]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/fs-writeback.c
Merge tag 'char-misc-5.3-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[thirdparty/linux.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 struct wb_completion {
40 atomic_t cnt;
41 };
42
43 /*
44 * Passed into wb_writeback(), essentially a subset of writeback_control
45 */
46 struct wb_writeback_work {
47 long nr_pages;
48 struct super_block *sb;
49 unsigned long *older_than_this;
50 enum writeback_sync_modes sync_mode;
51 unsigned int tagged_writepages:1;
52 unsigned int for_kupdate:1;
53 unsigned int range_cyclic:1;
54 unsigned int for_background:1;
55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
56 unsigned int auto_free:1; /* free on completion */
57 enum wb_reason reason; /* why was writeback initiated? */
58
59 struct list_head list; /* pending work list */
60 struct wb_completion *done; /* set if the caller waits */
61 };
62
63 /*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
76 /*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90 return list_entry(head, struct inode, i_io_list);
91 }
92
93 /*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
112 return true;
113 }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120 clear_bit(WB_has_dirty_io, &wb->state);
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
123 }
124 }
125
126 /**
127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131 *
132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
136 static bool inode_io_list_move_locked(struct inode *inode,
137 struct bdi_writeback *wb,
138 struct list_head *head)
139 {
140 assert_spin_locked(&wb->list_lock);
141
142 list_move(&inode->i_io_list, head);
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150 }
151
152 /**
153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
160 static void inode_io_list_del_locked(struct inode *inode,
161 struct bdi_writeback *wb)
162 {
163 assert_spin_locked(&wb->list_lock);
164
165 list_del_init(&inode->i_io_list);
166 wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179 {
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
188 static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
190 {
191 trace_writeback_queue(wb, work);
192
193 if (work->done)
194 atomic_inc(&work->done->cnt);
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
204 spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220 {
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
278 *
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
282 */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 __releases(&inode->i_lock)
286 __acquires(&wb->list_lock)
287 {
288 while (true) {
289 struct bdi_writeback *wb = inode_to_wb(inode);
290
291 /*
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
296 */
297 wb_get(wb);
298 spin_unlock(&inode->i_lock);
299 spin_lock(&wb->list_lock);
300
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb == inode->i_wb)) {
303 wb_put(wb); /* @inode already has ref */
304 return wb;
305 }
306
307 spin_unlock(&wb->list_lock);
308 wb_put(wb);
309 cpu_relax();
310 spin_lock(&inode->i_lock);
311 }
312 }
313
314 /**
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
317 *
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 * on entry.
320 */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 __acquires(&wb->list_lock)
323 {
324 spin_lock(&inode->i_lock);
325 return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329 struct inode *inode;
330 struct bdi_writeback *new_wb;
331
332 struct rcu_head rcu_head;
333 struct work_struct work;
334 };
335
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 down_write(&bdi->wb_switch_rwsem);
339 }
340
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 up_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 struct inode_switch_wbs_context *isw =
349 container_of(work, struct inode_switch_wbs_context, work);
350 struct inode *inode = isw->inode;
351 struct backing_dev_info *bdi = inode_to_bdi(inode);
352 struct address_space *mapping = inode->i_mapping;
353 struct bdi_writeback *old_wb = inode->i_wb;
354 struct bdi_writeback *new_wb = isw->new_wb;
355 XA_STATE(xas, &mapping->i_pages, 0);
356 struct page *page;
357 bool switched = false;
358
359 /*
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
362 */
363 down_read(&bdi->wb_switch_rwsem);
364
365 /*
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against the i_pages lock.
370 *
371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
374 */
375 if (old_wb < new_wb) {
376 spin_lock(&old_wb->list_lock);
377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 } else {
379 spin_lock(&new_wb->list_lock);
380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 }
382 spin_lock(&inode->i_lock);
383 xa_lock_irq(&mapping->i_pages);
384
385 /*
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
388 */
389 if (unlikely(inode->i_state & I_FREEING))
390 goto skip_switch;
391
392 /*
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 * pages actually under writeback.
396 */
397 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
398 if (PageDirty(page)) {
399 dec_wb_stat(old_wb, WB_RECLAIMABLE);
400 inc_wb_stat(new_wb, WB_RECLAIMABLE);
401 }
402 }
403
404 xas_set(&xas, 0);
405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 WARN_ON_ONCE(!PageWriteback(page));
407 dec_wb_stat(old_wb, WB_WRITEBACK);
408 inc_wb_stat(new_wb, WB_WRITEBACK);
409 }
410
411 wb_get(new_wb);
412
413 /*
414 * Transfer to @new_wb's IO list if necessary. The specific list
415 * @inode was on is ignored and the inode is put on ->b_dirty which
416 * is always correct including from ->b_dirty_time. The transfer
417 * preserves @inode->dirtied_when ordering.
418 */
419 if (!list_empty(&inode->i_io_list)) {
420 struct inode *pos;
421
422 inode_io_list_del_locked(inode, old_wb);
423 inode->i_wb = new_wb;
424 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
425 if (time_after_eq(inode->dirtied_when,
426 pos->dirtied_when))
427 break;
428 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
429 } else {
430 inode->i_wb = new_wb;
431 }
432
433 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
434 inode->i_wb_frn_winner = 0;
435 inode->i_wb_frn_avg_time = 0;
436 inode->i_wb_frn_history = 0;
437 switched = true;
438 skip_switch:
439 /*
440 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
441 * ensures that the new wb is visible if they see !I_WB_SWITCH.
442 */
443 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
444
445 xa_unlock_irq(&mapping->i_pages);
446 spin_unlock(&inode->i_lock);
447 spin_unlock(&new_wb->list_lock);
448 spin_unlock(&old_wb->list_lock);
449
450 up_read(&bdi->wb_switch_rwsem);
451
452 if (switched) {
453 wb_wakeup(new_wb);
454 wb_put(old_wb);
455 }
456 wb_put(new_wb);
457
458 iput(inode);
459 kfree(isw);
460
461 atomic_dec(&isw_nr_in_flight);
462 }
463
464 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
465 {
466 struct inode_switch_wbs_context *isw = container_of(rcu_head,
467 struct inode_switch_wbs_context, rcu_head);
468
469 /* needs to grab bh-unsafe locks, bounce to work item */
470 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
471 queue_work(isw_wq, &isw->work);
472 }
473
474 /**
475 * inode_switch_wbs - change the wb association of an inode
476 * @inode: target inode
477 * @new_wb_id: ID of the new wb
478 *
479 * Switch @inode's wb association to the wb identified by @new_wb_id. The
480 * switching is performed asynchronously and may fail silently.
481 */
482 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
483 {
484 struct backing_dev_info *bdi = inode_to_bdi(inode);
485 struct cgroup_subsys_state *memcg_css;
486 struct inode_switch_wbs_context *isw;
487
488 /* noop if seems to be already in progress */
489 if (inode->i_state & I_WB_SWITCH)
490 return;
491
492 /*
493 * Avoid starting new switches while sync_inodes_sb() is in
494 * progress. Otherwise, if the down_write protected issue path
495 * blocks heavily, we might end up starting a large number of
496 * switches which will block on the rwsem.
497 */
498 if (!down_read_trylock(&bdi->wb_switch_rwsem))
499 return;
500
501 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
502 if (!isw)
503 goto out_unlock;
504
505 /* find and pin the new wb */
506 rcu_read_lock();
507 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
508 if (memcg_css)
509 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
510 rcu_read_unlock();
511 if (!isw->new_wb)
512 goto out_free;
513
514 /* while holding I_WB_SWITCH, no one else can update the association */
515 spin_lock(&inode->i_lock);
516 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
517 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
518 inode_to_wb(inode) == isw->new_wb) {
519 spin_unlock(&inode->i_lock);
520 goto out_free;
521 }
522 inode->i_state |= I_WB_SWITCH;
523 __iget(inode);
524 spin_unlock(&inode->i_lock);
525
526 isw->inode = inode;
527
528 /*
529 * In addition to synchronizing among switchers, I_WB_SWITCH tells
530 * the RCU protected stat update paths to grab the i_page
531 * lock so that stat transfer can synchronize against them.
532 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
533 */
534 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535
536 atomic_inc(&isw_nr_in_flight);
537
538 goto out_unlock;
539
540 out_free:
541 if (isw->new_wb)
542 wb_put(isw->new_wb);
543 kfree(isw);
544 out_unlock:
545 up_read(&bdi->wb_switch_rwsem);
546 }
547
548 /**
549 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550 * @wbc: writeback_control of interest
551 * @inode: target inode
552 *
553 * @inode is locked and about to be written back under the control of @wbc.
554 * Record @inode's writeback context into @wbc and unlock the i_lock. On
555 * writeback completion, wbc_detach_inode() should be called. This is used
556 * to track the cgroup writeback context.
557 */
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
559 struct inode *inode)
560 {
561 if (!inode_cgwb_enabled(inode)) {
562 spin_unlock(&inode->i_lock);
563 return;
564 }
565
566 wbc->wb = inode_to_wb(inode);
567 wbc->inode = inode;
568
569 wbc->wb_id = wbc->wb->memcg_css->id;
570 wbc->wb_lcand_id = inode->i_wb_frn_winner;
571 wbc->wb_tcand_id = 0;
572 wbc->wb_bytes = 0;
573 wbc->wb_lcand_bytes = 0;
574 wbc->wb_tcand_bytes = 0;
575
576 wb_get(wbc->wb);
577 spin_unlock(&inode->i_lock);
578
579 /*
580 * A dying wb indicates that the memcg-blkcg mapping has changed
581 * and a new wb is already serving the memcg. Switch immediately.
582 */
583 if (unlikely(wb_dying(wbc->wb)))
584 inode_switch_wbs(inode, wbc->wb_id);
585 }
586 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
587
588 /**
589 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
590 * @wbc: writeback_control of the just finished writeback
591 *
592 * To be called after a writeback attempt of an inode finishes and undoes
593 * wbc_attach_and_unlock_inode(). Can be called under any context.
594 *
595 * As concurrent write sharing of an inode is expected to be very rare and
596 * memcg only tracks page ownership on first-use basis severely confining
597 * the usefulness of such sharing, cgroup writeback tracks ownership
598 * per-inode. While the support for concurrent write sharing of an inode
599 * is deemed unnecessary, an inode being written to by different cgroups at
600 * different points in time is a lot more common, and, more importantly,
601 * charging only by first-use can too readily lead to grossly incorrect
602 * behaviors (single foreign page can lead to gigabytes of writeback to be
603 * incorrectly attributed).
604 *
605 * To resolve this issue, cgroup writeback detects the majority dirtier of
606 * an inode and transfers the ownership to it. To avoid unnnecessary
607 * oscillation, the detection mechanism keeps track of history and gives
608 * out the switch verdict only if the foreign usage pattern is stable over
609 * a certain amount of time and/or writeback attempts.
610 *
611 * On each writeback attempt, @wbc tries to detect the majority writer
612 * using Boyer-Moore majority vote algorithm. In addition to the byte
613 * count from the majority voting, it also counts the bytes written for the
614 * current wb and the last round's winner wb (max of last round's current
615 * wb, the winner from two rounds ago, and the last round's majority
616 * candidate). Keeping track of the historical winner helps the algorithm
617 * to semi-reliably detect the most active writer even when it's not the
618 * absolute majority.
619 *
620 * Once the winner of the round is determined, whether the winner is
621 * foreign or not and how much IO time the round consumed is recorded in
622 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
623 * over a certain threshold, the switch verdict is given.
624 */
625 void wbc_detach_inode(struct writeback_control *wbc)
626 {
627 struct bdi_writeback *wb = wbc->wb;
628 struct inode *inode = wbc->inode;
629 unsigned long avg_time, max_bytes, max_time;
630 u16 history;
631 int max_id;
632
633 if (!wb)
634 return;
635
636 history = inode->i_wb_frn_history;
637 avg_time = inode->i_wb_frn_avg_time;
638
639 /* pick the winner of this round */
640 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
641 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
642 max_id = wbc->wb_id;
643 max_bytes = wbc->wb_bytes;
644 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
645 max_id = wbc->wb_lcand_id;
646 max_bytes = wbc->wb_lcand_bytes;
647 } else {
648 max_id = wbc->wb_tcand_id;
649 max_bytes = wbc->wb_tcand_bytes;
650 }
651
652 /*
653 * Calculate the amount of IO time the winner consumed and fold it
654 * into the running average kept per inode. If the consumed IO
655 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
656 * deciding whether to switch or not. This is to prevent one-off
657 * small dirtiers from skewing the verdict.
658 */
659 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
660 wb->avg_write_bandwidth);
661 if (avg_time)
662 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
663 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
664 else
665 avg_time = max_time; /* immediate catch up on first run */
666
667 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
668 int slots;
669
670 /*
671 * The switch verdict is reached if foreign wb's consume
672 * more than a certain proportion of IO time in a
673 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
674 * history mask where each bit represents one sixteenth of
675 * the period. Determine the number of slots to shift into
676 * history from @max_time.
677 */
678 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
679 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
680 history <<= slots;
681 if (wbc->wb_id != max_id)
682 history |= (1U << slots) - 1;
683
684 /*
685 * Switch if the current wb isn't the consistent winner.
686 * If there are multiple closely competing dirtiers, the
687 * inode may switch across them repeatedly over time, which
688 * is okay. The main goal is avoiding keeping an inode on
689 * the wrong wb for an extended period of time.
690 */
691 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
692 inode_switch_wbs(inode, max_id);
693 }
694
695 /*
696 * Multiple instances of this function may race to update the
697 * following fields but we don't mind occassional inaccuracies.
698 */
699 inode->i_wb_frn_winner = max_id;
700 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
701 inode->i_wb_frn_history = history;
702
703 wb_put(wbc->wb);
704 wbc->wb = NULL;
705 }
706 EXPORT_SYMBOL_GPL(wbc_detach_inode);
707
708 /**
709 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
710 * @wbc: writeback_control of the writeback in progress
711 * @page: page being written out
712 * @bytes: number of bytes being written out
713 *
714 * @bytes from @page are about to written out during the writeback
715 * controlled by @wbc. Keep the book for foreign inode detection. See
716 * wbc_detach_inode().
717 */
718 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
719 size_t bytes)
720 {
721 struct cgroup_subsys_state *css;
722 int id;
723
724 /*
725 * pageout() path doesn't attach @wbc to the inode being written
726 * out. This is intentional as we don't want the function to block
727 * behind a slow cgroup. Ultimately, we want pageout() to kick off
728 * regular writeback instead of writing things out itself.
729 */
730 if (!wbc->wb || wbc->no_cgroup_owner)
731 return;
732
733 css = mem_cgroup_css_from_page(page);
734 /* dead cgroups shouldn't contribute to inode ownership arbitration */
735 if (!(css->flags & CSS_ONLINE))
736 return;
737
738 id = css->id;
739
740 if (id == wbc->wb_id) {
741 wbc->wb_bytes += bytes;
742 return;
743 }
744
745 if (id == wbc->wb_lcand_id)
746 wbc->wb_lcand_bytes += bytes;
747
748 /* Boyer-Moore majority vote algorithm */
749 if (!wbc->wb_tcand_bytes)
750 wbc->wb_tcand_id = id;
751 if (id == wbc->wb_tcand_id)
752 wbc->wb_tcand_bytes += bytes;
753 else
754 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
755 }
756 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
757
758 /**
759 * inode_congested - test whether an inode is congested
760 * @inode: inode to test for congestion (may be NULL)
761 * @cong_bits: mask of WB_[a]sync_congested bits to test
762 *
763 * Tests whether @inode is congested. @cong_bits is the mask of congestion
764 * bits to test and the return value is the mask of set bits.
765 *
766 * If cgroup writeback is enabled for @inode, the congestion state is
767 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
768 * associated with @inode is congested; otherwise, the root wb's congestion
769 * state is used.
770 *
771 * @inode is allowed to be NULL as this function is often called on
772 * mapping->host which is NULL for the swapper space.
773 */
774 int inode_congested(struct inode *inode, int cong_bits)
775 {
776 /*
777 * Once set, ->i_wb never becomes NULL while the inode is alive.
778 * Start transaction iff ->i_wb is visible.
779 */
780 if (inode && inode_to_wb_is_valid(inode)) {
781 struct bdi_writeback *wb;
782 struct wb_lock_cookie lock_cookie = {};
783 bool congested;
784
785 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
786 congested = wb_congested(wb, cong_bits);
787 unlocked_inode_to_wb_end(inode, &lock_cookie);
788 return congested;
789 }
790
791 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
792 }
793 EXPORT_SYMBOL_GPL(inode_congested);
794
795 /**
796 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
797 * @wb: target bdi_writeback to split @nr_pages to
798 * @nr_pages: number of pages to write for the whole bdi
799 *
800 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
801 * relation to the total write bandwidth of all wb's w/ dirty inodes on
802 * @wb->bdi.
803 */
804 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
805 {
806 unsigned long this_bw = wb->avg_write_bandwidth;
807 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
808
809 if (nr_pages == LONG_MAX)
810 return LONG_MAX;
811
812 /*
813 * This may be called on clean wb's and proportional distribution
814 * may not make sense, just use the original @nr_pages in those
815 * cases. In general, we wanna err on the side of writing more.
816 */
817 if (!tot_bw || this_bw >= tot_bw)
818 return nr_pages;
819 else
820 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
821 }
822
823 /**
824 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
825 * @bdi: target backing_dev_info
826 * @base_work: wb_writeback_work to issue
827 * @skip_if_busy: skip wb's which already have writeback in progress
828 *
829 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
830 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
831 * distributed to the busy wbs according to each wb's proportion in the
832 * total active write bandwidth of @bdi.
833 */
834 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
835 struct wb_writeback_work *base_work,
836 bool skip_if_busy)
837 {
838 struct bdi_writeback *last_wb = NULL;
839 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
840 struct bdi_writeback, bdi_node);
841
842 might_sleep();
843 restart:
844 rcu_read_lock();
845 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
846 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
847 struct wb_writeback_work fallback_work;
848 struct wb_writeback_work *work;
849 long nr_pages;
850
851 if (last_wb) {
852 wb_put(last_wb);
853 last_wb = NULL;
854 }
855
856 /* SYNC_ALL writes out I_DIRTY_TIME too */
857 if (!wb_has_dirty_io(wb) &&
858 (base_work->sync_mode == WB_SYNC_NONE ||
859 list_empty(&wb->b_dirty_time)))
860 continue;
861 if (skip_if_busy && writeback_in_progress(wb))
862 continue;
863
864 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
865
866 work = kmalloc(sizeof(*work), GFP_ATOMIC);
867 if (work) {
868 *work = *base_work;
869 work->nr_pages = nr_pages;
870 work->auto_free = 1;
871 wb_queue_work(wb, work);
872 continue;
873 }
874
875 /* alloc failed, execute synchronously using on-stack fallback */
876 work = &fallback_work;
877 *work = *base_work;
878 work->nr_pages = nr_pages;
879 work->auto_free = 0;
880 work->done = &fallback_work_done;
881
882 wb_queue_work(wb, work);
883
884 /*
885 * Pin @wb so that it stays on @bdi->wb_list. This allows
886 * continuing iteration from @wb after dropping and
887 * regrabbing rcu read lock.
888 */
889 wb_get(wb);
890 last_wb = wb;
891
892 rcu_read_unlock();
893 wb_wait_for_completion(bdi, &fallback_work_done);
894 goto restart;
895 }
896 rcu_read_unlock();
897
898 if (last_wb)
899 wb_put(last_wb);
900 }
901
902 /**
903 * cgroup_writeback_umount - flush inode wb switches for umount
904 *
905 * This function is called when a super_block is about to be destroyed and
906 * flushes in-flight inode wb switches. An inode wb switch goes through
907 * RCU and then workqueue, so the two need to be flushed in order to ensure
908 * that all previously scheduled switches are finished. As wb switches are
909 * rare occurrences and synchronize_rcu() can take a while, perform
910 * flushing iff wb switches are in flight.
911 */
912 void cgroup_writeback_umount(void)
913 {
914 if (atomic_read(&isw_nr_in_flight)) {
915 /*
916 * Use rcu_barrier() to wait for all pending callbacks to
917 * ensure that all in-flight wb switches are in the workqueue.
918 */
919 rcu_barrier();
920 flush_workqueue(isw_wq);
921 }
922 }
923
924 static int __init cgroup_writeback_init(void)
925 {
926 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
927 if (!isw_wq)
928 return -ENOMEM;
929 return 0;
930 }
931 fs_initcall(cgroup_writeback_init);
932
933 #else /* CONFIG_CGROUP_WRITEBACK */
934
935 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
936 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
937
938 static struct bdi_writeback *
939 locked_inode_to_wb_and_lock_list(struct inode *inode)
940 __releases(&inode->i_lock)
941 __acquires(&wb->list_lock)
942 {
943 struct bdi_writeback *wb = inode_to_wb(inode);
944
945 spin_unlock(&inode->i_lock);
946 spin_lock(&wb->list_lock);
947 return wb;
948 }
949
950 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
951 __acquires(&wb->list_lock)
952 {
953 struct bdi_writeback *wb = inode_to_wb(inode);
954
955 spin_lock(&wb->list_lock);
956 return wb;
957 }
958
959 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
960 {
961 return nr_pages;
962 }
963
964 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
965 struct wb_writeback_work *base_work,
966 bool skip_if_busy)
967 {
968 might_sleep();
969
970 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
971 base_work->auto_free = 0;
972 wb_queue_work(&bdi->wb, base_work);
973 }
974 }
975
976 #endif /* CONFIG_CGROUP_WRITEBACK */
977
978 /*
979 * Add in the number of potentially dirty inodes, because each inode
980 * write can dirty pagecache in the underlying blockdev.
981 */
982 static unsigned long get_nr_dirty_pages(void)
983 {
984 return global_node_page_state(NR_FILE_DIRTY) +
985 global_node_page_state(NR_UNSTABLE_NFS) +
986 get_nr_dirty_inodes();
987 }
988
989 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
990 {
991 if (!wb_has_dirty_io(wb))
992 return;
993
994 /*
995 * All callers of this function want to start writeback of all
996 * dirty pages. Places like vmscan can call this at a very
997 * high frequency, causing pointless allocations of tons of
998 * work items and keeping the flusher threads busy retrieving
999 * that work. Ensure that we only allow one of them pending and
1000 * inflight at the time.
1001 */
1002 if (test_bit(WB_start_all, &wb->state) ||
1003 test_and_set_bit(WB_start_all, &wb->state))
1004 return;
1005
1006 wb->start_all_reason = reason;
1007 wb_wakeup(wb);
1008 }
1009
1010 /**
1011 * wb_start_background_writeback - start background writeback
1012 * @wb: bdi_writback to write from
1013 *
1014 * Description:
1015 * This makes sure WB_SYNC_NONE background writeback happens. When
1016 * this function returns, it is only guaranteed that for given wb
1017 * some IO is happening if we are over background dirty threshold.
1018 * Caller need not hold sb s_umount semaphore.
1019 */
1020 void wb_start_background_writeback(struct bdi_writeback *wb)
1021 {
1022 /*
1023 * We just wake up the flusher thread. It will perform background
1024 * writeback as soon as there is no other work to do.
1025 */
1026 trace_writeback_wake_background(wb);
1027 wb_wakeup(wb);
1028 }
1029
1030 /*
1031 * Remove the inode from the writeback list it is on.
1032 */
1033 void inode_io_list_del(struct inode *inode)
1034 {
1035 struct bdi_writeback *wb;
1036
1037 wb = inode_to_wb_and_lock_list(inode);
1038 inode_io_list_del_locked(inode, wb);
1039 spin_unlock(&wb->list_lock);
1040 }
1041
1042 /*
1043 * mark an inode as under writeback on the sb
1044 */
1045 void sb_mark_inode_writeback(struct inode *inode)
1046 {
1047 struct super_block *sb = inode->i_sb;
1048 unsigned long flags;
1049
1050 if (list_empty(&inode->i_wb_list)) {
1051 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1052 if (list_empty(&inode->i_wb_list)) {
1053 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1054 trace_sb_mark_inode_writeback(inode);
1055 }
1056 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1057 }
1058 }
1059
1060 /*
1061 * clear an inode as under writeback on the sb
1062 */
1063 void sb_clear_inode_writeback(struct inode *inode)
1064 {
1065 struct super_block *sb = inode->i_sb;
1066 unsigned long flags;
1067
1068 if (!list_empty(&inode->i_wb_list)) {
1069 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1070 if (!list_empty(&inode->i_wb_list)) {
1071 list_del_init(&inode->i_wb_list);
1072 trace_sb_clear_inode_writeback(inode);
1073 }
1074 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1075 }
1076 }
1077
1078 /*
1079 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1080 * furthest end of its superblock's dirty-inode list.
1081 *
1082 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1083 * already the most-recently-dirtied inode on the b_dirty list. If that is
1084 * the case then the inode must have been redirtied while it was being written
1085 * out and we don't reset its dirtied_when.
1086 */
1087 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1088 {
1089 if (!list_empty(&wb->b_dirty)) {
1090 struct inode *tail;
1091
1092 tail = wb_inode(wb->b_dirty.next);
1093 if (time_before(inode->dirtied_when, tail->dirtied_when))
1094 inode->dirtied_when = jiffies;
1095 }
1096 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1097 }
1098
1099 /*
1100 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1101 */
1102 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1105 }
1106
1107 static void inode_sync_complete(struct inode *inode)
1108 {
1109 inode->i_state &= ~I_SYNC;
1110 /* If inode is clean an unused, put it into LRU now... */
1111 inode_add_lru(inode);
1112 /* Waiters must see I_SYNC cleared before being woken up */
1113 smp_mb();
1114 wake_up_bit(&inode->i_state, __I_SYNC);
1115 }
1116
1117 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1118 {
1119 bool ret = time_after(inode->dirtied_when, t);
1120 #ifndef CONFIG_64BIT
1121 /*
1122 * For inodes being constantly redirtied, dirtied_when can get stuck.
1123 * It _appears_ to be in the future, but is actually in distant past.
1124 * This test is necessary to prevent such wrapped-around relative times
1125 * from permanently stopping the whole bdi writeback.
1126 */
1127 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1128 #endif
1129 return ret;
1130 }
1131
1132 #define EXPIRE_DIRTY_ATIME 0x0001
1133
1134 /*
1135 * Move expired (dirtied before work->older_than_this) dirty inodes from
1136 * @delaying_queue to @dispatch_queue.
1137 */
1138 static int move_expired_inodes(struct list_head *delaying_queue,
1139 struct list_head *dispatch_queue,
1140 int flags,
1141 struct wb_writeback_work *work)
1142 {
1143 unsigned long *older_than_this = NULL;
1144 unsigned long expire_time;
1145 LIST_HEAD(tmp);
1146 struct list_head *pos, *node;
1147 struct super_block *sb = NULL;
1148 struct inode *inode;
1149 int do_sb_sort = 0;
1150 int moved = 0;
1151
1152 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1153 older_than_this = work->older_than_this;
1154 else if (!work->for_sync) {
1155 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1156 older_than_this = &expire_time;
1157 }
1158 while (!list_empty(delaying_queue)) {
1159 inode = wb_inode(delaying_queue->prev);
1160 if (older_than_this &&
1161 inode_dirtied_after(inode, *older_than_this))
1162 break;
1163 list_move(&inode->i_io_list, &tmp);
1164 moved++;
1165 if (flags & EXPIRE_DIRTY_ATIME)
1166 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1167 if (sb_is_blkdev_sb(inode->i_sb))
1168 continue;
1169 if (sb && sb != inode->i_sb)
1170 do_sb_sort = 1;
1171 sb = inode->i_sb;
1172 }
1173
1174 /* just one sb in list, splice to dispatch_queue and we're done */
1175 if (!do_sb_sort) {
1176 list_splice(&tmp, dispatch_queue);
1177 goto out;
1178 }
1179
1180 /* Move inodes from one superblock together */
1181 while (!list_empty(&tmp)) {
1182 sb = wb_inode(tmp.prev)->i_sb;
1183 list_for_each_prev_safe(pos, node, &tmp) {
1184 inode = wb_inode(pos);
1185 if (inode->i_sb == sb)
1186 list_move(&inode->i_io_list, dispatch_queue);
1187 }
1188 }
1189 out:
1190 return moved;
1191 }
1192
1193 /*
1194 * Queue all expired dirty inodes for io, eldest first.
1195 * Before
1196 * newly dirtied b_dirty b_io b_more_io
1197 * =============> gf edc BA
1198 * After
1199 * newly dirtied b_dirty b_io b_more_io
1200 * =============> g fBAedc
1201 * |
1202 * +--> dequeue for IO
1203 */
1204 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1205 {
1206 int moved;
1207
1208 assert_spin_locked(&wb->list_lock);
1209 list_splice_init(&wb->b_more_io, &wb->b_io);
1210 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1211 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1212 EXPIRE_DIRTY_ATIME, work);
1213 if (moved)
1214 wb_io_lists_populated(wb);
1215 trace_writeback_queue_io(wb, work, moved);
1216 }
1217
1218 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1219 {
1220 int ret;
1221
1222 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1223 trace_writeback_write_inode_start(inode, wbc);
1224 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1225 trace_writeback_write_inode(inode, wbc);
1226 return ret;
1227 }
1228 return 0;
1229 }
1230
1231 /*
1232 * Wait for writeback on an inode to complete. Called with i_lock held.
1233 * Caller must make sure inode cannot go away when we drop i_lock.
1234 */
1235 static void __inode_wait_for_writeback(struct inode *inode)
1236 __releases(inode->i_lock)
1237 __acquires(inode->i_lock)
1238 {
1239 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1240 wait_queue_head_t *wqh;
1241
1242 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1243 while (inode->i_state & I_SYNC) {
1244 spin_unlock(&inode->i_lock);
1245 __wait_on_bit(wqh, &wq, bit_wait,
1246 TASK_UNINTERRUPTIBLE);
1247 spin_lock(&inode->i_lock);
1248 }
1249 }
1250
1251 /*
1252 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1253 */
1254 void inode_wait_for_writeback(struct inode *inode)
1255 {
1256 spin_lock(&inode->i_lock);
1257 __inode_wait_for_writeback(inode);
1258 spin_unlock(&inode->i_lock);
1259 }
1260
1261 /*
1262 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1263 * held and drops it. It is aimed for callers not holding any inode reference
1264 * so once i_lock is dropped, inode can go away.
1265 */
1266 static void inode_sleep_on_writeback(struct inode *inode)
1267 __releases(inode->i_lock)
1268 {
1269 DEFINE_WAIT(wait);
1270 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1271 int sleep;
1272
1273 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1274 sleep = inode->i_state & I_SYNC;
1275 spin_unlock(&inode->i_lock);
1276 if (sleep)
1277 schedule();
1278 finish_wait(wqh, &wait);
1279 }
1280
1281 /*
1282 * Find proper writeback list for the inode depending on its current state and
1283 * possibly also change of its state while we were doing writeback. Here we
1284 * handle things such as livelock prevention or fairness of writeback among
1285 * inodes. This function can be called only by flusher thread - noone else
1286 * processes all inodes in writeback lists and requeueing inodes behind flusher
1287 * thread's back can have unexpected consequences.
1288 */
1289 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1290 struct writeback_control *wbc)
1291 {
1292 if (inode->i_state & I_FREEING)
1293 return;
1294
1295 /*
1296 * Sync livelock prevention. Each inode is tagged and synced in one
1297 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1298 * the dirty time to prevent enqueue and sync it again.
1299 */
1300 if ((inode->i_state & I_DIRTY) &&
1301 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1302 inode->dirtied_when = jiffies;
1303
1304 if (wbc->pages_skipped) {
1305 /*
1306 * writeback is not making progress due to locked
1307 * buffers. Skip this inode for now.
1308 */
1309 redirty_tail(inode, wb);
1310 return;
1311 }
1312
1313 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1314 /*
1315 * We didn't write back all the pages. nfs_writepages()
1316 * sometimes bales out without doing anything.
1317 */
1318 if (wbc->nr_to_write <= 0) {
1319 /* Slice used up. Queue for next turn. */
1320 requeue_io(inode, wb);
1321 } else {
1322 /*
1323 * Writeback blocked by something other than
1324 * congestion. Delay the inode for some time to
1325 * avoid spinning on the CPU (100% iowait)
1326 * retrying writeback of the dirty page/inode
1327 * that cannot be performed immediately.
1328 */
1329 redirty_tail(inode, wb);
1330 }
1331 } else if (inode->i_state & I_DIRTY) {
1332 /*
1333 * Filesystems can dirty the inode during writeback operations,
1334 * such as delayed allocation during submission or metadata
1335 * updates after data IO completion.
1336 */
1337 redirty_tail(inode, wb);
1338 } else if (inode->i_state & I_DIRTY_TIME) {
1339 inode->dirtied_when = jiffies;
1340 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1341 } else {
1342 /* The inode is clean. Remove from writeback lists. */
1343 inode_io_list_del_locked(inode, wb);
1344 }
1345 }
1346
1347 /*
1348 * Write out an inode and its dirty pages. Do not update the writeback list
1349 * linkage. That is left to the caller. The caller is also responsible for
1350 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1351 */
1352 static int
1353 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1354 {
1355 struct address_space *mapping = inode->i_mapping;
1356 long nr_to_write = wbc->nr_to_write;
1357 unsigned dirty;
1358 int ret;
1359
1360 WARN_ON(!(inode->i_state & I_SYNC));
1361
1362 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1363
1364 ret = do_writepages(mapping, wbc);
1365
1366 /*
1367 * Make sure to wait on the data before writing out the metadata.
1368 * This is important for filesystems that modify metadata on data
1369 * I/O completion. We don't do it for sync(2) writeback because it has a
1370 * separate, external IO completion path and ->sync_fs for guaranteeing
1371 * inode metadata is written back correctly.
1372 */
1373 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1374 int err = filemap_fdatawait(mapping);
1375 if (ret == 0)
1376 ret = err;
1377 }
1378
1379 /*
1380 * Some filesystems may redirty the inode during the writeback
1381 * due to delalloc, clear dirty metadata flags right before
1382 * write_inode()
1383 */
1384 spin_lock(&inode->i_lock);
1385
1386 dirty = inode->i_state & I_DIRTY;
1387 if (inode->i_state & I_DIRTY_TIME) {
1388 if ((dirty & I_DIRTY_INODE) ||
1389 wbc->sync_mode == WB_SYNC_ALL ||
1390 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1391 unlikely(time_after(jiffies,
1392 (inode->dirtied_time_when +
1393 dirtytime_expire_interval * HZ)))) {
1394 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1395 trace_writeback_lazytime(inode);
1396 }
1397 } else
1398 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1399 inode->i_state &= ~dirty;
1400
1401 /*
1402 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1403 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1404 * either they see the I_DIRTY bits cleared or we see the dirtied
1405 * inode.
1406 *
1407 * I_DIRTY_PAGES is always cleared together above even if @mapping
1408 * still has dirty pages. The flag is reinstated after smp_mb() if
1409 * necessary. This guarantees that either __mark_inode_dirty()
1410 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1411 */
1412 smp_mb();
1413
1414 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1415 inode->i_state |= I_DIRTY_PAGES;
1416
1417 spin_unlock(&inode->i_lock);
1418
1419 if (dirty & I_DIRTY_TIME)
1420 mark_inode_dirty_sync(inode);
1421 /* Don't write the inode if only I_DIRTY_PAGES was set */
1422 if (dirty & ~I_DIRTY_PAGES) {
1423 int err = write_inode(inode, wbc);
1424 if (ret == 0)
1425 ret = err;
1426 }
1427 trace_writeback_single_inode(inode, wbc, nr_to_write);
1428 return ret;
1429 }
1430
1431 /*
1432 * Write out an inode's dirty pages. Either the caller has an active reference
1433 * on the inode or the inode has I_WILL_FREE set.
1434 *
1435 * This function is designed to be called for writing back one inode which
1436 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1437 * and does more profound writeback list handling in writeback_sb_inodes().
1438 */
1439 static int writeback_single_inode(struct inode *inode,
1440 struct writeback_control *wbc)
1441 {
1442 struct bdi_writeback *wb;
1443 int ret = 0;
1444
1445 spin_lock(&inode->i_lock);
1446 if (!atomic_read(&inode->i_count))
1447 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1448 else
1449 WARN_ON(inode->i_state & I_WILL_FREE);
1450
1451 if (inode->i_state & I_SYNC) {
1452 if (wbc->sync_mode != WB_SYNC_ALL)
1453 goto out;
1454 /*
1455 * It's a data-integrity sync. We must wait. Since callers hold
1456 * inode reference or inode has I_WILL_FREE set, it cannot go
1457 * away under us.
1458 */
1459 __inode_wait_for_writeback(inode);
1460 }
1461 WARN_ON(inode->i_state & I_SYNC);
1462 /*
1463 * Skip inode if it is clean and we have no outstanding writeback in
1464 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1465 * function since flusher thread may be doing for example sync in
1466 * parallel and if we move the inode, it could get skipped. So here we
1467 * make sure inode is on some writeback list and leave it there unless
1468 * we have completely cleaned the inode.
1469 */
1470 if (!(inode->i_state & I_DIRTY_ALL) &&
1471 (wbc->sync_mode != WB_SYNC_ALL ||
1472 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1473 goto out;
1474 inode->i_state |= I_SYNC;
1475 wbc_attach_and_unlock_inode(wbc, inode);
1476
1477 ret = __writeback_single_inode(inode, wbc);
1478
1479 wbc_detach_inode(wbc);
1480
1481 wb = inode_to_wb_and_lock_list(inode);
1482 spin_lock(&inode->i_lock);
1483 /*
1484 * If inode is clean, remove it from writeback lists. Otherwise don't
1485 * touch it. See comment above for explanation.
1486 */
1487 if (!(inode->i_state & I_DIRTY_ALL))
1488 inode_io_list_del_locked(inode, wb);
1489 spin_unlock(&wb->list_lock);
1490 inode_sync_complete(inode);
1491 out:
1492 spin_unlock(&inode->i_lock);
1493 return ret;
1494 }
1495
1496 static long writeback_chunk_size(struct bdi_writeback *wb,
1497 struct wb_writeback_work *work)
1498 {
1499 long pages;
1500
1501 /*
1502 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1503 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1504 * here avoids calling into writeback_inodes_wb() more than once.
1505 *
1506 * The intended call sequence for WB_SYNC_ALL writeback is:
1507 *
1508 * wb_writeback()
1509 * writeback_sb_inodes() <== called only once
1510 * write_cache_pages() <== called once for each inode
1511 * (quickly) tag currently dirty pages
1512 * (maybe slowly) sync all tagged pages
1513 */
1514 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1515 pages = LONG_MAX;
1516 else {
1517 pages = min(wb->avg_write_bandwidth / 2,
1518 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1519 pages = min(pages, work->nr_pages);
1520 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1521 MIN_WRITEBACK_PAGES);
1522 }
1523
1524 return pages;
1525 }
1526
1527 /*
1528 * Write a portion of b_io inodes which belong to @sb.
1529 *
1530 * Return the number of pages and/or inodes written.
1531 *
1532 * NOTE! This is called with wb->list_lock held, and will
1533 * unlock and relock that for each inode it ends up doing
1534 * IO for.
1535 */
1536 static long writeback_sb_inodes(struct super_block *sb,
1537 struct bdi_writeback *wb,
1538 struct wb_writeback_work *work)
1539 {
1540 struct writeback_control wbc = {
1541 .sync_mode = work->sync_mode,
1542 .tagged_writepages = work->tagged_writepages,
1543 .for_kupdate = work->for_kupdate,
1544 .for_background = work->for_background,
1545 .for_sync = work->for_sync,
1546 .range_cyclic = work->range_cyclic,
1547 .range_start = 0,
1548 .range_end = LLONG_MAX,
1549 };
1550 unsigned long start_time = jiffies;
1551 long write_chunk;
1552 long wrote = 0; /* count both pages and inodes */
1553
1554 while (!list_empty(&wb->b_io)) {
1555 struct inode *inode = wb_inode(wb->b_io.prev);
1556 struct bdi_writeback *tmp_wb;
1557
1558 if (inode->i_sb != sb) {
1559 if (work->sb) {
1560 /*
1561 * We only want to write back data for this
1562 * superblock, move all inodes not belonging
1563 * to it back onto the dirty list.
1564 */
1565 redirty_tail(inode, wb);
1566 continue;
1567 }
1568
1569 /*
1570 * The inode belongs to a different superblock.
1571 * Bounce back to the caller to unpin this and
1572 * pin the next superblock.
1573 */
1574 break;
1575 }
1576
1577 /*
1578 * Don't bother with new inodes or inodes being freed, first
1579 * kind does not need periodic writeout yet, and for the latter
1580 * kind writeout is handled by the freer.
1581 */
1582 spin_lock(&inode->i_lock);
1583 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1584 spin_unlock(&inode->i_lock);
1585 redirty_tail(inode, wb);
1586 continue;
1587 }
1588 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1589 /*
1590 * If this inode is locked for writeback and we are not
1591 * doing writeback-for-data-integrity, move it to
1592 * b_more_io so that writeback can proceed with the
1593 * other inodes on s_io.
1594 *
1595 * We'll have another go at writing back this inode
1596 * when we completed a full scan of b_io.
1597 */
1598 spin_unlock(&inode->i_lock);
1599 requeue_io(inode, wb);
1600 trace_writeback_sb_inodes_requeue(inode);
1601 continue;
1602 }
1603 spin_unlock(&wb->list_lock);
1604
1605 /*
1606 * We already requeued the inode if it had I_SYNC set and we
1607 * are doing WB_SYNC_NONE writeback. So this catches only the
1608 * WB_SYNC_ALL case.
1609 */
1610 if (inode->i_state & I_SYNC) {
1611 /* Wait for I_SYNC. This function drops i_lock... */
1612 inode_sleep_on_writeback(inode);
1613 /* Inode may be gone, start again */
1614 spin_lock(&wb->list_lock);
1615 continue;
1616 }
1617 inode->i_state |= I_SYNC;
1618 wbc_attach_and_unlock_inode(&wbc, inode);
1619
1620 write_chunk = writeback_chunk_size(wb, work);
1621 wbc.nr_to_write = write_chunk;
1622 wbc.pages_skipped = 0;
1623
1624 /*
1625 * We use I_SYNC to pin the inode in memory. While it is set
1626 * evict_inode() will wait so the inode cannot be freed.
1627 */
1628 __writeback_single_inode(inode, &wbc);
1629
1630 wbc_detach_inode(&wbc);
1631 work->nr_pages -= write_chunk - wbc.nr_to_write;
1632 wrote += write_chunk - wbc.nr_to_write;
1633
1634 if (need_resched()) {
1635 /*
1636 * We're trying to balance between building up a nice
1637 * long list of IOs to improve our merge rate, and
1638 * getting those IOs out quickly for anyone throttling
1639 * in balance_dirty_pages(). cond_resched() doesn't
1640 * unplug, so get our IOs out the door before we
1641 * give up the CPU.
1642 */
1643 blk_flush_plug(current);
1644 cond_resched();
1645 }
1646
1647 /*
1648 * Requeue @inode if still dirty. Be careful as @inode may
1649 * have been switched to another wb in the meantime.
1650 */
1651 tmp_wb = inode_to_wb_and_lock_list(inode);
1652 spin_lock(&inode->i_lock);
1653 if (!(inode->i_state & I_DIRTY_ALL))
1654 wrote++;
1655 requeue_inode(inode, tmp_wb, &wbc);
1656 inode_sync_complete(inode);
1657 spin_unlock(&inode->i_lock);
1658
1659 if (unlikely(tmp_wb != wb)) {
1660 spin_unlock(&tmp_wb->list_lock);
1661 spin_lock(&wb->list_lock);
1662 }
1663
1664 /*
1665 * bail out to wb_writeback() often enough to check
1666 * background threshold and other termination conditions.
1667 */
1668 if (wrote) {
1669 if (time_is_before_jiffies(start_time + HZ / 10UL))
1670 break;
1671 if (work->nr_pages <= 0)
1672 break;
1673 }
1674 }
1675 return wrote;
1676 }
1677
1678 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1679 struct wb_writeback_work *work)
1680 {
1681 unsigned long start_time = jiffies;
1682 long wrote = 0;
1683
1684 while (!list_empty(&wb->b_io)) {
1685 struct inode *inode = wb_inode(wb->b_io.prev);
1686 struct super_block *sb = inode->i_sb;
1687
1688 if (!trylock_super(sb)) {
1689 /*
1690 * trylock_super() may fail consistently due to
1691 * s_umount being grabbed by someone else. Don't use
1692 * requeue_io() to avoid busy retrying the inode/sb.
1693 */
1694 redirty_tail(inode, wb);
1695 continue;
1696 }
1697 wrote += writeback_sb_inodes(sb, wb, work);
1698 up_read(&sb->s_umount);
1699
1700 /* refer to the same tests at the end of writeback_sb_inodes */
1701 if (wrote) {
1702 if (time_is_before_jiffies(start_time + HZ / 10UL))
1703 break;
1704 if (work->nr_pages <= 0)
1705 break;
1706 }
1707 }
1708 /* Leave any unwritten inodes on b_io */
1709 return wrote;
1710 }
1711
1712 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1713 enum wb_reason reason)
1714 {
1715 struct wb_writeback_work work = {
1716 .nr_pages = nr_pages,
1717 .sync_mode = WB_SYNC_NONE,
1718 .range_cyclic = 1,
1719 .reason = reason,
1720 };
1721 struct blk_plug plug;
1722
1723 blk_start_plug(&plug);
1724 spin_lock(&wb->list_lock);
1725 if (list_empty(&wb->b_io))
1726 queue_io(wb, &work);
1727 __writeback_inodes_wb(wb, &work);
1728 spin_unlock(&wb->list_lock);
1729 blk_finish_plug(&plug);
1730
1731 return nr_pages - work.nr_pages;
1732 }
1733
1734 /*
1735 * Explicit flushing or periodic writeback of "old" data.
1736 *
1737 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1738 * dirtying-time in the inode's address_space. So this periodic writeback code
1739 * just walks the superblock inode list, writing back any inodes which are
1740 * older than a specific point in time.
1741 *
1742 * Try to run once per dirty_writeback_interval. But if a writeback event
1743 * takes longer than a dirty_writeback_interval interval, then leave a
1744 * one-second gap.
1745 *
1746 * older_than_this takes precedence over nr_to_write. So we'll only write back
1747 * all dirty pages if they are all attached to "old" mappings.
1748 */
1749 static long wb_writeback(struct bdi_writeback *wb,
1750 struct wb_writeback_work *work)
1751 {
1752 unsigned long wb_start = jiffies;
1753 long nr_pages = work->nr_pages;
1754 unsigned long oldest_jif;
1755 struct inode *inode;
1756 long progress;
1757 struct blk_plug plug;
1758
1759 oldest_jif = jiffies;
1760 work->older_than_this = &oldest_jif;
1761
1762 blk_start_plug(&plug);
1763 spin_lock(&wb->list_lock);
1764 for (;;) {
1765 /*
1766 * Stop writeback when nr_pages has been consumed
1767 */
1768 if (work->nr_pages <= 0)
1769 break;
1770
1771 /*
1772 * Background writeout and kupdate-style writeback may
1773 * run forever. Stop them if there is other work to do
1774 * so that e.g. sync can proceed. They'll be restarted
1775 * after the other works are all done.
1776 */
1777 if ((work->for_background || work->for_kupdate) &&
1778 !list_empty(&wb->work_list))
1779 break;
1780
1781 /*
1782 * For background writeout, stop when we are below the
1783 * background dirty threshold
1784 */
1785 if (work->for_background && !wb_over_bg_thresh(wb))
1786 break;
1787
1788 /*
1789 * Kupdate and background works are special and we want to
1790 * include all inodes that need writing. Livelock avoidance is
1791 * handled by these works yielding to any other work so we are
1792 * safe.
1793 */
1794 if (work->for_kupdate) {
1795 oldest_jif = jiffies -
1796 msecs_to_jiffies(dirty_expire_interval * 10);
1797 } else if (work->for_background)
1798 oldest_jif = jiffies;
1799
1800 trace_writeback_start(wb, work);
1801 if (list_empty(&wb->b_io))
1802 queue_io(wb, work);
1803 if (work->sb)
1804 progress = writeback_sb_inodes(work->sb, wb, work);
1805 else
1806 progress = __writeback_inodes_wb(wb, work);
1807 trace_writeback_written(wb, work);
1808
1809 wb_update_bandwidth(wb, wb_start);
1810
1811 /*
1812 * Did we write something? Try for more
1813 *
1814 * Dirty inodes are moved to b_io for writeback in batches.
1815 * The completion of the current batch does not necessarily
1816 * mean the overall work is done. So we keep looping as long
1817 * as made some progress on cleaning pages or inodes.
1818 */
1819 if (progress)
1820 continue;
1821 /*
1822 * No more inodes for IO, bail
1823 */
1824 if (list_empty(&wb->b_more_io))
1825 break;
1826 /*
1827 * Nothing written. Wait for some inode to
1828 * become available for writeback. Otherwise
1829 * we'll just busyloop.
1830 */
1831 trace_writeback_wait(wb, work);
1832 inode = wb_inode(wb->b_more_io.prev);
1833 spin_lock(&inode->i_lock);
1834 spin_unlock(&wb->list_lock);
1835 /* This function drops i_lock... */
1836 inode_sleep_on_writeback(inode);
1837 spin_lock(&wb->list_lock);
1838 }
1839 spin_unlock(&wb->list_lock);
1840 blk_finish_plug(&plug);
1841
1842 return nr_pages - work->nr_pages;
1843 }
1844
1845 /*
1846 * Return the next wb_writeback_work struct that hasn't been processed yet.
1847 */
1848 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1849 {
1850 struct wb_writeback_work *work = NULL;
1851
1852 spin_lock_bh(&wb->work_lock);
1853 if (!list_empty(&wb->work_list)) {
1854 work = list_entry(wb->work_list.next,
1855 struct wb_writeback_work, list);
1856 list_del_init(&work->list);
1857 }
1858 spin_unlock_bh(&wb->work_lock);
1859 return work;
1860 }
1861
1862 static long wb_check_background_flush(struct bdi_writeback *wb)
1863 {
1864 if (wb_over_bg_thresh(wb)) {
1865
1866 struct wb_writeback_work work = {
1867 .nr_pages = LONG_MAX,
1868 .sync_mode = WB_SYNC_NONE,
1869 .for_background = 1,
1870 .range_cyclic = 1,
1871 .reason = WB_REASON_BACKGROUND,
1872 };
1873
1874 return wb_writeback(wb, &work);
1875 }
1876
1877 return 0;
1878 }
1879
1880 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1881 {
1882 unsigned long expired;
1883 long nr_pages;
1884
1885 /*
1886 * When set to zero, disable periodic writeback
1887 */
1888 if (!dirty_writeback_interval)
1889 return 0;
1890
1891 expired = wb->last_old_flush +
1892 msecs_to_jiffies(dirty_writeback_interval * 10);
1893 if (time_before(jiffies, expired))
1894 return 0;
1895
1896 wb->last_old_flush = jiffies;
1897 nr_pages = get_nr_dirty_pages();
1898
1899 if (nr_pages) {
1900 struct wb_writeback_work work = {
1901 .nr_pages = nr_pages,
1902 .sync_mode = WB_SYNC_NONE,
1903 .for_kupdate = 1,
1904 .range_cyclic = 1,
1905 .reason = WB_REASON_PERIODIC,
1906 };
1907
1908 return wb_writeback(wb, &work);
1909 }
1910
1911 return 0;
1912 }
1913
1914 static long wb_check_start_all(struct bdi_writeback *wb)
1915 {
1916 long nr_pages;
1917
1918 if (!test_bit(WB_start_all, &wb->state))
1919 return 0;
1920
1921 nr_pages = get_nr_dirty_pages();
1922 if (nr_pages) {
1923 struct wb_writeback_work work = {
1924 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1925 .sync_mode = WB_SYNC_NONE,
1926 .range_cyclic = 1,
1927 .reason = wb->start_all_reason,
1928 };
1929
1930 nr_pages = wb_writeback(wb, &work);
1931 }
1932
1933 clear_bit(WB_start_all, &wb->state);
1934 return nr_pages;
1935 }
1936
1937
1938 /*
1939 * Retrieve work items and do the writeback they describe
1940 */
1941 static long wb_do_writeback(struct bdi_writeback *wb)
1942 {
1943 struct wb_writeback_work *work;
1944 long wrote = 0;
1945
1946 set_bit(WB_writeback_running, &wb->state);
1947 while ((work = get_next_work_item(wb)) != NULL) {
1948 trace_writeback_exec(wb, work);
1949 wrote += wb_writeback(wb, work);
1950 finish_writeback_work(wb, work);
1951 }
1952
1953 /*
1954 * Check for a flush-everything request
1955 */
1956 wrote += wb_check_start_all(wb);
1957
1958 /*
1959 * Check for periodic writeback, kupdated() style
1960 */
1961 wrote += wb_check_old_data_flush(wb);
1962 wrote += wb_check_background_flush(wb);
1963 clear_bit(WB_writeback_running, &wb->state);
1964
1965 return wrote;
1966 }
1967
1968 /*
1969 * Handle writeback of dirty data for the device backed by this bdi. Also
1970 * reschedules periodically and does kupdated style flushing.
1971 */
1972 void wb_workfn(struct work_struct *work)
1973 {
1974 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1975 struct bdi_writeback, dwork);
1976 long pages_written;
1977
1978 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1979 current->flags |= PF_SWAPWRITE;
1980
1981 if (likely(!current_is_workqueue_rescuer() ||
1982 !test_bit(WB_registered, &wb->state))) {
1983 /*
1984 * The normal path. Keep writing back @wb until its
1985 * work_list is empty. Note that this path is also taken
1986 * if @wb is shutting down even when we're running off the
1987 * rescuer as work_list needs to be drained.
1988 */
1989 do {
1990 pages_written = wb_do_writeback(wb);
1991 trace_writeback_pages_written(pages_written);
1992 } while (!list_empty(&wb->work_list));
1993 } else {
1994 /*
1995 * bdi_wq can't get enough workers and we're running off
1996 * the emergency worker. Don't hog it. Hopefully, 1024 is
1997 * enough for efficient IO.
1998 */
1999 pages_written = writeback_inodes_wb(wb, 1024,
2000 WB_REASON_FORKER_THREAD);
2001 trace_writeback_pages_written(pages_written);
2002 }
2003
2004 if (!list_empty(&wb->work_list))
2005 wb_wakeup(wb);
2006 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2007 wb_wakeup_delayed(wb);
2008
2009 current->flags &= ~PF_SWAPWRITE;
2010 }
2011
2012 /*
2013 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2014 * write back the whole world.
2015 */
2016 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2017 enum wb_reason reason)
2018 {
2019 struct bdi_writeback *wb;
2020
2021 if (!bdi_has_dirty_io(bdi))
2022 return;
2023
2024 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2025 wb_start_writeback(wb, reason);
2026 }
2027
2028 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2029 enum wb_reason reason)
2030 {
2031 rcu_read_lock();
2032 __wakeup_flusher_threads_bdi(bdi, reason);
2033 rcu_read_unlock();
2034 }
2035
2036 /*
2037 * Wakeup the flusher threads to start writeback of all currently dirty pages
2038 */
2039 void wakeup_flusher_threads(enum wb_reason reason)
2040 {
2041 struct backing_dev_info *bdi;
2042
2043 /*
2044 * If we are expecting writeback progress we must submit plugged IO.
2045 */
2046 if (blk_needs_flush_plug(current))
2047 blk_schedule_flush_plug(current);
2048
2049 rcu_read_lock();
2050 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051 __wakeup_flusher_threads_bdi(bdi, reason);
2052 rcu_read_unlock();
2053 }
2054
2055 /*
2056 * Wake up bdi's periodically to make sure dirtytime inodes gets
2057 * written back periodically. We deliberately do *not* check the
2058 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2059 * kernel to be constantly waking up once there are any dirtytime
2060 * inodes on the system. So instead we define a separate delayed work
2061 * function which gets called much more rarely. (By default, only
2062 * once every 12 hours.)
2063 *
2064 * If there is any other write activity going on in the file system,
2065 * this function won't be necessary. But if the only thing that has
2066 * happened on the file system is a dirtytime inode caused by an atime
2067 * update, we need this infrastructure below to make sure that inode
2068 * eventually gets pushed out to disk.
2069 */
2070 static void wakeup_dirtytime_writeback(struct work_struct *w);
2071 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2072
2073 static void wakeup_dirtytime_writeback(struct work_struct *w)
2074 {
2075 struct backing_dev_info *bdi;
2076
2077 rcu_read_lock();
2078 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2079 struct bdi_writeback *wb;
2080
2081 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2082 if (!list_empty(&wb->b_dirty_time))
2083 wb_wakeup(wb);
2084 }
2085 rcu_read_unlock();
2086 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2087 }
2088
2089 static int __init start_dirtytime_writeback(void)
2090 {
2091 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2092 return 0;
2093 }
2094 __initcall(start_dirtytime_writeback);
2095
2096 int dirtytime_interval_handler(struct ctl_table *table, int write,
2097 void __user *buffer, size_t *lenp, loff_t *ppos)
2098 {
2099 int ret;
2100
2101 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2102 if (ret == 0 && write)
2103 mod_delayed_work(system_wq, &dirtytime_work, 0);
2104 return ret;
2105 }
2106
2107 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2108 {
2109 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2110 struct dentry *dentry;
2111 const char *name = "?";
2112
2113 dentry = d_find_alias(inode);
2114 if (dentry) {
2115 spin_lock(&dentry->d_lock);
2116 name = (const char *) dentry->d_name.name;
2117 }
2118 printk(KERN_DEBUG
2119 "%s(%d): dirtied inode %lu (%s) on %s\n",
2120 current->comm, task_pid_nr(current), inode->i_ino,
2121 name, inode->i_sb->s_id);
2122 if (dentry) {
2123 spin_unlock(&dentry->d_lock);
2124 dput(dentry);
2125 }
2126 }
2127 }
2128
2129 /**
2130 * __mark_inode_dirty - internal function
2131 *
2132 * @inode: inode to mark
2133 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2134 *
2135 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2136 * mark_inode_dirty_sync.
2137 *
2138 * Put the inode on the super block's dirty list.
2139 *
2140 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2141 * dirty list only if it is hashed or if it refers to a blockdev.
2142 * If it was not hashed, it will never be added to the dirty list
2143 * even if it is later hashed, as it will have been marked dirty already.
2144 *
2145 * In short, make sure you hash any inodes _before_ you start marking
2146 * them dirty.
2147 *
2148 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2149 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2150 * the kernel-internal blockdev inode represents the dirtying time of the
2151 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2152 * page->mapping->host, so the page-dirtying time is recorded in the internal
2153 * blockdev inode.
2154 */
2155 void __mark_inode_dirty(struct inode *inode, int flags)
2156 {
2157 struct super_block *sb = inode->i_sb;
2158 int dirtytime;
2159
2160 trace_writeback_mark_inode_dirty(inode, flags);
2161
2162 /*
2163 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2164 * dirty the inode itself
2165 */
2166 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2167 trace_writeback_dirty_inode_start(inode, flags);
2168
2169 if (sb->s_op->dirty_inode)
2170 sb->s_op->dirty_inode(inode, flags);
2171
2172 trace_writeback_dirty_inode(inode, flags);
2173 }
2174 if (flags & I_DIRTY_INODE)
2175 flags &= ~I_DIRTY_TIME;
2176 dirtytime = flags & I_DIRTY_TIME;
2177
2178 /*
2179 * Paired with smp_mb() in __writeback_single_inode() for the
2180 * following lockless i_state test. See there for details.
2181 */
2182 smp_mb();
2183
2184 if (((inode->i_state & flags) == flags) ||
2185 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2186 return;
2187
2188 if (unlikely(block_dump))
2189 block_dump___mark_inode_dirty(inode);
2190
2191 spin_lock(&inode->i_lock);
2192 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2193 goto out_unlock_inode;
2194 if ((inode->i_state & flags) != flags) {
2195 const int was_dirty = inode->i_state & I_DIRTY;
2196
2197 inode_attach_wb(inode, NULL);
2198
2199 if (flags & I_DIRTY_INODE)
2200 inode->i_state &= ~I_DIRTY_TIME;
2201 inode->i_state |= flags;
2202
2203 /*
2204 * If the inode is being synced, just update its dirty state.
2205 * The unlocker will place the inode on the appropriate
2206 * superblock list, based upon its state.
2207 */
2208 if (inode->i_state & I_SYNC)
2209 goto out_unlock_inode;
2210
2211 /*
2212 * Only add valid (hashed) inodes to the superblock's
2213 * dirty list. Add blockdev inodes as well.
2214 */
2215 if (!S_ISBLK(inode->i_mode)) {
2216 if (inode_unhashed(inode))
2217 goto out_unlock_inode;
2218 }
2219 if (inode->i_state & I_FREEING)
2220 goto out_unlock_inode;
2221
2222 /*
2223 * If the inode was already on b_dirty/b_io/b_more_io, don't
2224 * reposition it (that would break b_dirty time-ordering).
2225 */
2226 if (!was_dirty) {
2227 struct bdi_writeback *wb;
2228 struct list_head *dirty_list;
2229 bool wakeup_bdi = false;
2230
2231 wb = locked_inode_to_wb_and_lock_list(inode);
2232
2233 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2234 !test_bit(WB_registered, &wb->state),
2235 "bdi-%s not registered\n", wb->bdi->name);
2236
2237 inode->dirtied_when = jiffies;
2238 if (dirtytime)
2239 inode->dirtied_time_when = jiffies;
2240
2241 if (inode->i_state & I_DIRTY)
2242 dirty_list = &wb->b_dirty;
2243 else
2244 dirty_list = &wb->b_dirty_time;
2245
2246 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2247 dirty_list);
2248
2249 spin_unlock(&wb->list_lock);
2250 trace_writeback_dirty_inode_enqueue(inode);
2251
2252 /*
2253 * If this is the first dirty inode for this bdi,
2254 * we have to wake-up the corresponding bdi thread
2255 * to make sure background write-back happens
2256 * later.
2257 */
2258 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2259 wb_wakeup_delayed(wb);
2260 return;
2261 }
2262 }
2263 out_unlock_inode:
2264 spin_unlock(&inode->i_lock);
2265 }
2266 EXPORT_SYMBOL(__mark_inode_dirty);
2267
2268 /*
2269 * The @s_sync_lock is used to serialise concurrent sync operations
2270 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2271 * Concurrent callers will block on the s_sync_lock rather than doing contending
2272 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2273 * has been issued up to the time this function is enter is guaranteed to be
2274 * completed by the time we have gained the lock and waited for all IO that is
2275 * in progress regardless of the order callers are granted the lock.
2276 */
2277 static void wait_sb_inodes(struct super_block *sb)
2278 {
2279 LIST_HEAD(sync_list);
2280
2281 /*
2282 * We need to be protected against the filesystem going from
2283 * r/o to r/w or vice versa.
2284 */
2285 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2286
2287 mutex_lock(&sb->s_sync_lock);
2288
2289 /*
2290 * Splice the writeback list onto a temporary list to avoid waiting on
2291 * inodes that have started writeback after this point.
2292 *
2293 * Use rcu_read_lock() to keep the inodes around until we have a
2294 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2295 * the local list because inodes can be dropped from either by writeback
2296 * completion.
2297 */
2298 rcu_read_lock();
2299 spin_lock_irq(&sb->s_inode_wblist_lock);
2300 list_splice_init(&sb->s_inodes_wb, &sync_list);
2301
2302 /*
2303 * Data integrity sync. Must wait for all pages under writeback, because
2304 * there may have been pages dirtied before our sync call, but which had
2305 * writeout started before we write it out. In which case, the inode
2306 * may not be on the dirty list, but we still have to wait for that
2307 * writeout.
2308 */
2309 while (!list_empty(&sync_list)) {
2310 struct inode *inode = list_first_entry(&sync_list, struct inode,
2311 i_wb_list);
2312 struct address_space *mapping = inode->i_mapping;
2313
2314 /*
2315 * Move each inode back to the wb list before we drop the lock
2316 * to preserve consistency between i_wb_list and the mapping
2317 * writeback tag. Writeback completion is responsible to remove
2318 * the inode from either list once the writeback tag is cleared.
2319 */
2320 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2321
2322 /*
2323 * The mapping can appear untagged while still on-list since we
2324 * do not have the mapping lock. Skip it here, wb completion
2325 * will remove it.
2326 */
2327 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2328 continue;
2329
2330 spin_unlock_irq(&sb->s_inode_wblist_lock);
2331
2332 spin_lock(&inode->i_lock);
2333 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2334 spin_unlock(&inode->i_lock);
2335
2336 spin_lock_irq(&sb->s_inode_wblist_lock);
2337 continue;
2338 }
2339 __iget(inode);
2340 spin_unlock(&inode->i_lock);
2341 rcu_read_unlock();
2342
2343 /*
2344 * We keep the error status of individual mapping so that
2345 * applications can catch the writeback error using fsync(2).
2346 * See filemap_fdatawait_keep_errors() for details.
2347 */
2348 filemap_fdatawait_keep_errors(mapping);
2349
2350 cond_resched();
2351
2352 iput(inode);
2353
2354 rcu_read_lock();
2355 spin_lock_irq(&sb->s_inode_wblist_lock);
2356 }
2357 spin_unlock_irq(&sb->s_inode_wblist_lock);
2358 rcu_read_unlock();
2359 mutex_unlock(&sb->s_sync_lock);
2360 }
2361
2362 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2363 enum wb_reason reason, bool skip_if_busy)
2364 {
2365 DEFINE_WB_COMPLETION_ONSTACK(done);
2366 struct wb_writeback_work work = {
2367 .sb = sb,
2368 .sync_mode = WB_SYNC_NONE,
2369 .tagged_writepages = 1,
2370 .done = &done,
2371 .nr_pages = nr,
2372 .reason = reason,
2373 };
2374 struct backing_dev_info *bdi = sb->s_bdi;
2375
2376 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2377 return;
2378 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2379
2380 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2381 wb_wait_for_completion(bdi, &done);
2382 }
2383
2384 /**
2385 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2386 * @sb: the superblock
2387 * @nr: the number of pages to write
2388 * @reason: reason why some writeback work initiated
2389 *
2390 * Start writeback on some inodes on this super_block. No guarantees are made
2391 * on how many (if any) will be written, and this function does not wait
2392 * for IO completion of submitted IO.
2393 */
2394 void writeback_inodes_sb_nr(struct super_block *sb,
2395 unsigned long nr,
2396 enum wb_reason reason)
2397 {
2398 __writeback_inodes_sb_nr(sb, nr, reason, false);
2399 }
2400 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2401
2402 /**
2403 * writeback_inodes_sb - writeback dirty inodes from given super_block
2404 * @sb: the superblock
2405 * @reason: reason why some writeback work was initiated
2406 *
2407 * Start writeback on some inodes on this super_block. No guarantees are made
2408 * on how many (if any) will be written, and this function does not wait
2409 * for IO completion of submitted IO.
2410 */
2411 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2412 {
2413 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2414 }
2415 EXPORT_SYMBOL(writeback_inodes_sb);
2416
2417 /**
2418 * try_to_writeback_inodes_sb - try to start writeback if none underway
2419 * @sb: the superblock
2420 * @reason: reason why some writeback work was initiated
2421 *
2422 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2423 */
2424 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2425 {
2426 if (!down_read_trylock(&sb->s_umount))
2427 return;
2428
2429 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2430 up_read(&sb->s_umount);
2431 }
2432 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2433
2434 /**
2435 * sync_inodes_sb - sync sb inode pages
2436 * @sb: the superblock
2437 *
2438 * This function writes and waits on any dirty inode belonging to this
2439 * super_block.
2440 */
2441 void sync_inodes_sb(struct super_block *sb)
2442 {
2443 DEFINE_WB_COMPLETION_ONSTACK(done);
2444 struct wb_writeback_work work = {
2445 .sb = sb,
2446 .sync_mode = WB_SYNC_ALL,
2447 .nr_pages = LONG_MAX,
2448 .range_cyclic = 0,
2449 .done = &done,
2450 .reason = WB_REASON_SYNC,
2451 .for_sync = 1,
2452 };
2453 struct backing_dev_info *bdi = sb->s_bdi;
2454
2455 /*
2456 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2457 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2458 * bdi_has_dirty() need to be written out too.
2459 */
2460 if (bdi == &noop_backing_dev_info)
2461 return;
2462 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2463
2464 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2465 bdi_down_write_wb_switch_rwsem(bdi);
2466 bdi_split_work_to_wbs(bdi, &work, false);
2467 wb_wait_for_completion(bdi, &done);
2468 bdi_up_write_wb_switch_rwsem(bdi);
2469
2470 wait_sb_inodes(sb);
2471 }
2472 EXPORT_SYMBOL(sync_inodes_sb);
2473
2474 /**
2475 * write_inode_now - write an inode to disk
2476 * @inode: inode to write to disk
2477 * @sync: whether the write should be synchronous or not
2478 *
2479 * This function commits an inode to disk immediately if it is dirty. This is
2480 * primarily needed by knfsd.
2481 *
2482 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2483 */
2484 int write_inode_now(struct inode *inode, int sync)
2485 {
2486 struct writeback_control wbc = {
2487 .nr_to_write = LONG_MAX,
2488 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2489 .range_start = 0,
2490 .range_end = LLONG_MAX,
2491 };
2492
2493 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2494 wbc.nr_to_write = 0;
2495
2496 might_sleep();
2497 return writeback_single_inode(inode, &wbc);
2498 }
2499 EXPORT_SYMBOL(write_inode_now);
2500
2501 /**
2502 * sync_inode - write an inode and its pages to disk.
2503 * @inode: the inode to sync
2504 * @wbc: controls the writeback mode
2505 *
2506 * sync_inode() will write an inode and its pages to disk. It will also
2507 * correctly update the inode on its superblock's dirty inode lists and will
2508 * update inode->i_state.
2509 *
2510 * The caller must have a ref on the inode.
2511 */
2512 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2513 {
2514 return writeback_single_inode(inode, wbc);
2515 }
2516 EXPORT_SYMBOL(sync_inode);
2517
2518 /**
2519 * sync_inode_metadata - write an inode to disk
2520 * @inode: the inode to sync
2521 * @wait: wait for I/O to complete.
2522 *
2523 * Write an inode to disk and adjust its dirty state after completion.
2524 *
2525 * Note: only writes the actual inode, no associated data or other metadata.
2526 */
2527 int sync_inode_metadata(struct inode *inode, int wait)
2528 {
2529 struct writeback_control wbc = {
2530 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2531 .nr_to_write = 0, /* metadata-only */
2532 };
2533
2534 return sync_inode(inode, &wbc);
2535 }
2536 EXPORT_SYMBOL(sync_inode_metadata);