]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/f2fs/extent_cache.c
x86/srso: Print mitigation for retbleed IBPB case
[thirdparty/linux.git] / fs / f2fs / extent_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs extent cache support
4 *
5 * Copyright (c) 2015 Motorola Mobility
6 * Copyright (c) 2015 Samsung Electronics
7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8 * Chao Yu <chao2.yu@samsung.com>
9 *
10 * block_age-based extent cache added by:
11 * Copyright (c) 2022 xiaomi Co., Ltd.
12 * http://www.xiaomi.com/
13 */
14
15 #include <linux/fs.h>
16 #include <linux/f2fs_fs.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include <trace/events/f2fs.h>
21
22 bool sanity_check_extent_cache(struct inode *inode)
23 {
24 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
25 struct f2fs_inode_info *fi = F2FS_I(inode);
26 struct extent_tree *et = fi->extent_tree[EX_READ];
27 struct extent_info *ei;
28
29 if (!et)
30 return true;
31
32 ei = &et->largest;
33 if (!ei->len)
34 return true;
35
36 /* Let's drop, if checkpoint got corrupted. */
37 if (is_set_ckpt_flags(sbi, CP_ERROR_FLAG)) {
38 ei->len = 0;
39 et->largest_updated = true;
40 return true;
41 }
42
43 if (!f2fs_is_valid_blkaddr(sbi, ei->blk, DATA_GENERIC_ENHANCE) ||
44 !f2fs_is_valid_blkaddr(sbi, ei->blk + ei->len - 1,
45 DATA_GENERIC_ENHANCE)) {
46 set_sbi_flag(sbi, SBI_NEED_FSCK);
47 f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix",
48 __func__, inode->i_ino,
49 ei->blk, ei->fofs, ei->len);
50 return false;
51 }
52 return true;
53 }
54
55 static void __set_extent_info(struct extent_info *ei,
56 unsigned int fofs, unsigned int len,
57 block_t blk, bool keep_clen,
58 unsigned long age, unsigned long last_blocks,
59 enum extent_type type)
60 {
61 ei->fofs = fofs;
62 ei->len = len;
63
64 if (type == EX_READ) {
65 ei->blk = blk;
66 if (keep_clen)
67 return;
68 #ifdef CONFIG_F2FS_FS_COMPRESSION
69 ei->c_len = 0;
70 #endif
71 } else if (type == EX_BLOCK_AGE) {
72 ei->age = age;
73 ei->last_blocks = last_blocks;
74 }
75 }
76
77 static bool __may_read_extent_tree(struct inode *inode)
78 {
79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80
81 if (!test_opt(sbi, READ_EXTENT_CACHE))
82 return false;
83 if (is_inode_flag_set(inode, FI_NO_EXTENT))
84 return false;
85 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
86 !f2fs_sb_has_readonly(sbi))
87 return false;
88 return S_ISREG(inode->i_mode);
89 }
90
91 static bool __may_age_extent_tree(struct inode *inode)
92 {
93 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
94
95 if (!test_opt(sbi, AGE_EXTENT_CACHE))
96 return false;
97 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
98 return false;
99 if (file_is_cold(inode))
100 return false;
101
102 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
103 }
104
105 static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
106 {
107 if (type == EX_READ)
108 return __may_read_extent_tree(inode);
109 else if (type == EX_BLOCK_AGE)
110 return __may_age_extent_tree(inode);
111 return false;
112 }
113
114 static bool __may_extent_tree(struct inode *inode, enum extent_type type)
115 {
116 /*
117 * for recovered files during mount do not create extents
118 * if shrinker is not registered.
119 */
120 if (list_empty(&F2FS_I_SB(inode)->s_list))
121 return false;
122
123 return __init_may_extent_tree(inode, type);
124 }
125
126 static void __try_update_largest_extent(struct extent_tree *et,
127 struct extent_node *en)
128 {
129 if (et->type != EX_READ)
130 return;
131 if (en->ei.len <= et->largest.len)
132 return;
133
134 et->largest = en->ei;
135 et->largest_updated = true;
136 }
137
138 static bool __is_extent_mergeable(struct extent_info *back,
139 struct extent_info *front, enum extent_type type)
140 {
141 if (type == EX_READ) {
142 #ifdef CONFIG_F2FS_FS_COMPRESSION
143 if (back->c_len && back->len != back->c_len)
144 return false;
145 if (front->c_len && front->len != front->c_len)
146 return false;
147 #endif
148 return (back->fofs + back->len == front->fofs &&
149 back->blk + back->len == front->blk);
150 } else if (type == EX_BLOCK_AGE) {
151 return (back->fofs + back->len == front->fofs &&
152 abs(back->age - front->age) <= SAME_AGE_REGION &&
153 abs(back->last_blocks - front->last_blocks) <=
154 SAME_AGE_REGION);
155 }
156 return false;
157 }
158
159 static bool __is_back_mergeable(struct extent_info *cur,
160 struct extent_info *back, enum extent_type type)
161 {
162 return __is_extent_mergeable(back, cur, type);
163 }
164
165 static bool __is_front_mergeable(struct extent_info *cur,
166 struct extent_info *front, enum extent_type type)
167 {
168 return __is_extent_mergeable(cur, front, type);
169 }
170
171 static struct extent_node *__lookup_extent_node(struct rb_root_cached *root,
172 struct extent_node *cached_en, unsigned int fofs)
173 {
174 struct rb_node *node = root->rb_root.rb_node;
175 struct extent_node *en;
176
177 /* check a cached entry */
178 if (cached_en && cached_en->ei.fofs <= fofs &&
179 cached_en->ei.fofs + cached_en->ei.len > fofs)
180 return cached_en;
181
182 /* check rb_tree */
183 while (node) {
184 en = rb_entry(node, struct extent_node, rb_node);
185
186 if (fofs < en->ei.fofs)
187 node = node->rb_left;
188 else if (fofs >= en->ei.fofs + en->ei.len)
189 node = node->rb_right;
190 else
191 return en;
192 }
193 return NULL;
194 }
195
196 /*
197 * lookup rb entry in position of @fofs in rb-tree,
198 * if hit, return the entry, otherwise, return NULL
199 * @prev_ex: extent before fofs
200 * @next_ex: extent after fofs
201 * @insert_p: insert point for new extent at fofs
202 * in order to simplify the insertion after.
203 * tree must stay unchanged between lookup and insertion.
204 */
205 static struct extent_node *__lookup_extent_node_ret(struct rb_root_cached *root,
206 struct extent_node *cached_en,
207 unsigned int fofs,
208 struct extent_node **prev_entry,
209 struct extent_node **next_entry,
210 struct rb_node ***insert_p,
211 struct rb_node **insert_parent,
212 bool *leftmost)
213 {
214 struct rb_node **pnode = &root->rb_root.rb_node;
215 struct rb_node *parent = NULL, *tmp_node;
216 struct extent_node *en = cached_en;
217
218 *insert_p = NULL;
219 *insert_parent = NULL;
220 *prev_entry = NULL;
221 *next_entry = NULL;
222
223 if (RB_EMPTY_ROOT(&root->rb_root))
224 return NULL;
225
226 if (en && en->ei.fofs <= fofs && en->ei.fofs + en->ei.len > fofs)
227 goto lookup_neighbors;
228
229 *leftmost = true;
230
231 while (*pnode) {
232 parent = *pnode;
233 en = rb_entry(*pnode, struct extent_node, rb_node);
234
235 if (fofs < en->ei.fofs) {
236 pnode = &(*pnode)->rb_left;
237 } else if (fofs >= en->ei.fofs + en->ei.len) {
238 pnode = &(*pnode)->rb_right;
239 *leftmost = false;
240 } else {
241 goto lookup_neighbors;
242 }
243 }
244
245 *insert_p = pnode;
246 *insert_parent = parent;
247
248 en = rb_entry(parent, struct extent_node, rb_node);
249 tmp_node = parent;
250 if (parent && fofs > en->ei.fofs)
251 tmp_node = rb_next(parent);
252 *next_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node);
253
254 tmp_node = parent;
255 if (parent && fofs < en->ei.fofs)
256 tmp_node = rb_prev(parent);
257 *prev_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node);
258 return NULL;
259
260 lookup_neighbors:
261 if (fofs == en->ei.fofs) {
262 /* lookup prev node for merging backward later */
263 tmp_node = rb_prev(&en->rb_node);
264 *prev_entry = rb_entry_safe(tmp_node,
265 struct extent_node, rb_node);
266 }
267 if (fofs == en->ei.fofs + en->ei.len - 1) {
268 /* lookup next node for merging frontward later */
269 tmp_node = rb_next(&en->rb_node);
270 *next_entry = rb_entry_safe(tmp_node,
271 struct extent_node, rb_node);
272 }
273 return en;
274 }
275
276 static struct kmem_cache *extent_tree_slab;
277 static struct kmem_cache *extent_node_slab;
278
279 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
280 struct extent_tree *et, struct extent_info *ei,
281 struct rb_node *parent, struct rb_node **p,
282 bool leftmost)
283 {
284 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
285 struct extent_node *en;
286
287 en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
288 if (!en)
289 return NULL;
290
291 en->ei = *ei;
292 INIT_LIST_HEAD(&en->list);
293 en->et = et;
294
295 rb_link_node(&en->rb_node, parent, p);
296 rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
297 atomic_inc(&et->node_cnt);
298 atomic_inc(&eti->total_ext_node);
299 return en;
300 }
301
302 static void __detach_extent_node(struct f2fs_sb_info *sbi,
303 struct extent_tree *et, struct extent_node *en)
304 {
305 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
306
307 rb_erase_cached(&en->rb_node, &et->root);
308 atomic_dec(&et->node_cnt);
309 atomic_dec(&eti->total_ext_node);
310
311 if (et->cached_en == en)
312 et->cached_en = NULL;
313 kmem_cache_free(extent_node_slab, en);
314 }
315
316 /*
317 * Flow to release an extent_node:
318 * 1. list_del_init
319 * 2. __detach_extent_node
320 * 3. kmem_cache_free.
321 */
322 static void __release_extent_node(struct f2fs_sb_info *sbi,
323 struct extent_tree *et, struct extent_node *en)
324 {
325 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
326
327 spin_lock(&eti->extent_lock);
328 f2fs_bug_on(sbi, list_empty(&en->list));
329 list_del_init(&en->list);
330 spin_unlock(&eti->extent_lock);
331
332 __detach_extent_node(sbi, et, en);
333 }
334
335 static struct extent_tree *__grab_extent_tree(struct inode *inode,
336 enum extent_type type)
337 {
338 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
339 struct extent_tree_info *eti = &sbi->extent_tree[type];
340 struct extent_tree *et;
341 nid_t ino = inode->i_ino;
342
343 mutex_lock(&eti->extent_tree_lock);
344 et = radix_tree_lookup(&eti->extent_tree_root, ino);
345 if (!et) {
346 et = f2fs_kmem_cache_alloc(extent_tree_slab,
347 GFP_NOFS, true, NULL);
348 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
349 memset(et, 0, sizeof(struct extent_tree));
350 et->ino = ino;
351 et->type = type;
352 et->root = RB_ROOT_CACHED;
353 et->cached_en = NULL;
354 rwlock_init(&et->lock);
355 INIT_LIST_HEAD(&et->list);
356 atomic_set(&et->node_cnt, 0);
357 atomic_inc(&eti->total_ext_tree);
358 } else {
359 atomic_dec(&eti->total_zombie_tree);
360 list_del_init(&et->list);
361 }
362 mutex_unlock(&eti->extent_tree_lock);
363
364 /* never died until evict_inode */
365 F2FS_I(inode)->extent_tree[type] = et;
366
367 return et;
368 }
369
370 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
371 struct extent_tree *et)
372 {
373 struct rb_node *node, *next;
374 struct extent_node *en;
375 unsigned int count = atomic_read(&et->node_cnt);
376
377 node = rb_first_cached(&et->root);
378 while (node) {
379 next = rb_next(node);
380 en = rb_entry(node, struct extent_node, rb_node);
381 __release_extent_node(sbi, et, en);
382 node = next;
383 }
384
385 return count - atomic_read(&et->node_cnt);
386 }
387
388 static void __drop_largest_extent(struct extent_tree *et,
389 pgoff_t fofs, unsigned int len)
390 {
391 if (fofs < et->largest.fofs + et->largest.len &&
392 fofs + len > et->largest.fofs) {
393 et->largest.len = 0;
394 et->largest_updated = true;
395 }
396 }
397
398 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
399 {
400 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
401 struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
402 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
403 struct extent_tree *et;
404 struct extent_node *en;
405 struct extent_info ei;
406
407 if (!__may_extent_tree(inode, EX_READ)) {
408 /* drop largest read extent */
409 if (i_ext && i_ext->len) {
410 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
411 i_ext->len = 0;
412 set_page_dirty(ipage);
413 }
414 goto out;
415 }
416
417 et = __grab_extent_tree(inode, EX_READ);
418
419 if (!i_ext || !i_ext->len)
420 goto out;
421
422 get_read_extent_info(&ei, i_ext);
423
424 write_lock(&et->lock);
425 if (atomic_read(&et->node_cnt))
426 goto unlock_out;
427
428 en = __attach_extent_node(sbi, et, &ei, NULL,
429 &et->root.rb_root.rb_node, true);
430 if (en) {
431 et->largest = en->ei;
432 et->cached_en = en;
433
434 spin_lock(&eti->extent_lock);
435 list_add_tail(&en->list, &eti->extent_list);
436 spin_unlock(&eti->extent_lock);
437 }
438 unlock_out:
439 write_unlock(&et->lock);
440 out:
441 if (!F2FS_I(inode)->extent_tree[EX_READ])
442 set_inode_flag(inode, FI_NO_EXTENT);
443 }
444
445 void f2fs_init_age_extent_tree(struct inode *inode)
446 {
447 if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
448 return;
449 __grab_extent_tree(inode, EX_BLOCK_AGE);
450 }
451
452 void f2fs_init_extent_tree(struct inode *inode)
453 {
454 /* initialize read cache */
455 if (__init_may_extent_tree(inode, EX_READ))
456 __grab_extent_tree(inode, EX_READ);
457
458 /* initialize block age cache */
459 if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
460 __grab_extent_tree(inode, EX_BLOCK_AGE);
461 }
462
463 static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
464 struct extent_info *ei, enum extent_type type)
465 {
466 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
467 struct extent_tree_info *eti = &sbi->extent_tree[type];
468 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
469 struct extent_node *en;
470 bool ret = false;
471
472 if (!et)
473 return false;
474
475 trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
476
477 read_lock(&et->lock);
478
479 if (type == EX_READ &&
480 et->largest.fofs <= pgofs &&
481 et->largest.fofs + et->largest.len > pgofs) {
482 *ei = et->largest;
483 ret = true;
484 stat_inc_largest_node_hit(sbi);
485 goto out;
486 }
487
488 en = __lookup_extent_node(&et->root, et->cached_en, pgofs);
489 if (!en)
490 goto out;
491
492 if (en == et->cached_en)
493 stat_inc_cached_node_hit(sbi, type);
494 else
495 stat_inc_rbtree_node_hit(sbi, type);
496
497 *ei = en->ei;
498 spin_lock(&eti->extent_lock);
499 if (!list_empty(&en->list)) {
500 list_move_tail(&en->list, &eti->extent_list);
501 et->cached_en = en;
502 }
503 spin_unlock(&eti->extent_lock);
504 ret = true;
505 out:
506 stat_inc_total_hit(sbi, type);
507 read_unlock(&et->lock);
508
509 if (type == EX_READ)
510 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
511 else if (type == EX_BLOCK_AGE)
512 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
513 return ret;
514 }
515
516 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
517 struct extent_tree *et, struct extent_info *ei,
518 struct extent_node *prev_ex,
519 struct extent_node *next_ex)
520 {
521 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
522 struct extent_node *en = NULL;
523
524 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
525 prev_ex->ei.len += ei->len;
526 ei = &prev_ex->ei;
527 en = prev_ex;
528 }
529
530 if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
531 next_ex->ei.fofs = ei->fofs;
532 next_ex->ei.len += ei->len;
533 if (et->type == EX_READ)
534 next_ex->ei.blk = ei->blk;
535 if (en)
536 __release_extent_node(sbi, et, prev_ex);
537
538 en = next_ex;
539 }
540
541 if (!en)
542 return NULL;
543
544 __try_update_largest_extent(et, en);
545
546 spin_lock(&eti->extent_lock);
547 if (!list_empty(&en->list)) {
548 list_move_tail(&en->list, &eti->extent_list);
549 et->cached_en = en;
550 }
551 spin_unlock(&eti->extent_lock);
552 return en;
553 }
554
555 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
556 struct extent_tree *et, struct extent_info *ei,
557 struct rb_node **insert_p,
558 struct rb_node *insert_parent,
559 bool leftmost)
560 {
561 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
562 struct rb_node **p = &et->root.rb_root.rb_node;
563 struct rb_node *parent = NULL;
564 struct extent_node *en = NULL;
565
566 if (insert_p && insert_parent) {
567 parent = insert_parent;
568 p = insert_p;
569 goto do_insert;
570 }
571
572 leftmost = true;
573
574 /* look up extent_node in the rb tree */
575 while (*p) {
576 parent = *p;
577 en = rb_entry(parent, struct extent_node, rb_node);
578
579 if (ei->fofs < en->ei.fofs) {
580 p = &(*p)->rb_left;
581 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
582 p = &(*p)->rb_right;
583 leftmost = false;
584 } else {
585 f2fs_bug_on(sbi, 1);
586 }
587 }
588
589 do_insert:
590 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
591 if (!en)
592 return NULL;
593
594 __try_update_largest_extent(et, en);
595
596 /* update in global extent list */
597 spin_lock(&eti->extent_lock);
598 list_add_tail(&en->list, &eti->extent_list);
599 et->cached_en = en;
600 spin_unlock(&eti->extent_lock);
601 return en;
602 }
603
604 static void __update_extent_tree_range(struct inode *inode,
605 struct extent_info *tei, enum extent_type type)
606 {
607 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
608 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
609 struct extent_node *en = NULL, *en1 = NULL;
610 struct extent_node *prev_en = NULL, *next_en = NULL;
611 struct extent_info ei, dei, prev;
612 struct rb_node **insert_p = NULL, *insert_parent = NULL;
613 unsigned int fofs = tei->fofs, len = tei->len;
614 unsigned int end = fofs + len;
615 bool updated = false;
616 bool leftmost = false;
617
618 if (!et)
619 return;
620
621 if (type == EX_READ)
622 trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
623 tei->blk, 0);
624 else if (type == EX_BLOCK_AGE)
625 trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
626 tei->age, tei->last_blocks);
627
628 write_lock(&et->lock);
629
630 if (type == EX_READ) {
631 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
632 write_unlock(&et->lock);
633 return;
634 }
635
636 prev = et->largest;
637 dei.len = 0;
638
639 /*
640 * drop largest extent before lookup, in case it's already
641 * been shrunk from extent tree
642 */
643 __drop_largest_extent(et, fofs, len);
644 }
645
646 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
647 en = __lookup_extent_node_ret(&et->root,
648 et->cached_en, fofs,
649 &prev_en, &next_en,
650 &insert_p, &insert_parent,
651 &leftmost);
652 if (!en)
653 en = next_en;
654
655 /* 2. invalidate all extent nodes in range [fofs, fofs + len - 1] */
656 while (en && en->ei.fofs < end) {
657 unsigned int org_end;
658 int parts = 0; /* # of parts current extent split into */
659
660 next_en = en1 = NULL;
661
662 dei = en->ei;
663 org_end = dei.fofs + dei.len;
664 f2fs_bug_on(sbi, fofs >= org_end);
665
666 if (fofs > dei.fofs && (type != EX_READ ||
667 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
668 en->ei.len = fofs - en->ei.fofs;
669 prev_en = en;
670 parts = 1;
671 }
672
673 if (end < org_end && (type != EX_READ ||
674 org_end - end >= F2FS_MIN_EXTENT_LEN)) {
675 if (parts) {
676 __set_extent_info(&ei,
677 end, org_end - end,
678 end - dei.fofs + dei.blk, false,
679 dei.age, dei.last_blocks,
680 type);
681 en1 = __insert_extent_tree(sbi, et, &ei,
682 NULL, NULL, true);
683 next_en = en1;
684 } else {
685 __set_extent_info(&en->ei,
686 end, en->ei.len - (end - dei.fofs),
687 en->ei.blk + (end - dei.fofs), true,
688 dei.age, dei.last_blocks,
689 type);
690 next_en = en;
691 }
692 parts++;
693 }
694
695 if (!next_en) {
696 struct rb_node *node = rb_next(&en->rb_node);
697
698 next_en = rb_entry_safe(node, struct extent_node,
699 rb_node);
700 }
701
702 if (parts)
703 __try_update_largest_extent(et, en);
704 else
705 __release_extent_node(sbi, et, en);
706
707 /*
708 * if original extent is split into zero or two parts, extent
709 * tree has been altered by deletion or insertion, therefore
710 * invalidate pointers regard to tree.
711 */
712 if (parts != 1) {
713 insert_p = NULL;
714 insert_parent = NULL;
715 }
716 en = next_en;
717 }
718
719 if (type == EX_BLOCK_AGE)
720 goto update_age_extent_cache;
721
722 /* 3. update extent in read extent cache */
723 BUG_ON(type != EX_READ);
724
725 if (tei->blk) {
726 __set_extent_info(&ei, fofs, len, tei->blk, false,
727 0, 0, EX_READ);
728 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
729 __insert_extent_tree(sbi, et, &ei,
730 insert_p, insert_parent, leftmost);
731
732 /* give up extent_cache, if split and small updates happen */
733 if (dei.len >= 1 &&
734 prev.len < F2FS_MIN_EXTENT_LEN &&
735 et->largest.len < F2FS_MIN_EXTENT_LEN) {
736 et->largest.len = 0;
737 et->largest_updated = true;
738 set_inode_flag(inode, FI_NO_EXTENT);
739 }
740 }
741
742 if (is_inode_flag_set(inode, FI_NO_EXTENT))
743 __free_extent_tree(sbi, et);
744
745 if (et->largest_updated) {
746 et->largest_updated = false;
747 updated = true;
748 }
749 goto out_read_extent_cache;
750 update_age_extent_cache:
751 if (!tei->last_blocks)
752 goto out_read_extent_cache;
753
754 __set_extent_info(&ei, fofs, len, 0, false,
755 tei->age, tei->last_blocks, EX_BLOCK_AGE);
756 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
757 __insert_extent_tree(sbi, et, &ei,
758 insert_p, insert_parent, leftmost);
759 out_read_extent_cache:
760 write_unlock(&et->lock);
761
762 if (updated)
763 f2fs_mark_inode_dirty_sync(inode, true);
764 }
765
766 #ifdef CONFIG_F2FS_FS_COMPRESSION
767 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
768 pgoff_t fofs, block_t blkaddr, unsigned int llen,
769 unsigned int c_len)
770 {
771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
772 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
773 struct extent_node *en = NULL;
774 struct extent_node *prev_en = NULL, *next_en = NULL;
775 struct extent_info ei;
776 struct rb_node **insert_p = NULL, *insert_parent = NULL;
777 bool leftmost = false;
778
779 trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
780 blkaddr, c_len);
781
782 /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
783 if (is_inode_flag_set(inode, FI_NO_EXTENT))
784 return;
785
786 write_lock(&et->lock);
787
788 en = __lookup_extent_node_ret(&et->root,
789 et->cached_en, fofs,
790 &prev_en, &next_en,
791 &insert_p, &insert_parent,
792 &leftmost);
793 if (en)
794 goto unlock_out;
795
796 __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
797 ei.c_len = c_len;
798
799 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
800 __insert_extent_tree(sbi, et, &ei,
801 insert_p, insert_parent, leftmost);
802 unlock_out:
803 write_unlock(&et->lock);
804 }
805 #endif
806
807 static unsigned long long __calculate_block_age(struct f2fs_sb_info *sbi,
808 unsigned long long new,
809 unsigned long long old)
810 {
811 unsigned int rem_old, rem_new;
812 unsigned long long res;
813 unsigned int weight = sbi->last_age_weight;
814
815 res = div_u64_rem(new, 100, &rem_new) * (100 - weight)
816 + div_u64_rem(old, 100, &rem_old) * weight;
817
818 if (rem_new)
819 res += rem_new * (100 - weight) / 100;
820 if (rem_old)
821 res += rem_old * weight / 100;
822
823 return res;
824 }
825
826 /* This returns a new age and allocated blocks in ei */
827 static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
828 block_t blkaddr)
829 {
830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
831 loff_t f_size = i_size_read(inode);
832 unsigned long long cur_blocks =
833 atomic64_read(&sbi->allocated_data_blocks);
834 struct extent_info tei = *ei; /* only fofs and len are valid */
835
836 /*
837 * When I/O is not aligned to a PAGE_SIZE, update will happen to the last
838 * file block even in seq write. So don't record age for newly last file
839 * block here.
840 */
841 if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
842 blkaddr == NEW_ADDR)
843 return -EINVAL;
844
845 if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
846 unsigned long long cur_age;
847
848 if (cur_blocks >= tei.last_blocks)
849 cur_age = cur_blocks - tei.last_blocks;
850 else
851 /* allocated_data_blocks overflow */
852 cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
853
854 if (tei.age)
855 ei->age = __calculate_block_age(sbi, cur_age, tei.age);
856 else
857 ei->age = cur_age;
858 ei->last_blocks = cur_blocks;
859 WARN_ON(ei->age > cur_blocks);
860 return 0;
861 }
862
863 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
864
865 /* the data block was allocated for the first time */
866 if (blkaddr == NEW_ADDR)
867 goto out;
868
869 if (__is_valid_data_blkaddr(blkaddr) &&
870 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
871 f2fs_bug_on(sbi, 1);
872 return -EINVAL;
873 }
874 out:
875 /*
876 * init block age with zero, this can happen when the block age extent
877 * was reclaimed due to memory constraint or system reboot
878 */
879 ei->age = 0;
880 ei->last_blocks = cur_blocks;
881 return 0;
882 }
883
884 static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
885 {
886 struct extent_info ei = {};
887
888 if (!__may_extent_tree(dn->inode, type))
889 return;
890
891 ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
892 dn->ofs_in_node;
893 ei.len = 1;
894
895 if (type == EX_READ) {
896 if (dn->data_blkaddr == NEW_ADDR)
897 ei.blk = NULL_ADDR;
898 else
899 ei.blk = dn->data_blkaddr;
900 } else if (type == EX_BLOCK_AGE) {
901 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
902 return;
903 }
904 __update_extent_tree_range(dn->inode, &ei, type);
905 }
906
907 static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
908 enum extent_type type)
909 {
910 struct extent_tree_info *eti = &sbi->extent_tree[type];
911 struct extent_tree *et, *next;
912 struct extent_node *en;
913 unsigned int node_cnt = 0, tree_cnt = 0;
914 int remained;
915
916 if (!atomic_read(&eti->total_zombie_tree))
917 goto free_node;
918
919 if (!mutex_trylock(&eti->extent_tree_lock))
920 goto out;
921
922 /* 1. remove unreferenced extent tree */
923 list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
924 if (atomic_read(&et->node_cnt)) {
925 write_lock(&et->lock);
926 node_cnt += __free_extent_tree(sbi, et);
927 write_unlock(&et->lock);
928 }
929 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
930 list_del_init(&et->list);
931 radix_tree_delete(&eti->extent_tree_root, et->ino);
932 kmem_cache_free(extent_tree_slab, et);
933 atomic_dec(&eti->total_ext_tree);
934 atomic_dec(&eti->total_zombie_tree);
935 tree_cnt++;
936
937 if (node_cnt + tree_cnt >= nr_shrink)
938 goto unlock_out;
939 cond_resched();
940 }
941 mutex_unlock(&eti->extent_tree_lock);
942
943 free_node:
944 /* 2. remove LRU extent entries */
945 if (!mutex_trylock(&eti->extent_tree_lock))
946 goto out;
947
948 remained = nr_shrink - (node_cnt + tree_cnt);
949
950 spin_lock(&eti->extent_lock);
951 for (; remained > 0; remained--) {
952 if (list_empty(&eti->extent_list))
953 break;
954 en = list_first_entry(&eti->extent_list,
955 struct extent_node, list);
956 et = en->et;
957 if (!write_trylock(&et->lock)) {
958 /* refresh this extent node's position in extent list */
959 list_move_tail(&en->list, &eti->extent_list);
960 continue;
961 }
962
963 list_del_init(&en->list);
964 spin_unlock(&eti->extent_lock);
965
966 __detach_extent_node(sbi, et, en);
967
968 write_unlock(&et->lock);
969 node_cnt++;
970 spin_lock(&eti->extent_lock);
971 }
972 spin_unlock(&eti->extent_lock);
973
974 unlock_out:
975 mutex_unlock(&eti->extent_tree_lock);
976 out:
977 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
978
979 return node_cnt + tree_cnt;
980 }
981
982 /* read extent cache operations */
983 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
984 struct extent_info *ei)
985 {
986 if (!__may_extent_tree(inode, EX_READ))
987 return false;
988
989 return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
990 }
991
992 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
993 block_t *blkaddr)
994 {
995 struct extent_info ei = {};
996
997 if (!f2fs_lookup_read_extent_cache(inode, index, &ei))
998 return false;
999 *blkaddr = ei.blk + index - ei.fofs;
1000 return true;
1001 }
1002
1003 void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
1004 {
1005 return __update_extent_cache(dn, EX_READ);
1006 }
1007
1008 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
1009 pgoff_t fofs, block_t blkaddr, unsigned int len)
1010 {
1011 struct extent_info ei = {
1012 .fofs = fofs,
1013 .len = len,
1014 .blk = blkaddr,
1015 };
1016
1017 if (!__may_extent_tree(dn->inode, EX_READ))
1018 return;
1019
1020 __update_extent_tree_range(dn->inode, &ei, EX_READ);
1021 }
1022
1023 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1024 {
1025 if (!test_opt(sbi, READ_EXTENT_CACHE))
1026 return 0;
1027
1028 return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
1029 }
1030
1031 /* block age extent cache operations */
1032 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
1033 struct extent_info *ei)
1034 {
1035 if (!__may_extent_tree(inode, EX_BLOCK_AGE))
1036 return false;
1037
1038 return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
1039 }
1040
1041 void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
1042 {
1043 return __update_extent_cache(dn, EX_BLOCK_AGE);
1044 }
1045
1046 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
1047 pgoff_t fofs, unsigned int len)
1048 {
1049 struct extent_info ei = {
1050 .fofs = fofs,
1051 .len = len,
1052 };
1053
1054 if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
1055 return;
1056
1057 __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
1058 }
1059
1060 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1061 {
1062 if (!test_opt(sbi, AGE_EXTENT_CACHE))
1063 return 0;
1064
1065 return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
1066 }
1067
1068 static unsigned int __destroy_extent_node(struct inode *inode,
1069 enum extent_type type)
1070 {
1071 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1072 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1073 unsigned int node_cnt = 0;
1074
1075 if (!et || !atomic_read(&et->node_cnt))
1076 return 0;
1077
1078 write_lock(&et->lock);
1079 node_cnt = __free_extent_tree(sbi, et);
1080 write_unlock(&et->lock);
1081
1082 return node_cnt;
1083 }
1084
1085 void f2fs_destroy_extent_node(struct inode *inode)
1086 {
1087 __destroy_extent_node(inode, EX_READ);
1088 __destroy_extent_node(inode, EX_BLOCK_AGE);
1089 }
1090
1091 static void __drop_extent_tree(struct inode *inode, enum extent_type type)
1092 {
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1095 bool updated = false;
1096
1097 if (!__may_extent_tree(inode, type))
1098 return;
1099
1100 write_lock(&et->lock);
1101 __free_extent_tree(sbi, et);
1102 if (type == EX_READ) {
1103 set_inode_flag(inode, FI_NO_EXTENT);
1104 if (et->largest.len) {
1105 et->largest.len = 0;
1106 updated = true;
1107 }
1108 }
1109 write_unlock(&et->lock);
1110 if (updated)
1111 f2fs_mark_inode_dirty_sync(inode, true);
1112 }
1113
1114 void f2fs_drop_extent_tree(struct inode *inode)
1115 {
1116 __drop_extent_tree(inode, EX_READ);
1117 __drop_extent_tree(inode, EX_BLOCK_AGE);
1118 }
1119
1120 static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
1121 {
1122 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1123 struct extent_tree_info *eti = &sbi->extent_tree[type];
1124 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1125 unsigned int node_cnt = 0;
1126
1127 if (!et)
1128 return;
1129
1130 if (inode->i_nlink && !is_bad_inode(inode) &&
1131 atomic_read(&et->node_cnt)) {
1132 mutex_lock(&eti->extent_tree_lock);
1133 list_add_tail(&et->list, &eti->zombie_list);
1134 atomic_inc(&eti->total_zombie_tree);
1135 mutex_unlock(&eti->extent_tree_lock);
1136 return;
1137 }
1138
1139 /* free all extent info belong to this extent tree */
1140 node_cnt = __destroy_extent_node(inode, type);
1141
1142 /* delete extent tree entry in radix tree */
1143 mutex_lock(&eti->extent_tree_lock);
1144 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1145 radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
1146 kmem_cache_free(extent_tree_slab, et);
1147 atomic_dec(&eti->total_ext_tree);
1148 mutex_unlock(&eti->extent_tree_lock);
1149
1150 F2FS_I(inode)->extent_tree[type] = NULL;
1151
1152 trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
1153 }
1154
1155 void f2fs_destroy_extent_tree(struct inode *inode)
1156 {
1157 __destroy_extent_tree(inode, EX_READ);
1158 __destroy_extent_tree(inode, EX_BLOCK_AGE);
1159 }
1160
1161 static void __init_extent_tree_info(struct extent_tree_info *eti)
1162 {
1163 INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
1164 mutex_init(&eti->extent_tree_lock);
1165 INIT_LIST_HEAD(&eti->extent_list);
1166 spin_lock_init(&eti->extent_lock);
1167 atomic_set(&eti->total_ext_tree, 0);
1168 INIT_LIST_HEAD(&eti->zombie_list);
1169 atomic_set(&eti->total_zombie_tree, 0);
1170 atomic_set(&eti->total_ext_node, 0);
1171 }
1172
1173 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
1174 {
1175 __init_extent_tree_info(&sbi->extent_tree[EX_READ]);
1176 __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
1177
1178 /* initialize for block age extents */
1179 atomic64_set(&sbi->allocated_data_blocks, 0);
1180 sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
1181 sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
1182 sbi->last_age_weight = LAST_AGE_WEIGHT;
1183 }
1184
1185 int __init f2fs_create_extent_cache(void)
1186 {
1187 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1188 sizeof(struct extent_tree));
1189 if (!extent_tree_slab)
1190 return -ENOMEM;
1191 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1192 sizeof(struct extent_node));
1193 if (!extent_node_slab) {
1194 kmem_cache_destroy(extent_tree_slab);
1195 return -ENOMEM;
1196 }
1197 return 0;
1198 }
1199
1200 void f2fs_destroy_extent_cache(void)
1201 {
1202 kmem_cache_destroy(extent_node_slab);
1203 kmem_cache_destroy(extent_tree_slab);
1204 }