]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/fs-writeback.c
Merge tag 'zstd-linus-v6.3-rc3' of https://github.com/terrelln/linux
[thirdparty/linux.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126 list_move(&inode->i_io_list, head);
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
142 }
143
144 static void finish_writeback_work(struct bdi_writeback *wb,
145 struct wb_writeback_work *work)
146 {
147 struct wb_completion *done = work->done;
148
149 if (work->auto_free)
150 kfree(work);
151 if (done) {
152 wait_queue_head_t *waitq = done->waitq;
153
154 /* @done can't be accessed after the following dec */
155 if (atomic_dec_and_test(&done->cnt))
156 wake_up_all(waitq);
157 }
158 }
159
160 static void wb_queue_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162 {
163 trace_writeback_queue(wb, work);
164
165 if (work->done)
166 atomic_inc(&work->done->cnt);
167
168 spin_lock_irq(&wb->work_lock);
169
170 if (test_bit(WB_registered, &wb->state)) {
171 list_add_tail(&work->list, &wb->work_list);
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 } else
174 finish_writeback_work(wb, work);
175
176 spin_unlock_irq(&wb->work_lock);
177 }
178
179 /**
180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
181 * @done: target wb_completion
182 *
183 * Wait for one or more work items issued to @bdi with their ->done field
184 * set to @done, which should have been initialized with
185 * DEFINE_WB_COMPLETION(). This function returns after all such work items
186 * are completed. Work items which are waited upon aren't freed
187 * automatically on completion.
188 */
189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191 atomic_dec(&done->cnt); /* put down the initial count */
192 wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194
195 #ifdef CONFIG_CGROUP_WRITEBACK
196
197 /*
198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
199 * how they're used.
200 *
201 * These paramters are inherently heuristical as the detection target
202 * itself is fuzzy. All we want to do is detaching an inode from the
203 * current owner if it's being written to by some other cgroups too much.
204 *
205 * The current cgroup writeback is built on the assumption that multiple
206 * cgroups writing to the same inode concurrently is very rare and a mode
207 * of operation which isn't well supported. As such, the goal is not
208 * taking too long when a different cgroup takes over an inode while
209 * avoiding too aggressive flip-flops from occasional foreign writes.
210 *
211 * We record, very roughly, 2s worth of IO time history and if more than
212 * half of that is foreign, trigger the switch. The recording is quantized
213 * to 16 slots. To avoid tiny writes from swinging the decision too much,
214 * writes smaller than 1/8 of avg size are ignored.
215 */
216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
220
221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
225 /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
229
230 /*
231 * Maximum inodes per isw. A specific value has been chosen to make
232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233 */
234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235 / sizeof(struct inode *))
236
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239
240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242 struct backing_dev_info *bdi = inode_to_bdi(inode);
243 struct bdi_writeback *wb = NULL;
244
245 if (inode_cgwb_enabled(inode)) {
246 struct cgroup_subsys_state *memcg_css;
247
248 if (folio) {
249 memcg_css = mem_cgroup_css_from_folio(folio);
250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 } else {
252 /* must pin memcg_css, see wb_get_create() */
253 memcg_css = task_get_css(current, memory_cgrp_id);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 css_put(memcg_css);
256 }
257 }
258
259 if (!wb)
260 wb = &bdi->wb;
261
262 /*
263 * There may be multiple instances of this function racing to
264 * update the same inode. Use cmpxchg() to tell the winner.
265 */
266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271 /**
272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273 * @inode: inode of interest with i_lock held
274 * @wb: target bdi_writeback
275 *
276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
277 * list. Only inodes attached to cgwb's are kept on this list.
278 */
279 static void inode_cgwb_move_to_attached(struct inode *inode,
280 struct bdi_writeback *wb)
281 {
282 assert_spin_locked(&wb->list_lock);
283 assert_spin_locked(&inode->i_lock);
284 WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286 inode->i_state &= ~I_SYNC_QUEUED;
287 if (wb != &wb->bdi->wb)
288 list_move(&inode->i_io_list, &wb->b_attached);
289 else
290 list_del_init(&inode->i_io_list);
291 wb_io_lists_depopulated(wb);
292 }
293
294 /**
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
297 *
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
301 */
302 static struct bdi_writeback *
303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
306 {
307 while (true) {
308 struct bdi_writeback *wb = inode_to_wb(inode);
309
310 /*
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
315 */
316 wb_get(wb);
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
319
320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
323 return wb;
324 }
325
326 spin_unlock(&wb->list_lock);
327 wb_put(wb);
328 cpu_relax();
329 spin_lock(&inode->i_lock);
330 }
331 }
332
333 /**
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
336 *
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 * on entry.
339 */
340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
342 {
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
345 }
346
347 struct inode_switch_wbs_context {
348 struct rcu_work work;
349
350 /*
351 * Multiple inodes can be switched at once. The switching procedure
352 * consists of two parts, separated by a RCU grace period. To make
353 * sure that the second part is executed for each inode gone through
354 * the first part, all inode pointers are placed into a NULL-terminated
355 * array embedded into struct inode_switch_wbs_context. Otherwise
356 * an inode could be left in a non-consistent state.
357 */
358 struct bdi_writeback *new_wb;
359 struct inode *inodes[];
360 };
361
362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364 down_write(&bdi->wb_switch_rwsem);
365 }
366
367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369 up_write(&bdi->wb_switch_rwsem);
370 }
371
372 static bool inode_do_switch_wbs(struct inode *inode,
373 struct bdi_writeback *old_wb,
374 struct bdi_writeback *new_wb)
375 {
376 struct address_space *mapping = inode->i_mapping;
377 XA_STATE(xas, &mapping->i_pages, 0);
378 struct folio *folio;
379 bool switched = false;
380
381 spin_lock(&inode->i_lock);
382 xa_lock_irq(&mapping->i_pages);
383
384 /*
385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 * path owns the inode and we shouldn't modify ->i_io_list.
387 */
388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 goto skip_switch;
390
391 trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393 /*
394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 * folios actually under writeback.
397 */
398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 if (folio_test_dirty(folio)) {
400 long nr = folio_nr_pages(folio);
401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403 }
404 }
405
406 xas_set(&xas, 0);
407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 long nr = folio_nr_pages(folio);
409 WARN_ON_ONCE(!folio_test_writeback(folio));
410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 }
413
414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 atomic_dec(&old_wb->writeback_inodes);
416 atomic_inc(&new_wb->writeback_inodes);
417 }
418
419 wb_get(new_wb);
420
421 /*
422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
423 * the specific list @inode was on is ignored and the @inode is put on
424 * ->b_dirty which is always correct including from ->b_dirty_time.
425 * The transfer preserves @inode->dirtied_when ordering. If the @inode
426 * was clean, it means it was on the b_attached list, so move it onto
427 * the b_attached list of @new_wb.
428 */
429 if (!list_empty(&inode->i_io_list)) {
430 inode->i_wb = new_wb;
431
432 if (inode->i_state & I_DIRTY_ALL) {
433 struct inode *pos;
434
435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 if (time_after_eq(inode->dirtied_when,
437 pos->dirtied_when))
438 break;
439 inode_io_list_move_locked(inode, new_wb,
440 pos->i_io_list.prev);
441 } else {
442 inode_cgwb_move_to_attached(inode, new_wb);
443 }
444 } else {
445 inode->i_wb = new_wb;
446 }
447
448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 inode->i_wb_frn_winner = 0;
450 inode->i_wb_frn_avg_time = 0;
451 inode->i_wb_frn_history = 0;
452 switched = true;
453 skip_switch:
454 /*
455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 */
458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460 xa_unlock_irq(&mapping->i_pages);
461 spin_unlock(&inode->i_lock);
462
463 return switched;
464 }
465
466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468 struct inode_switch_wbs_context *isw =
469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 struct bdi_writeback *new_wb = isw->new_wb;
473 unsigned long nr_switched = 0;
474 struct inode **inodep;
475
476 /*
477 * If @inode switches cgwb membership while sync_inodes_sb() is
478 * being issued, sync_inodes_sb() might miss it. Synchronize.
479 */
480 down_read(&bdi->wb_switch_rwsem);
481
482 /*
483 * By the time control reaches here, RCU grace period has passed
484 * since I_WB_SWITCH assertion and all wb stat update transactions
485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 * synchronizing against the i_pages lock.
487 *
488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 * gives us exclusion against all wb related operations on @inode
490 * including IO list manipulations and stat updates.
491 */
492 if (old_wb < new_wb) {
493 spin_lock(&old_wb->list_lock);
494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 } else {
496 spin_lock(&new_wb->list_lock);
497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 }
499
500 for (inodep = isw->inodes; *inodep; inodep++) {
501 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 nr_switched++;
504 }
505
506 spin_unlock(&new_wb->list_lock);
507 spin_unlock(&old_wb->list_lock);
508
509 up_read(&bdi->wb_switch_rwsem);
510
511 if (nr_switched) {
512 wb_wakeup(new_wb);
513 wb_put_many(old_wb, nr_switched);
514 }
515
516 for (inodep = isw->inodes; *inodep; inodep++)
517 iput(*inodep);
518 wb_put(new_wb);
519 kfree(isw);
520 atomic_dec(&isw_nr_in_flight);
521 }
522
523 static bool inode_prepare_wbs_switch(struct inode *inode,
524 struct bdi_writeback *new_wb)
525 {
526 /*
527 * Paired with smp_mb() in cgroup_writeback_umount().
528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 */
532 smp_mb();
533
534 if (IS_DAX(inode))
535 return false;
536
537 /* while holding I_WB_SWITCH, no one else can update the association */
538 spin_lock(&inode->i_lock);
539 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 inode_to_wb(inode) == new_wb) {
542 spin_unlock(&inode->i_lock);
543 return false;
544 }
545 inode->i_state |= I_WB_SWITCH;
546 __iget(inode);
547 spin_unlock(&inode->i_lock);
548
549 return true;
550 }
551
552 /**
553 * inode_switch_wbs - change the wb association of an inode
554 * @inode: target inode
555 * @new_wb_id: ID of the new wb
556 *
557 * Switch @inode's wb association to the wb identified by @new_wb_id. The
558 * switching is performed asynchronously and may fail silently.
559 */
560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562 struct backing_dev_info *bdi = inode_to_bdi(inode);
563 struct cgroup_subsys_state *memcg_css;
564 struct inode_switch_wbs_context *isw;
565
566 /* noop if seems to be already in progress */
567 if (inode->i_state & I_WB_SWITCH)
568 return;
569
570 /* avoid queueing a new switch if too many are already in flight */
571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 return;
573
574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 if (!isw)
576 return;
577
578 atomic_inc(&isw_nr_in_flight);
579
580 /* find and pin the new wb */
581 rcu_read_lock();
582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 if (memcg_css && !css_tryget(memcg_css))
584 memcg_css = NULL;
585 rcu_read_unlock();
586 if (!memcg_css)
587 goto out_free;
588
589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 css_put(memcg_css);
591 if (!isw->new_wb)
592 goto out_free;
593
594 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 goto out_free;
596
597 isw->inodes[0] = inode;
598
599 /*
600 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 * the RCU protected stat update paths to grab the i_page
602 * lock so that stat transfer can synchronize against them.
603 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 */
605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 queue_rcu_work(isw_wq, &isw->work);
607 return;
608
609 out_free:
610 atomic_dec(&isw_nr_in_flight);
611 if (isw->new_wb)
612 wb_put(isw->new_wb);
613 kfree(isw);
614 }
615
616 /**
617 * cleanup_offline_cgwb - detach associated inodes
618 * @wb: target wb
619 *
620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621 * to eventually release the dying @wb. Returns %true if not all inodes were
622 * switched and the function has to be restarted.
623 */
624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625 {
626 struct cgroup_subsys_state *memcg_css;
627 struct inode_switch_wbs_context *isw;
628 struct inode *inode;
629 int nr;
630 bool restart = false;
631
632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633 GFP_KERNEL);
634 if (!isw)
635 return restart;
636
637 atomic_inc(&isw_nr_in_flight);
638
639 for (memcg_css = wb->memcg_css->parent; memcg_css;
640 memcg_css = memcg_css->parent) {
641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642 if (isw->new_wb)
643 break;
644 }
645 if (unlikely(!isw->new_wb))
646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647
648 nr = 0;
649 spin_lock(&wb->list_lock);
650 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652 continue;
653
654 isw->inodes[nr++] = inode;
655
656 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657 restart = true;
658 break;
659 }
660 }
661 spin_unlock(&wb->list_lock);
662
663 /* no attached inodes? bail out */
664 if (nr == 0) {
665 atomic_dec(&isw_nr_in_flight);
666 wb_put(isw->new_wb);
667 kfree(isw);
668 return restart;
669 }
670
671 /*
672 * In addition to synchronizing among switchers, I_WB_SWITCH tells
673 * the RCU protected stat update paths to grab the i_page
674 * lock so that stat transfer can synchronize against them.
675 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676 */
677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678 queue_rcu_work(isw_wq, &isw->work);
679
680 return restart;
681 }
682
683 /**
684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685 * @wbc: writeback_control of interest
686 * @inode: target inode
687 *
688 * @inode is locked and about to be written back under the control of @wbc.
689 * Record @inode's writeback context into @wbc and unlock the i_lock. On
690 * writeback completion, wbc_detach_inode() should be called. This is used
691 * to track the cgroup writeback context.
692 */
693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694 struct inode *inode)
695 {
696 if (!inode_cgwb_enabled(inode)) {
697 spin_unlock(&inode->i_lock);
698 return;
699 }
700
701 wbc->wb = inode_to_wb(inode);
702 wbc->inode = inode;
703
704 wbc->wb_id = wbc->wb->memcg_css->id;
705 wbc->wb_lcand_id = inode->i_wb_frn_winner;
706 wbc->wb_tcand_id = 0;
707 wbc->wb_bytes = 0;
708 wbc->wb_lcand_bytes = 0;
709 wbc->wb_tcand_bytes = 0;
710
711 wb_get(wbc->wb);
712 spin_unlock(&inode->i_lock);
713
714 /*
715 * A dying wb indicates that either the blkcg associated with the
716 * memcg changed or the associated memcg is dying. In the first
717 * case, a replacement wb should already be available and we should
718 * refresh the wb immediately. In the second case, trying to
719 * refresh will keep failing.
720 */
721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722 inode_switch_wbs(inode, wbc->wb_id);
723 }
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725
726 /**
727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728 * @wbc: writeback_control of the just finished writeback
729 *
730 * To be called after a writeback attempt of an inode finishes and undoes
731 * wbc_attach_and_unlock_inode(). Can be called under any context.
732 *
733 * As concurrent write sharing of an inode is expected to be very rare and
734 * memcg only tracks page ownership on first-use basis severely confining
735 * the usefulness of such sharing, cgroup writeback tracks ownership
736 * per-inode. While the support for concurrent write sharing of an inode
737 * is deemed unnecessary, an inode being written to by different cgroups at
738 * different points in time is a lot more common, and, more importantly,
739 * charging only by first-use can too readily lead to grossly incorrect
740 * behaviors (single foreign page can lead to gigabytes of writeback to be
741 * incorrectly attributed).
742 *
743 * To resolve this issue, cgroup writeback detects the majority dirtier of
744 * an inode and transfers the ownership to it. To avoid unnecessary
745 * oscillation, the detection mechanism keeps track of history and gives
746 * out the switch verdict only if the foreign usage pattern is stable over
747 * a certain amount of time and/or writeback attempts.
748 *
749 * On each writeback attempt, @wbc tries to detect the majority writer
750 * using Boyer-Moore majority vote algorithm. In addition to the byte
751 * count from the majority voting, it also counts the bytes written for the
752 * current wb and the last round's winner wb (max of last round's current
753 * wb, the winner from two rounds ago, and the last round's majority
754 * candidate). Keeping track of the historical winner helps the algorithm
755 * to semi-reliably detect the most active writer even when it's not the
756 * absolute majority.
757 *
758 * Once the winner of the round is determined, whether the winner is
759 * foreign or not and how much IO time the round consumed is recorded in
760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
761 * over a certain threshold, the switch verdict is given.
762 */
763 void wbc_detach_inode(struct writeback_control *wbc)
764 {
765 struct bdi_writeback *wb = wbc->wb;
766 struct inode *inode = wbc->inode;
767 unsigned long avg_time, max_bytes, max_time;
768 u16 history;
769 int max_id;
770
771 if (!wb)
772 return;
773
774 history = inode->i_wb_frn_history;
775 avg_time = inode->i_wb_frn_avg_time;
776
777 /* pick the winner of this round */
778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780 max_id = wbc->wb_id;
781 max_bytes = wbc->wb_bytes;
782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783 max_id = wbc->wb_lcand_id;
784 max_bytes = wbc->wb_lcand_bytes;
785 } else {
786 max_id = wbc->wb_tcand_id;
787 max_bytes = wbc->wb_tcand_bytes;
788 }
789
790 /*
791 * Calculate the amount of IO time the winner consumed and fold it
792 * into the running average kept per inode. If the consumed IO
793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794 * deciding whether to switch or not. This is to prevent one-off
795 * small dirtiers from skewing the verdict.
796 */
797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798 wb->avg_write_bandwidth);
799 if (avg_time)
800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802 else
803 avg_time = max_time; /* immediate catch up on first run */
804
805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806 int slots;
807
808 /*
809 * The switch verdict is reached if foreign wb's consume
810 * more than a certain proportion of IO time in a
811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
812 * history mask where each bit represents one sixteenth of
813 * the period. Determine the number of slots to shift into
814 * history from @max_time.
815 */
816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818 history <<= slots;
819 if (wbc->wb_id != max_id)
820 history |= (1U << slots) - 1;
821
822 if (history)
823 trace_inode_foreign_history(inode, wbc, history);
824
825 /*
826 * Switch if the current wb isn't the consistent winner.
827 * If there are multiple closely competing dirtiers, the
828 * inode may switch across them repeatedly over time, which
829 * is okay. The main goal is avoiding keeping an inode on
830 * the wrong wb for an extended period of time.
831 */
832 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
833 inode_switch_wbs(inode, max_id);
834 }
835
836 /*
837 * Multiple instances of this function may race to update the
838 * following fields but we don't mind occassional inaccuracies.
839 */
840 inode->i_wb_frn_winner = max_id;
841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842 inode->i_wb_frn_history = history;
843
844 wb_put(wbc->wb);
845 wbc->wb = NULL;
846 }
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848
849 /**
850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851 * @wbc: writeback_control of the writeback in progress
852 * @page: page being written out
853 * @bytes: number of bytes being written out
854 *
855 * @bytes from @page are about to written out during the writeback
856 * controlled by @wbc. Keep the book for foreign inode detection. See
857 * wbc_detach_inode().
858 */
859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860 size_t bytes)
861 {
862 struct folio *folio;
863 struct cgroup_subsys_state *css;
864 int id;
865
866 /*
867 * pageout() path doesn't attach @wbc to the inode being written
868 * out. This is intentional as we don't want the function to block
869 * behind a slow cgroup. Ultimately, we want pageout() to kick off
870 * regular writeback instead of writing things out itself.
871 */
872 if (!wbc->wb || wbc->no_cgroup_owner)
873 return;
874
875 folio = page_folio(page);
876 css = mem_cgroup_css_from_folio(folio);
877 /* dead cgroups shouldn't contribute to inode ownership arbitration */
878 if (!(css->flags & CSS_ONLINE))
879 return;
880
881 id = css->id;
882
883 if (id == wbc->wb_id) {
884 wbc->wb_bytes += bytes;
885 return;
886 }
887
888 if (id == wbc->wb_lcand_id)
889 wbc->wb_lcand_bytes += bytes;
890
891 /* Boyer-Moore majority vote algorithm */
892 if (!wbc->wb_tcand_bytes)
893 wbc->wb_tcand_id = id;
894 if (id == wbc->wb_tcand_id)
895 wbc->wb_tcand_bytes += bytes;
896 else
897 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
898 }
899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
900
901 /**
902 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903 * @wb: target bdi_writeback to split @nr_pages to
904 * @nr_pages: number of pages to write for the whole bdi
905 *
906 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907 * relation to the total write bandwidth of all wb's w/ dirty inodes on
908 * @wb->bdi.
909 */
910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
911 {
912 unsigned long this_bw = wb->avg_write_bandwidth;
913 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
914
915 if (nr_pages == LONG_MAX)
916 return LONG_MAX;
917
918 /*
919 * This may be called on clean wb's and proportional distribution
920 * may not make sense, just use the original @nr_pages in those
921 * cases. In general, we wanna err on the side of writing more.
922 */
923 if (!tot_bw || this_bw >= tot_bw)
924 return nr_pages;
925 else
926 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
927 }
928
929 /**
930 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931 * @bdi: target backing_dev_info
932 * @base_work: wb_writeback_work to issue
933 * @skip_if_busy: skip wb's which already have writeback in progress
934 *
935 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
937 * distributed to the busy wbs according to each wb's proportion in the
938 * total active write bandwidth of @bdi.
939 */
940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941 struct wb_writeback_work *base_work,
942 bool skip_if_busy)
943 {
944 struct bdi_writeback *last_wb = NULL;
945 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946 struct bdi_writeback, bdi_node);
947
948 might_sleep();
949 restart:
950 rcu_read_lock();
951 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953 struct wb_writeback_work fallback_work;
954 struct wb_writeback_work *work;
955 long nr_pages;
956
957 if (last_wb) {
958 wb_put(last_wb);
959 last_wb = NULL;
960 }
961
962 /* SYNC_ALL writes out I_DIRTY_TIME too */
963 if (!wb_has_dirty_io(wb) &&
964 (base_work->sync_mode == WB_SYNC_NONE ||
965 list_empty(&wb->b_dirty_time)))
966 continue;
967 if (skip_if_busy && writeback_in_progress(wb))
968 continue;
969
970 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
971
972 work = kmalloc(sizeof(*work), GFP_ATOMIC);
973 if (work) {
974 *work = *base_work;
975 work->nr_pages = nr_pages;
976 work->auto_free = 1;
977 wb_queue_work(wb, work);
978 continue;
979 }
980
981 /* alloc failed, execute synchronously using on-stack fallback */
982 work = &fallback_work;
983 *work = *base_work;
984 work->nr_pages = nr_pages;
985 work->auto_free = 0;
986 work->done = &fallback_work_done;
987
988 wb_queue_work(wb, work);
989
990 /*
991 * Pin @wb so that it stays on @bdi->wb_list. This allows
992 * continuing iteration from @wb after dropping and
993 * regrabbing rcu read lock.
994 */
995 wb_get(wb);
996 last_wb = wb;
997
998 rcu_read_unlock();
999 wb_wait_for_completion(&fallback_work_done);
1000 goto restart;
1001 }
1002 rcu_read_unlock();
1003
1004 if (last_wb)
1005 wb_put(last_wb);
1006 }
1007
1008 /**
1009 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1010 * @bdi_id: target bdi id
1011 * @memcg_id: target memcg css id
1012 * @reason: reason why some writeback work initiated
1013 * @done: target wb_completion
1014 *
1015 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1016 * with the specified parameters.
1017 */
1018 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1019 enum wb_reason reason, struct wb_completion *done)
1020 {
1021 struct backing_dev_info *bdi;
1022 struct cgroup_subsys_state *memcg_css;
1023 struct bdi_writeback *wb;
1024 struct wb_writeback_work *work;
1025 unsigned long dirty;
1026 int ret;
1027
1028 /* lookup bdi and memcg */
1029 bdi = bdi_get_by_id(bdi_id);
1030 if (!bdi)
1031 return -ENOENT;
1032
1033 rcu_read_lock();
1034 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1035 if (memcg_css && !css_tryget(memcg_css))
1036 memcg_css = NULL;
1037 rcu_read_unlock();
1038 if (!memcg_css) {
1039 ret = -ENOENT;
1040 goto out_bdi_put;
1041 }
1042
1043 /*
1044 * And find the associated wb. If the wb isn't there already
1045 * there's nothing to flush, don't create one.
1046 */
1047 wb = wb_get_lookup(bdi, memcg_css);
1048 if (!wb) {
1049 ret = -ENOENT;
1050 goto out_css_put;
1051 }
1052
1053 /*
1054 * The caller is attempting to write out most of
1055 * the currently dirty pages. Let's take the current dirty page
1056 * count and inflate it by 25% which should be large enough to
1057 * flush out most dirty pages while avoiding getting livelocked by
1058 * concurrent dirtiers.
1059 *
1060 * BTW the memcg stats are flushed periodically and this is best-effort
1061 * estimation, so some potential error is ok.
1062 */
1063 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1064 dirty = dirty * 10 / 8;
1065
1066 /* issue the writeback work */
1067 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1068 if (work) {
1069 work->nr_pages = dirty;
1070 work->sync_mode = WB_SYNC_NONE;
1071 work->range_cyclic = 1;
1072 work->reason = reason;
1073 work->done = done;
1074 work->auto_free = 1;
1075 wb_queue_work(wb, work);
1076 ret = 0;
1077 } else {
1078 ret = -ENOMEM;
1079 }
1080
1081 wb_put(wb);
1082 out_css_put:
1083 css_put(memcg_css);
1084 out_bdi_put:
1085 bdi_put(bdi);
1086 return ret;
1087 }
1088
1089 /**
1090 * cgroup_writeback_umount - flush inode wb switches for umount
1091 *
1092 * This function is called when a super_block is about to be destroyed and
1093 * flushes in-flight inode wb switches. An inode wb switch goes through
1094 * RCU and then workqueue, so the two need to be flushed in order to ensure
1095 * that all previously scheduled switches are finished. As wb switches are
1096 * rare occurrences and synchronize_rcu() can take a while, perform
1097 * flushing iff wb switches are in flight.
1098 */
1099 void cgroup_writeback_umount(void)
1100 {
1101 /*
1102 * SB_ACTIVE should be reliably cleared before checking
1103 * isw_nr_in_flight, see generic_shutdown_super().
1104 */
1105 smp_mb();
1106
1107 if (atomic_read(&isw_nr_in_flight)) {
1108 /*
1109 * Use rcu_barrier() to wait for all pending callbacks to
1110 * ensure that all in-flight wb switches are in the workqueue.
1111 */
1112 rcu_barrier();
1113 flush_workqueue(isw_wq);
1114 }
1115 }
1116
1117 static int __init cgroup_writeback_init(void)
1118 {
1119 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1120 if (!isw_wq)
1121 return -ENOMEM;
1122 return 0;
1123 }
1124 fs_initcall(cgroup_writeback_init);
1125
1126 #else /* CONFIG_CGROUP_WRITEBACK */
1127
1128 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1129 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1130
1131 static void inode_cgwb_move_to_attached(struct inode *inode,
1132 struct bdi_writeback *wb)
1133 {
1134 assert_spin_locked(&wb->list_lock);
1135 assert_spin_locked(&inode->i_lock);
1136 WARN_ON_ONCE(inode->i_state & I_FREEING);
1137
1138 inode->i_state &= ~I_SYNC_QUEUED;
1139 list_del_init(&inode->i_io_list);
1140 wb_io_lists_depopulated(wb);
1141 }
1142
1143 static struct bdi_writeback *
1144 locked_inode_to_wb_and_lock_list(struct inode *inode)
1145 __releases(&inode->i_lock)
1146 __acquires(&wb->list_lock)
1147 {
1148 struct bdi_writeback *wb = inode_to_wb(inode);
1149
1150 spin_unlock(&inode->i_lock);
1151 spin_lock(&wb->list_lock);
1152 return wb;
1153 }
1154
1155 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1156 __acquires(&wb->list_lock)
1157 {
1158 struct bdi_writeback *wb = inode_to_wb(inode);
1159
1160 spin_lock(&wb->list_lock);
1161 return wb;
1162 }
1163
1164 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1165 {
1166 return nr_pages;
1167 }
1168
1169 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1170 struct wb_writeback_work *base_work,
1171 bool skip_if_busy)
1172 {
1173 might_sleep();
1174
1175 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1176 base_work->auto_free = 0;
1177 wb_queue_work(&bdi->wb, base_work);
1178 }
1179 }
1180
1181 #endif /* CONFIG_CGROUP_WRITEBACK */
1182
1183 /*
1184 * Add in the number of potentially dirty inodes, because each inode
1185 * write can dirty pagecache in the underlying blockdev.
1186 */
1187 static unsigned long get_nr_dirty_pages(void)
1188 {
1189 return global_node_page_state(NR_FILE_DIRTY) +
1190 get_nr_dirty_inodes();
1191 }
1192
1193 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1194 {
1195 if (!wb_has_dirty_io(wb))
1196 return;
1197
1198 /*
1199 * All callers of this function want to start writeback of all
1200 * dirty pages. Places like vmscan can call this at a very
1201 * high frequency, causing pointless allocations of tons of
1202 * work items and keeping the flusher threads busy retrieving
1203 * that work. Ensure that we only allow one of them pending and
1204 * inflight at the time.
1205 */
1206 if (test_bit(WB_start_all, &wb->state) ||
1207 test_and_set_bit(WB_start_all, &wb->state))
1208 return;
1209
1210 wb->start_all_reason = reason;
1211 wb_wakeup(wb);
1212 }
1213
1214 /**
1215 * wb_start_background_writeback - start background writeback
1216 * @wb: bdi_writback to write from
1217 *
1218 * Description:
1219 * This makes sure WB_SYNC_NONE background writeback happens. When
1220 * this function returns, it is only guaranteed that for given wb
1221 * some IO is happening if we are over background dirty threshold.
1222 * Caller need not hold sb s_umount semaphore.
1223 */
1224 void wb_start_background_writeback(struct bdi_writeback *wb)
1225 {
1226 /*
1227 * We just wake up the flusher thread. It will perform background
1228 * writeback as soon as there is no other work to do.
1229 */
1230 trace_writeback_wake_background(wb);
1231 wb_wakeup(wb);
1232 }
1233
1234 /*
1235 * Remove the inode from the writeback list it is on.
1236 */
1237 void inode_io_list_del(struct inode *inode)
1238 {
1239 struct bdi_writeback *wb;
1240
1241 wb = inode_to_wb_and_lock_list(inode);
1242 spin_lock(&inode->i_lock);
1243
1244 inode->i_state &= ~I_SYNC_QUEUED;
1245 list_del_init(&inode->i_io_list);
1246 wb_io_lists_depopulated(wb);
1247
1248 spin_unlock(&inode->i_lock);
1249 spin_unlock(&wb->list_lock);
1250 }
1251 EXPORT_SYMBOL(inode_io_list_del);
1252
1253 /*
1254 * mark an inode as under writeback on the sb
1255 */
1256 void sb_mark_inode_writeback(struct inode *inode)
1257 {
1258 struct super_block *sb = inode->i_sb;
1259 unsigned long flags;
1260
1261 if (list_empty(&inode->i_wb_list)) {
1262 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1263 if (list_empty(&inode->i_wb_list)) {
1264 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1265 trace_sb_mark_inode_writeback(inode);
1266 }
1267 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1268 }
1269 }
1270
1271 /*
1272 * clear an inode as under writeback on the sb
1273 */
1274 void sb_clear_inode_writeback(struct inode *inode)
1275 {
1276 struct super_block *sb = inode->i_sb;
1277 unsigned long flags;
1278
1279 if (!list_empty(&inode->i_wb_list)) {
1280 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1281 if (!list_empty(&inode->i_wb_list)) {
1282 list_del_init(&inode->i_wb_list);
1283 trace_sb_clear_inode_writeback(inode);
1284 }
1285 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1286 }
1287 }
1288
1289 /*
1290 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1291 * furthest end of its superblock's dirty-inode list.
1292 *
1293 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1294 * already the most-recently-dirtied inode on the b_dirty list. If that is
1295 * the case then the inode must have been redirtied while it was being written
1296 * out and we don't reset its dirtied_when.
1297 */
1298 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1299 {
1300 assert_spin_locked(&inode->i_lock);
1301
1302 inode->i_state &= ~I_SYNC_QUEUED;
1303 /*
1304 * When the inode is being freed just don't bother with dirty list
1305 * tracking. Flush worker will ignore this inode anyway and it will
1306 * trigger assertions in inode_io_list_move_locked().
1307 */
1308 if (inode->i_state & I_FREEING) {
1309 list_del_init(&inode->i_io_list);
1310 wb_io_lists_depopulated(wb);
1311 return;
1312 }
1313 if (!list_empty(&wb->b_dirty)) {
1314 struct inode *tail;
1315
1316 tail = wb_inode(wb->b_dirty.next);
1317 if (time_before(inode->dirtied_when, tail->dirtied_when))
1318 inode->dirtied_when = jiffies;
1319 }
1320 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1321 }
1322
1323 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1324 {
1325 spin_lock(&inode->i_lock);
1326 redirty_tail_locked(inode, wb);
1327 spin_unlock(&inode->i_lock);
1328 }
1329
1330 /*
1331 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1332 */
1333 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1334 {
1335 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1336 }
1337
1338 static void inode_sync_complete(struct inode *inode)
1339 {
1340 inode->i_state &= ~I_SYNC;
1341 /* If inode is clean an unused, put it into LRU now... */
1342 inode_add_lru(inode);
1343 /* Waiters must see I_SYNC cleared before being woken up */
1344 smp_mb();
1345 wake_up_bit(&inode->i_state, __I_SYNC);
1346 }
1347
1348 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1349 {
1350 bool ret = time_after(inode->dirtied_when, t);
1351 #ifndef CONFIG_64BIT
1352 /*
1353 * For inodes being constantly redirtied, dirtied_when can get stuck.
1354 * It _appears_ to be in the future, but is actually in distant past.
1355 * This test is necessary to prevent such wrapped-around relative times
1356 * from permanently stopping the whole bdi writeback.
1357 */
1358 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1359 #endif
1360 return ret;
1361 }
1362
1363 /*
1364 * Move expired (dirtied before dirtied_before) dirty inodes from
1365 * @delaying_queue to @dispatch_queue.
1366 */
1367 static int move_expired_inodes(struct list_head *delaying_queue,
1368 struct list_head *dispatch_queue,
1369 unsigned long dirtied_before)
1370 {
1371 LIST_HEAD(tmp);
1372 struct list_head *pos, *node;
1373 struct super_block *sb = NULL;
1374 struct inode *inode;
1375 int do_sb_sort = 0;
1376 int moved = 0;
1377
1378 while (!list_empty(delaying_queue)) {
1379 inode = wb_inode(delaying_queue->prev);
1380 if (inode_dirtied_after(inode, dirtied_before))
1381 break;
1382 spin_lock(&inode->i_lock);
1383 list_move(&inode->i_io_list, &tmp);
1384 moved++;
1385 inode->i_state |= I_SYNC_QUEUED;
1386 spin_unlock(&inode->i_lock);
1387 if (sb_is_blkdev_sb(inode->i_sb))
1388 continue;
1389 if (sb && sb != inode->i_sb)
1390 do_sb_sort = 1;
1391 sb = inode->i_sb;
1392 }
1393
1394 /* just one sb in list, splice to dispatch_queue and we're done */
1395 if (!do_sb_sort) {
1396 list_splice(&tmp, dispatch_queue);
1397 goto out;
1398 }
1399
1400 /*
1401 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1402 * we don't take inode->i_lock here because it is just a pointless overhead.
1403 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1404 * fully under our control.
1405 */
1406 while (!list_empty(&tmp)) {
1407 sb = wb_inode(tmp.prev)->i_sb;
1408 list_for_each_prev_safe(pos, node, &tmp) {
1409 inode = wb_inode(pos);
1410 if (inode->i_sb == sb)
1411 list_move(&inode->i_io_list, dispatch_queue);
1412 }
1413 }
1414 out:
1415 return moved;
1416 }
1417
1418 /*
1419 * Queue all expired dirty inodes for io, eldest first.
1420 * Before
1421 * newly dirtied b_dirty b_io b_more_io
1422 * =============> gf edc BA
1423 * After
1424 * newly dirtied b_dirty b_io b_more_io
1425 * =============> g fBAedc
1426 * |
1427 * +--> dequeue for IO
1428 */
1429 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1430 unsigned long dirtied_before)
1431 {
1432 int moved;
1433 unsigned long time_expire_jif = dirtied_before;
1434
1435 assert_spin_locked(&wb->list_lock);
1436 list_splice_init(&wb->b_more_io, &wb->b_io);
1437 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1438 if (!work->for_sync)
1439 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1440 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1441 time_expire_jif);
1442 if (moved)
1443 wb_io_lists_populated(wb);
1444 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1445 }
1446
1447 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1448 {
1449 int ret;
1450
1451 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1452 trace_writeback_write_inode_start(inode, wbc);
1453 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1454 trace_writeback_write_inode(inode, wbc);
1455 return ret;
1456 }
1457 return 0;
1458 }
1459
1460 /*
1461 * Wait for writeback on an inode to complete. Called with i_lock held.
1462 * Caller must make sure inode cannot go away when we drop i_lock.
1463 */
1464 static void __inode_wait_for_writeback(struct inode *inode)
1465 __releases(inode->i_lock)
1466 __acquires(inode->i_lock)
1467 {
1468 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1469 wait_queue_head_t *wqh;
1470
1471 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1472 while (inode->i_state & I_SYNC) {
1473 spin_unlock(&inode->i_lock);
1474 __wait_on_bit(wqh, &wq, bit_wait,
1475 TASK_UNINTERRUPTIBLE);
1476 spin_lock(&inode->i_lock);
1477 }
1478 }
1479
1480 /*
1481 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1482 */
1483 void inode_wait_for_writeback(struct inode *inode)
1484 {
1485 spin_lock(&inode->i_lock);
1486 __inode_wait_for_writeback(inode);
1487 spin_unlock(&inode->i_lock);
1488 }
1489
1490 /*
1491 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1492 * held and drops it. It is aimed for callers not holding any inode reference
1493 * so once i_lock is dropped, inode can go away.
1494 */
1495 static void inode_sleep_on_writeback(struct inode *inode)
1496 __releases(inode->i_lock)
1497 {
1498 DEFINE_WAIT(wait);
1499 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1500 int sleep;
1501
1502 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1503 sleep = inode->i_state & I_SYNC;
1504 spin_unlock(&inode->i_lock);
1505 if (sleep)
1506 schedule();
1507 finish_wait(wqh, &wait);
1508 }
1509
1510 /*
1511 * Find proper writeback list for the inode depending on its current state and
1512 * possibly also change of its state while we were doing writeback. Here we
1513 * handle things such as livelock prevention or fairness of writeback among
1514 * inodes. This function can be called only by flusher thread - noone else
1515 * processes all inodes in writeback lists and requeueing inodes behind flusher
1516 * thread's back can have unexpected consequences.
1517 */
1518 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1519 struct writeback_control *wbc)
1520 {
1521 if (inode->i_state & I_FREEING)
1522 return;
1523
1524 /*
1525 * Sync livelock prevention. Each inode is tagged and synced in one
1526 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1527 * the dirty time to prevent enqueue and sync it again.
1528 */
1529 if ((inode->i_state & I_DIRTY) &&
1530 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1531 inode->dirtied_when = jiffies;
1532
1533 if (wbc->pages_skipped) {
1534 /*
1535 * writeback is not making progress due to locked
1536 * buffers. Skip this inode for now.
1537 */
1538 redirty_tail_locked(inode, wb);
1539 return;
1540 }
1541
1542 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1543 /*
1544 * We didn't write back all the pages. nfs_writepages()
1545 * sometimes bales out without doing anything.
1546 */
1547 if (wbc->nr_to_write <= 0) {
1548 /* Slice used up. Queue for next turn. */
1549 requeue_io(inode, wb);
1550 } else {
1551 /*
1552 * Writeback blocked by something other than
1553 * congestion. Delay the inode for some time to
1554 * avoid spinning on the CPU (100% iowait)
1555 * retrying writeback of the dirty page/inode
1556 * that cannot be performed immediately.
1557 */
1558 redirty_tail_locked(inode, wb);
1559 }
1560 } else if (inode->i_state & I_DIRTY) {
1561 /*
1562 * Filesystems can dirty the inode during writeback operations,
1563 * such as delayed allocation during submission or metadata
1564 * updates after data IO completion.
1565 */
1566 redirty_tail_locked(inode, wb);
1567 } else if (inode->i_state & I_DIRTY_TIME) {
1568 inode->dirtied_when = jiffies;
1569 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1570 inode->i_state &= ~I_SYNC_QUEUED;
1571 } else {
1572 /* The inode is clean. Remove from writeback lists. */
1573 inode_cgwb_move_to_attached(inode, wb);
1574 }
1575 }
1576
1577 /*
1578 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1579 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1580 *
1581 * This doesn't remove the inode from the writeback list it is on, except
1582 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1583 * expiration. The caller is otherwise responsible for writeback list handling.
1584 *
1585 * The caller is also responsible for setting the I_SYNC flag beforehand and
1586 * calling inode_sync_complete() to clear it afterwards.
1587 */
1588 static int
1589 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1590 {
1591 struct address_space *mapping = inode->i_mapping;
1592 long nr_to_write = wbc->nr_to_write;
1593 unsigned dirty;
1594 int ret;
1595
1596 WARN_ON(!(inode->i_state & I_SYNC));
1597
1598 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1599
1600 ret = do_writepages(mapping, wbc);
1601
1602 /*
1603 * Make sure to wait on the data before writing out the metadata.
1604 * This is important for filesystems that modify metadata on data
1605 * I/O completion. We don't do it for sync(2) writeback because it has a
1606 * separate, external IO completion path and ->sync_fs for guaranteeing
1607 * inode metadata is written back correctly.
1608 */
1609 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1610 int err = filemap_fdatawait(mapping);
1611 if (ret == 0)
1612 ret = err;
1613 }
1614
1615 /*
1616 * If the inode has dirty timestamps and we need to write them, call
1617 * mark_inode_dirty_sync() to notify the filesystem about it and to
1618 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1619 */
1620 if ((inode->i_state & I_DIRTY_TIME) &&
1621 (wbc->sync_mode == WB_SYNC_ALL ||
1622 time_after(jiffies, inode->dirtied_time_when +
1623 dirtytime_expire_interval * HZ))) {
1624 trace_writeback_lazytime(inode);
1625 mark_inode_dirty_sync(inode);
1626 }
1627
1628 /*
1629 * Get and clear the dirty flags from i_state. This needs to be done
1630 * after calling writepages because some filesystems may redirty the
1631 * inode during writepages due to delalloc. It also needs to be done
1632 * after handling timestamp expiration, as that may dirty the inode too.
1633 */
1634 spin_lock(&inode->i_lock);
1635 dirty = inode->i_state & I_DIRTY;
1636 inode->i_state &= ~dirty;
1637
1638 /*
1639 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1640 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1641 * either they see the I_DIRTY bits cleared or we see the dirtied
1642 * inode.
1643 *
1644 * I_DIRTY_PAGES is always cleared together above even if @mapping
1645 * still has dirty pages. The flag is reinstated after smp_mb() if
1646 * necessary. This guarantees that either __mark_inode_dirty()
1647 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1648 */
1649 smp_mb();
1650
1651 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1652 inode->i_state |= I_DIRTY_PAGES;
1653 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1654 if (!(inode->i_state & I_DIRTY_PAGES)) {
1655 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1656 wbc->unpinned_fscache_wb = true;
1657 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1658 }
1659 }
1660
1661 spin_unlock(&inode->i_lock);
1662
1663 /* Don't write the inode if only I_DIRTY_PAGES was set */
1664 if (dirty & ~I_DIRTY_PAGES) {
1665 int err = write_inode(inode, wbc);
1666 if (ret == 0)
1667 ret = err;
1668 }
1669 wbc->unpinned_fscache_wb = false;
1670 trace_writeback_single_inode(inode, wbc, nr_to_write);
1671 return ret;
1672 }
1673
1674 /*
1675 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1676 * the regular batched writeback done by the flusher threads in
1677 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1678 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1679 *
1680 * To prevent the inode from going away, either the caller must have a reference
1681 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1682 */
1683 static int writeback_single_inode(struct inode *inode,
1684 struct writeback_control *wbc)
1685 {
1686 struct bdi_writeback *wb;
1687 int ret = 0;
1688
1689 spin_lock(&inode->i_lock);
1690 if (!atomic_read(&inode->i_count))
1691 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1692 else
1693 WARN_ON(inode->i_state & I_WILL_FREE);
1694
1695 if (inode->i_state & I_SYNC) {
1696 /*
1697 * Writeback is already running on the inode. For WB_SYNC_NONE,
1698 * that's enough and we can just return. For WB_SYNC_ALL, we
1699 * must wait for the existing writeback to complete, then do
1700 * writeback again if there's anything left.
1701 */
1702 if (wbc->sync_mode != WB_SYNC_ALL)
1703 goto out;
1704 __inode_wait_for_writeback(inode);
1705 }
1706 WARN_ON(inode->i_state & I_SYNC);
1707 /*
1708 * If the inode is already fully clean, then there's nothing to do.
1709 *
1710 * For data-integrity syncs we also need to check whether any pages are
1711 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1712 * there are any such pages, we'll need to wait for them.
1713 */
1714 if (!(inode->i_state & I_DIRTY_ALL) &&
1715 (wbc->sync_mode != WB_SYNC_ALL ||
1716 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1717 goto out;
1718 inode->i_state |= I_SYNC;
1719 wbc_attach_and_unlock_inode(wbc, inode);
1720
1721 ret = __writeback_single_inode(inode, wbc);
1722
1723 wbc_detach_inode(wbc);
1724
1725 wb = inode_to_wb_and_lock_list(inode);
1726 spin_lock(&inode->i_lock);
1727 /*
1728 * If the inode is freeing, its i_io_list shoudn't be updated
1729 * as it can be finally deleted at this moment.
1730 */
1731 if (!(inode->i_state & I_FREEING)) {
1732 /*
1733 * If the inode is now fully clean, then it can be safely
1734 * removed from its writeback list (if any). Otherwise the
1735 * flusher threads are responsible for the writeback lists.
1736 */
1737 if (!(inode->i_state & I_DIRTY_ALL))
1738 inode_cgwb_move_to_attached(inode, wb);
1739 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1740 if ((inode->i_state & I_DIRTY))
1741 redirty_tail_locked(inode, wb);
1742 else if (inode->i_state & I_DIRTY_TIME) {
1743 inode->dirtied_when = jiffies;
1744 inode_io_list_move_locked(inode,
1745 wb,
1746 &wb->b_dirty_time);
1747 }
1748 }
1749 }
1750
1751 spin_unlock(&wb->list_lock);
1752 inode_sync_complete(inode);
1753 out:
1754 spin_unlock(&inode->i_lock);
1755 return ret;
1756 }
1757
1758 static long writeback_chunk_size(struct bdi_writeback *wb,
1759 struct wb_writeback_work *work)
1760 {
1761 long pages;
1762
1763 /*
1764 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1765 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1766 * here avoids calling into writeback_inodes_wb() more than once.
1767 *
1768 * The intended call sequence for WB_SYNC_ALL writeback is:
1769 *
1770 * wb_writeback()
1771 * writeback_sb_inodes() <== called only once
1772 * write_cache_pages() <== called once for each inode
1773 * (quickly) tag currently dirty pages
1774 * (maybe slowly) sync all tagged pages
1775 */
1776 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1777 pages = LONG_MAX;
1778 else {
1779 pages = min(wb->avg_write_bandwidth / 2,
1780 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1781 pages = min(pages, work->nr_pages);
1782 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1783 MIN_WRITEBACK_PAGES);
1784 }
1785
1786 return pages;
1787 }
1788
1789 /*
1790 * Write a portion of b_io inodes which belong to @sb.
1791 *
1792 * Return the number of pages and/or inodes written.
1793 *
1794 * NOTE! This is called with wb->list_lock held, and will
1795 * unlock and relock that for each inode it ends up doing
1796 * IO for.
1797 */
1798 static long writeback_sb_inodes(struct super_block *sb,
1799 struct bdi_writeback *wb,
1800 struct wb_writeback_work *work)
1801 {
1802 struct writeback_control wbc = {
1803 .sync_mode = work->sync_mode,
1804 .tagged_writepages = work->tagged_writepages,
1805 .for_kupdate = work->for_kupdate,
1806 .for_background = work->for_background,
1807 .for_sync = work->for_sync,
1808 .range_cyclic = work->range_cyclic,
1809 .range_start = 0,
1810 .range_end = LLONG_MAX,
1811 };
1812 unsigned long start_time = jiffies;
1813 long write_chunk;
1814 long total_wrote = 0; /* count both pages and inodes */
1815
1816 while (!list_empty(&wb->b_io)) {
1817 struct inode *inode = wb_inode(wb->b_io.prev);
1818 struct bdi_writeback *tmp_wb;
1819 long wrote;
1820
1821 if (inode->i_sb != sb) {
1822 if (work->sb) {
1823 /*
1824 * We only want to write back data for this
1825 * superblock, move all inodes not belonging
1826 * to it back onto the dirty list.
1827 */
1828 redirty_tail(inode, wb);
1829 continue;
1830 }
1831
1832 /*
1833 * The inode belongs to a different superblock.
1834 * Bounce back to the caller to unpin this and
1835 * pin the next superblock.
1836 */
1837 break;
1838 }
1839
1840 /*
1841 * Don't bother with new inodes or inodes being freed, first
1842 * kind does not need periodic writeout yet, and for the latter
1843 * kind writeout is handled by the freer.
1844 */
1845 spin_lock(&inode->i_lock);
1846 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1847 redirty_tail_locked(inode, wb);
1848 spin_unlock(&inode->i_lock);
1849 continue;
1850 }
1851 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1852 /*
1853 * If this inode is locked for writeback and we are not
1854 * doing writeback-for-data-integrity, move it to
1855 * b_more_io so that writeback can proceed with the
1856 * other inodes on s_io.
1857 *
1858 * We'll have another go at writing back this inode
1859 * when we completed a full scan of b_io.
1860 */
1861 requeue_io(inode, wb);
1862 spin_unlock(&inode->i_lock);
1863 trace_writeback_sb_inodes_requeue(inode);
1864 continue;
1865 }
1866 spin_unlock(&wb->list_lock);
1867
1868 /*
1869 * We already requeued the inode if it had I_SYNC set and we
1870 * are doing WB_SYNC_NONE writeback. So this catches only the
1871 * WB_SYNC_ALL case.
1872 */
1873 if (inode->i_state & I_SYNC) {
1874 /* Wait for I_SYNC. This function drops i_lock... */
1875 inode_sleep_on_writeback(inode);
1876 /* Inode may be gone, start again */
1877 spin_lock(&wb->list_lock);
1878 continue;
1879 }
1880 inode->i_state |= I_SYNC;
1881 wbc_attach_and_unlock_inode(&wbc, inode);
1882
1883 write_chunk = writeback_chunk_size(wb, work);
1884 wbc.nr_to_write = write_chunk;
1885 wbc.pages_skipped = 0;
1886
1887 /*
1888 * We use I_SYNC to pin the inode in memory. While it is set
1889 * evict_inode() will wait so the inode cannot be freed.
1890 */
1891 __writeback_single_inode(inode, &wbc);
1892
1893 wbc_detach_inode(&wbc);
1894 work->nr_pages -= write_chunk - wbc.nr_to_write;
1895 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1896 wrote = wrote < 0 ? 0 : wrote;
1897 total_wrote += wrote;
1898
1899 if (need_resched()) {
1900 /*
1901 * We're trying to balance between building up a nice
1902 * long list of IOs to improve our merge rate, and
1903 * getting those IOs out quickly for anyone throttling
1904 * in balance_dirty_pages(). cond_resched() doesn't
1905 * unplug, so get our IOs out the door before we
1906 * give up the CPU.
1907 */
1908 blk_flush_plug(current->plug, false);
1909 cond_resched();
1910 }
1911
1912 /*
1913 * Requeue @inode if still dirty. Be careful as @inode may
1914 * have been switched to another wb in the meantime.
1915 */
1916 tmp_wb = inode_to_wb_and_lock_list(inode);
1917 spin_lock(&inode->i_lock);
1918 if (!(inode->i_state & I_DIRTY_ALL))
1919 total_wrote++;
1920 requeue_inode(inode, tmp_wb, &wbc);
1921 inode_sync_complete(inode);
1922 spin_unlock(&inode->i_lock);
1923
1924 if (unlikely(tmp_wb != wb)) {
1925 spin_unlock(&tmp_wb->list_lock);
1926 spin_lock(&wb->list_lock);
1927 }
1928
1929 /*
1930 * bail out to wb_writeback() often enough to check
1931 * background threshold and other termination conditions.
1932 */
1933 if (total_wrote) {
1934 if (time_is_before_jiffies(start_time + HZ / 10UL))
1935 break;
1936 if (work->nr_pages <= 0)
1937 break;
1938 }
1939 }
1940 return total_wrote;
1941 }
1942
1943 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1944 struct wb_writeback_work *work)
1945 {
1946 unsigned long start_time = jiffies;
1947 long wrote = 0;
1948
1949 while (!list_empty(&wb->b_io)) {
1950 struct inode *inode = wb_inode(wb->b_io.prev);
1951 struct super_block *sb = inode->i_sb;
1952
1953 if (!trylock_super(sb)) {
1954 /*
1955 * trylock_super() may fail consistently due to
1956 * s_umount being grabbed by someone else. Don't use
1957 * requeue_io() to avoid busy retrying the inode/sb.
1958 */
1959 redirty_tail(inode, wb);
1960 continue;
1961 }
1962 wrote += writeback_sb_inodes(sb, wb, work);
1963 up_read(&sb->s_umount);
1964
1965 /* refer to the same tests at the end of writeback_sb_inodes */
1966 if (wrote) {
1967 if (time_is_before_jiffies(start_time + HZ / 10UL))
1968 break;
1969 if (work->nr_pages <= 0)
1970 break;
1971 }
1972 }
1973 /* Leave any unwritten inodes on b_io */
1974 return wrote;
1975 }
1976
1977 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1978 enum wb_reason reason)
1979 {
1980 struct wb_writeback_work work = {
1981 .nr_pages = nr_pages,
1982 .sync_mode = WB_SYNC_NONE,
1983 .range_cyclic = 1,
1984 .reason = reason,
1985 };
1986 struct blk_plug plug;
1987
1988 blk_start_plug(&plug);
1989 spin_lock(&wb->list_lock);
1990 if (list_empty(&wb->b_io))
1991 queue_io(wb, &work, jiffies);
1992 __writeback_inodes_wb(wb, &work);
1993 spin_unlock(&wb->list_lock);
1994 blk_finish_plug(&plug);
1995
1996 return nr_pages - work.nr_pages;
1997 }
1998
1999 /*
2000 * Explicit flushing or periodic writeback of "old" data.
2001 *
2002 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2003 * dirtying-time in the inode's address_space. So this periodic writeback code
2004 * just walks the superblock inode list, writing back any inodes which are
2005 * older than a specific point in time.
2006 *
2007 * Try to run once per dirty_writeback_interval. But if a writeback event
2008 * takes longer than a dirty_writeback_interval interval, then leave a
2009 * one-second gap.
2010 *
2011 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2012 * all dirty pages if they are all attached to "old" mappings.
2013 */
2014 static long wb_writeback(struct bdi_writeback *wb,
2015 struct wb_writeback_work *work)
2016 {
2017 long nr_pages = work->nr_pages;
2018 unsigned long dirtied_before = jiffies;
2019 struct inode *inode;
2020 long progress;
2021 struct blk_plug plug;
2022
2023 blk_start_plug(&plug);
2024 spin_lock(&wb->list_lock);
2025 for (;;) {
2026 /*
2027 * Stop writeback when nr_pages has been consumed
2028 */
2029 if (work->nr_pages <= 0)
2030 break;
2031
2032 /*
2033 * Background writeout and kupdate-style writeback may
2034 * run forever. Stop them if there is other work to do
2035 * so that e.g. sync can proceed. They'll be restarted
2036 * after the other works are all done.
2037 */
2038 if ((work->for_background || work->for_kupdate) &&
2039 !list_empty(&wb->work_list))
2040 break;
2041
2042 /*
2043 * For background writeout, stop when we are below the
2044 * background dirty threshold
2045 */
2046 if (work->for_background && !wb_over_bg_thresh(wb))
2047 break;
2048
2049 /*
2050 * Kupdate and background works are special and we want to
2051 * include all inodes that need writing. Livelock avoidance is
2052 * handled by these works yielding to any other work so we are
2053 * safe.
2054 */
2055 if (work->for_kupdate) {
2056 dirtied_before = jiffies -
2057 msecs_to_jiffies(dirty_expire_interval * 10);
2058 } else if (work->for_background)
2059 dirtied_before = jiffies;
2060
2061 trace_writeback_start(wb, work);
2062 if (list_empty(&wb->b_io))
2063 queue_io(wb, work, dirtied_before);
2064 if (work->sb)
2065 progress = writeback_sb_inodes(work->sb, wb, work);
2066 else
2067 progress = __writeback_inodes_wb(wb, work);
2068 trace_writeback_written(wb, work);
2069
2070 /*
2071 * Did we write something? Try for more
2072 *
2073 * Dirty inodes are moved to b_io for writeback in batches.
2074 * The completion of the current batch does not necessarily
2075 * mean the overall work is done. So we keep looping as long
2076 * as made some progress on cleaning pages or inodes.
2077 */
2078 if (progress)
2079 continue;
2080 /*
2081 * No more inodes for IO, bail
2082 */
2083 if (list_empty(&wb->b_more_io))
2084 break;
2085 /*
2086 * Nothing written. Wait for some inode to
2087 * become available for writeback. Otherwise
2088 * we'll just busyloop.
2089 */
2090 trace_writeback_wait(wb, work);
2091 inode = wb_inode(wb->b_more_io.prev);
2092 spin_lock(&inode->i_lock);
2093 spin_unlock(&wb->list_lock);
2094 /* This function drops i_lock... */
2095 inode_sleep_on_writeback(inode);
2096 spin_lock(&wb->list_lock);
2097 }
2098 spin_unlock(&wb->list_lock);
2099 blk_finish_plug(&plug);
2100
2101 return nr_pages - work->nr_pages;
2102 }
2103
2104 /*
2105 * Return the next wb_writeback_work struct that hasn't been processed yet.
2106 */
2107 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2108 {
2109 struct wb_writeback_work *work = NULL;
2110
2111 spin_lock_irq(&wb->work_lock);
2112 if (!list_empty(&wb->work_list)) {
2113 work = list_entry(wb->work_list.next,
2114 struct wb_writeback_work, list);
2115 list_del_init(&work->list);
2116 }
2117 spin_unlock_irq(&wb->work_lock);
2118 return work;
2119 }
2120
2121 static long wb_check_background_flush(struct bdi_writeback *wb)
2122 {
2123 if (wb_over_bg_thresh(wb)) {
2124
2125 struct wb_writeback_work work = {
2126 .nr_pages = LONG_MAX,
2127 .sync_mode = WB_SYNC_NONE,
2128 .for_background = 1,
2129 .range_cyclic = 1,
2130 .reason = WB_REASON_BACKGROUND,
2131 };
2132
2133 return wb_writeback(wb, &work);
2134 }
2135
2136 return 0;
2137 }
2138
2139 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2140 {
2141 unsigned long expired;
2142 long nr_pages;
2143
2144 /*
2145 * When set to zero, disable periodic writeback
2146 */
2147 if (!dirty_writeback_interval)
2148 return 0;
2149
2150 expired = wb->last_old_flush +
2151 msecs_to_jiffies(dirty_writeback_interval * 10);
2152 if (time_before(jiffies, expired))
2153 return 0;
2154
2155 wb->last_old_flush = jiffies;
2156 nr_pages = get_nr_dirty_pages();
2157
2158 if (nr_pages) {
2159 struct wb_writeback_work work = {
2160 .nr_pages = nr_pages,
2161 .sync_mode = WB_SYNC_NONE,
2162 .for_kupdate = 1,
2163 .range_cyclic = 1,
2164 .reason = WB_REASON_PERIODIC,
2165 };
2166
2167 return wb_writeback(wb, &work);
2168 }
2169
2170 return 0;
2171 }
2172
2173 static long wb_check_start_all(struct bdi_writeback *wb)
2174 {
2175 long nr_pages;
2176
2177 if (!test_bit(WB_start_all, &wb->state))
2178 return 0;
2179
2180 nr_pages = get_nr_dirty_pages();
2181 if (nr_pages) {
2182 struct wb_writeback_work work = {
2183 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2184 .sync_mode = WB_SYNC_NONE,
2185 .range_cyclic = 1,
2186 .reason = wb->start_all_reason,
2187 };
2188
2189 nr_pages = wb_writeback(wb, &work);
2190 }
2191
2192 clear_bit(WB_start_all, &wb->state);
2193 return nr_pages;
2194 }
2195
2196
2197 /*
2198 * Retrieve work items and do the writeback they describe
2199 */
2200 static long wb_do_writeback(struct bdi_writeback *wb)
2201 {
2202 struct wb_writeback_work *work;
2203 long wrote = 0;
2204
2205 set_bit(WB_writeback_running, &wb->state);
2206 while ((work = get_next_work_item(wb)) != NULL) {
2207 trace_writeback_exec(wb, work);
2208 wrote += wb_writeback(wb, work);
2209 finish_writeback_work(wb, work);
2210 }
2211
2212 /*
2213 * Check for a flush-everything request
2214 */
2215 wrote += wb_check_start_all(wb);
2216
2217 /*
2218 * Check for periodic writeback, kupdated() style
2219 */
2220 wrote += wb_check_old_data_flush(wb);
2221 wrote += wb_check_background_flush(wb);
2222 clear_bit(WB_writeback_running, &wb->state);
2223
2224 return wrote;
2225 }
2226
2227 /*
2228 * Handle writeback of dirty data for the device backed by this bdi. Also
2229 * reschedules periodically and does kupdated style flushing.
2230 */
2231 void wb_workfn(struct work_struct *work)
2232 {
2233 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2234 struct bdi_writeback, dwork);
2235 long pages_written;
2236
2237 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2238
2239 if (likely(!current_is_workqueue_rescuer() ||
2240 !test_bit(WB_registered, &wb->state))) {
2241 /*
2242 * The normal path. Keep writing back @wb until its
2243 * work_list is empty. Note that this path is also taken
2244 * if @wb is shutting down even when we're running off the
2245 * rescuer as work_list needs to be drained.
2246 */
2247 do {
2248 pages_written = wb_do_writeback(wb);
2249 trace_writeback_pages_written(pages_written);
2250 } while (!list_empty(&wb->work_list));
2251 } else {
2252 /*
2253 * bdi_wq can't get enough workers and we're running off
2254 * the emergency worker. Don't hog it. Hopefully, 1024 is
2255 * enough for efficient IO.
2256 */
2257 pages_written = writeback_inodes_wb(wb, 1024,
2258 WB_REASON_FORKER_THREAD);
2259 trace_writeback_pages_written(pages_written);
2260 }
2261
2262 if (!list_empty(&wb->work_list))
2263 wb_wakeup(wb);
2264 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2265 wb_wakeup_delayed(wb);
2266 }
2267
2268 /*
2269 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2270 * write back the whole world.
2271 */
2272 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2273 enum wb_reason reason)
2274 {
2275 struct bdi_writeback *wb;
2276
2277 if (!bdi_has_dirty_io(bdi))
2278 return;
2279
2280 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2281 wb_start_writeback(wb, reason);
2282 }
2283
2284 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2285 enum wb_reason reason)
2286 {
2287 rcu_read_lock();
2288 __wakeup_flusher_threads_bdi(bdi, reason);
2289 rcu_read_unlock();
2290 }
2291
2292 /*
2293 * Wakeup the flusher threads to start writeback of all currently dirty pages
2294 */
2295 void wakeup_flusher_threads(enum wb_reason reason)
2296 {
2297 struct backing_dev_info *bdi;
2298
2299 /*
2300 * If we are expecting writeback progress we must submit plugged IO.
2301 */
2302 blk_flush_plug(current->plug, true);
2303
2304 rcu_read_lock();
2305 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2306 __wakeup_flusher_threads_bdi(bdi, reason);
2307 rcu_read_unlock();
2308 }
2309
2310 /*
2311 * Wake up bdi's periodically to make sure dirtytime inodes gets
2312 * written back periodically. We deliberately do *not* check the
2313 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2314 * kernel to be constantly waking up once there are any dirtytime
2315 * inodes on the system. So instead we define a separate delayed work
2316 * function which gets called much more rarely. (By default, only
2317 * once every 12 hours.)
2318 *
2319 * If there is any other write activity going on in the file system,
2320 * this function won't be necessary. But if the only thing that has
2321 * happened on the file system is a dirtytime inode caused by an atime
2322 * update, we need this infrastructure below to make sure that inode
2323 * eventually gets pushed out to disk.
2324 */
2325 static void wakeup_dirtytime_writeback(struct work_struct *w);
2326 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2327
2328 static void wakeup_dirtytime_writeback(struct work_struct *w)
2329 {
2330 struct backing_dev_info *bdi;
2331
2332 rcu_read_lock();
2333 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2334 struct bdi_writeback *wb;
2335
2336 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2337 if (!list_empty(&wb->b_dirty_time))
2338 wb_wakeup(wb);
2339 }
2340 rcu_read_unlock();
2341 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2342 }
2343
2344 static int __init start_dirtytime_writeback(void)
2345 {
2346 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2347 return 0;
2348 }
2349 __initcall(start_dirtytime_writeback);
2350
2351 int dirtytime_interval_handler(struct ctl_table *table, int write,
2352 void *buffer, size_t *lenp, loff_t *ppos)
2353 {
2354 int ret;
2355
2356 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2357 if (ret == 0 && write)
2358 mod_delayed_work(system_wq, &dirtytime_work, 0);
2359 return ret;
2360 }
2361
2362 /**
2363 * __mark_inode_dirty - internal function to mark an inode dirty
2364 *
2365 * @inode: inode to mark
2366 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2367 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2368 * with I_DIRTY_PAGES.
2369 *
2370 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2371 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2372 *
2373 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2374 * instead of calling this directly.
2375 *
2376 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2377 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2378 * even if they are later hashed, as they will have been marked dirty already.
2379 *
2380 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2381 *
2382 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2383 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2384 * the kernel-internal blockdev inode represents the dirtying time of the
2385 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2386 * page->mapping->host, so the page-dirtying time is recorded in the internal
2387 * blockdev inode.
2388 */
2389 void __mark_inode_dirty(struct inode *inode, int flags)
2390 {
2391 struct super_block *sb = inode->i_sb;
2392 int dirtytime = 0;
2393 struct bdi_writeback *wb = NULL;
2394
2395 trace_writeback_mark_inode_dirty(inode, flags);
2396
2397 if (flags & I_DIRTY_INODE) {
2398 /*
2399 * Inode timestamp update will piggback on this dirtying.
2400 * We tell ->dirty_inode callback that timestamps need to
2401 * be updated by setting I_DIRTY_TIME in flags.
2402 */
2403 if (inode->i_state & I_DIRTY_TIME) {
2404 spin_lock(&inode->i_lock);
2405 if (inode->i_state & I_DIRTY_TIME) {
2406 inode->i_state &= ~I_DIRTY_TIME;
2407 flags |= I_DIRTY_TIME;
2408 }
2409 spin_unlock(&inode->i_lock);
2410 }
2411
2412 /*
2413 * Notify the filesystem about the inode being dirtied, so that
2414 * (if needed) it can update on-disk fields and journal the
2415 * inode. This is only needed when the inode itself is being
2416 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2417 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2418 */
2419 trace_writeback_dirty_inode_start(inode, flags);
2420 if (sb->s_op->dirty_inode)
2421 sb->s_op->dirty_inode(inode,
2422 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2423 trace_writeback_dirty_inode(inode, flags);
2424
2425 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2426 flags &= ~I_DIRTY_TIME;
2427 } else {
2428 /*
2429 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2430 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2431 * in one call to __mark_inode_dirty().)
2432 */
2433 dirtytime = flags & I_DIRTY_TIME;
2434 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2435 }
2436
2437 /*
2438 * Paired with smp_mb() in __writeback_single_inode() for the
2439 * following lockless i_state test. See there for details.
2440 */
2441 smp_mb();
2442
2443 if ((inode->i_state & flags) == flags)
2444 return;
2445
2446 spin_lock(&inode->i_lock);
2447 if ((inode->i_state & flags) != flags) {
2448 const int was_dirty = inode->i_state & I_DIRTY;
2449
2450 inode_attach_wb(inode, NULL);
2451
2452 inode->i_state |= flags;
2453
2454 /*
2455 * Grab inode's wb early because it requires dropping i_lock and we
2456 * need to make sure following checks happen atomically with dirty
2457 * list handling so that we don't move inodes under flush worker's
2458 * hands.
2459 */
2460 if (!was_dirty) {
2461 wb = locked_inode_to_wb_and_lock_list(inode);
2462 spin_lock(&inode->i_lock);
2463 }
2464
2465 /*
2466 * If the inode is queued for writeback by flush worker, just
2467 * update its dirty state. Once the flush worker is done with
2468 * the inode it will place it on the appropriate superblock
2469 * list, based upon its state.
2470 */
2471 if (inode->i_state & I_SYNC_QUEUED)
2472 goto out_unlock;
2473
2474 /*
2475 * Only add valid (hashed) inodes to the superblock's
2476 * dirty list. Add blockdev inodes as well.
2477 */
2478 if (!S_ISBLK(inode->i_mode)) {
2479 if (inode_unhashed(inode))
2480 goto out_unlock;
2481 }
2482 if (inode->i_state & I_FREEING)
2483 goto out_unlock;
2484
2485 /*
2486 * If the inode was already on b_dirty/b_io/b_more_io, don't
2487 * reposition it (that would break b_dirty time-ordering).
2488 */
2489 if (!was_dirty) {
2490 struct list_head *dirty_list;
2491 bool wakeup_bdi = false;
2492
2493 inode->dirtied_when = jiffies;
2494 if (dirtytime)
2495 inode->dirtied_time_when = jiffies;
2496
2497 if (inode->i_state & I_DIRTY)
2498 dirty_list = &wb->b_dirty;
2499 else
2500 dirty_list = &wb->b_dirty_time;
2501
2502 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2503 dirty_list);
2504
2505 spin_unlock(&wb->list_lock);
2506 spin_unlock(&inode->i_lock);
2507 trace_writeback_dirty_inode_enqueue(inode);
2508
2509 /*
2510 * If this is the first dirty inode for this bdi,
2511 * we have to wake-up the corresponding bdi thread
2512 * to make sure background write-back happens
2513 * later.
2514 */
2515 if (wakeup_bdi &&
2516 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2517 wb_wakeup_delayed(wb);
2518 return;
2519 }
2520 }
2521 out_unlock:
2522 if (wb)
2523 spin_unlock(&wb->list_lock);
2524 spin_unlock(&inode->i_lock);
2525 }
2526 EXPORT_SYMBOL(__mark_inode_dirty);
2527
2528 /*
2529 * The @s_sync_lock is used to serialise concurrent sync operations
2530 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2531 * Concurrent callers will block on the s_sync_lock rather than doing contending
2532 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2533 * has been issued up to the time this function is enter is guaranteed to be
2534 * completed by the time we have gained the lock and waited for all IO that is
2535 * in progress regardless of the order callers are granted the lock.
2536 */
2537 static void wait_sb_inodes(struct super_block *sb)
2538 {
2539 LIST_HEAD(sync_list);
2540
2541 /*
2542 * We need to be protected against the filesystem going from
2543 * r/o to r/w or vice versa.
2544 */
2545 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2546
2547 mutex_lock(&sb->s_sync_lock);
2548
2549 /*
2550 * Splice the writeback list onto a temporary list to avoid waiting on
2551 * inodes that have started writeback after this point.
2552 *
2553 * Use rcu_read_lock() to keep the inodes around until we have a
2554 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2555 * the local list because inodes can be dropped from either by writeback
2556 * completion.
2557 */
2558 rcu_read_lock();
2559 spin_lock_irq(&sb->s_inode_wblist_lock);
2560 list_splice_init(&sb->s_inodes_wb, &sync_list);
2561
2562 /*
2563 * Data integrity sync. Must wait for all pages under writeback, because
2564 * there may have been pages dirtied before our sync call, but which had
2565 * writeout started before we write it out. In which case, the inode
2566 * may not be on the dirty list, but we still have to wait for that
2567 * writeout.
2568 */
2569 while (!list_empty(&sync_list)) {
2570 struct inode *inode = list_first_entry(&sync_list, struct inode,
2571 i_wb_list);
2572 struct address_space *mapping = inode->i_mapping;
2573
2574 /*
2575 * Move each inode back to the wb list before we drop the lock
2576 * to preserve consistency between i_wb_list and the mapping
2577 * writeback tag. Writeback completion is responsible to remove
2578 * the inode from either list once the writeback tag is cleared.
2579 */
2580 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2581
2582 /*
2583 * The mapping can appear untagged while still on-list since we
2584 * do not have the mapping lock. Skip it here, wb completion
2585 * will remove it.
2586 */
2587 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2588 continue;
2589
2590 spin_unlock_irq(&sb->s_inode_wblist_lock);
2591
2592 spin_lock(&inode->i_lock);
2593 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2594 spin_unlock(&inode->i_lock);
2595
2596 spin_lock_irq(&sb->s_inode_wblist_lock);
2597 continue;
2598 }
2599 __iget(inode);
2600 spin_unlock(&inode->i_lock);
2601 rcu_read_unlock();
2602
2603 /*
2604 * We keep the error status of individual mapping so that
2605 * applications can catch the writeback error using fsync(2).
2606 * See filemap_fdatawait_keep_errors() for details.
2607 */
2608 filemap_fdatawait_keep_errors(mapping);
2609
2610 cond_resched();
2611
2612 iput(inode);
2613
2614 rcu_read_lock();
2615 spin_lock_irq(&sb->s_inode_wblist_lock);
2616 }
2617 spin_unlock_irq(&sb->s_inode_wblist_lock);
2618 rcu_read_unlock();
2619 mutex_unlock(&sb->s_sync_lock);
2620 }
2621
2622 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2623 enum wb_reason reason, bool skip_if_busy)
2624 {
2625 struct backing_dev_info *bdi = sb->s_bdi;
2626 DEFINE_WB_COMPLETION(done, bdi);
2627 struct wb_writeback_work work = {
2628 .sb = sb,
2629 .sync_mode = WB_SYNC_NONE,
2630 .tagged_writepages = 1,
2631 .done = &done,
2632 .nr_pages = nr,
2633 .reason = reason,
2634 };
2635
2636 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2637 return;
2638 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2639
2640 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2641 wb_wait_for_completion(&done);
2642 }
2643
2644 /**
2645 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2646 * @sb: the superblock
2647 * @nr: the number of pages to write
2648 * @reason: reason why some writeback work initiated
2649 *
2650 * Start writeback on some inodes on this super_block. No guarantees are made
2651 * on how many (if any) will be written, and this function does not wait
2652 * for IO completion of submitted IO.
2653 */
2654 void writeback_inodes_sb_nr(struct super_block *sb,
2655 unsigned long nr,
2656 enum wb_reason reason)
2657 {
2658 __writeback_inodes_sb_nr(sb, nr, reason, false);
2659 }
2660 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2661
2662 /**
2663 * writeback_inodes_sb - writeback dirty inodes from given super_block
2664 * @sb: the superblock
2665 * @reason: reason why some writeback work was initiated
2666 *
2667 * Start writeback on some inodes on this super_block. No guarantees are made
2668 * on how many (if any) will be written, and this function does not wait
2669 * for IO completion of submitted IO.
2670 */
2671 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2672 {
2673 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2674 }
2675 EXPORT_SYMBOL(writeback_inodes_sb);
2676
2677 /**
2678 * try_to_writeback_inodes_sb - try to start writeback if none underway
2679 * @sb: the superblock
2680 * @reason: reason why some writeback work was initiated
2681 *
2682 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2683 */
2684 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2685 {
2686 if (!down_read_trylock(&sb->s_umount))
2687 return;
2688
2689 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2690 up_read(&sb->s_umount);
2691 }
2692 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2693
2694 /**
2695 * sync_inodes_sb - sync sb inode pages
2696 * @sb: the superblock
2697 *
2698 * This function writes and waits on any dirty inode belonging to this
2699 * super_block.
2700 */
2701 void sync_inodes_sb(struct super_block *sb)
2702 {
2703 struct backing_dev_info *bdi = sb->s_bdi;
2704 DEFINE_WB_COMPLETION(done, bdi);
2705 struct wb_writeback_work work = {
2706 .sb = sb,
2707 .sync_mode = WB_SYNC_ALL,
2708 .nr_pages = LONG_MAX,
2709 .range_cyclic = 0,
2710 .done = &done,
2711 .reason = WB_REASON_SYNC,
2712 .for_sync = 1,
2713 };
2714
2715 /*
2716 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2717 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2718 * bdi_has_dirty() need to be written out too.
2719 */
2720 if (bdi == &noop_backing_dev_info)
2721 return;
2722 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2723
2724 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2725 bdi_down_write_wb_switch_rwsem(bdi);
2726 bdi_split_work_to_wbs(bdi, &work, false);
2727 wb_wait_for_completion(&done);
2728 bdi_up_write_wb_switch_rwsem(bdi);
2729
2730 wait_sb_inodes(sb);
2731 }
2732 EXPORT_SYMBOL(sync_inodes_sb);
2733
2734 /**
2735 * write_inode_now - write an inode to disk
2736 * @inode: inode to write to disk
2737 * @sync: whether the write should be synchronous or not
2738 *
2739 * This function commits an inode to disk immediately if it is dirty. This is
2740 * primarily needed by knfsd.
2741 *
2742 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2743 */
2744 int write_inode_now(struct inode *inode, int sync)
2745 {
2746 struct writeback_control wbc = {
2747 .nr_to_write = LONG_MAX,
2748 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2749 .range_start = 0,
2750 .range_end = LLONG_MAX,
2751 };
2752
2753 if (!mapping_can_writeback(inode->i_mapping))
2754 wbc.nr_to_write = 0;
2755
2756 might_sleep();
2757 return writeback_single_inode(inode, &wbc);
2758 }
2759 EXPORT_SYMBOL(write_inode_now);
2760
2761 /**
2762 * sync_inode_metadata - write an inode to disk
2763 * @inode: the inode to sync
2764 * @wait: wait for I/O to complete.
2765 *
2766 * Write an inode to disk and adjust its dirty state after completion.
2767 *
2768 * Note: only writes the actual inode, no associated data or other metadata.
2769 */
2770 int sync_inode_metadata(struct inode *inode, int wait)
2771 {
2772 struct writeback_control wbc = {
2773 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2774 .nr_to_write = 0, /* metadata-only */
2775 };
2776
2777 return writeback_single_inode(inode, &wbc);
2778 }
2779 EXPORT_SYMBOL(sync_inode_metadata);