]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/f2fs/f2fs.h
ece5e704dfd00eb5b2abf4b28c711f050bad9ceb
[thirdparty/kernel/stable.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/bio.h>
23
24 #ifdef CONFIG_F2FS_CHECK_FS
25 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
26 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
27 #else
28 #define f2fs_bug_on(sbi, condition) \
29 do { \
30 if (unlikely(condition)) { \
31 WARN_ON(1); \
32 set_sbi_flag(sbi, SBI_NEED_FSCK); \
33 } \
34 } while (0)
35 #define f2fs_down_write(x, y) down_write(x)
36 #endif
37
38 /*
39 * For mount options
40 */
41 #define F2FS_MOUNT_BG_GC 0x00000001
42 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
43 #define F2FS_MOUNT_DISCARD 0x00000004
44 #define F2FS_MOUNT_NOHEAP 0x00000008
45 #define F2FS_MOUNT_XATTR_USER 0x00000010
46 #define F2FS_MOUNT_POSIX_ACL 0x00000020
47 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
48 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
49 #define F2FS_MOUNT_INLINE_DATA 0x00000100
50 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
51 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
52 #define F2FS_MOUNT_NOBARRIER 0x00000800
53 #define F2FS_MOUNT_FASTBOOT 0x00001000
54 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
55
56 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
57 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
58 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
59
60 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
61 typecheck(unsigned long long, b) && \
62 ((long long)((a) - (b)) > 0))
63
64 typedef u32 block_t; /*
65 * should not change u32, since it is the on-disk block
66 * address format, __le32.
67 */
68 typedef u32 nid_t;
69
70 struct f2fs_mount_info {
71 unsigned int opt;
72 };
73
74 #define F2FS_FEATURE_ENCRYPT 0x0001
75
76 #define F2FS_HAS_FEATURE(sb, mask) \
77 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
78 #define F2FS_SET_FEATURE(sb, mask) \
79 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
80 #define F2FS_CLEAR_FEATURE(sb, mask) \
81 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
82
83 #define CRCPOLY_LE 0xedb88320
84
85 static inline __u32 f2fs_crc32(void *buf, size_t len)
86 {
87 unsigned char *p = (unsigned char *)buf;
88 __u32 crc = F2FS_SUPER_MAGIC;
89 int i;
90
91 while (len--) {
92 crc ^= *p++;
93 for (i = 0; i < 8; i++)
94 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
95 }
96 return crc;
97 }
98
99 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
100 {
101 return f2fs_crc32(buf, buf_size) == blk_crc;
102 }
103
104 /*
105 * For checkpoint manager
106 */
107 enum {
108 NAT_BITMAP,
109 SIT_BITMAP
110 };
111
112 enum {
113 CP_UMOUNT,
114 CP_FASTBOOT,
115 CP_SYNC,
116 CP_RECOVERY,
117 CP_DISCARD,
118 };
119
120 #define DEF_BATCHED_TRIM_SECTIONS 32
121 #define BATCHED_TRIM_SEGMENTS(sbi) \
122 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
123 #define BATCHED_TRIM_BLOCKS(sbi) \
124 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
125
126 struct cp_control {
127 int reason;
128 __u64 trim_start;
129 __u64 trim_end;
130 __u64 trim_minlen;
131 __u64 trimmed;
132 };
133
134 /*
135 * For CP/NAT/SIT/SSA readahead
136 */
137 enum {
138 META_CP,
139 META_NAT,
140 META_SIT,
141 META_SSA,
142 META_POR,
143 };
144
145 /* for the list of ino */
146 enum {
147 ORPHAN_INO, /* for orphan ino list */
148 APPEND_INO, /* for append ino list */
149 UPDATE_INO, /* for update ino list */
150 MAX_INO_ENTRY, /* max. list */
151 };
152
153 struct ino_entry {
154 struct list_head list; /* list head */
155 nid_t ino; /* inode number */
156 };
157
158 /*
159 * for the list of directory inodes or gc inodes.
160 * NOTE: there are two slab users for this structure, if we add/modify/delete
161 * fields in structure for one of slab users, it may affect fields or size of
162 * other one, in this condition, it's better to split both of slab and related
163 * data structure.
164 */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
188
189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 int before = nats_in_cursum(rs);
200 rs->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 int before = sits_in_cursum(rs);
207 rs->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(sum);
216 return size <= MAX_SIT_JENTRIES(sum);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233
234 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
235 _IOR('f', 19, struct f2fs_encryption_policy)
236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
237 _IOW('f', 20, __u8[16])
238 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
239 _IOW('f', 21, struct f2fs_encryption_policy)
240
241 /*
242 * should be same as XFS_IOC_GOINGDOWN.
243 * Flags for going down operation used by FS_IOC_GOINGDOWN
244 */
245 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
246 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
247 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
248 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
249
250 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
251 /*
252 * ioctl commands in 32 bit emulation
253 */
254 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
255 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
256 #endif
257
258 /*
259 * For INODE and NODE manager
260 */
261 /* for directory operations */
262 struct f2fs_str {
263 unsigned char *name;
264 u32 len;
265 };
266
267 struct f2fs_filename {
268 const struct qstr *usr_fname;
269 struct f2fs_str disk_name;
270 f2fs_hash_t hash;
271 #ifdef CONFIG_F2FS_FS_ENCRYPTION
272 struct f2fs_str crypto_buf;
273 #endif
274 };
275
276 #define FSTR_INIT(n, l) { .name = n, .len = l }
277 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
278 #define fname_name(p) ((p)->disk_name.name)
279 #define fname_len(p) ((p)->disk_name.len)
280
281 struct f2fs_dentry_ptr {
282 struct inode *inode;
283 const void *bitmap;
284 struct f2fs_dir_entry *dentry;
285 __u8 (*filename)[F2FS_SLOT_LEN];
286 int max;
287 };
288
289 static inline void make_dentry_ptr(struct inode *inode,
290 struct f2fs_dentry_ptr *d, void *src, int type)
291 {
292 d->inode = inode;
293
294 if (type == 1) {
295 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
296 d->max = NR_DENTRY_IN_BLOCK;
297 d->bitmap = &t->dentry_bitmap;
298 d->dentry = t->dentry;
299 d->filename = t->filename;
300 } else {
301 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
302 d->max = NR_INLINE_DENTRY;
303 d->bitmap = &t->dentry_bitmap;
304 d->dentry = t->dentry;
305 d->filename = t->filename;
306 }
307 }
308
309 /*
310 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
311 * as its node offset to distinguish from index node blocks.
312 * But some bits are used to mark the node block.
313 */
314 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
315 >> OFFSET_BIT_SHIFT)
316 enum {
317 ALLOC_NODE, /* allocate a new node page if needed */
318 LOOKUP_NODE, /* look up a node without readahead */
319 LOOKUP_NODE_RA, /*
320 * look up a node with readahead called
321 * by get_data_block.
322 */
323 };
324
325 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
326
327 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
328
329 /* vector size for gang look-up from extent cache that consists of radix tree */
330 #define EXT_TREE_VEC_SIZE 64
331
332 /* for in-memory extent cache entry */
333 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
334
335 /* number of extent info in extent cache we try to shrink */
336 #define EXTENT_CACHE_SHRINK_NUMBER 128
337
338 struct extent_info {
339 unsigned int fofs; /* start offset in a file */
340 u32 blk; /* start block address of the extent */
341 unsigned int len; /* length of the extent */
342 };
343
344 struct extent_node {
345 struct rb_node rb_node; /* rb node located in rb-tree */
346 struct list_head list; /* node in global extent list of sbi */
347 struct extent_info ei; /* extent info */
348 };
349
350 struct extent_tree {
351 nid_t ino; /* inode number */
352 struct rb_root root; /* root of extent info rb-tree */
353 struct extent_node *cached_en; /* recently accessed extent node */
354 struct extent_info largest; /* largested extent info */
355 rwlock_t lock; /* protect extent info rb-tree */
356 atomic_t refcount; /* reference count of rb-tree */
357 unsigned int count; /* # of extent node in rb-tree*/
358 };
359
360 /*
361 * This structure is taken from ext4_map_blocks.
362 *
363 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
364 */
365 #define F2FS_MAP_NEW (1 << BH_New)
366 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
367 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
368 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
369 F2FS_MAP_UNWRITTEN)
370
371 struct f2fs_map_blocks {
372 block_t m_pblk;
373 block_t m_lblk;
374 unsigned int m_len;
375 unsigned int m_flags;
376 };
377
378 /* for flag in get_data_block */
379 #define F2FS_GET_BLOCK_READ 0
380 #define F2FS_GET_BLOCK_DIO 1
381 #define F2FS_GET_BLOCK_FIEMAP 2
382 #define F2FS_GET_BLOCK_BMAP 3
383
384 /*
385 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
386 */
387 #define FADVISE_COLD_BIT 0x01
388 #define FADVISE_LOST_PINO_BIT 0x02
389 #define FADVISE_ENCRYPT_BIT 0x04
390 #define FADVISE_ENC_NAME_BIT 0x08
391
392 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
393 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
394 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
395 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
396 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
397 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
398 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
399 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
400 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
401 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
402 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
403
404 /* Encryption algorithms */
405 #define F2FS_ENCRYPTION_MODE_INVALID 0
406 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
407 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
408 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
409 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
410
411 #include "f2fs_crypto.h"
412
413 #define DEF_DIR_LEVEL 0
414
415 struct f2fs_inode_info {
416 struct inode vfs_inode; /* serve a vfs inode */
417 unsigned long i_flags; /* keep an inode flags for ioctl */
418 unsigned char i_advise; /* use to give file attribute hints */
419 unsigned char i_dir_level; /* use for dentry level for large dir */
420 unsigned int i_current_depth; /* use only in directory structure */
421 unsigned int i_pino; /* parent inode number */
422 umode_t i_acl_mode; /* keep file acl mode temporarily */
423
424 /* Use below internally in f2fs*/
425 unsigned long flags; /* use to pass per-file flags */
426 struct rw_semaphore i_sem; /* protect fi info */
427 atomic_t dirty_pages; /* # of dirty pages */
428 f2fs_hash_t chash; /* hash value of given file name */
429 unsigned int clevel; /* maximum level of given file name */
430 nid_t i_xattr_nid; /* node id that contains xattrs */
431 unsigned long long xattr_ver; /* cp version of xattr modification */
432 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
433
434 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
435 struct mutex inmem_lock; /* lock for inmemory pages */
436
437 struct extent_tree *extent_tree; /* cached extent_tree entry */
438
439 #ifdef CONFIG_F2FS_FS_ENCRYPTION
440 /* Encryption params */
441 struct f2fs_crypt_info *i_crypt_info;
442 #endif
443 };
444
445 static inline void get_extent_info(struct extent_info *ext,
446 struct f2fs_extent i_ext)
447 {
448 ext->fofs = le32_to_cpu(i_ext.fofs);
449 ext->blk = le32_to_cpu(i_ext.blk);
450 ext->len = le32_to_cpu(i_ext.len);
451 }
452
453 static inline void set_raw_extent(struct extent_info *ext,
454 struct f2fs_extent *i_ext)
455 {
456 i_ext->fofs = cpu_to_le32(ext->fofs);
457 i_ext->blk = cpu_to_le32(ext->blk);
458 i_ext->len = cpu_to_le32(ext->len);
459 }
460
461 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
462 u32 blk, unsigned int len)
463 {
464 ei->fofs = fofs;
465 ei->blk = blk;
466 ei->len = len;
467 }
468
469 static inline bool __is_extent_same(struct extent_info *ei1,
470 struct extent_info *ei2)
471 {
472 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
473 ei1->len == ei2->len);
474 }
475
476 static inline bool __is_extent_mergeable(struct extent_info *back,
477 struct extent_info *front)
478 {
479 return (back->fofs + back->len == front->fofs &&
480 back->blk + back->len == front->blk);
481 }
482
483 static inline bool __is_back_mergeable(struct extent_info *cur,
484 struct extent_info *back)
485 {
486 return __is_extent_mergeable(back, cur);
487 }
488
489 static inline bool __is_front_mergeable(struct extent_info *cur,
490 struct extent_info *front)
491 {
492 return __is_extent_mergeable(cur, front);
493 }
494
495 struct f2fs_nm_info {
496 block_t nat_blkaddr; /* base disk address of NAT */
497 nid_t max_nid; /* maximum possible node ids */
498 nid_t available_nids; /* maximum available node ids */
499 nid_t next_scan_nid; /* the next nid to be scanned */
500 unsigned int ram_thresh; /* control the memory footprint */
501
502 /* NAT cache management */
503 struct radix_tree_root nat_root;/* root of the nat entry cache */
504 struct radix_tree_root nat_set_root;/* root of the nat set cache */
505 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
506 struct list_head nat_entries; /* cached nat entry list (clean) */
507 unsigned int nat_cnt; /* the # of cached nat entries */
508 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
509
510 /* free node ids management */
511 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
512 struct list_head free_nid_list; /* a list for free nids */
513 spinlock_t free_nid_list_lock; /* protect free nid list */
514 unsigned int fcnt; /* the number of free node id */
515 struct mutex build_lock; /* lock for build free nids */
516
517 /* for checkpoint */
518 char *nat_bitmap; /* NAT bitmap pointer */
519 int bitmap_size; /* bitmap size */
520 };
521
522 /*
523 * this structure is used as one of function parameters.
524 * all the information are dedicated to a given direct node block determined
525 * by the data offset in a file.
526 */
527 struct dnode_of_data {
528 struct inode *inode; /* vfs inode pointer */
529 struct page *inode_page; /* its inode page, NULL is possible */
530 struct page *node_page; /* cached direct node page */
531 nid_t nid; /* node id of the direct node block */
532 unsigned int ofs_in_node; /* data offset in the node page */
533 bool inode_page_locked; /* inode page is locked or not */
534 block_t data_blkaddr; /* block address of the node block */
535 };
536
537 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
538 struct page *ipage, struct page *npage, nid_t nid)
539 {
540 memset(dn, 0, sizeof(*dn));
541 dn->inode = inode;
542 dn->inode_page = ipage;
543 dn->node_page = npage;
544 dn->nid = nid;
545 }
546
547 /*
548 * For SIT manager
549 *
550 * By default, there are 6 active log areas across the whole main area.
551 * When considering hot and cold data separation to reduce cleaning overhead,
552 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
553 * respectively.
554 * In the current design, you should not change the numbers intentionally.
555 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
556 * logs individually according to the underlying devices. (default: 6)
557 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
558 * data and 8 for node logs.
559 */
560 #define NR_CURSEG_DATA_TYPE (3)
561 #define NR_CURSEG_NODE_TYPE (3)
562 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
563
564 enum {
565 CURSEG_HOT_DATA = 0, /* directory entry blocks */
566 CURSEG_WARM_DATA, /* data blocks */
567 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
568 CURSEG_HOT_NODE, /* direct node blocks of directory files */
569 CURSEG_WARM_NODE, /* direct node blocks of normal files */
570 CURSEG_COLD_NODE, /* indirect node blocks */
571 NO_CHECK_TYPE,
572 CURSEG_DIRECT_IO, /* to use for the direct IO path */
573 };
574
575 struct flush_cmd {
576 struct completion wait;
577 struct llist_node llnode;
578 int ret;
579 };
580
581 struct flush_cmd_control {
582 struct task_struct *f2fs_issue_flush; /* flush thread */
583 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
584 struct llist_head issue_list; /* list for command issue */
585 struct llist_node *dispatch_list; /* list for command dispatch */
586 };
587
588 struct f2fs_sm_info {
589 struct sit_info *sit_info; /* whole segment information */
590 struct free_segmap_info *free_info; /* free segment information */
591 struct dirty_seglist_info *dirty_info; /* dirty segment information */
592 struct curseg_info *curseg_array; /* active segment information */
593
594 block_t seg0_blkaddr; /* block address of 0'th segment */
595 block_t main_blkaddr; /* start block address of main area */
596 block_t ssa_blkaddr; /* start block address of SSA area */
597
598 unsigned int segment_count; /* total # of segments */
599 unsigned int main_segments; /* # of segments in main area */
600 unsigned int reserved_segments; /* # of reserved segments */
601 unsigned int ovp_segments; /* # of overprovision segments */
602
603 /* a threshold to reclaim prefree segments */
604 unsigned int rec_prefree_segments;
605
606 /* for small discard management */
607 struct list_head discard_list; /* 4KB discard list */
608 int nr_discards; /* # of discards in the list */
609 int max_discards; /* max. discards to be issued */
610
611 /* for batched trimming */
612 unsigned int trim_sections; /* # of sections to trim */
613
614 struct list_head sit_entry_set; /* sit entry set list */
615
616 unsigned int ipu_policy; /* in-place-update policy */
617 unsigned int min_ipu_util; /* in-place-update threshold */
618 unsigned int min_fsync_blocks; /* threshold for fsync */
619
620 /* for flush command control */
621 struct flush_cmd_control *cmd_control_info;
622
623 };
624
625 /*
626 * For superblock
627 */
628 /*
629 * COUNT_TYPE for monitoring
630 *
631 * f2fs monitors the number of several block types such as on-writeback,
632 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
633 */
634 enum count_type {
635 F2FS_WRITEBACK,
636 F2FS_DIRTY_DENTS,
637 F2FS_DIRTY_NODES,
638 F2FS_DIRTY_META,
639 F2FS_INMEM_PAGES,
640 NR_COUNT_TYPE,
641 };
642
643 /*
644 * The below are the page types of bios used in submit_bio().
645 * The available types are:
646 * DATA User data pages. It operates as async mode.
647 * NODE Node pages. It operates as async mode.
648 * META FS metadata pages such as SIT, NAT, CP.
649 * NR_PAGE_TYPE The number of page types.
650 * META_FLUSH Make sure the previous pages are written
651 * with waiting the bio's completion
652 * ... Only can be used with META.
653 */
654 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
655 enum page_type {
656 DATA,
657 NODE,
658 META,
659 NR_PAGE_TYPE,
660 META_FLUSH,
661 INMEM, /* the below types are used by tracepoints only. */
662 INMEM_DROP,
663 IPU,
664 OPU,
665 };
666
667 struct f2fs_io_info {
668 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
669 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
670 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
671 block_t blk_addr; /* block address to be written */
672 struct page *page; /* page to be written */
673 struct page *encrypted_page; /* encrypted page */
674 };
675
676 #define is_read_io(rw) (((rw) & 1) == READ)
677 struct f2fs_bio_info {
678 struct f2fs_sb_info *sbi; /* f2fs superblock */
679 struct bio *bio; /* bios to merge */
680 sector_t last_block_in_bio; /* last block number */
681 struct f2fs_io_info fio; /* store buffered io info. */
682 struct rw_semaphore io_rwsem; /* blocking op for bio */
683 };
684
685 /* for inner inode cache management */
686 struct inode_management {
687 struct radix_tree_root ino_root; /* ino entry array */
688 spinlock_t ino_lock; /* for ino entry lock */
689 struct list_head ino_list; /* inode list head */
690 unsigned long ino_num; /* number of entries */
691 };
692
693 /* For s_flag in struct f2fs_sb_info */
694 enum {
695 SBI_IS_DIRTY, /* dirty flag for checkpoint */
696 SBI_IS_CLOSE, /* specify unmounting */
697 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
698 SBI_POR_DOING, /* recovery is doing or not */
699 };
700
701 struct f2fs_sb_info {
702 struct super_block *sb; /* pointer to VFS super block */
703 struct proc_dir_entry *s_proc; /* proc entry */
704 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
705 struct f2fs_super_block *raw_super; /* raw super block pointer */
706 int s_flag; /* flags for sbi */
707
708 /* for node-related operations */
709 struct f2fs_nm_info *nm_info; /* node manager */
710 struct inode *node_inode; /* cache node blocks */
711
712 /* for segment-related operations */
713 struct f2fs_sm_info *sm_info; /* segment manager */
714
715 /* for bio operations */
716 struct f2fs_bio_info read_io; /* for read bios */
717 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
718
719 /* for checkpoint */
720 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
721 struct inode *meta_inode; /* cache meta blocks */
722 struct mutex cp_mutex; /* checkpoint procedure lock */
723 struct rw_semaphore cp_rwsem; /* blocking FS operations */
724 struct rw_semaphore node_write; /* locking node writes */
725 struct mutex writepages; /* mutex for writepages() */
726 wait_queue_head_t cp_wait;
727
728 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
729
730 /* for orphan inode, use 0'th array */
731 unsigned int max_orphans; /* max orphan inodes */
732
733 /* for directory inode management */
734 struct list_head dir_inode_list; /* dir inode list */
735 spinlock_t dir_inode_lock; /* for dir inode list lock */
736
737 /* for extent tree cache */
738 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
739 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
740 struct list_head extent_list; /* lru list for shrinker */
741 spinlock_t extent_lock; /* locking extent lru list */
742 int total_ext_tree; /* extent tree count */
743 atomic_t total_ext_node; /* extent info count */
744
745 /* basic filesystem units */
746 unsigned int log_sectors_per_block; /* log2 sectors per block */
747 unsigned int log_blocksize; /* log2 block size */
748 unsigned int blocksize; /* block size */
749 unsigned int root_ino_num; /* root inode number*/
750 unsigned int node_ino_num; /* node inode number*/
751 unsigned int meta_ino_num; /* meta inode number*/
752 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
753 unsigned int blocks_per_seg; /* blocks per segment */
754 unsigned int segs_per_sec; /* segments per section */
755 unsigned int secs_per_zone; /* sections per zone */
756 unsigned int total_sections; /* total section count */
757 unsigned int total_node_count; /* total node block count */
758 unsigned int total_valid_node_count; /* valid node block count */
759 unsigned int total_valid_inode_count; /* valid inode count */
760 int active_logs; /* # of active logs */
761 int dir_level; /* directory level */
762
763 block_t user_block_count; /* # of user blocks */
764 block_t total_valid_block_count; /* # of valid blocks */
765 block_t alloc_valid_block_count; /* # of allocated blocks */
766 block_t discard_blks; /* discard command candidats */
767 block_t last_valid_block_count; /* for recovery */
768 u32 s_next_generation; /* for NFS support */
769 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
770
771 struct f2fs_mount_info mount_opt; /* mount options */
772
773 /* for cleaning operations */
774 struct mutex gc_mutex; /* mutex for GC */
775 struct f2fs_gc_kthread *gc_thread; /* GC thread */
776 unsigned int cur_victim_sec; /* current victim section num */
777
778 /* maximum # of trials to find a victim segment for SSR and GC */
779 unsigned int max_victim_search;
780
781 /*
782 * for stat information.
783 * one is for the LFS mode, and the other is for the SSR mode.
784 */
785 #ifdef CONFIG_F2FS_STAT_FS
786 struct f2fs_stat_info *stat_info; /* FS status information */
787 unsigned int segment_count[2]; /* # of allocated segments */
788 unsigned int block_count[2]; /* # of allocated blocks */
789 atomic_t inplace_count; /* # of inplace update */
790 atomic_t total_hit_ext; /* # of lookup extent cache */
791 atomic_t read_hit_rbtree; /* # of hit rbtree extent node */
792 atomic_t read_hit_largest; /* # of hit largest extent node */
793 atomic_t read_hit_cached; /* # of hit cached extent node */
794 atomic_t inline_xattr; /* # of inline_xattr inodes */
795 atomic_t inline_inode; /* # of inline_data inodes */
796 atomic_t inline_dir; /* # of inline_dentry inodes */
797 int bg_gc; /* background gc calls */
798 unsigned int n_dirty_dirs; /* # of dir inodes */
799 #endif
800 unsigned int last_victim[2]; /* last victim segment # */
801 spinlock_t stat_lock; /* lock for stat operations */
802
803 /* For sysfs suppport */
804 struct kobject s_kobj;
805 struct completion s_kobj_unregister;
806
807 /* For shrinker support */
808 struct list_head s_list;
809 struct mutex umount_mutex;
810 unsigned int shrinker_run_no;
811 };
812
813 /*
814 * Inline functions
815 */
816 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
817 {
818 return container_of(inode, struct f2fs_inode_info, vfs_inode);
819 }
820
821 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
822 {
823 return sb->s_fs_info;
824 }
825
826 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
827 {
828 return F2FS_SB(inode->i_sb);
829 }
830
831 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
832 {
833 return F2FS_I_SB(mapping->host);
834 }
835
836 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
837 {
838 return F2FS_M_SB(page->mapping);
839 }
840
841 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
842 {
843 return (struct f2fs_super_block *)(sbi->raw_super);
844 }
845
846 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
847 {
848 return (struct f2fs_checkpoint *)(sbi->ckpt);
849 }
850
851 static inline struct f2fs_node *F2FS_NODE(struct page *page)
852 {
853 return (struct f2fs_node *)page_address(page);
854 }
855
856 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
857 {
858 return &((struct f2fs_node *)page_address(page))->i;
859 }
860
861 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
862 {
863 return (struct f2fs_nm_info *)(sbi->nm_info);
864 }
865
866 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
867 {
868 return (struct f2fs_sm_info *)(sbi->sm_info);
869 }
870
871 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
872 {
873 return (struct sit_info *)(SM_I(sbi)->sit_info);
874 }
875
876 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
877 {
878 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
879 }
880
881 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
882 {
883 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
884 }
885
886 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
887 {
888 return sbi->meta_inode->i_mapping;
889 }
890
891 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
892 {
893 return sbi->node_inode->i_mapping;
894 }
895
896 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
897 {
898 return sbi->s_flag & (0x01 << type);
899 }
900
901 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
902 {
903 sbi->s_flag |= (0x01 << type);
904 }
905
906 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
907 {
908 sbi->s_flag &= ~(0x01 << type);
909 }
910
911 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
912 {
913 return le64_to_cpu(cp->checkpoint_ver);
914 }
915
916 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
917 {
918 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
919 return ckpt_flags & f;
920 }
921
922 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
923 {
924 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
925 ckpt_flags |= f;
926 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
927 }
928
929 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
930 {
931 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
932 ckpt_flags &= (~f);
933 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
934 }
935
936 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
937 {
938 down_read(&sbi->cp_rwsem);
939 }
940
941 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
942 {
943 up_read(&sbi->cp_rwsem);
944 }
945
946 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
947 {
948 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
949 }
950
951 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
952 {
953 up_write(&sbi->cp_rwsem);
954 }
955
956 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
957 {
958 int reason = CP_SYNC;
959
960 if (test_opt(sbi, FASTBOOT))
961 reason = CP_FASTBOOT;
962 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
963 reason = CP_UMOUNT;
964 return reason;
965 }
966
967 static inline bool __remain_node_summaries(int reason)
968 {
969 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
970 }
971
972 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
973 {
974 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
975 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
976 }
977
978 /*
979 * Check whether the given nid is within node id range.
980 */
981 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
982 {
983 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
984 return -EINVAL;
985 if (unlikely(nid >= NM_I(sbi)->max_nid))
986 return -EINVAL;
987 return 0;
988 }
989
990 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
991
992 /*
993 * Check whether the inode has blocks or not
994 */
995 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
996 {
997 if (F2FS_I(inode)->i_xattr_nid)
998 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
999 else
1000 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1001 }
1002
1003 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1004 {
1005 return ofs == XATTR_NODE_OFFSET;
1006 }
1007
1008 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1009 struct inode *inode, blkcnt_t count)
1010 {
1011 block_t valid_block_count;
1012
1013 spin_lock(&sbi->stat_lock);
1014 valid_block_count =
1015 sbi->total_valid_block_count + (block_t)count;
1016 if (unlikely(valid_block_count > sbi->user_block_count)) {
1017 spin_unlock(&sbi->stat_lock);
1018 return false;
1019 }
1020 inode->i_blocks += count;
1021 sbi->total_valid_block_count = valid_block_count;
1022 sbi->alloc_valid_block_count += (block_t)count;
1023 spin_unlock(&sbi->stat_lock);
1024 return true;
1025 }
1026
1027 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1028 struct inode *inode,
1029 blkcnt_t count)
1030 {
1031 spin_lock(&sbi->stat_lock);
1032 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1033 f2fs_bug_on(sbi, inode->i_blocks < count);
1034 inode->i_blocks -= count;
1035 sbi->total_valid_block_count -= (block_t)count;
1036 spin_unlock(&sbi->stat_lock);
1037 }
1038
1039 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1040 {
1041 atomic_inc(&sbi->nr_pages[count_type]);
1042 set_sbi_flag(sbi, SBI_IS_DIRTY);
1043 }
1044
1045 static inline void inode_inc_dirty_pages(struct inode *inode)
1046 {
1047 atomic_inc(&F2FS_I(inode)->dirty_pages);
1048 if (S_ISDIR(inode->i_mode))
1049 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1050 }
1051
1052 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1053 {
1054 atomic_dec(&sbi->nr_pages[count_type]);
1055 }
1056
1057 static inline void inode_dec_dirty_pages(struct inode *inode)
1058 {
1059 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1060 !S_ISLNK(inode->i_mode))
1061 return;
1062
1063 atomic_dec(&F2FS_I(inode)->dirty_pages);
1064
1065 if (S_ISDIR(inode->i_mode))
1066 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1067 }
1068
1069 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1070 {
1071 return atomic_read(&sbi->nr_pages[count_type]);
1072 }
1073
1074 static inline int get_dirty_pages(struct inode *inode)
1075 {
1076 return atomic_read(&F2FS_I(inode)->dirty_pages);
1077 }
1078
1079 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1080 {
1081 unsigned int pages_per_sec = sbi->segs_per_sec *
1082 (1 << sbi->log_blocks_per_seg);
1083 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1084 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1085 }
1086
1087 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1088 {
1089 return sbi->total_valid_block_count;
1090 }
1091
1092 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1093 {
1094 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1095
1096 /* return NAT or SIT bitmap */
1097 if (flag == NAT_BITMAP)
1098 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1099 else if (flag == SIT_BITMAP)
1100 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1101
1102 return 0;
1103 }
1104
1105 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1106 {
1107 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1108 }
1109
1110 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1111 {
1112 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1113 int offset;
1114
1115 if (__cp_payload(sbi) > 0) {
1116 if (flag == NAT_BITMAP)
1117 return &ckpt->sit_nat_version_bitmap;
1118 else
1119 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1120 } else {
1121 offset = (flag == NAT_BITMAP) ?
1122 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1123 return &ckpt->sit_nat_version_bitmap + offset;
1124 }
1125 }
1126
1127 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1128 {
1129 block_t start_addr;
1130 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1131 unsigned long long ckpt_version = cur_cp_version(ckpt);
1132
1133 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1134
1135 /*
1136 * odd numbered checkpoint should at cp segment 0
1137 * and even segment must be at cp segment 1
1138 */
1139 if (!(ckpt_version & 1))
1140 start_addr += sbi->blocks_per_seg;
1141
1142 return start_addr;
1143 }
1144
1145 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1146 {
1147 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1148 }
1149
1150 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1151 struct inode *inode)
1152 {
1153 block_t valid_block_count;
1154 unsigned int valid_node_count;
1155
1156 spin_lock(&sbi->stat_lock);
1157
1158 valid_block_count = sbi->total_valid_block_count + 1;
1159 if (unlikely(valid_block_count > sbi->user_block_count)) {
1160 spin_unlock(&sbi->stat_lock);
1161 return false;
1162 }
1163
1164 valid_node_count = sbi->total_valid_node_count + 1;
1165 if (unlikely(valid_node_count > sbi->total_node_count)) {
1166 spin_unlock(&sbi->stat_lock);
1167 return false;
1168 }
1169
1170 if (inode)
1171 inode->i_blocks++;
1172
1173 sbi->alloc_valid_block_count++;
1174 sbi->total_valid_node_count++;
1175 sbi->total_valid_block_count++;
1176 spin_unlock(&sbi->stat_lock);
1177
1178 return true;
1179 }
1180
1181 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1182 struct inode *inode)
1183 {
1184 spin_lock(&sbi->stat_lock);
1185
1186 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1187 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1188 f2fs_bug_on(sbi, !inode->i_blocks);
1189
1190 inode->i_blocks--;
1191 sbi->total_valid_node_count--;
1192 sbi->total_valid_block_count--;
1193
1194 spin_unlock(&sbi->stat_lock);
1195 }
1196
1197 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1198 {
1199 return sbi->total_valid_node_count;
1200 }
1201
1202 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1203 {
1204 spin_lock(&sbi->stat_lock);
1205 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1206 sbi->total_valid_inode_count++;
1207 spin_unlock(&sbi->stat_lock);
1208 }
1209
1210 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1211 {
1212 spin_lock(&sbi->stat_lock);
1213 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1214 sbi->total_valid_inode_count--;
1215 spin_unlock(&sbi->stat_lock);
1216 }
1217
1218 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1219 {
1220 return sbi->total_valid_inode_count;
1221 }
1222
1223 static inline void f2fs_put_page(struct page *page, int unlock)
1224 {
1225 if (!page)
1226 return;
1227
1228 if (unlock) {
1229 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1230 unlock_page(page);
1231 }
1232 page_cache_release(page);
1233 }
1234
1235 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1236 {
1237 if (dn->node_page)
1238 f2fs_put_page(dn->node_page, 1);
1239 if (dn->inode_page && dn->node_page != dn->inode_page)
1240 f2fs_put_page(dn->inode_page, 0);
1241 dn->node_page = NULL;
1242 dn->inode_page = NULL;
1243 }
1244
1245 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1246 size_t size)
1247 {
1248 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1249 }
1250
1251 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1252 gfp_t flags)
1253 {
1254 void *entry;
1255
1256 entry = kmem_cache_alloc(cachep, flags);
1257 if (!entry)
1258 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1259 return entry;
1260 }
1261
1262 static inline struct bio *f2fs_bio_alloc(int npages)
1263 {
1264 struct bio *bio;
1265
1266 /* No failure on bio allocation */
1267 bio = bio_alloc(GFP_NOIO, npages);
1268 if (!bio)
1269 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1270 return bio;
1271 }
1272
1273 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1274 unsigned long index, void *item)
1275 {
1276 while (radix_tree_insert(root, index, item))
1277 cond_resched();
1278 }
1279
1280 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1281
1282 static inline bool IS_INODE(struct page *page)
1283 {
1284 struct f2fs_node *p = F2FS_NODE(page);
1285 return RAW_IS_INODE(p);
1286 }
1287
1288 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1289 {
1290 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1291 }
1292
1293 static inline block_t datablock_addr(struct page *node_page,
1294 unsigned int offset)
1295 {
1296 struct f2fs_node *raw_node;
1297 __le32 *addr_array;
1298 raw_node = F2FS_NODE(node_page);
1299 addr_array = blkaddr_in_node(raw_node);
1300 return le32_to_cpu(addr_array[offset]);
1301 }
1302
1303 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1304 {
1305 int mask;
1306
1307 addr += (nr >> 3);
1308 mask = 1 << (7 - (nr & 0x07));
1309 return mask & *addr;
1310 }
1311
1312 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1313 {
1314 int mask;
1315
1316 addr += (nr >> 3);
1317 mask = 1 << (7 - (nr & 0x07));
1318 *addr |= mask;
1319 }
1320
1321 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1322 {
1323 int mask;
1324
1325 addr += (nr >> 3);
1326 mask = 1 << (7 - (nr & 0x07));
1327 *addr &= ~mask;
1328 }
1329
1330 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1331 {
1332 int mask;
1333 int ret;
1334
1335 addr += (nr >> 3);
1336 mask = 1 << (7 - (nr & 0x07));
1337 ret = mask & *addr;
1338 *addr |= mask;
1339 return ret;
1340 }
1341
1342 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1343 {
1344 int mask;
1345 int ret;
1346
1347 addr += (nr >> 3);
1348 mask = 1 << (7 - (nr & 0x07));
1349 ret = mask & *addr;
1350 *addr &= ~mask;
1351 return ret;
1352 }
1353
1354 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1355 {
1356 int mask;
1357
1358 addr += (nr >> 3);
1359 mask = 1 << (7 - (nr & 0x07));
1360 *addr ^= mask;
1361 }
1362
1363 /* used for f2fs_inode_info->flags */
1364 enum {
1365 FI_NEW_INODE, /* indicate newly allocated inode */
1366 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1367 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1368 FI_INC_LINK, /* need to increment i_nlink */
1369 FI_ACL_MODE, /* indicate acl mode */
1370 FI_NO_ALLOC, /* should not allocate any blocks */
1371 FI_FREE_NID, /* free allocated nide */
1372 FI_UPDATE_DIR, /* should update inode block for consistency */
1373 FI_DELAY_IPUT, /* used for the recovery */
1374 FI_NO_EXTENT, /* not to use the extent cache */
1375 FI_INLINE_XATTR, /* used for inline xattr */
1376 FI_INLINE_DATA, /* used for inline data*/
1377 FI_INLINE_DENTRY, /* used for inline dentry */
1378 FI_APPEND_WRITE, /* inode has appended data */
1379 FI_UPDATE_WRITE, /* inode has in-place-update data */
1380 FI_NEED_IPU, /* used for ipu per file */
1381 FI_ATOMIC_FILE, /* indicate atomic file */
1382 FI_VOLATILE_FILE, /* indicate volatile file */
1383 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1384 FI_DROP_CACHE, /* drop dirty page cache */
1385 FI_DATA_EXIST, /* indicate data exists */
1386 FI_INLINE_DOTS, /* indicate inline dot dentries */
1387 };
1388
1389 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1390 {
1391 if (!test_bit(flag, &fi->flags))
1392 set_bit(flag, &fi->flags);
1393 }
1394
1395 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1396 {
1397 return test_bit(flag, &fi->flags);
1398 }
1399
1400 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1401 {
1402 if (test_bit(flag, &fi->flags))
1403 clear_bit(flag, &fi->flags);
1404 }
1405
1406 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1407 {
1408 fi->i_acl_mode = mode;
1409 set_inode_flag(fi, FI_ACL_MODE);
1410 }
1411
1412 static inline void get_inline_info(struct f2fs_inode_info *fi,
1413 struct f2fs_inode *ri)
1414 {
1415 if (ri->i_inline & F2FS_INLINE_XATTR)
1416 set_inode_flag(fi, FI_INLINE_XATTR);
1417 if (ri->i_inline & F2FS_INLINE_DATA)
1418 set_inode_flag(fi, FI_INLINE_DATA);
1419 if (ri->i_inline & F2FS_INLINE_DENTRY)
1420 set_inode_flag(fi, FI_INLINE_DENTRY);
1421 if (ri->i_inline & F2FS_DATA_EXIST)
1422 set_inode_flag(fi, FI_DATA_EXIST);
1423 if (ri->i_inline & F2FS_INLINE_DOTS)
1424 set_inode_flag(fi, FI_INLINE_DOTS);
1425 }
1426
1427 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1428 struct f2fs_inode *ri)
1429 {
1430 ri->i_inline = 0;
1431
1432 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1433 ri->i_inline |= F2FS_INLINE_XATTR;
1434 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1435 ri->i_inline |= F2FS_INLINE_DATA;
1436 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1437 ri->i_inline |= F2FS_INLINE_DENTRY;
1438 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1439 ri->i_inline |= F2FS_DATA_EXIST;
1440 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1441 ri->i_inline |= F2FS_INLINE_DOTS;
1442 }
1443
1444 static inline int f2fs_has_inline_xattr(struct inode *inode)
1445 {
1446 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1447 }
1448
1449 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1450 {
1451 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1452 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1453 return DEF_ADDRS_PER_INODE;
1454 }
1455
1456 static inline void *inline_xattr_addr(struct page *page)
1457 {
1458 struct f2fs_inode *ri = F2FS_INODE(page);
1459 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1460 F2FS_INLINE_XATTR_ADDRS]);
1461 }
1462
1463 static inline int inline_xattr_size(struct inode *inode)
1464 {
1465 if (f2fs_has_inline_xattr(inode))
1466 return F2FS_INLINE_XATTR_ADDRS << 2;
1467 else
1468 return 0;
1469 }
1470
1471 static inline int f2fs_has_inline_data(struct inode *inode)
1472 {
1473 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1474 }
1475
1476 static inline void f2fs_clear_inline_inode(struct inode *inode)
1477 {
1478 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1479 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1480 }
1481
1482 static inline int f2fs_exist_data(struct inode *inode)
1483 {
1484 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1485 }
1486
1487 static inline int f2fs_has_inline_dots(struct inode *inode)
1488 {
1489 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1490 }
1491
1492 static inline bool f2fs_is_atomic_file(struct inode *inode)
1493 {
1494 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1495 }
1496
1497 static inline bool f2fs_is_volatile_file(struct inode *inode)
1498 {
1499 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1500 }
1501
1502 static inline bool f2fs_is_first_block_written(struct inode *inode)
1503 {
1504 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1505 }
1506
1507 static inline bool f2fs_is_drop_cache(struct inode *inode)
1508 {
1509 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1510 }
1511
1512 static inline void *inline_data_addr(struct page *page)
1513 {
1514 struct f2fs_inode *ri = F2FS_INODE(page);
1515 return (void *)&(ri->i_addr[1]);
1516 }
1517
1518 static inline int f2fs_has_inline_dentry(struct inode *inode)
1519 {
1520 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1521 }
1522
1523 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1524 {
1525 if (!f2fs_has_inline_dentry(dir))
1526 kunmap(page);
1527 }
1528
1529 static inline int is_file(struct inode *inode, int type)
1530 {
1531 return F2FS_I(inode)->i_advise & type;
1532 }
1533
1534 static inline void set_file(struct inode *inode, int type)
1535 {
1536 F2FS_I(inode)->i_advise |= type;
1537 }
1538
1539 static inline void clear_file(struct inode *inode, int type)
1540 {
1541 F2FS_I(inode)->i_advise &= ~type;
1542 }
1543
1544 static inline int f2fs_readonly(struct super_block *sb)
1545 {
1546 return sb->s_flags & MS_RDONLY;
1547 }
1548
1549 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1550 {
1551 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1552 }
1553
1554 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1555 {
1556 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1557 sbi->sb->s_flags |= MS_RDONLY;
1558 }
1559
1560 static inline bool is_dot_dotdot(const struct qstr *str)
1561 {
1562 if (str->len == 1 && str->name[0] == '.')
1563 return true;
1564
1565 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1566 return true;
1567
1568 return false;
1569 }
1570
1571 static inline bool f2fs_may_extent_tree(struct inode *inode)
1572 {
1573 mode_t mode = inode->i_mode;
1574
1575 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1576 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1577 return false;
1578
1579 return S_ISREG(mode);
1580 }
1581
1582 #define get_inode_mode(i) \
1583 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1584 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1585
1586 /* get offset of first page in next direct node */
1587 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1588 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1589 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1590 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1591
1592 /*
1593 * file.c
1594 */
1595 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1596 void truncate_data_blocks(struct dnode_of_data *);
1597 int truncate_blocks(struct inode *, u64, bool);
1598 void f2fs_truncate(struct inode *, bool);
1599 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1600 int f2fs_setattr(struct dentry *, struct iattr *);
1601 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1602 int truncate_data_blocks_range(struct dnode_of_data *, int);
1603 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1604 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1605
1606 /*
1607 * inode.c
1608 */
1609 void f2fs_set_inode_flags(struct inode *);
1610 struct inode *f2fs_iget(struct super_block *, unsigned long);
1611 int try_to_free_nats(struct f2fs_sb_info *, int);
1612 void update_inode(struct inode *, struct page *);
1613 void update_inode_page(struct inode *);
1614 int f2fs_write_inode(struct inode *, struct writeback_control *);
1615 void f2fs_evict_inode(struct inode *);
1616 void handle_failed_inode(struct inode *);
1617
1618 /*
1619 * namei.c
1620 */
1621 struct dentry *f2fs_get_parent(struct dentry *child);
1622
1623 /*
1624 * dir.c
1625 */
1626 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1627 void set_de_type(struct f2fs_dir_entry *, umode_t);
1628
1629 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1630 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1631 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1632 unsigned int, struct f2fs_str *);
1633 void do_make_empty_dir(struct inode *, struct inode *,
1634 struct f2fs_dentry_ptr *);
1635 struct page *init_inode_metadata(struct inode *, struct inode *,
1636 const struct qstr *, struct page *);
1637 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1638 int room_for_filename(const void *, int, int);
1639 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1640 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1641 struct page **);
1642 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1643 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1644 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1645 struct page *, struct inode *);
1646 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1647 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1648 const struct qstr *, f2fs_hash_t , unsigned int);
1649 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1650 umode_t);
1651 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1652 struct inode *);
1653 int f2fs_do_tmpfile(struct inode *, struct inode *);
1654 bool f2fs_empty_dir(struct inode *);
1655
1656 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1657 {
1658 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1659 inode, inode->i_ino, inode->i_mode);
1660 }
1661
1662 /*
1663 * super.c
1664 */
1665 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1666 int f2fs_sync_fs(struct super_block *, int);
1667 extern __printf(3, 4)
1668 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1669
1670 /*
1671 * hash.c
1672 */
1673 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1674
1675 /*
1676 * node.c
1677 */
1678 struct dnode_of_data;
1679 struct node_info;
1680
1681 bool available_free_memory(struct f2fs_sb_info *, int);
1682 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1683 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1684 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1685 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1686 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1687 int truncate_inode_blocks(struct inode *, pgoff_t);
1688 int truncate_xattr_node(struct inode *, struct page *);
1689 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1690 void remove_inode_page(struct inode *);
1691 struct page *new_inode_page(struct inode *);
1692 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1693 void ra_node_page(struct f2fs_sb_info *, nid_t);
1694 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1695 struct page *get_node_page_ra(struct page *, int);
1696 void sync_inode_page(struct dnode_of_data *);
1697 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1698 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1699 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1700 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1701 int try_to_free_nids(struct f2fs_sb_info *, int);
1702 void recover_inline_xattr(struct inode *, struct page *);
1703 void recover_xattr_data(struct inode *, struct page *, block_t);
1704 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1705 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1706 struct f2fs_summary_block *);
1707 void flush_nat_entries(struct f2fs_sb_info *);
1708 int build_node_manager(struct f2fs_sb_info *);
1709 void destroy_node_manager(struct f2fs_sb_info *);
1710 int __init create_node_manager_caches(void);
1711 void destroy_node_manager_caches(void);
1712
1713 /*
1714 * segment.c
1715 */
1716 void register_inmem_page(struct inode *, struct page *);
1717 int commit_inmem_pages(struct inode *, bool);
1718 void f2fs_balance_fs(struct f2fs_sb_info *);
1719 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1720 int f2fs_issue_flush(struct f2fs_sb_info *);
1721 int create_flush_cmd_control(struct f2fs_sb_info *);
1722 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1723 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1724 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1725 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1726 void release_discard_addrs(struct f2fs_sb_info *);
1727 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1728 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1729 void allocate_new_segments(struct f2fs_sb_info *);
1730 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1731 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1732 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1733 void write_meta_page(struct f2fs_sb_info *, struct page *);
1734 void write_node_page(unsigned int, struct f2fs_io_info *);
1735 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1736 void rewrite_data_page(struct f2fs_io_info *);
1737 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1738 block_t, block_t, unsigned char, bool);
1739 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1740 block_t, block_t *, struct f2fs_summary *, int);
1741 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1742 void write_data_summaries(struct f2fs_sb_info *, block_t);
1743 void write_node_summaries(struct f2fs_sb_info *, block_t);
1744 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1745 int, unsigned int, int);
1746 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1747 int build_segment_manager(struct f2fs_sb_info *);
1748 void destroy_segment_manager(struct f2fs_sb_info *);
1749 int __init create_segment_manager_caches(void);
1750 void destroy_segment_manager_caches(void);
1751
1752 /*
1753 * checkpoint.c
1754 */
1755 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1756 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1757 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1758 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1759 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1760 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1761 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1762 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1763 void release_dirty_inode(struct f2fs_sb_info *);
1764 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1765 int acquire_orphan_inode(struct f2fs_sb_info *);
1766 void release_orphan_inode(struct f2fs_sb_info *);
1767 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1768 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1769 int recover_orphan_inodes(struct f2fs_sb_info *);
1770 int get_valid_checkpoint(struct f2fs_sb_info *);
1771 void update_dirty_page(struct inode *, struct page *);
1772 void add_dirty_dir_inode(struct inode *);
1773 void remove_dirty_dir_inode(struct inode *);
1774 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1775 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1776 void init_ino_entry_info(struct f2fs_sb_info *);
1777 int __init create_checkpoint_caches(void);
1778 void destroy_checkpoint_caches(void);
1779
1780 /*
1781 * data.c
1782 */
1783 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1784 int f2fs_submit_page_bio(struct f2fs_io_info *);
1785 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1786 void set_data_blkaddr(struct dnode_of_data *);
1787 int reserve_new_block(struct dnode_of_data *);
1788 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1789 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1790 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1791 struct page *find_data_page(struct inode *, pgoff_t);
1792 struct page *get_lock_data_page(struct inode *, pgoff_t);
1793 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1794 int do_write_data_page(struct f2fs_io_info *);
1795 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1796 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1797 int f2fs_release_page(struct page *, gfp_t);
1798
1799 /*
1800 * gc.c
1801 */
1802 int start_gc_thread(struct f2fs_sb_info *);
1803 void stop_gc_thread(struct f2fs_sb_info *);
1804 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1805 int f2fs_gc(struct f2fs_sb_info *);
1806 void build_gc_manager(struct f2fs_sb_info *);
1807
1808 /*
1809 * recovery.c
1810 */
1811 int recover_fsync_data(struct f2fs_sb_info *);
1812 bool space_for_roll_forward(struct f2fs_sb_info *);
1813
1814 /*
1815 * debug.c
1816 */
1817 #ifdef CONFIG_F2FS_STAT_FS
1818 struct f2fs_stat_info {
1819 struct list_head stat_list;
1820 struct f2fs_sb_info *sbi;
1821 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1822 int main_area_segs, main_area_sections, main_area_zones;
1823 int hit_largest, hit_cached, hit_rbtree, hit_total, total_ext;
1824 int ext_tree, ext_node;
1825 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1826 int nats, dirty_nats, sits, dirty_sits, fnids;
1827 int total_count, utilization;
1828 int bg_gc, inmem_pages, wb_pages;
1829 int inline_xattr, inline_inode, inline_dir;
1830 unsigned int valid_count, valid_node_count, valid_inode_count;
1831 unsigned int bimodal, avg_vblocks;
1832 int util_free, util_valid, util_invalid;
1833 int rsvd_segs, overp_segs;
1834 int dirty_count, node_pages, meta_pages;
1835 int prefree_count, call_count, cp_count;
1836 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1837 int bg_node_segs, bg_data_segs;
1838 int tot_blks, data_blks, node_blks;
1839 int bg_data_blks, bg_node_blks;
1840 int curseg[NR_CURSEG_TYPE];
1841 int cursec[NR_CURSEG_TYPE];
1842 int curzone[NR_CURSEG_TYPE];
1843
1844 unsigned int segment_count[2];
1845 unsigned int block_count[2];
1846 unsigned int inplace_count;
1847 unsigned base_mem, cache_mem, page_mem;
1848 };
1849
1850 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1851 {
1852 return (struct f2fs_stat_info *)sbi->stat_info;
1853 }
1854
1855 #define stat_inc_cp_count(si) ((si)->cp_count++)
1856 #define stat_inc_call_count(si) ((si)->call_count++)
1857 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1858 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1859 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1860 #define stat_inc_total_hit(sbi) (atomic_inc(&(sbi)->total_hit_ext))
1861 #define stat_inc_rbtree_node_hit(sbi) (atomic_inc(&(sbi)->read_hit_rbtree))
1862 #define stat_inc_largest_node_hit(sbi) (atomic_inc(&(sbi)->read_hit_largest))
1863 #define stat_inc_cached_node_hit(sbi) (atomic_inc(&(sbi)->read_hit_cached))
1864 #define stat_inc_inline_xattr(inode) \
1865 do { \
1866 if (f2fs_has_inline_xattr(inode)) \
1867 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1868 } while (0)
1869 #define stat_dec_inline_xattr(inode) \
1870 do { \
1871 if (f2fs_has_inline_xattr(inode)) \
1872 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1873 } while (0)
1874 #define stat_inc_inline_inode(inode) \
1875 do { \
1876 if (f2fs_has_inline_data(inode)) \
1877 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1878 } while (0)
1879 #define stat_dec_inline_inode(inode) \
1880 do { \
1881 if (f2fs_has_inline_data(inode)) \
1882 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1883 } while (0)
1884 #define stat_inc_inline_dir(inode) \
1885 do { \
1886 if (f2fs_has_inline_dentry(inode)) \
1887 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1888 } while (0)
1889 #define stat_dec_inline_dir(inode) \
1890 do { \
1891 if (f2fs_has_inline_dentry(inode)) \
1892 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1893 } while (0)
1894 #define stat_inc_seg_type(sbi, curseg) \
1895 ((sbi)->segment_count[(curseg)->alloc_type]++)
1896 #define stat_inc_block_count(sbi, curseg) \
1897 ((sbi)->block_count[(curseg)->alloc_type]++)
1898 #define stat_inc_inplace_blocks(sbi) \
1899 (atomic_inc(&(sbi)->inplace_count))
1900 #define stat_inc_seg_count(sbi, type, gc_type) \
1901 do { \
1902 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1903 (si)->tot_segs++; \
1904 if (type == SUM_TYPE_DATA) { \
1905 si->data_segs++; \
1906 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1907 } else { \
1908 si->node_segs++; \
1909 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1910 } \
1911 } while (0)
1912
1913 #define stat_inc_tot_blk_count(si, blks) \
1914 (si->tot_blks += (blks))
1915
1916 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1917 do { \
1918 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1919 stat_inc_tot_blk_count(si, blks); \
1920 si->data_blks += (blks); \
1921 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1922 } while (0)
1923
1924 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1925 do { \
1926 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1927 stat_inc_tot_blk_count(si, blks); \
1928 si->node_blks += (blks); \
1929 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1930 } while (0)
1931
1932 int f2fs_build_stats(struct f2fs_sb_info *);
1933 void f2fs_destroy_stats(struct f2fs_sb_info *);
1934 void __init f2fs_create_root_stats(void);
1935 void f2fs_destroy_root_stats(void);
1936 #else
1937 #define stat_inc_cp_count(si)
1938 #define stat_inc_call_count(si)
1939 #define stat_inc_bggc_count(si)
1940 #define stat_inc_dirty_dir(sbi)
1941 #define stat_dec_dirty_dir(sbi)
1942 #define stat_inc_total_hit(sb)
1943 #define stat_inc_rbtree_node_hit(sb)
1944 #define stat_inc_largest_node_hit(sbi)
1945 #define stat_inc_cached_node_hit(sbi)
1946 #define stat_inc_inline_xattr(inode)
1947 #define stat_dec_inline_xattr(inode)
1948 #define stat_inc_inline_inode(inode)
1949 #define stat_dec_inline_inode(inode)
1950 #define stat_inc_inline_dir(inode)
1951 #define stat_dec_inline_dir(inode)
1952 #define stat_inc_seg_type(sbi, curseg)
1953 #define stat_inc_block_count(sbi, curseg)
1954 #define stat_inc_inplace_blocks(sbi)
1955 #define stat_inc_seg_count(sbi, type, gc_type)
1956 #define stat_inc_tot_blk_count(si, blks)
1957 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1958 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1959
1960 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1961 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1962 static inline void __init f2fs_create_root_stats(void) { }
1963 static inline void f2fs_destroy_root_stats(void) { }
1964 #endif
1965
1966 extern const struct file_operations f2fs_dir_operations;
1967 extern const struct file_operations f2fs_file_operations;
1968 extern const struct inode_operations f2fs_file_inode_operations;
1969 extern const struct address_space_operations f2fs_dblock_aops;
1970 extern const struct address_space_operations f2fs_node_aops;
1971 extern const struct address_space_operations f2fs_meta_aops;
1972 extern const struct inode_operations f2fs_dir_inode_operations;
1973 extern const struct inode_operations f2fs_symlink_inode_operations;
1974 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1975 extern const struct inode_operations f2fs_special_inode_operations;
1976 extern struct kmem_cache *inode_entry_slab;
1977
1978 /*
1979 * inline.c
1980 */
1981 bool f2fs_may_inline_data(struct inode *);
1982 bool f2fs_may_inline_dentry(struct inode *);
1983 void read_inline_data(struct page *, struct page *);
1984 bool truncate_inline_inode(struct page *, u64);
1985 int f2fs_read_inline_data(struct inode *, struct page *);
1986 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1987 int f2fs_convert_inline_inode(struct inode *);
1988 int f2fs_write_inline_data(struct inode *, struct page *);
1989 bool recover_inline_data(struct inode *, struct page *);
1990 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1991 struct f2fs_filename *, struct page **);
1992 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1993 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1994 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1995 nid_t, umode_t);
1996 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1997 struct inode *, struct inode *);
1998 bool f2fs_empty_inline_dir(struct inode *);
1999 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2000 struct f2fs_str *);
2001
2002 /*
2003 * shrinker.c
2004 */
2005 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2006 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2007 void f2fs_join_shrinker(struct f2fs_sb_info *);
2008 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2009
2010 /*
2011 * extent_cache.c
2012 */
2013 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2014 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2015 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2016 unsigned int f2fs_destroy_extent_node(struct inode *);
2017 void f2fs_destroy_extent_tree(struct inode *);
2018 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2019 void f2fs_update_extent_cache(struct dnode_of_data *);
2020 void init_extent_cache_info(struct f2fs_sb_info *);
2021 int __init create_extent_cache(void);
2022 void destroy_extent_cache(void);
2023
2024 /*
2025 * crypto support
2026 */
2027 static inline int f2fs_encrypted_inode(struct inode *inode)
2028 {
2029 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2030 return file_is_encrypt(inode);
2031 #else
2032 return 0;
2033 #endif
2034 }
2035
2036 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2037 {
2038 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2039 file_set_encrypt(inode);
2040 #endif
2041 }
2042
2043 static inline bool f2fs_bio_encrypted(struct bio *bio)
2044 {
2045 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2046 return unlikely(bio->bi_private != NULL);
2047 #else
2048 return false;
2049 #endif
2050 }
2051
2052 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2053 {
2054 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2055 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2056 #else
2057 return 0;
2058 #endif
2059 }
2060
2061 static inline bool f2fs_may_encrypt(struct inode *inode)
2062 {
2063 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2064 mode_t mode = inode->i_mode;
2065
2066 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2067 #else
2068 return 0;
2069 #endif
2070 }
2071
2072 /* crypto_policy.c */
2073 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2074 struct inode *);
2075 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2076 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2077 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2078
2079 /* crypt.c */
2080 extern struct kmem_cache *f2fs_crypt_info_cachep;
2081 bool f2fs_valid_contents_enc_mode(uint32_t);
2082 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2083 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2084 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2085 struct page *f2fs_encrypt(struct inode *, struct page *);
2086 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2087 int f2fs_decrypt_one(struct inode *, struct page *);
2088 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2089
2090 /* crypto_key.c */
2091 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2092 int _f2fs_get_encryption_info(struct inode *inode);
2093
2094 /* crypto_fname.c */
2095 bool f2fs_valid_filenames_enc_mode(uint32_t);
2096 u32 f2fs_fname_crypto_round_up(u32, u32);
2097 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2098 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2099 const struct f2fs_str *, struct f2fs_str *);
2100 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2101 struct f2fs_str *);
2102
2103 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2104 void f2fs_restore_and_release_control_page(struct page **);
2105 void f2fs_restore_control_page(struct page *);
2106
2107 int __init f2fs_init_crypto(void);
2108 int f2fs_crypto_initialize(void);
2109 void f2fs_exit_crypto(void);
2110
2111 int f2fs_has_encryption_key(struct inode *);
2112
2113 static inline int f2fs_get_encryption_info(struct inode *inode)
2114 {
2115 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2116
2117 if (!ci ||
2118 (ci->ci_keyring_key &&
2119 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2120 (1 << KEY_FLAG_REVOKED) |
2121 (1 << KEY_FLAG_DEAD)))))
2122 return _f2fs_get_encryption_info(inode);
2123 return 0;
2124 }
2125
2126 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2127 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2128 int lookup, struct f2fs_filename *);
2129 void f2fs_fname_free_filename(struct f2fs_filename *);
2130 #else
2131 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2132 static inline void f2fs_restore_control_page(struct page *p) { }
2133
2134 static inline int __init f2fs_init_crypto(void) { return 0; }
2135 static inline void f2fs_exit_crypto(void) { }
2136
2137 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2138 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2139 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2140
2141 static inline int f2fs_fname_setup_filename(struct inode *dir,
2142 const struct qstr *iname,
2143 int lookup, struct f2fs_filename *fname)
2144 {
2145 memset(fname, 0, sizeof(struct f2fs_filename));
2146 fname->usr_fname = iname;
2147 fname->disk_name.name = (unsigned char *)iname->name;
2148 fname->disk_name.len = iname->len;
2149 return 0;
2150 }
2151
2152 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2153 #endif
2154 #endif