]> git.ipfire.org Git - people/ms/linux.git/blob - fs/f2fs/f2fs.h
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[people/ms/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 /*
88 * For checkpoint manager
89 */
90 enum {
91 NAT_BITMAP,
92 SIT_BITMAP
93 };
94
95 enum {
96 CP_UMOUNT,
97 CP_FASTBOOT,
98 CP_SYNC,
99 CP_RECOVERY,
100 CP_DISCARD,
101 };
102
103 #define DEF_BATCHED_TRIM_SECTIONS 32
104 #define BATCHED_TRIM_SEGMENTS(sbi) \
105 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
106 #define BATCHED_TRIM_BLOCKS(sbi) \
107 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
108 #define DEF_CP_INTERVAL 60 /* 60 secs */
109 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
110
111 struct cp_control {
112 int reason;
113 __u64 trim_start;
114 __u64 trim_end;
115 __u64 trim_minlen;
116 __u64 trimmed;
117 };
118
119 /*
120 * For CP/NAT/SIT/SSA readahead
121 */
122 enum {
123 META_CP,
124 META_NAT,
125 META_SIT,
126 META_SSA,
127 META_POR,
128 };
129
130 /* for the list of ino */
131 enum {
132 ORPHAN_INO, /* for orphan ino list */
133 APPEND_INO, /* for append ino list */
134 UPDATE_INO, /* for update ino list */
135 MAX_INO_ENTRY, /* max. list */
136 };
137
138 struct ino_entry {
139 struct list_head list; /* list head */
140 nid_t ino; /* inode number */
141 };
142
143 /* for the list of inodes to be GCed */
144 struct inode_entry {
145 struct list_head list; /* list head */
146 struct inode *inode; /* vfs inode pointer */
147 };
148
149 /* for the list of blockaddresses to be discarded */
150 struct discard_entry {
151 struct list_head list; /* list head */
152 block_t blkaddr; /* block address to be discarded */
153 int len; /* # of consecutive blocks of the discard */
154 };
155
156 /* for the list of fsync inodes, used only during recovery */
157 struct fsync_inode_entry {
158 struct list_head list; /* list head */
159 struct inode *inode; /* vfs inode pointer */
160 block_t blkaddr; /* block address locating the last fsync */
161 block_t last_dentry; /* block address locating the last dentry */
162 block_t last_inode; /* block address locating the last inode */
163 };
164
165 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
166 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
167
168 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
169 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
170 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
171 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
172
173 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
174 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
175
176 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
177 {
178 int before = nats_in_cursum(journal);
179 journal->n_nats = cpu_to_le16(before + i);
180 return before;
181 }
182
183 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
184 {
185 int before = sits_in_cursum(journal);
186 journal->n_sits = cpu_to_le16(before + i);
187 return before;
188 }
189
190 static inline bool __has_cursum_space(struct f2fs_journal *journal,
191 int size, int type)
192 {
193 if (type == NAT_JOURNAL)
194 return size <= MAX_NAT_JENTRIES(journal);
195 return size <= MAX_SIT_JENTRIES(journal);
196 }
197
198 /*
199 * ioctl commands
200 */
201 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
202 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
203 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
204
205 #define F2FS_IOCTL_MAGIC 0xf5
206 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
207 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
208 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
209 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
210 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
211 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
212 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
213 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
214
215 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
216 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
217 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
218
219 /*
220 * should be same as XFS_IOC_GOINGDOWN.
221 * Flags for going down operation used by FS_IOC_GOINGDOWN
222 */
223 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
224 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
225 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
226 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
227 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
228
229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
230 /*
231 * ioctl commands in 32 bit emulation
232 */
233 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
234 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
235 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
236 #endif
237
238 struct f2fs_defragment {
239 u64 start;
240 u64 len;
241 };
242
243 /*
244 * For INODE and NODE manager
245 */
246 /* for directory operations */
247 struct f2fs_dentry_ptr {
248 struct inode *inode;
249 const void *bitmap;
250 struct f2fs_dir_entry *dentry;
251 __u8 (*filename)[F2FS_SLOT_LEN];
252 int max;
253 };
254
255 static inline void make_dentry_ptr(struct inode *inode,
256 struct f2fs_dentry_ptr *d, void *src, int type)
257 {
258 d->inode = inode;
259
260 if (type == 1) {
261 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
262 d->max = NR_DENTRY_IN_BLOCK;
263 d->bitmap = &t->dentry_bitmap;
264 d->dentry = t->dentry;
265 d->filename = t->filename;
266 } else {
267 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
268 d->max = NR_INLINE_DENTRY;
269 d->bitmap = &t->dentry_bitmap;
270 d->dentry = t->dentry;
271 d->filename = t->filename;
272 }
273 }
274
275 /*
276 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
277 * as its node offset to distinguish from index node blocks.
278 * But some bits are used to mark the node block.
279 */
280 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
281 >> OFFSET_BIT_SHIFT)
282 enum {
283 ALLOC_NODE, /* allocate a new node page if needed */
284 LOOKUP_NODE, /* look up a node without readahead */
285 LOOKUP_NODE_RA, /*
286 * look up a node with readahead called
287 * by get_data_block.
288 */
289 };
290
291 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
292
293 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
294
295 /* vector size for gang look-up from extent cache that consists of radix tree */
296 #define EXT_TREE_VEC_SIZE 64
297
298 /* for in-memory extent cache entry */
299 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
300
301 /* number of extent info in extent cache we try to shrink */
302 #define EXTENT_CACHE_SHRINK_NUMBER 128
303
304 struct extent_info {
305 unsigned int fofs; /* start offset in a file */
306 u32 blk; /* start block address of the extent */
307 unsigned int len; /* length of the extent */
308 };
309
310 struct extent_node {
311 struct rb_node rb_node; /* rb node located in rb-tree */
312 struct list_head list; /* node in global extent list of sbi */
313 struct extent_info ei; /* extent info */
314 struct extent_tree *et; /* extent tree pointer */
315 };
316
317 struct extent_tree {
318 nid_t ino; /* inode number */
319 struct rb_root root; /* root of extent info rb-tree */
320 struct extent_node *cached_en; /* recently accessed extent node */
321 struct extent_info largest; /* largested extent info */
322 struct list_head list; /* to be used by sbi->zombie_list */
323 rwlock_t lock; /* protect extent info rb-tree */
324 atomic_t node_cnt; /* # of extent node in rb-tree*/
325 };
326
327 /*
328 * This structure is taken from ext4_map_blocks.
329 *
330 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
331 */
332 #define F2FS_MAP_NEW (1 << BH_New)
333 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
334 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
335 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
336 F2FS_MAP_UNWRITTEN)
337
338 struct f2fs_map_blocks {
339 block_t m_pblk;
340 block_t m_lblk;
341 unsigned int m_len;
342 unsigned int m_flags;
343 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
344 };
345
346 /* for flag in get_data_block */
347 #define F2FS_GET_BLOCK_READ 0
348 #define F2FS_GET_BLOCK_DIO 1
349 #define F2FS_GET_BLOCK_FIEMAP 2
350 #define F2FS_GET_BLOCK_BMAP 3
351 #define F2FS_GET_BLOCK_PRE_DIO 4
352 #define F2FS_GET_BLOCK_PRE_AIO 5
353
354 /*
355 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
356 */
357 #define FADVISE_COLD_BIT 0x01
358 #define FADVISE_LOST_PINO_BIT 0x02
359 #define FADVISE_ENCRYPT_BIT 0x04
360 #define FADVISE_ENC_NAME_BIT 0x08
361
362 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
363 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
364 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
365 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
366 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
367 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
368 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
369 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
370 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
371 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
372 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
373
374 #define DEF_DIR_LEVEL 0
375
376 struct f2fs_inode_info {
377 struct inode vfs_inode; /* serve a vfs inode */
378 unsigned long i_flags; /* keep an inode flags for ioctl */
379 unsigned char i_advise; /* use to give file attribute hints */
380 unsigned char i_dir_level; /* use for dentry level for large dir */
381 unsigned int i_current_depth; /* use only in directory structure */
382 unsigned int i_pino; /* parent inode number */
383 umode_t i_acl_mode; /* keep file acl mode temporarily */
384
385 /* Use below internally in f2fs*/
386 unsigned long flags; /* use to pass per-file flags */
387 struct rw_semaphore i_sem; /* protect fi info */
388 atomic_t dirty_pages; /* # of dirty pages */
389 f2fs_hash_t chash; /* hash value of given file name */
390 unsigned int clevel; /* maximum level of given file name */
391 nid_t i_xattr_nid; /* node id that contains xattrs */
392 unsigned long long xattr_ver; /* cp version of xattr modification */
393
394 struct list_head dirty_list; /* linked in global dirty list */
395 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
396 struct mutex inmem_lock; /* lock for inmemory pages */
397 struct extent_tree *extent_tree; /* cached extent_tree entry */
398 };
399
400 static inline void get_extent_info(struct extent_info *ext,
401 struct f2fs_extent i_ext)
402 {
403 ext->fofs = le32_to_cpu(i_ext.fofs);
404 ext->blk = le32_to_cpu(i_ext.blk);
405 ext->len = le32_to_cpu(i_ext.len);
406 }
407
408 static inline void set_raw_extent(struct extent_info *ext,
409 struct f2fs_extent *i_ext)
410 {
411 i_ext->fofs = cpu_to_le32(ext->fofs);
412 i_ext->blk = cpu_to_le32(ext->blk);
413 i_ext->len = cpu_to_le32(ext->len);
414 }
415
416 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
417 u32 blk, unsigned int len)
418 {
419 ei->fofs = fofs;
420 ei->blk = blk;
421 ei->len = len;
422 }
423
424 static inline bool __is_extent_same(struct extent_info *ei1,
425 struct extent_info *ei2)
426 {
427 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
428 ei1->len == ei2->len);
429 }
430
431 static inline bool __is_extent_mergeable(struct extent_info *back,
432 struct extent_info *front)
433 {
434 return (back->fofs + back->len == front->fofs &&
435 back->blk + back->len == front->blk);
436 }
437
438 static inline bool __is_back_mergeable(struct extent_info *cur,
439 struct extent_info *back)
440 {
441 return __is_extent_mergeable(back, cur);
442 }
443
444 static inline bool __is_front_mergeable(struct extent_info *cur,
445 struct extent_info *front)
446 {
447 return __is_extent_mergeable(cur, front);
448 }
449
450 static inline void __try_update_largest_extent(struct extent_tree *et,
451 struct extent_node *en)
452 {
453 if (en->ei.len > et->largest.len)
454 et->largest = en->ei;
455 }
456
457 struct f2fs_nm_info {
458 block_t nat_blkaddr; /* base disk address of NAT */
459 nid_t max_nid; /* maximum possible node ids */
460 nid_t available_nids; /* maximum available node ids */
461 nid_t next_scan_nid; /* the next nid to be scanned */
462 unsigned int ram_thresh; /* control the memory footprint */
463 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
464 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
465
466 /* NAT cache management */
467 struct radix_tree_root nat_root;/* root of the nat entry cache */
468 struct radix_tree_root nat_set_root;/* root of the nat set cache */
469 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
470 struct list_head nat_entries; /* cached nat entry list (clean) */
471 unsigned int nat_cnt; /* the # of cached nat entries */
472 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
473
474 /* free node ids management */
475 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
476 struct list_head free_nid_list; /* a list for free nids */
477 spinlock_t free_nid_list_lock; /* protect free nid list */
478 unsigned int fcnt; /* the number of free node id */
479 struct mutex build_lock; /* lock for build free nids */
480
481 /* for checkpoint */
482 char *nat_bitmap; /* NAT bitmap pointer */
483 int bitmap_size; /* bitmap size */
484 };
485
486 /*
487 * this structure is used as one of function parameters.
488 * all the information are dedicated to a given direct node block determined
489 * by the data offset in a file.
490 */
491 struct dnode_of_data {
492 struct inode *inode; /* vfs inode pointer */
493 struct page *inode_page; /* its inode page, NULL is possible */
494 struct page *node_page; /* cached direct node page */
495 nid_t nid; /* node id of the direct node block */
496 unsigned int ofs_in_node; /* data offset in the node page */
497 bool inode_page_locked; /* inode page is locked or not */
498 bool node_changed; /* is node block changed */
499 char cur_level; /* level of hole node page */
500 char max_level; /* level of current page located */
501 block_t data_blkaddr; /* block address of the node block */
502 };
503
504 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
505 struct page *ipage, struct page *npage, nid_t nid)
506 {
507 memset(dn, 0, sizeof(*dn));
508 dn->inode = inode;
509 dn->inode_page = ipage;
510 dn->node_page = npage;
511 dn->nid = nid;
512 }
513
514 /*
515 * For SIT manager
516 *
517 * By default, there are 6 active log areas across the whole main area.
518 * When considering hot and cold data separation to reduce cleaning overhead,
519 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
520 * respectively.
521 * In the current design, you should not change the numbers intentionally.
522 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
523 * logs individually according to the underlying devices. (default: 6)
524 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
525 * data and 8 for node logs.
526 */
527 #define NR_CURSEG_DATA_TYPE (3)
528 #define NR_CURSEG_NODE_TYPE (3)
529 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
530
531 enum {
532 CURSEG_HOT_DATA = 0, /* directory entry blocks */
533 CURSEG_WARM_DATA, /* data blocks */
534 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
535 CURSEG_HOT_NODE, /* direct node blocks of directory files */
536 CURSEG_WARM_NODE, /* direct node blocks of normal files */
537 CURSEG_COLD_NODE, /* indirect node blocks */
538 NO_CHECK_TYPE,
539 CURSEG_DIRECT_IO, /* to use for the direct IO path */
540 };
541
542 struct flush_cmd {
543 struct completion wait;
544 struct llist_node llnode;
545 int ret;
546 };
547
548 struct flush_cmd_control {
549 struct task_struct *f2fs_issue_flush; /* flush thread */
550 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
551 struct llist_head issue_list; /* list for command issue */
552 struct llist_node *dispatch_list; /* list for command dispatch */
553 };
554
555 struct f2fs_sm_info {
556 struct sit_info *sit_info; /* whole segment information */
557 struct free_segmap_info *free_info; /* free segment information */
558 struct dirty_seglist_info *dirty_info; /* dirty segment information */
559 struct curseg_info *curseg_array; /* active segment information */
560
561 block_t seg0_blkaddr; /* block address of 0'th segment */
562 block_t main_blkaddr; /* start block address of main area */
563 block_t ssa_blkaddr; /* start block address of SSA area */
564
565 unsigned int segment_count; /* total # of segments */
566 unsigned int main_segments; /* # of segments in main area */
567 unsigned int reserved_segments; /* # of reserved segments */
568 unsigned int ovp_segments; /* # of overprovision segments */
569
570 /* a threshold to reclaim prefree segments */
571 unsigned int rec_prefree_segments;
572
573 /* for small discard management */
574 struct list_head discard_list; /* 4KB discard list */
575 int nr_discards; /* # of discards in the list */
576 int max_discards; /* max. discards to be issued */
577
578 /* for batched trimming */
579 unsigned int trim_sections; /* # of sections to trim */
580
581 struct list_head sit_entry_set; /* sit entry set list */
582
583 unsigned int ipu_policy; /* in-place-update policy */
584 unsigned int min_ipu_util; /* in-place-update threshold */
585 unsigned int min_fsync_blocks; /* threshold for fsync */
586
587 /* for flush command control */
588 struct flush_cmd_control *cmd_control_info;
589
590 };
591
592 /*
593 * For superblock
594 */
595 /*
596 * COUNT_TYPE for monitoring
597 *
598 * f2fs monitors the number of several block types such as on-writeback,
599 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
600 */
601 enum count_type {
602 F2FS_WRITEBACK,
603 F2FS_DIRTY_DENTS,
604 F2FS_DIRTY_DATA,
605 F2FS_DIRTY_NODES,
606 F2FS_DIRTY_META,
607 F2FS_INMEM_PAGES,
608 NR_COUNT_TYPE,
609 };
610
611 /*
612 * The below are the page types of bios used in submit_bio().
613 * The available types are:
614 * DATA User data pages. It operates as async mode.
615 * NODE Node pages. It operates as async mode.
616 * META FS metadata pages such as SIT, NAT, CP.
617 * NR_PAGE_TYPE The number of page types.
618 * META_FLUSH Make sure the previous pages are written
619 * with waiting the bio's completion
620 * ... Only can be used with META.
621 */
622 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
623 enum page_type {
624 DATA,
625 NODE,
626 META,
627 NR_PAGE_TYPE,
628 META_FLUSH,
629 INMEM, /* the below types are used by tracepoints only. */
630 INMEM_DROP,
631 INMEM_REVOKE,
632 IPU,
633 OPU,
634 };
635
636 struct f2fs_io_info {
637 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
638 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
639 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
640 block_t new_blkaddr; /* new block address to be written */
641 block_t old_blkaddr; /* old block address before Cow */
642 struct page *page; /* page to be written */
643 struct page *encrypted_page; /* encrypted page */
644 };
645
646 #define is_read_io(rw) (((rw) & 1) == READ)
647 struct f2fs_bio_info {
648 struct f2fs_sb_info *sbi; /* f2fs superblock */
649 struct bio *bio; /* bios to merge */
650 sector_t last_block_in_bio; /* last block number */
651 struct f2fs_io_info fio; /* store buffered io info. */
652 struct rw_semaphore io_rwsem; /* blocking op for bio */
653 };
654
655 enum inode_type {
656 DIR_INODE, /* for dirty dir inode */
657 FILE_INODE, /* for dirty regular/symlink inode */
658 NR_INODE_TYPE,
659 };
660
661 /* for inner inode cache management */
662 struct inode_management {
663 struct radix_tree_root ino_root; /* ino entry array */
664 spinlock_t ino_lock; /* for ino entry lock */
665 struct list_head ino_list; /* inode list head */
666 unsigned long ino_num; /* number of entries */
667 };
668
669 /* For s_flag in struct f2fs_sb_info */
670 enum {
671 SBI_IS_DIRTY, /* dirty flag for checkpoint */
672 SBI_IS_CLOSE, /* specify unmounting */
673 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
674 SBI_POR_DOING, /* recovery is doing or not */
675 };
676
677 enum {
678 CP_TIME,
679 REQ_TIME,
680 MAX_TIME,
681 };
682
683 struct f2fs_sb_info {
684 struct super_block *sb; /* pointer to VFS super block */
685 struct proc_dir_entry *s_proc; /* proc entry */
686 struct f2fs_super_block *raw_super; /* raw super block pointer */
687 int valid_super_block; /* valid super block no */
688 int s_flag; /* flags for sbi */
689
690 /* for node-related operations */
691 struct f2fs_nm_info *nm_info; /* node manager */
692 struct inode *node_inode; /* cache node blocks */
693
694 /* for segment-related operations */
695 struct f2fs_sm_info *sm_info; /* segment manager */
696
697 /* for bio operations */
698 struct f2fs_bio_info read_io; /* for read bios */
699 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
700
701 /* for checkpoint */
702 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
703 struct inode *meta_inode; /* cache meta blocks */
704 struct mutex cp_mutex; /* checkpoint procedure lock */
705 struct rw_semaphore cp_rwsem; /* blocking FS operations */
706 struct rw_semaphore node_write; /* locking node writes */
707 struct mutex writepages; /* mutex for writepages() */
708 wait_queue_head_t cp_wait;
709 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
710 long interval_time[MAX_TIME]; /* to store thresholds */
711
712 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
713
714 /* for orphan inode, use 0'th array */
715 unsigned int max_orphans; /* max orphan inodes */
716
717 /* for inode management */
718 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
719 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
720
721 /* for extent tree cache */
722 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
723 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
724 struct list_head extent_list; /* lru list for shrinker */
725 spinlock_t extent_lock; /* locking extent lru list */
726 atomic_t total_ext_tree; /* extent tree count */
727 struct list_head zombie_list; /* extent zombie tree list */
728 atomic_t total_zombie_tree; /* extent zombie tree count */
729 atomic_t total_ext_node; /* extent info count */
730
731 /* basic filesystem units */
732 unsigned int log_sectors_per_block; /* log2 sectors per block */
733 unsigned int log_blocksize; /* log2 block size */
734 unsigned int blocksize; /* block size */
735 unsigned int root_ino_num; /* root inode number*/
736 unsigned int node_ino_num; /* node inode number*/
737 unsigned int meta_ino_num; /* meta inode number*/
738 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
739 unsigned int blocks_per_seg; /* blocks per segment */
740 unsigned int segs_per_sec; /* segments per section */
741 unsigned int secs_per_zone; /* sections per zone */
742 unsigned int total_sections; /* total section count */
743 unsigned int total_node_count; /* total node block count */
744 unsigned int total_valid_node_count; /* valid node block count */
745 unsigned int total_valid_inode_count; /* valid inode count */
746 loff_t max_file_blocks; /* max block index of file */
747 int active_logs; /* # of active logs */
748 int dir_level; /* directory level */
749
750 block_t user_block_count; /* # of user blocks */
751 block_t total_valid_block_count; /* # of valid blocks */
752 block_t alloc_valid_block_count; /* # of allocated blocks */
753 block_t discard_blks; /* discard command candidats */
754 block_t last_valid_block_count; /* for recovery */
755 u32 s_next_generation; /* for NFS support */
756 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
757
758 struct f2fs_mount_info mount_opt; /* mount options */
759
760 /* for cleaning operations */
761 struct mutex gc_mutex; /* mutex for GC */
762 struct f2fs_gc_kthread *gc_thread; /* GC thread */
763 unsigned int cur_victim_sec; /* current victim section num */
764
765 /* maximum # of trials to find a victim segment for SSR and GC */
766 unsigned int max_victim_search;
767
768 /*
769 * for stat information.
770 * one is for the LFS mode, and the other is for the SSR mode.
771 */
772 #ifdef CONFIG_F2FS_STAT_FS
773 struct f2fs_stat_info *stat_info; /* FS status information */
774 unsigned int segment_count[2]; /* # of allocated segments */
775 unsigned int block_count[2]; /* # of allocated blocks */
776 atomic_t inplace_count; /* # of inplace update */
777 atomic64_t total_hit_ext; /* # of lookup extent cache */
778 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
779 atomic64_t read_hit_largest; /* # of hit largest extent node */
780 atomic64_t read_hit_cached; /* # of hit cached extent node */
781 atomic_t inline_xattr; /* # of inline_xattr inodes */
782 atomic_t inline_inode; /* # of inline_data inodes */
783 atomic_t inline_dir; /* # of inline_dentry inodes */
784 int bg_gc; /* background gc calls */
785 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
786 #endif
787 unsigned int last_victim[2]; /* last victim segment # */
788 spinlock_t stat_lock; /* lock for stat operations */
789
790 /* For sysfs suppport */
791 struct kobject s_kobj;
792 struct completion s_kobj_unregister;
793
794 /* For shrinker support */
795 struct list_head s_list;
796 struct mutex umount_mutex;
797 unsigned int shrinker_run_no;
798
799 /* For write statistics */
800 u64 sectors_written_start;
801 u64 kbytes_written;
802
803 /* Reference to checksum algorithm driver via cryptoapi */
804 struct crypto_shash *s_chksum_driver;
805 };
806
807 /* For write statistics. Suppose sector size is 512 bytes,
808 * and the return value is in kbytes. s is of struct f2fs_sb_info.
809 */
810 #define BD_PART_WRITTEN(s) \
811 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
812 s->sectors_written_start) >> 1)
813
814 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
815 {
816 sbi->last_time[type] = jiffies;
817 }
818
819 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
820 {
821 struct timespec ts = {sbi->interval_time[type], 0};
822 unsigned long interval = timespec_to_jiffies(&ts);
823
824 return time_after(jiffies, sbi->last_time[type] + interval);
825 }
826
827 static inline bool is_idle(struct f2fs_sb_info *sbi)
828 {
829 struct block_device *bdev = sbi->sb->s_bdev;
830 struct request_queue *q = bdev_get_queue(bdev);
831 struct request_list *rl = &q->root_rl;
832
833 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
834 return 0;
835
836 return f2fs_time_over(sbi, REQ_TIME);
837 }
838
839 /*
840 * Inline functions
841 */
842 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
843 unsigned int length)
844 {
845 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
846 u32 *ctx = (u32 *)shash_desc_ctx(shash);
847 int err;
848
849 shash->tfm = sbi->s_chksum_driver;
850 shash->flags = 0;
851 *ctx = F2FS_SUPER_MAGIC;
852
853 err = crypto_shash_update(shash, address, length);
854 BUG_ON(err);
855
856 return *ctx;
857 }
858
859 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
860 void *buf, size_t buf_size)
861 {
862 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
863 }
864
865 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
866 {
867 return container_of(inode, struct f2fs_inode_info, vfs_inode);
868 }
869
870 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
871 {
872 return sb->s_fs_info;
873 }
874
875 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
876 {
877 return F2FS_SB(inode->i_sb);
878 }
879
880 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
881 {
882 return F2FS_I_SB(mapping->host);
883 }
884
885 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
886 {
887 return F2FS_M_SB(page->mapping);
888 }
889
890 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
891 {
892 return (struct f2fs_super_block *)(sbi->raw_super);
893 }
894
895 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
896 {
897 return (struct f2fs_checkpoint *)(sbi->ckpt);
898 }
899
900 static inline struct f2fs_node *F2FS_NODE(struct page *page)
901 {
902 return (struct f2fs_node *)page_address(page);
903 }
904
905 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
906 {
907 return &((struct f2fs_node *)page_address(page))->i;
908 }
909
910 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
911 {
912 return (struct f2fs_nm_info *)(sbi->nm_info);
913 }
914
915 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
916 {
917 return (struct f2fs_sm_info *)(sbi->sm_info);
918 }
919
920 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
921 {
922 return (struct sit_info *)(SM_I(sbi)->sit_info);
923 }
924
925 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
926 {
927 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
928 }
929
930 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
931 {
932 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
933 }
934
935 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
936 {
937 return sbi->meta_inode->i_mapping;
938 }
939
940 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
941 {
942 return sbi->node_inode->i_mapping;
943 }
944
945 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
946 {
947 return sbi->s_flag & (0x01 << type);
948 }
949
950 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
951 {
952 sbi->s_flag |= (0x01 << type);
953 }
954
955 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
956 {
957 sbi->s_flag &= ~(0x01 << type);
958 }
959
960 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
961 {
962 return le64_to_cpu(cp->checkpoint_ver);
963 }
964
965 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
966 {
967 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
968 return ckpt_flags & f;
969 }
970
971 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
972 {
973 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
974 ckpt_flags |= f;
975 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
976 }
977
978 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
979 {
980 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
981 ckpt_flags &= (~f);
982 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
983 }
984
985 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
986 {
987 down_read(&sbi->cp_rwsem);
988 }
989
990 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
991 {
992 up_read(&sbi->cp_rwsem);
993 }
994
995 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
996 {
997 down_write(&sbi->cp_rwsem);
998 }
999
1000 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1001 {
1002 up_write(&sbi->cp_rwsem);
1003 }
1004
1005 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1006 {
1007 int reason = CP_SYNC;
1008
1009 if (test_opt(sbi, FASTBOOT))
1010 reason = CP_FASTBOOT;
1011 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1012 reason = CP_UMOUNT;
1013 return reason;
1014 }
1015
1016 static inline bool __remain_node_summaries(int reason)
1017 {
1018 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1019 }
1020
1021 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1022 {
1023 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1024 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1025 }
1026
1027 /*
1028 * Check whether the given nid is within node id range.
1029 */
1030 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1031 {
1032 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1033 return -EINVAL;
1034 if (unlikely(nid >= NM_I(sbi)->max_nid))
1035 return -EINVAL;
1036 return 0;
1037 }
1038
1039 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1040
1041 /*
1042 * Check whether the inode has blocks or not
1043 */
1044 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1045 {
1046 if (F2FS_I(inode)->i_xattr_nid)
1047 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1048 else
1049 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1050 }
1051
1052 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1053 {
1054 return ofs == XATTR_NODE_OFFSET;
1055 }
1056
1057 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1058 struct inode *inode, blkcnt_t count)
1059 {
1060 block_t valid_block_count;
1061
1062 spin_lock(&sbi->stat_lock);
1063 valid_block_count =
1064 sbi->total_valid_block_count + (block_t)count;
1065 if (unlikely(valid_block_count > sbi->user_block_count)) {
1066 spin_unlock(&sbi->stat_lock);
1067 return false;
1068 }
1069 inode->i_blocks += count;
1070 sbi->total_valid_block_count = valid_block_count;
1071 sbi->alloc_valid_block_count += (block_t)count;
1072 spin_unlock(&sbi->stat_lock);
1073 return true;
1074 }
1075
1076 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1077 struct inode *inode,
1078 blkcnt_t count)
1079 {
1080 spin_lock(&sbi->stat_lock);
1081 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1082 f2fs_bug_on(sbi, inode->i_blocks < count);
1083 inode->i_blocks -= count;
1084 sbi->total_valid_block_count -= (block_t)count;
1085 spin_unlock(&sbi->stat_lock);
1086 }
1087
1088 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1089 {
1090 atomic_inc(&sbi->nr_pages[count_type]);
1091 set_sbi_flag(sbi, SBI_IS_DIRTY);
1092 }
1093
1094 static inline void inode_inc_dirty_pages(struct inode *inode)
1095 {
1096 atomic_inc(&F2FS_I(inode)->dirty_pages);
1097 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1098 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1099 }
1100
1101 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1102 {
1103 atomic_dec(&sbi->nr_pages[count_type]);
1104 }
1105
1106 static inline void inode_dec_dirty_pages(struct inode *inode)
1107 {
1108 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1109 !S_ISLNK(inode->i_mode))
1110 return;
1111
1112 atomic_dec(&F2FS_I(inode)->dirty_pages);
1113 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1114 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1115 }
1116
1117 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1118 {
1119 return atomic_read(&sbi->nr_pages[count_type]);
1120 }
1121
1122 static inline int get_dirty_pages(struct inode *inode)
1123 {
1124 return atomic_read(&F2FS_I(inode)->dirty_pages);
1125 }
1126
1127 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1128 {
1129 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1130 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1131 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1132 }
1133
1134 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1135 {
1136 return sbi->total_valid_block_count;
1137 }
1138
1139 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1140 {
1141 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1142
1143 /* return NAT or SIT bitmap */
1144 if (flag == NAT_BITMAP)
1145 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1146 else if (flag == SIT_BITMAP)
1147 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1148
1149 return 0;
1150 }
1151
1152 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1153 {
1154 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1155 }
1156
1157 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1158 {
1159 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1160 int offset;
1161
1162 if (__cp_payload(sbi) > 0) {
1163 if (flag == NAT_BITMAP)
1164 return &ckpt->sit_nat_version_bitmap;
1165 else
1166 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1167 } else {
1168 offset = (flag == NAT_BITMAP) ?
1169 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1170 return &ckpt->sit_nat_version_bitmap + offset;
1171 }
1172 }
1173
1174 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1175 {
1176 block_t start_addr;
1177 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1178 unsigned long long ckpt_version = cur_cp_version(ckpt);
1179
1180 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1181
1182 /*
1183 * odd numbered checkpoint should at cp segment 0
1184 * and even segment must be at cp segment 1
1185 */
1186 if (!(ckpt_version & 1))
1187 start_addr += sbi->blocks_per_seg;
1188
1189 return start_addr;
1190 }
1191
1192 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1193 {
1194 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1195 }
1196
1197 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1198 struct inode *inode)
1199 {
1200 block_t valid_block_count;
1201 unsigned int valid_node_count;
1202
1203 spin_lock(&sbi->stat_lock);
1204
1205 valid_block_count = sbi->total_valid_block_count + 1;
1206 if (unlikely(valid_block_count > sbi->user_block_count)) {
1207 spin_unlock(&sbi->stat_lock);
1208 return false;
1209 }
1210
1211 valid_node_count = sbi->total_valid_node_count + 1;
1212 if (unlikely(valid_node_count > sbi->total_node_count)) {
1213 spin_unlock(&sbi->stat_lock);
1214 return false;
1215 }
1216
1217 if (inode)
1218 inode->i_blocks++;
1219
1220 sbi->alloc_valid_block_count++;
1221 sbi->total_valid_node_count++;
1222 sbi->total_valid_block_count++;
1223 spin_unlock(&sbi->stat_lock);
1224
1225 return true;
1226 }
1227
1228 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1229 struct inode *inode)
1230 {
1231 spin_lock(&sbi->stat_lock);
1232
1233 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1234 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1235 f2fs_bug_on(sbi, !inode->i_blocks);
1236
1237 inode->i_blocks--;
1238 sbi->total_valid_node_count--;
1239 sbi->total_valid_block_count--;
1240
1241 spin_unlock(&sbi->stat_lock);
1242 }
1243
1244 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1245 {
1246 return sbi->total_valid_node_count;
1247 }
1248
1249 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1250 {
1251 spin_lock(&sbi->stat_lock);
1252 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1253 sbi->total_valid_inode_count++;
1254 spin_unlock(&sbi->stat_lock);
1255 }
1256
1257 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1258 {
1259 spin_lock(&sbi->stat_lock);
1260 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1261 sbi->total_valid_inode_count--;
1262 spin_unlock(&sbi->stat_lock);
1263 }
1264
1265 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1266 {
1267 return sbi->total_valid_inode_count;
1268 }
1269
1270 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1271 pgoff_t index, bool for_write)
1272 {
1273 if (!for_write)
1274 return grab_cache_page(mapping, index);
1275 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1276 }
1277
1278 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1279 {
1280 char *src_kaddr = kmap(src);
1281 char *dst_kaddr = kmap(dst);
1282
1283 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1284 kunmap(dst);
1285 kunmap(src);
1286 }
1287
1288 static inline void f2fs_put_page(struct page *page, int unlock)
1289 {
1290 if (!page)
1291 return;
1292
1293 if (unlock) {
1294 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1295 unlock_page(page);
1296 }
1297 put_page(page);
1298 }
1299
1300 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1301 {
1302 if (dn->node_page)
1303 f2fs_put_page(dn->node_page, 1);
1304 if (dn->inode_page && dn->node_page != dn->inode_page)
1305 f2fs_put_page(dn->inode_page, 0);
1306 dn->node_page = NULL;
1307 dn->inode_page = NULL;
1308 }
1309
1310 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1311 size_t size)
1312 {
1313 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1314 }
1315
1316 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1317 gfp_t flags)
1318 {
1319 void *entry;
1320
1321 entry = kmem_cache_alloc(cachep, flags);
1322 if (!entry)
1323 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1324 return entry;
1325 }
1326
1327 static inline struct bio *f2fs_bio_alloc(int npages)
1328 {
1329 struct bio *bio;
1330
1331 /* No failure on bio allocation */
1332 bio = bio_alloc(GFP_NOIO, npages);
1333 if (!bio)
1334 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1335 return bio;
1336 }
1337
1338 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1339 unsigned long index, void *item)
1340 {
1341 while (radix_tree_insert(root, index, item))
1342 cond_resched();
1343 }
1344
1345 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1346
1347 static inline bool IS_INODE(struct page *page)
1348 {
1349 struct f2fs_node *p = F2FS_NODE(page);
1350 return RAW_IS_INODE(p);
1351 }
1352
1353 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1354 {
1355 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1356 }
1357
1358 static inline block_t datablock_addr(struct page *node_page,
1359 unsigned int offset)
1360 {
1361 struct f2fs_node *raw_node;
1362 __le32 *addr_array;
1363 raw_node = F2FS_NODE(node_page);
1364 addr_array = blkaddr_in_node(raw_node);
1365 return le32_to_cpu(addr_array[offset]);
1366 }
1367
1368 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1369 {
1370 int mask;
1371
1372 addr += (nr >> 3);
1373 mask = 1 << (7 - (nr & 0x07));
1374 return mask & *addr;
1375 }
1376
1377 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1378 {
1379 int mask;
1380
1381 addr += (nr >> 3);
1382 mask = 1 << (7 - (nr & 0x07));
1383 *addr |= mask;
1384 }
1385
1386 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1387 {
1388 int mask;
1389
1390 addr += (nr >> 3);
1391 mask = 1 << (7 - (nr & 0x07));
1392 *addr &= ~mask;
1393 }
1394
1395 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1396 {
1397 int mask;
1398 int ret;
1399
1400 addr += (nr >> 3);
1401 mask = 1 << (7 - (nr & 0x07));
1402 ret = mask & *addr;
1403 *addr |= mask;
1404 return ret;
1405 }
1406
1407 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1408 {
1409 int mask;
1410 int ret;
1411
1412 addr += (nr >> 3);
1413 mask = 1 << (7 - (nr & 0x07));
1414 ret = mask & *addr;
1415 *addr &= ~mask;
1416 return ret;
1417 }
1418
1419 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1420 {
1421 int mask;
1422
1423 addr += (nr >> 3);
1424 mask = 1 << (7 - (nr & 0x07));
1425 *addr ^= mask;
1426 }
1427
1428 /* used for f2fs_inode_info->flags */
1429 enum {
1430 FI_NEW_INODE, /* indicate newly allocated inode */
1431 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1432 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1433 FI_INC_LINK, /* need to increment i_nlink */
1434 FI_ACL_MODE, /* indicate acl mode */
1435 FI_NO_ALLOC, /* should not allocate any blocks */
1436 FI_FREE_NID, /* free allocated nide */
1437 FI_UPDATE_DIR, /* should update inode block for consistency */
1438 FI_DELAY_IPUT, /* used for the recovery */
1439 FI_NO_EXTENT, /* not to use the extent cache */
1440 FI_INLINE_XATTR, /* used for inline xattr */
1441 FI_INLINE_DATA, /* used for inline data*/
1442 FI_INLINE_DENTRY, /* used for inline dentry */
1443 FI_APPEND_WRITE, /* inode has appended data */
1444 FI_UPDATE_WRITE, /* inode has in-place-update data */
1445 FI_NEED_IPU, /* used for ipu per file */
1446 FI_ATOMIC_FILE, /* indicate atomic file */
1447 FI_VOLATILE_FILE, /* indicate volatile file */
1448 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1449 FI_DROP_CACHE, /* drop dirty page cache */
1450 FI_DATA_EXIST, /* indicate data exists */
1451 FI_INLINE_DOTS, /* indicate inline dot dentries */
1452 FI_DO_DEFRAG, /* indicate defragment is running */
1453 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1454 };
1455
1456 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1457 {
1458 if (!test_bit(flag, &fi->flags))
1459 set_bit(flag, &fi->flags);
1460 }
1461
1462 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1463 {
1464 return test_bit(flag, &fi->flags);
1465 }
1466
1467 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1468 {
1469 if (test_bit(flag, &fi->flags))
1470 clear_bit(flag, &fi->flags);
1471 }
1472
1473 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1474 {
1475 fi->i_acl_mode = mode;
1476 set_inode_flag(fi, FI_ACL_MODE);
1477 }
1478
1479 static inline void get_inline_info(struct f2fs_inode_info *fi,
1480 struct f2fs_inode *ri)
1481 {
1482 if (ri->i_inline & F2FS_INLINE_XATTR)
1483 set_inode_flag(fi, FI_INLINE_XATTR);
1484 if (ri->i_inline & F2FS_INLINE_DATA)
1485 set_inode_flag(fi, FI_INLINE_DATA);
1486 if (ri->i_inline & F2FS_INLINE_DENTRY)
1487 set_inode_flag(fi, FI_INLINE_DENTRY);
1488 if (ri->i_inline & F2FS_DATA_EXIST)
1489 set_inode_flag(fi, FI_DATA_EXIST);
1490 if (ri->i_inline & F2FS_INLINE_DOTS)
1491 set_inode_flag(fi, FI_INLINE_DOTS);
1492 }
1493
1494 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1495 struct f2fs_inode *ri)
1496 {
1497 ri->i_inline = 0;
1498
1499 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1500 ri->i_inline |= F2FS_INLINE_XATTR;
1501 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1502 ri->i_inline |= F2FS_INLINE_DATA;
1503 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1504 ri->i_inline |= F2FS_INLINE_DENTRY;
1505 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1506 ri->i_inline |= F2FS_DATA_EXIST;
1507 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1508 ri->i_inline |= F2FS_INLINE_DOTS;
1509 }
1510
1511 static inline int f2fs_has_inline_xattr(struct inode *inode)
1512 {
1513 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1514 }
1515
1516 static inline unsigned int addrs_per_inode(struct inode *inode)
1517 {
1518 if (f2fs_has_inline_xattr(inode))
1519 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1520 return DEF_ADDRS_PER_INODE;
1521 }
1522
1523 static inline void *inline_xattr_addr(struct page *page)
1524 {
1525 struct f2fs_inode *ri = F2FS_INODE(page);
1526 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1527 F2FS_INLINE_XATTR_ADDRS]);
1528 }
1529
1530 static inline int inline_xattr_size(struct inode *inode)
1531 {
1532 if (f2fs_has_inline_xattr(inode))
1533 return F2FS_INLINE_XATTR_ADDRS << 2;
1534 else
1535 return 0;
1536 }
1537
1538 static inline int f2fs_has_inline_data(struct inode *inode)
1539 {
1540 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1541 }
1542
1543 static inline void f2fs_clear_inline_inode(struct inode *inode)
1544 {
1545 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1546 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1547 }
1548
1549 static inline int f2fs_exist_data(struct inode *inode)
1550 {
1551 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1552 }
1553
1554 static inline int f2fs_has_inline_dots(struct inode *inode)
1555 {
1556 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1557 }
1558
1559 static inline bool f2fs_is_atomic_file(struct inode *inode)
1560 {
1561 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1562 }
1563
1564 static inline bool f2fs_is_volatile_file(struct inode *inode)
1565 {
1566 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1567 }
1568
1569 static inline bool f2fs_is_first_block_written(struct inode *inode)
1570 {
1571 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1572 }
1573
1574 static inline bool f2fs_is_drop_cache(struct inode *inode)
1575 {
1576 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1577 }
1578
1579 static inline void *inline_data_addr(struct page *page)
1580 {
1581 struct f2fs_inode *ri = F2FS_INODE(page);
1582 return (void *)&(ri->i_addr[1]);
1583 }
1584
1585 static inline int f2fs_has_inline_dentry(struct inode *inode)
1586 {
1587 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1588 }
1589
1590 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1591 {
1592 if (!f2fs_has_inline_dentry(dir))
1593 kunmap(page);
1594 }
1595
1596 static inline int is_file(struct inode *inode, int type)
1597 {
1598 return F2FS_I(inode)->i_advise & type;
1599 }
1600
1601 static inline void set_file(struct inode *inode, int type)
1602 {
1603 F2FS_I(inode)->i_advise |= type;
1604 }
1605
1606 static inline void clear_file(struct inode *inode, int type)
1607 {
1608 F2FS_I(inode)->i_advise &= ~type;
1609 }
1610
1611 static inline int f2fs_readonly(struct super_block *sb)
1612 {
1613 return sb->s_flags & MS_RDONLY;
1614 }
1615
1616 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1617 {
1618 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1619 }
1620
1621 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1622 {
1623 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1624 sbi->sb->s_flags |= MS_RDONLY;
1625 }
1626
1627 static inline bool is_dot_dotdot(const struct qstr *str)
1628 {
1629 if (str->len == 1 && str->name[0] == '.')
1630 return true;
1631
1632 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1633 return true;
1634
1635 return false;
1636 }
1637
1638 static inline bool f2fs_may_extent_tree(struct inode *inode)
1639 {
1640 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1641 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1642 return false;
1643
1644 return S_ISREG(inode->i_mode);
1645 }
1646
1647 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1648 {
1649 void *ret;
1650
1651 ret = kmalloc(size, flags | __GFP_NOWARN);
1652 if (!ret)
1653 ret = __vmalloc(size, flags, PAGE_KERNEL);
1654 return ret;
1655 }
1656
1657 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1658 {
1659 void *ret;
1660
1661 ret = kzalloc(size, flags | __GFP_NOWARN);
1662 if (!ret)
1663 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1664 return ret;
1665 }
1666
1667 #define get_inode_mode(i) \
1668 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1669 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1670
1671 /* get offset of first page in next direct node */
1672 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1673 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1674 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1675 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1676
1677 /*
1678 * file.c
1679 */
1680 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1681 void truncate_data_blocks(struct dnode_of_data *);
1682 int truncate_blocks(struct inode *, u64, bool);
1683 int f2fs_truncate(struct inode *, bool);
1684 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1685 int f2fs_setattr(struct dentry *, struct iattr *);
1686 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1687 int truncate_data_blocks_range(struct dnode_of_data *, int);
1688 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1689 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1690
1691 /*
1692 * inode.c
1693 */
1694 void f2fs_set_inode_flags(struct inode *);
1695 struct inode *f2fs_iget(struct super_block *, unsigned long);
1696 int try_to_free_nats(struct f2fs_sb_info *, int);
1697 int update_inode(struct inode *, struct page *);
1698 int update_inode_page(struct inode *);
1699 int f2fs_write_inode(struct inode *, struct writeback_control *);
1700 void f2fs_evict_inode(struct inode *);
1701 void handle_failed_inode(struct inode *);
1702
1703 /*
1704 * namei.c
1705 */
1706 struct dentry *f2fs_get_parent(struct dentry *child);
1707
1708 /*
1709 * dir.c
1710 */
1711 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1712 void set_de_type(struct f2fs_dir_entry *, umode_t);
1713
1714 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1715 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1716 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1717 unsigned int, struct fscrypt_str *);
1718 void do_make_empty_dir(struct inode *, struct inode *,
1719 struct f2fs_dentry_ptr *);
1720 struct page *init_inode_metadata(struct inode *, struct inode *,
1721 const struct qstr *, struct page *);
1722 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1723 int room_for_filename(const void *, int, int);
1724 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1725 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1726 struct page **);
1727 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1728 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1729 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1730 struct page *, struct inode *);
1731 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1732 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1733 const struct qstr *, f2fs_hash_t , unsigned int);
1734 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1735 umode_t);
1736 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1737 struct inode *);
1738 int f2fs_do_tmpfile(struct inode *, struct inode *);
1739 bool f2fs_empty_dir(struct inode *);
1740
1741 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1742 {
1743 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1744 inode, inode->i_ino, inode->i_mode);
1745 }
1746
1747 /*
1748 * super.c
1749 */
1750 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1751 int f2fs_sync_fs(struct super_block *, int);
1752 extern __printf(3, 4)
1753 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1754 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1755
1756 /*
1757 * hash.c
1758 */
1759 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1760
1761 /*
1762 * node.c
1763 */
1764 struct dnode_of_data;
1765 struct node_info;
1766
1767 bool available_free_memory(struct f2fs_sb_info *, int);
1768 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1769 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1770 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1771 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1772 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1773 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1774 int truncate_inode_blocks(struct inode *, pgoff_t);
1775 int truncate_xattr_node(struct inode *, struct page *);
1776 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1777 int remove_inode_page(struct inode *);
1778 struct page *new_inode_page(struct inode *);
1779 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1780 void ra_node_page(struct f2fs_sb_info *, nid_t);
1781 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1782 struct page *get_node_page_ra(struct page *, int);
1783 void sync_inode_page(struct dnode_of_data *);
1784 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1785 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1786 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1787 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1788 int try_to_free_nids(struct f2fs_sb_info *, int);
1789 void recover_inline_xattr(struct inode *, struct page *);
1790 void recover_xattr_data(struct inode *, struct page *, block_t);
1791 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1792 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1793 struct f2fs_summary_block *);
1794 void flush_nat_entries(struct f2fs_sb_info *);
1795 int build_node_manager(struct f2fs_sb_info *);
1796 void destroy_node_manager(struct f2fs_sb_info *);
1797 int __init create_node_manager_caches(void);
1798 void destroy_node_manager_caches(void);
1799
1800 /*
1801 * segment.c
1802 */
1803 void register_inmem_page(struct inode *, struct page *);
1804 void drop_inmem_pages(struct inode *);
1805 int commit_inmem_pages(struct inode *);
1806 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1807 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1808 int f2fs_issue_flush(struct f2fs_sb_info *);
1809 int create_flush_cmd_control(struct f2fs_sb_info *);
1810 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1811 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1812 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1813 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1814 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1815 void release_discard_addrs(struct f2fs_sb_info *);
1816 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1817 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1818 void allocate_new_segments(struct f2fs_sb_info *);
1819 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1820 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1821 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1822 void write_meta_page(struct f2fs_sb_info *, struct page *);
1823 void write_node_page(unsigned int, struct f2fs_io_info *);
1824 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1825 void rewrite_data_page(struct f2fs_io_info *);
1826 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1827 block_t, block_t, bool, bool);
1828 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1829 block_t, block_t, unsigned char, bool, bool);
1830 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1831 block_t, block_t *, struct f2fs_summary *, int);
1832 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1833 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1834 void write_data_summaries(struct f2fs_sb_info *, block_t);
1835 void write_node_summaries(struct f2fs_sb_info *, block_t);
1836 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1837 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1838 int build_segment_manager(struct f2fs_sb_info *);
1839 void destroy_segment_manager(struct f2fs_sb_info *);
1840 int __init create_segment_manager_caches(void);
1841 void destroy_segment_manager_caches(void);
1842
1843 /*
1844 * checkpoint.c
1845 */
1846 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1847 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1848 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1849 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1850 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1851 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1852 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1853 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1854 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1855 void release_ino_entry(struct f2fs_sb_info *);
1856 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1857 int acquire_orphan_inode(struct f2fs_sb_info *);
1858 void release_orphan_inode(struct f2fs_sb_info *);
1859 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1860 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1861 int recover_orphan_inodes(struct f2fs_sb_info *);
1862 int get_valid_checkpoint(struct f2fs_sb_info *);
1863 void update_dirty_page(struct inode *, struct page *);
1864 void add_dirty_dir_inode(struct inode *);
1865 void remove_dirty_inode(struct inode *);
1866 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1867 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1868 void init_ino_entry_info(struct f2fs_sb_info *);
1869 int __init create_checkpoint_caches(void);
1870 void destroy_checkpoint_caches(void);
1871
1872 /*
1873 * data.c
1874 */
1875 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1876 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1877 struct page *, nid_t, enum page_type, int);
1878 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1879 int f2fs_submit_page_bio(struct f2fs_io_info *);
1880 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1881 void set_data_blkaddr(struct dnode_of_data *);
1882 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1883 int reserve_new_block(struct dnode_of_data *);
1884 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1885 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1886 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1887 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1888 struct page *find_data_page(struct inode *, pgoff_t);
1889 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1890 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1891 int do_write_data_page(struct f2fs_io_info *);
1892 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1893 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1894 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1895 int f2fs_release_page(struct page *, gfp_t);
1896
1897 /*
1898 * gc.c
1899 */
1900 int start_gc_thread(struct f2fs_sb_info *);
1901 void stop_gc_thread(struct f2fs_sb_info *);
1902 block_t start_bidx_of_node(unsigned int, struct inode *);
1903 int f2fs_gc(struct f2fs_sb_info *, bool);
1904 void build_gc_manager(struct f2fs_sb_info *);
1905
1906 /*
1907 * recovery.c
1908 */
1909 int recover_fsync_data(struct f2fs_sb_info *);
1910 bool space_for_roll_forward(struct f2fs_sb_info *);
1911
1912 /*
1913 * debug.c
1914 */
1915 #ifdef CONFIG_F2FS_STAT_FS
1916 struct f2fs_stat_info {
1917 struct list_head stat_list;
1918 struct f2fs_sb_info *sbi;
1919 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1920 int main_area_segs, main_area_sections, main_area_zones;
1921 unsigned long long hit_largest, hit_cached, hit_rbtree;
1922 unsigned long long hit_total, total_ext;
1923 int ext_tree, zombie_tree, ext_node;
1924 int ndirty_node, ndirty_meta;
1925 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1926 int nats, dirty_nats, sits, dirty_sits, fnids;
1927 int total_count, utilization;
1928 int bg_gc, inmem_pages, wb_pages;
1929 int inline_xattr, inline_inode, inline_dir;
1930 unsigned int valid_count, valid_node_count, valid_inode_count;
1931 unsigned int bimodal, avg_vblocks;
1932 int util_free, util_valid, util_invalid;
1933 int rsvd_segs, overp_segs;
1934 int dirty_count, node_pages, meta_pages;
1935 int prefree_count, call_count, cp_count, bg_cp_count;
1936 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1937 int bg_node_segs, bg_data_segs;
1938 int tot_blks, data_blks, node_blks;
1939 int bg_data_blks, bg_node_blks;
1940 int curseg[NR_CURSEG_TYPE];
1941 int cursec[NR_CURSEG_TYPE];
1942 int curzone[NR_CURSEG_TYPE];
1943
1944 unsigned int segment_count[2];
1945 unsigned int block_count[2];
1946 unsigned int inplace_count;
1947 unsigned long long base_mem, cache_mem, page_mem;
1948 };
1949
1950 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1951 {
1952 return (struct f2fs_stat_info *)sbi->stat_info;
1953 }
1954
1955 #define stat_inc_cp_count(si) ((si)->cp_count++)
1956 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1957 #define stat_inc_call_count(si) ((si)->call_count++)
1958 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1959 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1960 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1961 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1962 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1963 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1964 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1965 #define stat_inc_inline_xattr(inode) \
1966 do { \
1967 if (f2fs_has_inline_xattr(inode)) \
1968 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1969 } while (0)
1970 #define stat_dec_inline_xattr(inode) \
1971 do { \
1972 if (f2fs_has_inline_xattr(inode)) \
1973 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1974 } while (0)
1975 #define stat_inc_inline_inode(inode) \
1976 do { \
1977 if (f2fs_has_inline_data(inode)) \
1978 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1979 } while (0)
1980 #define stat_dec_inline_inode(inode) \
1981 do { \
1982 if (f2fs_has_inline_data(inode)) \
1983 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1984 } while (0)
1985 #define stat_inc_inline_dir(inode) \
1986 do { \
1987 if (f2fs_has_inline_dentry(inode)) \
1988 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1989 } while (0)
1990 #define stat_dec_inline_dir(inode) \
1991 do { \
1992 if (f2fs_has_inline_dentry(inode)) \
1993 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1994 } while (0)
1995 #define stat_inc_seg_type(sbi, curseg) \
1996 ((sbi)->segment_count[(curseg)->alloc_type]++)
1997 #define stat_inc_block_count(sbi, curseg) \
1998 ((sbi)->block_count[(curseg)->alloc_type]++)
1999 #define stat_inc_inplace_blocks(sbi) \
2000 (atomic_inc(&(sbi)->inplace_count))
2001 #define stat_inc_seg_count(sbi, type, gc_type) \
2002 do { \
2003 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2004 (si)->tot_segs++; \
2005 if (type == SUM_TYPE_DATA) { \
2006 si->data_segs++; \
2007 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2008 } else { \
2009 si->node_segs++; \
2010 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2011 } \
2012 } while (0)
2013
2014 #define stat_inc_tot_blk_count(si, blks) \
2015 (si->tot_blks += (blks))
2016
2017 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2018 do { \
2019 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2020 stat_inc_tot_blk_count(si, blks); \
2021 si->data_blks += (blks); \
2022 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2023 } while (0)
2024
2025 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2026 do { \
2027 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2028 stat_inc_tot_blk_count(si, blks); \
2029 si->node_blks += (blks); \
2030 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2031 } while (0)
2032
2033 int f2fs_build_stats(struct f2fs_sb_info *);
2034 void f2fs_destroy_stats(struct f2fs_sb_info *);
2035 int __init f2fs_create_root_stats(void);
2036 void f2fs_destroy_root_stats(void);
2037 #else
2038 #define stat_inc_cp_count(si)
2039 #define stat_inc_bg_cp_count(si)
2040 #define stat_inc_call_count(si)
2041 #define stat_inc_bggc_count(si)
2042 #define stat_inc_dirty_inode(sbi, type)
2043 #define stat_dec_dirty_inode(sbi, type)
2044 #define stat_inc_total_hit(sb)
2045 #define stat_inc_rbtree_node_hit(sb)
2046 #define stat_inc_largest_node_hit(sbi)
2047 #define stat_inc_cached_node_hit(sbi)
2048 #define stat_inc_inline_xattr(inode)
2049 #define stat_dec_inline_xattr(inode)
2050 #define stat_inc_inline_inode(inode)
2051 #define stat_dec_inline_inode(inode)
2052 #define stat_inc_inline_dir(inode)
2053 #define stat_dec_inline_dir(inode)
2054 #define stat_inc_seg_type(sbi, curseg)
2055 #define stat_inc_block_count(sbi, curseg)
2056 #define stat_inc_inplace_blocks(sbi)
2057 #define stat_inc_seg_count(sbi, type, gc_type)
2058 #define stat_inc_tot_blk_count(si, blks)
2059 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2060 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2061
2062 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2063 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2064 static inline int __init f2fs_create_root_stats(void) { return 0; }
2065 static inline void f2fs_destroy_root_stats(void) { }
2066 #endif
2067
2068 extern const struct file_operations f2fs_dir_operations;
2069 extern const struct file_operations f2fs_file_operations;
2070 extern const struct inode_operations f2fs_file_inode_operations;
2071 extern const struct address_space_operations f2fs_dblock_aops;
2072 extern const struct address_space_operations f2fs_node_aops;
2073 extern const struct address_space_operations f2fs_meta_aops;
2074 extern const struct inode_operations f2fs_dir_inode_operations;
2075 extern const struct inode_operations f2fs_symlink_inode_operations;
2076 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2077 extern const struct inode_operations f2fs_special_inode_operations;
2078 extern struct kmem_cache *inode_entry_slab;
2079
2080 /*
2081 * inline.c
2082 */
2083 bool f2fs_may_inline_data(struct inode *);
2084 bool f2fs_may_inline_dentry(struct inode *);
2085 void read_inline_data(struct page *, struct page *);
2086 bool truncate_inline_inode(struct page *, u64);
2087 int f2fs_read_inline_data(struct inode *, struct page *);
2088 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2089 int f2fs_convert_inline_inode(struct inode *);
2090 int f2fs_write_inline_data(struct inode *, struct page *);
2091 bool recover_inline_data(struct inode *, struct page *);
2092 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2093 struct fscrypt_name *, struct page **);
2094 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2095 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2096 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2097 nid_t, umode_t);
2098 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2099 struct inode *, struct inode *);
2100 bool f2fs_empty_inline_dir(struct inode *);
2101 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2102 struct fscrypt_str *);
2103 int f2fs_inline_data_fiemap(struct inode *,
2104 struct fiemap_extent_info *, __u64, __u64);
2105
2106 /*
2107 * shrinker.c
2108 */
2109 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2110 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2111 void f2fs_join_shrinker(struct f2fs_sb_info *);
2112 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2113
2114 /*
2115 * extent_cache.c
2116 */
2117 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2118 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2119 unsigned int f2fs_destroy_extent_node(struct inode *);
2120 void f2fs_destroy_extent_tree(struct inode *);
2121 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2122 void f2fs_update_extent_cache(struct dnode_of_data *);
2123 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2124 pgoff_t, block_t, unsigned int);
2125 void init_extent_cache_info(struct f2fs_sb_info *);
2126 int __init create_extent_cache(void);
2127 void destroy_extent_cache(void);
2128
2129 /*
2130 * crypto support
2131 */
2132 static inline bool f2fs_encrypted_inode(struct inode *inode)
2133 {
2134 return file_is_encrypt(inode);
2135 }
2136
2137 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2138 {
2139 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2140 file_set_encrypt(inode);
2141 #endif
2142 }
2143
2144 static inline bool f2fs_bio_encrypted(struct bio *bio)
2145 {
2146 return bio->bi_private != NULL;
2147 }
2148
2149 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2150 {
2151 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2152 }
2153
2154 static inline bool f2fs_may_encrypt(struct inode *inode)
2155 {
2156 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2157 umode_t mode = inode->i_mode;
2158
2159 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2160 #else
2161 return 0;
2162 #endif
2163 }
2164
2165 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2166 #define fscrypt_set_d_op(i)
2167 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2168 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2169 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2170 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2171 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2172 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2173 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2174 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2175 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2176 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2177 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2178 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2179 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2180 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2181 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2182 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2183 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2184 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2185 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2186 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2187 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2188 #endif
2189 #endif