]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/file.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[thirdparty/linux.git] / fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/file.c
4 *
5 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 *
7 * Manage the dynamic fd arrays in the process files_struct.
8 */
9
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24
25 #include "internal.h"
26
27 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
28 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
29 /* our min() is unusable in constant expressions ;-/ */
30 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
31 unsigned int sysctl_nr_open_max =
32 __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
33
34 static void __free_fdtable(struct fdtable *fdt)
35 {
36 kvfree(fdt->fd);
37 kvfree(fdt->open_fds);
38 kfree(fdt);
39 }
40
41 static void free_fdtable_rcu(struct rcu_head *rcu)
42 {
43 __free_fdtable(container_of(rcu, struct fdtable, rcu));
44 }
45
46 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
47 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
48
49 /*
50 * Copy 'count' fd bits from the old table to the new table and clear the extra
51 * space if any. This does not copy the file pointers. Called with the files
52 * spinlock held for write.
53 */
54 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
55 unsigned int count)
56 {
57 unsigned int cpy, set;
58
59 cpy = count / BITS_PER_BYTE;
60 set = (nfdt->max_fds - count) / BITS_PER_BYTE;
61 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
62 memset((char *)nfdt->open_fds + cpy, 0, set);
63 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
64 memset((char *)nfdt->close_on_exec + cpy, 0, set);
65
66 cpy = BITBIT_SIZE(count);
67 set = BITBIT_SIZE(nfdt->max_fds) - cpy;
68 memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
69 memset((char *)nfdt->full_fds_bits + cpy, 0, set);
70 }
71
72 /*
73 * Copy all file descriptors from the old table to the new, expanded table and
74 * clear the extra space. Called with the files spinlock held for write.
75 */
76 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
77 {
78 size_t cpy, set;
79
80 BUG_ON(nfdt->max_fds < ofdt->max_fds);
81
82 cpy = ofdt->max_fds * sizeof(struct file *);
83 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
84 memcpy(nfdt->fd, ofdt->fd, cpy);
85 memset((char *)nfdt->fd + cpy, 0, set);
86
87 copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
88 }
89
90 /*
91 * Note how the fdtable bitmap allocations very much have to be a multiple of
92 * BITS_PER_LONG. This is not only because we walk those things in chunks of
93 * 'unsigned long' in some places, but simply because that is how the Linux
94 * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
95 * they are very much "bits in an array of unsigned long".
96 *
97 * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied
98 * by that "1024/sizeof(ptr)" before, we already know there are sufficient
99 * clear low bits. Clang seems to realize that, gcc ends up being confused.
100 *
101 * On a 128-bit machine, the ALIGN() would actually matter. In the meantime,
102 * let's consider it documentation (and maybe a test-case for gcc to improve
103 * its code generation ;)
104 */
105 static struct fdtable * alloc_fdtable(unsigned int nr)
106 {
107 struct fdtable *fdt;
108 void *data;
109
110 /*
111 * Figure out how many fds we actually want to support in this fdtable.
112 * Allocation steps are keyed to the size of the fdarray, since it
113 * grows far faster than any of the other dynamic data. We try to fit
114 * the fdarray into comfortable page-tuned chunks: starting at 1024B
115 * and growing in powers of two from there on.
116 */
117 nr /= (1024 / sizeof(struct file *));
118 nr = roundup_pow_of_two(nr + 1);
119 nr *= (1024 / sizeof(struct file *));
120 nr = ALIGN(nr, BITS_PER_LONG);
121 /*
122 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
123 * had been set lower between the check in expand_files() and here. Deal
124 * with that in caller, it's cheaper that way.
125 *
126 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
127 * bitmaps handling below becomes unpleasant, to put it mildly...
128 */
129 if (unlikely(nr > sysctl_nr_open))
130 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
131
132 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
133 if (!fdt)
134 goto out;
135 fdt->max_fds = nr;
136 data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
137 if (!data)
138 goto out_fdt;
139 fdt->fd = data;
140
141 data = kvmalloc(max_t(size_t,
142 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
143 GFP_KERNEL_ACCOUNT);
144 if (!data)
145 goto out_arr;
146 fdt->open_fds = data;
147 data += nr / BITS_PER_BYTE;
148 fdt->close_on_exec = data;
149 data += nr / BITS_PER_BYTE;
150 fdt->full_fds_bits = data;
151
152 return fdt;
153
154 out_arr:
155 kvfree(fdt->fd);
156 out_fdt:
157 kfree(fdt);
158 out:
159 return NULL;
160 }
161
162 /*
163 * Expand the file descriptor table.
164 * This function will allocate a new fdtable and both fd array and fdset, of
165 * the given size.
166 * Return <0 error code on error; 1 on successful completion.
167 * The files->file_lock should be held on entry, and will be held on exit.
168 */
169 static int expand_fdtable(struct files_struct *files, unsigned int nr)
170 __releases(files->file_lock)
171 __acquires(files->file_lock)
172 {
173 struct fdtable *new_fdt, *cur_fdt;
174
175 spin_unlock(&files->file_lock);
176 new_fdt = alloc_fdtable(nr);
177
178 /* make sure all fd_install() have seen resize_in_progress
179 * or have finished their rcu_read_lock_sched() section.
180 */
181 if (atomic_read(&files->count) > 1)
182 synchronize_rcu();
183
184 spin_lock(&files->file_lock);
185 if (!new_fdt)
186 return -ENOMEM;
187 /*
188 * extremely unlikely race - sysctl_nr_open decreased between the check in
189 * caller and alloc_fdtable(). Cheaper to catch it here...
190 */
191 if (unlikely(new_fdt->max_fds <= nr)) {
192 __free_fdtable(new_fdt);
193 return -EMFILE;
194 }
195 cur_fdt = files_fdtable(files);
196 BUG_ON(nr < cur_fdt->max_fds);
197 copy_fdtable(new_fdt, cur_fdt);
198 rcu_assign_pointer(files->fdt, new_fdt);
199 if (cur_fdt != &files->fdtab)
200 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
201 /* coupled with smp_rmb() in fd_install() */
202 smp_wmb();
203 return 1;
204 }
205
206 /*
207 * Expand files.
208 * This function will expand the file structures, if the requested size exceeds
209 * the current capacity and there is room for expansion.
210 * Return <0 error code on error; 0 when nothing done; 1 when files were
211 * expanded and execution may have blocked.
212 * The files->file_lock should be held on entry, and will be held on exit.
213 */
214 static int expand_files(struct files_struct *files, unsigned int nr)
215 __releases(files->file_lock)
216 __acquires(files->file_lock)
217 {
218 struct fdtable *fdt;
219 int expanded = 0;
220
221 repeat:
222 fdt = files_fdtable(files);
223
224 /* Do we need to expand? */
225 if (nr < fdt->max_fds)
226 return expanded;
227
228 /* Can we expand? */
229 if (nr >= sysctl_nr_open)
230 return -EMFILE;
231
232 if (unlikely(files->resize_in_progress)) {
233 spin_unlock(&files->file_lock);
234 expanded = 1;
235 wait_event(files->resize_wait, !files->resize_in_progress);
236 spin_lock(&files->file_lock);
237 goto repeat;
238 }
239
240 /* All good, so we try */
241 files->resize_in_progress = true;
242 expanded = expand_fdtable(files, nr);
243 files->resize_in_progress = false;
244
245 wake_up_all(&files->resize_wait);
246 return expanded;
247 }
248
249 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
250 {
251 __set_bit(fd, fdt->close_on_exec);
252 }
253
254 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
255 {
256 if (test_bit(fd, fdt->close_on_exec))
257 __clear_bit(fd, fdt->close_on_exec);
258 }
259
260 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
261 {
262 __set_bit(fd, fdt->open_fds);
263 fd /= BITS_PER_LONG;
264 if (!~fdt->open_fds[fd])
265 __set_bit(fd, fdt->full_fds_bits);
266 }
267
268 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
269 {
270 __clear_bit(fd, fdt->open_fds);
271 __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
272 }
273
274 static unsigned int count_open_files(struct fdtable *fdt)
275 {
276 unsigned int size = fdt->max_fds;
277 unsigned int i;
278
279 /* Find the last open fd */
280 for (i = size / BITS_PER_LONG; i > 0; ) {
281 if (fdt->open_fds[--i])
282 break;
283 }
284 i = (i + 1) * BITS_PER_LONG;
285 return i;
286 }
287
288 /*
289 * Note that a sane fdtable size always has to be a multiple of
290 * BITS_PER_LONG, since we have bitmaps that are sized by this.
291 *
292 * 'max_fds' will normally already be properly aligned, but it
293 * turns out that in the close_range() -> __close_range() ->
294 * unshare_fd() -> dup_fd() -> sane_fdtable_size() we can end
295 * up having a 'max_fds' value that isn't already aligned.
296 *
297 * Rather than make close_range() have to worry about this,
298 * just make that BITS_PER_LONG alignment be part of a sane
299 * fdtable size. Becuase that's really what it is.
300 */
301 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
302 {
303 unsigned int count;
304
305 count = count_open_files(fdt);
306 if (max_fds < NR_OPEN_DEFAULT)
307 max_fds = NR_OPEN_DEFAULT;
308 return ALIGN(min(count, max_fds), BITS_PER_LONG);
309 }
310
311 /*
312 * Allocate a new files structure and copy contents from the
313 * passed in files structure.
314 * errorp will be valid only when the returned files_struct is NULL.
315 */
316 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
317 {
318 struct files_struct *newf;
319 struct file **old_fds, **new_fds;
320 unsigned int open_files, i;
321 struct fdtable *old_fdt, *new_fdt;
322
323 *errorp = -ENOMEM;
324 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
325 if (!newf)
326 goto out;
327
328 atomic_set(&newf->count, 1);
329
330 spin_lock_init(&newf->file_lock);
331 newf->resize_in_progress = false;
332 init_waitqueue_head(&newf->resize_wait);
333 newf->next_fd = 0;
334 new_fdt = &newf->fdtab;
335 new_fdt->max_fds = NR_OPEN_DEFAULT;
336 new_fdt->close_on_exec = newf->close_on_exec_init;
337 new_fdt->open_fds = newf->open_fds_init;
338 new_fdt->full_fds_bits = newf->full_fds_bits_init;
339 new_fdt->fd = &newf->fd_array[0];
340
341 spin_lock(&oldf->file_lock);
342 old_fdt = files_fdtable(oldf);
343 open_files = sane_fdtable_size(old_fdt, max_fds);
344
345 /*
346 * Check whether we need to allocate a larger fd array and fd set.
347 */
348 while (unlikely(open_files > new_fdt->max_fds)) {
349 spin_unlock(&oldf->file_lock);
350
351 if (new_fdt != &newf->fdtab)
352 __free_fdtable(new_fdt);
353
354 new_fdt = alloc_fdtable(open_files - 1);
355 if (!new_fdt) {
356 *errorp = -ENOMEM;
357 goto out_release;
358 }
359
360 /* beyond sysctl_nr_open; nothing to do */
361 if (unlikely(new_fdt->max_fds < open_files)) {
362 __free_fdtable(new_fdt);
363 *errorp = -EMFILE;
364 goto out_release;
365 }
366
367 /*
368 * Reacquire the oldf lock and a pointer to its fd table
369 * who knows it may have a new bigger fd table. We need
370 * the latest pointer.
371 */
372 spin_lock(&oldf->file_lock);
373 old_fdt = files_fdtable(oldf);
374 open_files = sane_fdtable_size(old_fdt, max_fds);
375 }
376
377 copy_fd_bitmaps(new_fdt, old_fdt, open_files);
378
379 old_fds = old_fdt->fd;
380 new_fds = new_fdt->fd;
381
382 for (i = open_files; i != 0; i--) {
383 struct file *f = *old_fds++;
384 if (f) {
385 get_file(f);
386 } else {
387 /*
388 * The fd may be claimed in the fd bitmap but not yet
389 * instantiated in the files array if a sibling thread
390 * is partway through open(). So make sure that this
391 * fd is available to the new process.
392 */
393 __clear_open_fd(open_files - i, new_fdt);
394 }
395 rcu_assign_pointer(*new_fds++, f);
396 }
397 spin_unlock(&oldf->file_lock);
398
399 /* clear the remainder */
400 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
401
402 rcu_assign_pointer(newf->fdt, new_fdt);
403
404 return newf;
405
406 out_release:
407 kmem_cache_free(files_cachep, newf);
408 out:
409 return NULL;
410 }
411
412 static struct fdtable *close_files(struct files_struct * files)
413 {
414 /*
415 * It is safe to dereference the fd table without RCU or
416 * ->file_lock because this is the last reference to the
417 * files structure.
418 */
419 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
420 unsigned int i, j = 0;
421
422 for (;;) {
423 unsigned long set;
424 i = j * BITS_PER_LONG;
425 if (i >= fdt->max_fds)
426 break;
427 set = fdt->open_fds[j++];
428 while (set) {
429 if (set & 1) {
430 struct file * file = xchg(&fdt->fd[i], NULL);
431 if (file) {
432 filp_close(file, files);
433 cond_resched();
434 }
435 }
436 i++;
437 set >>= 1;
438 }
439 }
440
441 return fdt;
442 }
443
444 void put_files_struct(struct files_struct *files)
445 {
446 if (atomic_dec_and_test(&files->count)) {
447 struct fdtable *fdt = close_files(files);
448
449 /* free the arrays if they are not embedded */
450 if (fdt != &files->fdtab)
451 __free_fdtable(fdt);
452 kmem_cache_free(files_cachep, files);
453 }
454 }
455
456 void exit_files(struct task_struct *tsk)
457 {
458 struct files_struct * files = tsk->files;
459
460 if (files) {
461 task_lock(tsk);
462 tsk->files = NULL;
463 task_unlock(tsk);
464 put_files_struct(files);
465 }
466 }
467
468 struct files_struct init_files = {
469 .count = ATOMIC_INIT(1),
470 .fdt = &init_files.fdtab,
471 .fdtab = {
472 .max_fds = NR_OPEN_DEFAULT,
473 .fd = &init_files.fd_array[0],
474 .close_on_exec = init_files.close_on_exec_init,
475 .open_fds = init_files.open_fds_init,
476 .full_fds_bits = init_files.full_fds_bits_init,
477 },
478 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
479 .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
480 };
481
482 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
483 {
484 unsigned int maxfd = fdt->max_fds;
485 unsigned int maxbit = maxfd / BITS_PER_LONG;
486 unsigned int bitbit = start / BITS_PER_LONG;
487
488 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
489 if (bitbit > maxfd)
490 return maxfd;
491 if (bitbit > start)
492 start = bitbit;
493 return find_next_zero_bit(fdt->open_fds, maxfd, start);
494 }
495
496 /*
497 * allocate a file descriptor, mark it busy.
498 */
499 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
500 {
501 struct files_struct *files = current->files;
502 unsigned int fd;
503 int error;
504 struct fdtable *fdt;
505
506 spin_lock(&files->file_lock);
507 repeat:
508 fdt = files_fdtable(files);
509 fd = start;
510 if (fd < files->next_fd)
511 fd = files->next_fd;
512
513 if (fd < fdt->max_fds)
514 fd = find_next_fd(fdt, fd);
515
516 /*
517 * N.B. For clone tasks sharing a files structure, this test
518 * will limit the total number of files that can be opened.
519 */
520 error = -EMFILE;
521 if (fd >= end)
522 goto out;
523
524 error = expand_files(files, fd);
525 if (error < 0)
526 goto out;
527
528 /*
529 * If we needed to expand the fs array we
530 * might have blocked - try again.
531 */
532 if (error)
533 goto repeat;
534
535 if (start <= files->next_fd)
536 files->next_fd = fd + 1;
537
538 __set_open_fd(fd, fdt);
539 if (flags & O_CLOEXEC)
540 __set_close_on_exec(fd, fdt);
541 else
542 __clear_close_on_exec(fd, fdt);
543 error = fd;
544 #if 1
545 /* Sanity check */
546 if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
547 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
548 rcu_assign_pointer(fdt->fd[fd], NULL);
549 }
550 #endif
551
552 out:
553 spin_unlock(&files->file_lock);
554 return error;
555 }
556
557 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
558 {
559 return alloc_fd(0, nofile, flags);
560 }
561
562 int get_unused_fd_flags(unsigned flags)
563 {
564 return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
565 }
566 EXPORT_SYMBOL(get_unused_fd_flags);
567
568 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
569 {
570 struct fdtable *fdt = files_fdtable(files);
571 __clear_open_fd(fd, fdt);
572 if (fd < files->next_fd)
573 files->next_fd = fd;
574 }
575
576 void put_unused_fd(unsigned int fd)
577 {
578 struct files_struct *files = current->files;
579 spin_lock(&files->file_lock);
580 __put_unused_fd(files, fd);
581 spin_unlock(&files->file_lock);
582 }
583
584 EXPORT_SYMBOL(put_unused_fd);
585
586 /*
587 * Install a file pointer in the fd array.
588 *
589 * The VFS is full of places where we drop the files lock between
590 * setting the open_fds bitmap and installing the file in the file
591 * array. At any such point, we are vulnerable to a dup2() race
592 * installing a file in the array before us. We need to detect this and
593 * fput() the struct file we are about to overwrite in this case.
594 *
595 * It should never happen - if we allow dup2() do it, _really_ bad things
596 * will follow.
597 *
598 * This consumes the "file" refcount, so callers should treat it
599 * as if they had called fput(file).
600 */
601
602 void fd_install(unsigned int fd, struct file *file)
603 {
604 struct files_struct *files = current->files;
605 struct fdtable *fdt;
606
607 rcu_read_lock_sched();
608
609 if (unlikely(files->resize_in_progress)) {
610 rcu_read_unlock_sched();
611 spin_lock(&files->file_lock);
612 fdt = files_fdtable(files);
613 BUG_ON(fdt->fd[fd] != NULL);
614 rcu_assign_pointer(fdt->fd[fd], file);
615 spin_unlock(&files->file_lock);
616 return;
617 }
618 /* coupled with smp_wmb() in expand_fdtable() */
619 smp_rmb();
620 fdt = rcu_dereference_sched(files->fdt);
621 BUG_ON(fdt->fd[fd] != NULL);
622 rcu_assign_pointer(fdt->fd[fd], file);
623 rcu_read_unlock_sched();
624 }
625
626 EXPORT_SYMBOL(fd_install);
627
628 /**
629 * pick_file - return file associatd with fd
630 * @files: file struct to retrieve file from
631 * @fd: file descriptor to retrieve file for
632 *
633 * Context: files_lock must be held.
634 *
635 * Returns: The file associated with @fd (NULL if @fd is not open)
636 */
637 static struct file *pick_file(struct files_struct *files, unsigned fd)
638 {
639 struct fdtable *fdt = files_fdtable(files);
640 struct file *file;
641
642 if (fd >= fdt->max_fds)
643 return NULL;
644
645 fd = array_index_nospec(fd, fdt->max_fds);
646 file = fdt->fd[fd];
647 if (file) {
648 rcu_assign_pointer(fdt->fd[fd], NULL);
649 __put_unused_fd(files, fd);
650 }
651 return file;
652 }
653
654 int close_fd(unsigned fd)
655 {
656 struct files_struct *files = current->files;
657 struct file *file;
658
659 spin_lock(&files->file_lock);
660 file = pick_file(files, fd);
661 spin_unlock(&files->file_lock);
662 if (!file)
663 return -EBADF;
664
665 return filp_close(file, files);
666 }
667 EXPORT_SYMBOL(close_fd); /* for ksys_close() */
668
669 /**
670 * last_fd - return last valid index into fd table
671 * @cur_fds: files struct
672 *
673 * Context: Either rcu read lock or files_lock must be held.
674 *
675 * Returns: Last valid index into fdtable.
676 */
677 static inline unsigned last_fd(struct fdtable *fdt)
678 {
679 return fdt->max_fds - 1;
680 }
681
682 static inline void __range_cloexec(struct files_struct *cur_fds,
683 unsigned int fd, unsigned int max_fd)
684 {
685 struct fdtable *fdt;
686
687 /* make sure we're using the correct maximum value */
688 spin_lock(&cur_fds->file_lock);
689 fdt = files_fdtable(cur_fds);
690 max_fd = min(last_fd(fdt), max_fd);
691 if (fd <= max_fd)
692 bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
693 spin_unlock(&cur_fds->file_lock);
694 }
695
696 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd,
697 unsigned int max_fd)
698 {
699 unsigned n;
700
701 rcu_read_lock();
702 n = last_fd(files_fdtable(cur_fds));
703 rcu_read_unlock();
704 max_fd = min(max_fd, n);
705
706 while (fd <= max_fd) {
707 struct file *file;
708
709 spin_lock(&cur_fds->file_lock);
710 file = pick_file(cur_fds, fd++);
711 spin_unlock(&cur_fds->file_lock);
712
713 if (file) {
714 /* found a valid file to close */
715 filp_close(file, cur_fds);
716 cond_resched();
717 }
718 }
719 }
720
721 /**
722 * __close_range() - Close all file descriptors in a given range.
723 *
724 * @fd: starting file descriptor to close
725 * @max_fd: last file descriptor to close
726 *
727 * This closes a range of file descriptors. All file descriptors
728 * from @fd up to and including @max_fd are closed.
729 */
730 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
731 {
732 struct task_struct *me = current;
733 struct files_struct *cur_fds = me->files, *fds = NULL;
734
735 if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
736 return -EINVAL;
737
738 if (fd > max_fd)
739 return -EINVAL;
740
741 if (flags & CLOSE_RANGE_UNSHARE) {
742 int ret;
743 unsigned int max_unshare_fds = NR_OPEN_MAX;
744
745 /*
746 * If the caller requested all fds to be made cloexec we always
747 * copy all of the file descriptors since they still want to
748 * use them.
749 */
750 if (!(flags & CLOSE_RANGE_CLOEXEC)) {
751 /*
752 * If the requested range is greater than the current
753 * maximum, we're closing everything so only copy all
754 * file descriptors beneath the lowest file descriptor.
755 */
756 rcu_read_lock();
757 if (max_fd >= last_fd(files_fdtable(cur_fds)))
758 max_unshare_fds = fd;
759 rcu_read_unlock();
760 }
761
762 ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
763 if (ret)
764 return ret;
765
766 /*
767 * We used to share our file descriptor table, and have now
768 * created a private one, make sure we're using it below.
769 */
770 if (fds)
771 swap(cur_fds, fds);
772 }
773
774 if (flags & CLOSE_RANGE_CLOEXEC)
775 __range_cloexec(cur_fds, fd, max_fd);
776 else
777 __range_close(cur_fds, fd, max_fd);
778
779 if (fds) {
780 /*
781 * We're done closing the files we were supposed to. Time to install
782 * the new file descriptor table and drop the old one.
783 */
784 task_lock(me);
785 me->files = cur_fds;
786 task_unlock(me);
787 put_files_struct(fds);
788 }
789
790 return 0;
791 }
792
793 /*
794 * See close_fd_get_file() below, this variant assumes current->files->file_lock
795 * is held.
796 */
797 struct file *__close_fd_get_file(unsigned int fd)
798 {
799 return pick_file(current->files, fd);
800 }
801
802 /*
803 * variant of close_fd that gets a ref on the file for later fput.
804 * The caller must ensure that filp_close() called on the file.
805 */
806 struct file *close_fd_get_file(unsigned int fd)
807 {
808 struct files_struct *files = current->files;
809 struct file *file;
810
811 spin_lock(&files->file_lock);
812 file = pick_file(files, fd);
813 spin_unlock(&files->file_lock);
814
815 return file;
816 }
817
818 void do_close_on_exec(struct files_struct *files)
819 {
820 unsigned i;
821 struct fdtable *fdt;
822
823 /* exec unshares first */
824 spin_lock(&files->file_lock);
825 for (i = 0; ; i++) {
826 unsigned long set;
827 unsigned fd = i * BITS_PER_LONG;
828 fdt = files_fdtable(files);
829 if (fd >= fdt->max_fds)
830 break;
831 set = fdt->close_on_exec[i];
832 if (!set)
833 continue;
834 fdt->close_on_exec[i] = 0;
835 for ( ; set ; fd++, set >>= 1) {
836 struct file *file;
837 if (!(set & 1))
838 continue;
839 file = fdt->fd[fd];
840 if (!file)
841 continue;
842 rcu_assign_pointer(fdt->fd[fd], NULL);
843 __put_unused_fd(files, fd);
844 spin_unlock(&files->file_lock);
845 filp_close(file, files);
846 cond_resched();
847 spin_lock(&files->file_lock);
848 }
849
850 }
851 spin_unlock(&files->file_lock);
852 }
853
854 static inline struct file *__fget_files_rcu(struct files_struct *files,
855 unsigned int fd, fmode_t mask)
856 {
857 for (;;) {
858 struct file *file;
859 struct fdtable *fdt = rcu_dereference_raw(files->fdt);
860 struct file __rcu **fdentry;
861
862 if (unlikely(fd >= fdt->max_fds))
863 return NULL;
864
865 fdentry = fdt->fd + array_index_nospec(fd, fdt->max_fds);
866 file = rcu_dereference_raw(*fdentry);
867 if (unlikely(!file))
868 return NULL;
869
870 if (unlikely(file->f_mode & mask))
871 return NULL;
872
873 /*
874 * Ok, we have a file pointer. However, because we do
875 * this all locklessly under RCU, we may be racing with
876 * that file being closed.
877 *
878 * Such a race can take two forms:
879 *
880 * (a) the file ref already went down to zero,
881 * and get_file_rcu() fails. Just try again:
882 */
883 if (unlikely(!get_file_rcu(file)))
884 continue;
885
886 /*
887 * (b) the file table entry has changed under us.
888 * Note that we don't need to re-check the 'fdt->fd'
889 * pointer having changed, because it always goes
890 * hand-in-hand with 'fdt'.
891 *
892 * If so, we need to put our ref and try again.
893 */
894 if (unlikely(rcu_dereference_raw(files->fdt) != fdt) ||
895 unlikely(rcu_dereference_raw(*fdentry) != file)) {
896 fput(file);
897 continue;
898 }
899
900 /*
901 * Ok, we have a ref to the file, and checked that it
902 * still exists.
903 */
904 return file;
905 }
906 }
907
908 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
909 fmode_t mask)
910 {
911 struct file *file;
912
913 rcu_read_lock();
914 file = __fget_files_rcu(files, fd, mask);
915 rcu_read_unlock();
916
917 return file;
918 }
919
920 static inline struct file *__fget(unsigned int fd, fmode_t mask)
921 {
922 return __fget_files(current->files, fd, mask);
923 }
924
925 struct file *fget(unsigned int fd)
926 {
927 return __fget(fd, FMODE_PATH);
928 }
929 EXPORT_SYMBOL(fget);
930
931 struct file *fget_raw(unsigned int fd)
932 {
933 return __fget(fd, 0);
934 }
935 EXPORT_SYMBOL(fget_raw);
936
937 struct file *fget_task(struct task_struct *task, unsigned int fd)
938 {
939 struct file *file = NULL;
940
941 task_lock(task);
942 if (task->files)
943 file = __fget_files(task->files, fd, 0);
944 task_unlock(task);
945
946 return file;
947 }
948
949 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd)
950 {
951 /* Must be called with rcu_read_lock held */
952 struct files_struct *files;
953 struct file *file = NULL;
954
955 task_lock(task);
956 files = task->files;
957 if (files)
958 file = files_lookup_fd_rcu(files, fd);
959 task_unlock(task);
960
961 return file;
962 }
963
964 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd)
965 {
966 /* Must be called with rcu_read_lock held */
967 struct files_struct *files;
968 unsigned int fd = *ret_fd;
969 struct file *file = NULL;
970
971 task_lock(task);
972 files = task->files;
973 if (files) {
974 for (; fd < files_fdtable(files)->max_fds; fd++) {
975 file = files_lookup_fd_rcu(files, fd);
976 if (file)
977 break;
978 }
979 }
980 task_unlock(task);
981 *ret_fd = fd;
982 return file;
983 }
984 EXPORT_SYMBOL(task_lookup_next_fd_rcu);
985
986 /*
987 * Lightweight file lookup - no refcnt increment if fd table isn't shared.
988 *
989 * You can use this instead of fget if you satisfy all of the following
990 * conditions:
991 * 1) You must call fput_light before exiting the syscall and returning control
992 * to userspace (i.e. you cannot remember the returned struct file * after
993 * returning to userspace).
994 * 2) You must not call filp_close on the returned struct file * in between
995 * calls to fget_light and fput_light.
996 * 3) You must not clone the current task in between the calls to fget_light
997 * and fput_light.
998 *
999 * The fput_needed flag returned by fget_light should be passed to the
1000 * corresponding fput_light.
1001 */
1002 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
1003 {
1004 struct files_struct *files = current->files;
1005 struct file *file;
1006
1007 /*
1008 * If another thread is concurrently calling close_fd() followed
1009 * by put_files_struct(), we must not observe the old table
1010 * entry combined with the new refcount - otherwise we could
1011 * return a file that is concurrently being freed.
1012 *
1013 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1014 * put_files_struct().
1015 */
1016 if (atomic_read_acquire(&files->count) == 1) {
1017 file = files_lookup_fd_raw(files, fd);
1018 if (!file || unlikely(file->f_mode & mask))
1019 return 0;
1020 return (unsigned long)file;
1021 } else {
1022 file = __fget(fd, mask);
1023 if (!file)
1024 return 0;
1025 return FDPUT_FPUT | (unsigned long)file;
1026 }
1027 }
1028 unsigned long __fdget(unsigned int fd)
1029 {
1030 return __fget_light(fd, FMODE_PATH);
1031 }
1032 EXPORT_SYMBOL(__fdget);
1033
1034 unsigned long __fdget_raw(unsigned int fd)
1035 {
1036 return __fget_light(fd, 0);
1037 }
1038
1039 unsigned long __fdget_pos(unsigned int fd)
1040 {
1041 unsigned long v = __fdget(fd);
1042 struct file *file = (struct file *)(v & ~3);
1043
1044 if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
1045 if (file_count(file) > 1) {
1046 v |= FDPUT_POS_UNLOCK;
1047 mutex_lock(&file->f_pos_lock);
1048 }
1049 }
1050 return v;
1051 }
1052
1053 void __f_unlock_pos(struct file *f)
1054 {
1055 mutex_unlock(&f->f_pos_lock);
1056 }
1057
1058 /*
1059 * We only lock f_pos if we have threads or if the file might be
1060 * shared with another process. In both cases we'll have an elevated
1061 * file count (done either by fdget() or by fork()).
1062 */
1063
1064 void set_close_on_exec(unsigned int fd, int flag)
1065 {
1066 struct files_struct *files = current->files;
1067 struct fdtable *fdt;
1068 spin_lock(&files->file_lock);
1069 fdt = files_fdtable(files);
1070 if (flag)
1071 __set_close_on_exec(fd, fdt);
1072 else
1073 __clear_close_on_exec(fd, fdt);
1074 spin_unlock(&files->file_lock);
1075 }
1076
1077 bool get_close_on_exec(unsigned int fd)
1078 {
1079 struct files_struct *files = current->files;
1080 struct fdtable *fdt;
1081 bool res;
1082 rcu_read_lock();
1083 fdt = files_fdtable(files);
1084 res = close_on_exec(fd, fdt);
1085 rcu_read_unlock();
1086 return res;
1087 }
1088
1089 static int do_dup2(struct files_struct *files,
1090 struct file *file, unsigned fd, unsigned flags)
1091 __releases(&files->file_lock)
1092 {
1093 struct file *tofree;
1094 struct fdtable *fdt;
1095
1096 /*
1097 * We need to detect attempts to do dup2() over allocated but still
1098 * not finished descriptor. NB: OpenBSD avoids that at the price of
1099 * extra work in their equivalent of fget() - they insert struct
1100 * file immediately after grabbing descriptor, mark it larval if
1101 * more work (e.g. actual opening) is needed and make sure that
1102 * fget() treats larval files as absent. Potentially interesting,
1103 * but while extra work in fget() is trivial, locking implications
1104 * and amount of surgery on open()-related paths in VFS are not.
1105 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1106 * deadlocks in rather amusing ways, AFAICS. All of that is out of
1107 * scope of POSIX or SUS, since neither considers shared descriptor
1108 * tables and this condition does not arise without those.
1109 */
1110 fdt = files_fdtable(files);
1111 tofree = fdt->fd[fd];
1112 if (!tofree && fd_is_open(fd, fdt))
1113 goto Ebusy;
1114 get_file(file);
1115 rcu_assign_pointer(fdt->fd[fd], file);
1116 __set_open_fd(fd, fdt);
1117 if (flags & O_CLOEXEC)
1118 __set_close_on_exec(fd, fdt);
1119 else
1120 __clear_close_on_exec(fd, fdt);
1121 spin_unlock(&files->file_lock);
1122
1123 if (tofree)
1124 filp_close(tofree, files);
1125
1126 return fd;
1127
1128 Ebusy:
1129 spin_unlock(&files->file_lock);
1130 return -EBUSY;
1131 }
1132
1133 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1134 {
1135 int err;
1136 struct files_struct *files = current->files;
1137
1138 if (!file)
1139 return close_fd(fd);
1140
1141 if (fd >= rlimit(RLIMIT_NOFILE))
1142 return -EBADF;
1143
1144 spin_lock(&files->file_lock);
1145 err = expand_files(files, fd);
1146 if (unlikely(err < 0))
1147 goto out_unlock;
1148 return do_dup2(files, file, fd, flags);
1149
1150 out_unlock:
1151 spin_unlock(&files->file_lock);
1152 return err;
1153 }
1154
1155 /**
1156 * __receive_fd() - Install received file into file descriptor table
1157 * @file: struct file that was received from another process
1158 * @ufd: __user pointer to write new fd number to
1159 * @o_flags: the O_* flags to apply to the new fd entry
1160 *
1161 * Installs a received file into the file descriptor table, with appropriate
1162 * checks and count updates. Optionally writes the fd number to userspace, if
1163 * @ufd is non-NULL.
1164 *
1165 * This helper handles its own reference counting of the incoming
1166 * struct file.
1167 *
1168 * Returns newly install fd or -ve on error.
1169 */
1170 int __receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1171 {
1172 int new_fd;
1173 int error;
1174
1175 error = security_file_receive(file);
1176 if (error)
1177 return error;
1178
1179 new_fd = get_unused_fd_flags(o_flags);
1180 if (new_fd < 0)
1181 return new_fd;
1182
1183 if (ufd) {
1184 error = put_user(new_fd, ufd);
1185 if (error) {
1186 put_unused_fd(new_fd);
1187 return error;
1188 }
1189 }
1190
1191 fd_install(new_fd, get_file(file));
1192 __receive_sock(file);
1193 return new_fd;
1194 }
1195
1196 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1197 {
1198 int error;
1199
1200 error = security_file_receive(file);
1201 if (error)
1202 return error;
1203 error = replace_fd(new_fd, file, o_flags);
1204 if (error)
1205 return error;
1206 __receive_sock(file);
1207 return new_fd;
1208 }
1209
1210 int receive_fd(struct file *file, unsigned int o_flags)
1211 {
1212 return __receive_fd(file, NULL, o_flags);
1213 }
1214 EXPORT_SYMBOL_GPL(receive_fd);
1215
1216 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1217 {
1218 int err = -EBADF;
1219 struct file *file;
1220 struct files_struct *files = current->files;
1221
1222 if ((flags & ~O_CLOEXEC) != 0)
1223 return -EINVAL;
1224
1225 if (unlikely(oldfd == newfd))
1226 return -EINVAL;
1227
1228 if (newfd >= rlimit(RLIMIT_NOFILE))
1229 return -EBADF;
1230
1231 spin_lock(&files->file_lock);
1232 err = expand_files(files, newfd);
1233 file = files_lookup_fd_locked(files, oldfd);
1234 if (unlikely(!file))
1235 goto Ebadf;
1236 if (unlikely(err < 0)) {
1237 if (err == -EMFILE)
1238 goto Ebadf;
1239 goto out_unlock;
1240 }
1241 return do_dup2(files, file, newfd, flags);
1242
1243 Ebadf:
1244 err = -EBADF;
1245 out_unlock:
1246 spin_unlock(&files->file_lock);
1247 return err;
1248 }
1249
1250 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1251 {
1252 return ksys_dup3(oldfd, newfd, flags);
1253 }
1254
1255 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1256 {
1257 if (unlikely(newfd == oldfd)) { /* corner case */
1258 struct files_struct *files = current->files;
1259 int retval = oldfd;
1260
1261 rcu_read_lock();
1262 if (!files_lookup_fd_rcu(files, oldfd))
1263 retval = -EBADF;
1264 rcu_read_unlock();
1265 return retval;
1266 }
1267 return ksys_dup3(oldfd, newfd, 0);
1268 }
1269
1270 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1271 {
1272 int ret = -EBADF;
1273 struct file *file = fget_raw(fildes);
1274
1275 if (file) {
1276 ret = get_unused_fd_flags(0);
1277 if (ret >= 0)
1278 fd_install(ret, file);
1279 else
1280 fput(file);
1281 }
1282 return ret;
1283 }
1284
1285 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1286 {
1287 unsigned long nofile = rlimit(RLIMIT_NOFILE);
1288 int err;
1289 if (from >= nofile)
1290 return -EINVAL;
1291 err = alloc_fd(from, nofile, flags);
1292 if (err >= 0) {
1293 get_file(file);
1294 fd_install(err, file);
1295 }
1296 return err;
1297 }
1298
1299 int iterate_fd(struct files_struct *files, unsigned n,
1300 int (*f)(const void *, struct file *, unsigned),
1301 const void *p)
1302 {
1303 struct fdtable *fdt;
1304 int res = 0;
1305 if (!files)
1306 return 0;
1307 spin_lock(&files->file_lock);
1308 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1309 struct file *file;
1310 file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1311 if (!file)
1312 continue;
1313 res = f(p, file, n);
1314 if (res)
1315 break;
1316 }
1317 spin_unlock(&files->file_lock);
1318 return res;
1319 }
1320 EXPORT_SYMBOL(iterate_fd);