]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/f2fs/super.c
netfilter: layer7 fix wrong fuzzy match change
[people/arne_f/kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_ALLOC_NID] = "alloc nid",
48 [FAULT_ORPHAN] = "orphan",
49 [FAULT_BLOCK] = "no more block",
50 [FAULT_DIR_DEPTH] = "too big dir depth",
51 [FAULT_EVICT_INODE] = "evict_inode fail",
52 [FAULT_TRUNCATE] = "truncate fail",
53 [FAULT_IO] = "IO error",
54 [FAULT_CHECKPOINT] = "checkpoint error",
55 };
56
57 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
58 unsigned int rate)
59 {
60 struct f2fs_fault_info *ffi = &sbi->fault_info;
61
62 if (rate) {
63 atomic_set(&ffi->inject_ops, 0);
64 ffi->inject_rate = rate;
65 ffi->inject_type = (1 << FAULT_MAX) - 1;
66 } else {
67 memset(ffi, 0, sizeof(struct f2fs_fault_info));
68 }
69 }
70 #endif
71
72 /* f2fs-wide shrinker description */
73 static struct shrinker f2fs_shrinker_info = {
74 .scan_objects = f2fs_shrink_scan,
75 .count_objects = f2fs_shrink_count,
76 .seeks = DEFAULT_SEEKS,
77 };
78
79 enum {
80 Opt_gc_background,
81 Opt_disable_roll_forward,
82 Opt_norecovery,
83 Opt_discard,
84 Opt_nodiscard,
85 Opt_noheap,
86 Opt_heap,
87 Opt_user_xattr,
88 Opt_nouser_xattr,
89 Opt_acl,
90 Opt_noacl,
91 Opt_active_logs,
92 Opt_disable_ext_identify,
93 Opt_inline_xattr,
94 Opt_noinline_xattr,
95 Opt_inline_data,
96 Opt_inline_dentry,
97 Opt_noinline_dentry,
98 Opt_flush_merge,
99 Opt_noflush_merge,
100 Opt_nobarrier,
101 Opt_fastboot,
102 Opt_extent_cache,
103 Opt_noextent_cache,
104 Opt_noinline_data,
105 Opt_data_flush,
106 Opt_mode,
107 Opt_io_size_bits,
108 Opt_fault_injection,
109 Opt_lazytime,
110 Opt_nolazytime,
111 Opt_quota,
112 Opt_noquota,
113 Opt_usrquota,
114 Opt_grpquota,
115 Opt_prjquota,
116 Opt_usrjquota,
117 Opt_grpjquota,
118 Opt_prjjquota,
119 Opt_offusrjquota,
120 Opt_offgrpjquota,
121 Opt_offprjjquota,
122 Opt_jqfmt_vfsold,
123 Opt_jqfmt_vfsv0,
124 Opt_jqfmt_vfsv1,
125 Opt_err,
126 };
127
128 static match_table_t f2fs_tokens = {
129 {Opt_gc_background, "background_gc=%s"},
130 {Opt_disable_roll_forward, "disable_roll_forward"},
131 {Opt_norecovery, "norecovery"},
132 {Opt_discard, "discard"},
133 {Opt_nodiscard, "nodiscard"},
134 {Opt_noheap, "no_heap"},
135 {Opt_heap, "heap"},
136 {Opt_user_xattr, "user_xattr"},
137 {Opt_nouser_xattr, "nouser_xattr"},
138 {Opt_acl, "acl"},
139 {Opt_noacl, "noacl"},
140 {Opt_active_logs, "active_logs=%u"},
141 {Opt_disable_ext_identify, "disable_ext_identify"},
142 {Opt_inline_xattr, "inline_xattr"},
143 {Opt_noinline_xattr, "noinline_xattr"},
144 {Opt_inline_data, "inline_data"},
145 {Opt_inline_dentry, "inline_dentry"},
146 {Opt_noinline_dentry, "noinline_dentry"},
147 {Opt_flush_merge, "flush_merge"},
148 {Opt_noflush_merge, "noflush_merge"},
149 {Opt_nobarrier, "nobarrier"},
150 {Opt_fastboot, "fastboot"},
151 {Opt_extent_cache, "extent_cache"},
152 {Opt_noextent_cache, "noextent_cache"},
153 {Opt_noinline_data, "noinline_data"},
154 {Opt_data_flush, "data_flush"},
155 {Opt_mode, "mode=%s"},
156 {Opt_io_size_bits, "io_bits=%u"},
157 {Opt_fault_injection, "fault_injection=%u"},
158 {Opt_lazytime, "lazytime"},
159 {Opt_nolazytime, "nolazytime"},
160 {Opt_quota, "quota"},
161 {Opt_noquota, "noquota"},
162 {Opt_usrquota, "usrquota"},
163 {Opt_grpquota, "grpquota"},
164 {Opt_prjquota, "prjquota"},
165 {Opt_usrjquota, "usrjquota=%s"},
166 {Opt_grpjquota, "grpjquota=%s"},
167 {Opt_prjjquota, "prjjquota=%s"},
168 {Opt_offusrjquota, "usrjquota="},
169 {Opt_offgrpjquota, "grpjquota="},
170 {Opt_offprjjquota, "prjjquota="},
171 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
172 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
173 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
174 {Opt_err, NULL},
175 };
176
177 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
178 {
179 struct va_format vaf;
180 va_list args;
181
182 va_start(args, fmt);
183 vaf.fmt = fmt;
184 vaf.va = &args;
185 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
186 va_end(args);
187 }
188
189 static void init_once(void *foo)
190 {
191 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
192
193 inode_init_once(&fi->vfs_inode);
194 }
195
196 #ifdef CONFIG_QUOTA
197 static const char * const quotatypes[] = INITQFNAMES;
198 #define QTYPE2NAME(t) (quotatypes[t])
199 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
200 substring_t *args)
201 {
202 struct f2fs_sb_info *sbi = F2FS_SB(sb);
203 char *qname;
204 int ret = -EINVAL;
205
206 if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
207 f2fs_msg(sb, KERN_ERR,
208 "Cannot change journaled "
209 "quota options when quota turned on");
210 return -EINVAL;
211 }
212 qname = match_strdup(args);
213 if (!qname) {
214 f2fs_msg(sb, KERN_ERR,
215 "Not enough memory for storing quotafile name");
216 return -EINVAL;
217 }
218 if (sbi->s_qf_names[qtype]) {
219 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
220 ret = 0;
221 else
222 f2fs_msg(sb, KERN_ERR,
223 "%s quota file already specified",
224 QTYPE2NAME(qtype));
225 goto errout;
226 }
227 if (strchr(qname, '/')) {
228 f2fs_msg(sb, KERN_ERR,
229 "quotafile must be on filesystem root");
230 goto errout;
231 }
232 sbi->s_qf_names[qtype] = qname;
233 set_opt(sbi, QUOTA);
234 return 0;
235 errout:
236 kfree(qname);
237 return ret;
238 }
239
240 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
241 {
242 struct f2fs_sb_info *sbi = F2FS_SB(sb);
243
244 if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
245 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
246 " when quota turned on");
247 return -EINVAL;
248 }
249 kfree(sbi->s_qf_names[qtype]);
250 sbi->s_qf_names[qtype] = NULL;
251 return 0;
252 }
253
254 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
255 {
256 /*
257 * We do the test below only for project quotas. 'usrquota' and
258 * 'grpquota' mount options are allowed even without quota feature
259 * to support legacy quotas in quota files.
260 */
261 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
262 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
263 "Cannot enable project quota enforcement.");
264 return -1;
265 }
266 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
267 sbi->s_qf_names[PRJQUOTA]) {
268 if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
269 clear_opt(sbi, USRQUOTA);
270
271 if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
272 clear_opt(sbi, GRPQUOTA);
273
274 if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
275 clear_opt(sbi, PRJQUOTA);
276
277 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
278 test_opt(sbi, PRJQUOTA)) {
279 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
280 "format mixing");
281 return -1;
282 }
283
284 if (!sbi->s_jquota_fmt) {
285 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
286 "not specified");
287 return -1;
288 }
289 }
290 return 0;
291 }
292 #endif
293
294 static int parse_options(struct super_block *sb, char *options)
295 {
296 struct f2fs_sb_info *sbi = F2FS_SB(sb);
297 struct request_queue *q;
298 substring_t args[MAX_OPT_ARGS];
299 char *p, *name;
300 int arg = 0;
301 #ifdef CONFIG_QUOTA
302 int ret;
303 #endif
304
305 if (!options)
306 return 0;
307
308 while ((p = strsep(&options, ",")) != NULL) {
309 int token;
310 if (!*p)
311 continue;
312 /*
313 * Initialize args struct so we know whether arg was
314 * found; some options take optional arguments.
315 */
316 args[0].to = args[0].from = NULL;
317 token = match_token(p, f2fs_tokens, args);
318
319 switch (token) {
320 case Opt_gc_background:
321 name = match_strdup(&args[0]);
322
323 if (!name)
324 return -ENOMEM;
325 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
326 set_opt(sbi, BG_GC);
327 clear_opt(sbi, FORCE_FG_GC);
328 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
329 clear_opt(sbi, BG_GC);
330 clear_opt(sbi, FORCE_FG_GC);
331 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
332 set_opt(sbi, BG_GC);
333 set_opt(sbi, FORCE_FG_GC);
334 } else {
335 kfree(name);
336 return -EINVAL;
337 }
338 kfree(name);
339 break;
340 case Opt_disable_roll_forward:
341 set_opt(sbi, DISABLE_ROLL_FORWARD);
342 break;
343 case Opt_norecovery:
344 /* this option mounts f2fs with ro */
345 set_opt(sbi, DISABLE_ROLL_FORWARD);
346 if (!f2fs_readonly(sb))
347 return -EINVAL;
348 break;
349 case Opt_discard:
350 q = bdev_get_queue(sb->s_bdev);
351 if (blk_queue_discard(q)) {
352 set_opt(sbi, DISCARD);
353 } else if (!f2fs_sb_mounted_blkzoned(sb)) {
354 f2fs_msg(sb, KERN_WARNING,
355 "mounting with \"discard\" option, but "
356 "the device does not support discard");
357 }
358 break;
359 case Opt_nodiscard:
360 if (f2fs_sb_mounted_blkzoned(sb)) {
361 f2fs_msg(sb, KERN_WARNING,
362 "discard is required for zoned block devices");
363 return -EINVAL;
364 }
365 clear_opt(sbi, DISCARD);
366 break;
367 case Opt_noheap:
368 set_opt(sbi, NOHEAP);
369 break;
370 case Opt_heap:
371 clear_opt(sbi, NOHEAP);
372 break;
373 #ifdef CONFIG_F2FS_FS_XATTR
374 case Opt_user_xattr:
375 set_opt(sbi, XATTR_USER);
376 break;
377 case Opt_nouser_xattr:
378 clear_opt(sbi, XATTR_USER);
379 break;
380 case Opt_inline_xattr:
381 set_opt(sbi, INLINE_XATTR);
382 break;
383 case Opt_noinline_xattr:
384 clear_opt(sbi, INLINE_XATTR);
385 break;
386 #else
387 case Opt_user_xattr:
388 f2fs_msg(sb, KERN_INFO,
389 "user_xattr options not supported");
390 break;
391 case Opt_nouser_xattr:
392 f2fs_msg(sb, KERN_INFO,
393 "nouser_xattr options not supported");
394 break;
395 case Opt_inline_xattr:
396 f2fs_msg(sb, KERN_INFO,
397 "inline_xattr options not supported");
398 break;
399 case Opt_noinline_xattr:
400 f2fs_msg(sb, KERN_INFO,
401 "noinline_xattr options not supported");
402 break;
403 #endif
404 #ifdef CONFIG_F2FS_FS_POSIX_ACL
405 case Opt_acl:
406 set_opt(sbi, POSIX_ACL);
407 break;
408 case Opt_noacl:
409 clear_opt(sbi, POSIX_ACL);
410 break;
411 #else
412 case Opt_acl:
413 f2fs_msg(sb, KERN_INFO, "acl options not supported");
414 break;
415 case Opt_noacl:
416 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
417 break;
418 #endif
419 case Opt_active_logs:
420 if (args->from && match_int(args, &arg))
421 return -EINVAL;
422 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
423 return -EINVAL;
424 sbi->active_logs = arg;
425 break;
426 case Opt_disable_ext_identify:
427 set_opt(sbi, DISABLE_EXT_IDENTIFY);
428 break;
429 case Opt_inline_data:
430 set_opt(sbi, INLINE_DATA);
431 break;
432 case Opt_inline_dentry:
433 set_opt(sbi, INLINE_DENTRY);
434 break;
435 case Opt_noinline_dentry:
436 clear_opt(sbi, INLINE_DENTRY);
437 break;
438 case Opt_flush_merge:
439 set_opt(sbi, FLUSH_MERGE);
440 break;
441 case Opt_noflush_merge:
442 clear_opt(sbi, FLUSH_MERGE);
443 break;
444 case Opt_nobarrier:
445 set_opt(sbi, NOBARRIER);
446 break;
447 case Opt_fastboot:
448 set_opt(sbi, FASTBOOT);
449 break;
450 case Opt_extent_cache:
451 set_opt(sbi, EXTENT_CACHE);
452 break;
453 case Opt_noextent_cache:
454 clear_opt(sbi, EXTENT_CACHE);
455 break;
456 case Opt_noinline_data:
457 clear_opt(sbi, INLINE_DATA);
458 break;
459 case Opt_data_flush:
460 set_opt(sbi, DATA_FLUSH);
461 break;
462 case Opt_mode:
463 name = match_strdup(&args[0]);
464
465 if (!name)
466 return -ENOMEM;
467 if (strlen(name) == 8 &&
468 !strncmp(name, "adaptive", 8)) {
469 if (f2fs_sb_mounted_blkzoned(sb)) {
470 f2fs_msg(sb, KERN_WARNING,
471 "adaptive mode is not allowed with "
472 "zoned block device feature");
473 kfree(name);
474 return -EINVAL;
475 }
476 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
477 } else if (strlen(name) == 3 &&
478 !strncmp(name, "lfs", 3)) {
479 set_opt_mode(sbi, F2FS_MOUNT_LFS);
480 } else {
481 kfree(name);
482 return -EINVAL;
483 }
484 kfree(name);
485 break;
486 case Opt_io_size_bits:
487 if (args->from && match_int(args, &arg))
488 return -EINVAL;
489 if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
490 f2fs_msg(sb, KERN_WARNING,
491 "Not support %d, larger than %d",
492 1 << arg, BIO_MAX_PAGES);
493 return -EINVAL;
494 }
495 sbi->write_io_size_bits = arg;
496 break;
497 case Opt_fault_injection:
498 if (args->from && match_int(args, &arg))
499 return -EINVAL;
500 #ifdef CONFIG_F2FS_FAULT_INJECTION
501 f2fs_build_fault_attr(sbi, arg);
502 set_opt(sbi, FAULT_INJECTION);
503 #else
504 f2fs_msg(sb, KERN_INFO,
505 "FAULT_INJECTION was not selected");
506 #endif
507 break;
508 case Opt_lazytime:
509 sb->s_flags |= MS_LAZYTIME;
510 break;
511 case Opt_nolazytime:
512 sb->s_flags &= ~MS_LAZYTIME;
513 break;
514 #ifdef CONFIG_QUOTA
515 case Opt_quota:
516 case Opt_usrquota:
517 set_opt(sbi, USRQUOTA);
518 break;
519 case Opt_grpquota:
520 set_opt(sbi, GRPQUOTA);
521 break;
522 case Opt_prjquota:
523 set_opt(sbi, PRJQUOTA);
524 break;
525 case Opt_usrjquota:
526 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
527 if (ret)
528 return ret;
529 break;
530 case Opt_grpjquota:
531 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
532 if (ret)
533 return ret;
534 break;
535 case Opt_prjjquota:
536 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
537 if (ret)
538 return ret;
539 break;
540 case Opt_offusrjquota:
541 ret = f2fs_clear_qf_name(sb, USRQUOTA);
542 if (ret)
543 return ret;
544 break;
545 case Opt_offgrpjquota:
546 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
547 if (ret)
548 return ret;
549 break;
550 case Opt_offprjjquota:
551 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
552 if (ret)
553 return ret;
554 break;
555 case Opt_jqfmt_vfsold:
556 sbi->s_jquota_fmt = QFMT_VFS_OLD;
557 break;
558 case Opt_jqfmt_vfsv0:
559 sbi->s_jquota_fmt = QFMT_VFS_V0;
560 break;
561 case Opt_jqfmt_vfsv1:
562 sbi->s_jquota_fmt = QFMT_VFS_V1;
563 break;
564 case Opt_noquota:
565 clear_opt(sbi, QUOTA);
566 clear_opt(sbi, USRQUOTA);
567 clear_opt(sbi, GRPQUOTA);
568 clear_opt(sbi, PRJQUOTA);
569 break;
570 #else
571 case Opt_quota:
572 case Opt_usrquota:
573 case Opt_grpquota:
574 case Opt_prjquota:
575 case Opt_usrjquota:
576 case Opt_grpjquota:
577 case Opt_prjjquota:
578 case Opt_offusrjquota:
579 case Opt_offgrpjquota:
580 case Opt_offprjjquota:
581 case Opt_jqfmt_vfsold:
582 case Opt_jqfmt_vfsv0:
583 case Opt_jqfmt_vfsv1:
584 case Opt_noquota:
585 f2fs_msg(sb, KERN_INFO,
586 "quota operations not supported");
587 break;
588 #endif
589 default:
590 f2fs_msg(sb, KERN_ERR,
591 "Unrecognized mount option \"%s\" or missing value",
592 p);
593 return -EINVAL;
594 }
595 }
596 #ifdef CONFIG_QUOTA
597 if (f2fs_check_quota_options(sbi))
598 return -EINVAL;
599 #endif
600
601 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
602 f2fs_msg(sb, KERN_ERR,
603 "Should set mode=lfs with %uKB-sized IO",
604 F2FS_IO_SIZE_KB(sbi));
605 return -EINVAL;
606 }
607 return 0;
608 }
609
610 static struct inode *f2fs_alloc_inode(struct super_block *sb)
611 {
612 struct f2fs_inode_info *fi;
613
614 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
615 if (!fi)
616 return NULL;
617
618 init_once((void *) fi);
619
620 /* Initialize f2fs-specific inode info */
621 fi->vfs_inode.i_version = 1;
622 atomic_set(&fi->dirty_pages, 0);
623 fi->i_current_depth = 1;
624 fi->i_advise = 0;
625 init_rwsem(&fi->i_sem);
626 INIT_LIST_HEAD(&fi->dirty_list);
627 INIT_LIST_HEAD(&fi->gdirty_list);
628 INIT_LIST_HEAD(&fi->inmem_pages);
629 mutex_init(&fi->inmem_lock);
630 init_rwsem(&fi->dio_rwsem[READ]);
631 init_rwsem(&fi->dio_rwsem[WRITE]);
632 init_rwsem(&fi->i_mmap_sem);
633 init_rwsem(&fi->i_xattr_sem);
634
635 #ifdef CONFIG_QUOTA
636 memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
637 fi->i_reserved_quota = 0;
638 #endif
639 /* Will be used by directory only */
640 fi->i_dir_level = F2FS_SB(sb)->dir_level;
641
642 return &fi->vfs_inode;
643 }
644
645 static int f2fs_drop_inode(struct inode *inode)
646 {
647 int ret;
648 /*
649 * This is to avoid a deadlock condition like below.
650 * writeback_single_inode(inode)
651 * - f2fs_write_data_page
652 * - f2fs_gc -> iput -> evict
653 * - inode_wait_for_writeback(inode)
654 */
655 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
656 if (!inode->i_nlink && !is_bad_inode(inode)) {
657 /* to avoid evict_inode call simultaneously */
658 atomic_inc(&inode->i_count);
659 spin_unlock(&inode->i_lock);
660
661 /* some remained atomic pages should discarded */
662 if (f2fs_is_atomic_file(inode))
663 drop_inmem_pages(inode);
664
665 /* should remain fi->extent_tree for writepage */
666 f2fs_destroy_extent_node(inode);
667
668 sb_start_intwrite(inode->i_sb);
669 f2fs_i_size_write(inode, 0);
670
671 if (F2FS_HAS_BLOCKS(inode))
672 f2fs_truncate(inode);
673
674 sb_end_intwrite(inode->i_sb);
675
676 fscrypt_put_encryption_info(inode, NULL);
677 spin_lock(&inode->i_lock);
678 atomic_dec(&inode->i_count);
679 }
680 trace_f2fs_drop_inode(inode, 0);
681 return 0;
682 }
683 ret = generic_drop_inode(inode);
684 trace_f2fs_drop_inode(inode, ret);
685 return ret;
686 }
687
688 int f2fs_inode_dirtied(struct inode *inode, bool sync)
689 {
690 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
691 int ret = 0;
692
693 spin_lock(&sbi->inode_lock[DIRTY_META]);
694 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
695 ret = 1;
696 } else {
697 set_inode_flag(inode, FI_DIRTY_INODE);
698 stat_inc_dirty_inode(sbi, DIRTY_META);
699 }
700 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
701 list_add_tail(&F2FS_I(inode)->gdirty_list,
702 &sbi->inode_list[DIRTY_META]);
703 inc_page_count(sbi, F2FS_DIRTY_IMETA);
704 }
705 spin_unlock(&sbi->inode_lock[DIRTY_META]);
706 return ret;
707 }
708
709 void f2fs_inode_synced(struct inode *inode)
710 {
711 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
712
713 spin_lock(&sbi->inode_lock[DIRTY_META]);
714 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
715 spin_unlock(&sbi->inode_lock[DIRTY_META]);
716 return;
717 }
718 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
719 list_del_init(&F2FS_I(inode)->gdirty_list);
720 dec_page_count(sbi, F2FS_DIRTY_IMETA);
721 }
722 clear_inode_flag(inode, FI_DIRTY_INODE);
723 clear_inode_flag(inode, FI_AUTO_RECOVER);
724 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
725 spin_unlock(&sbi->inode_lock[DIRTY_META]);
726 }
727
728 /*
729 * f2fs_dirty_inode() is called from __mark_inode_dirty()
730 *
731 * We should call set_dirty_inode to write the dirty inode through write_inode.
732 */
733 static void f2fs_dirty_inode(struct inode *inode, int flags)
734 {
735 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736
737 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
738 inode->i_ino == F2FS_META_INO(sbi))
739 return;
740
741 if (flags == I_DIRTY_TIME)
742 return;
743
744 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
745 clear_inode_flag(inode, FI_AUTO_RECOVER);
746
747 f2fs_inode_dirtied(inode, false);
748 }
749
750 static void f2fs_i_callback(struct rcu_head *head)
751 {
752 struct inode *inode = container_of(head, struct inode, i_rcu);
753 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
754 }
755
756 static void f2fs_destroy_inode(struct inode *inode)
757 {
758 call_rcu(&inode->i_rcu, f2fs_i_callback);
759 }
760
761 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
762 {
763 percpu_counter_destroy(&sbi->alloc_valid_block_count);
764 percpu_counter_destroy(&sbi->total_valid_inode_count);
765 }
766
767 static void destroy_device_list(struct f2fs_sb_info *sbi)
768 {
769 int i;
770
771 for (i = 0; i < sbi->s_ndevs; i++) {
772 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
773 #ifdef CONFIG_BLK_DEV_ZONED
774 kfree(FDEV(i).blkz_type);
775 #endif
776 }
777 kfree(sbi->devs);
778 }
779
780 static void f2fs_put_super(struct super_block *sb)
781 {
782 struct f2fs_sb_info *sbi = F2FS_SB(sb);
783 int i;
784
785 f2fs_quota_off_umount(sb);
786
787 /* prevent remaining shrinker jobs */
788 mutex_lock(&sbi->umount_mutex);
789
790 /*
791 * We don't need to do checkpoint when superblock is clean.
792 * But, the previous checkpoint was not done by umount, it needs to do
793 * clean checkpoint again.
794 */
795 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
796 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
797 struct cp_control cpc = {
798 .reason = CP_UMOUNT,
799 };
800 write_checkpoint(sbi, &cpc);
801 }
802
803 /* be sure to wait for any on-going discard commands */
804 f2fs_wait_discard_bios(sbi, true);
805
806 if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
807 struct cp_control cpc = {
808 .reason = CP_UMOUNT | CP_TRIMMED,
809 };
810 write_checkpoint(sbi, &cpc);
811 }
812
813 /* write_checkpoint can update stat informaion */
814 f2fs_destroy_stats(sbi);
815
816 /*
817 * normally superblock is clean, so we need to release this.
818 * In addition, EIO will skip do checkpoint, we need this as well.
819 */
820 release_ino_entry(sbi, true);
821
822 f2fs_leave_shrinker(sbi);
823 mutex_unlock(&sbi->umount_mutex);
824
825 /* our cp_error case, we can wait for any writeback page */
826 f2fs_flush_merged_writes(sbi);
827
828 iput(sbi->node_inode);
829 iput(sbi->meta_inode);
830
831 /* destroy f2fs internal modules */
832 destroy_node_manager(sbi);
833 destroy_segment_manager(sbi);
834
835 kfree(sbi->ckpt);
836
837 f2fs_unregister_sysfs(sbi);
838
839 sb->s_fs_info = NULL;
840 if (sbi->s_chksum_driver)
841 crypto_free_shash(sbi->s_chksum_driver);
842 kfree(sbi->raw_super);
843
844 destroy_device_list(sbi);
845 mempool_destroy(sbi->write_io_dummy);
846 #ifdef CONFIG_QUOTA
847 for (i = 0; i < MAXQUOTAS; i++)
848 kfree(sbi->s_qf_names[i]);
849 #endif
850 destroy_percpu_info(sbi);
851 for (i = 0; i < NR_PAGE_TYPE; i++)
852 kfree(sbi->write_io[i]);
853 kfree(sbi);
854 }
855
856 int f2fs_sync_fs(struct super_block *sb, int sync)
857 {
858 struct f2fs_sb_info *sbi = F2FS_SB(sb);
859 int err = 0;
860
861 trace_f2fs_sync_fs(sb, sync);
862
863 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
864 return -EAGAIN;
865
866 if (sync) {
867 struct cp_control cpc;
868
869 cpc.reason = __get_cp_reason(sbi);
870
871 mutex_lock(&sbi->gc_mutex);
872 err = write_checkpoint(sbi, &cpc);
873 mutex_unlock(&sbi->gc_mutex);
874 }
875 f2fs_trace_ios(NULL, 1);
876
877 return err;
878 }
879
880 static int f2fs_freeze(struct super_block *sb)
881 {
882 if (f2fs_readonly(sb))
883 return 0;
884
885 /* IO error happened before */
886 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
887 return -EIO;
888
889 /* must be clean, since sync_filesystem() was already called */
890 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
891 return -EINVAL;
892 return 0;
893 }
894
895 static int f2fs_unfreeze(struct super_block *sb)
896 {
897 return 0;
898 }
899
900 #ifdef CONFIG_QUOTA
901 static int f2fs_statfs_project(struct super_block *sb,
902 kprojid_t projid, struct kstatfs *buf)
903 {
904 struct kqid qid;
905 struct dquot *dquot;
906 u64 limit;
907 u64 curblock;
908
909 qid = make_kqid_projid(projid);
910 dquot = dqget(sb, qid);
911 if (IS_ERR(dquot))
912 return PTR_ERR(dquot);
913 spin_lock(&dq_data_lock);
914
915 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
916 dquot->dq_dqb.dqb_bsoftlimit :
917 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
918 if (limit && buf->f_blocks > limit) {
919 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
920 buf->f_blocks = limit;
921 buf->f_bfree = buf->f_bavail =
922 (buf->f_blocks > curblock) ?
923 (buf->f_blocks - curblock) : 0;
924 }
925
926 limit = dquot->dq_dqb.dqb_isoftlimit ?
927 dquot->dq_dqb.dqb_isoftlimit :
928 dquot->dq_dqb.dqb_ihardlimit;
929 if (limit && buf->f_files > limit) {
930 buf->f_files = limit;
931 buf->f_ffree =
932 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
933 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
934 }
935
936 spin_unlock(&dq_data_lock);
937 dqput(dquot);
938 return 0;
939 }
940 #endif
941
942 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
943 {
944 struct super_block *sb = dentry->d_sb;
945 struct f2fs_sb_info *sbi = F2FS_SB(sb);
946 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
947 block_t total_count, user_block_count, start_count, ovp_count;
948 u64 avail_node_count;
949
950 total_count = le64_to_cpu(sbi->raw_super->block_count);
951 user_block_count = sbi->user_block_count;
952 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
953 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
954 buf->f_type = F2FS_SUPER_MAGIC;
955 buf->f_bsize = sbi->blocksize;
956
957 buf->f_blocks = total_count - start_count;
958 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
959 buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
960 sbi->reserved_blocks;
961
962 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
963
964 if (avail_node_count > user_block_count) {
965 buf->f_files = user_block_count;
966 buf->f_ffree = buf->f_bavail;
967 } else {
968 buf->f_files = avail_node_count;
969 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
970 buf->f_bavail);
971 }
972
973 buf->f_namelen = F2FS_NAME_LEN;
974 buf->f_fsid.val[0] = (u32)id;
975 buf->f_fsid.val[1] = (u32)(id >> 32);
976
977 #ifdef CONFIG_QUOTA
978 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
979 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
980 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
981 }
982 #endif
983 return 0;
984 }
985
986 static inline void f2fs_show_quota_options(struct seq_file *seq,
987 struct super_block *sb)
988 {
989 #ifdef CONFIG_QUOTA
990 struct f2fs_sb_info *sbi = F2FS_SB(sb);
991
992 if (sbi->s_jquota_fmt) {
993 char *fmtname = "";
994
995 switch (sbi->s_jquota_fmt) {
996 case QFMT_VFS_OLD:
997 fmtname = "vfsold";
998 break;
999 case QFMT_VFS_V0:
1000 fmtname = "vfsv0";
1001 break;
1002 case QFMT_VFS_V1:
1003 fmtname = "vfsv1";
1004 break;
1005 }
1006 seq_printf(seq, ",jqfmt=%s", fmtname);
1007 }
1008
1009 if (sbi->s_qf_names[USRQUOTA])
1010 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1011
1012 if (sbi->s_qf_names[GRPQUOTA])
1013 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1014
1015 if (sbi->s_qf_names[PRJQUOTA])
1016 seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1017 #endif
1018 }
1019
1020 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1021 {
1022 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1023
1024 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1025 if (test_opt(sbi, FORCE_FG_GC))
1026 seq_printf(seq, ",background_gc=%s", "sync");
1027 else
1028 seq_printf(seq, ",background_gc=%s", "on");
1029 } else {
1030 seq_printf(seq, ",background_gc=%s", "off");
1031 }
1032 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1033 seq_puts(seq, ",disable_roll_forward");
1034 if (test_opt(sbi, DISCARD))
1035 seq_puts(seq, ",discard");
1036 if (test_opt(sbi, NOHEAP))
1037 seq_puts(seq, ",no_heap");
1038 else
1039 seq_puts(seq, ",heap");
1040 #ifdef CONFIG_F2FS_FS_XATTR
1041 if (test_opt(sbi, XATTR_USER))
1042 seq_puts(seq, ",user_xattr");
1043 else
1044 seq_puts(seq, ",nouser_xattr");
1045 if (test_opt(sbi, INLINE_XATTR))
1046 seq_puts(seq, ",inline_xattr");
1047 else
1048 seq_puts(seq, ",noinline_xattr");
1049 #endif
1050 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1051 if (test_opt(sbi, POSIX_ACL))
1052 seq_puts(seq, ",acl");
1053 else
1054 seq_puts(seq, ",noacl");
1055 #endif
1056 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1057 seq_puts(seq, ",disable_ext_identify");
1058 if (test_opt(sbi, INLINE_DATA))
1059 seq_puts(seq, ",inline_data");
1060 else
1061 seq_puts(seq, ",noinline_data");
1062 if (test_opt(sbi, INLINE_DENTRY))
1063 seq_puts(seq, ",inline_dentry");
1064 else
1065 seq_puts(seq, ",noinline_dentry");
1066 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1067 seq_puts(seq, ",flush_merge");
1068 if (test_opt(sbi, NOBARRIER))
1069 seq_puts(seq, ",nobarrier");
1070 if (test_opt(sbi, FASTBOOT))
1071 seq_puts(seq, ",fastboot");
1072 if (test_opt(sbi, EXTENT_CACHE))
1073 seq_puts(seq, ",extent_cache");
1074 else
1075 seq_puts(seq, ",noextent_cache");
1076 if (test_opt(sbi, DATA_FLUSH))
1077 seq_puts(seq, ",data_flush");
1078
1079 seq_puts(seq, ",mode=");
1080 if (test_opt(sbi, ADAPTIVE))
1081 seq_puts(seq, "adaptive");
1082 else if (test_opt(sbi, LFS))
1083 seq_puts(seq, "lfs");
1084 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1085 if (F2FS_IO_SIZE_BITS(sbi))
1086 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1087 #ifdef CONFIG_F2FS_FAULT_INJECTION
1088 if (test_opt(sbi, FAULT_INJECTION))
1089 seq_printf(seq, ",fault_injection=%u",
1090 sbi->fault_info.inject_rate);
1091 #endif
1092 #ifdef CONFIG_QUOTA
1093 if (test_opt(sbi, QUOTA))
1094 seq_puts(seq, ",quota");
1095 if (test_opt(sbi, USRQUOTA))
1096 seq_puts(seq, ",usrquota");
1097 if (test_opt(sbi, GRPQUOTA))
1098 seq_puts(seq, ",grpquota");
1099 if (test_opt(sbi, PRJQUOTA))
1100 seq_puts(seq, ",prjquota");
1101 #endif
1102 f2fs_show_quota_options(seq, sbi->sb);
1103
1104 return 0;
1105 }
1106
1107 static void default_options(struct f2fs_sb_info *sbi)
1108 {
1109 /* init some FS parameters */
1110 sbi->active_logs = NR_CURSEG_TYPE;
1111
1112 set_opt(sbi, BG_GC);
1113 set_opt(sbi, INLINE_XATTR);
1114 set_opt(sbi, INLINE_DATA);
1115 set_opt(sbi, INLINE_DENTRY);
1116 set_opt(sbi, EXTENT_CACHE);
1117 set_opt(sbi, NOHEAP);
1118 sbi->sb->s_flags |= MS_LAZYTIME;
1119 set_opt(sbi, FLUSH_MERGE);
1120 if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1121 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1122 set_opt(sbi, DISCARD);
1123 } else {
1124 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1125 }
1126
1127 #ifdef CONFIG_F2FS_FS_XATTR
1128 set_opt(sbi, XATTR_USER);
1129 #endif
1130 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1131 set_opt(sbi, POSIX_ACL);
1132 #endif
1133
1134 #ifdef CONFIG_F2FS_FAULT_INJECTION
1135 f2fs_build_fault_attr(sbi, 0);
1136 #endif
1137 }
1138
1139 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1140 {
1141 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1142 struct f2fs_mount_info org_mount_opt;
1143 unsigned long old_sb_flags;
1144 int err, active_logs;
1145 bool need_restart_gc = false;
1146 bool need_stop_gc = false;
1147 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1148 #ifdef CONFIG_F2FS_FAULT_INJECTION
1149 struct f2fs_fault_info ffi = sbi->fault_info;
1150 #endif
1151 #ifdef CONFIG_QUOTA
1152 int s_jquota_fmt;
1153 char *s_qf_names[MAXQUOTAS];
1154 int i, j;
1155 #endif
1156
1157 /*
1158 * Save the old mount options in case we
1159 * need to restore them.
1160 */
1161 org_mount_opt = sbi->mount_opt;
1162 old_sb_flags = sb->s_flags;
1163 active_logs = sbi->active_logs;
1164
1165 #ifdef CONFIG_QUOTA
1166 s_jquota_fmt = sbi->s_jquota_fmt;
1167 for (i = 0; i < MAXQUOTAS; i++) {
1168 if (sbi->s_qf_names[i]) {
1169 s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1170 GFP_KERNEL);
1171 if (!s_qf_names[i]) {
1172 for (j = 0; j < i; j++)
1173 kfree(s_qf_names[j]);
1174 return -ENOMEM;
1175 }
1176 } else {
1177 s_qf_names[i] = NULL;
1178 }
1179 }
1180 #endif
1181
1182 /* recover superblocks we couldn't write due to previous RO mount */
1183 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1184 err = f2fs_commit_super(sbi, false);
1185 f2fs_msg(sb, KERN_INFO,
1186 "Try to recover all the superblocks, ret: %d", err);
1187 if (!err)
1188 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1189 }
1190
1191 default_options(sbi);
1192
1193 /* parse mount options */
1194 err = parse_options(sb, data);
1195 if (err)
1196 goto restore_opts;
1197
1198 /*
1199 * Previous and new state of filesystem is RO,
1200 * so skip checking GC and FLUSH_MERGE conditions.
1201 */
1202 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1203 goto skip;
1204
1205 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1206 err = dquot_suspend(sb, -1);
1207 if (err < 0)
1208 goto restore_opts;
1209 } else {
1210 /* dquot_resume needs RW */
1211 sb->s_flags &= ~MS_RDONLY;
1212 dquot_resume(sb, -1);
1213 }
1214
1215 /* disallow enable/disable extent_cache dynamically */
1216 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1217 err = -EINVAL;
1218 f2fs_msg(sbi->sb, KERN_WARNING,
1219 "switch extent_cache option is not allowed");
1220 goto restore_opts;
1221 }
1222
1223 /*
1224 * We stop the GC thread if FS is mounted as RO
1225 * or if background_gc = off is passed in mount
1226 * option. Also sync the filesystem.
1227 */
1228 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1229 if (sbi->gc_thread) {
1230 stop_gc_thread(sbi);
1231 need_restart_gc = true;
1232 }
1233 } else if (!sbi->gc_thread) {
1234 err = start_gc_thread(sbi);
1235 if (err)
1236 goto restore_opts;
1237 need_stop_gc = true;
1238 }
1239
1240 if (*flags & MS_RDONLY) {
1241 writeback_inodes_sb(sb, WB_REASON_SYNC);
1242 sync_inodes_sb(sb);
1243
1244 set_sbi_flag(sbi, SBI_IS_DIRTY);
1245 set_sbi_flag(sbi, SBI_IS_CLOSE);
1246 f2fs_sync_fs(sb, 1);
1247 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1248 }
1249
1250 /*
1251 * We stop issue flush thread if FS is mounted as RO
1252 * or if flush_merge is not passed in mount option.
1253 */
1254 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1255 clear_opt(sbi, FLUSH_MERGE);
1256 destroy_flush_cmd_control(sbi, false);
1257 } else {
1258 err = create_flush_cmd_control(sbi);
1259 if (err)
1260 goto restore_gc;
1261 }
1262 skip:
1263 #ifdef CONFIG_QUOTA
1264 /* Release old quota file names */
1265 for (i = 0; i < MAXQUOTAS; i++)
1266 kfree(s_qf_names[i]);
1267 #endif
1268 /* Update the POSIXACL Flag */
1269 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1270 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1271
1272 return 0;
1273 restore_gc:
1274 if (need_restart_gc) {
1275 if (start_gc_thread(sbi))
1276 f2fs_msg(sbi->sb, KERN_WARNING,
1277 "background gc thread has stopped");
1278 } else if (need_stop_gc) {
1279 stop_gc_thread(sbi);
1280 }
1281 restore_opts:
1282 #ifdef CONFIG_QUOTA
1283 sbi->s_jquota_fmt = s_jquota_fmt;
1284 for (i = 0; i < MAXQUOTAS; i++) {
1285 kfree(sbi->s_qf_names[i]);
1286 sbi->s_qf_names[i] = s_qf_names[i];
1287 }
1288 #endif
1289 sbi->mount_opt = org_mount_opt;
1290 sbi->active_logs = active_logs;
1291 sb->s_flags = old_sb_flags;
1292 #ifdef CONFIG_F2FS_FAULT_INJECTION
1293 sbi->fault_info = ffi;
1294 #endif
1295 return err;
1296 }
1297
1298 #ifdef CONFIG_QUOTA
1299 /* Read data from quotafile */
1300 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1301 size_t len, loff_t off)
1302 {
1303 struct inode *inode = sb_dqopt(sb)->files[type];
1304 struct address_space *mapping = inode->i_mapping;
1305 block_t blkidx = F2FS_BYTES_TO_BLK(off);
1306 int offset = off & (sb->s_blocksize - 1);
1307 int tocopy;
1308 size_t toread;
1309 loff_t i_size = i_size_read(inode);
1310 struct page *page;
1311 char *kaddr;
1312
1313 if (off > i_size)
1314 return 0;
1315
1316 if (off + len > i_size)
1317 len = i_size - off;
1318 toread = len;
1319 while (toread > 0) {
1320 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1321 repeat:
1322 page = read_mapping_page(mapping, blkidx, NULL);
1323 if (IS_ERR(page))
1324 return PTR_ERR(page);
1325
1326 lock_page(page);
1327
1328 if (unlikely(page->mapping != mapping)) {
1329 f2fs_put_page(page, 1);
1330 goto repeat;
1331 }
1332 if (unlikely(!PageUptodate(page))) {
1333 f2fs_put_page(page, 1);
1334 return -EIO;
1335 }
1336
1337 kaddr = kmap_atomic(page);
1338 memcpy(data, kaddr + offset, tocopy);
1339 kunmap_atomic(kaddr);
1340 f2fs_put_page(page, 1);
1341
1342 offset = 0;
1343 toread -= tocopy;
1344 data += tocopy;
1345 blkidx++;
1346 }
1347 return len;
1348 }
1349
1350 /* Write to quotafile */
1351 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1352 const char *data, size_t len, loff_t off)
1353 {
1354 struct inode *inode = sb_dqopt(sb)->files[type];
1355 struct address_space *mapping = inode->i_mapping;
1356 const struct address_space_operations *a_ops = mapping->a_ops;
1357 int offset = off & (sb->s_blocksize - 1);
1358 size_t towrite = len;
1359 struct page *page;
1360 char *kaddr;
1361 int err = 0;
1362 int tocopy;
1363
1364 while (towrite > 0) {
1365 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1366 towrite);
1367
1368 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1369 &page, NULL);
1370 if (unlikely(err))
1371 break;
1372
1373 kaddr = kmap_atomic(page);
1374 memcpy(kaddr + offset, data, tocopy);
1375 kunmap_atomic(kaddr);
1376 flush_dcache_page(page);
1377
1378 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1379 page, NULL);
1380 offset = 0;
1381 towrite -= tocopy;
1382 off += tocopy;
1383 data += tocopy;
1384 cond_resched();
1385 }
1386
1387 if (len == towrite)
1388 return 0;
1389 inode->i_version++;
1390 inode->i_mtime = inode->i_ctime = current_time(inode);
1391 f2fs_mark_inode_dirty_sync(inode, false);
1392 return len - towrite;
1393 }
1394
1395 static struct dquot **f2fs_get_dquots(struct inode *inode)
1396 {
1397 return F2FS_I(inode)->i_dquot;
1398 }
1399
1400 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1401 {
1402 return &F2FS_I(inode)->i_reserved_quota;
1403 }
1404
1405 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1406 {
1407 return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1408 sbi->s_jquota_fmt, type);
1409 }
1410
1411 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi)
1412 {
1413 int i, ret;
1414
1415 for (i = 0; i < MAXQUOTAS; i++) {
1416 if (sbi->s_qf_names[i]) {
1417 ret = f2fs_quota_on_mount(sbi, i);
1418 if (ret < 0)
1419 f2fs_msg(sbi->sb, KERN_ERR,
1420 "Cannot turn on journaled "
1421 "quota: error %d", ret);
1422 }
1423 }
1424 }
1425
1426 static int f2fs_quota_sync(struct super_block *sb, int type)
1427 {
1428 struct quota_info *dqopt = sb_dqopt(sb);
1429 int cnt;
1430 int ret;
1431
1432 ret = dquot_writeback_dquots(sb, type);
1433 if (ret)
1434 return ret;
1435
1436 /*
1437 * Now when everything is written we can discard the pagecache so
1438 * that userspace sees the changes.
1439 */
1440 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1441 if (type != -1 && cnt != type)
1442 continue;
1443 if (!sb_has_quota_active(sb, cnt))
1444 continue;
1445
1446 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1447 if (ret)
1448 return ret;
1449
1450 inode_lock(dqopt->files[cnt]);
1451 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1452 inode_unlock(dqopt->files[cnt]);
1453 }
1454 return 0;
1455 }
1456
1457 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1458 const struct path *path)
1459 {
1460 struct inode *inode;
1461 int err;
1462
1463 err = f2fs_quota_sync(sb, type);
1464 if (err)
1465 return err;
1466
1467 err = dquot_quota_on(sb, type, format_id, path);
1468 if (err)
1469 return err;
1470
1471 inode = d_inode(path->dentry);
1472
1473 inode_lock(inode);
1474 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1475 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1476 S_NOATIME | S_IMMUTABLE);
1477 inode_unlock(inode);
1478 f2fs_mark_inode_dirty_sync(inode, false);
1479
1480 return 0;
1481 }
1482
1483 static int f2fs_quota_off(struct super_block *sb, int type)
1484 {
1485 struct inode *inode = sb_dqopt(sb)->files[type];
1486 int err;
1487
1488 if (!inode || !igrab(inode))
1489 return dquot_quota_off(sb, type);
1490
1491 f2fs_quota_sync(sb, type);
1492
1493 err = dquot_quota_off(sb, type);
1494 if (err)
1495 goto out_put;
1496
1497 inode_lock(inode);
1498 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1499 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1500 inode_unlock(inode);
1501 f2fs_mark_inode_dirty_sync(inode, false);
1502 out_put:
1503 iput(inode);
1504 return err;
1505 }
1506
1507 void f2fs_quota_off_umount(struct super_block *sb)
1508 {
1509 int type;
1510
1511 for (type = 0; type < MAXQUOTAS; type++)
1512 f2fs_quota_off(sb, type);
1513 }
1514
1515 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1516 {
1517 *projid = F2FS_I(inode)->i_projid;
1518 return 0;
1519 }
1520
1521 static const struct dquot_operations f2fs_quota_operations = {
1522 .get_reserved_space = f2fs_get_reserved_space,
1523 .write_dquot = dquot_commit,
1524 .acquire_dquot = dquot_acquire,
1525 .release_dquot = dquot_release,
1526 .mark_dirty = dquot_mark_dquot_dirty,
1527 .write_info = dquot_commit_info,
1528 .alloc_dquot = dquot_alloc,
1529 .destroy_dquot = dquot_destroy,
1530 .get_projid = f2fs_get_projid,
1531 .get_next_id = dquot_get_next_id,
1532 };
1533
1534 static const struct quotactl_ops f2fs_quotactl_ops = {
1535 .quota_on = f2fs_quota_on,
1536 .quota_off = f2fs_quota_off,
1537 .quota_sync = f2fs_quota_sync,
1538 .get_state = dquot_get_state,
1539 .set_info = dquot_set_dqinfo,
1540 .get_dqblk = dquot_get_dqblk,
1541 .set_dqblk = dquot_set_dqblk,
1542 .get_nextdqblk = dquot_get_next_dqblk,
1543 };
1544 #else
1545 void f2fs_quota_off_umount(struct super_block *sb)
1546 {
1547 }
1548 #endif
1549
1550 static const struct super_operations f2fs_sops = {
1551 .alloc_inode = f2fs_alloc_inode,
1552 .drop_inode = f2fs_drop_inode,
1553 .destroy_inode = f2fs_destroy_inode,
1554 .write_inode = f2fs_write_inode,
1555 .dirty_inode = f2fs_dirty_inode,
1556 .show_options = f2fs_show_options,
1557 #ifdef CONFIG_QUOTA
1558 .quota_read = f2fs_quota_read,
1559 .quota_write = f2fs_quota_write,
1560 .get_dquots = f2fs_get_dquots,
1561 #endif
1562 .evict_inode = f2fs_evict_inode,
1563 .put_super = f2fs_put_super,
1564 .sync_fs = f2fs_sync_fs,
1565 .freeze_fs = f2fs_freeze,
1566 .unfreeze_fs = f2fs_unfreeze,
1567 .statfs = f2fs_statfs,
1568 .remount_fs = f2fs_remount,
1569 };
1570
1571 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1572 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1573 {
1574 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1575 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1576 ctx, len, NULL);
1577 }
1578
1579 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1580 void *fs_data)
1581 {
1582 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1583 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1584 ctx, len, fs_data, XATTR_CREATE);
1585 }
1586
1587 static unsigned f2fs_max_namelen(struct inode *inode)
1588 {
1589 return S_ISLNK(inode->i_mode) ?
1590 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1591 }
1592
1593 static const struct fscrypt_operations f2fs_cryptops = {
1594 .key_prefix = "f2fs:",
1595 .get_context = f2fs_get_context,
1596 .set_context = f2fs_set_context,
1597 .is_encrypted = f2fs_encrypted_inode,
1598 .empty_dir = f2fs_empty_dir,
1599 .max_namelen = f2fs_max_namelen,
1600 };
1601 #else
1602 static const struct fscrypt_operations f2fs_cryptops = {
1603 .is_encrypted = f2fs_encrypted_inode,
1604 };
1605 #endif
1606
1607 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1608 u64 ino, u32 generation)
1609 {
1610 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1611 struct inode *inode;
1612
1613 if (check_nid_range(sbi, ino))
1614 return ERR_PTR(-ESTALE);
1615
1616 /*
1617 * f2fs_iget isn't quite right if the inode is currently unallocated!
1618 * However f2fs_iget currently does appropriate checks to handle stale
1619 * inodes so everything is OK.
1620 */
1621 inode = f2fs_iget(sb, ino);
1622 if (IS_ERR(inode))
1623 return ERR_CAST(inode);
1624 if (unlikely(generation && inode->i_generation != generation)) {
1625 /* we didn't find the right inode.. */
1626 iput(inode);
1627 return ERR_PTR(-ESTALE);
1628 }
1629 return inode;
1630 }
1631
1632 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1633 int fh_len, int fh_type)
1634 {
1635 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1636 f2fs_nfs_get_inode);
1637 }
1638
1639 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1640 int fh_len, int fh_type)
1641 {
1642 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1643 f2fs_nfs_get_inode);
1644 }
1645
1646 static const struct export_operations f2fs_export_ops = {
1647 .fh_to_dentry = f2fs_fh_to_dentry,
1648 .fh_to_parent = f2fs_fh_to_parent,
1649 .get_parent = f2fs_get_parent,
1650 };
1651
1652 static loff_t max_file_blocks(void)
1653 {
1654 loff_t result = 0;
1655 loff_t leaf_count = ADDRS_PER_BLOCK;
1656
1657 /*
1658 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1659 * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1660 * space in inode.i_addr, it will be more safe to reassign
1661 * result as zero.
1662 */
1663
1664 /* two direct node blocks */
1665 result += (leaf_count * 2);
1666
1667 /* two indirect node blocks */
1668 leaf_count *= NIDS_PER_BLOCK;
1669 result += (leaf_count * 2);
1670
1671 /* one double indirect node block */
1672 leaf_count *= NIDS_PER_BLOCK;
1673 result += leaf_count;
1674
1675 return result;
1676 }
1677
1678 static int __f2fs_commit_super(struct buffer_head *bh,
1679 struct f2fs_super_block *super)
1680 {
1681 lock_buffer(bh);
1682 if (super)
1683 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1684 set_buffer_uptodate(bh);
1685 set_buffer_dirty(bh);
1686 unlock_buffer(bh);
1687
1688 /* it's rare case, we can do fua all the time */
1689 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1690 }
1691
1692 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1693 struct buffer_head *bh)
1694 {
1695 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1696 (bh->b_data + F2FS_SUPER_OFFSET);
1697 struct super_block *sb = sbi->sb;
1698 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1699 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1700 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1701 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1702 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1703 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1704 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1705 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1706 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1707 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1708 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1709 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1710 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1711 u64 main_end_blkaddr = main_blkaddr +
1712 (segment_count_main << log_blocks_per_seg);
1713 u64 seg_end_blkaddr = segment0_blkaddr +
1714 (segment_count << log_blocks_per_seg);
1715
1716 if (segment0_blkaddr != cp_blkaddr) {
1717 f2fs_msg(sb, KERN_INFO,
1718 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1719 segment0_blkaddr, cp_blkaddr);
1720 return true;
1721 }
1722
1723 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1724 sit_blkaddr) {
1725 f2fs_msg(sb, KERN_INFO,
1726 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1727 cp_blkaddr, sit_blkaddr,
1728 segment_count_ckpt << log_blocks_per_seg);
1729 return true;
1730 }
1731
1732 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1733 nat_blkaddr) {
1734 f2fs_msg(sb, KERN_INFO,
1735 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1736 sit_blkaddr, nat_blkaddr,
1737 segment_count_sit << log_blocks_per_seg);
1738 return true;
1739 }
1740
1741 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1742 ssa_blkaddr) {
1743 f2fs_msg(sb, KERN_INFO,
1744 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1745 nat_blkaddr, ssa_blkaddr,
1746 segment_count_nat << log_blocks_per_seg);
1747 return true;
1748 }
1749
1750 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1751 main_blkaddr) {
1752 f2fs_msg(sb, KERN_INFO,
1753 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1754 ssa_blkaddr, main_blkaddr,
1755 segment_count_ssa << log_blocks_per_seg);
1756 return true;
1757 }
1758
1759 if (main_end_blkaddr > seg_end_blkaddr) {
1760 f2fs_msg(sb, KERN_INFO,
1761 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1762 main_blkaddr,
1763 segment0_blkaddr +
1764 (segment_count << log_blocks_per_seg),
1765 segment_count_main << log_blocks_per_seg);
1766 return true;
1767 } else if (main_end_blkaddr < seg_end_blkaddr) {
1768 int err = 0;
1769 char *res;
1770
1771 /* fix in-memory information all the time */
1772 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1773 segment0_blkaddr) >> log_blocks_per_seg);
1774
1775 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1776 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1777 res = "internally";
1778 } else {
1779 err = __f2fs_commit_super(bh, NULL);
1780 res = err ? "failed" : "done";
1781 }
1782 f2fs_msg(sb, KERN_INFO,
1783 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1784 res, main_blkaddr,
1785 segment0_blkaddr +
1786 (segment_count << log_blocks_per_seg),
1787 segment_count_main << log_blocks_per_seg);
1788 if (err)
1789 return true;
1790 }
1791 return false;
1792 }
1793
1794 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1795 struct buffer_head *bh)
1796 {
1797 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1798 (bh->b_data + F2FS_SUPER_OFFSET);
1799 struct super_block *sb = sbi->sb;
1800 unsigned int blocksize;
1801
1802 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1803 f2fs_msg(sb, KERN_INFO,
1804 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1805 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1806 return 1;
1807 }
1808
1809 /* Currently, support only 4KB page cache size */
1810 if (F2FS_BLKSIZE != PAGE_SIZE) {
1811 f2fs_msg(sb, KERN_INFO,
1812 "Invalid page_cache_size (%lu), supports only 4KB\n",
1813 PAGE_SIZE);
1814 return 1;
1815 }
1816
1817 /* Currently, support only 4KB block size */
1818 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1819 if (blocksize != F2FS_BLKSIZE) {
1820 f2fs_msg(sb, KERN_INFO,
1821 "Invalid blocksize (%u), supports only 4KB\n",
1822 blocksize);
1823 return 1;
1824 }
1825
1826 /* check log blocks per segment */
1827 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1828 f2fs_msg(sb, KERN_INFO,
1829 "Invalid log blocks per segment (%u)\n",
1830 le32_to_cpu(raw_super->log_blocks_per_seg));
1831 return 1;
1832 }
1833
1834 /* Currently, support 512/1024/2048/4096 bytes sector size */
1835 if (le32_to_cpu(raw_super->log_sectorsize) >
1836 F2FS_MAX_LOG_SECTOR_SIZE ||
1837 le32_to_cpu(raw_super->log_sectorsize) <
1838 F2FS_MIN_LOG_SECTOR_SIZE) {
1839 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1840 le32_to_cpu(raw_super->log_sectorsize));
1841 return 1;
1842 }
1843 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1844 le32_to_cpu(raw_super->log_sectorsize) !=
1845 F2FS_MAX_LOG_SECTOR_SIZE) {
1846 f2fs_msg(sb, KERN_INFO,
1847 "Invalid log sectors per block(%u) log sectorsize(%u)",
1848 le32_to_cpu(raw_super->log_sectors_per_block),
1849 le32_to_cpu(raw_super->log_sectorsize));
1850 return 1;
1851 }
1852
1853 /* check reserved ino info */
1854 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1855 le32_to_cpu(raw_super->meta_ino) != 2 ||
1856 le32_to_cpu(raw_super->root_ino) != 3) {
1857 f2fs_msg(sb, KERN_INFO,
1858 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1859 le32_to_cpu(raw_super->node_ino),
1860 le32_to_cpu(raw_super->meta_ino),
1861 le32_to_cpu(raw_super->root_ino));
1862 return 1;
1863 }
1864
1865 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1866 f2fs_msg(sb, KERN_INFO,
1867 "Invalid segment count (%u)",
1868 le32_to_cpu(raw_super->segment_count));
1869 return 1;
1870 }
1871
1872 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1873 if (sanity_check_area_boundary(sbi, bh))
1874 return 1;
1875
1876 return 0;
1877 }
1878
1879 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1880 {
1881 unsigned int total, fsmeta;
1882 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1883 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1884 unsigned int ovp_segments, reserved_segments;
1885 unsigned int main_segs, blocks_per_seg;
1886 int i;
1887
1888 total = le32_to_cpu(raw_super->segment_count);
1889 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1890 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1891 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1892 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1893 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1894
1895 if (unlikely(fsmeta >= total))
1896 return 1;
1897
1898 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1899 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1900
1901 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1902 ovp_segments == 0 || reserved_segments == 0)) {
1903 f2fs_msg(sbi->sb, KERN_ERR,
1904 "Wrong layout: check mkfs.f2fs version");
1905 return 1;
1906 }
1907
1908 main_segs = le32_to_cpu(raw_super->segment_count_main);
1909 blocks_per_seg = sbi->blocks_per_seg;
1910
1911 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1912 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1913 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1914 return 1;
1915 }
1916 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1917 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1918 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1919 return 1;
1920 }
1921
1922 if (unlikely(f2fs_cp_error(sbi))) {
1923 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1924 return 1;
1925 }
1926 return 0;
1927 }
1928
1929 static void init_sb_info(struct f2fs_sb_info *sbi)
1930 {
1931 struct f2fs_super_block *raw_super = sbi->raw_super;
1932 int i, j;
1933
1934 sbi->log_sectors_per_block =
1935 le32_to_cpu(raw_super->log_sectors_per_block);
1936 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1937 sbi->blocksize = 1 << sbi->log_blocksize;
1938 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1939 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1940 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1941 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1942 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1943 sbi->total_node_count =
1944 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1945 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1946 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1947 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1948 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1949 sbi->cur_victim_sec = NULL_SECNO;
1950 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1951
1952 sbi->dir_level = DEF_DIR_LEVEL;
1953 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1954 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1955 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1956
1957 for (i = 0; i < NR_COUNT_TYPE; i++)
1958 atomic_set(&sbi->nr_pages[i], 0);
1959
1960 atomic_set(&sbi->wb_sync_req, 0);
1961
1962 INIT_LIST_HEAD(&sbi->s_list);
1963 mutex_init(&sbi->umount_mutex);
1964 for (i = 0; i < NR_PAGE_TYPE - 1; i++)
1965 for (j = HOT; j < NR_TEMP_TYPE; j++)
1966 mutex_init(&sbi->wio_mutex[i][j]);
1967 spin_lock_init(&sbi->cp_lock);
1968 }
1969
1970 static int init_percpu_info(struct f2fs_sb_info *sbi)
1971 {
1972 int err;
1973
1974 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1975 if (err)
1976 return err;
1977
1978 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1979 GFP_KERNEL);
1980 }
1981
1982 #ifdef CONFIG_BLK_DEV_ZONED
1983 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1984 {
1985 struct block_device *bdev = FDEV(devi).bdev;
1986 sector_t nr_sectors = bdev->bd_part->nr_sects;
1987 sector_t sector = 0;
1988 struct blk_zone *zones;
1989 unsigned int i, nr_zones;
1990 unsigned int n = 0;
1991 int err = -EIO;
1992
1993 if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1994 return 0;
1995
1996 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1997 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1998 return -EINVAL;
1999 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2000 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2001 __ilog2_u32(sbi->blocks_per_blkz))
2002 return -EINVAL;
2003 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2004 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2005 sbi->log_blocks_per_blkz;
2006 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2007 FDEV(devi).nr_blkz++;
2008
2009 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2010 if (!FDEV(devi).blkz_type)
2011 return -ENOMEM;
2012
2013 #define F2FS_REPORT_NR_ZONES 4096
2014
2015 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2016 GFP_KERNEL);
2017 if (!zones)
2018 return -ENOMEM;
2019
2020 /* Get block zones type */
2021 while (zones && sector < nr_sectors) {
2022
2023 nr_zones = F2FS_REPORT_NR_ZONES;
2024 err = blkdev_report_zones(bdev, sector,
2025 zones, &nr_zones,
2026 GFP_KERNEL);
2027 if (err)
2028 break;
2029 if (!nr_zones) {
2030 err = -EIO;
2031 break;
2032 }
2033
2034 for (i = 0; i < nr_zones; i++) {
2035 FDEV(devi).blkz_type[n] = zones[i].type;
2036 sector += zones[i].len;
2037 n++;
2038 }
2039 }
2040
2041 kfree(zones);
2042
2043 return err;
2044 }
2045 #endif
2046
2047 /*
2048 * Read f2fs raw super block.
2049 * Because we have two copies of super block, so read both of them
2050 * to get the first valid one. If any one of them is broken, we pass
2051 * them recovery flag back to the caller.
2052 */
2053 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2054 struct f2fs_super_block **raw_super,
2055 int *valid_super_block, int *recovery)
2056 {
2057 struct super_block *sb = sbi->sb;
2058 int block;
2059 struct buffer_head *bh;
2060 struct f2fs_super_block *super;
2061 int err = 0;
2062
2063 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2064 if (!super)
2065 return -ENOMEM;
2066
2067 for (block = 0; block < 2; block++) {
2068 bh = sb_bread(sb, block);
2069 if (!bh) {
2070 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2071 block + 1);
2072 err = -EIO;
2073 continue;
2074 }
2075
2076 /* sanity checking of raw super */
2077 if (sanity_check_raw_super(sbi, bh)) {
2078 f2fs_msg(sb, KERN_ERR,
2079 "Can't find valid F2FS filesystem in %dth superblock",
2080 block + 1);
2081 err = -EINVAL;
2082 brelse(bh);
2083 continue;
2084 }
2085
2086 if (!*raw_super) {
2087 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2088 sizeof(*super));
2089 *valid_super_block = block;
2090 *raw_super = super;
2091 }
2092 brelse(bh);
2093 }
2094
2095 /* Fail to read any one of the superblocks*/
2096 if (err < 0)
2097 *recovery = 1;
2098
2099 /* No valid superblock */
2100 if (!*raw_super)
2101 kfree(super);
2102 else
2103 err = 0;
2104
2105 return err;
2106 }
2107
2108 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2109 {
2110 struct buffer_head *bh;
2111 int err;
2112
2113 if ((recover && f2fs_readonly(sbi->sb)) ||
2114 bdev_read_only(sbi->sb->s_bdev)) {
2115 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2116 return -EROFS;
2117 }
2118
2119 /* write back-up superblock first */
2120 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2121 if (!bh)
2122 return -EIO;
2123 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2124 brelse(bh);
2125
2126 /* if we are in recovery path, skip writing valid superblock */
2127 if (recover || err)
2128 return err;
2129
2130 /* write current valid superblock */
2131 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2132 if (!bh)
2133 return -EIO;
2134 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2135 brelse(bh);
2136 return err;
2137 }
2138
2139 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2140 {
2141 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2142 unsigned int max_devices = MAX_DEVICES;
2143 int i;
2144
2145 /* Initialize single device information */
2146 if (!RDEV(0).path[0]) {
2147 if (!bdev_is_zoned(sbi->sb->s_bdev))
2148 return 0;
2149 max_devices = 1;
2150 }
2151
2152 /*
2153 * Initialize multiple devices information, or single
2154 * zoned block device information.
2155 */
2156 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2157 GFP_KERNEL);
2158 if (!sbi->devs)
2159 return -ENOMEM;
2160
2161 for (i = 0; i < max_devices; i++) {
2162
2163 if (i > 0 && !RDEV(i).path[0])
2164 break;
2165
2166 if (max_devices == 1) {
2167 /* Single zoned block device mount */
2168 FDEV(0).bdev =
2169 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2170 sbi->sb->s_mode, sbi->sb->s_type);
2171 } else {
2172 /* Multi-device mount */
2173 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2174 FDEV(i).total_segments =
2175 le32_to_cpu(RDEV(i).total_segments);
2176 if (i == 0) {
2177 FDEV(i).start_blk = 0;
2178 FDEV(i).end_blk = FDEV(i).start_blk +
2179 (FDEV(i).total_segments <<
2180 sbi->log_blocks_per_seg) - 1 +
2181 le32_to_cpu(raw_super->segment0_blkaddr);
2182 } else {
2183 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2184 FDEV(i).end_blk = FDEV(i).start_blk +
2185 (FDEV(i).total_segments <<
2186 sbi->log_blocks_per_seg) - 1;
2187 }
2188 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2189 sbi->sb->s_mode, sbi->sb->s_type);
2190 }
2191 if (IS_ERR(FDEV(i).bdev))
2192 return PTR_ERR(FDEV(i).bdev);
2193
2194 /* to release errored devices */
2195 sbi->s_ndevs = i + 1;
2196
2197 #ifdef CONFIG_BLK_DEV_ZONED
2198 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2199 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
2200 f2fs_msg(sbi->sb, KERN_ERR,
2201 "Zoned block device feature not enabled\n");
2202 return -EINVAL;
2203 }
2204 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2205 if (init_blkz_info(sbi, i)) {
2206 f2fs_msg(sbi->sb, KERN_ERR,
2207 "Failed to initialize F2FS blkzone information");
2208 return -EINVAL;
2209 }
2210 if (max_devices == 1)
2211 break;
2212 f2fs_msg(sbi->sb, KERN_INFO,
2213 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2214 i, FDEV(i).path,
2215 FDEV(i).total_segments,
2216 FDEV(i).start_blk, FDEV(i).end_blk,
2217 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2218 "Host-aware" : "Host-managed");
2219 continue;
2220 }
2221 #endif
2222 f2fs_msg(sbi->sb, KERN_INFO,
2223 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2224 i, FDEV(i).path,
2225 FDEV(i).total_segments,
2226 FDEV(i).start_blk, FDEV(i).end_blk);
2227 }
2228 f2fs_msg(sbi->sb, KERN_INFO,
2229 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2230 return 0;
2231 }
2232
2233 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2234 {
2235 struct f2fs_sb_info *sbi;
2236 struct f2fs_super_block *raw_super;
2237 struct inode *root;
2238 int err;
2239 bool retry = true, need_fsck = false;
2240 char *options = NULL;
2241 int recovery, i, valid_super_block;
2242 struct curseg_info *seg_i;
2243
2244 try_onemore:
2245 err = -EINVAL;
2246 raw_super = NULL;
2247 valid_super_block = -1;
2248 recovery = 0;
2249
2250 /* allocate memory for f2fs-specific super block info */
2251 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2252 if (!sbi)
2253 return -ENOMEM;
2254
2255 sbi->sb = sb;
2256
2257 /* Load the checksum driver */
2258 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2259 if (IS_ERR(sbi->s_chksum_driver)) {
2260 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2261 err = PTR_ERR(sbi->s_chksum_driver);
2262 sbi->s_chksum_driver = NULL;
2263 goto free_sbi;
2264 }
2265
2266 /* set a block size */
2267 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2268 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2269 goto free_sbi;
2270 }
2271
2272 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2273 &recovery);
2274 if (err)
2275 goto free_sbi;
2276
2277 sb->s_fs_info = sbi;
2278 sbi->raw_super = raw_super;
2279
2280 /* precompute checksum seed for metadata */
2281 if (f2fs_sb_has_inode_chksum(sb))
2282 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2283 sizeof(raw_super->uuid));
2284
2285 /*
2286 * The BLKZONED feature indicates that the drive was formatted with
2287 * zone alignment optimization. This is optional for host-aware
2288 * devices, but mandatory for host-managed zoned block devices.
2289 */
2290 #ifndef CONFIG_BLK_DEV_ZONED
2291 if (f2fs_sb_mounted_blkzoned(sb)) {
2292 f2fs_msg(sb, KERN_ERR,
2293 "Zoned block device support is not enabled\n");
2294 err = -EOPNOTSUPP;
2295 goto free_sb_buf;
2296 }
2297 #endif
2298 default_options(sbi);
2299 /* parse mount options */
2300 options = kstrdup((const char *)data, GFP_KERNEL);
2301 if (data && !options) {
2302 err = -ENOMEM;
2303 goto free_sb_buf;
2304 }
2305
2306 err = parse_options(sb, options);
2307 if (err)
2308 goto free_options;
2309
2310 sbi->max_file_blocks = max_file_blocks();
2311 sb->s_maxbytes = sbi->max_file_blocks <<
2312 le32_to_cpu(raw_super->log_blocksize);
2313 sb->s_max_links = F2FS_LINK_MAX;
2314 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2315
2316 #ifdef CONFIG_QUOTA
2317 sb->dq_op = &f2fs_quota_operations;
2318 sb->s_qcop = &f2fs_quotactl_ops;
2319 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2320 #endif
2321
2322 sb->s_op = &f2fs_sops;
2323 sb->s_cop = &f2fs_cryptops;
2324 sb->s_xattr = f2fs_xattr_handlers;
2325 sb->s_export_op = &f2fs_export_ops;
2326 sb->s_magic = F2FS_SUPER_MAGIC;
2327 sb->s_time_gran = 1;
2328 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2329 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2330 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2331
2332 /* init f2fs-specific super block info */
2333 sbi->valid_super_block = valid_super_block;
2334 mutex_init(&sbi->gc_mutex);
2335 mutex_init(&sbi->cp_mutex);
2336 init_rwsem(&sbi->node_write);
2337 init_rwsem(&sbi->node_change);
2338
2339 /* disallow all the data/node/meta page writes */
2340 set_sbi_flag(sbi, SBI_POR_DOING);
2341 spin_lock_init(&sbi->stat_lock);
2342
2343 /* init iostat info */
2344 spin_lock_init(&sbi->iostat_lock);
2345 sbi->iostat_enable = false;
2346
2347 for (i = 0; i < NR_PAGE_TYPE; i++) {
2348 int n = (i == META) ? 1: NR_TEMP_TYPE;
2349 int j;
2350
2351 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2352 GFP_KERNEL);
2353 if (!sbi->write_io[i]) {
2354 err = -ENOMEM;
2355 goto free_options;
2356 }
2357
2358 for (j = HOT; j < n; j++) {
2359 init_rwsem(&sbi->write_io[i][j].io_rwsem);
2360 sbi->write_io[i][j].sbi = sbi;
2361 sbi->write_io[i][j].bio = NULL;
2362 spin_lock_init(&sbi->write_io[i][j].io_lock);
2363 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2364 }
2365 }
2366
2367 init_rwsem(&sbi->cp_rwsem);
2368 init_waitqueue_head(&sbi->cp_wait);
2369 init_sb_info(sbi);
2370
2371 err = init_percpu_info(sbi);
2372 if (err)
2373 goto free_options;
2374
2375 if (F2FS_IO_SIZE(sbi) > 1) {
2376 sbi->write_io_dummy =
2377 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2378 if (!sbi->write_io_dummy) {
2379 err = -ENOMEM;
2380 goto free_options;
2381 }
2382 }
2383
2384 /* get an inode for meta space */
2385 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2386 if (IS_ERR(sbi->meta_inode)) {
2387 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2388 err = PTR_ERR(sbi->meta_inode);
2389 goto free_io_dummy;
2390 }
2391
2392 err = get_valid_checkpoint(sbi);
2393 if (err) {
2394 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2395 goto free_meta_inode;
2396 }
2397
2398 /* Initialize device list */
2399 err = f2fs_scan_devices(sbi);
2400 if (err) {
2401 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2402 goto free_devices;
2403 }
2404
2405 sbi->total_valid_node_count =
2406 le32_to_cpu(sbi->ckpt->valid_node_count);
2407 percpu_counter_set(&sbi->total_valid_inode_count,
2408 le32_to_cpu(sbi->ckpt->valid_inode_count));
2409 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2410 sbi->total_valid_block_count =
2411 le64_to_cpu(sbi->ckpt->valid_block_count);
2412 sbi->last_valid_block_count = sbi->total_valid_block_count;
2413 sbi->reserved_blocks = 0;
2414
2415 for (i = 0; i < NR_INODE_TYPE; i++) {
2416 INIT_LIST_HEAD(&sbi->inode_list[i]);
2417 spin_lock_init(&sbi->inode_lock[i]);
2418 }
2419
2420 init_extent_cache_info(sbi);
2421
2422 init_ino_entry_info(sbi);
2423
2424 /* setup f2fs internal modules */
2425 err = build_segment_manager(sbi);
2426 if (err) {
2427 f2fs_msg(sb, KERN_ERR,
2428 "Failed to initialize F2FS segment manager");
2429 goto free_sm;
2430 }
2431 err = build_node_manager(sbi);
2432 if (err) {
2433 f2fs_msg(sb, KERN_ERR,
2434 "Failed to initialize F2FS node manager");
2435 goto free_nm;
2436 }
2437
2438 /* For write statistics */
2439 if (sb->s_bdev->bd_part)
2440 sbi->sectors_written_start =
2441 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2442
2443 /* Read accumulated write IO statistics if exists */
2444 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2445 if (__exist_node_summaries(sbi))
2446 sbi->kbytes_written =
2447 le64_to_cpu(seg_i->journal->info.kbytes_written);
2448
2449 build_gc_manager(sbi);
2450
2451 /* get an inode for node space */
2452 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2453 if (IS_ERR(sbi->node_inode)) {
2454 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2455 err = PTR_ERR(sbi->node_inode);
2456 goto free_nm;
2457 }
2458
2459 f2fs_join_shrinker(sbi);
2460
2461 err = f2fs_build_stats(sbi);
2462 if (err)
2463 goto free_nm;
2464
2465 /* read root inode and dentry */
2466 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2467 if (IS_ERR(root)) {
2468 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2469 err = PTR_ERR(root);
2470 goto free_node_inode;
2471 }
2472 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2473 iput(root);
2474 err = -EINVAL;
2475 goto free_node_inode;
2476 }
2477
2478 sb->s_root = d_make_root(root); /* allocate root dentry */
2479 if (!sb->s_root) {
2480 err = -ENOMEM;
2481 goto free_root_inode;
2482 }
2483
2484 err = f2fs_register_sysfs(sbi);
2485 if (err)
2486 goto free_root_inode;
2487
2488 /* if there are nt orphan nodes free them */
2489 err = recover_orphan_inodes(sbi);
2490 if (err)
2491 goto free_sysfs;
2492
2493 /* recover fsynced data */
2494 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2495 /*
2496 * mount should be failed, when device has readonly mode, and
2497 * previous checkpoint was not done by clean system shutdown.
2498 */
2499 if (bdev_read_only(sb->s_bdev) &&
2500 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2501 err = -EROFS;
2502 goto free_meta;
2503 }
2504
2505 if (need_fsck)
2506 set_sbi_flag(sbi, SBI_NEED_FSCK);
2507
2508 if (!retry)
2509 goto skip_recovery;
2510
2511 err = recover_fsync_data(sbi, false);
2512 if (err < 0) {
2513 need_fsck = true;
2514 f2fs_msg(sb, KERN_ERR,
2515 "Cannot recover all fsync data errno=%d", err);
2516 goto free_meta;
2517 }
2518 } else {
2519 err = recover_fsync_data(sbi, true);
2520
2521 if (!f2fs_readonly(sb) && err > 0) {
2522 err = -EINVAL;
2523 f2fs_msg(sb, KERN_ERR,
2524 "Need to recover fsync data");
2525 goto free_sysfs;
2526 }
2527 }
2528 skip_recovery:
2529 /* recover_fsync_data() cleared this already */
2530 clear_sbi_flag(sbi, SBI_POR_DOING);
2531
2532 /*
2533 * If filesystem is not mounted as read-only then
2534 * do start the gc_thread.
2535 */
2536 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2537 /* After POR, we can run background GC thread.*/
2538 err = start_gc_thread(sbi);
2539 if (err)
2540 goto free_meta;
2541 }
2542 kfree(options);
2543
2544 /* recover broken superblock */
2545 if (recovery) {
2546 err = f2fs_commit_super(sbi, true);
2547 f2fs_msg(sb, KERN_INFO,
2548 "Try to recover %dth superblock, ret: %d",
2549 sbi->valid_super_block ? 1 : 2, err);
2550 }
2551
2552 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2553 cur_cp_version(F2FS_CKPT(sbi)));
2554 f2fs_update_time(sbi, CP_TIME);
2555 f2fs_update_time(sbi, REQ_TIME);
2556 return 0;
2557
2558 free_meta:
2559 f2fs_sync_inode_meta(sbi);
2560 /*
2561 * Some dirty meta pages can be produced by recover_orphan_inodes()
2562 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2563 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2564 * falls into an infinite loop in sync_meta_pages().
2565 */
2566 truncate_inode_pages_final(META_MAPPING(sbi));
2567 free_sysfs:
2568 f2fs_unregister_sysfs(sbi);
2569 free_root_inode:
2570 dput(sb->s_root);
2571 sb->s_root = NULL;
2572 free_node_inode:
2573 truncate_inode_pages_final(NODE_MAPPING(sbi));
2574 mutex_lock(&sbi->umount_mutex);
2575 release_ino_entry(sbi, true);
2576 f2fs_leave_shrinker(sbi);
2577 iput(sbi->node_inode);
2578 mutex_unlock(&sbi->umount_mutex);
2579 f2fs_destroy_stats(sbi);
2580 free_nm:
2581 destroy_node_manager(sbi);
2582 free_sm:
2583 destroy_segment_manager(sbi);
2584 free_devices:
2585 destroy_device_list(sbi);
2586 kfree(sbi->ckpt);
2587 free_meta_inode:
2588 make_bad_inode(sbi->meta_inode);
2589 iput(sbi->meta_inode);
2590 free_io_dummy:
2591 mempool_destroy(sbi->write_io_dummy);
2592 free_options:
2593 for (i = 0; i < NR_PAGE_TYPE; i++)
2594 kfree(sbi->write_io[i]);
2595 destroy_percpu_info(sbi);
2596 #ifdef CONFIG_QUOTA
2597 for (i = 0; i < MAXQUOTAS; i++)
2598 kfree(sbi->s_qf_names[i]);
2599 #endif
2600 kfree(options);
2601 free_sb_buf:
2602 kfree(raw_super);
2603 free_sbi:
2604 if (sbi->s_chksum_driver)
2605 crypto_free_shash(sbi->s_chksum_driver);
2606 kfree(sbi);
2607
2608 /* give only one another chance */
2609 if (retry) {
2610 retry = false;
2611 shrink_dcache_sb(sb);
2612 goto try_onemore;
2613 }
2614 return err;
2615 }
2616
2617 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2618 const char *dev_name, void *data)
2619 {
2620 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2621 }
2622
2623 static void kill_f2fs_super(struct super_block *sb)
2624 {
2625 if (sb->s_root) {
2626 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2627 stop_gc_thread(F2FS_SB(sb));
2628 stop_discard_thread(F2FS_SB(sb));
2629 }
2630 kill_block_super(sb);
2631 }
2632
2633 static struct file_system_type f2fs_fs_type = {
2634 .owner = THIS_MODULE,
2635 .name = "f2fs",
2636 .mount = f2fs_mount,
2637 .kill_sb = kill_f2fs_super,
2638 .fs_flags = FS_REQUIRES_DEV,
2639 };
2640 MODULE_ALIAS_FS("f2fs");
2641
2642 static int __init init_inodecache(void)
2643 {
2644 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2645 sizeof(struct f2fs_inode_info), 0,
2646 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2647 if (!f2fs_inode_cachep)
2648 return -ENOMEM;
2649 return 0;
2650 }
2651
2652 static void destroy_inodecache(void)
2653 {
2654 /*
2655 * Make sure all delayed rcu free inodes are flushed before we
2656 * destroy cache.
2657 */
2658 rcu_barrier();
2659 kmem_cache_destroy(f2fs_inode_cachep);
2660 }
2661
2662 static int __init init_f2fs_fs(void)
2663 {
2664 int err;
2665
2666 f2fs_build_trace_ios();
2667
2668 err = init_inodecache();
2669 if (err)
2670 goto fail;
2671 err = create_node_manager_caches();
2672 if (err)
2673 goto free_inodecache;
2674 err = create_segment_manager_caches();
2675 if (err)
2676 goto free_node_manager_caches;
2677 err = create_checkpoint_caches();
2678 if (err)
2679 goto free_segment_manager_caches;
2680 err = create_extent_cache();
2681 if (err)
2682 goto free_checkpoint_caches;
2683 err = f2fs_init_sysfs();
2684 if (err)
2685 goto free_extent_cache;
2686 err = register_shrinker(&f2fs_shrinker_info);
2687 if (err)
2688 goto free_sysfs;
2689 err = register_filesystem(&f2fs_fs_type);
2690 if (err)
2691 goto free_shrinker;
2692 err = f2fs_create_root_stats();
2693 if (err)
2694 goto free_filesystem;
2695 return 0;
2696
2697 free_filesystem:
2698 unregister_filesystem(&f2fs_fs_type);
2699 free_shrinker:
2700 unregister_shrinker(&f2fs_shrinker_info);
2701 free_sysfs:
2702 f2fs_exit_sysfs();
2703 free_extent_cache:
2704 destroy_extent_cache();
2705 free_checkpoint_caches:
2706 destroy_checkpoint_caches();
2707 free_segment_manager_caches:
2708 destroy_segment_manager_caches();
2709 free_node_manager_caches:
2710 destroy_node_manager_caches();
2711 free_inodecache:
2712 destroy_inodecache();
2713 fail:
2714 return err;
2715 }
2716
2717 static void __exit exit_f2fs_fs(void)
2718 {
2719 f2fs_destroy_root_stats();
2720 unregister_filesystem(&f2fs_fs_type);
2721 unregister_shrinker(&f2fs_shrinker_info);
2722 f2fs_exit_sysfs();
2723 destroy_extent_cache();
2724 destroy_checkpoint_caches();
2725 destroy_segment_manager_caches();
2726 destroy_node_manager_caches();
2727 destroy_inodecache();
2728 f2fs_destroy_trace_ios();
2729 }
2730
2731 module_init(init_f2fs_fs)
2732 module_exit(exit_f2fs_fs)
2733
2734 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2735 MODULE_DESCRIPTION("Flash Friendly File System");
2736 MODULE_LICENSE("GPL");
2737