocking the group
846 * may be dangerous, but nothing bad will happen since the
847 * filesystem will have already been marked read/only and the
848 * journal has been aborted. We return 1 as a hint to callers
849 * who might what to use the return value from
850 * ext4_grp_locked_error() to distinguish between the
851 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
852 * aggressively from the ext4 function in question, with a
853 * more appropriate error code.
854 */
855 ext4_lock_group(sb, grp);
856 return;
857 }
858
859 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
860 ext4_group_t group,
861 unsigned int flags)
862 {
863 struct ext4_sb_info *sbi = EXT4_SB(sb);
864 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
865 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
866 int ret;
867
868 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
869 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
870 &grp->bb_state);
871 if (!ret)
872 percpu_counter_sub(&sbi->s_freeclusters_counter,
873 grp->bb_free);
874 }
875
876 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
877 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
878 &grp->bb_state);
879 if (!ret && gdp) {
880 int count;
881
882 count = ext4_free_inodes_count(sb, gdp);
883 percpu_counter_sub(&sbi->s_freeinodes_counter,
884 count);
885 }
886 }
887 }
888
889 void ext4_update_dynamic_rev(struct super_block *sb)
890 {
891 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
892
893 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
894 return;
895
896 ext4_warning(sb,
897 "updating to rev %d because of new feature flag, "
898 "running e2fsck is recommended",
899 EXT4_DYNAMIC_REV);
900
901 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
902 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
903 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
904 /* leave es->s_feature_*compat flags alone */
905 /* es->s_uuid will be set by e2fsck if empty */
906
907 /*
908 * The rest of the superblock fields should be zero, and if not it
909 * means they are likely already in use, so leave them alone. We
910 * can leave it up to e2fsck to clean up any inconsistencies there.
911 */
912 }
913
914 /*
915 * Open the external journal device
916 */
917 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
918 {
919 struct block_device *bdev;
920
921 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
922 if (IS_ERR(bdev))
923 goto fail;
924 return bdev;
925
926 fail:
927 ext4_msg(sb, KERN_ERR,
928 "failed to open journal device unknown-block(%u,%u) %ld",
929 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
930 return NULL;
931 }
932
933 /*
934 * Release the journal device
935 */
936 static void ext4_blkdev_put(struct block_device *bdev)
937 {
938 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
939 }
940
941 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
942 {
943 struct block_device *bdev;
944 bdev = sbi->journal_bdev;
945 if (bdev) {
946 ext4_blkdev_put(bdev);
947 sbi->journal_bdev = NULL;
948 }
949 }
950
951 static inline struct inode *orphan_list_entry(struct list_head *l)
952 {
953 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
954 }
955
956 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
957 {
958 struct list_head *l;
959
960 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
961 le32_to_cpu(sbi->s_es->s_last_orphan));
962
963 printk(KERN_ERR "sb_info orphan list:\n");
964 list_for_each(l, &sbi->s_orphan) {
965 struct inode *inode = orphan_list_entry(l);
966 printk(KERN_ERR " "
967 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
968 inode->i_sb->s_id, inode->i_ino, inode,
969 inode->i_mode, inode->i_nlink,
970 NEXT_ORPHAN(inode));
971 }
972 }
973
974 #ifdef CONFIG_QUOTA
975 static int ext4_quota_off(struct super_block *sb, int type);
976
977 static inline void ext4_quota_off_umount(struct super_block *sb)
978 {
979 int type;
980
981 /* Use our quota_off function to clear inode flags etc. */
982 for (type = 0; type < EXT4_MAXQUOTAS; type++)
983 ext4_quota_off(sb, type);
984 }
985
986 /*
987 * This is a helper function which is used in the mount/remount
988 * codepaths (which holds s_umount) to fetch the quota file name.
989 */
990 static inline char *get_qf_name(struct super_block *sb,
991 struct ext4_sb_info *sbi,
992 int type)
993 {
994 return rcu_dereference_protected(sbi->s_qf_names[type],
995 lockdep_is_held(&sb->s_umount));
996 }
997 #else
998 static inline void ext4_quota_off_umount(struct super_block *sb)
999 {
1000 }
1001 #endif
1002
1003 static void ext4_put_super(struct super_block *sb)
1004 {
1005 struct ext4_sb_info *sbi = EXT4_SB(sb);
1006 struct ext4_super_block *es = sbi->s_es;
1007 struct buffer_head **group_desc;
1008 struct flex_groups **flex_groups;
1009 int aborted = 0;
1010 int i, err;
1011
1012 ext4_unregister_li_request(sb);
1013 ext4_quota_off_umount(sb);
1014
1015 destroy_workqueue(sbi->rsv_conversion_wq);
1016
1017 /*
1018 * Unregister sysfs before destroying jbd2 journal.
1019 * Since we could still access attr_journal_task attribute via sysfs
1020 * path which could have sbi->s_journal->j_task as NULL
1021 */
1022 ext4_unregister_sysfs(sb);
1023
1024 if (sbi->s_journal) {
1025 aborted = is_journal_aborted(sbi->s_journal);
1026 err = jbd2_journal_destroy(sbi->s_journal);
1027 sbi->s_journal = NULL;
1028 if ((err < 0) && !aborted) {
1029 ext4_abort(sb, -err, "Couldn't clean up the journal");
1030 }
1031 }
1032
1033 ext4_es_unregister_shrinker(sbi);
1034 del_timer_sync(&sbi->s_err_report);
1035 ext4_release_system_zone(sb);
1036 ext4_mb_release(sb);
1037 ext4_ext_release(sb);
1038
1039 if (!sb_rdonly(sb) && !aborted) {
1040 ext4_clear_feature_journal_needs_recovery(sb);
1041 es->s_state = cpu_to_le16(sbi->s_mount_state);
1042 }
1043 if (!sb_rdonly(sb))
1044 ext4_commit_super(sb, 1);
1045
1046 rcu_read_lock();
1047 group_desc = rcu_dereference(sbi->s_group_desc);
1048 for (i = 0; i < sbi->s_gdb_count; i++)
1049 brelse(group_desc[i]);
1050 kvfree(group_desc);
1051 flex_groups = rcu_dereference(sbi->s_flex_groups);
1052 if (flex_groups) {
1053 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1054 kvfree(flex_groups[i]);
1055 kvfree(flex_groups);
1056 }
1057 rcu_read_unlock();
1058 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1059 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1060 percpu_counter_destroy(&sbi->s_dirs_counter);
1061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1062 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1063 #ifdef CONFIG_QUOTA
1064 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1065 kfree(get_qf_name(sb, sbi, i));
1066 #endif
1067
1068 /* Debugging code just in case the in-memory inode orphan list
1069 * isn't empty. The on-disk one can be non-empty if we've
1070 * detected an error and taken the fs readonly, but the
1071 * in-memory list had better be clean by this point. */
1072 if (!list_empty(&sbi->s_orphan))
1073 dump_orphan_list(sb, sbi);
1074 J_ASSERT(list_empty(&sbi->s_orphan));
1075
1076 sync_blockdev(sb->s_bdev);
1077 invalidate_bdev(sb->s_bdev);
1078 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1079 /*
1080 * Invalidate the journal device's buffers. We don't want them
1081 * floating about in memory - the physical journal device may
1082 * hotswapped, and it breaks the `ro-after' testing code.
1083 */
1084 sync_blockdev(sbi->journal_bdev);
1085 invalidate_bdev(sbi->journal_bdev);
1086 ext4_blkdev_remove(sbi);
1087 }
1088
1089 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1090 sbi->s_ea_inode_cache = NULL;
1091
1092 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1093 sbi->s_ea_block_cache = NULL;
1094
1095 if (sbi->s_mmp_tsk)
1096 kthread_stop(sbi->s_mmp_tsk);
1097 brelse(sbi->s_sbh);
1098 sb->s_fs_info = NULL;
1099 /*
1100 * Now that we are completely done shutting down the
1101 * superblock, we need to actually destroy the kobject.
1102 */
1103 kobject_put(&sbi->s_kobj);
1104 wait_for_completion(&sbi->s_kobj_unregister);
1105 if (sbi->s_chksum_driver)
1106 crypto_free_shash(sbi->s_chksum_driver);
1107 kfree(sbi->s_blockgroup_lock);
1108 fs_put_dax(sbi->s_daxdev);
1109 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
1110 #ifdef CONFIG_UNICODE
1111 utf8_unload(sbi->s_encoding);
1112 #endif
1113 kfree(sbi);
1114 }
1115
1116 static struct kmem_cache *ext4_inode_cachep;
1117
1118 /*
1119 * Called inside transaction, so use GFP_NOFS
1120 */
1121 static struct inode *ext4_alloc_inode(struct super_block *sb)
1122 {
1123 struct ext4_inode_info *ei;
1124
1125 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1126 if (!ei)
1127 return NULL;
1128
1129 inode_set_iversion(&ei->vfs_inode, 1);
1130 spin_lock_init(&ei->i_raw_lock);
1131 INIT_LIST_HEAD(&ei->i_prealloc_list);
1132 spin_lock_init(&ei->i_prealloc_lock);
1133 ext4_es_init_tree(&ei->i_es_tree);
1134 rwlock_init(&ei->i_es_lock);
1135 INIT_LIST_HEAD(&ei->i_es_list);
1136 ei->i_es_all_nr = 0;
1137 ei->i_es_shk_nr = 0;
1138 ei->i_es_shrink_lblk = 0;
1139 ei->i_reserved_data_blocks = 0;
1140 spin_lock_init(&(ei->i_block_reservation_lock));
1141 ext4_init_pending_tree(&ei->i_pending_tree);
1142 #ifdef CONFIG_QUOTA
1143 ei->i_reserved_quota = 0;
1144 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1145 #endif
1146 ei->jinode = NULL;
1147 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1148 spin_lock_init(&ei->i_completed_io_lock);
1149 ei->i_sync_tid = 0;
1150 ei->i_datasync_tid = 0;
1151 atomic_set(&ei->i_unwritten, 0);
1152 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1153 return &ei->vfs_inode;
1154 }
1155
1156 static int ext4_drop_inode(struct inode *inode)
1157 {
1158 int drop = generic_drop_inode(inode);
1159
1160 if (!drop)
1161 drop = fscrypt_drop_inode(inode);
1162
1163 trace_ext4_drop_inode(inode, drop);
1164 return drop;
1165 }
1166
1167 static void ext4_free_in_core_inode(struct inode *inode)
1168 {
1169 fscrypt_free_inode(inode);
1170 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1171 }
1172
1173 static void ext4_destroy_inode(struct inode *inode)
1174 {
1175 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1176 ext4_msg(inode->i_sb, KERN_ERR,
1177 "Inode %lu (%p): orphan list check failed!",
1178 inode->i_ino, EXT4_I(inode));
1179 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1180 EXT4_I(inode), sizeof(struct ext4_inode_info),
1181 true);
1182 dump_stack();
1183 }
1184 }
1185
1186 static void init_once(void *foo)
1187 {
1188 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1189
1190 INIT_LIST_HEAD(&ei->i_orphan);
1191 init_rwsem(&ei->xattr_sem);
1192 init_rwsem(&ei->i_data_sem);
1193 init_rwsem(&ei->i_mmap_sem);
1194 inode_init_once(&ei->vfs_inode);
1195 }
1196
1197 static int __init init_inodecache(void)
1198 {
1199 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1200 sizeof(struct ext4_inode_info), 0,
1201 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1202 SLAB_ACCOUNT),
1203 offsetof(struct ext4_inode_info, i_data),
1204 sizeof_field(struct ext4_inode_info, i_data),
1205 init_once);
1206 if (ext4_inode_cachep == NULL)
1207 return -ENOMEM;
1208 return 0;
1209 }
1210
1211 static void destroy_inodecache(void)
1212 {
1213 /*
1214 * Make sure all delayed rcu free inodes are flushed before we
1215 * destroy cache.
1216 */
1217 rcu_barrier();
1218 kmem_cache_destroy(ext4_inode_cachep);
1219 }
1220
1221 void ext4_clear_inode(struct inode *inode)
1222 {
1223 invalidate_inode_buffers(inode);
1224 clear_inode(inode);
1225 ext4_discard_preallocations(inode);
1226 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1227 dquot_drop(inode);
1228 if (EXT4_I(inode)->jinode) {
1229 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1230 EXT4_I(inode)->jinode);
1231 jbd2_free_inode(EXT4_I(inode)->jinode);
1232 EXT4_I(inode)->jinode = NULL;
1233 }
1234 fscrypt_put_encryption_info(inode);
1235 fsverity_cleanup_inode(inode);
1236 }
1237
1238 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1239 u64 ino, u32 generation)
1240 {
1241 struct inode *inode;
1242
1243 /*
1244 * Currently we don't know the generation for parent directory, so
1245 * a generation of 0 means "accept any"
1246 */
1247 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1248 if (IS_ERR(inode))
1249 return ERR_CAST(inode);
1250 if (generation && inode->i_generation != generation) {
1251 iput(inode);
1252 return ERR_PTR(-ESTALE);
1253 }
1254
1255 return inode;
1256 }
1257
1258 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1259 int fh_len, int fh_type)
1260 {
1261 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1262 ext4_nfs_get_inode);
1263 }
1264
1265 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1266 int fh_len, int fh_type)
1267 {
1268 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1269 ext4_nfs_get_inode);
1270 }
1271
1272 static int ext4_nfs_commit_metadata(struct inode *inode)
1273 {
1274 struct writeback_control wbc = {
1275 .sync_mode = WB_SYNC_ALL
1276 };
1277
1278 trace_ext4_nfs_commit_metadata(inode);
1279 return ext4_write_inode(inode, &wbc);
1280 }
1281
1282 /*
1283 * Try to release metadata pages (indirect blocks, directories) which are
1284 * mapped via the block device. Since these pages could have journal heads
1285 * which would prevent try_to_free_buffers() from freeing them, we must use
1286 * jbd2 layer's try_to_free_buffers() function to release them.
1287 */
1288 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1289 gfp_t wait)
1290 {
1291 journal_t *journal = EXT4_SB(sb)->s_journal;
1292
1293 WARN_ON(PageChecked(page));
1294 if (!page_has_buffers(page))
1295 return 0;
1296 if (journal)
1297 return jbd2_journal_try_to_free_buffers(journal, page,
1298 wait & ~__GFP_DIRECT_RECLAIM);
1299 return try_to_free_buffers(page);
1300 }
1301
1302 #ifdef CONFIG_FS_ENCRYPTION
1303 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1304 {
1305 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1306 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1307 }
1308
1309 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1310 void *fs_data)
1311 {
1312 handle_t *handle = fs_data;
1313 int res, res2, credits, retries = 0;
1314
1315 /*
1316 * Encrypting the root directory is not allowed because e2fsck expects
1317 * lost+found to exist and be unencrypted, and encrypting the root
1318 * directory would imply encrypting the lost+found directory as well as
1319 * the filename "lost+found" itself.
1320 */
1321 if (inode->i_ino == EXT4_ROOT_INO)
1322 return -EPERM;
1323
1324 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1325 return -EINVAL;
1326
1327 res = ext4_convert_inline_data(inode);
1328 if (res)
1329 return res;
1330
1331 /*
1332 * If a journal handle was specified, then the encryption context is
1333 * being set on a new inode via inheritance and is part of a larger
1334 * transaction to create the inode. Otherwise the encryption context is
1335 * being set on an existing inode in its own transaction. Only in the
1336 * latter case should the "retry on ENOSPC" logic be used.
1337 */
1338
1339 if (handle) {
1340 res = ext4_xattr_set_handle(handle, inode,
1341 EXT4_XATTR_INDEX_ENCRYPTION,
1342 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1343 ctx, len, 0);
1344 if (!res) {
1345 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1346 ext4_clear_inode_state(inode,
1347 EXT4_STATE_MAY_INLINE_DATA);
1348 /*
1349 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1350 * S_DAX may be disabled
1351 */
1352 ext4_set_inode_flags(inode);
1353 }
1354 return res;
1355 }
1356
1357 res = dquot_initialize(inode);
1358 if (res)
1359 return res;
1360 retry:
1361 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1362 &credits);
1363 if (res)
1364 return res;
1365
1366 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1367 if (IS_ERR(handle))
1368 return PTR_ERR(handle);
1369
1370 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1371 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1372 ctx, len, 0);
1373 if (!res) {
1374 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1375 /*
1376 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1377 * S_DAX may be disabled
1378 */
1379 ext4_set_inode_flags(inode);
1380 res = ext4_mark_inode_dirty(handle, inode);
1381 if (res)
1382 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1383 }
1384 res2 = ext4_journal_stop(handle);
1385
1386 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1387 goto retry;
1388 if (!res)
1389 res = res2;
1390 return res;
1391 }
1392
1393 static const union fscrypt_context *
1394 ext4_get_dummy_context(struct super_block *sb)
1395 {
1396 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx;
1397 }
1398
1399 static bool ext4_has_stable_inodes(struct super_block *sb)
1400 {
1401 return ext4_has_feature_stable_inodes(sb);
1402 }
1403
1404 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1405 int *ino_bits_ret, int *lblk_bits_ret)
1406 {
1407 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1408 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1409 }
1410
1411 static const struct fscrypt_operations ext4_cryptops = {
1412 .key_prefix = "ext4:",
1413 .get_context = ext4_get_context,
1414 .set_context = ext4_set_context,
1415 .get_dummy_context = ext4_get_dummy_context,
1416 .empty_dir = ext4_empty_dir,
1417 .max_namelen = EXT4_NAME_LEN,
1418 .has_stable_inodes = ext4_has_stable_inodes,
1419 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1420 };
1421 #endif
1422
1423 #ifdef CONFIG_QUOTA
1424 static const char * const quotatypes[] = INITQFNAMES;
1425 #define QTYPE2NAME(t) (quotatypes[t])
1426
1427 static int ext4_write_dquot(struct dquot *dquot);
1428 static int ext4_acquire_dquot(struct dquot *dquot);
1429 static int ext4_release_dquot(struct dquot *dquot);
1430 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1431 static int ext4_write_info(struct super_block *sb, int type);
1432 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1433 const struct path *path);
1434 static int ext4_quota_on_mount(struct super_block *sb, int type);
1435 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1436 size_t len, loff_t off);
1437 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1438 const char *data, size_t len, loff_t off);
1439 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1440 unsigned int flags);
1441 static int ext4_enable_quotas(struct super_block *sb);
1442
1443 static struct dquot **ext4_get_dquots(struct inode *inode)
1444 {
1445 return EXT4_I(inode)->i_dquot;
1446 }
1447
1448 static const struct dquot_operations ext4_quota_operations = {
1449 .get_reserved_space = ext4_get_reserved_space,
1450 .write_dquot = ext4_write_dquot,
1451 .acquire_dquot = ext4_acquire_dquot,
1452 .release_dquot = ext4_release_dquot,
1453 .mark_dirty = ext4_mark_dquot_dirty,
1454 .write_info = ext4_write_info,
1455 .alloc_dquot = dquot_alloc,
1456 .destroy_dquot = dquot_destroy,
1457 .get_projid = ext4_get_projid,
1458 .get_inode_usage = ext4_get_inode_usage,
1459 .get_next_id = dquot_get_next_id,
1460 };
1461
1462 static const struct quotactl_ops ext4_qctl_operations = {
1463 .quota_on = ext4_quota_on,
1464 .quota_off = ext4_quota_off,
1465 .quota_sync = dquot_quota_sync,
1466 .get_state = dquot_get_state,
1467 .set_info = dquot_set_dqinfo,
1468 .get_dqblk = dquot_get_dqblk,
1469 .set_dqblk = dquot_set_dqblk,
1470 .get_nextdqblk = dquot_get_next_dqblk,
1471 };
1472 #endif
1473
1474 static const struct super_operations ext4_sops = {
1475 .alloc_inode = ext4_alloc_inode,
1476 .free_inode = ext4_free_in_core_inode,
1477 .destroy_inode = ext4_destroy_inode,
1478 .write_inode = ext4_write_inode,
1479 .dirty_inode = ext4_dirty_inode,
1480 .drop_inode = ext4_drop_inode,
1481 .evict_inode = ext4_evict_inode,
1482 .put_super = ext4_put_super,
1483 .sync_fs = ext4_sync_fs,
1484 .freeze_fs = ext4_freeze,
1485 .unfreeze_fs = ext4_unfreeze,
1486 .statfs = ext4_statfs,
1487 .remount_fs = ext4_remount,
1488 .show_options = ext4_show_options,
1489 #ifdef CONFIG_QUOTA
1490 .quota_read = ext4_quota_read,
1491 .quota_write = ext4_quota_write,
1492 .get_dquots = ext4_get_dquots,
1493 #endif
1494 .bdev_try_to_free_page = bdev_try_to_free_page,
1495 };
1496
1497 static const struct export_operations ext4_export_ops = {
1498 .fh_to_dentry = ext4_fh_to_dentry,
1499 .fh_to_parent = ext4_fh_to_parent,
1500 .get_parent = ext4_get_parent,
1501 .commit_metadata = ext4_nfs_commit_metadata,
1502 };
1503
1504 enum {
1505 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1506 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1507 Opt_nouid32, Opt_debug, Opt_removed,
1508 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1509 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1510 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1511 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1512 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1513 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1514 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1515 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1516 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1517 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1518 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1519 Opt_nowarn_on_error, Opt_mblk_io_submit,
1520 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1521 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1522 Opt_inode_readahead_blks, Opt_journal_ioprio,
1523 Opt_dioread_nolock, Opt_dioread_lock,
1524 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1525 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1526 };
1527
1528 static const match_table_t tokens = {
1529 {Opt_bsd_df, "bsddf"},
1530 {Opt_minix_df, "minixdf"},
1531 {Opt_grpid, "grpid"},
1532 {Opt_grpid, "bsdgroups"},
1533 {Opt_nogrpid, "nogrpid"},
1534 {Opt_nogrpid, "sysvgroups"},
1535 {Opt_resgid, "resgid=%u"},
1536 {Opt_resuid, "resuid=%u"},
1537 {Opt_sb, "sb=%u"},
1538 {Opt_err_cont, "errors=continue"},
1539 {Opt_err_panic, "errors=panic"},
1540 {Opt_err_ro, "errors=remount-ro"},
1541 {Opt_nouid32, "nouid32"},
1542 {Opt_debug, "debug"},
1543 {Opt_removed, "oldalloc"},
1544 {Opt_removed, "orlov"},
1545 {Opt_user_xattr, "user_xattr"},
1546 {Opt_nouser_xattr, "nouser_xattr"},
1547 {Opt_acl, "acl"},
1548 {Opt_noacl, "noacl"},
1549 {Opt_noload, "norecovery"},
1550 {Opt_noload, "noload"},
1551 {Opt_removed, "nobh"},
1552 {Opt_removed, "bh"},
1553 {Opt_commit, "commit=%u"},
1554 {Opt_min_batch_time, "min_batch_time=%u"},
1555 {Opt_max_batch_time, "max_batch_time=%u"},
1556 {Opt_journal_dev, "journal_dev=%u"},
1557 {Opt_journal_path, "journal_path=%s"},
1558 {Opt_journal_checksum, "journal_checksum"},
1559 {Opt_nojournal_checksum, "nojournal_checksum"},
1560 {Opt_journal_async_commit, "journal_async_commit"},
1561 {Opt_abort, "abort"},
1562 {Opt_data_journal, "data=journal"},
1563 {Opt_data_ordered, "data=ordered"},
1564 {Opt_data_writeback, "data=writeback"},
1565 {Opt_data_err_abort, "data_err=abort"},
1566 {Opt_data_err_ignore, "data_err=ignore"},
1567 {Opt_offusrjquota, "usrjquota="},
1568 {Opt_usrjquota, "usrjquota=%s"},
1569 {Opt_offgrpjquota, "grpjquota="},
1570 {Opt_grpjquota, "grpjquota=%s"},
1571 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1572 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1573 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1574 {Opt_grpquota, "grpquota"},
1575 {Opt_noquota, "noquota"},
1576 {Opt_quota, "quota"},
1577 {Opt_usrquota, "usrquota"},
1578 {Opt_prjquota, "prjquota"},
1579 {Opt_barrier, "barrier=%u"},
1580 {Opt_barrier, "barrier"},
1581 {Opt_nobarrier, "nobarrier"},
1582 {Opt_i_version, "i_version"},
1583 {Opt_dax, "dax"},
1584 {Opt_stripe, "stripe=%u"},
1585 {Opt_delalloc, "delalloc"},
1586 {Opt_warn_on_error, "warn_on_error"},
1587 {Opt_nowarn_on_error, "nowarn_on_error"},
1588 {Opt_lazytime, "lazytime"},
1589 {Opt_nolazytime, "nolazytime"},
1590 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1591 {Opt_nodelalloc, "nodelalloc"},
1592 {Opt_removed, "mblk_io_submit"},
1593 {Opt_removed, "nomblk_io_submit"},
1594 {Opt_block_validity, "block_validity"},
1595 {Opt_noblock_validity, "noblock_validity"},
1596 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1597 {Opt_journal_ioprio, "journal_ioprio=%u"},
1598 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1599 {Opt_auto_da_alloc, "auto_da_alloc"},
1600 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1601 {Opt_dioread_nolock, "dioread_nolock"},
1602 {Opt_dioread_lock, "nodioread_nolock"},
1603 {Opt_dioread_lock, "dioread_lock"},
1604 {Opt_discard, "discard"},
1605 {Opt_nodiscard, "nodiscard"},
1606 {Opt_init_itable, "init_itable=%u"},
1607 {Opt_init_itable, "init_itable"},
1608 {Opt_noinit_itable, "noinit_itable"},
1609 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1610 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1611 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1612 {Opt_nombcache, "nombcache"},
1613 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1614 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1615 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1616 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1617 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1618 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1619 {Opt_err, NULL},
1620 };
1621
1622 static ext4_fsblk_t get_sb_block(void **data)
1623 {
1624 ext4_fsblk_t sb_block;
1625 char *options = (char *) *data;
1626
1627 if (!options || strncmp(options, "sb=", 3) != 0)
1628 return 1; /* Default location */
1629
1630 options += 3;
1631 /* TODO: use simple_strtoll with >32bit ext4 */
1632 sb_block = simple_strtoul(options, &options, 0);
1633 if (*options && *options != ',') {
1634 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1635 (char *) *data);
1636 return 1;
1637 }
1638 if (*options == ',')
1639 options++;
1640 *data = (void *) options;
1641
1642 return sb_block;
1643 }
1644
1645 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1646 static const char deprecated_msg[] =
1647 "Mount option \"%s\" will be removed by %s\n"
1648 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1649
1650 #ifdef CONFIG_QUOTA
1651 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1652 {
1653 struct ext4_sb_info *sbi = EXT4_SB(sb);
1654 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1655 int ret = -1;
1656
1657 if (sb_any_quota_loaded(sb) && !old_qname) {
1658 ext4_msg(sb, KERN_ERR,
1659 "Cannot change journaled "
1660 "quota options when quota turned on");
1661 return -1;
1662 }
1663 if (ext4_has_feature_quota(sb)) {
1664 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1665 "ignored when QUOTA feature is enabled");
1666 return 1;
1667 }
1668 qname = match_strdup(args);
1669 if (!qname) {
1670 ext4_msg(sb, KERN_ERR,
1671 "Not enough memory for storing quotafile name");
1672 return -1;
1673 }
1674 if (old_qname) {
1675 if (strcmp(old_qname, qname) == 0)
1676 ret = 1;
1677 else
1678 ext4_msg(sb, KERN_ERR,
1679 "%s quota file already specified",
1680 QTYPE2NAME(qtype));
1681 goto errout;
1682 }
1683 if (strchr(qname, '/')) {
1684 ext4_msg(sb, KERN_ERR,
1685 "quotafile must be on filesystem root");
1686 goto errout;
1687 }
1688 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1689 set_opt(sb, QUOTA);
1690 return 1;
1691 errout:
1692 kfree(qname);
1693 return ret;
1694 }
1695
1696 static int clear_qf_name(struct super_block *sb, int qtype)
1697 {
1698
1699 struct ext4_sb_info *sbi = EXT4_SB(sb);
1700 char *old_qname = get_qf_name(sb, sbi, qtype);
1701
1702 if (sb_any_quota_loaded(sb) && old_qname) {
1703 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1704 " when quota turned on");
1705 return -1;
1706 }
1707 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1708 synchronize_rcu();
1709 kfree(old_qname);
1710 return 1;
1711 }
1712 #endif
1713
1714 #define MOPT_SET 0x0001
1715 #define MOPT_CLEAR 0x0002
1716 #define MOPT_NOSUPPORT 0x0004
1717 #define MOPT_EXPLICIT 0x0008
1718 #define MOPT_CLEAR_ERR 0x0010
1719 #define MOPT_GTE0 0x0020
1720 #ifdef CONFIG_QUOTA
1721 #define MOPT_Q 0
1722 #define MOPT_QFMT 0x0040
1723 #else
1724 #define MOPT_Q MOPT_NOSUPPORT
1725 #define MOPT_QFMT MOPT_NOSUPPORT
1726 #endif
1727 #define MOPT_DATAJ 0x0080
1728 #define MOPT_NO_EXT2 0x0100
1729 #define MOPT_NO_EXT3 0x0200
1730 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1731 #define MOPT_STRING 0x0400
1732
1733 static const struct mount_opts {
1734 int token;
1735 int mount_opt;
1736 int flags;
1737 } ext4_mount_opts[] = {
1738 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1739 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1740 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1741 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1742 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1743 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1744 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1745 MOPT_EXT4_ONLY | MOPT_SET},
1746 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1747 MOPT_EXT4_ONLY | MOPT_CLEAR},
1748 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1749 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1750 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1751 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1752 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1753 MOPT_EXT4_ONLY | MOPT_CLEAR},
1754 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1755 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1756 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1757 MOPT_EXT4_ONLY | MOPT_CLEAR},
1758 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1759 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1760 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1761 EXT4_MOUNT_JOURNAL_CHECKSUM),
1762 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1763 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1764 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1765 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1766 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1767 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1768 MOPT_NO_EXT2},
1769 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1770 MOPT_NO_EXT2},
1771 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1772 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1773 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1774 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1775 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1776 {Opt_commit, 0, MOPT_GTE0},
1777 {Opt_max_batch_time, 0, MOPT_GTE0},
1778 {Opt_min_batch_time, 0, MOPT_GTE0},
1779 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1780 {Opt_init_itable, 0, MOPT_GTE0},
1781 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1782 {Opt_stripe, 0, MOPT_GTE0},
1783 {Opt_resuid, 0, MOPT_GTE0},
1784 {Opt_resgid, 0, MOPT_GTE0},
1785 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1786 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1787 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1788 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1789 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1790 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1791 MOPT_NO_EXT2 | MOPT_DATAJ},
1792 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1793 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1794 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1795 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1796 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1797 #else
1798 {Opt_acl, 0, MOPT_NOSUPPORT},
1799 {Opt_noacl, 0, MOPT_NOSUPPORT},
1800 #endif
1801 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1802 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1803 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1804 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1805 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1806 MOPT_SET | MOPT_Q},
1807 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1808 MOPT_SET | MOPT_Q},
1809 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1810 MOPT_SET | MOPT_Q},
1811 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1812 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1813 MOPT_CLEAR | MOPT_Q},
1814 {Opt_usrjquota, 0, MOPT_Q},
1815 {Opt_grpjquota, 0, MOPT_Q},
1816 {Opt_offusrjquota, 0, MOPT_Q},
1817 {Opt_offgrpjquota, 0, MOPT_Q},
1818 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1819 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1820 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1821 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1822 {Opt_test_dummy_encryption, 0, MOPT_STRING},
1823 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1824 {Opt_err, 0, 0}
1825 };
1826
1827 #ifdef CONFIG_UNICODE
1828 static const struct ext4_sb_encodings {
1829 __u16 magic;
1830 char *name;
1831 char *version;
1832 } ext4_sb_encoding_map[] = {
1833 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1834 };
1835
1836 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1837 const struct ext4_sb_encodings **encoding,
1838 __u16 *flags)
1839 {
1840 __u16 magic = le16_to_cpu(es->s_encoding);
1841 int i;
1842
1843 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1844 if (magic == ext4_sb_encoding_map[i].magic)
1845 break;
1846
1847 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1848 return -EINVAL;
1849
1850 *encoding = &ext4_sb_encoding_map[i];
1851 *flags = le16_to_cpu(es->s_encoding_flags);
1852
1853 return 0;
1854 }
1855 #endif
1856
1857 static int ext4_set_test_dummy_encryption(struct super_block *sb,
1858 const char *opt,
1859 const substring_t *arg,
1860 bool is_remount)
1861 {
1862 #ifdef CONFIG_FS_ENCRYPTION
1863 struct ext4_sb_info *sbi = EXT4_SB(sb);
1864 int err;
1865
1866 /*
1867 * This mount option is just for testing, and it's not worthwhile to
1868 * implement the extra complexity (e.g. RCU protection) that would be
1869 * needed to allow it to be set or changed during remount. We do allow
1870 * it to be specified during remount, but only if there is no change.
1871 */
1872 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) {
1873 ext4_msg(sb, KERN_WARNING,
1874 "Can't set test_dummy_encryption on remount");
1875 return -1;
1876 }
1877 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx);
1878 if (err) {
1879 if (err == -EEXIST)
1880 ext4_msg(sb, KERN_WARNING,
1881 "Can't change test_dummy_encryption on remount");
1882 else if (err == -EINVAL)
1883 ext4_msg(sb, KERN_WARNING,
1884 "Value of option \"%s\" is unrecognized", opt);
1885 else
1886 ext4_msg(sb, KERN_WARNING,
1887 "Error processing option \"%s\" [%d]",
1888 opt, err);
1889 return -1;
1890 }
1891 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
1892 #else
1893 ext4_msg(sb, KERN_WARNING,
1894 "Test dummy encryption mount option ignored");
1895 #endif
1896 return 1;
1897 }
1898
1899 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1900 substring_t *args, unsigned long *journal_devnum,
1901 unsigned int *journal_ioprio, int is_remount)
1902 {
1903 struct ext4_sb_info *sbi = EXT4_SB(sb);
1904 const struct mount_opts *m;
1905 kuid_t uid;
1906 kgid_t gid;
1907 int arg = 0;
1908
1909 #ifdef CONFIG_QUOTA
1910 if (token == Opt_usrjquota)
1911 return set_qf_name(sb, USRQUOTA, &args[0]);
1912 else if (token == Opt_grpjquota)
1913 return set_qf_name(sb, GRPQUOTA, &args[0]);
1914 else if (token == Opt_offusrjquota)
1915 return clear_qf_name(sb, USRQUOTA);
1916 else if (token == Opt_offgrpjquota)
1917 return clear_qf_name(sb, GRPQUOTA);
1918 #endif
1919 switch (token) {
1920 case Opt_noacl:
1921 case Opt_nouser_xattr:
1922 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1923 break;
1924 case Opt_sb:
1925 return 1; /* handled by get_sb_block() */
1926 case Opt_removed:
1927 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1928 return 1;
1929 case Opt_abort:
1930 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1931 return 1;
1932 case Opt_i_version:
1933 sb->s_flags |= SB_I_VERSION;
1934 return 1;
1935 case Opt_lazytime:
1936 sb->s_flags |= SB_LAZYTIME;
1937 return 1;
1938 case Opt_nolazytime:
1939 sb->s_flags &= ~SB_LAZYTIME;
1940 return 1;
1941 }
1942
1943 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1944 if (token == m->token)
1945 break;
1946
1947 if (m->token == Opt_err) {
1948 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1949 "or missing value", opt);
1950 return -1;
1951 }
1952
1953 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1954 ext4_msg(sb, KERN_ERR,
1955 "Mount option \"%s\" incompatible with ext2", opt);
1956 return -1;
1957 }
1958 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1959 ext4_msg(sb, KERN_ERR,
1960 "Mount option \"%s\" incompatible with ext3", opt);
1961 return -1;
1962 }
1963
1964 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1965 return -1;
1966 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1967 return -1;
1968 if (m->flags & MOPT_EXPLICIT) {
1969 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1970 set_opt2(sb, EXPLICIT_DELALLOC);
1971 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1972 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1973 } else
1974 return -1;
1975 }
1976 if (m->flags & MOPT_CLEAR_ERR)
1977 clear_opt(sb, ERRORS_MASK);
1978 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1979 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1980 "options when quota turned on");
1981 return -1;
1982 }
1983
1984 if (m->flags & MOPT_NOSUPPORT) {
1985 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1986 } else if (token == Opt_commit) {
1987 if (arg == 0)
1988 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1989 else if (arg > INT_MAX / HZ) {
1990 ext4_msg(sb, KERN_ERR,
1991 "Invalid commit interval %d, "
1992 "must be smaller than %d",
1993 arg, INT_MAX / HZ);
1994 return -1;
1995 }
1996 sbi->s_commit_interval = HZ * arg;
1997 } else if (token == Opt_debug_want_extra_isize) {
1998 if ((arg & 1) ||
1999 (arg < 4) ||
2000 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2001 ext4_msg(sb, KERN_ERR,
2002 "Invalid want_extra_isize %d", arg);
2003 return -1;
2004 }
2005 sbi->s_want_extra_isize = arg;
2006 } else if (token == Opt_max_batch_time) {
2007 sbi->s_max_batch_time = arg;
2008 } else if (token == Opt_min_batch_time) {
2009 sbi->s_min_batch_time = arg;
2010 } else if (token == Opt_inode_readahead_blks) {
2011 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2012 ext4_msg(sb, KERN_ERR,
2013 "EXT4-fs: inode_readahead_blks must be "
2014 "0 or a power of 2 smaller than 2^31");
2015 return -1;
2016 }
2017 sbi->s_inode_readahead_blks = arg;
2018 } else if (token == Opt_init_itable) {
2019 set_opt(sb, INIT_INODE_TABLE);
2020 if (!args->from)
2021 arg = EXT4_DEF_LI_WAIT_MULT;
2022 sbi->s_li_wait_mult = arg;
2023 } else if (token == Opt_max_dir_size_kb) {
2024 sbi->s_max_dir_size_kb = arg;
2025 } else if (token == Opt_stripe) {
2026 sbi->s_stripe = arg;
2027 } else if (token == Opt_resuid) {
2028 uid = make_kuid(current_user_ns(), arg);
2029 if (!uid_valid(uid)) {
2030 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2031 return -1;
2032 }
2033 sbi->s_resuid = uid;
2034 } else if (token == Opt_resgid) {
2035 gid = make_kgid(current_user_ns(), arg);
2036 if (!gid_valid(gid)) {
2037 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2038 return -1;
2039 }
2040 sbi->s_resgid = gid;
2041 } else if (token == Opt_journal_dev) {
2042 if (is_remount) {
2043 ext4_msg(sb, KERN_ERR,
2044 "Cannot specify journal on remount");
2045 return -1;
2046 }
2047 *journal_devnum = arg;
2048 } else if (token == Opt_journal_path) {
2049 char *journal_path;
2050 struct inode *journal_inode;
2051 struct path path;
2052 int error;
2053
2054 if (is_remount) {
2055 ext4_msg(sb, KERN_ERR,
2056 "Cannot specify journal on remount");
2057 return -1;
2058 }
2059 journal_path = match_strdup(&args[0]);
2060 if (!journal_path) {
2061 ext4_msg(sb, KERN_ERR, "error: could not dup "
2062 "journal device string");
2063 return -1;
2064 }
2065
2066 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2067 if (error) {
2068 ext4_msg(sb, KERN_ERR, "error: could not find "
2069 "journal device path: error %d", error);
2070 kfree(journal_path);
2071 return -1;
2072 }
2073
2074 journal_inode = d_inode(path.dentry);
2075 if (!S_ISBLK(journal_inode->i_mode)) {
2076 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2077 "is not a block device", journal_path);
2078 path_put(&path);
2079 kfree(journal_path);
2080 return -1;
2081 }
2082
2083 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2084 path_put(&path);
2085 kfree(journal_path);
2086 } else if (token == Opt_journal_ioprio) {
2087 if (arg > 7) {
2088 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2089 " (must be 0-7)");
2090 return -1;
2091 }
2092 *journal_ioprio =
2093 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2094 } else if (token == Opt_test_dummy_encryption) {
2095 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2096 is_remount);
2097 } else if (m->flags & MOPT_DATAJ) {
2098 if (is_remount) {
2099 if (!sbi->s_journal)
2100 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2101 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2102 ext4_msg(sb, KERN_ERR,
2103 "Cannot change data mode on remount");
2104 return -1;
2105 }
2106 } else {
2107 clear_opt(sb, DATA_FLAGS);
2108 sbi->s_mount_opt |= m->mount_opt;
2109 }
2110 #ifdef CONFIG_QUOTA
2111 } else if (m->flags & MOPT_QFMT) {
2112 if (sb_any_quota_loaded(sb) &&
2113 sbi->s_jquota_fmt != m->mount_opt) {
2114 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2115 "quota options when quota turned on");
2116 return -1;
2117 }
2118 if (ext4_has_feature_quota(sb)) {
2119 ext4_msg(sb, KERN_INFO,
2120 "Quota format mount options ignored "
2121 "when QUOTA feature is enabled");
2122 return 1;
2123 }
2124 sbi->s_jquota_fmt = m->mount_opt;
2125 #endif
2126 } else if (token == Opt_dax) {
2127 #ifdef CONFIG_FS_DAX
2128 ext4_msg(sb, KERN_WARNING,
2129 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2130 sbi->s_mount_opt |= m->mount_opt;
2131 #else
2132 ext4_msg(sb, KERN_INFO, "dax option not supported");
2133 return -1;
2134 #endif
2135 } else if (token == Opt_data_err_abort) {
2136 sbi->s_mount_opt |= m->mount_opt;
2137 } else if (token == Opt_data_err_ignore) {
2138 sbi->s_mount_opt &= ~m->mount_opt;
2139 } else {
2140 if (!args->from)
2141 arg = 1;
2142 if (m->flags & MOPT_CLEAR)
2143 arg = !arg;
2144 else if (unlikely(!(m->flags & MOPT_SET))) {
2145 ext4_msg(sb, KERN_WARNING,
2146 "buggy handling of option %s", opt);
2147 WARN_ON(1);
2148 return -1;
2149 }
2150 if (arg != 0)
2151 sbi->s_mount_opt |= m->mount_opt;
2152 else
2153 sbi->s_mount_opt &= ~m->mount_opt;
2154 }
2155 return 1;
2156 }
2157
2158 static int parse_options(char *options, struct super_block *sb,
2159 unsigned long *journal_devnum,
2160 unsigned int *journal_ioprio,
2161 int is_remount)
2162 {
2163 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2164 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2165 substring_t args[MAX_OPT_ARGS];
2166 int token;
2167
2168 if (!options)
2169 return 1;
2170
2171 while ((p = strsep(&options, ",")) != NULL) {
2172 if (!*p)
2173 continue;
2174 /*
2175 * Initialize args struct so we know whether arg was
2176 * found; some options take optional arguments.
2177 */
2178 args[0].to = args[0].from = NULL;
2179 token = match_token(p, tokens, args);
2180 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2181 journal_ioprio, is_remount) < 0)
2182 return 0;
2183 }
2184 #ifdef CONFIG_QUOTA
2185 /*
2186 * We do the test below only for project quotas. 'usrquota' and
2187 * 'grpquota' mount options are allowed even without quota feature
2188 * to support legacy quotas in quota files.
2189 */
2190 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2191 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2192 "Cannot enable project quota enforcement.");
2193 return 0;
2194 }
2195 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2196 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2197 if (usr_qf_name || grp_qf_name) {
2198 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2199 clear_opt(sb, USRQUOTA);
2200
2201 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2202 clear_opt(sb, GRPQUOTA);
2203
2204 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2205 ext4_msg(sb, KERN_ERR, "old and new quota "
2206 "format mixing");
2207 return 0;
2208 }
2209
2210 if (!sbi->s_jquota_fmt) {
2211 ext4_msg(sb, KERN_ERR, "journaled quota format "
2212 "not specified");
2213 return 0;
2214 }
2215 }
2216 #endif
2217 if (test_opt(sb, DIOREAD_NOLOCK)) {
2218 int blocksize =
2219 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2220 if (blocksize < PAGE_SIZE)
2221 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2222 "experimental mount option 'dioread_nolock' "
2223 "for blocksize < PAGE_SIZE");
2224 }
2225 return 1;
2226 }
2227
2228 static inline void ext4_show_quota_options(struct seq_file *seq,
2229 struct super_block *sb)
2230 {
2231 #if defined(CONFIG_QUOTA)
2232 struct ext4_sb_info *sbi = EXT4_SB(sb);
2233 char *usr_qf_name, *grp_qf_name;
2234
2235 if (sbi->s_jquota_fmt) {
2236 char *fmtname = "";
2237
2238 switch (sbi->s_jquota_fmt) {
2239 case QFMT_VFS_OLD:
2240 fmtname = "vfsold";
2241 break;
2242 case QFMT_VFS_V0:
2243 fmtname = "vfsv0";
2244 break;
2245 case QFMT_VFS_V1:
2246 fmtname = "vfsv1";
2247 break;
2248 }
2249 seq_printf(seq, ",jqfmt=%s", fmtname);
2250 }
2251
2252 rcu_read_lock();
2253 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2254 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2255 if (usr_qf_name)
2256 seq_show_option(seq, "usrjquota", usr_qf_name);
2257 if (grp_qf_name)
2258 seq_show_option(seq, "grpjquota", grp_qf_name);
2259 rcu_read_unlock();
2260 #endif
2261 }
2262
2263 static const char *token2str(int token)
2264 {
2265 const struct match_token *t;
2266
2267 for (t = tokens; t->token != Opt_err; t++)
2268 if (t->token == token && !strchr(t->pattern, '='))
2269 break;
2270 return t->pattern;
2271 }
2272
2273 /*
2274 * Show an option if
2275 * - it's set to a non-default value OR
2276 * - if the per-sb default is different from the global default
2277 */
2278 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2279 int nodefs)
2280 {
2281 struct ext4_sb_info *sbi = EXT4_SB(sb);
2282 struct ext4_super_block *es = sbi->s_es;
2283 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2284 const struct mount_opts *m;
2285 char sep = nodefs ? '\n' : ',';
2286
2287 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2288 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2289
2290 if (sbi->s_sb_block != 1)
2291 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2292
2293 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2294 int want_set = m->flags & MOPT_SET;
2295 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2296 (m->flags & MOPT_CLEAR_ERR))
2297 continue;
2298 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2299 continue; /* skip if same as the default */
2300 if ((want_set &&
2301 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2302 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2303 continue; /* select Opt_noFoo vs Opt_Foo */
2304 SEQ_OPTS_PRINT("%s", token2str(m->token));
2305 }
2306
2307 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2308 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2309 SEQ_OPTS_PRINT("resuid=%u",
2310 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2311 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2312 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2313 SEQ_OPTS_PRINT("resgid=%u",
2314 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2315 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2316 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2317 SEQ_OPTS_PUTS("errors=remount-ro");
2318 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2319 SEQ_OPTS_PUTS("errors=continue");
2320 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2321 SEQ_OPTS_PUTS("errors=panic");
2322 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2323 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2324 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2325 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2326 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2327 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2328 if (sb->s_flags & SB_I_VERSION)
2329 SEQ_OPTS_PUTS("i_version");
2330 if (nodefs || sbi->s_stripe)
2331 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2332 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2333 (sbi->s_mount_opt ^ def_mount_opt)) {
2334 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2335 SEQ_OPTS_PUTS("data=journal");
2336 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2337 SEQ_OPTS_PUTS("data=ordered");
2338 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2339 SEQ_OPTS_PUTS("data=writeback");
2340 }
2341 if (nodefs ||
2342 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2343 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2344 sbi->s_inode_readahead_blks);
2345
2346 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2347 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2348 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2349 if (nodefs || sbi->s_max_dir_size_kb)
2350 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2351 if (test_opt(sb, DATA_ERR_ABORT))
2352 SEQ_OPTS_PUTS("data_err=abort");
2353
2354 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2355
2356 ext4_show_quota_options(seq, sb);
2357 return 0;
2358 }
2359
2360 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2361 {
2362 return _ext4_show_options(seq, root->d_sb, 0);
2363 }
2364
2365 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2366 {
2367 struct super_block *sb = seq->private;
2368 int rc;
2369
2370 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2371 rc = _ext4_show_options(seq, sb, 1);
2372 seq_puts(seq, "\n");
2373 return rc;
2374 }
2375
2376 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2377 int read_only)
2378 {
2379 struct ext4_sb_info *sbi = EXT4_SB(sb);
2380 int err = 0;
2381
2382 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2383 ext4_msg(sb, KERN_ERR, "revision level too high, "
2384 "forcing read-only mode");
2385 err = -EROFS;
2386 }
2387 if (read_only)
2388 goto done;
2389 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2390 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2391 "running e2fsck is recommended");
2392 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2393 ext4_msg(sb, KERN_WARNING,
2394 "warning: mounting fs with errors, "
2395 "running e2fsck is recommended");
2396 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2397 le16_to_cpu(es->s_mnt_count) >=
2398 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2399 ext4_msg(sb, KERN_WARNING,
2400 "warning: maximal mount count reached, "
2401 "running e2fsck is recommended");
2402 else if (le32_to_cpu(es->s_checkinterval) &&
2403 (ext4_get_tstamp(es, s_lastcheck) +
2404 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2405 ext4_msg(sb, KERN_WARNING,
2406 "warning: checktime reached, "
2407 "running e2fsck is recommended");
2408 if (!sbi->s_journal)
2409 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2410 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2411 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2412 le16_add_cpu(&es->s_mnt_count, 1);
2413 ext4_update_tstamp(es, s_mtime);
2414 if (sbi->s_journal)
2415 ext4_set_feature_journal_needs_recovery(sb);
2416
2417 err = ext4_commit_super(sb, 1);
2418 done:
2419 if (test_opt(sb, DEBUG))
2420 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2421 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2422 sb->s_blocksize,
2423 sbi->s_groups_count,
2424 EXT4_BLOCKS_PER_GROUP(sb),
2425 EXT4_INODES_PER_GROUP(sb),
2426 sbi->s_mount_opt, sbi->s_mount_opt2);
2427
2428 cleancache_init_fs(sb);
2429 return err;
2430 }
2431
2432 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2433 {
2434 struct ext4_sb_info *sbi = EXT4_SB(sb);
2435 struct flex_groups **old_groups, **new_groups;
2436 int size, i, j;
2437
2438 if (!sbi->s_log_groups_per_flex)
2439 return 0;
2440
2441 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2442 if (size <= sbi->s_flex_groups_allocated)
2443 return 0;
2444
2445 new_groups = kvzalloc(roundup_pow_of_two(size *
2446 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2447 if (!new_groups) {
2448 ext4_msg(sb, KERN_ERR,
2449 "not enough memory for %d flex group pointers", size);
2450 return -ENOMEM;
2451 }
2452 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2453 new_groups[i] = kvzalloc(roundup_pow_of_two(
2454 sizeof(struct flex_groups)),
2455 GFP_KERNEL);
2456 if (!new_groups[i]) {
2457 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2458 kvfree(new_groups[j]);
2459 kvfree(new_groups);
2460 ext4_msg(sb, KERN_ERR,
2461 "not enough memory for %d flex groups", size);
2462 return -ENOMEM;
2463 }
2464 }
2465 rcu_read_lock();
2466 old_groups = rcu_dereference(sbi->s_flex_groups);
2467 if (old_groups)
2468 memcpy(new_groups, old_groups,
2469 (sbi->s_flex_groups_allocated *
2470 sizeof(struct flex_groups *)));
2471 rcu_read_unlock();
2472 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2473 sbi->s_flex_groups_allocated = size;
2474 if (old_groups)
2475 ext4_kvfree_array_rcu(old_groups);
2476 return 0;
2477 }
2478
2479 static int ext4_fill_flex_info(struct super_block *sb)
2480 {
2481 struct ext4_sb_info *sbi = EXT4_SB(sb);
2482 struct ext4_group_desc *gdp = NULL;
2483 struct flex_groups *fg;
2484 ext4_group_t flex_group;
2485 int i, err;
2486
2487 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2488 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2489 sbi->s_log_groups_per_flex = 0;
2490 return 1;
2491 }
2492
2493 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2494 if (err)
2495 goto failed;
2496
2497 for (i = 0; i < sbi->s_groups_count; i++) {
2498 gdp = ext4_get_group_desc(sb, i, NULL);
2499
2500 flex_group = ext4_flex_group(sbi, i);
2501 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2502 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2503 atomic64_add(ext4_free_group_clusters(sb, gdp),
2504 &fg->free_clusters);
2505 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2506 }
2507
2508 return 1;
2509 failed:
2510 return 0;
2511 }
2512
2513 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2514 struct ext4_group_desc *gdp)
2515 {
2516 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2517 __u16 crc = 0;
2518 __le32 le_group = cpu_to_le32(block_group);
2519 struct ext4_sb_info *sbi = EXT4_SB(sb);
2520
2521 if (ext4_has_metadata_csum(sbi->s_sb)) {
2522 /* Use new metadata_csum algorithm */
2523 __u32 csum32;
2524 __u16 dummy_csum = 0;
2525
2526 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2527 sizeof(le_group));
2528 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2529 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2530 sizeof(dummy_csum));
2531 offset += sizeof(dummy_csum);
2532 if (offset < sbi->s_desc_size)
2533 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2534 sbi->s_desc_size - offset);
2535
2536 crc = csum32 & 0xFFFF;
2537 goto out;
2538 }
2539
2540 /* old crc16 code */
2541 if (!ext4_has_feature_gdt_csum(sb))
2542 return 0;
2543
2544 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2545 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2546 crc = crc16(crc, (__u8 *)gdp, offset);
2547 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2548 /* for checksum of struct ext4_group_desc do the rest...*/
2549 if (ext4_has_feature_64bit(sb) &&
2550 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2551 crc = crc16(crc, (__u8 *)gdp + offset,
2552 le16_to_cpu(sbi->s_es->s_desc_size) -
2553 offset);
2554
2555 out:
2556 return cpu_to_le16(crc);
2557 }
2558
2559 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2560 struct ext4_group_desc *gdp)
2561 {
2562 if (ext4_has_group_desc_csum(sb) &&
2563 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2564 return 0;
2565
2566 return 1;
2567 }
2568
2569 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2570 struct ext4_group_desc *gdp)
2571 {
2572 if (!ext4_has_group_desc_csum(sb))
2573 return;
2574 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2575 }
2576
2577 /* Called at mount-time, super-block is locked */
2578 static int ext4_check_descriptors(struct super_block *sb,
2579 ext4_fsblk_t sb_block,
2580 ext4_group_t *first_not_zeroed)
2581 {
2582 struct ext4_sb_info *sbi = EXT4_SB(sb);
2583 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2584 ext4_fsblk_t last_block;
2585 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2586 ext4_fsblk_t block_bitmap;
2587 ext4_fsblk_t inode_bitmap;
2588 ext4_fsblk_t inode_table;
2589 int flexbg_flag = 0;
2590 ext4_group_t i, grp = sbi->s_groups_count;
2591
2592 if (ext4_has_feature_flex_bg(sb))
2593 flexbg_flag = 1;
2594
2595 ext4_debug("Checking group descriptors");
2596
2597 for (i = 0; i < sbi->s_groups_count; i++) {
2598 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2599
2600 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2601 last_block = ext4_blocks_count(sbi->s_es) - 1;
2602 else
2603 last_block = first_block +
2604 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2605
2606 if ((grp == sbi->s_groups_count) &&
2607 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2608 grp = i;
2609
2610 block_bitmap = ext4_block_bitmap(sb, gdp);
2611 if (block_bitmap == sb_block) {
2612 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2613 "Block bitmap for group %u overlaps "
2614 "superblock", i);
2615 if (!sb_rdonly(sb))
2616 return 0;
2617 }
2618 if (block_bitmap >= sb_block + 1 &&
2619 block_bitmap <= last_bg_block) {
2620 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2621 "Block bitmap for group %u overlaps "
2622 "block group descriptors", i);
2623 if (!sb_rdonly(sb))
2624 return 0;
2625 }
2626 if (block_bitmap < first_block || block_bitmap > last_block) {
2627 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2628 "Block bitmap for group %u not in group "
2629 "(block %llu)!", i, block_bitmap);
2630 return 0;
2631 }
2632 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2633 if (inode_bitmap == sb_block) {
2634 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2635 "Inode bitmap for group %u overlaps "
2636 "superblock", i);
2637 if (!sb_rdonly(sb))
2638 return 0;
2639 }
2640 if (inode_bitmap >= sb_block + 1 &&
2641 inode_bitmap <= last_bg_block) {
2642 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2643 "Inode bitmap for group %u overlaps "
2644 "block group descriptors", i);
2645 if (!sb_rdonly(sb))
2646 return 0;
2647 }
2648 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2649 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2650 "Inode bitmap for group %u not in group "
2651 "(block %llu)!", i, inode_bitmap);
2652 return 0;
2653 }
2654 inode_table = ext4_inode_table(sb, gdp);
2655 if (inode_table == sb_block) {
2656 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2657 "Inode table for group %u overlaps "
2658 "superblock", i);
2659 if (!sb_rdonly(sb))
2660 return 0;
2661 }
2662 if (inode_table >= sb_block + 1 &&
2663 inode_table <= last_bg_block) {
2664 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2665 "Inode table for group %u overlaps "
2666 "block group descriptors", i);
2667 if (!sb_rdonly(sb))
2668 return 0;
2669 }
2670 if (inode_table < first_block ||
2671 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2672 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2673 "Inode table for group %u not in group "
2674 "(block %llu)!", i, inode_table);
2675 return 0;
2676 }
2677 ext4_lock_group(sb, i);
2678 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2679 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2680 "Checksum for group %u failed (%u!=%u)",
2681 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2682 gdp)), le16_to_cpu(gdp->bg_checksum));
2683 if (!sb_rdonly(sb)) {
2684 ext4_unlock_group(sb, i);
2685 return 0;
2686 }
2687 }
2688 ext4_unlock_group(sb, i);
2689 if (!flexbg_flag)
2690 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2691 }
2692 if (NULL != first_not_zeroed)
2693 *first_not_zeroed = grp;
2694 return 1;
2695 }
2696
2697 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2698 * the superblock) which were deleted from all directories, but held open by
2699 * a process at the time of a crash. We walk the list and try to delete these
2700 * inodes at recovery time (only with a read-write filesystem).
2701 *
2702 * In order to keep the orphan inode chain consistent during traversal (in
2703 * case of crash during recovery), we link each inode into the superblock
2704 * orphan list_head and handle it the same way as an inode deletion during
2705 * normal operation (which journals the operations for us).
2706 *
2707 * We only do an iget() and an iput() on each inode, which is very safe if we
2708 * accidentally point at an in-use or already deleted inode. The worst that
2709 * can happen in this case is that we get a "bit already cleared" message from
2710 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2711 * e2fsck was run on this filesystem, and it must have already done the orphan
2712 * inode cleanup for us, so we can safely abort without any further action.
2713 */
2714 static void ext4_orphan_cleanup(struct super_block *sb,
2715 struct ext4_super_block *es)
2716 {
2717 unsigned int s_flags = sb->s_flags;
2718 int ret, nr_orphans = 0, nr_truncates = 0;
2719 #ifdef CONFIG_QUOTA
2720 int quota_update = 0;
2721 int i;
2722 #endif
2723 if (!es->s_last_orphan) {
2724 jbd_debug(4, "no orphan inodes to clean up\n");
2725 return;
2726 }
2727
2728 if (bdev_read_only(sb->s_bdev)) {
2729 ext4_msg(sb, KERN_ERR, "write access "
2730 "unavailable, skipping orphan cleanup");
2731 return;
2732 }
2733
2734 /* Check if feature set would not allow a r/w mount */
2735 if (!ext4_feature_set_ok(sb, 0)) {
2736 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2737 "unknown ROCOMPAT features");
2738 return;
2739 }
2740
2741 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2742 /* don't clear list on RO mount w/ errors */
2743 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2744 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2745 "clearing orphan list.\n");
2746 es->s_last_orphan = 0;
2747 }
2748 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2749 return;
2750 }
2751
2752 if (s_flags & SB_RDONLY) {
2753 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2754 sb->s_flags &= ~SB_RDONLY;
2755 }
2756 #ifdef CONFIG_QUOTA
2757 /* Needed for iput() to work correctly and not trash data */
2758 sb->s_flags |= SB_ACTIVE;
2759
2760 /*
2761 * Turn on quotas which were not enabled for read-only mounts if
2762 * filesystem has quota feature, so that they are updated correctly.
2763 */
2764 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2765 int ret = ext4_enable_quotas(sb);
2766
2767 if (!ret)
2768 quota_update = 1;
2769 else
2770 ext4_msg(sb, KERN_ERR,
2771 "Cannot turn on quotas: error %d", ret);
2772 }
2773
2774 /* Turn on journaled quotas used for old sytle */
2775 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2776 if (EXT4_SB(sb)->s_qf_names[i]) {
2777 int ret = ext4_quota_on_mount(sb, i);
2778
2779 if (!ret)
2780 quota_update = 1;
2781 else
2782 ext4_msg(sb, KERN_ERR,
2783 "Cannot turn on journaled "
2784 "quota: type %d: error %d", i, ret);
2785 }
2786 }
2787 #endif
2788
2789 while (es->s_last_orphan) {
2790 struct inode *inode;
2791
2792 /*
2793 * We may have encountered an error during cleanup; if
2794 * so, skip the rest.
2795 */
2796 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2797 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2798 es->s_last_orphan = 0;
2799 break;
2800 }
2801
2802 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2803 if (IS_ERR(inode)) {
2804 es->s_last_orphan = 0;
2805 break;
2806 }
2807
2808 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2809 dquot_initialize(inode);
2810 if (inode->i_nlink) {
2811 if (test_opt(sb, DEBUG))
2812 ext4_msg(sb, KERN_DEBUG,
2813 "%s: truncating inode %lu to %lld bytes",
2814 __func__, inode->i_ino, inode->i_size);
2815 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2816 inode->i_ino, inode->i_size);
2817 inode_lock(inode);
2818 truncate_inode_pages(inode->i_mapping, inode->i_size);
2819 ret = ext4_truncate(inode);
2820 if (ret)
2821 ext4_std_error(inode->i_sb, ret);
2822 inode_unlock(inode);
2823 nr_truncates++;
2824 } else {
2825 if (test_opt(sb, DEBUG))
2826 ext4_msg(sb, KERN_DEBUG,
2827 "%s: deleting unreferenced inode %lu",
2828 __func__, inode->i_ino);
2829 jbd_debug(2, "deleting unreferenced inode %lu\n",
2830 inode->i_ino);
2831 nr_orphans++;
2832 }
2833 iput(inode); /* The delete magic happens here! */
2834 }
2835
2836 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2837
2838 if (nr_orphans)
2839 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2840 PLURAL(nr_orphans));
2841 if (nr_truncates)
2842 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2843 PLURAL(nr_truncates));
2844 #ifdef CONFIG_QUOTA
2845 /* Turn off quotas if they were enabled for orphan cleanup */
2846 if (quota_update) {
2847 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2848 if (sb_dqopt(sb)->files[i])
2849 dquot_quota_off(sb, i);
2850 }
2851 }
2852 #endif
2853 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2854 }
2855
2856 /*
2857 * Maximal extent format file size.
2858 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2859 * extent format containers, within a sector_t, and within i_blocks
2860 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2861 * so that won't be a limiting factor.
2862 *
2863 * However there is other limiting factor. We do store extents in the form
2864 * of starting block and length, hence the resulting length of the extent
2865 * covering maximum file size must fit into on-disk format containers as
2866 * well. Given that length is always by 1 unit bigger than max unit (because
2867 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2868 *
2869 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2870 */
2871 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2872 {
2873 loff_t res;
2874 loff_t upper_limit = MAX_LFS_FILESIZE;
2875
2876 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2877
2878 if (!has_huge_files) {
2879 upper_limit = (1LL << 32) - 1;
2880
2881 /* total blocks in file system block size */
2882 upper_limit >>= (blkbits - 9);
2883 upper_limit <<= blkbits;
2884 }
2885
2886 /*
2887 * 32-bit extent-start container, ee_block. We lower the maxbytes
2888 * by one fs block, so ee_len can cover the extent of maximum file
2889 * size
2890 */
2891 res = (1LL << 32) - 1;
2892 res <<= blkbits;
2893
2894 /* Sanity check against vm- & vfs- imposed limits */
2895 if (res > upper_limit)
2896 res = upper_limit;
2897
2898 return res;
2899 }
2900
2901 /*
2902 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2903 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2904 * We need to be 1 filesystem block less than the 2^48 sector limit.
2905 */
2906 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2907 {
2908 loff_t res = EXT4_NDIR_BLOCKS;
2909 int meta_blocks;
2910 loff_t upper_limit;
2911 /* This is calculated to be the largest file size for a dense, block
2912 * mapped file such that the file's total number of 512-byte sectors,
2913 * including data and all indirect blocks, does not exceed (2^48 - 1).
2914 *
2915 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2916 * number of 512-byte sectors of the file.
2917 */
2918
2919 if (!has_huge_files) {
2920 /*
2921 * !has_huge_files or implies that the inode i_block field
2922 * represents total file blocks in 2^32 512-byte sectors ==
2923 * size of vfs inode i_blocks * 8
2924 */
2925 upper_limit = (1LL << 32) - 1;
2926
2927 /* total blocks in file system block size */
2928 upper_limit >>= (bits - 9);
2929
2930 } else {
2931 /*
2932 * We use 48 bit ext4_inode i_blocks
2933 * With EXT4_HUGE_FILE_FL set the i_blocks
2934 * represent total number of blocks in
2935 * file system block size
2936 */
2937 upper_limit = (1LL << 48) - 1;
2938
2939 }
2940
2941 /* indirect blocks */
2942 meta_blocks = 1;
2943 /* double indirect blocks */
2944 meta_blocks += 1 + (1LL << (bits-2));
2945 /* tripple indirect blocks */
2946 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2947
2948 upper_limit -= meta_blocks;
2949 upper_limit <<= bits;
2950
2951 res += 1LL << (bits-2);
2952 res += 1LL << (2*(bits-2));
2953 res += 1LL << (3*(bits-2));
2954 res <<= bits;
2955 if (res > upper_limit)
2956 res = upper_limit;
2957
2958 if (res > MAX_LFS_FILESIZE)
2959 res = MAX_LFS_FILESIZE;
2960
2961 return res;
2962 }
2963
2964 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2965 ext4_fsblk_t logical_sb_block, int nr)
2966 {
2967 struct ext4_sb_info *sbi = EXT4_SB(sb);
2968 ext4_group_t bg, first_meta_bg;
2969 int has_super = 0;
2970
2971 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2972
2973 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2974 return logical_sb_block + nr + 1;
2975 bg = sbi->s_desc_per_block * nr;
2976 if (ext4_bg_has_super(sb, bg))
2977 has_super = 1;
2978
2979 /*
2980 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2981 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2982 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2983 * compensate.
2984 */
2985 if (sb->s_blocksize == 1024 && nr == 0 &&
2986 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2987 has_super++;
2988
2989 return (has_super + ext4_group_first_block_no(sb, bg));
2990 }
2991
2992 /**
2993 * ext4_get_stripe_size: Get the stripe size.
2994 * @sbi: In memory super block info
2995 *
2996 * If we have specified it via mount option, then
2997 * use the mount option value. If the value specified at mount time is
2998 * greater than the blocks per group use the super block value.
2999 * If the super block value is greater than blocks per group return 0.
3000 * Allocator needs it be less than blocks per group.
3001 *
3002 */
3003 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3004 {
3005 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3006 unsigned long stripe_width =
3007 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3008 int ret;
3009
3010 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3011 ret = sbi->s_stripe;
3012 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3013 ret = stripe_width;
3014 else if (stride && stride <= sbi->s_blocks_per_group)
3015 ret = stride;
3016 else
3017 ret = 0;
3018
3019 /*
3020 * If the stripe width is 1, this makes no sense and
3021 * we set it to 0 to turn off stripe handling code.
3022 */
3023 if (ret <= 1)
3024 ret = 0;
3025
3026 return ret;
3027 }
3028
3029 /*
3030 * Check whether this filesystem can be mounted based on
3031 * the features present and the RDONLY/RDWR mount requested.
3032 * Returns 1 if this filesystem can be mounted as requested,
3033 * 0 if it cannot be.
3034 */
3035 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3036 {
3037 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3038 ext4_msg(sb, KERN_ERR,
3039 "Couldn't mount because of "
3040 "unsupported optional features (%x)",
3041 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3042 ~EXT4_FEATURE_INCOMPAT_SUPP));
3043 return 0;
3044 }
3045
3046 #ifndef CONFIG_UNICODE
3047 if (ext4_has_feature_casefold(sb)) {
3048 ext4_msg(sb, KERN_ERR,
3049 "Filesystem with casefold feature cannot be "
3050 "mounted without CONFIG_UNICODE");
3051 return 0;
3052 }
3053 #endif
3054
3055 if (readonly)
3056 return 1;
3057
3058 if (ext4_has_feature_readonly(sb)) {
3059 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3060 sb->s_flags |= SB_RDONLY;
3061 return 1;
3062 }
3063
3064 /* Check that feature set is OK for a read-write mount */
3065 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3066 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3067 "unsupported optional features (%x)",
3068 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3069 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3070 return 0;
3071 }
3072 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3073 ext4_msg(sb, KERN_ERR,
3074 "Can't support bigalloc feature without "
3075 "extents feature\n");
3076 return 0;
3077 }
3078
3079 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3080 if (!readonly && (ext4_has_feature_quota(sb) ||
3081 ext4_has_feature_project(sb))) {
3082 ext4_msg(sb, KERN_ERR,
3083 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3084 return 0;
3085 }
3086 #endif /* CONFIG_QUOTA */
3087 return 1;
3088 }
3089
3090 /*
3091 * This function is called once a day if we have errors logged
3092 * on the file system
3093 */
3094 static void print_daily_error_info(struct timer_list *t)
3095 {
3096 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3097 struct super_block *sb = sbi->s_sb;
3098 struct ext4_super_block *es = sbi->s_es;
3099
3100 if (es->s_error_count)
3101 /* fsck newer than v1.41.13 is needed to clean this condition. */
3102 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3103 le32_to_cpu(es->s_error_count));
3104 if (es->s_first_error_time) {
3105 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3106 sb->s_id,
3107 ext4_get_tstamp(es, s_first_error_time),
3108 (int) sizeof(es->s_first_error_func),
3109 es->s_first_error_func,
3110 le32_to_cpu(es->s_first_error_line));
3111 if (es->s_first_error_ino)
3112 printk(KERN_CONT ": inode %u",
3113 le32_to_cpu(es->s_first_error_ino));
3114 if (es->s_first_error_block)
3115 printk(KERN_CONT ": block %llu", (unsigned long long)
3116 le64_to_cpu(es->s_first_error_block));
3117 printk(KERN_CONT "\n");
3118 }
3119 if (es->s_last_error_time) {
3120 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3121 sb->s_id,
3122 ext4_get_tstamp(es, s_last_error_time),
3123 (int) sizeof(es->s_last_error_func),
3124 es->s_last_error_func,
3125 le32_to_cpu(es->s_last_error_line));
3126 if (es->s_last_error_ino)
3127 printk(KERN_CONT ": inode %u",
3128 le32_to_cpu(es->s_last_error_ino));
3129 if (es->s_last_error_block)
3130 printk(KERN_CONT ": block %llu", (unsigned long long)
3131 le64_to_cpu(es->s_last_error_block));
3132 printk(KERN_CONT "\n");
3133 }
3134 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3135 }
3136
3137 /* Find next suitable group and run ext4_init_inode_table */
3138 static int ext4_run_li_request(struct ext4_li_request *elr)
3139 {
3140 struct ext4_group_desc *gdp = NULL;
3141 ext4_group_t group, ngroups;
3142 struct super_block *sb;
3143 unsigned long timeout = 0;
3144 int ret = 0;
3145
3146 sb = elr->lr_super;
3147 ngroups = EXT4_SB(sb)->s_groups_count;
3148
3149 for (group = elr->lr_next_group; group < ngroups; group++) {
3150 gdp = ext4_get_group_desc(sb, group, NULL);
3151 if (!gdp) {
3152 ret = 1;
3153 break;
3154 }
3155
3156 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3157 break;
3158 }
3159
3160 if (group >= ngroups)
3161 ret = 1;
3162
3163 if (!ret) {
3164 timeout = jiffies;
3165 ret = ext4_init_inode_table(sb, group,
3166 elr->lr_timeout ? 0 : 1);
3167 if (elr->lr_timeout == 0) {
3168 timeout = (jiffies - timeout) *
3169 elr->lr_sbi->s_li_wait_mult;
3170 elr->lr_timeout = timeout;
3171 }
3172 elr->lr_next_sched = jiffies + elr->lr_timeout;
3173 elr->lr_next_group = group + 1;
3174 }
3175 return ret;
3176 }
3177
3178 /*
3179 * Remove lr_request from the list_request and free the
3180 * request structure. Should be called with li_list_mtx held
3181 */
3182 static void ext4_remove_li_request(struct ext4_li_request *elr)
3183 {
3184 struct ext4_sb_info *sbi;
3185
3186 if (!elr)
3187 return;
3188
3189 sbi = elr->lr_sbi;
3190
3191 list_del(&elr->lr_request);
3192 sbi->s_li_request = NULL;
3193 kfree(elr);
3194 }
3195
3196 static void ext4_unregister_li_request(struct super_block *sb)
3197 {
3198 mutex_lock(&ext4_li_mtx);
3199 if (!ext4_li_info) {
3200 mutex_unlock(&ext4_li_mtx);
3201 return;
3202 }
3203
3204 mutex_lock(&ext4_li_info->li_list_mtx);
3205 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3206 mutex_unlock(&ext4_li_info->li_list_mtx);
3207 mutex_unlock(&ext4_li_mtx);
3208 }
3209
3210 static struct task_struct *ext4_lazyinit_task;
3211
3212 /*
3213 * This is the function where ext4lazyinit thread lives. It walks
3214 * through the request list searching for next scheduled filesystem.
3215 * When such a fs is found, run the lazy initialization request
3216 * (ext4_rn_li_request) and keep track of the time spend in this
3217 * function. Based on that time we compute next schedule time of
3218 * the request. When walking through the list is complete, compute
3219 * next waking time and put itself into sleep.
3220 */
3221 static int ext4_lazyinit_thread(void *arg)
3222 {
3223 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3224 struct list_head *pos, *n;
3225 struct ext4_li_request *elr;
3226 unsigned long next_wakeup, cur;
3227
3228 BUG_ON(NULL == eli);
3229
3230 cont_thread:
3231 while (true) {
3232 next_wakeup = MAX_JIFFY_OFFSET;
3233
3234 mutex_lock(&eli->li_list_mtx);
3235 if (list_empty(&eli->li_request_list)) {
3236 mutex_unlock(&eli->li_list_mtx);
3237 goto exit_thread;
3238 }
3239 list_for_each_safe(pos, n, &eli->li_request_list) {
3240 int err = 0;
3241 int progress = 0;
3242 elr = list_entry(pos, struct ext4_li_request,
3243 lr_request);
3244
3245 if (time_before(jiffies, elr->lr_next_sched)) {
3246 if (time_before(elr->lr_next_sched, next_wakeup))
3247 next_wakeup = elr->lr_next_sched;
3248 continue;
3249 }
3250 if (down_read_trylock(&elr->lr_super->s_umount)) {
3251 if (sb_start_write_trylock(elr->lr_super)) {
3252 progress = 1;
3253 /*
3254 * We hold sb->s_umount, sb can not
3255 * be removed from the list, it is
3256 * now safe to drop li_list_mtx
3257 */
3258 mutex_unlock(&eli->li_list_mtx);
3259 err = ext4_run_li_request(elr);
3260 sb_end_write(elr->lr_super);
3261 mutex_lock(&eli->li_list_mtx);
3262 n = pos->next;
3263 }
3264 up_read((&elr->lr_super->s_umount));
3265 }
3266 /* error, remove the lazy_init job */
3267 if (err) {
3268 ext4_remove_li_request(elr);
3269 continue;
3270 }
3271 if (!progress) {
3272 elr->lr_next_sched = jiffies +
3273 (prandom_u32()
3274 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3275 }
3276 if (time_before(elr->lr_next_sched, next_wakeup))
3277 next_wakeup = elr->lr_next_sched;
3278 }
3279 mutex_unlock(&eli->li_list_mtx);
3280
3281 try_to_freeze();
3282
3283 cur = jiffies;
3284 if ((time_after_eq(cur, next_wakeup)) ||
3285 (MAX_JIFFY_OFFSET == next_wakeup)) {
3286 cond_resched();
3287 continue;
3288 }
3289
3290 schedule_timeout_interruptible(next_wakeup - cur);
3291
3292 if (kthread_should_stop()) {
3293 ext4_clear_request_list();
3294 goto exit_thread;
3295 }
3296 }
3297
3298 exit_thread:
3299 /*
3300 * It looks like the request list is empty, but we need
3301 * to check it under the li_list_mtx lock, to prevent any
3302 * additions into it, and of course we should lock ext4_li_mtx
3303 * to atomically free the list and ext4_li_info, because at
3304 * this point another ext4 filesystem could be registering
3305 * new one.
3306 */
3307 mutex_lock(&ext4_li_mtx);
3308 mutex_lock(&eli->li_list_mtx);
3309 if (!list_empty(&eli->li_request_list)) {
3310 mutex_unlock(&eli->li_list_mtx);
3311 mutex_unlock(&ext4_li_mtx);
3312 goto cont_thread;
3313 }
3314 mutex_unlock(&eli->li_list_mtx);
3315 kfree(ext4_li_info);
3316 ext4_li_info = NULL;
3317 mutex_unlock(&ext4_li_mtx);
3318
3319 return 0;
3320 }
3321
3322 static void ext4_clear_request_list(void)
3323 {
3324 struct list_head *pos, *n;
3325 struct ext4_li_request *elr;
3326
3327 mutex_lock(&ext4_li_info->li_list_mtx);
3328 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3329 elr = list_entry(pos, struct ext4_li_request,
3330 lr_request);
3331 ext4_remove_li_request(elr);
3332 }
3333 mutex_unlock(&ext4_li_info->li_list_mtx);
3334 }
3335
3336 static int ext4_run_lazyinit_thread(void)
3337 {
3338 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3339 ext4_li_info, "ext4lazyinit");
3340 if (IS_ERR(ext4_lazyinit_task)) {
3341 int err = PTR_ERR(ext4_lazyinit_task);
3342 ext4_clear_request_list();
3343 kfree(ext4_li_info);
3344 ext4_li_info = NULL;
3345 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3346 "initialization thread\n",
3347 err);
3348 return err;
3349 }
3350 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3351 return 0;
3352 }
3353
3354 /*
3355 * Check whether it make sense to run itable init. thread or not.
3356 * If there is at least one uninitialized inode table, return
3357 * corresponding group number, else the loop goes through all
3358 * groups and return total number of groups.
3359 */
3360 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3361 {
3362 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3363 struct ext4_group_desc *gdp = NULL;
3364
3365 if (!ext4_has_group_desc_csum(sb))
3366 return ngroups;
3367
3368 for (group = 0; group < ngroups; group++) {
3369 gdp = ext4_get_group_desc(sb, group, NULL);
3370 if (!gdp)
3371 continue;
3372
3373 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3374 break;
3375 }
3376
3377 return group;
3378 }
3379
3380 static int ext4_li_info_new(void)
3381 {
3382 struct ext4_lazy_init *eli = NULL;
3383
3384 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3385 if (!eli)
3386 return -ENOMEM;
3387
3388 INIT_LIST_HEAD(&eli->li_request_list);
3389 mutex_init(&eli->li_list_mtx);
3390
3391 eli->li_state |= EXT4_LAZYINIT_QUIT;
3392
3393 ext4_li_info = eli;
3394
3395 return 0;
3396 }
3397
3398 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3399 ext4_group_t start)
3400 {
3401 struct ext4_sb_info *sbi = EXT4_SB(sb);
3402 struct ext4_li_request *elr;
3403
3404 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3405 if (!elr)
3406 return NULL;
3407
3408 elr->lr_super = sb;
3409 elr->lr_sbi = sbi;
3410 elr->lr_next_group = start;
3411
3412 /*
3413 * Randomize first schedule time of the request to
3414 * spread the inode table initialization requests
3415 * better.
3416 */
3417 elr->lr_next_sched = jiffies + (prandom_u32() %
3418 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3419 return elr;
3420 }
3421
3422 int ext4_register_li_request(struct super_block *sb,
3423 ext4_group_t first_not_zeroed)
3424 {
3425 struct ext4_sb_info *sbi = EXT4_SB(sb);
3426 struct ext4_li_request *elr = NULL;
3427 ext4_group_t ngroups = sbi->s_groups_count;
3428 int ret = 0;
3429
3430 mutex_lock(&ext4_li_mtx);
3431 if (sbi->s_li_request != NULL) {
3432 /*
3433 * Reset timeout so it can be computed again, because
3434 * s_li_wait_mult might have changed.
3435 */
3436 sbi->s_li_request->lr_timeout = 0;
3437 goto out;
3438 }
3439
3440 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3441 !test_opt(sb, INIT_INODE_TABLE))
3442 goto out;
3443
3444 elr = ext4_li_request_new(sb, first_not_zeroed);
3445 if (!elr) {
3446 ret = -ENOMEM;
3447 goto out;
3448 }
3449
3450 if (NULL == ext4_li_info) {
3451 ret = ext4_li_info_new();
3452 if (ret)
3453 goto out;
3454 }
3455
3456 mutex_lock(&ext4_li_info->li_list_mtx);
3457 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3458 mutex_unlock(&ext4_li_info->li_list_mtx);
3459
3460 sbi->s_li_request = elr;
3461 /*
3462 * set elr to NULL here since it has been inserted to
3463 * the request_list and the removal and free of it is
3464 * handled by ext4_clear_request_list from now on.
3465 */
3466 elr = NULL;
3467
3468 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3469 ret = ext4_run_lazyinit_thread();
3470 if (ret)
3471 goto out;
3472 }
3473 out:
3474 mutex_unlock(&ext4_li_mtx);
3475 if (ret)
3476 kfree(elr);
3477 return ret;
3478 }
3479
3480 /*
3481 * We do not need to lock anything since this is called on
3482 * module unload.
3483 */
3484 static void ext4_destroy_lazyinit_thread(void)
3485 {
3486 /*
3487 * If thread exited earlier
3488 * there's nothing to be done.
3489 */
3490 if (!ext4_li_info || !ext4_lazyinit_task)
3491 return;
3492
3493 kthread_stop(ext4_lazyinit_task);
3494 }
3495
3496 static int set_journal_csum_feature_set(struct super_block *sb)
3497 {
3498 int ret = 1;
3499 int compat, incompat;
3500 struct ext4_sb_info *sbi = EXT4_SB(sb);
3501
3502 if (ext4_has_metadata_csum(sb)) {
3503 /* journal checksum v3 */
3504 compat = 0;
3505 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3506 } else {
3507 /* journal checksum v1 */
3508 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3509 incompat = 0;
3510 }
3511
3512 jbd2_journal_clear_features(sbi->s_journal,
3513 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3514 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3515 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3516 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3517 ret = jbd2_journal_set_features(sbi->s_journal,
3518 compat, 0,
3519 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3520 incompat);
3521 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3522 ret = jbd2_journal_set_features(sbi->s_journal,
3523 compat, 0,
3524 incompat);
3525 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3526 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3527 } else {
3528 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3529 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3530 }
3531
3532 return ret;
3533 }
3534
3535 /*
3536 * Note: calculating the overhead so we can be compatible with
3537 * historical BSD practice is quite difficult in the face of
3538 * clusters/bigalloc. This is because multiple metadata blocks from
3539 * different block group can end up in the same allocation cluster.
3540 * Calculating the exact overhead in the face of clustered allocation
3541 * requires either O(all block bitmaps) in memory or O(number of block
3542 * groups**2) in time. We will still calculate the superblock for
3543 * older file systems --- and if we come across with a bigalloc file
3544 * system with zero in s_overhead_clusters the estimate will be close to
3545 * correct especially for very large cluster sizes --- but for newer
3546 * file systems, it's better to calculate this figure once at mkfs
3547 * time, and store it in the superblock. If the superblock value is
3548 * present (even for non-bigalloc file systems), we will use it.
3549 */
3550 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3551 char *buf)
3552 {
3553 struct ext4_sb_info *sbi = EXT4_SB(sb);
3554 struct ext4_group_desc *gdp;
3555 ext4_fsblk_t first_block, last_block, b;
3556 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3557 int s, j, count = 0;
3558
3559 if (!ext4_has_feature_bigalloc(sb))
3560 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3561 sbi->s_itb_per_group + 2);
3562
3563 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3564 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3565 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3566 for (i = 0; i < ngroups; i++) {
3567 gdp = ext4_get_group_desc(sb, i, NULL);
3568 b = ext4_block_bitmap(sb, gdp);
3569 if (b >= first_block && b <= last_block) {
3570 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3571 count++;
3572 }
3573 b = ext4_inode_bitmap(sb, gdp);
3574 if (b >= first_block && b <= last_block) {
3575 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3576 count++;
3577 }
3578 b = ext4_inode_table(sb, gdp);
3579 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3580 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3581 int c = EXT4_B2C(sbi, b - first_block);
3582 ext4_set_bit(c, buf);
3583 count++;
3584 }
3585 if (i != grp)
3586 continue;
3587 s = 0;
3588 if (ext4_bg_has_super(sb, grp)) {
3589 ext4_set_bit(s++, buf);
3590 count++;
3591 }
3592 j = ext4_bg_num_gdb(sb, grp);
3593 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3594 ext4_error(sb, "Invalid number of block group "
3595 "descriptor blocks: %d", j);
3596 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3597 }
3598 count += j;
3599 for (; j > 0; j--)
3600 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3601 }
3602 if (!count)
3603 return 0;
3604 return EXT4_CLUSTERS_PER_GROUP(sb) -
3605 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3606 }
3607
3608 /*
3609 * Compute the overhead and stash it in sbi->s_overhead
3610 */
3611 int ext4_calculate_overhead(struct super_block *sb)
3612 {
3613 struct ext4_sb_info *sbi = EXT4_SB(sb);
3614 struct ext4_super_block *es = sbi->s_es;
3615 struct inode *j_inode;
3616 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3617 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3618 ext4_fsblk_t overhead = 0;
3619 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3620
3621 if (!buf)
3622 return -ENOMEM;
3623
3624 /*
3625 * Compute the overhead (FS structures). This is constant
3626 * for a given filesystem unless the number of block groups
3627 * changes so we cache the previous value until it does.
3628 */
3629
3630 /*
3631 * All of the blocks before first_data_block are overhead
3632 */
3633 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3634
3635 /*
3636 * Add the overhead found in each block group
3637 */
3638 for (i = 0; i < ngroups; i++) {
3639 int blks;
3640
3641 blks = count_overhead(sb, i, buf);
3642 overhead += blks;
3643 if (blks)
3644 memset(buf, 0, PAGE_SIZE);
3645 cond_resched();
3646 }
3647
3648 /*
3649 * Add the internal journal blocks whether the journal has been
3650 * loaded or not
3651 */
3652 if (sbi->s_journal && !sbi->journal_bdev)
3653 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3654 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3655 /* j_inum for internal journal is non-zero */
3656 j_inode = ext4_get_journal_inode(sb, j_inum);
3657 if (j_inode) {
3658 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3659 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3660 iput(j_inode);
3661 } else {
3662 ext4_msg(sb, KERN_ERR, "can't get journal size");
3663 }
3664 }
3665 sbi->s_overhead = overhead;
3666 smp_wmb();
3667 free_page((unsigned long) buf);
3668 return 0;
3669 }
3670
3671 static void ext4_set_resv_clusters(struct super_block *sb)
3672 {
3673 ext4_fsblk_t resv_clusters;
3674 struct ext4_sb_info *sbi = EXT4_SB(sb);
3675
3676 /*
3677 * There's no need to reserve anything when we aren't using extents.
3678 * The space estimates are exact, there are no unwritten extents,
3679 * hole punching doesn't need new metadata... This is needed especially
3680 * to keep ext2/3 backward compatibility.
3681 */
3682 if (!ext4_has_feature_extents(sb))
3683 return;
3684 /*
3685 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3686 * This should cover the situations where we can not afford to run
3687 * out of space like for example punch hole, or converting
3688 * unwritten extents in delalloc path. In most cases such
3689 * allocation would require 1, or 2 blocks, higher numbers are
3690 * very rare.
3691 */
3692 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3693 sbi->s_cluster_bits);
3694
3695 do_div(resv_clusters, 50);
3696 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3697
3698 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3699 }
3700
3701 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3702 {
3703 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3704 char *orig_data = kstrdup(data, GFP_KERNEL);
3705 struct buffer_head *bh, **group_desc;
3706 struct ext4_super_block *es = NULL;
3707 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3708 struct flex_groups **flex_groups;
3709 ext4_fsblk_t block;
3710 ext4_fsblk_t sb_block = get_sb_block(&data);
3711 ext4_fsblk_t logical_sb_block;
3712 unsigned long offset = 0;
3713 unsigned long journal_devnum = 0;
3714 unsigned long def_mount_opts;
3715 struct inode *root;
3716 const char *descr;
3717 int ret = -ENOMEM;
3718 int blocksize, clustersize;
3719 unsigned int db_count;
3720 unsigned int i;
3721 int needs_recovery, has_huge_files, has_bigalloc;
3722 __u64 blocks_count;
3723 int err = 0;
3724 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3725 ext4_group_t first_not_zeroed;
3726
3727 if ((data && !orig_data) || !sbi)
3728 goto out_free_base;
3729
3730 sbi->s_daxdev = dax_dev;
3731 sbi->s_blockgroup_lock =
3732 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3733 if (!sbi->s_blockgroup_lock)
3734 goto out_free_base;
3735
3736 sb->s_fs_info = sbi;
3737 sbi->s_sb = sb;
3738 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3739 sbi->s_sb_block = sb_block;
3740 if (sb->s_bdev->bd_part)
3741 sbi->s_sectors_written_start =
3742 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3743
3744 /* Cleanup superblock name */
3745 strreplace(sb->s_id, '/', '!');
3746
3747 /* -EINVAL is default */
3748 ret = -EINVAL;
3749 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3750 if (!blocksize) {
3751 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3752 goto out_fail;
3753 }
3754
3755 /*
3756 * The ext4 superblock will not be buffer aligned for other than 1kB
3757 * block sizes. We need to calculate the offset from buffer start.
3758 */
3759 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3760 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3761 offset = do_div(logical_sb_block, blocksize);
3762 } else {
3763 logical_sb_block = sb_block;
3764 }
3765
3766 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3767 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3768 goto out_fail;
3769 }
3770 /*
3771 * Note: s_es must be initialized as soon as possible because
3772 * some ext4 macro-instructions depend on its value
3773 */
3774 es = (struct ext4_super_block *) (bh->b_data + offset);
3775 sbi->s_es = es;
3776 sb->s_magic = le16_to_cpu(es->s_magic);
3777 if (sb->s_magic != EXT4_SUPER_MAGIC)
3778 goto cantfind_ext4;
3779 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3780
3781 /* Warn if metadata_csum and gdt_csum are both set. */
3782 if (ext4_has_feature_metadata_csum(sb) &&
3783 ext4_has_feature_gdt_csum(sb))
3784 ext4_warning(sb, "metadata_csum and uninit_bg are "
3785 "redundant flags; please run fsck.");
3786
3787 /* Check for a known checksum algorithm */
3788 if (!ext4_verify_csum_type(sb, es)) {
3789 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3790 "unknown checksum algorithm.");
3791 silent = 1;
3792 goto cantfind_ext4;
3793 }
3794
3795 /* Load the checksum driver */
3796 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3797 if (IS_ERR(sbi->s_chksum_driver)) {
3798 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3799 ret = PTR_ERR(sbi->s_chksum_driver);
3800 sbi->s_chksum_driver = NULL;
3801 goto failed_mount;
3802 }
3803
3804 /* Check superblock checksum */
3805 if (!ext4_superblock_csum_verify(sb, es)) {
3806 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3807 "invalid superblock checksum. Run e2fsck?");
3808 silent = 1;
3809 ret = -EFSBADCRC;
3810 goto cantfind_ext4;
3811 }
3812
3813 /* Precompute checksum seed for all metadata */
3814 if (ext4_has_feature_csum_seed(sb))
3815 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3816 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3817 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3818 sizeof(es->s_uuid));
3819
3820 /* Set defaults before we parse the mount options */
3821 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3822 set_opt(sb, INIT_INODE_TABLE);
3823 if (def_mount_opts & EXT4_DEFM_DEBUG)
3824 set_opt(sb, DEBUG);
3825 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3826 set_opt(sb, GRPID);
3827 if (def_mount_opts & EXT4_DEFM_UID16)
3828 set_opt(sb, NO_UID32);
3829 /* xattr user namespace & acls are now defaulted on */
3830 set_opt(sb, XATTR_USER);
3831 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3832 set_opt(sb, POSIX_ACL);
3833 #endif
3834 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3835 if (ext4_has_metadata_csum(sb))
3836 set_opt(sb, JOURNAL_CHECKSUM);
3837
3838 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3839 set_opt(sb, JOURNAL_DATA);
3840 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3841 set_opt(sb, ORDERED_DATA);
3842 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3843 set_opt(sb, WRITEBACK_DATA);
3844
3845 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3846 set_opt(sb, ERRORS_PANIC);
3847 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3848 set_opt(sb, ERRORS_CONT);
3849 else
3850 set_opt(sb, ERRORS_RO);
3851 /* block_validity enabled by default; disable with noblock_validity */
3852 set_opt(sb, BLOCK_VALIDITY);
3853 if (def_mount_opts & EXT4_DEFM_DISCARD)
3854 set_opt(sb, DISCARD);
3855
3856 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3857 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3858 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3859 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3860 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3861
3862 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3863 set_opt(sb, BARRIER);
3864
3865 /*
3866 * enable delayed allocation by default
3867 * Use -o nodelalloc to turn it off
3868 */
3869 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3870 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3871 set_opt(sb, DELALLOC);
3872
3873 /*
3874 * set default s_li_wait_mult for lazyinit, for the case there is
3875 * no mount option specified.
3876 */
3877 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3878
3879 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3880
3881 if (blocksize == PAGE_SIZE)
3882 set_opt(sb, DIOREAD_NOLOCK);
3883
3884 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3885 blocksize > EXT4_MAX_BLOCK_SIZE) {
3886 ext4_msg(sb, KERN_ERR,
3887 "Unsupported filesystem blocksize %d (%d log_block_size)",
3888 blocksize, le32_to_cpu(es->s_log_block_size));
3889 goto failed_mount;
3890 }
3891
3892 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3893 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3894 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3895 } else {
3896 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3897 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3898 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3899 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3900 sbi->s_first_ino);
3901 goto failed_mount;
3902 }
3903 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3904 (!is_power_of_2(sbi->s_inode_size)) ||
3905 (sbi->s_inode_size > blocksize)) {
3906 ext4_msg(sb, KERN_ERR,
3907 "unsupported inode size: %d",
3908 sbi->s_inode_size);
3909 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3910 goto failed_mount;
3911 }
3912 /*
3913 * i_atime_extra is the last extra field available for
3914 * [acm]times in struct ext4_inode. Checking for that
3915 * field should suffice to ensure we have extra space
3916 * for all three.
3917 */
3918 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3919 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3920 sb->s_time_gran = 1;
3921 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3922 } else {
3923 sb->s_time_gran = NSEC_PER_SEC;
3924 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3925 }
3926 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3927 }
3928 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3929 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3930 EXT4_GOOD_OLD_INODE_SIZE;
3931 if (ext4_has_feature_extra_isize(sb)) {
3932 unsigned v, max = (sbi->s_inode_size -
3933 EXT4_GOOD_OLD_INODE_SIZE);
3934
3935 v = le16_to_cpu(es->s_want_extra_isize);
3936 if (v > max) {
3937 ext4_msg(sb, KERN_ERR,
3938 "bad s_want_extra_isize: %d", v);
3939 goto failed_mount;
3940 }
3941 if (sbi->s_want_extra_isize < v)
3942 sbi->s_want_extra_isize = v;
3943
3944 v = le16_to_cpu(es->s_min_extra_isize);
3945 if (v > max) {
3946 ext4_msg(sb, KERN_ERR,
3947 "bad s_min_extra_isize: %d", v);
3948 goto failed_mount;
3949 }
3950 if (sbi->s_want_extra_isize < v)
3951 sbi->s_want_extra_isize = v;
3952 }
3953 }
3954
3955 if (sbi->s_es->s_mount_opts[0]) {
3956 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3957 sizeof(sbi->s_es->s_mount_opts),
3958 GFP_KERNEL);
3959 if (!s_mount_opts)
3960 goto failed_mount;
3961 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3962 &journal_ioprio, 0)) {
3963 ext4_msg(sb, KERN_WARNING,
3964 "failed to parse options in superblock: %s",
3965 s_mount_opts);
3966 }
3967 kfree(s_mount_opts);
3968 }
3969 sbi->s_def_mount_opt = sbi->s_mount_opt;
3970 if (!parse_options((char *) data, sb, &journal_devnum,
3971 &journal_ioprio, 0))
3972 goto failed_mount;
3973
3974 #ifdef CONFIG_UNICODE
3975 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3976 const struct ext4_sb_encodings *encoding_info;
3977 struct unicode_map *encoding;
3978 __u16 encoding_flags;
3979
3980 if (ext4_has_feature_encrypt(sb)) {
3981 ext4_msg(sb, KERN_ERR,
3982 "Can't mount with encoding and encryption");
3983 goto failed_mount;
3984 }
3985
3986 if (ext4_sb_read_encoding(es, &encoding_info,
3987 &encoding_flags)) {
3988 ext4_msg(sb, KERN_ERR,
3989 "Encoding requested by superblock is unknown");
3990 goto failed_mount;
3991 }
3992
3993 encoding = utf8_load(encoding_info->version);
3994 if (IS_ERR(encoding)) {
3995 ext4_msg(sb, KERN_ERR,
3996 "can't mount with superblock charset: %s-%s "
3997 "not supported by the kernel. flags: 0x%x.",
3998 encoding_info->name, encoding_info->version,
3999 encoding_flags);
4000 goto failed_mount;
4001 }
4002 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4003 "%s-%s with flags 0x%hx", encoding_info->name,
4004 encoding_info->version?:"\b", encoding_flags);
4005
4006 sbi->s_encoding = encoding;
4007 sbi->s_encoding_flags = encoding_flags;
4008 }
4009 #endif
4010
4011 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4012 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n");
4013 clear_opt(sb, DIOREAD_NOLOCK);
4014 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4015 ext4_msg(sb, KERN_ERR, "can't mount with "
4016 "both data=journal and delalloc");
4017 goto failed_mount;
4018 }
4019 if (test_opt(sb, DIOREAD_NOLOCK)) {
4020 ext4_msg(sb, KERN_ERR, "can't mount with "
4021 "both data=journal and dioread_nolock");
4022 goto failed_mount;
4023 }
4024 if (test_opt(sb, DAX)) {
4025 ext4_msg(sb, KERN_ERR, "can't mount with "
4026 "both data=journal and dax");
4027 goto failed_mount;
4028 }
4029 if (ext4_has_feature_encrypt(sb)) {
4030 ext4_msg(sb, KERN_WARNING,
4031 "encrypted files will use data=ordered "
4032 "instead of data journaling mode");
4033 }
4034 if (test_opt(sb, DELALLOC))
4035 clear_opt(sb, DELALLOC);
4036 } else {
4037 sb->s_iflags |= SB_I_CGROUPWB;
4038 }
4039
4040 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4041 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4042
4043 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4044 (ext4_has_compat_features(sb) ||
4045 ext4_has_ro_compat_features(sb) ||
4046 ext4_has_incompat_features(sb)))
4047 ext4_msg(sb, KERN_WARNING,
4048 "feature flags set on rev 0 fs, "
4049 "running e2fsck is recommended");
4050
4051 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4052 set_opt2(sb, HURD_COMPAT);
4053 if (ext4_has_feature_64bit(sb)) {
4054 ext4_msg(sb, KERN_ERR,
4055 "The Hurd can't support 64-bit file systems");
4056 goto failed_mount;
4057 }
4058
4059 /*
4060 * ea_inode feature uses l_i_version field which is not
4061 * available in HURD_COMPAT mode.
4062 */
4063 if (ext4_has_feature_ea_inode(sb)) {
4064 ext4_msg(sb, KERN_ERR,
4065 "ea_inode feature is not supported for Hurd");
4066 goto failed_mount;
4067 }
4068 }
4069
4070 if (IS_EXT2_SB(sb)) {
4071 if (ext2_feature_set_ok(sb))
4072 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4073 "using the ext4 subsystem");
4074 else {
4075 /*
4076 * If we're probing be silent, if this looks like
4077 * it's actually an ext[34] filesystem.
4078 */
4079 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4080 goto failed_mount;
4081 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4082 "to feature incompatibilities");
4083 goto failed_mount;
4084 }
4085 }
4086
4087 if (IS_EXT3_SB(sb)) {
4088 if (ext3_feature_set_ok(sb))
4089 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4090 "using the ext4 subsystem");
4091 else {
4092 /*
4093 * If we're probing be silent, if this looks like
4094 * it's actually an ext4 filesystem.
4095 */
4096 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4097 goto failed_mount;
4098 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4099 "to feature incompatibilities");
4100 goto failed_mount;
4101 }
4102 }
4103
4104 /*
4105 * Check feature flags regardless of the revision level, since we
4106 * previously didn't change the revision level when setting the flags,
4107 * so there is a chance incompat flags are set on a rev 0 filesystem.
4108 */
4109 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4110 goto failed_mount;
4111
4112 if (le32_to_cpu(es->s_log_block_size) >
4113 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4114 ext4_msg(sb, KERN_ERR,
4115 "Invalid log block size: %u",
4116 le32_to_cpu(es->s_log_block_size));
4117 goto failed_mount;
4118 }
4119 if (le32_to_cpu(es->s_log_cluster_size) >
4120 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4121 ext4_msg(sb, KERN_ERR,
4122 "Invalid log cluster size: %u",
4123 le32_to_cpu(es->s_log_cluster_size));
4124 goto failed_mount;
4125 }
4126
4127 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4128 ext4_msg(sb, KERN_ERR,
4129 "Number of reserved GDT blocks insanely large: %d",
4130 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4131 goto failed_mount;
4132 }
4133
4134 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4135 if (ext4_has_feature_inline_data(sb)) {
4136 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4137 " that may contain inline data");
4138 goto failed_mount;
4139 }
4140 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4141 ext4_msg(sb, KERN_ERR,
4142 "DAX unsupported by block device.");
4143 goto failed_mount;
4144 }
4145 }
4146
4147 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4148 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4149 es->s_encryption_level);
4150 goto failed_mount;
4151 }
4152
4153 if (sb->s_blocksize != blocksize) {
4154 /* Validate the filesystem blocksize */
4155 if (!sb_set_blocksize(sb, blocksize)) {
4156 ext4_msg(sb, KERN_ERR, "bad block size %d",
4157 blocksize);
4158 goto failed_mount;
4159 }
4160
4161 brelse(bh);
4162 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4163 offset = do_div(logical_sb_block, blocksize);
4164 bh = sb_bread_unmovable(sb, logical_sb_block);
4165 if (!bh) {
4166 ext4_msg(sb, KERN_ERR,
4167 "Can't read superblock on 2nd try");
4168 goto failed_mount;
4169 }
4170 es = (struct ext4_super_block *)(bh->b_data + offset);
4171 sbi->s_es = es;
4172 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4173 ext4_msg(sb, KERN_ERR,
4174 "Magic mismatch, very weird!");
4175 goto failed_mount;
4176 }
4177 }
4178
4179 has_huge_files = ext4_has_feature_huge_file(sb);
4180 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4181 has_huge_files);
4182 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4183
4184 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4185 if (ext4_has_feature_64bit(sb)) {
4186 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4187 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4188 !is_power_of_2(sbi->s_desc_size)) {
4189 ext4_msg(sb, KERN_ERR,
4190 "unsupported descriptor size %lu",
4191 sbi->s_desc_size);
4192 goto failed_mount;
4193 }
4194 } else
4195 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4196
4197 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4198 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4199
4200 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4201 if (sbi->s_inodes_per_block == 0)
4202 goto cantfind_ext4;
4203 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4204 sbi->s_inodes_per_group > blocksize * 8) {
4205 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4206 sbi->s_inodes_per_group);
4207 goto failed_mount;
4208 }
4209 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4210 sbi->s_inodes_per_block;
4211 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4212 sbi->s_sbh = bh;
4213 sbi->s_mount_state = le16_to_cpu(es->s_state);
4214 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4215 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4216
4217 for (i = 0; i < 4; i++)
4218 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4219 sbi->s_def_hash_version = es->s_def_hash_version;
4220 if (ext4_has_feature_dir_index(sb)) {
4221 i = le32_to_cpu(es->s_flags);
4222 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4223 sbi->s_hash_unsigned = 3;
4224 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4225 #ifdef __CHAR_UNSIGNED__
4226 if (!sb_rdonly(sb))
4227 es->s_flags |=
4228 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4229 sbi->s_hash_unsigned = 3;
4230 #else
4231 if (!sb_rdonly(sb))
4232 es->s_flags |=
4233 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4234 #endif
4235 }
4236 }
4237
4238 /* Handle clustersize */
4239 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4240 has_bigalloc = ext4_has_feature_bigalloc(sb);
4241 if (has_bigalloc) {
4242 if (clustersize < blocksize) {
4243 ext4_msg(sb, KERN_ERR,
4244 "cluster size (%d) smaller than "
4245 "block size (%d)", clustersize, blocksize);
4246 goto failed_mount;
4247 }
4248 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4249 le32_to_cpu(es->s_log_block_size);
4250 sbi->s_clusters_per_group =
4251 le32_to_cpu(es->s_clusters_per_group);
4252 if (sbi->s_clusters_per_group > blocksize * 8) {
4253 ext4_msg(sb, KERN_ERR,
4254 "#clusters per group too big: %lu",
4255 sbi->s_clusters_per_group);
4256 goto failed_mount;
4257 }
4258 if (sbi->s_blocks_per_group !=
4259 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4260 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4261 "clusters per group (%lu) inconsistent",
4262 sbi->s_blocks_per_group,
4263 sbi->s_clusters_per_group);
4264 goto failed_mount;
4265 }
4266 } else {
4267 if (clustersize != blocksize) {
4268 ext4_msg(sb, KERN_ERR,
4269 "fragment/cluster size (%d) != "
4270 "block size (%d)", clustersize, blocksize);
4271 goto failed_mount;
4272 }
4273 if (sbi->s_blocks_per_group > blocksize * 8) {
4274 ext4_msg(sb, KERN_ERR,
4275 "#blocks per group too big: %lu",
4276 sbi->s_blocks_per_group);
4277 goto failed_mount;
4278 }
4279 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4280 sbi->s_cluster_bits = 0;
4281 }
4282 sbi->s_cluster_ratio = clustersize / blocksize;
4283
4284 /* Do we have standard group size of clustersize * 8 blocks ? */
4285 if (sbi->s_blocks_per_group == clustersize << 3)
4286 set_opt2(sb, STD_GROUP_SIZE);
4287
4288 /*
4289 * Test whether we have more sectors than will fit in sector_t,
4290 * and whether the max offset is addressable by the page cache.
4291 */
4292 err = generic_check_addressable(sb->s_blocksize_bits,
4293 ext4_blocks_count(es));
4294 if (err) {
4295 ext4_msg(sb, KERN_ERR, "filesystem"
4296 " too large to mount safely on this system");
4297 goto failed_mount;
4298 }
4299
4300 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4301 goto cantfind_ext4;
4302
4303 /* check blocks count against device size */
4304 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4305 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4306 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4307 "exceeds size of device (%llu blocks)",
4308 ext4_blocks_count(es), blocks_count);
4309 goto failed_mount;
4310 }
4311
4312 /*
4313 * It makes no sense for the first data block to be beyond the end
4314 * of the filesystem.
4315 */
4316 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4317 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4318 "block %u is beyond end of filesystem (%llu)",
4319 le32_to_cpu(es->s_first_data_block),
4320 ext4_blocks_count(es));
4321 goto failed_mount;
4322 }
4323 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4324 (sbi->s_cluster_ratio == 1)) {
4325 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4326 "block is 0 with a 1k block and cluster size");
4327 goto failed_mount;
4328 }
4329
4330 blocks_count = (ext4_blocks_count(es) -
4331 le32_to_cpu(es->s_first_data_block) +
4332 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4333 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4334 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4335 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4336 "(block count %llu, first data block %u, "
4337 "blocks per group %lu)", blocks_count,
4338 ext4_blocks_count(es),
4339 le32_to_cpu(es->s_first_data_block),
4340 EXT4_BLOCKS_PER_GROUP(sb));
4341 goto failed_mount;
4342 }
4343 sbi->s_groups_count = blocks_count;
4344 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4345 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4346 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4347 le32_to_cpu(es->s_inodes_count)) {
4348 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4349 le32_to_cpu(es->s_inodes_count),
4350 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4351 ret = -EINVAL;
4352 goto failed_mount;
4353 }
4354 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4355 EXT4_DESC_PER_BLOCK(sb);
4356 if (ext4_has_feature_meta_bg(sb)) {
4357 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4358 ext4_msg(sb, KERN_WARNING,
4359 "first meta block group too large: %u "
4360 "(group descriptor block count %u)",
4361 le32_to_cpu(es->s_first_meta_bg), db_count);
4362 goto failed_mount;
4363 }
4364 }
4365 rcu_assign_pointer(sbi->s_group_desc,
4366 kvmalloc_array(db_count,
4367 sizeof(struct buffer_head *),
4368 GFP_KERNEL));
4369 if (sbi->s_group_desc == NULL) {
4370 ext4_msg(sb, KERN_ERR, "not enough memory");
4371 ret = -ENOMEM;
4372 goto failed_mount;
4373 }
4374
4375 bgl_lock_init(sbi->s_blockgroup_lock);
4376
4377 /* Pre-read the descriptors into the buffer cache */
4378 for (i = 0; i < db_count; i++) {
4379 block = descriptor_loc(sb, logical_sb_block, i);
4380 sb_breadahead_unmovable(sb, block);
4381 }
4382
4383 for (i = 0; i < db_count; i++) {
4384 struct buffer_head *bh;
4385
4386 block = descriptor_loc(sb, logical_sb_block, i);
4387 bh = sb_bread_unmovable(sb, block);
4388 if (!bh) {
4389 ext4_msg(sb, KERN_ERR,
4390 "can't read group descriptor %d", i);
4391 db_count = i;
4392 goto failed_mount2;
4393 }
4394 rcu_read_lock();
4395 rcu_dereference(sbi->s_group_desc)[i] = bh;
4396 rcu_read_unlock();
4397 }
4398 sbi->s_gdb_count = db_count;
4399 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4400 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4401 ret = -EFSCORRUPTED;
4402 goto failed_mount2;
4403 }
4404
4405 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4406
4407 /* Register extent status tree shrinker */
4408 if (ext4_es_register_shrinker(sbi))
4409 goto failed_mount3;
4410
4411 sbi->s_stripe = ext4_get_stripe_size(sbi);
4412 sbi->s_extent_max_zeroout_kb = 32;
4413
4414 /*
4415 * set up enough so that it can read an inode
4416 */
4417 sb->s_op = &ext4_sops;
4418 sb->s_export_op = &ext4_export_ops;
4419 sb->s_xattr = ext4_xattr_handlers;
4420 #ifdef CONFIG_FS_ENCRYPTION
4421 sb->s_cop = &ext4_cryptops;
4422 #endif
4423 #ifdef CONFIG_FS_VERITY
4424 sb->s_vop = &ext4_verityops;
4425 #endif
4426 #ifdef CONFIG_QUOTA
4427 sb->dq_op = &ext4_quota_operations;
4428 if (ext4_has_feature_quota(sb))
4429 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4430 else
4431 sb->s_qcop = &ext4_qctl_operations;
4432 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4433 #endif
4434 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4435
4436 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4437 mutex_init(&sbi->s_orphan_lock);
4438
4439 sb->s_root = NULL;
4440
4441 needs_recovery = (es->s_last_orphan != 0 ||
4442 ext4_has_feature_journal_needs_recovery(sb));
4443
4444 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4445 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4446 goto failed_mount3a;
4447
4448 /*
4449 * The first inode we look at is the journal inode. Don't try
4450 * root first: it may be modified in the journal!
4451 */
4452 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4453 err = ext4_load_journal(sb, es, journal_devnum);
4454 if (err)
4455 goto failed_mount3a;
4456 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4457 ext4_has_feature_journal_needs_recovery(sb)) {
4458 ext4_msg(sb, KERN_ERR, "required journal recovery "
4459 "suppressed and not mounted read-only");
4460 goto failed_mount_wq;
4461 } else {
4462 /* Nojournal mode, all journal mount options are illegal */
4463 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4464 ext4_msg(sb, KERN_ERR, "can't mount with "
4465 "journal_checksum, fs mounted w/o journal");
4466 goto failed_mount_wq;
4467 }
4468 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4469 ext4_msg(sb, KERN_ERR, "can't mount with "
4470 "journal_async_commit, fs mounted w/o journal");
4471 goto failed_mount_wq;
4472 }
4473 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4474 ext4_msg(sb, KERN_ERR, "can't mount with "
4475 "commit=%lu, fs mounted w/o journal",
4476 sbi->s_commit_interval / HZ);
4477 goto failed_mount_wq;
4478 }
4479 if (EXT4_MOUNT_DATA_FLAGS &
4480 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4481 ext4_msg(sb, KERN_ERR, "can't mount with "
4482 "data=, fs mounted w/o journal");
4483 goto failed_mount_wq;
4484 }
4485 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4486 clear_opt(sb, JOURNAL_CHECKSUM);
4487 clear_opt(sb, DATA_FLAGS);
4488 sbi->s_journal = NULL;
4489 needs_recovery = 0;
4490 goto no_journal;
4491 }
4492
4493 if (ext4_has_feature_64bit(sb) &&
4494 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4495 JBD2_FEATURE_INCOMPAT_64BIT)) {
4496 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4497 goto failed_mount_wq;
4498 }
4499
4500 if (!set_journal_csum_feature_set(sb)) {
4501 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4502 "feature set");
4503 goto failed_mount_wq;
4504 }
4505
4506 /* We have now updated the journal if required, so we can
4507 * validate the data journaling mode. */
4508 switch (test_opt(sb, DATA_FLAGS)) {
4509 case 0:
4510 /* No mode set, assume a default based on the journal
4511 * capabilities: ORDERED_DATA if the journal can
4512 * cope, else JOURNAL_DATA
4513 */
4514 if (jbd2_journal_check_available_features
4515 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4516 set_opt(sb, ORDERED_DATA);
4517 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4518 } else {
4519 set_opt(sb, JOURNAL_DATA);
4520 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4521 }
4522 break;
4523
4524 case EXT4_MOUNT_ORDERED_DATA:
4525 case EXT4_MOUNT_WRITEBACK_DATA:
4526 if (!jbd2_journal_check_available_features
4527 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4528 ext4_msg(sb, KERN_ERR, "Journal does not support "
4529 "requested data journaling mode");
4530 goto failed_mount_wq;
4531 }
4532 default:
4533 break;
4534 }
4535
4536 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4537 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4538 ext4_msg(sb, KERN_ERR, "can't mount with "
4539 "journal_async_commit in data=ordered mode");
4540 goto failed_mount_wq;
4541 }
4542
4543 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4544
4545 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4546
4547 no_journal:
4548 if (!test_opt(sb, NO_MBCACHE)) {
4549 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4550 if (!sbi->s_ea_block_cache) {
4551 ext4_msg(sb, KERN_ERR,
4552 "Failed to create ea_block_cache");
4553 goto failed_mount_wq;
4554 }
4555
4556 if (ext4_has_feature_ea_inode(sb)) {
4557 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4558 if (!sbi->s_ea_inode_cache) {
4559 ext4_msg(sb, KERN_ERR,
4560 "Failed to create ea_inode_cache");
4561 goto failed_mount_wq;
4562 }
4563 }
4564 }
4565
4566 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4567 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4568 goto failed_mount_wq;
4569 }
4570
4571 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4572 !ext4_has_feature_encrypt(sb)) {
4573 ext4_set_feature_encrypt(sb);
4574 ext4_commit_super(sb, 1);
4575 }
4576
4577 /*
4578 * Get the # of file system overhead blocks from the
4579 * superblock if present.
4580 */
4581 if (es->s_overhead_clusters)
4582 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4583 else {
4584 err = ext4_calculate_overhead(sb);
4585 if (err)
4586 goto failed_mount_wq;
4587 }
4588
4589 /*
4590 * The maximum number of concurrent works can be high and
4591 * concurrency isn't really necessary. Limit it to 1.
4592 */
4593 EXT4_SB(sb)->rsv_conversion_wq =
4594 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4595 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4596 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4597 ret = -ENOMEM;
4598 goto failed_mount4;
4599 }
4600
4601 /*
4602 * The jbd2_journal_load will have done any necessary log recovery,
4603 * so we can safely mount the rest of the filesystem now.
4604 */
4605
4606 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4607 if (IS_ERR(root)) {
4608 ext4_msg(sb, KERN_ERR, "get root inode failed");
4609 ret = PTR_ERR(root);
4610 root = NULL;
4611 goto failed_mount4;
4612 }
4613 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4614 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4615 iput(root);
4616 goto failed_mount4;
4617 }
4618
4619 #ifdef CONFIG_UNICODE
4620 if (sbi->s_encoding)
4621 sb->s_d_op = &ext4_dentry_ops;
4622 #endif
4623
4624 sb->s_root = d_make_root(root);
4625 if (!sb->s_root) {
4626 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4627 ret = -ENOMEM;
4628 goto failed_mount4;
4629 }
4630
4631 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4632 if (ret == -EROFS) {
4633 sb->s_flags |= SB_RDONLY;
4634 ret = 0;
4635 } else if (ret)
4636 goto failed_mount4a;
4637
4638 ext4_set_resv_clusters(sb);
4639
4640 err = ext4_setup_system_zone(sb);
4641 if (err) {
4642 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4643 "zone (%d)", err);
4644 goto failed_mount4a;
4645 }
4646
4647 ext4_ext_init(sb);
4648 err = ext4_mb_init(sb);
4649 if (err) {
4650 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4651 err);
4652 goto failed_mount5;
4653 }
4654
4655 block = ext4_count_free_clusters(sb);
4656 ext4_free_blocks_count_set(sbi->s_es,
4657 EXT4_C2B(sbi, block));
4658 ext4_superblock_csum_set(sb);
4659 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4660 GFP_KERNEL);
4661 if (!err) {
4662 unsigned long freei = ext4_count_free_inodes(sb);
4663 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4664 ext4_superblock_csum_set(sb);
4665 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4666 GFP_KERNEL);
4667 }
4668 if (!err)
4669 err = percpu_counter_init(&sbi->s_dirs_counter,
4670 ext4_count_dirs(sb), GFP_KERNEL);
4671 if (!err)
4672 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4673 GFP_KERNEL);
4674 if (!err)
4675 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4676
4677 if (err) {
4678 ext4_msg(sb, KERN_ERR, "insufficient memory");
4679 goto failed_mount6;
4680 }
4681
4682 if (ext4_has_feature_flex_bg(sb))
4683 if (!ext4_fill_flex_info(sb)) {
4684 ext4_msg(sb, KERN_ERR,
4685 "unable to initialize "
4686 "flex_bg meta info!");
4687 goto failed_mount6;
4688 }
4689
4690 err = ext4_register_li_request(sb, first_not_zeroed);
4691 if (err)
4692 goto failed_mount6;
4693
4694 err = ext4_register_sysfs(sb);
4695 if (err)
4696 goto failed_mount7;
4697
4698 #ifdef CONFIG_QUOTA
4699 /* Enable quota usage during mount. */
4700 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4701 err = ext4_enable_quotas(sb);
4702 if (err)
4703 goto failed_mount8;
4704 }
4705 #endif /* CONFIG_QUOTA */
4706
4707 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4708 ext4_orphan_cleanup(sb, es);
4709 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4710 if (needs_recovery) {
4711 ext4_msg(sb, KERN_INFO, "recovery complete");
4712 ext4_mark_recovery_complete(sb, es);
4713 }
4714 if (EXT4_SB(sb)->s_journal) {
4715 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4716 descr = " journalled data mode";
4717 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4718 descr = " ordered data mode";
4719 else
4720 descr = " writeback data mode";
4721 } else
4722 descr = "out journal";
4723
4724 if (test_opt(sb, DISCARD)) {
4725 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4726 if (!blk_queue_discard(q))
4727 ext4_msg(sb, KERN_WARNING,
4728 "mounting with \"discard\" option, but "
4729 "the device does not support discard");
4730 }
4731
4732 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4733 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4734 "Opts: %.*s%s%s", descr,
4735 (int) sizeof(sbi->s_es->s_mount_opts),
4736 sbi->s_es->s_mount_opts,
4737 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4738
4739 if (es->s_error_count)
4740 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4741
4742 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4743 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4744 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4745 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4746
4747 kfree(orig_data);
4748 return 0;
4749
4750 cantfind_ext4:
4751 if (!silent)
4752 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4753 goto failed_mount;
4754
4755 #ifdef CONFIG_QUOTA
4756 failed_mount8:
4757 ext4_unregister_sysfs(sb);
4758 #endif
4759 failed_mount7:
4760 ext4_unregister_li_request(sb);
4761 failed_mount6:
4762 ext4_mb_release(sb);
4763 rcu_read_lock();
4764 flex_groups = rcu_dereference(sbi->s_flex_groups);
4765 if (flex_groups) {
4766 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
4767 kvfree(flex_groups[i]);
4768 kvfree(flex_groups);
4769 }
4770 rcu_read_unlock();
4771 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4772 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4773 percpu_counter_destroy(&sbi->s_dirs_counter);
4774 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4775 percpu_free_rwsem(&sbi->s_writepages_rwsem);
4776 failed_mount5:
4777 ext4_ext_release(sb);
4778 ext4_release_system_zone(sb);
4779 failed_mount4a:
4780 dput(sb->s_root);
4781 sb->s_root = NULL;
4782 failed_mount4:
4783 ext4_msg(sb, KERN_ERR, "mount failed");
4784 if (EXT4_SB(sb)->rsv_conversion_wq)
4785 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4786 failed_mount_wq:
4787 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4788 sbi->s_ea_inode_cache = NULL;
4789
4790 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4791 sbi->s_ea_block_cache = NULL;
4792
4793 if (sbi->s_journal) {
4794 jbd2_journal_destroy(sbi->s_journal);
4795 sbi->s_journal = NULL;
4796 }
4797 failed_mount3a:
4798 ext4_es_unregister_shrinker(sbi);
4799 failed_mount3:
4800 del_timer_sync(&sbi->s_err_report);
4801 if (sbi->s_mmp_tsk)
4802 kthread_stop(sbi->s_mmp_tsk);
4803 failed_mount2:
4804 rcu_read_lock();
4805 group_desc = rcu_dereference(sbi->s_group_desc);
4806 for (i = 0; i < db_count; i++)
4807 brelse(group_desc[i]);
4808 kvfree(group_desc);
4809 rcu_read_unlock();
4810 failed_mount:
4811 if (sbi->s_chksum_driver)
4812 crypto_free_shash(sbi->s_chksum_driver);
4813
4814 #ifdef CONFIG_UNICODE
4815 utf8_unload(sbi->s_encoding);
4816 #endif
4817
4818 #ifdef CONFIG_QUOTA
4819 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4820 kfree(get_qf_name(sb, sbi, i));
4821 #endif
4822 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx);
4823 ext4_blkdev_remove(sbi);
4824 brelse(bh);
4825 out_fail:
4826 sb->s_fs_info = NULL;
4827 kfree(sbi->s_blockgroup_lock);
4828 out_free_base:
4829 kfree(sbi);
4830 kfree(orig_data);
4831 fs_put_dax(dax_dev);
4832 return err ? err : ret;
4833 }
4834
4835 /*
4836 * Setup any per-fs journal parameters now. We'll do this both on
4837 * initial mount, once the journal has been initialised but before we've
4838 * done any recovery; and again on any subsequent remount.
4839 */
4840 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4841 {
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4843
4844 journal->j_commit_interval = sbi->s_commit_interval;
4845 journal->j_min_batch_time = sbi->s_min_batch_time;
4846 journal->j_max_batch_time = sbi->s_max_batch_time;
4847
4848 write_lock(&journal->j_state_lock);
4849 if (test_opt(sb, BARRIER))
4850 journal->j_flags |= JBD2_BARRIER;
4851 else
4852 journal->j_flags &= ~JBD2_BARRIER;
4853 if (test_opt(sb, DATA_ERR_ABORT))
4854 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4855 else
4856 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4857 write_unlock(&journal->j_state_lock);
4858 }
4859
4860 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4861 unsigned int journal_inum)
4862 {
4863 struct inode *journal_inode;
4864
4865 /*
4866 * Test for the existence of a valid inode on disk. Bad things
4867 * happen if we iget() an unused inode, as the subsequent iput()
4868 * will try to delete it.
4869 */
4870 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4871 if (IS_ERR(journal_inode)) {
4872 ext4_msg(sb, KERN_ERR, "no journal found");
4873 return NULL;
4874 }
4875 if (!journal_inode->i_nlink) {
4876 make_bad_inode(journal_inode);
4877 iput(journal_inode);
4878 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4879 return NULL;
4880 }
4881
4882 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4883 journal_inode, journal_inode->i_size);
4884 if (!S_ISREG(journal_inode->i_mode)) {
4885 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4886 iput(journal_inode);
4887 return NULL;
4888 }
4889 return journal_inode;
4890 }
4891
4892 static journal_t *ext4_get_journal(struct super_block *sb,
4893 unsigned int journal_inum)
4894 {
4895 struct inode *journal_inode;
4896 journal_t *journal;
4897
4898 BUG_ON(!ext4_has_feature_journal(sb));
4899
4900 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4901 if (!journal_inode)
4902 return NULL;
4903
4904 journal = jbd2_journal_init_inode(journal_inode);
4905 if (!journal) {
4906 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4907 iput(journal_inode);
4908 return NULL;
4909 }
4910 journal->j_private = sb;
4911 ext4_init_journal_params(sb, journal);
4912 return journal;
4913 }
4914
4915 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4916 dev_t j_dev)
4917 {
4918 struct buffer_head *bh;
4919 journal_t *journal;
4920 ext4_fsblk_t start;
4921 ext4_fsblk_t len;
4922 int hblock, blocksize;
4923 ext4_fsblk_t sb_block;
4924 unsigned long offset;
4925 struct ext4_super_block *es;
4926 struct block_device *bdev;
4927
4928 BUG_ON(!ext4_has_feature_journal(sb));
4929
4930 bdev = ext4_blkdev_get(j_dev, sb);
4931 if (bdev == NULL)
4932 return NULL;
4933
4934 blocksize = sb->s_blocksize;
4935 hblock = bdev_logical_block_size(bdev);
4936 if (blocksize < hblock) {
4937 ext4_msg(sb, KERN_ERR,
4938 "blocksize too small for journal device");
4939 goto out_bdev;
4940 }
4941
4942 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4943 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4944 set_blocksize(bdev, blocksize);
4945 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4946 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4947 "external journal");
4948 goto out_bdev;
4949 }
4950
4951 es = (struct ext4_super_block *) (bh->b_data + offset);
4952 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4953 !(le32_to_cpu(es->s_feature_incompat) &
4954 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4955 ext4_msg(sb, KERN_ERR, "external journal has "
4956 "bad superblock");
4957 brelse(bh);
4958 goto out_bdev;
4959 }
4960
4961 if ((le32_to_cpu(es->s_feature_ro_compat) &
4962 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4963 es->s_checksum != ext4_superblock_csum(sb, es)) {
4964 ext4_msg(sb, KERN_ERR, "external journal has "
4965 "corrupt superblock");
4966 brelse(bh);
4967 goto out_bdev;
4968 }
4969
4970 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4971 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4972 brelse(bh);
4973 goto out_bdev;
4974 }
4975
4976 len = ext4_blocks_count(es);
4977 start = sb_block + 1;
4978 brelse(bh); /* we're done with the superblock */
4979
4980 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4981 start, len, blocksize);
4982 if (!journal) {
4983 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4984 goto out_bdev;
4985 }
4986 journal->j_private = sb;
4987 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4988 wait_on_buffer(journal->j_sb_buffer);
4989 if (!buffer_uptodate(journal->j_sb_buffer)) {
4990 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4991 goto out_journal;
4992 }
4993 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4994 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4995 "user (unsupported) - %d",
4996 be32_to_cpu(journal->j_superblock->s_nr_users));
4997 goto out_journal;
4998 }
4999 EXT4_SB(sb)->journal_bdev = bdev;
5000 ext4_init_journal_params(sb, journal);
5001 return journal;
5002
5003 out_journal:
5004 jbd2_journal_destroy(journal);
5005 out_bdev:
5006 ext4_blkdev_put(bdev);
5007 return NULL;
5008 }
5009
5010 static int ext4_load_journal(struct super_block *sb,
5011 struct ext4_super_block *es,
5012 unsigned long journal_devnum)
5013 {
5014 journal_t *journal;
5015 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5016 dev_t journal_dev;
5017 int err = 0;
5018 int really_read_only;
5019
5020 BUG_ON(!ext4_has_feature_journal(sb));
5021
5022 if (journal_devnum &&
5023 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5024 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5025 "numbers have changed");
5026 journal_dev = new_decode_dev(journal_devnum);
5027 } else
5028 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5029
5030 really_read_only = bdev_read_only(sb->s_bdev);
5031
5032 /*
5033 * Are we loading a blank journal or performing recovery after a
5034 * crash? For recovery, we need to check in advance whether we
5035 * can get read-write access to the device.
5036 */
5037 if (ext4_has_feature_journal_needs_recovery(sb)) {
5038 if (sb_rdonly(sb)) {
5039 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5040 "required on readonly filesystem");
5041 if (really_read_only) {
5042 ext4_msg(sb, KERN_ERR, "write access "
5043 "unavailable, cannot proceed "
5044 "(try mounting with noload)");
5045 return -EROFS;
5046 }
5047 ext4_msg(sb, KERN_INFO, "write access will "
5048 "be enabled during recovery");
5049 }
5050 }
5051
5052 if (journal_inum && journal_dev) {
5053 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
5054 "and inode journals!");
5055 return -EINVAL;
5056 }
5057
5058 if (journal_inum) {
5059 if (!(journal = ext4_get_journal(sb, journal_inum)))
5060 return -EINVAL;
5061 } else {
5062 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
5063 return -EINVAL;
5064 }
5065
5066 if (!(journal->j_flags & JBD2_BARRIER))
5067 ext4_msg(sb, KERN_INFO, "barriers disabled");
5068
5069 if (!ext4_has_feature_journal_needs_recovery(sb))
5070 err = jbd2_journal_wipe(journal, !really_read_only);
5071 if (!err) {
5072 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5073 if (save)
5074 memcpy(save, ((char *) es) +
5075 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5076 err = jbd2_journal_load(journal);
5077 if (save)
5078 memcpy(((char *) es) + EXT4_S_ERR_START,
5079 save, EXT4_S_ERR_LEN);
5080 kfree(save);
5081 }
5082
5083 if (err) {
5084 ext4_msg(sb, KERN_ERR, "error loading journal");
5085 jbd2_journal_destroy(journal);
5086 return err;
5087 }
5088
5089 EXT4_SB(sb)->s_journal = journal;
5090 ext4_clear_journal_err(sb, es);
5091
5092 if (!really_read_only && journal_devnum &&
5093 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5094 es->s_journal_dev = cpu_to_le32(journal_devnum);
5095
5096 /* Make sure we flush the recovery flag to disk. */
5097 ext4_commit_super(sb, 1);
5098 }
5099
5100 return 0;
5101 }
5102
5103 static int ext4_commit_super(struct super_block *sb, int sync)
5104 {
5105 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5106 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5107 int error = 0;
5108
5109 if (!sbh || block_device_ejected(sb))
5110 return error;
5111
5112 /*
5113 * The superblock bh should be mapped, but it might not be if the
5114 * device was hot-removed. Not much we can do but fail the I/O.
5115 */
5116 if (!buffer_mapped(sbh))
5117 return error;
5118
5119 /*
5120 * If the file system is mounted read-only, don't update the
5121 * superblock write time. This avoids updating the superblock
5122 * write time when we are mounting the root file system
5123 * read/only but we need to replay the journal; at that point,
5124 * for people who are east of GMT and who make their clock
5125 * tick in localtime for Windows bug-for-bug compatibility,
5126 * the clock is set in the future, and this will cause e2fsck
5127 * to complain and force a full file system check.
5128 */
5129 if (!(sb->s_flags & SB_RDONLY))
5130 ext4_update_tstamp(es, s_wtime);
5131 if (sb->s_bdev->bd_part)
5132 es->s_kbytes_written =
5133 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5134 ((part_stat_read(sb->s_bdev->bd_part,
5135 sectors[STAT_WRITE]) -
5136 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5137 else
5138 es->s_kbytes_written =
5139 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5140 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5141 ext4_free_blocks_count_set(es,
5142 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5143 &EXT4_SB(sb)->s_freeclusters_counter)));
5144 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5145 es->s_free_inodes_count =
5146 cpu_to_le32(percpu_counter_sum_positive(
5147 &EXT4_SB(sb)->s_freeinodes_counter));
5148 BUFFER_TRACE(sbh, "marking dirty");
5149 ext4_superblock_csum_set(sb);
5150 if (sync)
5151 lock_buffer(sbh);
5152 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5153 /*
5154 * Oh, dear. A previous attempt to write the
5155 * superblock failed. This could happen because the
5156 * USB device was yanked out. Or it could happen to
5157 * be a transient write error and maybe the block will
5158 * be remapped. Nothing we can do but to retry the
5159 * write and hope for the best.
5160 */
5161 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5162 "superblock detected");
5163 clear_buffer_write_io_error(sbh);
5164 set_buffer_uptodate(sbh);
5165 }
5166 mark_buffer_dirty(sbh);
5167 if (sync) {
5168 unlock_buffer(sbh);
5169 error = __sync_dirty_buffer(sbh,
5170 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5171 if (buffer_write_io_error(sbh)) {
5172 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5173 "superblock");
5174 clear_buffer_write_io_error(sbh);
5175 set_buffer_uptodate(sbh);
5176 }
5177 }
5178 return error;
5179 }
5180
5181 /*
5182 * Have we just finished recovery? If so, and if we are mounting (or
5183 * remounting) the filesystem readonly, then we will end up with a
5184 * consistent fs on disk. Record that fact.
5185 */
5186 static void ext4_mark_recovery_complete(struct super_block *sb,
5187 struct ext4_super_block *es)
5188 {
5189 journal_t *journal = EXT4_SB(sb)->s_journal;
5190
5191 if (!ext4_has_feature_journal(sb)) {
5192 BUG_ON(journal != NULL);
5193 return;
5194 }
5195 jbd2_journal_lock_updates(journal);
5196 if (jbd2_journal_flush(journal) < 0)
5197 goto out;
5198
5199 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5200 ext4_clear_feature_journal_needs_recovery(sb);
5201 ext4_commit_super(sb, 1);
5202 }
5203
5204 out:
5205 jbd2_journal_unlock_updates(journal);
5206 }
5207
5208 /*
5209 * If we are mounting (or read-write remounting) a filesystem whose journal
5210 * has recorded an error from a previous lifetime, move that error to the
5211 * main filesystem now.
5212 */
5213 static void ext4_clear_journal_err(struct super_block *sb,
5214 struct ext4_super_block *es)
5215 {
5216 journal_t *journal;
5217 int j_errno;
5218 const char *errstr;
5219
5220 BUG_ON(!ext4_has_feature_journal(sb));
5221
5222 journal = EXT4_SB(sb)->s_journal;
5223
5224 /*
5225 * Now check for any error status which may have been recorded in the
5226 * journal by a prior ext4_error() or ext4_abort()
5227 */
5228
5229 j_errno = jbd2_journal_errno(journal);
5230 if (j_errno) {
5231 char nbuf[16];
5232
5233 errstr = ext4_decode_error(sb, j_errno, nbuf);
5234 ext4_warning(sb, "Filesystem error recorded "
5235 "from previous mount: %s", errstr);
5236 ext4_warning(sb, "Marking fs in need of filesystem check.");
5237
5238 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5239 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5240 ext4_commit_super(sb, 1);
5241
5242 jbd2_journal_clear_err(journal);
5243 jbd2_journal_update_sb_errno(journal);
5244 }
5245 }
5246
5247 /*
5248 * Force the running and committing transactions to commit,
5249 * and wait on the commit.
5250 */
5251 int ext4_force_commit(struct super_block *sb)
5252 {
5253 journal_t *journal;
5254
5255 if (sb_rdonly(sb))
5256 return 0;
5257
5258 journal = EXT4_SB(sb)->s_journal;
5259 return ext4_journal_force_commit(journal);
5260 }
5261
5262 static int ext4_sync_fs(struct super_block *sb, int wait)
5263 {
5264 int ret = 0;
5265 tid_t target;
5266 bool needs_barrier = false;
5267 struct ext4_sb_info *sbi = EXT4_SB(sb);
5268
5269 if (unlikely(ext4_forced_shutdown(sbi)))
5270 return 0;
5271
5272 trace_ext4_sync_fs(sb, wait);
5273 flush_workqueue(sbi->rsv_conversion_wq);
5274 /*
5275 * Writeback quota in non-journalled quota case - journalled quota has
5276 * no dirty dquots
5277 */
5278 dquot_writeback_dquots(sb, -1);
5279 /*
5280 * Data writeback is possible w/o journal transaction, so barrier must
5281 * being sent at the end of the function. But we can skip it if
5282 * transaction_commit will do it for us.
5283 */
5284 if (sbi->s_journal) {
5285 target = jbd2_get_latest_transaction(sbi->s_journal);
5286 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5287 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5288 needs_barrier = true;
5289
5290 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5291 if (wait)
5292 ret = jbd2_log_wait_commit(sbi->s_journal,
5293 target);
5294 }
5295 } else if (wait && test_opt(sb, BARRIER))
5296 needs_barrier = true;
5297 if (needs_barrier) {
5298 int err;
5299 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5300 if (!ret)
5301 ret = err;
5302 }
5303
5304 return ret;
5305 }
5306
5307 /*
5308 * LVM calls this function before a (read-only) snapshot is created. This
5309 * gives us a chance to flush the journal completely and mark the fs clean.
5310 *
5311 * Note that only this function cannot bring a filesystem to be in a clean
5312 * state independently. It relies on upper layer to stop all data & metadata
5313 * modifications.
5314 */
5315 static int ext4_freeze(struct super_block *sb)
5316 {
5317 int error = 0;
5318 journal_t *journal;
5319
5320 if (sb_rdonly(sb))
5321 return 0;
5322
5323 journal = EXT4_SB(sb)->s_journal;
5324
5325 if (journal) {
5326 /* Now we set up the journal barrier. */
5327 jbd2_journal_lock_updates(journal);
5328
5329 /*
5330 * Don't clear the needs_recovery flag if we failed to
5331 * flush the journal.
5332 */
5333 error = jbd2_journal_flush(journal);
5334 if (error < 0)
5335 goto out;
5336
5337 /* Journal blocked and flushed, clear needs_recovery flag. */
5338 ext4_clear_feature_journal_needs_recovery(sb);
5339 }
5340
5341 error = ext4_commit_super(sb, 1);
5342 out:
5343 if (journal)
5344 /* we rely on upper layer to stop further updates */
5345 jbd2_journal_unlock_updates(journal);
5346 return error;
5347 }
5348
5349 /*
5350 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5351 * flag here, even though the filesystem is not technically dirty yet.
5352 */
5353 static int ext4_unfreeze(struct super_block *sb)
5354 {
5355 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5356 return 0;
5357
5358 if (EXT4_SB(sb)->s_journal) {
5359 /* Reset the needs_recovery flag before the fs is unlocked. */
5360 ext4_set_feature_journal_needs_recovery(sb);
5361 }
5362
5363 ext4_commit_super(sb, 1);
5364 return 0;
5365 }
5366
5367 /*
5368 * Structure to save mount options for ext4_remount's benefit
5369 */
5370 struct ext4_mount_options {
5371 unsigned long s_mount_opt;
5372 unsigned long s_mount_opt2;
5373 kuid_t s_resuid;
5374 kgid_t s_resgid;
5375 unsigned long s_commit_interval;
5376 u32 s_min_batch_time, s_max_batch_time;
5377 #ifdef CONFIG_QUOTA
5378 int s_jquota_fmt;
5379 char *s_qf_names[EXT4_MAXQUOTAS];
5380 #endif
5381 };
5382
5383 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5384 {
5385 struct ext4_super_block *es;
5386 struct ext4_sb_info *sbi = EXT4_SB(sb);
5387 unsigned long old_sb_flags;
5388 struct ext4_mount_options old_opts;
5389 int enable_quota = 0;
5390 ext4_group_t g;
5391 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5392 int err = 0;
5393 #ifdef CONFIG_QUOTA
5394 int i, j;
5395 char *to_free[EXT4_MAXQUOTAS];
5396 #endif
5397 char *orig_data = kstrdup(data, GFP_KERNEL);
5398
5399 if (data && !orig_data)
5400 return -ENOMEM;
5401
5402 /* Store the original options */
5403 old_sb_flags = sb->s_flags;
5404 old_opts.s_mount_opt = sbi->s_mount_opt;
5405 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5406 old_opts.s_resuid = sbi->s_resuid;
5407 old_opts.s_resgid = sbi->s_resgid;
5408 old_opts.s_commit_interval = sbi->s_commit_interval;
5409 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5410 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5411 #ifdef CONFIG_QUOTA
5412 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5413 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5414 if (sbi->s_qf_names[i]) {
5415 char *qf_name = get_qf_name(sb, sbi, i);
5416
5417 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5418 if (!old_opts.s_qf_names[i]) {
5419 for (j = 0; j < i; j++)
5420 kfree(old_opts.s_qf_names[j]);
5421 kfree(orig_data);
5422 return -ENOMEM;
5423 }
5424 } else
5425 old_opts.s_qf_names[i] = NULL;
5426 #endif
5427 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5428 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5429
5430 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5431 err = -EINVAL;
5432 goto restore_opts;
5433 }
5434
5435 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5436 test_opt(sb, JOURNAL_CHECKSUM)) {
5437 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5438 "during remount not supported; ignoring");
5439 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5440 }
5441
5442 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5443 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5444 ext4_msg(sb, KERN_ERR, "can't mount with "
5445 "both data=journal and delalloc");
5446 err = -EINVAL;
5447 goto restore_opts;
5448 }
5449 if (test_opt(sb, DIOREAD_NOLOCK)) {
5450 ext4_msg(sb, KERN_ERR, "can't mount with "
5451 "both data=journal and dioread_nolock");
5452 err = -EINVAL;
5453 goto restore_opts;
5454 }
5455 if (test_opt(sb, DAX)) {
5456 ext4_msg(sb, KERN_ERR, "can't mount with "
5457 "both data=journal and dax");
5458 err = -EINVAL;
5459 goto restore_opts;
5460 }
5461 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5462 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5463 ext4_msg(sb, KERN_ERR, "can't mount with "
5464 "journal_async_commit in data=ordered mode");
5465 err = -EINVAL;
5466 goto restore_opts;
5467 }
5468 }
5469
5470 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5471 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5472 err = -EINVAL;
5473 goto restore_opts;
5474 }
5475
5476 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5477 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5478 "dax flag with busy inodes while remounting");
5479 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5480 }
5481
5482 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5483 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5484
5485 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5486 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5487
5488 es = sbi->s_es;
5489
5490 if (sbi->s_journal) {
5491 ext4_init_journal_params(sb, sbi->s_journal);
5492 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5493 }
5494
5495 if (*flags & SB_LAZYTIME)
5496 sb->s_flags |= SB_LAZYTIME;
5497
5498 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5499 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5500 err = -EROFS;
5501 goto restore_opts;
5502 }
5503
5504 if (*flags & SB_RDONLY) {
5505 err = sync_filesystem(sb);
5506 if (err < 0)
5507 goto restore_opts;
5508 err = dquot_suspend(sb, -1);
5509 if (err < 0)
5510 goto restore_opts;
5511
5512 /*
5513 * First of all, the unconditional stuff we have to do
5514 * to disable replay of the journal when we next remount
5515 */
5516 sb->s_flags |= SB_RDONLY;
5517
5518 /*
5519 * OK, test if we are remounting a valid rw partition
5520 * readonly, and if so set the rdonly flag and then
5521 * mark the partition as valid again.
5522 */
5523 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5524 (sbi->s_mount_state & EXT4_VALID_FS))
5525 es->s_state = cpu_to_le16(sbi->s_mount_state);
5526
5527 if (sbi->s_journal)
5528 ext4_mark_recovery_complete(sb, es);
5529 if (sbi->s_mmp_tsk)
5530 kthread_stop(sbi->s_mmp_tsk);
5531 } else {
5532 /* Make sure we can mount this feature set readwrite */
5533 if (ext4_has_feature_readonly(sb) ||
5534 !ext4_feature_set_ok(sb, 0)) {
5535 err = -EROFS;
5536 goto restore_opts;
5537 }
5538 /*
5539 * Make sure the group descriptor checksums
5540 * are sane. If they aren't, refuse to remount r/w.
5541 */
5542 for (g = 0; g < sbi->s_groups_count; g++) {
5543 struct ext4_group_desc *gdp =
5544 ext4_get_group_desc(sb, g, NULL);
5545
5546 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5547 ext4_msg(sb, KERN_ERR,
5548 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5549 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5550 le16_to_cpu(gdp->bg_checksum));
5551 err = -EFSBADCRC;
5552 goto restore_opts;
5553 }
5554 }
5555
5556 /*
5557 * If we have an unprocessed orphan list hanging
5558 * around from a previously readonly bdev mount,
5559 * require a full umount/remount for now.
5560 */
5561 if (es->s_last_orphan) {
5562 ext4_msg(sb, KERN_WARNING, "Couldn't "
5563 "remount RDWR because of unprocessed "
5564 "orphan inode list. Please "
5565 "umount/remount instead");
5566 err = -EINVAL;
5567 goto restore_opts;
5568 }
5569
5570 /*
5571 * Mounting a RDONLY partition read-write, so reread
5572 * and store the current valid flag. (It may have
5573 * been changed by e2fsck since we originally mounted
5574 * the partition.)
5575 */
5576 if (sbi->s_journal)
5577 ext4_clear_journal_err(sb, es);
5578 sbi->s_mount_state = le16_to_cpu(es->s_state);
5579
5580 err = ext4_setup_super(sb, es, 0);
5581 if (err)
5582 goto restore_opts;
5583
5584 sb->s_flags &= ~SB_RDONLY;
5585 if (ext4_has_feature_mmp(sb))
5586 if (ext4_multi_mount_protect(sb,
5587 le64_to_cpu(es->s_mmp_block))) {
5588 err = -EROFS;
5589 goto restore_opts;
5590 }
5591 enable_quota = 1;
5592 }
5593 }
5594
5595 /*
5596 * Reinitialize lazy itable initialization thread based on
5597 * current settings
5598 */
5599 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5600 ext4_unregister_li_request(sb);
5601 else {
5602 ext4_group_t first_not_zeroed;
5603 first_not_zeroed = ext4_has_uninit_itable(sb);
5604 ext4_register_li_request(sb, first_not_zeroed);
5605 }
5606
5607 ext4_setup_system_zone(sb);
5608 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5609 err = ext4_commit_super(sb, 1);
5610 if (err)
5611 goto restore_opts;
5612 }
5613
5614 #ifdef CONFIG_QUOTA
5615 /* Release old quota file names */
5616 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5617 kfree(old_opts.s_qf_names[i]);
5618 if (enable_quota) {
5619 if (sb_any_quota_suspended(sb))
5620 dquot_resume(sb, -1);
5621 else if (ext4_has_feature_quota(sb)) {
5622 err = ext4_enable_quotas(sb);
5623 if (err)
5624 goto restore_opts;
5625 }
5626 }
5627 #endif
5628
5629 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5630 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5631 kfree(orig_data);
5632 return 0;
5633
5634 restore_opts:
5635 sb->s_flags = old_sb_flags;
5636 sbi->s_mount_opt = old_opts.s_mount_opt;
5637 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5638 sbi->s_resuid = old_opts.s_resuid;
5639 sbi->s_resgid = old_opts.s_resgid;
5640 sbi->s_commit_interval = old_opts.s_commit_interval;
5641 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5642 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5643 #ifdef CONFIG_QUOTA
5644 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5645 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5646 to_free[i] = get_qf_name(sb, sbi, i);
5647 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5648 }
5649 synchronize_rcu();
5650 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5651 kfree(to_free[i]);
5652 #endif
5653 kfree(orig_data);
5654 return err;
5655 }
5656
5657 #ifdef CONFIG_QUOTA
5658 static int ext4_statfs_project(struct super_block *sb,
5659 kprojid_t projid, struct kstatfs *buf)
5660 {
5661 struct kqid qid;
5662 struct dquot *dquot;
5663 u64 limit;
5664 u64 curblock;
5665
5666 qid = make_kqid_projid(projid);
5667 dquot = dqget(sb, qid);
5668 if (IS_ERR(dquot))
5669 return PTR_ERR(dquot);
5670 spin_lock(&dquot->dq_dqb_lock);
5671
5672 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
5673 dquot->dq_dqb.dqb_bhardlimit);
5674 limit >>= sb->s_blocksize_bits;
5675
5676 if (limit && buf->f_blocks > limit) {
5677 curblock = (dquot->dq_dqb.dqb_curspace +
5678 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5679 buf->f_blocks = limit;
5680 buf->f_bfree = buf->f_bavail =
5681 (buf->f_blocks > curblock) ?
5682 (buf->f_blocks - curblock) : 0;
5683 }
5684
5685 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
5686 dquot->dq_dqb.dqb_ihardlimit);
5687 if (limit && buf->f_files > limit) {
5688 buf->f_files = limit;
5689 buf->f_ffree =
5690 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5691 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5692 }
5693
5694 spin_unlock(&dquot->dq_dqb_lock);
5695 dqput(dquot);
5696 return 0;
5697 }
5698 #endif
5699
5700 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5701 {
5702 struct super_block *sb = dentry->d_sb;
5703 struct ext4_sb_info *sbi = EXT4_SB(sb);
5704 struct ext4_super_block *es = sbi->s_es;
5705 ext4_fsblk_t overhead = 0, resv_blocks;
5706 u64 fsid;
5707 s64 bfree;
5708 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5709
5710 if (!test_opt(sb, MINIX_DF))
5711 overhead = sbi->s_overhead;
5712
5713 buf->f_type = EXT4_SUPER_MAGIC;
5714 buf->f_bsize = sb->s_blocksize;
5715 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5716 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5717 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5718 /* prevent underflow in case that few free space is available */
5719 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5720 buf->f_bavail = buf->f_bfree -
5721 (ext4_r_blocks_count(es) + resv_blocks);
5722 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5723 buf->f_bavail = 0;
5724 buf->f_files = le32_to_cpu(es->s_inodes_count);
5725 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5726 buf->f_namelen = EXT4_NAME_LEN;
5727 fsid = le64_to_cpup((void *)es->s_uuid) ^
5728 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5729 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5730 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5731
5732 #ifdef CONFIG_QUOTA
5733 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5734 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5735 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5736 #endif
5737 return 0;
5738 }
5739
5740
5741 #ifdef CONFIG_QUOTA
5742
5743 /*
5744 * Helper functions so that transaction is started before we acquire dqio_sem
5745 * to keep correct lock ordering of transaction > dqio_sem
5746 */
5747 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5748 {
5749 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5750 }
5751
5752 static int ext4_write_dquot(struct dquot *dquot)
5753 {
5754 int ret, err;
5755 handle_t *handle;
5756 struct inode *inode;
5757
5758 inode = dquot_to_inode(dquot);
5759 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5760 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5761 if (IS_ERR(handle))
5762 return PTR_ERR(handle);
5763 ret = dquot_commit(dquot);
5764 err = ext4_journal_stop(handle);
5765 if (!ret)
5766 ret = err;
5767 return ret;
5768 }
5769
5770 static int ext4_acquire_dquot(struct dquot *dquot)
5771 {
5772 int ret, err;
5773 handle_t *handle;
5774
5775 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5776 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5777 if (IS_ERR(handle))
5778 return PTR_ERR(handle);
5779 ret = dquot_acquire(dquot);
5780 err = ext4_journal_stop(handle);
5781 if (!ret)
5782 ret = err;
5783 return ret;
5784 }
5785
5786 static int ext4_release_dquot(struct dquot *dquot)
5787 {
5788 int ret, err;
5789 handle_t *handle;
5790
5791 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5792 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5793 if (IS_ERR(handle)) {
5794 /* Release dquot anyway to avoid endless cycle in dqput() */
5795 dquot_release(dquot);
5796 return PTR_ERR(handle);
5797 }
5798 ret = dquot_release(dquot);
5799 err = ext4_journal_stop(handle);
5800 if (!ret)
5801 ret = err;
5802 return ret;
5803 }
5804
5805 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5806 {
5807 struct super_block *sb = dquot->dq_sb;
5808 struct ext4_sb_info *sbi = EXT4_SB(sb);
5809
5810 /* Are we journaling quotas? */
5811 if (ext4_has_feature_quota(sb) ||
5812 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5813 dquot_mark_dquot_dirty(dquot);
5814 return ext4_write_dquot(dquot);
5815 } else {
5816 return dquot_mark_dquot_dirty(dquot);
5817 }
5818 }
5819
5820 static int ext4_write_info(struct super_block *sb, int type)
5821 {
5822 int ret, err;
5823 handle_t *handle;
5824
5825 /* Data block + inode block */
5826 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5827 if (IS_ERR(handle))
5828 return PTR_ERR(handle);
5829 ret = dquot_commit_info(sb, type);
5830 err = ext4_journal_stop(handle);
5831 if (!ret)
5832 ret = err;
5833 return ret;
5834 }
5835
5836 /*
5837 * Turn on quotas during mount time - we need to find
5838 * the quota file and such...
5839 */
5840 static int ext4_quota_on_mount(struct super_block *sb, int type)
5841 {
5842 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5843 EXT4_SB(sb)->s_jquota_fmt, type);
5844 }
5845
5846 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5847 {
5848 struct ext4_inode_info *ei = EXT4_I(inode);
5849
5850 /* The first argument of lockdep_set_subclass has to be
5851 * *exactly* the same as the argument to init_rwsem() --- in
5852 * this case, in init_once() --- or lockdep gets unhappy
5853 * because the name of the lock is set using the
5854 * stringification of the argument to init_rwsem().
5855 */
5856 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5857 lockdep_set_subclass(&ei->i_data_sem, subclass);
5858 }
5859
5860 /*
5861 * Standard function to be called on quota_on
5862 */
5863 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5864 const struct path *path)
5865 {
5866 int err;
5867
5868 if (!test_opt(sb, QUOTA))
5869 return -EINVAL;
5870
5871 /* Quotafile not on the same filesystem? */
5872 if (path->dentry->d_sb != sb)
5873 return -EXDEV;
5874 /* Journaling quota? */
5875 if (EXT4_SB(sb)->s_qf_names[type]) {
5876 /* Quotafile not in fs root? */
5877 if (path->dentry->d_parent != sb->s_root)
5878 ext4_msg(sb, KERN_WARNING,
5879 "Quota file not on filesystem root. "
5880 "Journaled quota will not work");
5881 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5882 } else {
5883 /*
5884 * Clear the flag just in case mount options changed since
5885 * last time.
5886 */
5887 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5888 }
5889
5890 /*
5891 * When we journal data on quota file, we have to flush journal to see
5892 * all updates to the file when we bypass pagecache...
5893 */
5894 if (EXT4_SB(sb)->s_journal &&
5895 ext4_should_journal_data(d_inode(path->dentry))) {
5896 /*
5897 * We don't need to lock updates but journal_flush() could
5898 * otherwise be livelocked...
5899 */
5900 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5901 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5902 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5903 if (err)
5904 return err;
5905 }
5906
5907 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5908 err = dquot_quota_on(sb, type, format_id, path);
5909 if (err) {
5910 lockdep_set_quota_inode(path->dentry->d_inode,
5911 I_DATA_SEM_NORMAL);
5912 } else {
5913 struct inode *inode = d_inode(path->dentry);
5914 handle_t *handle;
5915
5916 /*
5917 * Set inode flags to prevent userspace from messing with quota
5918 * files. If this fails, we return success anyway since quotas
5919 * are already enabled and this is not a hard failure.
5920 */
5921 inode_lock(inode);
5922 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5923 if (IS_ERR(handle))
5924 goto unlock_inode;
5925 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5926 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5927 S_NOATIME | S_IMMUTABLE);
5928 ext4_mark_inode_dirty(handle, inode);
5929 ext4_journal_stop(handle);
5930 unlock_inode:
5931 inode_unlock(inode);
5932 }
5933 return err;
5934 }
5935
5936 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5937 unsigned int flags)
5938 {
5939 int err;
5940 struct inode *qf_inode;
5941 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5942 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5943 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5944 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5945 };
5946
5947 BUG_ON(!ext4_has_feature_quota(sb));
5948
5949 if (!qf_inums[type])
5950 return -EPERM;
5951
5952 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5953 if (IS_ERR(qf_inode)) {
5954 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5955 return PTR_ERR(qf_inode);
5956 }
5957
5958 /* Don't account quota for quota files to avoid recursion */
5959 qf_inode->i_flags |= S_NOQUOTA;
5960 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5961 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
5962 if (err)
5963 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5964 iput(qf_inode);
5965
5966 return err;
5967 }
5968
5969 /* Enable usage tracking for all quota types. */
5970 static int ext4_enable_quotas(struct super_block *sb)
5971 {
5972 int type, err = 0;
5973 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5974 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5975 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5976 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5977 };
5978 bool quota_mopt[EXT4_MAXQUOTAS] = {
5979 test_opt(sb, USRQUOTA),
5980 test_opt(sb, GRPQUOTA),
5981 test_opt(sb, PRJQUOTA),
5982 };
5983
5984 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5985 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5986 if (qf_inums[type]) {
5987 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5988 DQUOT_USAGE_ENABLED |
5989 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5990 if (err) {
5991 ext4_warning(sb,
5992 "Failed to enable quota tracking "
5993 "(type=%d, err=%d). Please run "
5994 "e2fsck to fix.", type, err);
5995 for (type--; type >= 0; type--)
5996 dquot_quota_off(sb, type);
5997
5998 return err;
5999 }
6000 }
6001 }
6002 return 0;
6003 }
6004
6005 static int ext4_quota_off(struct super_block *sb, int type)
6006 {
6007 struct inode *inode = sb_dqopt(sb)->files[type];
6008 handle_t *handle;
6009 int err;
6010
6011 /* Force all delayed allocation blocks to be allocated.
6012 * Caller already holds s_umount sem */
6013 if (test_opt(sb, DELALLOC))
6014 sync_filesystem(sb);
6015
6016 if (!inode || !igrab(inode))
6017 goto out;
6018
6019 err = dquot_quota_off(sb, type);
6020 if (err || ext4_has_feature_quota(sb))
6021 goto out_put;
6022
6023 inode_lock(inode);
6024 /*
6025 * Update modification times of quota files when userspace can
6026 * start looking at them. If we fail, we return success anyway since
6027 * this is not a hard failure and quotas are already disabled.
6028 */
6029 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6030 if (IS_ERR(handle))
6031 goto out_unlock;
6032 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6033 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6034 inode->i_mtime = inode->i_ctime = current_time(inode);
6035 ext4_mark_inode_dirty(handle, inode);
6036 ext4_journal_stop(handle);
6037 out_unlock:
6038 inode_unlock(inode);
6039 out_put:
6040 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6041 iput(inode);
6042 return err;
6043 out:
6044 return dquot_quota_off(sb, type);
6045 }
6046
6047 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6048 * acquiring the locks... As quota files are never truncated and quota code
6049 * itself serializes the operations (and no one else should touch the files)
6050 * we don't have to be afraid of races */
6051 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6052 size_t len, loff_t off)
6053 {
6054 struct inode *inode = sb_dqopt(sb)->files[type];
6055 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6056 int offset = off & (sb->s_blocksize - 1);
6057 int tocopy;
6058 size_t toread;
6059 struct buffer_head *bh;
6060 loff_t i_size = i_size_read(inode);
6061
6062 if (off > i_size)
6063 return 0;
6064 if (off+len > i_size)
6065 len = i_size-off;
6066 toread = len;
6067 while (toread > 0) {
6068 tocopy = sb->s_blocksize - offset < toread ?
6069 sb->s_blocksize - offset : toread;
6070 bh = ext4_bread(NULL, inode, blk, 0);
6071 if (IS_ERR(bh))
6072 return PTR_ERR(bh);
6073 if (!bh) /* A hole? */
6074 memset(data, 0, tocopy);
6075 else
6076 memcpy(data, bh->b_data+offset, tocopy);
6077 brelse(bh);
6078 offset = 0;
6079 toread -= tocopy;
6080 data += tocopy;
6081 blk++;
6082 }
6083 return len;
6084 }
6085
6086 /* Write to quotafile (we know the transaction is already started and has
6087 * enough credits) */
6088 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6089 const char *data, size_t len, loff_t off)
6090 {
6091 struct inode *inode = sb_dqopt(sb)->files[type];
6092 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6093 int err, offset = off & (sb->s_blocksize - 1);
6094 int retries = 0;
6095 struct buffer_head *bh;
6096 handle_t *handle = journal_current_handle();
6097
6098 if (EXT4_SB(sb)->s_journal && !handle) {
6099 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6100 " cancelled because transaction is not started",
6101 (unsigned long long)off, (unsigned long long)len);
6102 return -EIO;
6103 }
6104 /*
6105 * Since we account only one data block in transaction credits,
6106 * then it is impossible to cross a block boundary.
6107 */
6108 if (sb->s_blocksize - offset < len) {
6109 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6110 " cancelled because not block aligned",
6111 (unsigned long long)off, (unsigned long long)len);
6112 return -EIO;
6113 }
6114
6115 do {
6116 bh = ext4_bread(handle, inode, blk,
6117 EXT4_GET_BLOCKS_CREATE |
6118 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6119 } while (PTR_ERR(bh) == -ENOSPC &&
6120 ext4_should_retry_alloc(inode->i_sb, &retries));
6121 if (IS_ERR(bh))
6122 return PTR_ERR(bh);
6123 if (!bh)
6124 goto out;
6125 BUFFER_TRACE(bh, "get write access");
6126 err = ext4_journal_get_write_access(handle, bh);
6127 if (err) {
6128 brelse(bh);
6129 return err;
6130 }
6131 lock_buffer(bh);
6132 memcpy(bh->b_data+offset, data, len);
6133 flush_dcache_page(bh->b_page);
6134 unlock_buffer(bh);
6135 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6136 brelse(bh);
6137 out:
6138 if (inode->i_size < off + len) {
6139 i_size_write(inode, off + len);
6140 EXT4_I(inode)->i_disksize = inode->i_size;
6141 ext4_mark_inode_dirty(handle, inode);
6142 }
6143 return len;
6144 }
6145 #endif
6146
6147 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6148 const char *dev_name, void *data)
6149 {
6150 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6151 }
6152
6153 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6154 static inline void register_as_ext2(void)
6155 {
6156 int err = register_filesystem(&ext2_fs_type);
6157 if (err)
6158 printk(KERN_WARNING
6159 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6160 }
6161
6162 static inline void unregister_as_ext2(void)
6163 {
6164 unregister_filesystem(&ext2_fs_type);
6165 }
6166
6167 static inline int ext2_feature_set_ok(struct super_block *sb)
6168 {
6169 if (ext4_has_unknown_ext2_incompat_features(sb))
6170 return 0;
6171 if (sb_rdonly(sb))
6172 return 1;
6173 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6174 return 0;
6175 return 1;
6176 }
6177 #else
6178 static inline void register_as_ext2(void) { }
6179 static inline void unregister_as_ext2(void) { }
6180 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6181 #endif
6182
6183 static inline void register_as_ext3(void)
6184 {
6185 int err = register_filesystem(&ext3_fs_type);
6186 if (err)
6187 printk(KERN_WARNING
6188 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6189 }
6190
6191 static inline void unregister_as_ext3(void)
6192 {
6193 unregister_filesystem(&ext3_fs_type);
6194 }
6195
6196 static inline int ext3_feature_set_ok(struct super_block *sb)
6197 {
6198 if (ext4_has_unknown_ext3_incompat_features(sb))
6199 return 0;
6200 if (!ext4_has_feature_journal(sb))
6201 return 0;
6202 if (sb_rdonly(sb))
6203 return 1;
6204 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6205 return 0;
6206 return 1;
6207 }
6208
6209 static struct file_system_type ext4_fs_type = {
6210 .owner = THIS_MODULE,
6211 .name = "ext4",
6212 .mount = ext4_mount,
6213 .kill_sb = kill_block_super,
6214 .fs_flags = FS_REQUIRES_DEV,
6215 };
6216 MODULE_ALIAS_FS("ext4");
6217
6218 /* Shared across all ext4 file systems */
6219 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6220
6221 static int __init ext4_init_fs(void)
6222 {
6223 int i, err;
6224
6225 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6226 ext4_li_info = NULL;
6227 mutex_init(&ext4_li_mtx);
6228
6229 /* Build-time check for flags consistency */
6230 ext4_check_flag_values();
6231
6232 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6233 init_waitqueue_head(&ext4__ioend_wq[i]);
6234
6235 err = ext4_init_es();
6236 if (err)
6237 return err;
6238
6239 err = ext4_init_pending();
6240 if (err)
6241 goto out7;
6242
6243 err = ext4_init_post_read_processing();
6244 if (err)
6245 goto out6;
6246
6247 err = ext4_init_pageio();
6248 if (err)
6249 goto out5;
6250
6251 err = ext4_init_system_zone();
6252 if (err)
6253 goto out4;
6254
6255 err = ext4_init_sysfs();
6256 if (err)
6257 goto out3;
6258
6259 err = ext4_init_mballoc();
6260 if (err)
6261 goto out2;
6262 err = init_inodecache();
6263 if (err)
6264 goto out1;
6265 register_as_ext3();
6266 register_as_ext2();
6267 err = register_filesystem(&ext4_fs_type);
6268 if (err)
6269 goto out;
6270
6271 return 0;
6272 out:
6273 unregister_as_ext2();
6274 unregister_as_ext3();
6275 destroy_inodecache();
6276 out1:
6277 ext4_exit_mballoc();
6278 out2:
6279 ext4_exit_sysfs();
6280 out3:
6281 ext4_exit_system_zone();
6282 out4:
6283 ext4_exit_pageio();
6284 out5:
6285 ext4_exit_post_read_processing();
6286 out6:
6287 ext4_exit_pending();
6288 out7:
6289 ext4_exit_es();
6290
6291 return err;
6292 }
6293
6294 static void __exit ext4_exit_fs(void)
6295 {
6296 ext4_destroy_lazyinit_thread();
6297 unregister_as_ext2();
6298 unregister_as_ext3();
6299 unregister_filesystem(&ext4_fs_type);
6300 destroy_inodecache();
6301 ext4_exit_mballoc();
6302 ext4_exit_sysfs();
6303 ext4_exit_system_zone();
6304 ext4_exit_pageio();
6305 ext4_exit_post_read_processing();
6306 ext4_exit_es();
6307 ext4_exit_pending();
6308 }
6309
6310 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6311 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6312 MODULE_LICENSE("GPL");
6313 MODULE_SOFTDEP("pre: crc32c");
6314 module_init(ext4_init_fs)
6315 module_exit(ext4_exit_fs)