]> git.ipfire.org Git - people/ms/linux.git/blob - fs/ext4/super.c
of/fdt: Add mutex protection for calls to __unflatten_device_tree()
[people/ms/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static int ext4_mballoc_ready;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82
83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
84 static struct file_system_type ext2_fs_type = {
85 .owner = THIS_MODULE,
86 .name = "ext2",
87 .mount = ext4_mount,
88 .kill_sb = kill_block_super,
89 .fs_flags = FS_REQUIRES_DEV,
90 };
91 MODULE_ALIAS_FS("ext2");
92 MODULE_ALIAS("ext2");
93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
94 #else
95 #define IS_EXT2_SB(sb) (0)
96 #endif
97
98
99 static struct file_system_type ext3_fs_type = {
100 .owner = THIS_MODULE,
101 .name = "ext3",
102 .mount = ext4_mount,
103 .kill_sb = kill_block_super,
104 .fs_flags = FS_REQUIRES_DEV,
105 };
106 MODULE_ALIAS_FS("ext3");
107 MODULE_ALIAS("ext3");
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109
110 static int ext4_verify_csum_type(struct super_block *sb,
111 struct ext4_super_block *es)
112 {
113 if (!ext4_has_feature_metadata_csum(sb))
114 return 1;
115
116 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
117 }
118
119 static __le32 ext4_superblock_csum(struct super_block *sb,
120 struct ext4_super_block *es)
121 {
122 struct ext4_sb_info *sbi = EXT4_SB(sb);
123 int offset = offsetof(struct ext4_super_block, s_checksum);
124 __u32 csum;
125
126 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
127
128 return cpu_to_le32(csum);
129 }
130
131 static int ext4_superblock_csum_verify(struct super_block *sb,
132 struct ext4_super_block *es)
133 {
134 if (!ext4_has_metadata_csum(sb))
135 return 1;
136
137 return es->s_checksum == ext4_superblock_csum(sb, es);
138 }
139
140 void ext4_superblock_csum_set(struct super_block *sb)
141 {
142 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
143
144 if (!ext4_has_metadata_csum(sb))
145 return;
146
147 es->s_checksum = ext4_superblock_csum(sb, es);
148 }
149
150 void *ext4_kvmalloc(size_t size, gfp_t flags)
151 {
152 void *ret;
153
154 ret = kmalloc(size, flags | __GFP_NOWARN);
155 if (!ret)
156 ret = __vmalloc(size, flags, PAGE_KERNEL);
157 return ret;
158 }
159
160 void *ext4_kvzalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kzalloc(size, flags | __GFP_NOWARN);
165 if (!ret)
166 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
167 return ret;
168 }
169
170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
171 struct ext4_group_desc *bg)
172 {
173 return le32_to_cpu(bg->bg_block_bitmap_lo) |
174 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
175 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
176 }
177
178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
179 struct ext4_group_desc *bg)
180 {
181 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
184 }
185
186 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_inode_table_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
192 }
193
194 __u32 ext4_free_group_clusters(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
200 }
201
202 __u32 ext4_free_inodes_count(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
208 }
209
210 __u32 ext4_used_dirs_count(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_itable_unused_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_itable_unused_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
224 }
225
226 void ext4_block_bitmap_set(struct super_block *sb,
227 struct ext4_group_desc *bg, ext4_fsblk_t blk)
228 {
229 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
230 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
231 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
232 }
233
234 void ext4_inode_bitmap_set(struct super_block *sb,
235 struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241
242 void ext4_inode_table_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_free_group_clusters_set(struct super_block *sb,
251 struct ext4_group_desc *bg, __u32 count)
252 {
253 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
256 }
257
258 void ext4_free_inodes_set(struct super_block *sb,
259 struct ext4_group_desc *bg, __u32 count)
260 {
261 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
264 }
265
266 void ext4_used_dirs_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_itable_unused_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
280 }
281
282
283 static void __save_error_info(struct super_block *sb, const char *func,
284 unsigned int line)
285 {
286 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
287
288 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
289 if (bdev_read_only(sb->s_bdev))
290 return;
291 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
292 es->s_last_error_time = cpu_to_le32(get_seconds());
293 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
294 es->s_last_error_line = cpu_to_le32(line);
295 if (!es->s_first_error_time) {
296 es->s_first_error_time = es->s_last_error_time;
297 strncpy(es->s_first_error_func, func,
298 sizeof(es->s_first_error_func));
299 es->s_first_error_line = cpu_to_le32(line);
300 es->s_first_error_ino = es->s_last_error_ino;
301 es->s_first_error_block = es->s_last_error_block;
302 }
303 /*
304 * Start the daily error reporting function if it hasn't been
305 * started already
306 */
307 if (!es->s_error_count)
308 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
309 le32_add_cpu(&es->s_error_count, 1);
310 }
311
312 static void save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314 {
315 __save_error_info(sb, func, line);
316 ext4_commit_super(sb, 1);
317 }
318
319 /*
320 * The del_gendisk() function uninitializes the disk-specific data
321 * structures, including the bdi structure, without telling anyone
322 * else. Once this happens, any attempt to call mark_buffer_dirty()
323 * (for example, by ext4_commit_super), will cause a kernel OOPS.
324 * This is a kludge to prevent these oops until we can put in a proper
325 * hook in del_gendisk() to inform the VFS and file system layers.
326 */
327 static int block_device_ejected(struct super_block *sb)
328 {
329 struct inode *bd_inode = sb->s_bdev->bd_inode;
330 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
331
332 return bdi->dev == NULL;
333 }
334
335 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
336 {
337 struct super_block *sb = journal->j_private;
338 struct ext4_sb_info *sbi = EXT4_SB(sb);
339 int error = is_journal_aborted(journal);
340 struct ext4_journal_cb_entry *jce;
341
342 BUG_ON(txn->t_state == T_FINISHED);
343 spin_lock(&sbi->s_md_lock);
344 while (!list_empty(&txn->t_private_list)) {
345 jce = list_entry(txn->t_private_list.next,
346 struct ext4_journal_cb_entry, jce_list);
347 list_del_init(&jce->jce_list);
348 spin_unlock(&sbi->s_md_lock);
349 jce->jce_func(sb, jce, error);
350 spin_lock(&sbi->s_md_lock);
351 }
352 spin_unlock(&sbi->s_md_lock);
353 }
354
355 /* Deal with the reporting of failure conditions on a filesystem such as
356 * inconsistencies detected or read IO failures.
357 *
358 * On ext2, we can store the error state of the filesystem in the
359 * superblock. That is not possible on ext4, because we may have other
360 * write ordering constraints on the superblock which prevent us from
361 * writing it out straight away; and given that the journal is about to
362 * be aborted, we can't rely on the current, or future, transactions to
363 * write out the superblock safely.
364 *
365 * We'll just use the jbd2_journal_abort() error code to record an error in
366 * the journal instead. On recovery, the journal will complain about
367 * that error until we've noted it down and cleared it.
368 */
369
370 static void ext4_handle_error(struct super_block *sb)
371 {
372 if (sb->s_flags & MS_RDONLY)
373 return;
374
375 if (!test_opt(sb, ERRORS_CONT)) {
376 journal_t *journal = EXT4_SB(sb)->s_journal;
377
378 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
379 if (journal)
380 jbd2_journal_abort(journal, -EIO);
381 }
382 if (test_opt(sb, ERRORS_RO)) {
383 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
384 /*
385 * Make sure updated value of ->s_mount_flags will be visible
386 * before ->s_flags update
387 */
388 smp_wmb();
389 sb->s_flags |= MS_RDONLY;
390 }
391 if (test_opt(sb, ERRORS_PANIC)) {
392 if (EXT4_SB(sb)->s_journal &&
393 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
394 return;
395 panic("EXT4-fs (device %s): panic forced after error\n",
396 sb->s_id);
397 }
398 }
399
400 #define ext4_error_ratelimit(sb) \
401 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
402 "EXT4-fs error")
403
404 void __ext4_error(struct super_block *sb, const char *function,
405 unsigned int line, const char *fmt, ...)
406 {
407 struct va_format vaf;
408 va_list args;
409
410 if (ext4_error_ratelimit(sb)) {
411 va_start(args, fmt);
412 vaf.fmt = fmt;
413 vaf.va = &args;
414 printk(KERN_CRIT
415 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
416 sb->s_id, function, line, current->comm, &vaf);
417 va_end(args);
418 }
419 save_error_info(sb, function, line);
420 ext4_handle_error(sb);
421 }
422
423 void __ext4_error_inode(struct inode *inode, const char *function,
424 unsigned int line, ext4_fsblk_t block,
425 const char *fmt, ...)
426 {
427 va_list args;
428 struct va_format vaf;
429 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
430
431 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
432 es->s_last_error_block = cpu_to_le64(block);
433 if (ext4_error_ratelimit(inode->i_sb)) {
434 va_start(args, fmt);
435 vaf.fmt = fmt;
436 vaf.va = &args;
437 if (block)
438 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
439 "inode #%lu: block %llu: comm %s: %pV\n",
440 inode->i_sb->s_id, function, line, inode->i_ino,
441 block, current->comm, &vaf);
442 else
443 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
444 "inode #%lu: comm %s: %pV\n",
445 inode->i_sb->s_id, function, line, inode->i_ino,
446 current->comm, &vaf);
447 va_end(args);
448 }
449 save_error_info(inode->i_sb, function, line);
450 ext4_handle_error(inode->i_sb);
451 }
452
453 void __ext4_error_file(struct file *file, const char *function,
454 unsigned int line, ext4_fsblk_t block,
455 const char *fmt, ...)
456 {
457 va_list args;
458 struct va_format vaf;
459 struct ext4_super_block *es;
460 struct inode *inode = file_inode(file);
461 char pathname[80], *path;
462
463 es = EXT4_SB(inode->i_sb)->s_es;
464 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
465 if (ext4_error_ratelimit(inode->i_sb)) {
466 path = file_path(file, pathname, sizeof(pathname));
467 if (IS_ERR(path))
468 path = "(unknown)";
469 va_start(args, fmt);
470 vaf.fmt = fmt;
471 vaf.va = &args;
472 if (block)
473 printk(KERN_CRIT
474 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
475 "block %llu: comm %s: path %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 block, current->comm, path, &vaf);
478 else
479 printk(KERN_CRIT
480 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
481 "comm %s: path %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 current->comm, path, &vaf);
484 va_end(args);
485 }
486 save_error_info(inode->i_sb, function, line);
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EFSCORRUPTED:
497 errstr = "Corrupt filesystem";
498 break;
499 case -EFSBADCRC:
500 errstr = "Filesystem failed CRC";
501 break;
502 case -EIO:
503 errstr = "IO failure";
504 break;
505 case -ENOMEM:
506 errstr = "Out of memory";
507 break;
508 case -EROFS:
509 if (!sb || (EXT4_SB(sb)->s_journal &&
510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
511 errstr = "Journal has aborted";
512 else
513 errstr = "Readonly filesystem";
514 break;
515 default:
516 /* If the caller passed in an extra buffer for unknown
517 * errors, textualise them now. Else we just return
518 * NULL. */
519 if (nbuf) {
520 /* Check for truncated error codes... */
521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
522 errstr = nbuf;
523 }
524 break;
525 }
526
527 return errstr;
528 }
529
530 /* __ext4_std_error decodes expected errors from journaling functions
531 * automatically and invokes the appropriate error response. */
532
533 void __ext4_std_error(struct super_block *sb, const char *function,
534 unsigned int line, int errno)
535 {
536 char nbuf[16];
537 const char *errstr;
538
539 /* Special case: if the error is EROFS, and we're not already
540 * inside a transaction, then there's really no point in logging
541 * an error. */
542 if (errno == -EROFS && journal_current_handle() == NULL &&
543 (sb->s_flags & MS_RDONLY))
544 return;
545
546 if (ext4_error_ratelimit(sb)) {
547 errstr = ext4_decode_error(sb, errno, nbuf);
548 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
549 sb->s_id, function, line, errstr);
550 }
551
552 save_error_info(sb, function, line);
553 ext4_handle_error(sb);
554 }
555
556 /*
557 * ext4_abort is a much stronger failure handler than ext4_error. The
558 * abort function may be used to deal with unrecoverable failures such
559 * as journal IO errors or ENOMEM at a critical moment in log management.
560 *
561 * We unconditionally force the filesystem into an ABORT|READONLY state,
562 * unless the error response on the fs has been set to panic in which
563 * case we take the easy way out and panic immediately.
564 */
565
566 void __ext4_abort(struct super_block *sb, const char *function,
567 unsigned int line, const char *fmt, ...)
568 {
569 va_list args;
570
571 save_error_info(sb, function, line);
572 va_start(args, fmt);
573 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
574 function, line);
575 vprintk(fmt, args);
576 printk("\n");
577 va_end(args);
578
579 if ((sb->s_flags & MS_RDONLY) == 0) {
580 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
581 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
582 /*
583 * Make sure updated value of ->s_mount_flags will be visible
584 * before ->s_flags update
585 */
586 smp_wmb();
587 sb->s_flags |= MS_RDONLY;
588 if (EXT4_SB(sb)->s_journal)
589 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
590 save_error_info(sb, function, line);
591 }
592 if (test_opt(sb, ERRORS_PANIC)) {
593 if (EXT4_SB(sb)->s_journal &&
594 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
595 return;
596 panic("EXT4-fs panic from previous error\n");
597 }
598 }
599
600 void __ext4_msg(struct super_block *sb,
601 const char *prefix, const char *fmt, ...)
602 {
603 struct va_format vaf;
604 va_list args;
605
606 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
607 return;
608
609 va_start(args, fmt);
610 vaf.fmt = fmt;
611 vaf.va = &args;
612 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
613 va_end(args);
614 }
615
616 #define ext4_warning_ratelimit(sb) \
617 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
618 "EXT4-fs warning")
619
620 void __ext4_warning(struct super_block *sb, const char *function,
621 unsigned int line, const char *fmt, ...)
622 {
623 struct va_format vaf;
624 va_list args;
625
626 if (!ext4_warning_ratelimit(sb))
627 return;
628
629 va_start(args, fmt);
630 vaf.fmt = fmt;
631 vaf.va = &args;
632 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
633 sb->s_id, function, line, &vaf);
634 va_end(args);
635 }
636
637 void __ext4_warning_inode(const struct inode *inode, const char *function,
638 unsigned int line, const char *fmt, ...)
639 {
640 struct va_format vaf;
641 va_list args;
642
643 if (!ext4_warning_ratelimit(inode->i_sb))
644 return;
645
646 va_start(args, fmt);
647 vaf.fmt = fmt;
648 vaf.va = &args;
649 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
650 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
651 function, line, inode->i_ino, current->comm, &vaf);
652 va_end(args);
653 }
654
655 void __ext4_grp_locked_error(const char *function, unsigned int line,
656 struct super_block *sb, ext4_group_t grp,
657 unsigned long ino, ext4_fsblk_t block,
658 const char *fmt, ...)
659 __releases(bitlock)
660 __acquires(bitlock)
661 {
662 struct va_format vaf;
663 va_list args;
664 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
665
666 es->s_last_error_ino = cpu_to_le32(ino);
667 es->s_last_error_block = cpu_to_le64(block);
668 __save_error_info(sb, function, line);
669
670 if (ext4_error_ratelimit(sb)) {
671 va_start(args, fmt);
672 vaf.fmt = fmt;
673 vaf.va = &args;
674 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
675 sb->s_id, function, line, grp);
676 if (ino)
677 printk(KERN_CONT "inode %lu: ", ino);
678 if (block)
679 printk(KERN_CONT "block %llu:",
680 (unsigned long long) block);
681 printk(KERN_CONT "%pV\n", &vaf);
682 va_end(args);
683 }
684
685 if (test_opt(sb, ERRORS_CONT)) {
686 ext4_commit_super(sb, 0);
687 return;
688 }
689
690 ext4_unlock_group(sb, grp);
691 ext4_handle_error(sb);
692 /*
693 * We only get here in the ERRORS_RO case; relocking the group
694 * may be dangerous, but nothing bad will happen since the
695 * filesystem will have already been marked read/only and the
696 * journal has been aborted. We return 1 as a hint to callers
697 * who might what to use the return value from
698 * ext4_grp_locked_error() to distinguish between the
699 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
700 * aggressively from the ext4 function in question, with a
701 * more appropriate error code.
702 */
703 ext4_lock_group(sb, grp);
704 return;
705 }
706
707 void ext4_update_dynamic_rev(struct super_block *sb)
708 {
709 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
710
711 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
712 return;
713
714 ext4_warning(sb,
715 "updating to rev %d because of new feature flag, "
716 "running e2fsck is recommended",
717 EXT4_DYNAMIC_REV);
718
719 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
720 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
721 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
722 /* leave es->s_feature_*compat flags alone */
723 /* es->s_uuid will be set by e2fsck if empty */
724
725 /*
726 * The rest of the superblock fields should be zero, and if not it
727 * means they are likely already in use, so leave them alone. We
728 * can leave it up to e2fsck to clean up any inconsistencies there.
729 */
730 }
731
732 /*
733 * Open the external journal device
734 */
735 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
736 {
737 struct block_device *bdev;
738 char b[BDEVNAME_SIZE];
739
740 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
741 if (IS_ERR(bdev))
742 goto fail;
743 return bdev;
744
745 fail:
746 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
747 __bdevname(dev, b), PTR_ERR(bdev));
748 return NULL;
749 }
750
751 /*
752 * Release the journal device
753 */
754 static void ext4_blkdev_put(struct block_device *bdev)
755 {
756 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
757 }
758
759 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
760 {
761 struct block_device *bdev;
762 bdev = sbi->journal_bdev;
763 if (bdev) {
764 ext4_blkdev_put(bdev);
765 sbi->journal_bdev = NULL;
766 }
767 }
768
769 static inline struct inode *orphan_list_entry(struct list_head *l)
770 {
771 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
772 }
773
774 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
775 {
776 struct list_head *l;
777
778 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
779 le32_to_cpu(sbi->s_es->s_last_orphan));
780
781 printk(KERN_ERR "sb_info orphan list:\n");
782 list_for_each(l, &sbi->s_orphan) {
783 struct inode *inode = orphan_list_entry(l);
784 printk(KERN_ERR " "
785 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
786 inode->i_sb->s_id, inode->i_ino, inode,
787 inode->i_mode, inode->i_nlink,
788 NEXT_ORPHAN(inode));
789 }
790 }
791
792 static void ext4_put_super(struct super_block *sb)
793 {
794 struct ext4_sb_info *sbi = EXT4_SB(sb);
795 struct ext4_super_block *es = sbi->s_es;
796 int i, err;
797
798 ext4_unregister_li_request(sb);
799 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
800
801 flush_workqueue(sbi->rsv_conversion_wq);
802 destroy_workqueue(sbi->rsv_conversion_wq);
803
804 if (sbi->s_journal) {
805 err = jbd2_journal_destroy(sbi->s_journal);
806 sbi->s_journal = NULL;
807 if (err < 0)
808 ext4_abort(sb, "Couldn't clean up the journal");
809 }
810
811 ext4_unregister_sysfs(sb);
812 ext4_es_unregister_shrinker(sbi);
813 del_timer_sync(&sbi->s_err_report);
814 ext4_release_system_zone(sb);
815 ext4_mb_release(sb);
816 ext4_ext_release(sb);
817 ext4_xattr_put_super(sb);
818
819 if (!(sb->s_flags & MS_RDONLY)) {
820 ext4_clear_feature_journal_needs_recovery(sb);
821 es->s_state = cpu_to_le16(sbi->s_mount_state);
822 }
823 if (!(sb->s_flags & MS_RDONLY))
824 ext4_commit_super(sb, 1);
825
826 for (i = 0; i < sbi->s_gdb_count; i++)
827 brelse(sbi->s_group_desc[i]);
828 kvfree(sbi->s_group_desc);
829 kvfree(sbi->s_flex_groups);
830 percpu_counter_destroy(&sbi->s_freeclusters_counter);
831 percpu_counter_destroy(&sbi->s_freeinodes_counter);
832 percpu_counter_destroy(&sbi->s_dirs_counter);
833 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
834 brelse(sbi->s_sbh);
835 #ifdef CONFIG_QUOTA
836 for (i = 0; i < EXT4_MAXQUOTAS; i++)
837 kfree(sbi->s_qf_names[i]);
838 #endif
839
840 /* Debugging code just in case the in-memory inode orphan list
841 * isn't empty. The on-disk one can be non-empty if we've
842 * detected an error and taken the fs readonly, but the
843 * in-memory list had better be clean by this point. */
844 if (!list_empty(&sbi->s_orphan))
845 dump_orphan_list(sb, sbi);
846 J_ASSERT(list_empty(&sbi->s_orphan));
847
848 sync_blockdev(sb->s_bdev);
849 invalidate_bdev(sb->s_bdev);
850 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
851 /*
852 * Invalidate the journal device's buffers. We don't want them
853 * floating about in memory - the physical journal device may
854 * hotswapped, and it breaks the `ro-after' testing code.
855 */
856 sync_blockdev(sbi->journal_bdev);
857 invalidate_bdev(sbi->journal_bdev);
858 ext4_blkdev_remove(sbi);
859 }
860 if (sbi->s_mb_cache) {
861 ext4_xattr_destroy_cache(sbi->s_mb_cache);
862 sbi->s_mb_cache = NULL;
863 }
864 if (sbi->s_mmp_tsk)
865 kthread_stop(sbi->s_mmp_tsk);
866 sb->s_fs_info = NULL;
867 /*
868 * Now that we are completely done shutting down the
869 * superblock, we need to actually destroy the kobject.
870 */
871 kobject_put(&sbi->s_kobj);
872 wait_for_completion(&sbi->s_kobj_unregister);
873 if (sbi->s_chksum_driver)
874 crypto_free_shash(sbi->s_chksum_driver);
875 kfree(sbi->s_blockgroup_lock);
876 kfree(sbi);
877 }
878
879 static struct kmem_cache *ext4_inode_cachep;
880
881 /*
882 * Called inside transaction, so use GFP_NOFS
883 */
884 static struct inode *ext4_alloc_inode(struct super_block *sb)
885 {
886 struct ext4_inode_info *ei;
887
888 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
889 if (!ei)
890 return NULL;
891
892 ei->vfs_inode.i_version = 1;
893 spin_lock_init(&ei->i_raw_lock);
894 INIT_LIST_HEAD(&ei->i_prealloc_list);
895 spin_lock_init(&ei->i_prealloc_lock);
896 ext4_es_init_tree(&ei->i_es_tree);
897 rwlock_init(&ei->i_es_lock);
898 INIT_LIST_HEAD(&ei->i_es_list);
899 ei->i_es_all_nr = 0;
900 ei->i_es_shk_nr = 0;
901 ei->i_es_shrink_lblk = 0;
902 ei->i_reserved_data_blocks = 0;
903 ei->i_reserved_meta_blocks = 0;
904 ei->i_allocated_meta_blocks = 0;
905 ei->i_da_metadata_calc_len = 0;
906 ei->i_da_metadata_calc_last_lblock = 0;
907 spin_lock_init(&(ei->i_block_reservation_lock));
908 #ifdef CONFIG_QUOTA
909 ei->i_reserved_quota = 0;
910 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
911 #endif
912 ei->jinode = NULL;
913 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
914 spin_lock_init(&ei->i_completed_io_lock);
915 ei->i_sync_tid = 0;
916 ei->i_datasync_tid = 0;
917 atomic_set(&ei->i_ioend_count, 0);
918 atomic_set(&ei->i_unwritten, 0);
919 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
920 #ifdef CONFIG_EXT4_FS_ENCRYPTION
921 ei->i_crypt_info = NULL;
922 #endif
923 return &ei->vfs_inode;
924 }
925
926 static int ext4_drop_inode(struct inode *inode)
927 {
928 int drop = generic_drop_inode(inode);
929
930 trace_ext4_drop_inode(inode, drop);
931 return drop;
932 }
933
934 static void ext4_i_callback(struct rcu_head *head)
935 {
936 struct inode *inode = container_of(head, struct inode, i_rcu);
937 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
938 }
939
940 static void ext4_destroy_inode(struct inode *inode)
941 {
942 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
943 ext4_msg(inode->i_sb, KERN_ERR,
944 "Inode %lu (%p): orphan list check failed!",
945 inode->i_ino, EXT4_I(inode));
946 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
947 EXT4_I(inode), sizeof(struct ext4_inode_info),
948 true);
949 dump_stack();
950 }
951 call_rcu(&inode->i_rcu, ext4_i_callback);
952 }
953
954 static void init_once(void *foo)
955 {
956 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
957
958 INIT_LIST_HEAD(&ei->i_orphan);
959 init_rwsem(&ei->xattr_sem);
960 init_rwsem(&ei->i_data_sem);
961 inode_init_once(&ei->vfs_inode);
962 }
963
964 static int __init init_inodecache(void)
965 {
966 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
967 sizeof(struct ext4_inode_info),
968 0, (SLAB_RECLAIM_ACCOUNT|
969 SLAB_MEM_SPREAD),
970 init_once);
971 if (ext4_inode_cachep == NULL)
972 return -ENOMEM;
973 return 0;
974 }
975
976 static void destroy_inodecache(void)
977 {
978 /*
979 * Make sure all delayed rcu free inodes are flushed before we
980 * destroy cache.
981 */
982 rcu_barrier();
983 kmem_cache_destroy(ext4_inode_cachep);
984 }
985
986 void ext4_clear_inode(struct inode *inode)
987 {
988 invalidate_inode_buffers(inode);
989 clear_inode(inode);
990 dquot_drop(inode);
991 ext4_discard_preallocations(inode);
992 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
993 if (EXT4_I(inode)->jinode) {
994 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
995 EXT4_I(inode)->jinode);
996 jbd2_free_inode(EXT4_I(inode)->jinode);
997 EXT4_I(inode)->jinode = NULL;
998 }
999 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1000 if (EXT4_I(inode)->i_crypt_info)
1001 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1002 #endif
1003 }
1004
1005 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1006 u64 ino, u32 generation)
1007 {
1008 struct inode *inode;
1009
1010 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1011 return ERR_PTR(-ESTALE);
1012 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1013 return ERR_PTR(-ESTALE);
1014
1015 /* iget isn't really right if the inode is currently unallocated!!
1016 *
1017 * ext4_read_inode will return a bad_inode if the inode had been
1018 * deleted, so we should be safe.
1019 *
1020 * Currently we don't know the generation for parent directory, so
1021 * a generation of 0 means "accept any"
1022 */
1023 inode = ext4_iget_normal(sb, ino);
1024 if (IS_ERR(inode))
1025 return ERR_CAST(inode);
1026 if (generation && inode->i_generation != generation) {
1027 iput(inode);
1028 return ERR_PTR(-ESTALE);
1029 }
1030
1031 return inode;
1032 }
1033
1034 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1035 int fh_len, int fh_type)
1036 {
1037 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1038 ext4_nfs_get_inode);
1039 }
1040
1041 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1042 int fh_len, int fh_type)
1043 {
1044 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1045 ext4_nfs_get_inode);
1046 }
1047
1048 /*
1049 * Try to release metadata pages (indirect blocks, directories) which are
1050 * mapped via the block device. Since these pages could have journal heads
1051 * which would prevent try_to_free_buffers() from freeing them, we must use
1052 * jbd2 layer's try_to_free_buffers() function to release them.
1053 */
1054 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1055 gfp_t wait)
1056 {
1057 journal_t *journal = EXT4_SB(sb)->s_journal;
1058
1059 WARN_ON(PageChecked(page));
1060 if (!page_has_buffers(page))
1061 return 0;
1062 if (journal)
1063 return jbd2_journal_try_to_free_buffers(journal, page,
1064 wait & ~__GFP_DIRECT_RECLAIM);
1065 return try_to_free_buffers(page);
1066 }
1067
1068 #ifdef CONFIG_QUOTA
1069 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1070 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1071
1072 static int ext4_write_dquot(struct dquot *dquot);
1073 static int ext4_acquire_dquot(struct dquot *dquot);
1074 static int ext4_release_dquot(struct dquot *dquot);
1075 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1076 static int ext4_write_info(struct super_block *sb, int type);
1077 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1078 struct path *path);
1079 static int ext4_quota_off(struct super_block *sb, int type);
1080 static int ext4_quota_on_mount(struct super_block *sb, int type);
1081 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1082 size_t len, loff_t off);
1083 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1084 const char *data, size_t len, loff_t off);
1085 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1086 unsigned int flags);
1087 static int ext4_enable_quotas(struct super_block *sb);
1088
1089 static struct dquot **ext4_get_dquots(struct inode *inode)
1090 {
1091 return EXT4_I(inode)->i_dquot;
1092 }
1093
1094 static const struct dquot_operations ext4_quota_operations = {
1095 .get_reserved_space = ext4_get_reserved_space,
1096 .write_dquot = ext4_write_dquot,
1097 .acquire_dquot = ext4_acquire_dquot,
1098 .release_dquot = ext4_release_dquot,
1099 .mark_dirty = ext4_mark_dquot_dirty,
1100 .write_info = ext4_write_info,
1101 .alloc_dquot = dquot_alloc,
1102 .destroy_dquot = dquot_destroy,
1103 };
1104
1105 static const struct quotactl_ops ext4_qctl_operations = {
1106 .quota_on = ext4_quota_on,
1107 .quota_off = ext4_quota_off,
1108 .quota_sync = dquot_quota_sync,
1109 .get_state = dquot_get_state,
1110 .set_info = dquot_set_dqinfo,
1111 .get_dqblk = dquot_get_dqblk,
1112 .set_dqblk = dquot_set_dqblk
1113 };
1114 #endif
1115
1116 static const struct super_operations ext4_sops = {
1117 .alloc_inode = ext4_alloc_inode,
1118 .destroy_inode = ext4_destroy_inode,
1119 .write_inode = ext4_write_inode,
1120 .dirty_inode = ext4_dirty_inode,
1121 .drop_inode = ext4_drop_inode,
1122 .evict_inode = ext4_evict_inode,
1123 .put_super = ext4_put_super,
1124 .sync_fs = ext4_sync_fs,
1125 .freeze_fs = ext4_freeze,
1126 .unfreeze_fs = ext4_unfreeze,
1127 .statfs = ext4_statfs,
1128 .remount_fs = ext4_remount,
1129 .show_options = ext4_show_options,
1130 #ifdef CONFIG_QUOTA
1131 .quota_read = ext4_quota_read,
1132 .quota_write = ext4_quota_write,
1133 .get_dquots = ext4_get_dquots,
1134 #endif
1135 .bdev_try_to_free_page = bdev_try_to_free_page,
1136 };
1137
1138 static const struct export_operations ext4_export_ops = {
1139 .fh_to_dentry = ext4_fh_to_dentry,
1140 .fh_to_parent = ext4_fh_to_parent,
1141 .get_parent = ext4_get_parent,
1142 };
1143
1144 enum {
1145 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1146 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1147 Opt_nouid32, Opt_debug, Opt_removed,
1148 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1149 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1150 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1151 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1152 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1153 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1154 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1155 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1156 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1157 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1158 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1159 Opt_lazytime, Opt_nolazytime,
1160 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1161 Opt_inode_readahead_blks, Opt_journal_ioprio,
1162 Opt_dioread_nolock, Opt_dioread_lock,
1163 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1164 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1165 };
1166
1167 static const match_table_t tokens = {
1168 {Opt_bsd_df, "bsddf"},
1169 {Opt_minix_df, "minixdf"},
1170 {Opt_grpid, "grpid"},
1171 {Opt_grpid, "bsdgroups"},
1172 {Opt_nogrpid, "nogrpid"},
1173 {Opt_nogrpid, "sysvgroups"},
1174 {Opt_resgid, "resgid=%u"},
1175 {Opt_resuid, "resuid=%u"},
1176 {Opt_sb, "sb=%u"},
1177 {Opt_err_cont, "errors=continue"},
1178 {Opt_err_panic, "errors=panic"},
1179 {Opt_err_ro, "errors=remount-ro"},
1180 {Opt_nouid32, "nouid32"},
1181 {Opt_debug, "debug"},
1182 {Opt_removed, "oldalloc"},
1183 {Opt_removed, "orlov"},
1184 {Opt_user_xattr, "user_xattr"},
1185 {Opt_nouser_xattr, "nouser_xattr"},
1186 {Opt_acl, "acl"},
1187 {Opt_noacl, "noacl"},
1188 {Opt_noload, "norecovery"},
1189 {Opt_noload, "noload"},
1190 {Opt_removed, "nobh"},
1191 {Opt_removed, "bh"},
1192 {Opt_commit, "commit=%u"},
1193 {Opt_min_batch_time, "min_batch_time=%u"},
1194 {Opt_max_batch_time, "max_batch_time=%u"},
1195 {Opt_journal_dev, "journal_dev=%u"},
1196 {Opt_journal_path, "journal_path=%s"},
1197 {Opt_journal_checksum, "journal_checksum"},
1198 {Opt_nojournal_checksum, "nojournal_checksum"},
1199 {Opt_journal_async_commit, "journal_async_commit"},
1200 {Opt_abort, "abort"},
1201 {Opt_data_journal, "data=journal"},
1202 {Opt_data_ordered, "data=ordered"},
1203 {Opt_data_writeback, "data=writeback"},
1204 {Opt_data_err_abort, "data_err=abort"},
1205 {Opt_data_err_ignore, "data_err=ignore"},
1206 {Opt_offusrjquota, "usrjquota="},
1207 {Opt_usrjquota, "usrjquota=%s"},
1208 {Opt_offgrpjquota, "grpjquota="},
1209 {Opt_grpjquota, "grpjquota=%s"},
1210 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1211 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1212 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1213 {Opt_grpquota, "grpquota"},
1214 {Opt_noquota, "noquota"},
1215 {Opt_quota, "quota"},
1216 {Opt_usrquota, "usrquota"},
1217 {Opt_barrier, "barrier=%u"},
1218 {Opt_barrier, "barrier"},
1219 {Opt_nobarrier, "nobarrier"},
1220 {Opt_i_version, "i_version"},
1221 {Opt_dax, "dax"},
1222 {Opt_stripe, "stripe=%u"},
1223 {Opt_delalloc, "delalloc"},
1224 {Opt_lazytime, "lazytime"},
1225 {Opt_nolazytime, "nolazytime"},
1226 {Opt_nodelalloc, "nodelalloc"},
1227 {Opt_removed, "mblk_io_submit"},
1228 {Opt_removed, "nomblk_io_submit"},
1229 {Opt_block_validity, "block_validity"},
1230 {Opt_noblock_validity, "noblock_validity"},
1231 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1232 {Opt_journal_ioprio, "journal_ioprio=%u"},
1233 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1234 {Opt_auto_da_alloc, "auto_da_alloc"},
1235 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1236 {Opt_dioread_nolock, "dioread_nolock"},
1237 {Opt_dioread_lock, "dioread_lock"},
1238 {Opt_discard, "discard"},
1239 {Opt_nodiscard, "nodiscard"},
1240 {Opt_init_itable, "init_itable=%u"},
1241 {Opt_init_itable, "init_itable"},
1242 {Opt_noinit_itable, "noinit_itable"},
1243 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1244 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1245 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1246 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1247 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1248 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1249 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1250 {Opt_err, NULL},
1251 };
1252
1253 static ext4_fsblk_t get_sb_block(void **data)
1254 {
1255 ext4_fsblk_t sb_block;
1256 char *options = (char *) *data;
1257
1258 if (!options || strncmp(options, "sb=", 3) != 0)
1259 return 1; /* Default location */
1260
1261 options += 3;
1262 /* TODO: use simple_strtoll with >32bit ext4 */
1263 sb_block = simple_strtoul(options, &options, 0);
1264 if (*options && *options != ',') {
1265 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1266 (char *) *data);
1267 return 1;
1268 }
1269 if (*options == ',')
1270 options++;
1271 *data = (void *) options;
1272
1273 return sb_block;
1274 }
1275
1276 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1277 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1278 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1279
1280 #ifdef CONFIG_QUOTA
1281 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1282 {
1283 struct ext4_sb_info *sbi = EXT4_SB(sb);
1284 char *qname;
1285 int ret = -1;
1286
1287 if (sb_any_quota_loaded(sb) &&
1288 !sbi->s_qf_names[qtype]) {
1289 ext4_msg(sb, KERN_ERR,
1290 "Cannot change journaled "
1291 "quota options when quota turned on");
1292 return -1;
1293 }
1294 if (ext4_has_feature_quota(sb)) {
1295 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1296 "when QUOTA feature is enabled");
1297 return -1;
1298 }
1299 qname = match_strdup(args);
1300 if (!qname) {
1301 ext4_msg(sb, KERN_ERR,
1302 "Not enough memory for storing quotafile name");
1303 return -1;
1304 }
1305 if (sbi->s_qf_names[qtype]) {
1306 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1307 ret = 1;
1308 else
1309 ext4_msg(sb, KERN_ERR,
1310 "%s quota file already specified",
1311 QTYPE2NAME(qtype));
1312 goto errout;
1313 }
1314 if (strchr(qname, '/')) {
1315 ext4_msg(sb, KERN_ERR,
1316 "quotafile must be on filesystem root");
1317 goto errout;
1318 }
1319 sbi->s_qf_names[qtype] = qname;
1320 set_opt(sb, QUOTA);
1321 return 1;
1322 errout:
1323 kfree(qname);
1324 return ret;
1325 }
1326
1327 static int clear_qf_name(struct super_block *sb, int qtype)
1328 {
1329
1330 struct ext4_sb_info *sbi = EXT4_SB(sb);
1331
1332 if (sb_any_quota_loaded(sb) &&
1333 sbi->s_qf_names[qtype]) {
1334 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1335 " when quota turned on");
1336 return -1;
1337 }
1338 kfree(sbi->s_qf_names[qtype]);
1339 sbi->s_qf_names[qtype] = NULL;
1340 return 1;
1341 }
1342 #endif
1343
1344 #define MOPT_SET 0x0001
1345 #define MOPT_CLEAR 0x0002
1346 #define MOPT_NOSUPPORT 0x0004
1347 #define MOPT_EXPLICIT 0x0008
1348 #define MOPT_CLEAR_ERR 0x0010
1349 #define MOPT_GTE0 0x0020
1350 #ifdef CONFIG_QUOTA
1351 #define MOPT_Q 0
1352 #define MOPT_QFMT 0x0040
1353 #else
1354 #define MOPT_Q MOPT_NOSUPPORT
1355 #define MOPT_QFMT MOPT_NOSUPPORT
1356 #endif
1357 #define MOPT_DATAJ 0x0080
1358 #define MOPT_NO_EXT2 0x0100
1359 #define MOPT_NO_EXT3 0x0200
1360 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1361 #define MOPT_STRING 0x0400
1362
1363 static const struct mount_opts {
1364 int token;
1365 int mount_opt;
1366 int flags;
1367 } ext4_mount_opts[] = {
1368 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1369 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1370 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1371 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1372 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1373 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1374 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1375 MOPT_EXT4_ONLY | MOPT_SET},
1376 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1377 MOPT_EXT4_ONLY | MOPT_CLEAR},
1378 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1379 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1380 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1381 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1382 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1383 MOPT_EXT4_ONLY | MOPT_CLEAR},
1384 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1385 MOPT_EXT4_ONLY | MOPT_CLEAR},
1386 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1387 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1388 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1389 EXT4_MOUNT_JOURNAL_CHECKSUM),
1390 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1391 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1392 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1393 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1394 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1395 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1396 MOPT_NO_EXT2 | MOPT_SET},
1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1398 MOPT_NO_EXT2 | MOPT_CLEAR},
1399 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1400 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1401 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1402 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1403 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1404 {Opt_commit, 0, MOPT_GTE0},
1405 {Opt_max_batch_time, 0, MOPT_GTE0},
1406 {Opt_min_batch_time, 0, MOPT_GTE0},
1407 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1408 {Opt_init_itable, 0, MOPT_GTE0},
1409 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1410 {Opt_stripe, 0, MOPT_GTE0},
1411 {Opt_resuid, 0, MOPT_GTE0},
1412 {Opt_resgid, 0, MOPT_GTE0},
1413 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1414 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1415 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1416 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1417 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1418 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1419 MOPT_NO_EXT2 | MOPT_DATAJ},
1420 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1421 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1422 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1423 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1424 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1425 #else
1426 {Opt_acl, 0, MOPT_NOSUPPORT},
1427 {Opt_noacl, 0, MOPT_NOSUPPORT},
1428 #endif
1429 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1430 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1431 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1432 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1433 MOPT_SET | MOPT_Q},
1434 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1435 MOPT_SET | MOPT_Q},
1436 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1437 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1438 {Opt_usrjquota, 0, MOPT_Q},
1439 {Opt_grpjquota, 0, MOPT_Q},
1440 {Opt_offusrjquota, 0, MOPT_Q},
1441 {Opt_offgrpjquota, 0, MOPT_Q},
1442 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1443 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1444 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1445 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1446 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1447 {Opt_err, 0, 0}
1448 };
1449
1450 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1451 substring_t *args, unsigned long *journal_devnum,
1452 unsigned int *journal_ioprio, int is_remount)
1453 {
1454 struct ext4_sb_info *sbi = EXT4_SB(sb);
1455 const struct mount_opts *m;
1456 kuid_t uid;
1457 kgid_t gid;
1458 int arg = 0;
1459
1460 #ifdef CONFIG_QUOTA
1461 if (token == Opt_usrjquota)
1462 return set_qf_name(sb, USRQUOTA, &args[0]);
1463 else if (token == Opt_grpjquota)
1464 return set_qf_name(sb, GRPQUOTA, &args[0]);
1465 else if (token == Opt_offusrjquota)
1466 return clear_qf_name(sb, USRQUOTA);
1467 else if (token == Opt_offgrpjquota)
1468 return clear_qf_name(sb, GRPQUOTA);
1469 #endif
1470 switch (token) {
1471 case Opt_noacl:
1472 case Opt_nouser_xattr:
1473 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1474 break;
1475 case Opt_sb:
1476 return 1; /* handled by get_sb_block() */
1477 case Opt_removed:
1478 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1479 return 1;
1480 case Opt_abort:
1481 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1482 return 1;
1483 case Opt_i_version:
1484 sb->s_flags |= MS_I_VERSION;
1485 return 1;
1486 case Opt_lazytime:
1487 sb->s_flags |= MS_LAZYTIME;
1488 return 1;
1489 case Opt_nolazytime:
1490 sb->s_flags &= ~MS_LAZYTIME;
1491 return 1;
1492 }
1493
1494 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1495 if (token == m->token)
1496 break;
1497
1498 if (m->token == Opt_err) {
1499 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1500 "or missing value", opt);
1501 return -1;
1502 }
1503
1504 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1505 ext4_msg(sb, KERN_ERR,
1506 "Mount option \"%s\" incompatible with ext2", opt);
1507 return -1;
1508 }
1509 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1510 ext4_msg(sb, KERN_ERR,
1511 "Mount option \"%s\" incompatible with ext3", opt);
1512 return -1;
1513 }
1514
1515 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1516 return -1;
1517 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1518 return -1;
1519 if (m->flags & MOPT_EXPLICIT) {
1520 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1521 set_opt2(sb, EXPLICIT_DELALLOC);
1522 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1523 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1524 } else
1525 return -1;
1526 }
1527 if (m->flags & MOPT_CLEAR_ERR)
1528 clear_opt(sb, ERRORS_MASK);
1529 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1530 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1531 "options when quota turned on");
1532 return -1;
1533 }
1534
1535 if (m->flags & MOPT_NOSUPPORT) {
1536 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1537 } else if (token == Opt_commit) {
1538 if (arg == 0)
1539 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1540 sbi->s_commit_interval = HZ * arg;
1541 } else if (token == Opt_max_batch_time) {
1542 sbi->s_max_batch_time = arg;
1543 } else if (token == Opt_min_batch_time) {
1544 sbi->s_min_batch_time = arg;
1545 } else if (token == Opt_inode_readahead_blks) {
1546 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1547 ext4_msg(sb, KERN_ERR,
1548 "EXT4-fs: inode_readahead_blks must be "
1549 "0 or a power of 2 smaller than 2^31");
1550 return -1;
1551 }
1552 sbi->s_inode_readahead_blks = arg;
1553 } else if (token == Opt_init_itable) {
1554 set_opt(sb, INIT_INODE_TABLE);
1555 if (!args->from)
1556 arg = EXT4_DEF_LI_WAIT_MULT;
1557 sbi->s_li_wait_mult = arg;
1558 } else if (token == Opt_max_dir_size_kb) {
1559 sbi->s_max_dir_size_kb = arg;
1560 } else if (token == Opt_stripe) {
1561 sbi->s_stripe = arg;
1562 } else if (token == Opt_resuid) {
1563 uid = make_kuid(current_user_ns(), arg);
1564 if (!uid_valid(uid)) {
1565 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1566 return -1;
1567 }
1568 sbi->s_resuid = uid;
1569 } else if (token == Opt_resgid) {
1570 gid = make_kgid(current_user_ns(), arg);
1571 if (!gid_valid(gid)) {
1572 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1573 return -1;
1574 }
1575 sbi->s_resgid = gid;
1576 } else if (token == Opt_journal_dev) {
1577 if (is_remount) {
1578 ext4_msg(sb, KERN_ERR,
1579 "Cannot specify journal on remount");
1580 return -1;
1581 }
1582 *journal_devnum = arg;
1583 } else if (token == Opt_journal_path) {
1584 char *journal_path;
1585 struct inode *journal_inode;
1586 struct path path;
1587 int error;
1588
1589 if (is_remount) {
1590 ext4_msg(sb, KERN_ERR,
1591 "Cannot specify journal on remount");
1592 return -1;
1593 }
1594 journal_path = match_strdup(&args[0]);
1595 if (!journal_path) {
1596 ext4_msg(sb, KERN_ERR, "error: could not dup "
1597 "journal device string");
1598 return -1;
1599 }
1600
1601 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1602 if (error) {
1603 ext4_msg(sb, KERN_ERR, "error: could not find "
1604 "journal device path: error %d", error);
1605 kfree(journal_path);
1606 return -1;
1607 }
1608
1609 journal_inode = d_inode(path.dentry);
1610 if (!S_ISBLK(journal_inode->i_mode)) {
1611 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1612 "is not a block device", journal_path);
1613 path_put(&path);
1614 kfree(journal_path);
1615 return -1;
1616 }
1617
1618 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1619 path_put(&path);
1620 kfree(journal_path);
1621 } else if (token == Opt_journal_ioprio) {
1622 if (arg > 7) {
1623 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1624 " (must be 0-7)");
1625 return -1;
1626 }
1627 *journal_ioprio =
1628 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1629 } else if (token == Opt_test_dummy_encryption) {
1630 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1631 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1632 ext4_msg(sb, KERN_WARNING,
1633 "Test dummy encryption mode enabled");
1634 #else
1635 ext4_msg(sb, KERN_WARNING,
1636 "Test dummy encryption mount option ignored");
1637 #endif
1638 } else if (m->flags & MOPT_DATAJ) {
1639 if (is_remount) {
1640 if (!sbi->s_journal)
1641 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1642 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1643 ext4_msg(sb, KERN_ERR,
1644 "Cannot change data mode on remount");
1645 return -1;
1646 }
1647 } else {
1648 clear_opt(sb, DATA_FLAGS);
1649 sbi->s_mount_opt |= m->mount_opt;
1650 }
1651 #ifdef CONFIG_QUOTA
1652 } else if (m->flags & MOPT_QFMT) {
1653 if (sb_any_quota_loaded(sb) &&
1654 sbi->s_jquota_fmt != m->mount_opt) {
1655 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1656 "quota options when quota turned on");
1657 return -1;
1658 }
1659 if (ext4_has_feature_quota(sb)) {
1660 ext4_msg(sb, KERN_ERR,
1661 "Cannot set journaled quota options "
1662 "when QUOTA feature is enabled");
1663 return -1;
1664 }
1665 sbi->s_jquota_fmt = m->mount_opt;
1666 #endif
1667 } else if (token == Opt_dax) {
1668 #ifdef CONFIG_FS_DAX
1669 ext4_msg(sb, KERN_WARNING,
1670 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1671 sbi->s_mount_opt |= m->mount_opt;
1672 #else
1673 ext4_msg(sb, KERN_INFO, "dax option not supported");
1674 return -1;
1675 #endif
1676 } else {
1677 if (!args->from)
1678 arg = 1;
1679 if (m->flags & MOPT_CLEAR)
1680 arg = !arg;
1681 else if (unlikely(!(m->flags & MOPT_SET))) {
1682 ext4_msg(sb, KERN_WARNING,
1683 "buggy handling of option %s", opt);
1684 WARN_ON(1);
1685 return -1;
1686 }
1687 if (arg != 0)
1688 sbi->s_mount_opt |= m->mount_opt;
1689 else
1690 sbi->s_mount_opt &= ~m->mount_opt;
1691 }
1692 return 1;
1693 }
1694
1695 static int parse_options(char *options, struct super_block *sb,
1696 unsigned long *journal_devnum,
1697 unsigned int *journal_ioprio,
1698 int is_remount)
1699 {
1700 struct ext4_sb_info *sbi = EXT4_SB(sb);
1701 char *p;
1702 substring_t args[MAX_OPT_ARGS];
1703 int token;
1704
1705 if (!options)
1706 return 1;
1707
1708 while ((p = strsep(&options, ",")) != NULL) {
1709 if (!*p)
1710 continue;
1711 /*
1712 * Initialize args struct so we know whether arg was
1713 * found; some options take optional arguments.
1714 */
1715 args[0].to = args[0].from = NULL;
1716 token = match_token(p, tokens, args);
1717 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1718 journal_ioprio, is_remount) < 0)
1719 return 0;
1720 }
1721 #ifdef CONFIG_QUOTA
1722 if (ext4_has_feature_quota(sb) &&
1723 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1724 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1725 "feature is enabled");
1726 return 0;
1727 }
1728 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1729 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1730 clear_opt(sb, USRQUOTA);
1731
1732 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1733 clear_opt(sb, GRPQUOTA);
1734
1735 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1736 ext4_msg(sb, KERN_ERR, "old and new quota "
1737 "format mixing");
1738 return 0;
1739 }
1740
1741 if (!sbi->s_jquota_fmt) {
1742 ext4_msg(sb, KERN_ERR, "journaled quota format "
1743 "not specified");
1744 return 0;
1745 }
1746 }
1747 #endif
1748 if (test_opt(sb, DIOREAD_NOLOCK)) {
1749 int blocksize =
1750 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1751
1752 if (blocksize < PAGE_CACHE_SIZE) {
1753 ext4_msg(sb, KERN_ERR, "can't mount with "
1754 "dioread_nolock if block size != PAGE_SIZE");
1755 return 0;
1756 }
1757 }
1758 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1759 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1760 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1761 "in data=ordered mode");
1762 return 0;
1763 }
1764 return 1;
1765 }
1766
1767 static inline void ext4_show_quota_options(struct seq_file *seq,
1768 struct super_block *sb)
1769 {
1770 #if defined(CONFIG_QUOTA)
1771 struct ext4_sb_info *sbi = EXT4_SB(sb);
1772
1773 if (sbi->s_jquota_fmt) {
1774 char *fmtname = "";
1775
1776 switch (sbi->s_jquota_fmt) {
1777 case QFMT_VFS_OLD:
1778 fmtname = "vfsold";
1779 break;
1780 case QFMT_VFS_V0:
1781 fmtname = "vfsv0";
1782 break;
1783 case QFMT_VFS_V1:
1784 fmtname = "vfsv1";
1785 break;
1786 }
1787 seq_printf(seq, ",jqfmt=%s", fmtname);
1788 }
1789
1790 if (sbi->s_qf_names[USRQUOTA])
1791 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1792
1793 if (sbi->s_qf_names[GRPQUOTA])
1794 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1795 #endif
1796 }
1797
1798 static const char *token2str(int token)
1799 {
1800 const struct match_token *t;
1801
1802 for (t = tokens; t->token != Opt_err; t++)
1803 if (t->token == token && !strchr(t->pattern, '='))
1804 break;
1805 return t->pattern;
1806 }
1807
1808 /*
1809 * Show an option if
1810 * - it's set to a non-default value OR
1811 * - if the per-sb default is different from the global default
1812 */
1813 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1814 int nodefs)
1815 {
1816 struct ext4_sb_info *sbi = EXT4_SB(sb);
1817 struct ext4_super_block *es = sbi->s_es;
1818 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1819 const struct mount_opts *m;
1820 char sep = nodefs ? '\n' : ',';
1821
1822 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1823 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1824
1825 if (sbi->s_sb_block != 1)
1826 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1827
1828 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1829 int want_set = m->flags & MOPT_SET;
1830 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1831 (m->flags & MOPT_CLEAR_ERR))
1832 continue;
1833 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1834 continue; /* skip if same as the default */
1835 if ((want_set &&
1836 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1837 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1838 continue; /* select Opt_noFoo vs Opt_Foo */
1839 SEQ_OPTS_PRINT("%s", token2str(m->token));
1840 }
1841
1842 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1843 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1844 SEQ_OPTS_PRINT("resuid=%u",
1845 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1846 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1847 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1848 SEQ_OPTS_PRINT("resgid=%u",
1849 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1850 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1851 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1852 SEQ_OPTS_PUTS("errors=remount-ro");
1853 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1854 SEQ_OPTS_PUTS("errors=continue");
1855 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1856 SEQ_OPTS_PUTS("errors=panic");
1857 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1858 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1859 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1860 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1861 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1862 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1863 if (sb->s_flags & MS_I_VERSION)
1864 SEQ_OPTS_PUTS("i_version");
1865 if (nodefs || sbi->s_stripe)
1866 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1867 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1868 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1869 SEQ_OPTS_PUTS("data=journal");
1870 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1871 SEQ_OPTS_PUTS("data=ordered");
1872 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1873 SEQ_OPTS_PUTS("data=writeback");
1874 }
1875 if (nodefs ||
1876 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1877 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1878 sbi->s_inode_readahead_blks);
1879
1880 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1881 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1882 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1883 if (nodefs || sbi->s_max_dir_size_kb)
1884 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1885
1886 ext4_show_quota_options(seq, sb);
1887 return 0;
1888 }
1889
1890 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1891 {
1892 return _ext4_show_options(seq, root->d_sb, 0);
1893 }
1894
1895 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1896 {
1897 struct super_block *sb = seq->private;
1898 int rc;
1899
1900 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1901 rc = _ext4_show_options(seq, sb, 1);
1902 seq_puts(seq, "\n");
1903 return rc;
1904 }
1905
1906 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1907 int read_only)
1908 {
1909 struct ext4_sb_info *sbi = EXT4_SB(sb);
1910 int res = 0;
1911
1912 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1913 ext4_msg(sb, KERN_ERR, "revision level too high, "
1914 "forcing read-only mode");
1915 res = MS_RDONLY;
1916 }
1917 if (read_only)
1918 goto done;
1919 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1920 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1921 "running e2fsck is recommended");
1922 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1923 ext4_msg(sb, KERN_WARNING,
1924 "warning: mounting fs with errors, "
1925 "running e2fsck is recommended");
1926 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1927 le16_to_cpu(es->s_mnt_count) >=
1928 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1929 ext4_msg(sb, KERN_WARNING,
1930 "warning: maximal mount count reached, "
1931 "running e2fsck is recommended");
1932 else if (le32_to_cpu(es->s_checkinterval) &&
1933 (le32_to_cpu(es->s_lastcheck) +
1934 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1935 ext4_msg(sb, KERN_WARNING,
1936 "warning: checktime reached, "
1937 "running e2fsck is recommended");
1938 if (!sbi->s_journal)
1939 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1940 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1941 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1942 le16_add_cpu(&es->s_mnt_count, 1);
1943 es->s_mtime = cpu_to_le32(get_seconds());
1944 ext4_update_dynamic_rev(sb);
1945 if (sbi->s_journal)
1946 ext4_set_feature_journal_needs_recovery(sb);
1947
1948 ext4_commit_super(sb, 1);
1949 done:
1950 if (test_opt(sb, DEBUG))
1951 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1952 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1953 sb->s_blocksize,
1954 sbi->s_groups_count,
1955 EXT4_BLOCKS_PER_GROUP(sb),
1956 EXT4_INODES_PER_GROUP(sb),
1957 sbi->s_mount_opt, sbi->s_mount_opt2);
1958
1959 cleancache_init_fs(sb);
1960 return res;
1961 }
1962
1963 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1964 {
1965 struct ext4_sb_info *sbi = EXT4_SB(sb);
1966 struct flex_groups *new_groups;
1967 int size;
1968
1969 if (!sbi->s_log_groups_per_flex)
1970 return 0;
1971
1972 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1973 if (size <= sbi->s_flex_groups_allocated)
1974 return 0;
1975
1976 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1977 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1978 if (!new_groups) {
1979 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1980 size / (int) sizeof(struct flex_groups));
1981 return -ENOMEM;
1982 }
1983
1984 if (sbi->s_flex_groups) {
1985 memcpy(new_groups, sbi->s_flex_groups,
1986 (sbi->s_flex_groups_allocated *
1987 sizeof(struct flex_groups)));
1988 kvfree(sbi->s_flex_groups);
1989 }
1990 sbi->s_flex_groups = new_groups;
1991 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1992 return 0;
1993 }
1994
1995 static int ext4_fill_flex_info(struct super_block *sb)
1996 {
1997 struct ext4_sb_info *sbi = EXT4_SB(sb);
1998 struct ext4_group_desc *gdp = NULL;
1999 ext4_group_t flex_group;
2000 int i, err;
2001
2002 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2003 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2004 sbi->s_log_groups_per_flex = 0;
2005 return 1;
2006 }
2007
2008 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2009 if (err)
2010 goto failed;
2011
2012 for (i = 0; i < sbi->s_groups_count; i++) {
2013 gdp = ext4_get_group_desc(sb, i, NULL);
2014
2015 flex_group = ext4_flex_group(sbi, i);
2016 atomic_add(ext4_free_inodes_count(sb, gdp),
2017 &sbi->s_flex_groups[flex_group].free_inodes);
2018 atomic64_add(ext4_free_group_clusters(sb, gdp),
2019 &sbi->s_flex_groups[flex_group].free_clusters);
2020 atomic_add(ext4_used_dirs_count(sb, gdp),
2021 &sbi->s_flex_groups[flex_group].used_dirs);
2022 }
2023
2024 return 1;
2025 failed:
2026 return 0;
2027 }
2028
2029 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2030 struct ext4_group_desc *gdp)
2031 {
2032 int offset;
2033 __u16 crc = 0;
2034 __le32 le_group = cpu_to_le32(block_group);
2035 struct ext4_sb_info *sbi = EXT4_SB(sb);
2036
2037 if (ext4_has_metadata_csum(sbi->s_sb)) {
2038 /* Use new metadata_csum algorithm */
2039 __le16 save_csum;
2040 __u32 csum32;
2041
2042 save_csum = gdp->bg_checksum;
2043 gdp->bg_checksum = 0;
2044 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2045 sizeof(le_group));
2046 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2047 sbi->s_desc_size);
2048 gdp->bg_checksum = save_csum;
2049
2050 crc = csum32 & 0xFFFF;
2051 goto out;
2052 }
2053
2054 /* old crc16 code */
2055 if (!ext4_has_feature_gdt_csum(sb))
2056 return 0;
2057
2058 offset = offsetof(struct ext4_group_desc, bg_checksum);
2059
2060 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2061 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2062 crc = crc16(crc, (__u8 *)gdp, offset);
2063 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2064 /* for checksum of struct ext4_group_desc do the rest...*/
2065 if (ext4_has_feature_64bit(sb) &&
2066 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2067 crc = crc16(crc, (__u8 *)gdp + offset,
2068 le16_to_cpu(sbi->s_es->s_desc_size) -
2069 offset);
2070
2071 out:
2072 return cpu_to_le16(crc);
2073 }
2074
2075 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2076 struct ext4_group_desc *gdp)
2077 {
2078 if (ext4_has_group_desc_csum(sb) &&
2079 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2080 return 0;
2081
2082 return 1;
2083 }
2084
2085 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2086 struct ext4_group_desc *gdp)
2087 {
2088 if (!ext4_has_group_desc_csum(sb))
2089 return;
2090 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2091 }
2092
2093 /* Called at mount-time, super-block is locked */
2094 static int ext4_check_descriptors(struct super_block *sb,
2095 ext4_group_t *first_not_zeroed)
2096 {
2097 struct ext4_sb_info *sbi = EXT4_SB(sb);
2098 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2099 ext4_fsblk_t last_block;
2100 ext4_fsblk_t block_bitmap;
2101 ext4_fsblk_t inode_bitmap;
2102 ext4_fsblk_t inode_table;
2103 int flexbg_flag = 0;
2104 ext4_group_t i, grp = sbi->s_groups_count;
2105
2106 if (ext4_has_feature_flex_bg(sb))
2107 flexbg_flag = 1;
2108
2109 ext4_debug("Checking group descriptors");
2110
2111 for (i = 0; i < sbi->s_groups_count; i++) {
2112 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2113
2114 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2115 last_block = ext4_blocks_count(sbi->s_es) - 1;
2116 else
2117 last_block = first_block +
2118 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2119
2120 if ((grp == sbi->s_groups_count) &&
2121 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2122 grp = i;
2123
2124 block_bitmap = ext4_block_bitmap(sb, gdp);
2125 if (block_bitmap < first_block || block_bitmap > last_block) {
2126 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2127 "Block bitmap for group %u not in group "
2128 "(block %llu)!", i, block_bitmap);
2129 return 0;
2130 }
2131 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2132 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2133 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2134 "Inode bitmap for group %u not in group "
2135 "(block %llu)!", i, inode_bitmap);
2136 return 0;
2137 }
2138 inode_table = ext4_inode_table(sb, gdp);
2139 if (inode_table < first_block ||
2140 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2141 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2142 "Inode table for group %u not in group "
2143 "(block %llu)!", i, inode_table);
2144 return 0;
2145 }
2146 ext4_lock_group(sb, i);
2147 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2148 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2149 "Checksum for group %u failed (%u!=%u)",
2150 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2151 gdp)), le16_to_cpu(gdp->bg_checksum));
2152 if (!(sb->s_flags & MS_RDONLY)) {
2153 ext4_unlock_group(sb, i);
2154 return 0;
2155 }
2156 }
2157 ext4_unlock_group(sb, i);
2158 if (!flexbg_flag)
2159 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2160 }
2161 if (NULL != first_not_zeroed)
2162 *first_not_zeroed = grp;
2163 return 1;
2164 }
2165
2166 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2167 * the superblock) which were deleted from all directories, but held open by
2168 * a process at the time of a crash. We walk the list and try to delete these
2169 * inodes at recovery time (only with a read-write filesystem).
2170 *
2171 * In order to keep the orphan inode chain consistent during traversal (in
2172 * case of crash during recovery), we link each inode into the superblock
2173 * orphan list_head and handle it the same way as an inode deletion during
2174 * normal operation (which journals the operations for us).
2175 *
2176 * We only do an iget() and an iput() on each inode, which is very safe if we
2177 * accidentally point at an in-use or already deleted inode. The worst that
2178 * can happen in this case is that we get a "bit already cleared" message from
2179 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2180 * e2fsck was run on this filesystem, and it must have already done the orphan
2181 * inode cleanup for us, so we can safely abort without any further action.
2182 */
2183 static void ext4_orphan_cleanup(struct super_block *sb,
2184 struct ext4_super_block *es)
2185 {
2186 unsigned int s_flags = sb->s_flags;
2187 int nr_orphans = 0, nr_truncates = 0;
2188 #ifdef CONFIG_QUOTA
2189 int i;
2190 #endif
2191 if (!es->s_last_orphan) {
2192 jbd_debug(4, "no orphan inodes to clean up\n");
2193 return;
2194 }
2195
2196 if (bdev_read_only(sb->s_bdev)) {
2197 ext4_msg(sb, KERN_ERR, "write access "
2198 "unavailable, skipping orphan cleanup");
2199 return;
2200 }
2201
2202 /* Check if feature set would not allow a r/w mount */
2203 if (!ext4_feature_set_ok(sb, 0)) {
2204 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2205 "unknown ROCOMPAT features");
2206 return;
2207 }
2208
2209 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2210 /* don't clear list on RO mount w/ errors */
2211 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2212 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2213 "clearing orphan list.\n");
2214 es->s_last_orphan = 0;
2215 }
2216 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2217 return;
2218 }
2219
2220 if (s_flags & MS_RDONLY) {
2221 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2222 sb->s_flags &= ~MS_RDONLY;
2223 }
2224 #ifdef CONFIG_QUOTA
2225 /* Needed for iput() to work correctly and not trash data */
2226 sb->s_flags |= MS_ACTIVE;
2227 /* Turn on quotas so that they are updated correctly */
2228 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2229 if (EXT4_SB(sb)->s_qf_names[i]) {
2230 int ret = ext4_quota_on_mount(sb, i);
2231 if (ret < 0)
2232 ext4_msg(sb, KERN_ERR,
2233 "Cannot turn on journaled "
2234 "quota: error %d", ret);
2235 }
2236 }
2237 #endif
2238
2239 while (es->s_last_orphan) {
2240 struct inode *inode;
2241
2242 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2243 if (IS_ERR(inode)) {
2244 es->s_last_orphan = 0;
2245 break;
2246 }
2247
2248 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2249 dquot_initialize(inode);
2250 if (inode->i_nlink) {
2251 if (test_opt(sb, DEBUG))
2252 ext4_msg(sb, KERN_DEBUG,
2253 "%s: truncating inode %lu to %lld bytes",
2254 __func__, inode->i_ino, inode->i_size);
2255 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2256 inode->i_ino, inode->i_size);
2257 mutex_lock(&inode->i_mutex);
2258 truncate_inode_pages(inode->i_mapping, inode->i_size);
2259 ext4_truncate(inode);
2260 mutex_unlock(&inode->i_mutex);
2261 nr_truncates++;
2262 } else {
2263 if (test_opt(sb, DEBUG))
2264 ext4_msg(sb, KERN_DEBUG,
2265 "%s: deleting unreferenced inode %lu",
2266 __func__, inode->i_ino);
2267 jbd_debug(2, "deleting unreferenced inode %lu\n",
2268 inode->i_ino);
2269 nr_orphans++;
2270 }
2271 iput(inode); /* The delete magic happens here! */
2272 }
2273
2274 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2275
2276 if (nr_orphans)
2277 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2278 PLURAL(nr_orphans));
2279 if (nr_truncates)
2280 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2281 PLURAL(nr_truncates));
2282 #ifdef CONFIG_QUOTA
2283 /* Turn quotas off */
2284 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2285 if (sb_dqopt(sb)->files[i])
2286 dquot_quota_off(sb, i);
2287 }
2288 #endif
2289 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2290 }
2291
2292 /*
2293 * Maximal extent format file size.
2294 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2295 * extent format containers, within a sector_t, and within i_blocks
2296 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2297 * so that won't be a limiting factor.
2298 *
2299 * However there is other limiting factor. We do store extents in the form
2300 * of starting block and length, hence the resulting length of the extent
2301 * covering maximum file size must fit into on-disk format containers as
2302 * well. Given that length is always by 1 unit bigger than max unit (because
2303 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2304 *
2305 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2306 */
2307 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2308 {
2309 loff_t res;
2310 loff_t upper_limit = MAX_LFS_FILESIZE;
2311
2312 /* small i_blocks in vfs inode? */
2313 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2314 /*
2315 * CONFIG_LBDAF is not enabled implies the inode
2316 * i_block represent total blocks in 512 bytes
2317 * 32 == size of vfs inode i_blocks * 8
2318 */
2319 upper_limit = (1LL << 32) - 1;
2320
2321 /* total blocks in file system block size */
2322 upper_limit >>= (blkbits - 9);
2323 upper_limit <<= blkbits;
2324 }
2325
2326 /*
2327 * 32-bit extent-start container, ee_block. We lower the maxbytes
2328 * by one fs block, so ee_len can cover the extent of maximum file
2329 * size
2330 */
2331 res = (1LL << 32) - 1;
2332 res <<= blkbits;
2333
2334 /* Sanity check against vm- & vfs- imposed limits */
2335 if (res > upper_limit)
2336 res = upper_limit;
2337
2338 return res;
2339 }
2340
2341 /*
2342 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2343 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2344 * We need to be 1 filesystem block less than the 2^48 sector limit.
2345 */
2346 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2347 {
2348 loff_t res = EXT4_NDIR_BLOCKS;
2349 int meta_blocks;
2350 loff_t upper_limit;
2351 /* This is calculated to be the largest file size for a dense, block
2352 * mapped file such that the file's total number of 512-byte sectors,
2353 * including data and all indirect blocks, does not exceed (2^48 - 1).
2354 *
2355 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2356 * number of 512-byte sectors of the file.
2357 */
2358
2359 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2360 /*
2361 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2362 * the inode i_block field represents total file blocks in
2363 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2364 */
2365 upper_limit = (1LL << 32) - 1;
2366
2367 /* total blocks in file system block size */
2368 upper_limit >>= (bits - 9);
2369
2370 } else {
2371 /*
2372 * We use 48 bit ext4_inode i_blocks
2373 * With EXT4_HUGE_FILE_FL set the i_blocks
2374 * represent total number of blocks in
2375 * file system block size
2376 */
2377 upper_limit = (1LL << 48) - 1;
2378
2379 }
2380
2381 /* indirect blocks */
2382 meta_blocks = 1;
2383 /* double indirect blocks */
2384 meta_blocks += 1 + (1LL << (bits-2));
2385 /* tripple indirect blocks */
2386 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2387
2388 upper_limit -= meta_blocks;
2389 upper_limit <<= bits;
2390
2391 res += 1LL << (bits-2);
2392 res += 1LL << (2*(bits-2));
2393 res += 1LL << (3*(bits-2));
2394 res <<= bits;
2395 if (res > upper_limit)
2396 res = upper_limit;
2397
2398 if (res > MAX_LFS_FILESIZE)
2399 res = MAX_LFS_FILESIZE;
2400
2401 return res;
2402 }
2403
2404 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2405 ext4_fsblk_t logical_sb_block, int nr)
2406 {
2407 struct ext4_sb_info *sbi = EXT4_SB(sb);
2408 ext4_group_t bg, first_meta_bg;
2409 int has_super = 0;
2410
2411 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2412
2413 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2414 return logical_sb_block + nr + 1;
2415 bg = sbi->s_desc_per_block * nr;
2416 if (ext4_bg_has_super(sb, bg))
2417 has_super = 1;
2418
2419 /*
2420 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2421 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2422 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2423 * compensate.
2424 */
2425 if (sb->s_blocksize == 1024 && nr == 0 &&
2426 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2427 has_super++;
2428
2429 return (has_super + ext4_group_first_block_no(sb, bg));
2430 }
2431
2432 /**
2433 * ext4_get_stripe_size: Get the stripe size.
2434 * @sbi: In memory super block info
2435 *
2436 * If we have specified it via mount option, then
2437 * use the mount option value. If the value specified at mount time is
2438 * greater than the blocks per group use the super block value.
2439 * If the super block value is greater than blocks per group return 0.
2440 * Allocator needs it be less than blocks per group.
2441 *
2442 */
2443 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2444 {
2445 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2446 unsigned long stripe_width =
2447 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2448 int ret;
2449
2450 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2451 ret = sbi->s_stripe;
2452 else if (stripe_width <= sbi->s_blocks_per_group)
2453 ret = stripe_width;
2454 else if (stride <= sbi->s_blocks_per_group)
2455 ret = stride;
2456 else
2457 ret = 0;
2458
2459 /*
2460 * If the stripe width is 1, this makes no sense and
2461 * we set it to 0 to turn off stripe handling code.
2462 */
2463 if (ret <= 1)
2464 ret = 0;
2465
2466 return ret;
2467 }
2468
2469 /*
2470 * Check whether this filesystem can be mounted based on
2471 * the features present and the RDONLY/RDWR mount requested.
2472 * Returns 1 if this filesystem can be mounted as requested,
2473 * 0 if it cannot be.
2474 */
2475 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2476 {
2477 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2478 ext4_msg(sb, KERN_ERR,
2479 "Couldn't mount because of "
2480 "unsupported optional features (%x)",
2481 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2482 ~EXT4_FEATURE_INCOMPAT_SUPP));
2483 return 0;
2484 }
2485
2486 if (readonly)
2487 return 1;
2488
2489 if (ext4_has_feature_readonly(sb)) {
2490 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2491 sb->s_flags |= MS_RDONLY;
2492 return 1;
2493 }
2494
2495 /* Check that feature set is OK for a read-write mount */
2496 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2497 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2498 "unsupported optional features (%x)",
2499 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2500 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2501 return 0;
2502 }
2503 /*
2504 * Large file size enabled file system can only be mounted
2505 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2506 */
2507 if (ext4_has_feature_huge_file(sb)) {
2508 if (sizeof(blkcnt_t) < sizeof(u64)) {
2509 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2510 "cannot be mounted RDWR without "
2511 "CONFIG_LBDAF");
2512 return 0;
2513 }
2514 }
2515 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2516 ext4_msg(sb, KERN_ERR,
2517 "Can't support bigalloc feature without "
2518 "extents feature\n");
2519 return 0;
2520 }
2521
2522 #ifndef CONFIG_QUOTA
2523 if (ext4_has_feature_quota(sb) && !readonly) {
2524 ext4_msg(sb, KERN_ERR,
2525 "Filesystem with quota feature cannot be mounted RDWR "
2526 "without CONFIG_QUOTA");
2527 return 0;
2528 }
2529 #endif /* CONFIG_QUOTA */
2530 return 1;
2531 }
2532
2533 /*
2534 * This function is called once a day if we have errors logged
2535 * on the file system
2536 */
2537 static void print_daily_error_info(unsigned long arg)
2538 {
2539 struct super_block *sb = (struct super_block *) arg;
2540 struct ext4_sb_info *sbi;
2541 struct ext4_super_block *es;
2542
2543 sbi = EXT4_SB(sb);
2544 es = sbi->s_es;
2545
2546 if (es->s_error_count)
2547 /* fsck newer than v1.41.13 is needed to clean this condition. */
2548 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2549 le32_to_cpu(es->s_error_count));
2550 if (es->s_first_error_time) {
2551 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2552 sb->s_id, le32_to_cpu(es->s_first_error_time),
2553 (int) sizeof(es->s_first_error_func),
2554 es->s_first_error_func,
2555 le32_to_cpu(es->s_first_error_line));
2556 if (es->s_first_error_ino)
2557 printk(": inode %u",
2558 le32_to_cpu(es->s_first_error_ino));
2559 if (es->s_first_error_block)
2560 printk(": block %llu", (unsigned long long)
2561 le64_to_cpu(es->s_first_error_block));
2562 printk("\n");
2563 }
2564 if (es->s_last_error_time) {
2565 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2566 sb->s_id, le32_to_cpu(es->s_last_error_time),
2567 (int) sizeof(es->s_last_error_func),
2568 es->s_last_error_func,
2569 le32_to_cpu(es->s_last_error_line));
2570 if (es->s_last_error_ino)
2571 printk(": inode %u",
2572 le32_to_cpu(es->s_last_error_ino));
2573 if (es->s_last_error_block)
2574 printk(": block %llu", (unsigned long long)
2575 le64_to_cpu(es->s_last_error_block));
2576 printk("\n");
2577 }
2578 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2579 }
2580
2581 /* Find next suitable group and run ext4_init_inode_table */
2582 static int ext4_run_li_request(struct ext4_li_request *elr)
2583 {
2584 struct ext4_group_desc *gdp = NULL;
2585 ext4_group_t group, ngroups;
2586 struct super_block *sb;
2587 unsigned long timeout = 0;
2588 int ret = 0;
2589
2590 sb = elr->lr_super;
2591 ngroups = EXT4_SB(sb)->s_groups_count;
2592
2593 sb_start_write(sb);
2594 for (group = elr->lr_next_group; group < ngroups; group++) {
2595 gdp = ext4_get_group_desc(sb, group, NULL);
2596 if (!gdp) {
2597 ret = 1;
2598 break;
2599 }
2600
2601 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2602 break;
2603 }
2604
2605 if (group >= ngroups)
2606 ret = 1;
2607
2608 if (!ret) {
2609 timeout = jiffies;
2610 ret = ext4_init_inode_table(sb, group,
2611 elr->lr_timeout ? 0 : 1);
2612 if (elr->lr_timeout == 0) {
2613 timeout = (jiffies - timeout) *
2614 elr->lr_sbi->s_li_wait_mult;
2615 elr->lr_timeout = timeout;
2616 }
2617 elr->lr_next_sched = jiffies + elr->lr_timeout;
2618 elr->lr_next_group = group + 1;
2619 }
2620 sb_end_write(sb);
2621
2622 return ret;
2623 }
2624
2625 /*
2626 * Remove lr_request from the list_request and free the
2627 * request structure. Should be called with li_list_mtx held
2628 */
2629 static void ext4_remove_li_request(struct ext4_li_request *elr)
2630 {
2631 struct ext4_sb_info *sbi;
2632
2633 if (!elr)
2634 return;
2635
2636 sbi = elr->lr_sbi;
2637
2638 list_del(&elr->lr_request);
2639 sbi->s_li_request = NULL;
2640 kfree(elr);
2641 }
2642
2643 static void ext4_unregister_li_request(struct super_block *sb)
2644 {
2645 mutex_lock(&ext4_li_mtx);
2646 if (!ext4_li_info) {
2647 mutex_unlock(&ext4_li_mtx);
2648 return;
2649 }
2650
2651 mutex_lock(&ext4_li_info->li_list_mtx);
2652 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2653 mutex_unlock(&ext4_li_info->li_list_mtx);
2654 mutex_unlock(&ext4_li_mtx);
2655 }
2656
2657 static struct task_struct *ext4_lazyinit_task;
2658
2659 /*
2660 * This is the function where ext4lazyinit thread lives. It walks
2661 * through the request list searching for next scheduled filesystem.
2662 * When such a fs is found, run the lazy initialization request
2663 * (ext4_rn_li_request) and keep track of the time spend in this
2664 * function. Based on that time we compute next schedule time of
2665 * the request. When walking through the list is complete, compute
2666 * next waking time and put itself into sleep.
2667 */
2668 static int ext4_lazyinit_thread(void *arg)
2669 {
2670 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2671 struct list_head *pos, *n;
2672 struct ext4_li_request *elr;
2673 unsigned long next_wakeup, cur;
2674
2675 BUG_ON(NULL == eli);
2676
2677 cont_thread:
2678 while (true) {
2679 next_wakeup = MAX_JIFFY_OFFSET;
2680
2681 mutex_lock(&eli->li_list_mtx);
2682 if (list_empty(&eli->li_request_list)) {
2683 mutex_unlock(&eli->li_list_mtx);
2684 goto exit_thread;
2685 }
2686
2687 list_for_each_safe(pos, n, &eli->li_request_list) {
2688 elr = list_entry(pos, struct ext4_li_request,
2689 lr_request);
2690
2691 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2692 if (ext4_run_li_request(elr) != 0) {
2693 /* error, remove the lazy_init job */
2694 ext4_remove_li_request(elr);
2695 continue;
2696 }
2697 }
2698
2699 if (time_before(elr->lr_next_sched, next_wakeup))
2700 next_wakeup = elr->lr_next_sched;
2701 }
2702 mutex_unlock(&eli->li_list_mtx);
2703
2704 try_to_freeze();
2705
2706 cur = jiffies;
2707 if ((time_after_eq(cur, next_wakeup)) ||
2708 (MAX_JIFFY_OFFSET == next_wakeup)) {
2709 cond_resched();
2710 continue;
2711 }
2712
2713 schedule_timeout_interruptible(next_wakeup - cur);
2714
2715 if (kthread_should_stop()) {
2716 ext4_clear_request_list();
2717 goto exit_thread;
2718 }
2719 }
2720
2721 exit_thread:
2722 /*
2723 * It looks like the request list is empty, but we need
2724 * to check it under the li_list_mtx lock, to prevent any
2725 * additions into it, and of course we should lock ext4_li_mtx
2726 * to atomically free the list and ext4_li_info, because at
2727 * this point another ext4 filesystem could be registering
2728 * new one.
2729 */
2730 mutex_lock(&ext4_li_mtx);
2731 mutex_lock(&eli->li_list_mtx);
2732 if (!list_empty(&eli->li_request_list)) {
2733 mutex_unlock(&eli->li_list_mtx);
2734 mutex_unlock(&ext4_li_mtx);
2735 goto cont_thread;
2736 }
2737 mutex_unlock(&eli->li_list_mtx);
2738 kfree(ext4_li_info);
2739 ext4_li_info = NULL;
2740 mutex_unlock(&ext4_li_mtx);
2741
2742 return 0;
2743 }
2744
2745 static void ext4_clear_request_list(void)
2746 {
2747 struct list_head *pos, *n;
2748 struct ext4_li_request *elr;
2749
2750 mutex_lock(&ext4_li_info->li_list_mtx);
2751 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2752 elr = list_entry(pos, struct ext4_li_request,
2753 lr_request);
2754 ext4_remove_li_request(elr);
2755 }
2756 mutex_unlock(&ext4_li_info->li_list_mtx);
2757 }
2758
2759 static int ext4_run_lazyinit_thread(void)
2760 {
2761 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2762 ext4_li_info, "ext4lazyinit");
2763 if (IS_ERR(ext4_lazyinit_task)) {
2764 int err = PTR_ERR(ext4_lazyinit_task);
2765 ext4_clear_request_list();
2766 kfree(ext4_li_info);
2767 ext4_li_info = NULL;
2768 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2769 "initialization thread\n",
2770 err);
2771 return err;
2772 }
2773 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2774 return 0;
2775 }
2776
2777 /*
2778 * Check whether it make sense to run itable init. thread or not.
2779 * If there is at least one uninitialized inode table, return
2780 * corresponding group number, else the loop goes through all
2781 * groups and return total number of groups.
2782 */
2783 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2784 {
2785 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2786 struct ext4_group_desc *gdp = NULL;
2787
2788 for (group = 0; group < ngroups; group++) {
2789 gdp = ext4_get_group_desc(sb, group, NULL);
2790 if (!gdp)
2791 continue;
2792
2793 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2794 break;
2795 }
2796
2797 return group;
2798 }
2799
2800 static int ext4_li_info_new(void)
2801 {
2802 struct ext4_lazy_init *eli = NULL;
2803
2804 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2805 if (!eli)
2806 return -ENOMEM;
2807
2808 INIT_LIST_HEAD(&eli->li_request_list);
2809 mutex_init(&eli->li_list_mtx);
2810
2811 eli->li_state |= EXT4_LAZYINIT_QUIT;
2812
2813 ext4_li_info = eli;
2814
2815 return 0;
2816 }
2817
2818 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2819 ext4_group_t start)
2820 {
2821 struct ext4_sb_info *sbi = EXT4_SB(sb);
2822 struct ext4_li_request *elr;
2823
2824 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2825 if (!elr)
2826 return NULL;
2827
2828 elr->lr_super = sb;
2829 elr->lr_sbi = sbi;
2830 elr->lr_next_group = start;
2831
2832 /*
2833 * Randomize first schedule time of the request to
2834 * spread the inode table initialization requests
2835 * better.
2836 */
2837 elr->lr_next_sched = jiffies + (prandom_u32() %
2838 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2839 return elr;
2840 }
2841
2842 int ext4_register_li_request(struct super_block *sb,
2843 ext4_group_t first_not_zeroed)
2844 {
2845 struct ext4_sb_info *sbi = EXT4_SB(sb);
2846 struct ext4_li_request *elr = NULL;
2847 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2848 int ret = 0;
2849
2850 mutex_lock(&ext4_li_mtx);
2851 if (sbi->s_li_request != NULL) {
2852 /*
2853 * Reset timeout so it can be computed again, because
2854 * s_li_wait_mult might have changed.
2855 */
2856 sbi->s_li_request->lr_timeout = 0;
2857 goto out;
2858 }
2859
2860 if (first_not_zeroed == ngroups ||
2861 (sb->s_flags & MS_RDONLY) ||
2862 !test_opt(sb, INIT_INODE_TABLE))
2863 goto out;
2864
2865 elr = ext4_li_request_new(sb, first_not_zeroed);
2866 if (!elr) {
2867 ret = -ENOMEM;
2868 goto out;
2869 }
2870
2871 if (NULL == ext4_li_info) {
2872 ret = ext4_li_info_new();
2873 if (ret)
2874 goto out;
2875 }
2876
2877 mutex_lock(&ext4_li_info->li_list_mtx);
2878 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2879 mutex_unlock(&ext4_li_info->li_list_mtx);
2880
2881 sbi->s_li_request = elr;
2882 /*
2883 * set elr to NULL here since it has been inserted to
2884 * the request_list and the removal and free of it is
2885 * handled by ext4_clear_request_list from now on.
2886 */
2887 elr = NULL;
2888
2889 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2890 ret = ext4_run_lazyinit_thread();
2891 if (ret)
2892 goto out;
2893 }
2894 out:
2895 mutex_unlock(&ext4_li_mtx);
2896 if (ret)
2897 kfree(elr);
2898 return ret;
2899 }
2900
2901 /*
2902 * We do not need to lock anything since this is called on
2903 * module unload.
2904 */
2905 static void ext4_destroy_lazyinit_thread(void)
2906 {
2907 /*
2908 * If thread exited earlier
2909 * there's nothing to be done.
2910 */
2911 if (!ext4_li_info || !ext4_lazyinit_task)
2912 return;
2913
2914 kthread_stop(ext4_lazyinit_task);
2915 }
2916
2917 static int set_journal_csum_feature_set(struct super_block *sb)
2918 {
2919 int ret = 1;
2920 int compat, incompat;
2921 struct ext4_sb_info *sbi = EXT4_SB(sb);
2922
2923 if (ext4_has_metadata_csum(sb)) {
2924 /* journal checksum v3 */
2925 compat = 0;
2926 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2927 } else {
2928 /* journal checksum v1 */
2929 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2930 incompat = 0;
2931 }
2932
2933 jbd2_journal_clear_features(sbi->s_journal,
2934 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2935 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2936 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2937 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2938 ret = jbd2_journal_set_features(sbi->s_journal,
2939 compat, 0,
2940 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2941 incompat);
2942 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2943 ret = jbd2_journal_set_features(sbi->s_journal,
2944 compat, 0,
2945 incompat);
2946 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2947 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2948 } else {
2949 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2950 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2951 }
2952
2953 return ret;
2954 }
2955
2956 /*
2957 * Note: calculating the overhead so we can be compatible with
2958 * historical BSD practice is quite difficult in the face of
2959 * clusters/bigalloc. This is because multiple metadata blocks from
2960 * different block group can end up in the same allocation cluster.
2961 * Calculating the exact overhead in the face of clustered allocation
2962 * requires either O(all block bitmaps) in memory or O(number of block
2963 * groups**2) in time. We will still calculate the superblock for
2964 * older file systems --- and if we come across with a bigalloc file
2965 * system with zero in s_overhead_clusters the estimate will be close to
2966 * correct especially for very large cluster sizes --- but for newer
2967 * file systems, it's better to calculate this figure once at mkfs
2968 * time, and store it in the superblock. If the superblock value is
2969 * present (even for non-bigalloc file systems), we will use it.
2970 */
2971 static int count_overhead(struct super_block *sb, ext4_group_t grp,
2972 char *buf)
2973 {
2974 struct ext4_sb_info *sbi = EXT4_SB(sb);
2975 struct ext4_group_desc *gdp;
2976 ext4_fsblk_t first_block, last_block, b;
2977 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
2978 int s, j, count = 0;
2979
2980 if (!ext4_has_feature_bigalloc(sb))
2981 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
2982 sbi->s_itb_per_group + 2);
2983
2984 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
2985 (grp * EXT4_BLOCKS_PER_GROUP(sb));
2986 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
2987 for (i = 0; i < ngroups; i++) {
2988 gdp = ext4_get_group_desc(sb, i, NULL);
2989 b = ext4_block_bitmap(sb, gdp);
2990 if (b >= first_block && b <= last_block) {
2991 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2992 count++;
2993 }
2994 b = ext4_inode_bitmap(sb, gdp);
2995 if (b >= first_block && b <= last_block) {
2996 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
2997 count++;
2998 }
2999 b = ext4_inode_table(sb, gdp);
3000 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3001 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3002 int c = EXT4_B2C(sbi, b - first_block);
3003 ext4_set_bit(c, buf);
3004 count++;
3005 }
3006 if (i != grp)
3007 continue;
3008 s = 0;
3009 if (ext4_bg_has_super(sb, grp)) {
3010 ext4_set_bit(s++, buf);
3011 count++;
3012 }
3013 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3014 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3015 count++;
3016 }
3017 }
3018 if (!count)
3019 return 0;
3020 return EXT4_CLUSTERS_PER_GROUP(sb) -
3021 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3022 }
3023
3024 /*
3025 * Compute the overhead and stash it in sbi->s_overhead
3026 */
3027 int ext4_calculate_overhead(struct super_block *sb)
3028 {
3029 struct ext4_sb_info *sbi = EXT4_SB(sb);
3030 struct ext4_super_block *es = sbi->s_es;
3031 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3032 ext4_fsblk_t overhead = 0;
3033 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3034
3035 if (!buf)
3036 return -ENOMEM;
3037
3038 /*
3039 * Compute the overhead (FS structures). This is constant
3040 * for a given filesystem unless the number of block groups
3041 * changes so we cache the previous value until it does.
3042 */
3043
3044 /*
3045 * All of the blocks before first_data_block are overhead
3046 */
3047 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3048
3049 /*
3050 * Add the overhead found in each block group
3051 */
3052 for (i = 0; i < ngroups; i++) {
3053 int blks;
3054
3055 blks = count_overhead(sb, i, buf);
3056 overhead += blks;
3057 if (blks)
3058 memset(buf, 0, PAGE_SIZE);
3059 cond_resched();
3060 }
3061 /* Add the internal journal blocks as well */
3062 if (sbi->s_journal && !sbi->journal_bdev)
3063 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3064
3065 sbi->s_overhead = overhead;
3066 smp_wmb();
3067 free_page((unsigned long) buf);
3068 return 0;
3069 }
3070
3071 static void ext4_set_resv_clusters(struct super_block *sb)
3072 {
3073 ext4_fsblk_t resv_clusters;
3074 struct ext4_sb_info *sbi = EXT4_SB(sb);
3075
3076 /*
3077 * There's no need to reserve anything when we aren't using extents.
3078 * The space estimates are exact, there are no unwritten extents,
3079 * hole punching doesn't need new metadata... This is needed especially
3080 * to keep ext2/3 backward compatibility.
3081 */
3082 if (!ext4_has_feature_extents(sb))
3083 return;
3084 /*
3085 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3086 * This should cover the situations where we can not afford to run
3087 * out of space like for example punch hole, or converting
3088 * unwritten extents in delalloc path. In most cases such
3089 * allocation would require 1, or 2 blocks, higher numbers are
3090 * very rare.
3091 */
3092 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3093 sbi->s_cluster_bits);
3094
3095 do_div(resv_clusters, 50);
3096 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3097
3098 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3099 }
3100
3101 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3102 {
3103 char *orig_data = kstrdup(data, GFP_KERNEL);
3104 struct buffer_head *bh;
3105 struct ext4_super_block *es = NULL;
3106 struct ext4_sb_info *sbi;
3107 ext4_fsblk_t block;
3108 ext4_fsblk_t sb_block = get_sb_block(&data);
3109 ext4_fsblk_t logical_sb_block;
3110 unsigned long offset = 0;
3111 unsigned long journal_devnum = 0;
3112 unsigned long def_mount_opts;
3113 struct inode *root;
3114 const char *descr;
3115 int ret = -ENOMEM;
3116 int blocksize, clustersize;
3117 unsigned int db_count;
3118 unsigned int i;
3119 int needs_recovery, has_huge_files, has_bigalloc;
3120 __u64 blocks_count;
3121 int err = 0;
3122 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3123 ext4_group_t first_not_zeroed;
3124
3125 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3126 if (!sbi)
3127 goto out_free_orig;
3128
3129 sbi->s_blockgroup_lock =
3130 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3131 if (!sbi->s_blockgroup_lock) {
3132 kfree(sbi);
3133 goto out_free_orig;
3134 }
3135 sb->s_fs_info = sbi;
3136 sbi->s_sb = sb;
3137 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3138 sbi->s_sb_block = sb_block;
3139 if (sb->s_bdev->bd_part)
3140 sbi->s_sectors_written_start =
3141 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3142
3143 /* Cleanup superblock name */
3144 strreplace(sb->s_id, '/', '!');
3145
3146 /* -EINVAL is default */
3147 ret = -EINVAL;
3148 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3149 if (!blocksize) {
3150 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3151 goto out_fail;
3152 }
3153
3154 /*
3155 * The ext4 superblock will not be buffer aligned for other than 1kB
3156 * block sizes. We need to calculate the offset from buffer start.
3157 */
3158 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3159 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3160 offset = do_div(logical_sb_block, blocksize);
3161 } else {
3162 logical_sb_block = sb_block;
3163 }
3164
3165 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3166 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3167 goto out_fail;
3168 }
3169 /*
3170 * Note: s_es must be initialized as soon as possible because
3171 * some ext4 macro-instructions depend on its value
3172 */
3173 es = (struct ext4_super_block *) (bh->b_data + offset);
3174 sbi->s_es = es;
3175 sb->s_magic = le16_to_cpu(es->s_magic);
3176 if (sb->s_magic != EXT4_SUPER_MAGIC)
3177 goto cantfind_ext4;
3178 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3179
3180 /* Warn if metadata_csum and gdt_csum are both set. */
3181 if (ext4_has_feature_metadata_csum(sb) &&
3182 ext4_has_feature_gdt_csum(sb))
3183 ext4_warning(sb, "metadata_csum and uninit_bg are "
3184 "redundant flags; please run fsck.");
3185
3186 /* Check for a known checksum algorithm */
3187 if (!ext4_verify_csum_type(sb, es)) {
3188 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3189 "unknown checksum algorithm.");
3190 silent = 1;
3191 goto cantfind_ext4;
3192 }
3193
3194 /* Load the checksum driver */
3195 if (ext4_has_feature_metadata_csum(sb)) {
3196 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3197 if (IS_ERR(sbi->s_chksum_driver)) {
3198 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3199 ret = PTR_ERR(sbi->s_chksum_driver);
3200 sbi->s_chksum_driver = NULL;
3201 goto failed_mount;
3202 }
3203 }
3204
3205 /* Check superblock checksum */
3206 if (!ext4_superblock_csum_verify(sb, es)) {
3207 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3208 "invalid superblock checksum. Run e2fsck?");
3209 silent = 1;
3210 ret = -EFSBADCRC;
3211 goto cantfind_ext4;
3212 }
3213
3214 /* Precompute checksum seed for all metadata */
3215 if (ext4_has_feature_csum_seed(sb))
3216 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3217 else if (ext4_has_metadata_csum(sb))
3218 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3219 sizeof(es->s_uuid));
3220
3221 /* Set defaults before we parse the mount options */
3222 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3223 set_opt(sb, INIT_INODE_TABLE);
3224 if (def_mount_opts & EXT4_DEFM_DEBUG)
3225 set_opt(sb, DEBUG);
3226 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3227 set_opt(sb, GRPID);
3228 if (def_mount_opts & EXT4_DEFM_UID16)
3229 set_opt(sb, NO_UID32);
3230 /* xattr user namespace & acls are now defaulted on */
3231 set_opt(sb, XATTR_USER);
3232 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3233 set_opt(sb, POSIX_ACL);
3234 #endif
3235 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3236 if (ext4_has_metadata_csum(sb))
3237 set_opt(sb, JOURNAL_CHECKSUM);
3238
3239 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3240 set_opt(sb, JOURNAL_DATA);
3241 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3242 set_opt(sb, ORDERED_DATA);
3243 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3244 set_opt(sb, WRITEBACK_DATA);
3245
3246 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3247 set_opt(sb, ERRORS_PANIC);
3248 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3249 set_opt(sb, ERRORS_CONT);
3250 else
3251 set_opt(sb, ERRORS_RO);
3252 /* block_validity enabled by default; disable with noblock_validity */
3253 set_opt(sb, BLOCK_VALIDITY);
3254 if (def_mount_opts & EXT4_DEFM_DISCARD)
3255 set_opt(sb, DISCARD);
3256
3257 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3258 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3259 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3260 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3261 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3262
3263 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3264 set_opt(sb, BARRIER);
3265
3266 /*
3267 * enable delayed allocation by default
3268 * Use -o nodelalloc to turn it off
3269 */
3270 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3271 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3272 set_opt(sb, DELALLOC);
3273
3274 /*
3275 * set default s_li_wait_mult for lazyinit, for the case there is
3276 * no mount option specified.
3277 */
3278 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3279
3280 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3281 &journal_devnum, &journal_ioprio, 0)) {
3282 ext4_msg(sb, KERN_WARNING,
3283 "failed to parse options in superblock: %s",
3284 sbi->s_es->s_mount_opts);
3285 }
3286 sbi->s_def_mount_opt = sbi->s_mount_opt;
3287 if (!parse_options((char *) data, sb, &journal_devnum,
3288 &journal_ioprio, 0))
3289 goto failed_mount;
3290
3291 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3292 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3293 "with data=journal disables delayed "
3294 "allocation and O_DIRECT support!\n");
3295 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3296 ext4_msg(sb, KERN_ERR, "can't mount with "
3297 "both data=journal and delalloc");
3298 goto failed_mount;
3299 }
3300 if (test_opt(sb, DIOREAD_NOLOCK)) {
3301 ext4_msg(sb, KERN_ERR, "can't mount with "
3302 "both data=journal and dioread_nolock");
3303 goto failed_mount;
3304 }
3305 if (test_opt(sb, DAX)) {
3306 ext4_msg(sb, KERN_ERR, "can't mount with "
3307 "both data=journal and dax");
3308 goto failed_mount;
3309 }
3310 if (test_opt(sb, DELALLOC))
3311 clear_opt(sb, DELALLOC);
3312 } else {
3313 sb->s_iflags |= SB_I_CGROUPWB;
3314 }
3315
3316 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3317 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3318
3319 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3320 (ext4_has_compat_features(sb) ||
3321 ext4_has_ro_compat_features(sb) ||
3322 ext4_has_incompat_features(sb)))
3323 ext4_msg(sb, KERN_WARNING,
3324 "feature flags set on rev 0 fs, "
3325 "running e2fsck is recommended");
3326
3327 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3328 set_opt2(sb, HURD_COMPAT);
3329 if (ext4_has_feature_64bit(sb)) {
3330 ext4_msg(sb, KERN_ERR,
3331 "The Hurd can't support 64-bit file systems");
3332 goto failed_mount;
3333 }
3334 }
3335
3336 if (IS_EXT2_SB(sb)) {
3337 if (ext2_feature_set_ok(sb))
3338 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3339 "using the ext4 subsystem");
3340 else {
3341 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3342 "to feature incompatibilities");
3343 goto failed_mount;
3344 }
3345 }
3346
3347 if (IS_EXT3_SB(sb)) {
3348 if (ext3_feature_set_ok(sb))
3349 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3350 "using the ext4 subsystem");
3351 else {
3352 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3353 "to feature incompatibilities");
3354 goto failed_mount;
3355 }
3356 }
3357
3358 /*
3359 * Check feature flags regardless of the revision level, since we
3360 * previously didn't change the revision level when setting the flags,
3361 * so there is a chance incompat flags are set on a rev 0 filesystem.
3362 */
3363 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3364 goto failed_mount;
3365
3366 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3367 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3368 blocksize > EXT4_MAX_BLOCK_SIZE) {
3369 ext4_msg(sb, KERN_ERR,
3370 "Unsupported filesystem blocksize %d", blocksize);
3371 goto failed_mount;
3372 }
3373
3374 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3375 if (blocksize != PAGE_SIZE) {
3376 ext4_msg(sb, KERN_ERR,
3377 "error: unsupported blocksize for dax");
3378 goto failed_mount;
3379 }
3380 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3381 ext4_msg(sb, KERN_ERR,
3382 "error: device does not support dax");
3383 goto failed_mount;
3384 }
3385 }
3386
3387 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3388 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3389 es->s_encryption_level);
3390 goto failed_mount;
3391 }
3392
3393 if (sb->s_blocksize != blocksize) {
3394 /* Validate the filesystem blocksize */
3395 if (!sb_set_blocksize(sb, blocksize)) {
3396 ext4_msg(sb, KERN_ERR, "bad block size %d",
3397 blocksize);
3398 goto failed_mount;
3399 }
3400
3401 brelse(bh);
3402 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3403 offset = do_div(logical_sb_block, blocksize);
3404 bh = sb_bread_unmovable(sb, logical_sb_block);
3405 if (!bh) {
3406 ext4_msg(sb, KERN_ERR,
3407 "Can't read superblock on 2nd try");
3408 goto failed_mount;
3409 }
3410 es = (struct ext4_super_block *)(bh->b_data + offset);
3411 sbi->s_es = es;
3412 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3413 ext4_msg(sb, KERN_ERR,
3414 "Magic mismatch, very weird!");
3415 goto failed_mount;
3416 }
3417 }
3418
3419 has_huge_files = ext4_has_feature_huge_file(sb);
3420 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3421 has_huge_files);
3422 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3423
3424 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3425 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3426 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3427 } else {
3428 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3429 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3430 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3431 (!is_power_of_2(sbi->s_inode_size)) ||
3432 (sbi->s_inode_size > blocksize)) {
3433 ext4_msg(sb, KERN_ERR,
3434 "unsupported inode size: %d",
3435 sbi->s_inode_size);
3436 goto failed_mount;
3437 }
3438 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3439 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3440 }
3441
3442 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3443 if (ext4_has_feature_64bit(sb)) {
3444 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3445 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3446 !is_power_of_2(sbi->s_desc_size)) {
3447 ext4_msg(sb, KERN_ERR,
3448 "unsupported descriptor size %lu",
3449 sbi->s_desc_size);
3450 goto failed_mount;
3451 }
3452 } else
3453 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3454
3455 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3456 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3457 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3458 goto cantfind_ext4;
3459
3460 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3461 if (sbi->s_inodes_per_block == 0)
3462 goto cantfind_ext4;
3463 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3464 sbi->s_inodes_per_block;
3465 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3466 sbi->s_sbh = bh;
3467 sbi->s_mount_state = le16_to_cpu(es->s_state);
3468 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3469 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3470
3471 for (i = 0; i < 4; i++)
3472 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3473 sbi->s_def_hash_version = es->s_def_hash_version;
3474 if (ext4_has_feature_dir_index(sb)) {
3475 i = le32_to_cpu(es->s_flags);
3476 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3477 sbi->s_hash_unsigned = 3;
3478 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3479 #ifdef __CHAR_UNSIGNED__
3480 if (!(sb->s_flags & MS_RDONLY))
3481 es->s_flags |=
3482 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3483 sbi->s_hash_unsigned = 3;
3484 #else
3485 if (!(sb->s_flags & MS_RDONLY))
3486 es->s_flags |=
3487 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3488 #endif
3489 }
3490 }
3491
3492 /* Handle clustersize */
3493 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3494 has_bigalloc = ext4_has_feature_bigalloc(sb);
3495 if (has_bigalloc) {
3496 if (clustersize < blocksize) {
3497 ext4_msg(sb, KERN_ERR,
3498 "cluster size (%d) smaller than "
3499 "block size (%d)", clustersize, blocksize);
3500 goto failed_mount;
3501 }
3502 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3503 le32_to_cpu(es->s_log_block_size);
3504 sbi->s_clusters_per_group =
3505 le32_to_cpu(es->s_clusters_per_group);
3506 if (sbi->s_clusters_per_group > blocksize * 8) {
3507 ext4_msg(sb, KERN_ERR,
3508 "#clusters per group too big: %lu",
3509 sbi->s_clusters_per_group);
3510 goto failed_mount;
3511 }
3512 if (sbi->s_blocks_per_group !=
3513 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3514 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3515 "clusters per group (%lu) inconsistent",
3516 sbi->s_blocks_per_group,
3517 sbi->s_clusters_per_group);
3518 goto failed_mount;
3519 }
3520 } else {
3521 if (clustersize != blocksize) {
3522 ext4_warning(sb, "fragment/cluster size (%d) != "
3523 "block size (%d)", clustersize,
3524 blocksize);
3525 clustersize = blocksize;
3526 }
3527 if (sbi->s_blocks_per_group > blocksize * 8) {
3528 ext4_msg(sb, KERN_ERR,
3529 "#blocks per group too big: %lu",
3530 sbi->s_blocks_per_group);
3531 goto failed_mount;
3532 }
3533 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3534 sbi->s_cluster_bits = 0;
3535 }
3536 sbi->s_cluster_ratio = clustersize / blocksize;
3537
3538 if (sbi->s_inodes_per_group > blocksize * 8) {
3539 ext4_msg(sb, KERN_ERR,
3540 "#inodes per group too big: %lu",
3541 sbi->s_inodes_per_group);
3542 goto failed_mount;
3543 }
3544
3545 /* Do we have standard group size of clustersize * 8 blocks ? */
3546 if (sbi->s_blocks_per_group == clustersize << 3)
3547 set_opt2(sb, STD_GROUP_SIZE);
3548
3549 /*
3550 * Test whether we have more sectors than will fit in sector_t,
3551 * and whether the max offset is addressable by the page cache.
3552 */
3553 err = generic_check_addressable(sb->s_blocksize_bits,
3554 ext4_blocks_count(es));
3555 if (err) {
3556 ext4_msg(sb, KERN_ERR, "filesystem"
3557 " too large to mount safely on this system");
3558 if (sizeof(sector_t) < 8)
3559 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3560 goto failed_mount;
3561 }
3562
3563 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3564 goto cantfind_ext4;
3565
3566 /* check blocks count against device size */
3567 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3568 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3569 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3570 "exceeds size of device (%llu blocks)",
3571 ext4_blocks_count(es), blocks_count);
3572 goto failed_mount;
3573 }
3574
3575 /*
3576 * It makes no sense for the first data block to be beyond the end
3577 * of the filesystem.
3578 */
3579 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3580 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3581 "block %u is beyond end of filesystem (%llu)",
3582 le32_to_cpu(es->s_first_data_block),
3583 ext4_blocks_count(es));
3584 goto failed_mount;
3585 }
3586 blocks_count = (ext4_blocks_count(es) -
3587 le32_to_cpu(es->s_first_data_block) +
3588 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3589 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3590 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3591 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3592 "(block count %llu, first data block %u, "
3593 "blocks per group %lu)", sbi->s_groups_count,
3594 ext4_blocks_count(es),
3595 le32_to_cpu(es->s_first_data_block),
3596 EXT4_BLOCKS_PER_GROUP(sb));
3597 goto failed_mount;
3598 }
3599 sbi->s_groups_count = blocks_count;
3600 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3601 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3602 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3603 EXT4_DESC_PER_BLOCK(sb);
3604 sbi->s_group_desc = ext4_kvmalloc(db_count *
3605 sizeof(struct buffer_head *),
3606 GFP_KERNEL);
3607 if (sbi->s_group_desc == NULL) {
3608 ext4_msg(sb, KERN_ERR, "not enough memory");
3609 ret = -ENOMEM;
3610 goto failed_mount;
3611 }
3612
3613 bgl_lock_init(sbi->s_blockgroup_lock);
3614
3615 for (i = 0; i < db_count; i++) {
3616 block = descriptor_loc(sb, logical_sb_block, i);
3617 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3618 if (!sbi->s_group_desc[i]) {
3619 ext4_msg(sb, KERN_ERR,
3620 "can't read group descriptor %d", i);
3621 db_count = i;
3622 goto failed_mount2;
3623 }
3624 }
3625 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3626 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3627 ret = -EFSCORRUPTED;
3628 goto failed_mount2;
3629 }
3630
3631 sbi->s_gdb_count = db_count;
3632 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3633 spin_lock_init(&sbi->s_next_gen_lock);
3634
3635 setup_timer(&sbi->s_err_report, print_daily_error_info,
3636 (unsigned long) sb);
3637
3638 /* Register extent status tree shrinker */
3639 if (ext4_es_register_shrinker(sbi))
3640 goto failed_mount3;
3641
3642 sbi->s_stripe = ext4_get_stripe_size(sbi);
3643 sbi->s_extent_max_zeroout_kb = 32;
3644
3645 /*
3646 * set up enough so that it can read an inode
3647 */
3648 sb->s_op = &ext4_sops;
3649 sb->s_export_op = &ext4_export_ops;
3650 sb->s_xattr = ext4_xattr_handlers;
3651 #ifdef CONFIG_QUOTA
3652 sb->dq_op = &ext4_quota_operations;
3653 if (ext4_has_feature_quota(sb))
3654 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3655 else
3656 sb->s_qcop = &ext4_qctl_operations;
3657 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3658 #endif
3659 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3660
3661 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3662 mutex_init(&sbi->s_orphan_lock);
3663
3664 sb->s_root = NULL;
3665
3666 needs_recovery = (es->s_last_orphan != 0 ||
3667 ext4_has_feature_journal_needs_recovery(sb));
3668
3669 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3670 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3671 goto failed_mount3a;
3672
3673 /*
3674 * The first inode we look at is the journal inode. Don't try
3675 * root first: it may be modified in the journal!
3676 */
3677 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3678 if (ext4_load_journal(sb, es, journal_devnum))
3679 goto failed_mount3a;
3680 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3681 ext4_has_feature_journal_needs_recovery(sb)) {
3682 ext4_msg(sb, KERN_ERR, "required journal recovery "
3683 "suppressed and not mounted read-only");
3684 goto failed_mount_wq;
3685 } else {
3686 /* Nojournal mode, all journal mount options are illegal */
3687 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3688 ext4_msg(sb, KERN_ERR, "can't mount with "
3689 "journal_checksum, fs mounted w/o journal");
3690 goto failed_mount_wq;
3691 }
3692 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3693 ext4_msg(sb, KERN_ERR, "can't mount with "
3694 "journal_async_commit, fs mounted w/o journal");
3695 goto failed_mount_wq;
3696 }
3697 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3698 ext4_msg(sb, KERN_ERR, "can't mount with "
3699 "commit=%lu, fs mounted w/o journal",
3700 sbi->s_commit_interval / HZ);
3701 goto failed_mount_wq;
3702 }
3703 if (EXT4_MOUNT_DATA_FLAGS &
3704 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3705 ext4_msg(sb, KERN_ERR, "can't mount with "
3706 "data=, fs mounted w/o journal");
3707 goto failed_mount_wq;
3708 }
3709 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3710 clear_opt(sb, JOURNAL_CHECKSUM);
3711 clear_opt(sb, DATA_FLAGS);
3712 sbi->s_journal = NULL;
3713 needs_recovery = 0;
3714 goto no_journal;
3715 }
3716
3717 if (ext4_has_feature_64bit(sb) &&
3718 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3719 JBD2_FEATURE_INCOMPAT_64BIT)) {
3720 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3721 goto failed_mount_wq;
3722 }
3723
3724 if (!set_journal_csum_feature_set(sb)) {
3725 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3726 "feature set");
3727 goto failed_mount_wq;
3728 }
3729
3730 /* We have now updated the journal if required, so we can
3731 * validate the data journaling mode. */
3732 switch (test_opt(sb, DATA_FLAGS)) {
3733 case 0:
3734 /* No mode set, assume a default based on the journal
3735 * capabilities: ORDERED_DATA if the journal can
3736 * cope, else JOURNAL_DATA
3737 */
3738 if (jbd2_journal_check_available_features
3739 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3740 set_opt(sb, ORDERED_DATA);
3741 else
3742 set_opt(sb, JOURNAL_DATA);
3743 break;
3744
3745 case EXT4_MOUNT_ORDERED_DATA:
3746 case EXT4_MOUNT_WRITEBACK_DATA:
3747 if (!jbd2_journal_check_available_features
3748 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3749 ext4_msg(sb, KERN_ERR, "Journal does not support "
3750 "requested data journaling mode");
3751 goto failed_mount_wq;
3752 }
3753 default:
3754 break;
3755 }
3756 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3757
3758 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3759
3760 no_journal:
3761 if (ext4_mballoc_ready) {
3762 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
3763 if (!sbi->s_mb_cache) {
3764 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3765 goto failed_mount_wq;
3766 }
3767 }
3768
3769 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3770 (blocksize != PAGE_CACHE_SIZE)) {
3771 ext4_msg(sb, KERN_ERR,
3772 "Unsupported blocksize for fs encryption");
3773 goto failed_mount_wq;
3774 }
3775
3776 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3777 !ext4_has_feature_encrypt(sb)) {
3778 ext4_set_feature_encrypt(sb);
3779 ext4_commit_super(sb, 1);
3780 }
3781
3782 /*
3783 * Get the # of file system overhead blocks from the
3784 * superblock if present.
3785 */
3786 if (es->s_overhead_clusters)
3787 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3788 else {
3789 err = ext4_calculate_overhead(sb);
3790 if (err)
3791 goto failed_mount_wq;
3792 }
3793
3794 /*
3795 * The maximum number of concurrent works can be high and
3796 * concurrency isn't really necessary. Limit it to 1.
3797 */
3798 EXT4_SB(sb)->rsv_conversion_wq =
3799 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3800 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3801 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3802 ret = -ENOMEM;
3803 goto failed_mount4;
3804 }
3805
3806 /*
3807 * The jbd2_journal_load will have done any necessary log recovery,
3808 * so we can safely mount the rest of the filesystem now.
3809 */
3810
3811 root = ext4_iget(sb, EXT4_ROOT_INO);
3812 if (IS_ERR(root)) {
3813 ext4_msg(sb, KERN_ERR, "get root inode failed");
3814 ret = PTR_ERR(root);
3815 root = NULL;
3816 goto failed_mount4;
3817 }
3818 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3819 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3820 iput(root);
3821 goto failed_mount4;
3822 }
3823 sb->s_root = d_make_root(root);
3824 if (!sb->s_root) {
3825 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3826 ret = -ENOMEM;
3827 goto failed_mount4;
3828 }
3829
3830 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3831 sb->s_flags |= MS_RDONLY;
3832
3833 /* determine the minimum size of new large inodes, if present */
3834 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3835 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3836 EXT4_GOOD_OLD_INODE_SIZE;
3837 if (ext4_has_feature_extra_isize(sb)) {
3838 if (sbi->s_want_extra_isize <
3839 le16_to_cpu(es->s_want_extra_isize))
3840 sbi->s_want_extra_isize =
3841 le16_to_cpu(es->s_want_extra_isize);
3842 if (sbi->s_want_extra_isize <
3843 le16_to_cpu(es->s_min_extra_isize))
3844 sbi->s_want_extra_isize =
3845 le16_to_cpu(es->s_min_extra_isize);
3846 }
3847 }
3848 /* Check if enough inode space is available */
3849 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3850 sbi->s_inode_size) {
3851 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3852 EXT4_GOOD_OLD_INODE_SIZE;
3853 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3854 "available");
3855 }
3856
3857 ext4_set_resv_clusters(sb);
3858
3859 err = ext4_setup_system_zone(sb);
3860 if (err) {
3861 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3862 "zone (%d)", err);
3863 goto failed_mount4a;
3864 }
3865
3866 ext4_ext_init(sb);
3867 err = ext4_mb_init(sb);
3868 if (err) {
3869 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3870 err);
3871 goto failed_mount5;
3872 }
3873
3874 block = ext4_count_free_clusters(sb);
3875 ext4_free_blocks_count_set(sbi->s_es,
3876 EXT4_C2B(sbi, block));
3877 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3878 GFP_KERNEL);
3879 if (!err) {
3880 unsigned long freei = ext4_count_free_inodes(sb);
3881 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3882 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3883 GFP_KERNEL);
3884 }
3885 if (!err)
3886 err = percpu_counter_init(&sbi->s_dirs_counter,
3887 ext4_count_dirs(sb), GFP_KERNEL);
3888 if (!err)
3889 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3890 GFP_KERNEL);
3891 if (err) {
3892 ext4_msg(sb, KERN_ERR, "insufficient memory");
3893 goto failed_mount6;
3894 }
3895
3896 if (ext4_has_feature_flex_bg(sb))
3897 if (!ext4_fill_flex_info(sb)) {
3898 ext4_msg(sb, KERN_ERR,
3899 "unable to initialize "
3900 "flex_bg meta info!");
3901 goto failed_mount6;
3902 }
3903
3904 err = ext4_register_li_request(sb, first_not_zeroed);
3905 if (err)
3906 goto failed_mount6;
3907
3908 err = ext4_register_sysfs(sb);
3909 if (err)
3910 goto failed_mount7;
3911
3912 #ifdef CONFIG_QUOTA
3913 /* Enable quota usage during mount. */
3914 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3915 err = ext4_enable_quotas(sb);
3916 if (err)
3917 goto failed_mount8;
3918 }
3919 #endif /* CONFIG_QUOTA */
3920
3921 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3922 ext4_orphan_cleanup(sb, es);
3923 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3924 if (needs_recovery) {
3925 ext4_msg(sb, KERN_INFO, "recovery complete");
3926 ext4_mark_recovery_complete(sb, es);
3927 }
3928 if (EXT4_SB(sb)->s_journal) {
3929 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3930 descr = " journalled data mode";
3931 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3932 descr = " ordered data mode";
3933 else
3934 descr = " writeback data mode";
3935 } else
3936 descr = "out journal";
3937
3938 if (test_opt(sb, DISCARD)) {
3939 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3940 if (!blk_queue_discard(q))
3941 ext4_msg(sb, KERN_WARNING,
3942 "mounting with \"discard\" option, but "
3943 "the device does not support discard");
3944 }
3945
3946 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3947 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3948 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3949 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3950
3951 if (es->s_error_count)
3952 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3953
3954 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3955 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3956 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3957 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3958
3959 kfree(orig_data);
3960 return 0;
3961
3962 cantfind_ext4:
3963 if (!silent)
3964 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3965 goto failed_mount;
3966
3967 #ifdef CONFIG_QUOTA
3968 failed_mount8:
3969 ext4_unregister_sysfs(sb);
3970 #endif
3971 failed_mount7:
3972 ext4_unregister_li_request(sb);
3973 failed_mount6:
3974 ext4_mb_release(sb);
3975 if (sbi->s_flex_groups)
3976 kvfree(sbi->s_flex_groups);
3977 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3978 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3979 percpu_counter_destroy(&sbi->s_dirs_counter);
3980 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3981 failed_mount5:
3982 ext4_ext_release(sb);
3983 ext4_release_system_zone(sb);
3984 failed_mount4a:
3985 dput(sb->s_root);
3986 sb->s_root = NULL;
3987 failed_mount4:
3988 ext4_msg(sb, KERN_ERR, "mount failed");
3989 if (EXT4_SB(sb)->rsv_conversion_wq)
3990 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
3991 failed_mount_wq:
3992 if (sbi->s_journal) {
3993 jbd2_journal_destroy(sbi->s_journal);
3994 sbi->s_journal = NULL;
3995 }
3996 failed_mount3a:
3997 ext4_es_unregister_shrinker(sbi);
3998 failed_mount3:
3999 del_timer_sync(&sbi->s_err_report);
4000 if (sbi->s_mmp_tsk)
4001 kthread_stop(sbi->s_mmp_tsk);
4002 failed_mount2:
4003 for (i = 0; i < db_count; i++)
4004 brelse(sbi->s_group_desc[i]);
4005 kvfree(sbi->s_group_desc);
4006 failed_mount:
4007 if (sbi->s_chksum_driver)
4008 crypto_free_shash(sbi->s_chksum_driver);
4009 #ifdef CONFIG_QUOTA
4010 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4011 kfree(sbi->s_qf_names[i]);
4012 #endif
4013 ext4_blkdev_remove(sbi);
4014 brelse(bh);
4015 out_fail:
4016 sb->s_fs_info = NULL;
4017 kfree(sbi->s_blockgroup_lock);
4018 kfree(sbi);
4019 out_free_orig:
4020 kfree(orig_data);
4021 return err ? err : ret;
4022 }
4023
4024 /*
4025 * Setup any per-fs journal parameters now. We'll do this both on
4026 * initial mount, once the journal has been initialised but before we've
4027 * done any recovery; and again on any subsequent remount.
4028 */
4029 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4030 {
4031 struct ext4_sb_info *sbi = EXT4_SB(sb);
4032
4033 journal->j_commit_interval = sbi->s_commit_interval;
4034 journal->j_min_batch_time = sbi->s_min_batch_time;
4035 journal->j_max_batch_time = sbi->s_max_batch_time;
4036
4037 write_lock(&journal->j_state_lock);
4038 if (test_opt(sb, BARRIER))
4039 journal->j_flags |= JBD2_BARRIER;
4040 else
4041 journal->j_flags &= ~JBD2_BARRIER;
4042 if (test_opt(sb, DATA_ERR_ABORT))
4043 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4044 else
4045 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4046 write_unlock(&journal->j_state_lock);
4047 }
4048
4049 static journal_t *ext4_get_journal(struct super_block *sb,
4050 unsigned int journal_inum)
4051 {
4052 struct inode *journal_inode;
4053 journal_t *journal;
4054
4055 BUG_ON(!ext4_has_feature_journal(sb));
4056
4057 /* First, test for the existence of a valid inode on disk. Bad
4058 * things happen if we iget() an unused inode, as the subsequent
4059 * iput() will try to delete it. */
4060
4061 journal_inode = ext4_iget(sb, journal_inum);
4062 if (IS_ERR(journal_inode)) {
4063 ext4_msg(sb, KERN_ERR, "no journal found");
4064 return NULL;
4065 }
4066 if (!journal_inode->i_nlink) {
4067 make_bad_inode(journal_inode);
4068 iput(journal_inode);
4069 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4070 return NULL;
4071 }
4072
4073 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4074 journal_inode, journal_inode->i_size);
4075 if (!S_ISREG(journal_inode->i_mode)) {
4076 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4077 iput(journal_inode);
4078 return NULL;
4079 }
4080
4081 journal = jbd2_journal_init_inode(journal_inode);
4082 if (!journal) {
4083 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4084 iput(journal_inode);
4085 return NULL;
4086 }
4087 journal->j_private = sb;
4088 ext4_init_journal_params(sb, journal);
4089 return journal;
4090 }
4091
4092 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4093 dev_t j_dev)
4094 {
4095 struct buffer_head *bh;
4096 journal_t *journal;
4097 ext4_fsblk_t start;
4098 ext4_fsblk_t len;
4099 int hblock, blocksize;
4100 ext4_fsblk_t sb_block;
4101 unsigned long offset;
4102 struct ext4_super_block *es;
4103 struct block_device *bdev;
4104
4105 BUG_ON(!ext4_has_feature_journal(sb));
4106
4107 bdev = ext4_blkdev_get(j_dev, sb);
4108 if (bdev == NULL)
4109 return NULL;
4110
4111 blocksize = sb->s_blocksize;
4112 hblock = bdev_logical_block_size(bdev);
4113 if (blocksize < hblock) {
4114 ext4_msg(sb, KERN_ERR,
4115 "blocksize too small for journal device");
4116 goto out_bdev;
4117 }
4118
4119 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4120 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4121 set_blocksize(bdev, blocksize);
4122 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4123 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4124 "external journal");
4125 goto out_bdev;
4126 }
4127
4128 es = (struct ext4_super_block *) (bh->b_data + offset);
4129 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4130 !(le32_to_cpu(es->s_feature_incompat) &
4131 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4132 ext4_msg(sb, KERN_ERR, "external journal has "
4133 "bad superblock");
4134 brelse(bh);
4135 goto out_bdev;
4136 }
4137
4138 if ((le32_to_cpu(es->s_feature_ro_compat) &
4139 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4140 es->s_checksum != ext4_superblock_csum(sb, es)) {
4141 ext4_msg(sb, KERN_ERR, "external journal has "
4142 "corrupt superblock");
4143 brelse(bh);
4144 goto out_bdev;
4145 }
4146
4147 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4148 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4149 brelse(bh);
4150 goto out_bdev;
4151 }
4152
4153 len = ext4_blocks_count(es);
4154 start = sb_block + 1;
4155 brelse(bh); /* we're done with the superblock */
4156
4157 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4158 start, len, blocksize);
4159 if (!journal) {
4160 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4161 goto out_bdev;
4162 }
4163 journal->j_private = sb;
4164 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4165 wait_on_buffer(journal->j_sb_buffer);
4166 if (!buffer_uptodate(journal->j_sb_buffer)) {
4167 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4168 goto out_journal;
4169 }
4170 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4171 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4172 "user (unsupported) - %d",
4173 be32_to_cpu(journal->j_superblock->s_nr_users));
4174 goto out_journal;
4175 }
4176 EXT4_SB(sb)->journal_bdev = bdev;
4177 ext4_init_journal_params(sb, journal);
4178 return journal;
4179
4180 out_journal:
4181 jbd2_journal_destroy(journal);
4182 out_bdev:
4183 ext4_blkdev_put(bdev);
4184 return NULL;
4185 }
4186
4187 static int ext4_load_journal(struct super_block *sb,
4188 struct ext4_super_block *es,
4189 unsigned long journal_devnum)
4190 {
4191 journal_t *journal;
4192 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4193 dev_t journal_dev;
4194 int err = 0;
4195 int really_read_only;
4196
4197 BUG_ON(!ext4_has_feature_journal(sb));
4198
4199 if (journal_devnum &&
4200 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4201 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4202 "numbers have changed");
4203 journal_dev = new_decode_dev(journal_devnum);
4204 } else
4205 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4206
4207 really_read_only = bdev_read_only(sb->s_bdev);
4208
4209 /*
4210 * Are we loading a blank journal or performing recovery after a
4211 * crash? For recovery, we need to check in advance whether we
4212 * can get read-write access to the device.
4213 */
4214 if (ext4_has_feature_journal_needs_recovery(sb)) {
4215 if (sb->s_flags & MS_RDONLY) {
4216 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4217 "required on readonly filesystem");
4218 if (really_read_only) {
4219 ext4_msg(sb, KERN_ERR, "write access "
4220 "unavailable, cannot proceed");
4221 return -EROFS;
4222 }
4223 ext4_msg(sb, KERN_INFO, "write access will "
4224 "be enabled during recovery");
4225 }
4226 }
4227
4228 if (journal_inum && journal_dev) {
4229 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4230 "and inode journals!");
4231 return -EINVAL;
4232 }
4233
4234 if (journal_inum) {
4235 if (!(journal = ext4_get_journal(sb, journal_inum)))
4236 return -EINVAL;
4237 } else {
4238 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4239 return -EINVAL;
4240 }
4241
4242 if (!(journal->j_flags & JBD2_BARRIER))
4243 ext4_msg(sb, KERN_INFO, "barriers disabled");
4244
4245 if (!ext4_has_feature_journal_needs_recovery(sb))
4246 err = jbd2_journal_wipe(journal, !really_read_only);
4247 if (!err) {
4248 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4249 if (save)
4250 memcpy(save, ((char *) es) +
4251 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4252 err = jbd2_journal_load(journal);
4253 if (save)
4254 memcpy(((char *) es) + EXT4_S_ERR_START,
4255 save, EXT4_S_ERR_LEN);
4256 kfree(save);
4257 }
4258
4259 if (err) {
4260 ext4_msg(sb, KERN_ERR, "error loading journal");
4261 jbd2_journal_destroy(journal);
4262 return err;
4263 }
4264
4265 EXT4_SB(sb)->s_journal = journal;
4266 ext4_clear_journal_err(sb, es);
4267
4268 if (!really_read_only && journal_devnum &&
4269 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4270 es->s_journal_dev = cpu_to_le32(journal_devnum);
4271
4272 /* Make sure we flush the recovery flag to disk. */
4273 ext4_commit_super(sb, 1);
4274 }
4275
4276 return 0;
4277 }
4278
4279 static int ext4_commit_super(struct super_block *sb, int sync)
4280 {
4281 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4282 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4283 int error = 0;
4284
4285 if (!sbh || block_device_ejected(sb))
4286 return error;
4287 if (buffer_write_io_error(sbh)) {
4288 /*
4289 * Oh, dear. A previous attempt to write the
4290 * superblock failed. This could happen because the
4291 * USB device was yanked out. Or it could happen to
4292 * be a transient write error and maybe the block will
4293 * be remapped. Nothing we can do but to retry the
4294 * write and hope for the best.
4295 */
4296 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4297 "superblock detected");
4298 clear_buffer_write_io_error(sbh);
4299 set_buffer_uptodate(sbh);
4300 }
4301 /*
4302 * If the file system is mounted read-only, don't update the
4303 * superblock write time. This avoids updating the superblock
4304 * write time when we are mounting the root file system
4305 * read/only but we need to replay the journal; at that point,
4306 * for people who are east of GMT and who make their clock
4307 * tick in localtime for Windows bug-for-bug compatibility,
4308 * the clock is set in the future, and this will cause e2fsck
4309 * to complain and force a full file system check.
4310 */
4311 if (!(sb->s_flags & MS_RDONLY))
4312 es->s_wtime = cpu_to_le32(get_seconds());
4313 if (sb->s_bdev->bd_part)
4314 es->s_kbytes_written =
4315 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4316 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4317 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4318 else
4319 es->s_kbytes_written =
4320 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4321 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4322 ext4_free_blocks_count_set(es,
4323 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4324 &EXT4_SB(sb)->s_freeclusters_counter)));
4325 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4326 es->s_free_inodes_count =
4327 cpu_to_le32(percpu_counter_sum_positive(
4328 &EXT4_SB(sb)->s_freeinodes_counter));
4329 BUFFER_TRACE(sbh, "marking dirty");
4330 ext4_superblock_csum_set(sb);
4331 mark_buffer_dirty(sbh);
4332 if (sync) {
4333 error = __sync_dirty_buffer(sbh,
4334 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4335 if (error)
4336 return error;
4337
4338 error = buffer_write_io_error(sbh);
4339 if (error) {
4340 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4341 "superblock");
4342 clear_buffer_write_io_error(sbh);
4343 set_buffer_uptodate(sbh);
4344 }
4345 }
4346 return error;
4347 }
4348
4349 /*
4350 * Have we just finished recovery? If so, and if we are mounting (or
4351 * remounting) the filesystem readonly, then we will end up with a
4352 * consistent fs on disk. Record that fact.
4353 */
4354 static void ext4_mark_recovery_complete(struct super_block *sb,
4355 struct ext4_super_block *es)
4356 {
4357 journal_t *journal = EXT4_SB(sb)->s_journal;
4358
4359 if (!ext4_has_feature_journal(sb)) {
4360 BUG_ON(journal != NULL);
4361 return;
4362 }
4363 jbd2_journal_lock_updates(journal);
4364 if (jbd2_journal_flush(journal) < 0)
4365 goto out;
4366
4367 if (ext4_has_feature_journal_needs_recovery(sb) &&
4368 sb->s_flags & MS_RDONLY) {
4369 ext4_clear_feature_journal_needs_recovery(sb);
4370 ext4_commit_super(sb, 1);
4371 }
4372
4373 out:
4374 jbd2_journal_unlock_updates(journal);
4375 }
4376
4377 /*
4378 * If we are mounting (or read-write remounting) a filesystem whose journal
4379 * has recorded an error from a previous lifetime, move that error to the
4380 * main filesystem now.
4381 */
4382 static void ext4_clear_journal_err(struct super_block *sb,
4383 struct ext4_super_block *es)
4384 {
4385 journal_t *journal;
4386 int j_errno;
4387 const char *errstr;
4388
4389 BUG_ON(!ext4_has_feature_journal(sb));
4390
4391 journal = EXT4_SB(sb)->s_journal;
4392
4393 /*
4394 * Now check for any error status which may have been recorded in the
4395 * journal by a prior ext4_error() or ext4_abort()
4396 */
4397
4398 j_errno = jbd2_journal_errno(journal);
4399 if (j_errno) {
4400 char nbuf[16];
4401
4402 errstr = ext4_decode_error(sb, j_errno, nbuf);
4403 ext4_warning(sb, "Filesystem error recorded "
4404 "from previous mount: %s", errstr);
4405 ext4_warning(sb, "Marking fs in need of filesystem check.");
4406
4407 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4408 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4409 ext4_commit_super(sb, 1);
4410
4411 jbd2_journal_clear_err(journal);
4412 jbd2_journal_update_sb_errno(journal);
4413 }
4414 }
4415
4416 /*
4417 * Force the running and committing transactions to commit,
4418 * and wait on the commit.
4419 */
4420 int ext4_force_commit(struct super_block *sb)
4421 {
4422 journal_t *journal;
4423
4424 if (sb->s_flags & MS_RDONLY)
4425 return 0;
4426
4427 journal = EXT4_SB(sb)->s_journal;
4428 return ext4_journal_force_commit(journal);
4429 }
4430
4431 static int ext4_sync_fs(struct super_block *sb, int wait)
4432 {
4433 int ret = 0;
4434 tid_t target;
4435 bool needs_barrier = false;
4436 struct ext4_sb_info *sbi = EXT4_SB(sb);
4437
4438 trace_ext4_sync_fs(sb, wait);
4439 flush_workqueue(sbi->rsv_conversion_wq);
4440 /*
4441 * Writeback quota in non-journalled quota case - journalled quota has
4442 * no dirty dquots
4443 */
4444 dquot_writeback_dquots(sb, -1);
4445 /*
4446 * Data writeback is possible w/o journal transaction, so barrier must
4447 * being sent at the end of the function. But we can skip it if
4448 * transaction_commit will do it for us.
4449 */
4450 if (sbi->s_journal) {
4451 target = jbd2_get_latest_transaction(sbi->s_journal);
4452 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4453 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4454 needs_barrier = true;
4455
4456 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4457 if (wait)
4458 ret = jbd2_log_wait_commit(sbi->s_journal,
4459 target);
4460 }
4461 } else if (wait && test_opt(sb, BARRIER))
4462 needs_barrier = true;
4463 if (needs_barrier) {
4464 int err;
4465 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4466 if (!ret)
4467 ret = err;
4468 }
4469
4470 return ret;
4471 }
4472
4473 /*
4474 * LVM calls this function before a (read-only) snapshot is created. This
4475 * gives us a chance to flush the journal completely and mark the fs clean.
4476 *
4477 * Note that only this function cannot bring a filesystem to be in a clean
4478 * state independently. It relies on upper layer to stop all data & metadata
4479 * modifications.
4480 */
4481 static int ext4_freeze(struct super_block *sb)
4482 {
4483 int error = 0;
4484 journal_t *journal;
4485
4486 if (sb->s_flags & MS_RDONLY)
4487 return 0;
4488
4489 journal = EXT4_SB(sb)->s_journal;
4490
4491 if (journal) {
4492 /* Now we set up the journal barrier. */
4493 jbd2_journal_lock_updates(journal);
4494
4495 /*
4496 * Don't clear the needs_recovery flag if we failed to
4497 * flush the journal.
4498 */
4499 error = jbd2_journal_flush(journal);
4500 if (error < 0)
4501 goto out;
4502
4503 /* Journal blocked and flushed, clear needs_recovery flag. */
4504 ext4_clear_feature_journal_needs_recovery(sb);
4505 }
4506
4507 error = ext4_commit_super(sb, 1);
4508 out:
4509 if (journal)
4510 /* we rely on upper layer to stop further updates */
4511 jbd2_journal_unlock_updates(journal);
4512 return error;
4513 }
4514
4515 /*
4516 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4517 * flag here, even though the filesystem is not technically dirty yet.
4518 */
4519 static int ext4_unfreeze(struct super_block *sb)
4520 {
4521 if (sb->s_flags & MS_RDONLY)
4522 return 0;
4523
4524 if (EXT4_SB(sb)->s_journal) {
4525 /* Reset the needs_recovery flag before the fs is unlocked. */
4526 ext4_set_feature_journal_needs_recovery(sb);
4527 }
4528
4529 ext4_commit_super(sb, 1);
4530 return 0;
4531 }
4532
4533 /*
4534 * Structure to save mount options for ext4_remount's benefit
4535 */
4536 struct ext4_mount_options {
4537 unsigned long s_mount_opt;
4538 unsigned long s_mount_opt2;
4539 kuid_t s_resuid;
4540 kgid_t s_resgid;
4541 unsigned long s_commit_interval;
4542 u32 s_min_batch_time, s_max_batch_time;
4543 #ifdef CONFIG_QUOTA
4544 int s_jquota_fmt;
4545 char *s_qf_names[EXT4_MAXQUOTAS];
4546 #endif
4547 };
4548
4549 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4550 {
4551 struct ext4_super_block *es;
4552 struct ext4_sb_info *sbi = EXT4_SB(sb);
4553 unsigned long old_sb_flags;
4554 struct ext4_mount_options old_opts;
4555 int enable_quota = 0;
4556 ext4_group_t g;
4557 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4558 int err = 0;
4559 #ifdef CONFIG_QUOTA
4560 int i, j;
4561 #endif
4562 char *orig_data = kstrdup(data, GFP_KERNEL);
4563
4564 /* Store the original options */
4565 old_sb_flags = sb->s_flags;
4566 old_opts.s_mount_opt = sbi->s_mount_opt;
4567 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4568 old_opts.s_resuid = sbi->s_resuid;
4569 old_opts.s_resgid = sbi->s_resgid;
4570 old_opts.s_commit_interval = sbi->s_commit_interval;
4571 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4572 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4573 #ifdef CONFIG_QUOTA
4574 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4575 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4576 if (sbi->s_qf_names[i]) {
4577 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4578 GFP_KERNEL);
4579 if (!old_opts.s_qf_names[i]) {
4580 for (j = 0; j < i; j++)
4581 kfree(old_opts.s_qf_names[j]);
4582 kfree(orig_data);
4583 return -ENOMEM;
4584 }
4585 } else
4586 old_opts.s_qf_names[i] = NULL;
4587 #endif
4588 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4589 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4590
4591 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4592 err = -EINVAL;
4593 goto restore_opts;
4594 }
4595
4596 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4597 test_opt(sb, JOURNAL_CHECKSUM)) {
4598 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4599 "during remount not supported; ignoring");
4600 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4601 }
4602
4603 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4604 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4605 ext4_msg(sb, KERN_ERR, "can't mount with "
4606 "both data=journal and delalloc");
4607 err = -EINVAL;
4608 goto restore_opts;
4609 }
4610 if (test_opt(sb, DIOREAD_NOLOCK)) {
4611 ext4_msg(sb, KERN_ERR, "can't mount with "
4612 "both data=journal and dioread_nolock");
4613 err = -EINVAL;
4614 goto restore_opts;
4615 }
4616 if (test_opt(sb, DAX)) {
4617 ext4_msg(sb, KERN_ERR, "can't mount with "
4618 "both data=journal and dax");
4619 err = -EINVAL;
4620 goto restore_opts;
4621 }
4622 }
4623
4624 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4625 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4626 "dax flag with busy inodes while remounting");
4627 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4628 }
4629
4630 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4631 ext4_abort(sb, "Abort forced by user");
4632
4633 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4634 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4635
4636 es = sbi->s_es;
4637
4638 if (sbi->s_journal) {
4639 ext4_init_journal_params(sb, sbi->s_journal);
4640 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4641 }
4642
4643 if (*flags & MS_LAZYTIME)
4644 sb->s_flags |= MS_LAZYTIME;
4645
4646 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4647 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4648 err = -EROFS;
4649 goto restore_opts;
4650 }
4651
4652 if (*flags & MS_RDONLY) {
4653 err = sync_filesystem(sb);
4654 if (err < 0)
4655 goto restore_opts;
4656 err = dquot_suspend(sb, -1);
4657 if (err < 0)
4658 goto restore_opts;
4659
4660 /*
4661 * First of all, the unconditional stuff we have to do
4662 * to disable replay of the journal when we next remount
4663 */
4664 sb->s_flags |= MS_RDONLY;
4665
4666 /*
4667 * OK, test if we are remounting a valid rw partition
4668 * readonly, and if so set the rdonly flag and then
4669 * mark the partition as valid again.
4670 */
4671 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4672 (sbi->s_mount_state & EXT4_VALID_FS))
4673 es->s_state = cpu_to_le16(sbi->s_mount_state);
4674
4675 if (sbi->s_journal)
4676 ext4_mark_recovery_complete(sb, es);
4677 } else {
4678 /* Make sure we can mount this feature set readwrite */
4679 if (ext4_has_feature_readonly(sb) ||
4680 !ext4_feature_set_ok(sb, 0)) {
4681 err = -EROFS;
4682 goto restore_opts;
4683 }
4684 /*
4685 * Make sure the group descriptor checksums
4686 * are sane. If they aren't, refuse to remount r/w.
4687 */
4688 for (g = 0; g < sbi->s_groups_count; g++) {
4689 struct ext4_group_desc *gdp =
4690 ext4_get_group_desc(sb, g, NULL);
4691
4692 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4693 ext4_msg(sb, KERN_ERR,
4694 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4695 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4696 le16_to_cpu(gdp->bg_checksum));
4697 err = -EFSBADCRC;
4698 goto restore_opts;
4699 }
4700 }
4701
4702 /*
4703 * If we have an unprocessed orphan list hanging
4704 * around from a previously readonly bdev mount,
4705 * require a full umount/remount for now.
4706 */
4707 if (es->s_last_orphan) {
4708 ext4_msg(sb, KERN_WARNING, "Couldn't "
4709 "remount RDWR because of unprocessed "
4710 "orphan inode list. Please "
4711 "umount/remount instead");
4712 err = -EINVAL;
4713 goto restore_opts;
4714 }
4715
4716 /*
4717 * Mounting a RDONLY partition read-write, so reread
4718 * and store the current valid flag. (It may have
4719 * been changed by e2fsck since we originally mounted
4720 * the partition.)
4721 */
4722 if (sbi->s_journal)
4723 ext4_clear_journal_err(sb, es);
4724 sbi->s_mount_state = le16_to_cpu(es->s_state);
4725 if (!ext4_setup_super(sb, es, 0))
4726 sb->s_flags &= ~MS_RDONLY;
4727 if (ext4_has_feature_mmp(sb))
4728 if (ext4_multi_mount_protect(sb,
4729 le64_to_cpu(es->s_mmp_block))) {
4730 err = -EROFS;
4731 goto restore_opts;
4732 }
4733 enable_quota = 1;
4734 }
4735 }
4736
4737 /*
4738 * Reinitialize lazy itable initialization thread based on
4739 * current settings
4740 */
4741 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4742 ext4_unregister_li_request(sb);
4743 else {
4744 ext4_group_t first_not_zeroed;
4745 first_not_zeroed = ext4_has_uninit_itable(sb);
4746 ext4_register_li_request(sb, first_not_zeroed);
4747 }
4748
4749 ext4_setup_system_zone(sb);
4750 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4751 ext4_commit_super(sb, 1);
4752
4753 #ifdef CONFIG_QUOTA
4754 /* Release old quota file names */
4755 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4756 kfree(old_opts.s_qf_names[i]);
4757 if (enable_quota) {
4758 if (sb_any_quota_suspended(sb))
4759 dquot_resume(sb, -1);
4760 else if (ext4_has_feature_quota(sb)) {
4761 err = ext4_enable_quotas(sb);
4762 if (err)
4763 goto restore_opts;
4764 }
4765 }
4766 #endif
4767
4768 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4769 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4770 kfree(orig_data);
4771 return 0;
4772
4773 restore_opts:
4774 sb->s_flags = old_sb_flags;
4775 sbi->s_mount_opt = old_opts.s_mount_opt;
4776 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4777 sbi->s_resuid = old_opts.s_resuid;
4778 sbi->s_resgid = old_opts.s_resgid;
4779 sbi->s_commit_interval = old_opts.s_commit_interval;
4780 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4781 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4782 #ifdef CONFIG_QUOTA
4783 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4784 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4785 kfree(sbi->s_qf_names[i]);
4786 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4787 }
4788 #endif
4789 kfree(orig_data);
4790 return err;
4791 }
4792
4793 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4794 {
4795 struct super_block *sb = dentry->d_sb;
4796 struct ext4_sb_info *sbi = EXT4_SB(sb);
4797 struct ext4_super_block *es = sbi->s_es;
4798 ext4_fsblk_t overhead = 0, resv_blocks;
4799 u64 fsid;
4800 s64 bfree;
4801 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4802
4803 if (!test_opt(sb, MINIX_DF))
4804 overhead = sbi->s_overhead;
4805
4806 buf->f_type = EXT4_SUPER_MAGIC;
4807 buf->f_bsize = sb->s_blocksize;
4808 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4809 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4810 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4811 /* prevent underflow in case that few free space is available */
4812 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4813 buf->f_bavail = buf->f_bfree -
4814 (ext4_r_blocks_count(es) + resv_blocks);
4815 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4816 buf->f_bavail = 0;
4817 buf->f_files = le32_to_cpu(es->s_inodes_count);
4818 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4819 buf->f_namelen = EXT4_NAME_LEN;
4820 fsid = le64_to_cpup((void *)es->s_uuid) ^
4821 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4822 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4823 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4824
4825 return 0;
4826 }
4827
4828 /* Helper function for writing quotas on sync - we need to start transaction
4829 * before quota file is locked for write. Otherwise the are possible deadlocks:
4830 * Process 1 Process 2
4831 * ext4_create() quota_sync()
4832 * jbd2_journal_start() write_dquot()
4833 * dquot_initialize() down(dqio_mutex)
4834 * down(dqio_mutex) jbd2_journal_start()
4835 *
4836 */
4837
4838 #ifdef CONFIG_QUOTA
4839
4840 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4841 {
4842 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4843 }
4844
4845 static int ext4_write_dquot(struct dquot *dquot)
4846 {
4847 int ret, err;
4848 handle_t *handle;
4849 struct inode *inode;
4850
4851 inode = dquot_to_inode(dquot);
4852 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4853 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4854 if (IS_ERR(handle))
4855 return PTR_ERR(handle);
4856 ret = dquot_commit(dquot);
4857 err = ext4_journal_stop(handle);
4858 if (!ret)
4859 ret = err;
4860 return ret;
4861 }
4862
4863 static int ext4_acquire_dquot(struct dquot *dquot)
4864 {
4865 int ret, err;
4866 handle_t *handle;
4867
4868 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4869 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4870 if (IS_ERR(handle))
4871 return PTR_ERR(handle);
4872 ret = dquot_acquire(dquot);
4873 err = ext4_journal_stop(handle);
4874 if (!ret)
4875 ret = err;
4876 return ret;
4877 }
4878
4879 static int ext4_release_dquot(struct dquot *dquot)
4880 {
4881 int ret, err;
4882 handle_t *handle;
4883
4884 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4885 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4886 if (IS_ERR(handle)) {
4887 /* Release dquot anyway to avoid endless cycle in dqput() */
4888 dquot_release(dquot);
4889 return PTR_ERR(handle);
4890 }
4891 ret = dquot_release(dquot);
4892 err = ext4_journal_stop(handle);
4893 if (!ret)
4894 ret = err;
4895 return ret;
4896 }
4897
4898 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4899 {
4900 struct super_block *sb = dquot->dq_sb;
4901 struct ext4_sb_info *sbi = EXT4_SB(sb);
4902
4903 /* Are we journaling quotas? */
4904 if (ext4_has_feature_quota(sb) ||
4905 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4906 dquot_mark_dquot_dirty(dquot);
4907 return ext4_write_dquot(dquot);
4908 } else {
4909 return dquot_mark_dquot_dirty(dquot);
4910 }
4911 }
4912
4913 static int ext4_write_info(struct super_block *sb, int type)
4914 {
4915 int ret, err;
4916 handle_t *handle;
4917
4918 /* Data block + inode block */
4919 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
4920 if (IS_ERR(handle))
4921 return PTR_ERR(handle);
4922 ret = dquot_commit_info(sb, type);
4923 err = ext4_journal_stop(handle);
4924 if (!ret)
4925 ret = err;
4926 return ret;
4927 }
4928
4929 /*
4930 * Turn on quotas during mount time - we need to find
4931 * the quota file and such...
4932 */
4933 static int ext4_quota_on_mount(struct super_block *sb, int type)
4934 {
4935 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4936 EXT4_SB(sb)->s_jquota_fmt, type);
4937 }
4938
4939 /*
4940 * Standard function to be called on quota_on
4941 */
4942 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4943 struct path *path)
4944 {
4945 int err;
4946
4947 if (!test_opt(sb, QUOTA))
4948 return -EINVAL;
4949
4950 /* Quotafile not on the same filesystem? */
4951 if (path->dentry->d_sb != sb)
4952 return -EXDEV;
4953 /* Journaling quota? */
4954 if (EXT4_SB(sb)->s_qf_names[type]) {
4955 /* Quotafile not in fs root? */
4956 if (path->dentry->d_parent != sb->s_root)
4957 ext4_msg(sb, KERN_WARNING,
4958 "Quota file not on filesystem root. "
4959 "Journaled quota will not work");
4960 }
4961
4962 /*
4963 * When we journal data on quota file, we have to flush journal to see
4964 * all updates to the file when we bypass pagecache...
4965 */
4966 if (EXT4_SB(sb)->s_journal &&
4967 ext4_should_journal_data(d_inode(path->dentry))) {
4968 /*
4969 * We don't need to lock updates but journal_flush() could
4970 * otherwise be livelocked...
4971 */
4972 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4973 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4974 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4975 if (err)
4976 return err;
4977 }
4978
4979 return dquot_quota_on(sb, type, format_id, path);
4980 }
4981
4982 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4983 unsigned int flags)
4984 {
4985 int err;
4986 struct inode *qf_inode;
4987 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
4988 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4989 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4990 };
4991
4992 BUG_ON(!ext4_has_feature_quota(sb));
4993
4994 if (!qf_inums[type])
4995 return -EPERM;
4996
4997 qf_inode = ext4_iget(sb, qf_inums[type]);
4998 if (IS_ERR(qf_inode)) {
4999 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5000 return PTR_ERR(qf_inode);
5001 }
5002
5003 /* Don't account quota for quota files to avoid recursion */
5004 qf_inode->i_flags |= S_NOQUOTA;
5005 err = dquot_enable(qf_inode, type, format_id, flags);
5006 iput(qf_inode);
5007
5008 return err;
5009 }
5010
5011 /* Enable usage tracking for all quota types. */
5012 static int ext4_enable_quotas(struct super_block *sb)
5013 {
5014 int type, err = 0;
5015 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5016 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5017 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5018 };
5019
5020 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5021 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5022 if (qf_inums[type]) {
5023 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5024 DQUOT_USAGE_ENABLED);
5025 if (err) {
5026 ext4_warning(sb,
5027 "Failed to enable quota tracking "
5028 "(type=%d, err=%d). Please run "
5029 "e2fsck to fix.", type, err);
5030 return err;
5031 }
5032 }
5033 }
5034 return 0;
5035 }
5036
5037 static int ext4_quota_off(struct super_block *sb, int type)
5038 {
5039 struct inode *inode = sb_dqopt(sb)->files[type];
5040 handle_t *handle;
5041
5042 /* Force all delayed allocation blocks to be allocated.
5043 * Caller already holds s_umount sem */
5044 if (test_opt(sb, DELALLOC))
5045 sync_filesystem(sb);
5046
5047 if (!inode)
5048 goto out;
5049
5050 /* Update modification times of quota files when userspace can
5051 * start looking at them */
5052 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5053 if (IS_ERR(handle))
5054 goto out;
5055 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5056 ext4_mark_inode_dirty(handle, inode);
5057 ext4_journal_stop(handle);
5058
5059 out:
5060 return dquot_quota_off(sb, type);
5061 }
5062
5063 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5064 * acquiring the locks... As quota files are never truncated and quota code
5065 * itself serializes the operations (and no one else should touch the files)
5066 * we don't have to be afraid of races */
5067 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5068 size_t len, loff_t off)
5069 {
5070 struct inode *inode = sb_dqopt(sb)->files[type];
5071 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5072 int offset = off & (sb->s_blocksize - 1);
5073 int tocopy;
5074 size_t toread;
5075 struct buffer_head *bh;
5076 loff_t i_size = i_size_read(inode);
5077
5078 if (off > i_size)
5079 return 0;
5080 if (off+len > i_size)
5081 len = i_size-off;
5082 toread = len;
5083 while (toread > 0) {
5084 tocopy = sb->s_blocksize - offset < toread ?
5085 sb->s_blocksize - offset : toread;
5086 bh = ext4_bread(NULL, inode, blk, 0);
5087 if (IS_ERR(bh))
5088 return PTR_ERR(bh);
5089 if (!bh) /* A hole? */
5090 memset(data, 0, tocopy);
5091 else
5092 memcpy(data, bh->b_data+offset, tocopy);
5093 brelse(bh);
5094 offset = 0;
5095 toread -= tocopy;
5096 data += tocopy;
5097 blk++;
5098 }
5099 return len;
5100 }
5101
5102 /* Write to quotafile (we know the transaction is already started and has
5103 * enough credits) */
5104 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5105 const char *data, size_t len, loff_t off)
5106 {
5107 struct inode *inode = sb_dqopt(sb)->files[type];
5108 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5109 int err, offset = off & (sb->s_blocksize - 1);
5110 int retries = 0;
5111 struct buffer_head *bh;
5112 handle_t *handle = journal_current_handle();
5113
5114 if (EXT4_SB(sb)->s_journal && !handle) {
5115 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5116 " cancelled because transaction is not started",
5117 (unsigned long long)off, (unsigned long long)len);
5118 return -EIO;
5119 }
5120 /*
5121 * Since we account only one data block in transaction credits,
5122 * then it is impossible to cross a block boundary.
5123 */
5124 if (sb->s_blocksize - offset < len) {
5125 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5126 " cancelled because not block aligned",
5127 (unsigned long long)off, (unsigned long long)len);
5128 return -EIO;
5129 }
5130
5131 do {
5132 bh = ext4_bread(handle, inode, blk,
5133 EXT4_GET_BLOCKS_CREATE |
5134 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5135 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5136 ext4_should_retry_alloc(inode->i_sb, &retries));
5137 if (IS_ERR(bh))
5138 return PTR_ERR(bh);
5139 if (!bh)
5140 goto out;
5141 BUFFER_TRACE(bh, "get write access");
5142 err = ext4_journal_get_write_access(handle, bh);
5143 if (err) {
5144 brelse(bh);
5145 return err;
5146 }
5147 lock_buffer(bh);
5148 memcpy(bh->b_data+offset, data, len);
5149 flush_dcache_page(bh->b_page);
5150 unlock_buffer(bh);
5151 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5152 brelse(bh);
5153 out:
5154 if (inode->i_size < off + len) {
5155 i_size_write(inode, off + len);
5156 EXT4_I(inode)->i_disksize = inode->i_size;
5157 ext4_mark_inode_dirty(handle, inode);
5158 }
5159 return len;
5160 }
5161
5162 #endif
5163
5164 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5165 const char *dev_name, void *data)
5166 {
5167 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5168 }
5169
5170 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5171 static inline void register_as_ext2(void)
5172 {
5173 int err = register_filesystem(&ext2_fs_type);
5174 if (err)
5175 printk(KERN_WARNING
5176 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5177 }
5178
5179 static inline void unregister_as_ext2(void)
5180 {
5181 unregister_filesystem(&ext2_fs_type);
5182 }
5183
5184 static inline int ext2_feature_set_ok(struct super_block *sb)
5185 {
5186 if (ext4_has_unknown_ext2_incompat_features(sb))
5187 return 0;
5188 if (sb->s_flags & MS_RDONLY)
5189 return 1;
5190 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5191 return 0;
5192 return 1;
5193 }
5194 #else
5195 static inline void register_as_ext2(void) { }
5196 static inline void unregister_as_ext2(void) { }
5197 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5198 #endif
5199
5200 static inline void register_as_ext3(void)
5201 {
5202 int err = register_filesystem(&ext3_fs_type);
5203 if (err)
5204 printk(KERN_WARNING
5205 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5206 }
5207
5208 static inline void unregister_as_ext3(void)
5209 {
5210 unregister_filesystem(&ext3_fs_type);
5211 }
5212
5213 static inline int ext3_feature_set_ok(struct super_block *sb)
5214 {
5215 if (ext4_has_unknown_ext3_incompat_features(sb))
5216 return 0;
5217 if (!ext4_has_feature_journal(sb))
5218 return 0;
5219 if (sb->s_flags & MS_RDONLY)
5220 return 1;
5221 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5222 return 0;
5223 return 1;
5224 }
5225
5226 static struct file_system_type ext4_fs_type = {
5227 .owner = THIS_MODULE,
5228 .name = "ext4",
5229 .mount = ext4_mount,
5230 .kill_sb = kill_block_super,
5231 .fs_flags = FS_REQUIRES_DEV,
5232 };
5233 MODULE_ALIAS_FS("ext4");
5234
5235 /* Shared across all ext4 file systems */
5236 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5237 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5238
5239 static int __init ext4_init_fs(void)
5240 {
5241 int i, err;
5242
5243 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5244 ext4_li_info = NULL;
5245 mutex_init(&ext4_li_mtx);
5246
5247 /* Build-time check for flags consistency */
5248 ext4_check_flag_values();
5249
5250 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5251 mutex_init(&ext4__aio_mutex[i]);
5252 init_waitqueue_head(&ext4__ioend_wq[i]);
5253 }
5254
5255 err = ext4_init_es();
5256 if (err)
5257 return err;
5258
5259 err = ext4_init_pageio();
5260 if (err)
5261 goto out5;
5262
5263 err = ext4_init_system_zone();
5264 if (err)
5265 goto out4;
5266
5267 err = ext4_init_sysfs();
5268 if (err)
5269 goto out3;
5270
5271 err = ext4_init_mballoc();
5272 if (err)
5273 goto out2;
5274 else
5275 ext4_mballoc_ready = 1;
5276 err = init_inodecache();
5277 if (err)
5278 goto out1;
5279 register_as_ext3();
5280 register_as_ext2();
5281 err = register_filesystem(&ext4_fs_type);
5282 if (err)
5283 goto out;
5284
5285 return 0;
5286 out:
5287 unregister_as_ext2();
5288 unregister_as_ext3();
5289 destroy_inodecache();
5290 out1:
5291 ext4_mballoc_ready = 0;
5292 ext4_exit_mballoc();
5293 out2:
5294 ext4_exit_sysfs();
5295 out3:
5296 ext4_exit_system_zone();
5297 out4:
5298 ext4_exit_pageio();
5299 out5:
5300 ext4_exit_es();
5301
5302 return err;
5303 }
5304
5305 static void __exit ext4_exit_fs(void)
5306 {
5307 ext4_exit_crypto();
5308 ext4_destroy_lazyinit_thread();
5309 unregister_as_ext2();
5310 unregister_as_ext3();
5311 unregister_filesystem(&ext4_fs_type);
5312 destroy_inodecache();
5313 ext4_exit_mballoc();
5314 ext4_exit_sysfs();
5315 ext4_exit_system_zone();
5316 ext4_exit_pageio();
5317 ext4_exit_es();
5318 }
5319
5320 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5321 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5322 MODULE_LICENSE("GPL");
5323 module_init(ext4_init_fs)
5324 module_exit(ext4_exit_fs)