]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/fs-writeback.c
ARM: dts: imx50: Specify IMX5_CLK_IPG as "ahb" clock to SDMA
[people/arne_f/kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
349 struct backing_dev_info *bdi = inode_to_bdi(inode);
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
352 struct bdi_writeback *new_wb = isw->new_wb;
353 struct radix_tree_iter iter;
354 bool switched = false;
355 void **slot;
356
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against the i_pages lock.
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
372 */
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
380 spin_lock(&inode->i_lock);
381 xa_lock_irq(&mapping->i_pages);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
385 * the inode and we shouldn't modify ->i_io_list.
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under writeback.
394 */
395 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
396 PAGECACHE_TAG_DIRTY) {
397 struct page *page = radix_tree_deref_slot_protected(slot,
398 &mapping->i_pages.xa_lock);
399 if (likely(page) && PageDirty(page)) {
400 dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 }
403 }
404
405 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
406 PAGECACHE_TAG_WRITEBACK) {
407 struct page *page = radix_tree_deref_slot_protected(slot,
408 &mapping->i_pages.xa_lock);
409 if (likely(page)) {
410 WARN_ON_ONCE(!PageWriteback(page));
411 dec_wb_stat(old_wb, WB_WRITEBACK);
412 inc_wb_stat(new_wb, WB_WRITEBACK);
413 }
414 }
415
416 wb_get(new_wb);
417
418 /*
419 * Transfer to @new_wb's IO list if necessary. The specific list
420 * @inode was on is ignored and the inode is put on ->b_dirty which
421 * is always correct including from ->b_dirty_time. The transfer
422 * preserves @inode->dirtied_when ordering.
423 */
424 if (!list_empty(&inode->i_io_list)) {
425 struct inode *pos;
426
427 inode_io_list_del_locked(inode, old_wb);
428 inode->i_wb = new_wb;
429 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 if (time_after_eq(inode->dirtied_when,
431 pos->dirtied_when))
432 break;
433 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 } else {
435 inode->i_wb = new_wb;
436 }
437
438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
442 switched = true;
443 skip_switch:
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450 xa_unlock_irq(&mapping->i_pages);
451 spin_unlock(&inode->i_lock);
452 spin_unlock(&new_wb->list_lock);
453 spin_unlock(&old_wb->list_lock);
454
455 up_read(&bdi->wb_switch_rwsem);
456
457 if (switched) {
458 wb_wakeup(new_wb);
459 wb_put(old_wb);
460 }
461 wb_put(new_wb);
462
463 iput(inode);
464 kfree(isw);
465
466 atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471 struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 struct inode_switch_wbs_context, rcu_head);
473
474 /* needs to grab bh-unsafe locks, bounce to work item */
475 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476 queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480 * inode_switch_wbs - change the wb association of an inode
481 * @inode: target inode
482 * @new_wb_id: ID of the new wb
483 *
484 * Switch @inode's wb association to the wb identified by @new_wb_id. The
485 * switching is performed asynchronously and may fail silently.
486 */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489 struct backing_dev_info *bdi = inode_to_bdi(inode);
490 struct cgroup_subsys_state *memcg_css;
491 struct inode_switch_wbs_context *isw;
492
493 /* noop if seems to be already in progress */
494 if (inode->i_state & I_WB_SWITCH)
495 return;
496
497 /*
498 * Avoid starting new switches while sync_inodes_sb() is in
499 * progress. Otherwise, if the down_write protected issue path
500 * blocks heavily, we might end up starting a large number of
501 * switches which will block on the rwsem.
502 */
503 if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 return;
505
506 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 if (!isw)
508 goto out_unlock;
509
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
521 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
522 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
527 inode->i_state |= I_WB_SWITCH;
528 __iget(inode);
529 spin_unlock(&inode->i_lock);
530
531 isw->inode = inode;
532
533 /*
534 * In addition to synchronizing among switchers, I_WB_SWITCH tells
535 * the RCU protected stat update paths to grab the i_page
536 * lock so that stat transfer can synchronize against them.
537 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538 */
539 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541 atomic_inc(&isw_nr_in_flight);
542
543 goto out_unlock;
544
545 out_free:
546 if (isw->new_wb)
547 wb_put(isw->new_wb);
548 kfree(isw);
549 out_unlock:
550 up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555 * @wbc: writeback_control of interest
556 * @inode: target inode
557 *
558 * @inode is locked and about to be written back under the control of @wbc.
559 * Record @inode's writeback context into @wbc and unlock the i_lock. On
560 * writeback completion, wbc_detach_inode() should be called. This is used
561 * to track the cgroup writeback context.
562 */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564 struct inode *inode)
565 {
566 if (!inode_cgwb_enabled(inode)) {
567 spin_unlock(&inode->i_lock);
568 return;
569 }
570
571 wbc->wb = inode_to_wb(inode);
572 wbc->inode = inode;
573
574 wbc->wb_id = wbc->wb->memcg_css->id;
575 wbc->wb_lcand_id = inode->i_wb_frn_winner;
576 wbc->wb_tcand_id = 0;
577 wbc->wb_bytes = 0;
578 wbc->wb_lcand_bytes = 0;
579 wbc->wb_tcand_bytes = 0;
580
581 wb_get(wbc->wb);
582 spin_unlock(&inode->i_lock);
583
584 /*
585 * A dying wb indicates that the memcg-blkcg mapping has changed
586 * and a new wb is already serving the memcg. Switch immediately.
587 */
588 if (unlikely(wb_dying(wbc->wb)))
589 inode_switch_wbs(inode, wbc->wb_id);
590 }
591
592 /**
593 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594 * @wbc: writeback_control of the just finished writeback
595 *
596 * To be called after a writeback attempt of an inode finishes and undoes
597 * wbc_attach_and_unlock_inode(). Can be called under any context.
598 *
599 * As concurrent write sharing of an inode is expected to be very rare and
600 * memcg only tracks page ownership on first-use basis severely confining
601 * the usefulness of such sharing, cgroup writeback tracks ownership
602 * per-inode. While the support for concurrent write sharing of an inode
603 * is deemed unnecessary, an inode being written to by different cgroups at
604 * different points in time is a lot more common, and, more importantly,
605 * charging only by first-use can too readily lead to grossly incorrect
606 * behaviors (single foreign page can lead to gigabytes of writeback to be
607 * incorrectly attributed).
608 *
609 * To resolve this issue, cgroup writeback detects the majority dirtier of
610 * an inode and transfers the ownership to it. To avoid unnnecessary
611 * oscillation, the detection mechanism keeps track of history and gives
612 * out the switch verdict only if the foreign usage pattern is stable over
613 * a certain amount of time and/or writeback attempts.
614 *
615 * On each writeback attempt, @wbc tries to detect the majority writer
616 * using Boyer-Moore majority vote algorithm. In addition to the byte
617 * count from the majority voting, it also counts the bytes written for the
618 * current wb and the last round's winner wb (max of last round's current
619 * wb, the winner from two rounds ago, and the last round's majority
620 * candidate). Keeping track of the historical winner helps the algorithm
621 * to semi-reliably detect the most active writer even when it's not the
622 * absolute majority.
623 *
624 * Once the winner of the round is determined, whether the winner is
625 * foreign or not and how much IO time the round consumed is recorded in
626 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
627 * over a certain threshold, the switch verdict is given.
628 */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631 struct bdi_writeback *wb = wbc->wb;
632 struct inode *inode = wbc->inode;
633 unsigned long avg_time, max_bytes, max_time;
634 u16 history;
635 int max_id;
636
637 if (!wb)
638 return;
639
640 history = inode->i_wb_frn_history;
641 avg_time = inode->i_wb_frn_avg_time;
642
643 /* pick the winner of this round */
644 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646 max_id = wbc->wb_id;
647 max_bytes = wbc->wb_bytes;
648 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649 max_id = wbc->wb_lcand_id;
650 max_bytes = wbc->wb_lcand_bytes;
651 } else {
652 max_id = wbc->wb_tcand_id;
653 max_bytes = wbc->wb_tcand_bytes;
654 }
655
656 /*
657 * Calculate the amount of IO time the winner consumed and fold it
658 * into the running average kept per inode. If the consumed IO
659 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660 * deciding whether to switch or not. This is to prevent one-off
661 * small dirtiers from skewing the verdict.
662 */
663 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664 wb->avg_write_bandwidth);
665 if (avg_time)
666 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668 else
669 avg_time = max_time; /* immediate catch up on first run */
670
671 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672 int slots;
673
674 /*
675 * The switch verdict is reached if foreign wb's consume
676 * more than a certain proportion of IO time in a
677 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
678 * history mask where each bit represents one sixteenth of
679 * the period. Determine the number of slots to shift into
680 * history from @max_time.
681 */
682 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684 history <<= slots;
685 if (wbc->wb_id != max_id)
686 history |= (1U << slots) - 1;
687
688 /*
689 * Switch if the current wb isn't the consistent winner.
690 * If there are multiple closely competing dirtiers, the
691 * inode may switch across them repeatedly over time, which
692 * is okay. The main goal is avoiding keeping an inode on
693 * the wrong wb for an extended period of time.
694 */
695 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696 inode_switch_wbs(inode, max_id);
697 }
698
699 /*
700 * Multiple instances of this function may race to update the
701 * following fields but we don't mind occassional inaccuracies.
702 */
703 inode->i_wb_frn_winner = max_id;
704 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705 inode->i_wb_frn_history = history;
706
707 wb_put(wbc->wb);
708 wbc->wb = NULL;
709 }
710
711 /**
712 * wbc_account_io - account IO issued during writeback
713 * @wbc: writeback_control of the writeback in progress
714 * @page: page being written out
715 * @bytes: number of bytes being written out
716 *
717 * @bytes from @page are about to written out during the writeback
718 * controlled by @wbc. Keep the book for foreign inode detection. See
719 * wbc_detach_inode().
720 */
721 void wbc_account_io(struct writeback_control *wbc, struct page *page,
722 size_t bytes)
723 {
724 int id;
725
726 /*
727 * pageout() path doesn't attach @wbc to the inode being written
728 * out. This is intentional as we don't want the function to block
729 * behind a slow cgroup. Ultimately, we want pageout() to kick off
730 * regular writeback instead of writing things out itself.
731 */
732 if (!wbc->wb)
733 return;
734
735 id = mem_cgroup_css_from_page(page)->id;
736
737 if (id == wbc->wb_id) {
738 wbc->wb_bytes += bytes;
739 return;
740 }
741
742 if (id == wbc->wb_lcand_id)
743 wbc->wb_lcand_bytes += bytes;
744
745 /* Boyer-Moore majority vote algorithm */
746 if (!wbc->wb_tcand_bytes)
747 wbc->wb_tcand_id = id;
748 if (id == wbc->wb_tcand_id)
749 wbc->wb_tcand_bytes += bytes;
750 else
751 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_io);
754
755 /**
756 * inode_congested - test whether an inode is congested
757 * @inode: inode to test for congestion (may be NULL)
758 * @cong_bits: mask of WB_[a]sync_congested bits to test
759 *
760 * Tests whether @inode is congested. @cong_bits is the mask of congestion
761 * bits to test and the return value is the mask of set bits.
762 *
763 * If cgroup writeback is enabled for @inode, the congestion state is
764 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765 * associated with @inode is congested; otherwise, the root wb's congestion
766 * state is used.
767 *
768 * @inode is allowed to be NULL as this function is often called on
769 * mapping->host which is NULL for the swapper space.
770 */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773 /*
774 * Once set, ->i_wb never becomes NULL while the inode is alive.
775 * Start transaction iff ->i_wb is visible.
776 */
777 if (inode && inode_to_wb_is_valid(inode)) {
778 struct bdi_writeback *wb;
779 struct wb_lock_cookie lock_cookie = {};
780 bool congested;
781
782 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783 congested = wb_congested(wb, cong_bits);
784 unlocked_inode_to_wb_end(inode, &lock_cookie);
785 return congested;
786 }
787
788 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791
792 /**
793 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794 * @wb: target bdi_writeback to split @nr_pages to
795 * @nr_pages: number of pages to write for the whole bdi
796 *
797 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798 * relation to the total write bandwidth of all wb's w/ dirty inodes on
799 * @wb->bdi.
800 */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803 unsigned long this_bw = wb->avg_write_bandwidth;
804 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806 if (nr_pages == LONG_MAX)
807 return LONG_MAX;
808
809 /*
810 * This may be called on clean wb's and proportional distribution
811 * may not make sense, just use the original @nr_pages in those
812 * cases. In general, we wanna err on the side of writing more.
813 */
814 if (!tot_bw || this_bw >= tot_bw)
815 return nr_pages;
816 else
817 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819
820 /**
821 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822 * @bdi: target backing_dev_info
823 * @base_work: wb_writeback_work to issue
824 * @skip_if_busy: skip wb's which already have writeback in progress
825 *
826 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
828 * distributed to the busy wbs according to each wb's proportion in the
829 * total active write bandwidth of @bdi.
830 */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832 struct wb_writeback_work *base_work,
833 bool skip_if_busy)
834 {
835 struct bdi_writeback *last_wb = NULL;
836 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837 struct bdi_writeback, bdi_node);
838
839 might_sleep();
840 restart:
841 rcu_read_lock();
842 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
844 struct wb_writeback_work fallback_work;
845 struct wb_writeback_work *work;
846 long nr_pages;
847
848 if (last_wb) {
849 wb_put(last_wb);
850 last_wb = NULL;
851 }
852
853 /* SYNC_ALL writes out I_DIRTY_TIME too */
854 if (!wb_has_dirty_io(wb) &&
855 (base_work->sync_mode == WB_SYNC_NONE ||
856 list_empty(&wb->b_dirty_time)))
857 continue;
858 if (skip_if_busy && writeback_in_progress(wb))
859 continue;
860
861 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864 if (work) {
865 *work = *base_work;
866 work->nr_pages = nr_pages;
867 work->auto_free = 1;
868 wb_queue_work(wb, work);
869 continue;
870 }
871
872 /* alloc failed, execute synchronously using on-stack fallback */
873 work = &fallback_work;
874 *work = *base_work;
875 work->nr_pages = nr_pages;
876 work->auto_free = 0;
877 work->done = &fallback_work_done;
878
879 wb_queue_work(wb, work);
880
881 /*
882 * Pin @wb so that it stays on @bdi->wb_list. This allows
883 * continuing iteration from @wb after dropping and
884 * regrabbing rcu read lock.
885 */
886 wb_get(wb);
887 last_wb = wb;
888
889 rcu_read_unlock();
890 wb_wait_for_completion(bdi, &fallback_work_done);
891 goto restart;
892 }
893 rcu_read_unlock();
894
895 if (last_wb)
896 wb_put(last_wb);
897 }
898
899 /**
900 * cgroup_writeback_umount - flush inode wb switches for umount
901 *
902 * This function is called when a super_block is about to be destroyed and
903 * flushes in-flight inode wb switches. An inode wb switch goes through
904 * RCU and then workqueue, so the two need to be flushed in order to ensure
905 * that all previously scheduled switches are finished. As wb switches are
906 * rare occurrences and synchronize_rcu() can take a while, perform
907 * flushing iff wb switches are in flight.
908 */
909 void cgroup_writeback_umount(void)
910 {
911 if (atomic_read(&isw_nr_in_flight)) {
912 /*
913 * Use rcu_barrier() to wait for all pending callbacks to
914 * ensure that all in-flight wb switches are in the workqueue.
915 */
916 rcu_barrier();
917 flush_workqueue(isw_wq);
918 }
919 }
920
921 static int __init cgroup_writeback_init(void)
922 {
923 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
924 if (!isw_wq)
925 return -ENOMEM;
926 return 0;
927 }
928 fs_initcall(cgroup_writeback_init);
929
930 #else /* CONFIG_CGROUP_WRITEBACK */
931
932 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
934
935 static struct bdi_writeback *
936 locked_inode_to_wb_and_lock_list(struct inode *inode)
937 __releases(&inode->i_lock)
938 __acquires(&wb->list_lock)
939 {
940 struct bdi_writeback *wb = inode_to_wb(inode);
941
942 spin_unlock(&inode->i_lock);
943 spin_lock(&wb->list_lock);
944 return wb;
945 }
946
947 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
948 __acquires(&wb->list_lock)
949 {
950 struct bdi_writeback *wb = inode_to_wb(inode);
951
952 spin_lock(&wb->list_lock);
953 return wb;
954 }
955
956 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
957 {
958 return nr_pages;
959 }
960
961 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
962 struct wb_writeback_work *base_work,
963 bool skip_if_busy)
964 {
965 might_sleep();
966
967 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
968 base_work->auto_free = 0;
969 wb_queue_work(&bdi->wb, base_work);
970 }
971 }
972
973 #endif /* CONFIG_CGROUP_WRITEBACK */
974
975 /*
976 * Add in the number of potentially dirty inodes, because each inode
977 * write can dirty pagecache in the underlying blockdev.
978 */
979 static unsigned long get_nr_dirty_pages(void)
980 {
981 return global_node_page_state(NR_FILE_DIRTY) +
982 global_node_page_state(NR_UNSTABLE_NFS) +
983 get_nr_dirty_inodes();
984 }
985
986 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
987 {
988 if (!wb_has_dirty_io(wb))
989 return;
990
991 /*
992 * All callers of this function want to start writeback of all
993 * dirty pages. Places like vmscan can call this at a very
994 * high frequency, causing pointless allocations of tons of
995 * work items and keeping the flusher threads busy retrieving
996 * that work. Ensure that we only allow one of them pending and
997 * inflight at the time.
998 */
999 if (test_bit(WB_start_all, &wb->state) ||
1000 test_and_set_bit(WB_start_all, &wb->state))
1001 return;
1002
1003 wb->start_all_reason = reason;
1004 wb_wakeup(wb);
1005 }
1006
1007 /**
1008 * wb_start_background_writeback - start background writeback
1009 * @wb: bdi_writback to write from
1010 *
1011 * Description:
1012 * This makes sure WB_SYNC_NONE background writeback happens. When
1013 * this function returns, it is only guaranteed that for given wb
1014 * some IO is happening if we are over background dirty threshold.
1015 * Caller need not hold sb s_umount semaphore.
1016 */
1017 void wb_start_background_writeback(struct bdi_writeback *wb)
1018 {
1019 /*
1020 * We just wake up the flusher thread. It will perform background
1021 * writeback as soon as there is no other work to do.
1022 */
1023 trace_writeback_wake_background(wb);
1024 wb_wakeup(wb);
1025 }
1026
1027 /*
1028 * Remove the inode from the writeback list it is on.
1029 */
1030 void inode_io_list_del(struct inode *inode)
1031 {
1032 struct bdi_writeback *wb;
1033
1034 wb = inode_to_wb_and_lock_list(inode);
1035 inode_io_list_del_locked(inode, wb);
1036 spin_unlock(&wb->list_lock);
1037 }
1038
1039 /*
1040 * mark an inode as under writeback on the sb
1041 */
1042 void sb_mark_inode_writeback(struct inode *inode)
1043 {
1044 struct super_block *sb = inode->i_sb;
1045 unsigned long flags;
1046
1047 if (list_empty(&inode->i_wb_list)) {
1048 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1049 if (list_empty(&inode->i_wb_list)) {
1050 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1051 trace_sb_mark_inode_writeback(inode);
1052 }
1053 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1054 }
1055 }
1056
1057 /*
1058 * clear an inode as under writeback on the sb
1059 */
1060 void sb_clear_inode_writeback(struct inode *inode)
1061 {
1062 struct super_block *sb = inode->i_sb;
1063 unsigned long flags;
1064
1065 if (!list_empty(&inode->i_wb_list)) {
1066 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1067 if (!list_empty(&inode->i_wb_list)) {
1068 list_del_init(&inode->i_wb_list);
1069 trace_sb_clear_inode_writeback(inode);
1070 }
1071 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072 }
1073 }
1074
1075 /*
1076 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1077 * furthest end of its superblock's dirty-inode list.
1078 *
1079 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1080 * already the most-recently-dirtied inode on the b_dirty list. If that is
1081 * the case then the inode must have been redirtied while it was being written
1082 * out and we don't reset its dirtied_when.
1083 */
1084 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1085 {
1086 if (!list_empty(&wb->b_dirty)) {
1087 struct inode *tail;
1088
1089 tail = wb_inode(wb->b_dirty.next);
1090 if (time_before(inode->dirtied_when, tail->dirtied_when))
1091 inode->dirtied_when = jiffies;
1092 }
1093 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1094 }
1095
1096 /*
1097 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1098 */
1099 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1100 {
1101 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1102 }
1103
1104 static void inode_sync_complete(struct inode *inode)
1105 {
1106 inode->i_state &= ~I_SYNC;
1107 /* If inode is clean an unused, put it into LRU now... */
1108 inode_add_lru(inode);
1109 /* Waiters must see I_SYNC cleared before being woken up */
1110 smp_mb();
1111 wake_up_bit(&inode->i_state, __I_SYNC);
1112 }
1113
1114 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1115 {
1116 bool ret = time_after(inode->dirtied_when, t);
1117 #ifndef CONFIG_64BIT
1118 /*
1119 * For inodes being constantly redirtied, dirtied_when can get stuck.
1120 * It _appears_ to be in the future, but is actually in distant past.
1121 * This test is necessary to prevent such wrapped-around relative times
1122 * from permanently stopping the whole bdi writeback.
1123 */
1124 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1125 #endif
1126 return ret;
1127 }
1128
1129 #define EXPIRE_DIRTY_ATIME 0x0001
1130
1131 /*
1132 * Move expired (dirtied before work->older_than_this) dirty inodes from
1133 * @delaying_queue to @dispatch_queue.
1134 */
1135 static int move_expired_inodes(struct list_head *delaying_queue,
1136 struct list_head *dispatch_queue,
1137 int flags,
1138 struct wb_writeback_work *work)
1139 {
1140 unsigned long *older_than_this = NULL;
1141 unsigned long expire_time;
1142 LIST_HEAD(tmp);
1143 struct list_head *pos, *node;
1144 struct super_block *sb = NULL;
1145 struct inode *inode;
1146 int do_sb_sort = 0;
1147 int moved = 0;
1148
1149 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1150 older_than_this = work->older_than_this;
1151 else if (!work->for_sync) {
1152 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1153 older_than_this = &expire_time;
1154 }
1155 while (!list_empty(delaying_queue)) {
1156 inode = wb_inode(delaying_queue->prev);
1157 if (older_than_this &&
1158 inode_dirtied_after(inode, *older_than_this))
1159 break;
1160 list_move(&inode->i_io_list, &tmp);
1161 moved++;
1162 if (flags & EXPIRE_DIRTY_ATIME)
1163 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1164 if (sb_is_blkdev_sb(inode->i_sb))
1165 continue;
1166 if (sb && sb != inode->i_sb)
1167 do_sb_sort = 1;
1168 sb = inode->i_sb;
1169 }
1170
1171 /* just one sb in list, splice to dispatch_queue and we're done */
1172 if (!do_sb_sort) {
1173 list_splice(&tmp, dispatch_queue);
1174 goto out;
1175 }
1176
1177 /* Move inodes from one superblock together */
1178 while (!list_empty(&tmp)) {
1179 sb = wb_inode(tmp.prev)->i_sb;
1180 list_for_each_prev_safe(pos, node, &tmp) {
1181 inode = wb_inode(pos);
1182 if (inode->i_sb == sb)
1183 list_move(&inode->i_io_list, dispatch_queue);
1184 }
1185 }
1186 out:
1187 return moved;
1188 }
1189
1190 /*
1191 * Queue all expired dirty inodes for io, eldest first.
1192 * Before
1193 * newly dirtied b_dirty b_io b_more_io
1194 * =============> gf edc BA
1195 * After
1196 * newly dirtied b_dirty b_io b_more_io
1197 * =============> g fBAedc
1198 * |
1199 * +--> dequeue for IO
1200 */
1201 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1202 {
1203 int moved;
1204
1205 assert_spin_locked(&wb->list_lock);
1206 list_splice_init(&wb->b_more_io, &wb->b_io);
1207 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1208 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1209 EXPIRE_DIRTY_ATIME, work);
1210 if (moved)
1211 wb_io_lists_populated(wb);
1212 trace_writeback_queue_io(wb, work, moved);
1213 }
1214
1215 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1216 {
1217 int ret;
1218
1219 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1220 trace_writeback_write_inode_start(inode, wbc);
1221 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1222 trace_writeback_write_inode(inode, wbc);
1223 return ret;
1224 }
1225 return 0;
1226 }
1227
1228 /*
1229 * Wait for writeback on an inode to complete. Called with i_lock held.
1230 * Caller must make sure inode cannot go away when we drop i_lock.
1231 */
1232 static void __inode_wait_for_writeback(struct inode *inode)
1233 __releases(inode->i_lock)
1234 __acquires(inode->i_lock)
1235 {
1236 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1237 wait_queue_head_t *wqh;
1238
1239 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1240 while (inode->i_state & I_SYNC) {
1241 spin_unlock(&inode->i_lock);
1242 __wait_on_bit(wqh, &wq, bit_wait,
1243 TASK_UNINTERRUPTIBLE);
1244 spin_lock(&inode->i_lock);
1245 }
1246 }
1247
1248 /*
1249 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1250 */
1251 void inode_wait_for_writeback(struct inode *inode)
1252 {
1253 spin_lock(&inode->i_lock);
1254 __inode_wait_for_writeback(inode);
1255 spin_unlock(&inode->i_lock);
1256 }
1257
1258 /*
1259 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1260 * held and drops it. It is aimed for callers not holding any inode reference
1261 * so once i_lock is dropped, inode can go away.
1262 */
1263 static void inode_sleep_on_writeback(struct inode *inode)
1264 __releases(inode->i_lock)
1265 {
1266 DEFINE_WAIT(wait);
1267 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1268 int sleep;
1269
1270 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1271 sleep = inode->i_state & I_SYNC;
1272 spin_unlock(&inode->i_lock);
1273 if (sleep)
1274 schedule();
1275 finish_wait(wqh, &wait);
1276 }
1277
1278 /*
1279 * Find proper writeback list for the inode depending on its current state and
1280 * possibly also change of its state while we were doing writeback. Here we
1281 * handle things such as livelock prevention or fairness of writeback among
1282 * inodes. This function can be called only by flusher thread - noone else
1283 * processes all inodes in writeback lists and requeueing inodes behind flusher
1284 * thread's back can have unexpected consequences.
1285 */
1286 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1287 struct writeback_control *wbc)
1288 {
1289 if (inode->i_state & I_FREEING)
1290 return;
1291
1292 /*
1293 * Sync livelock prevention. Each inode is tagged and synced in one
1294 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1295 * the dirty time to prevent enqueue and sync it again.
1296 */
1297 if ((inode->i_state & I_DIRTY) &&
1298 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1299 inode->dirtied_when = jiffies;
1300
1301 if (wbc->pages_skipped) {
1302 /*
1303 * writeback is not making progress due to locked
1304 * buffers. Skip this inode for now.
1305 */
1306 redirty_tail(inode, wb);
1307 return;
1308 }
1309
1310 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1311 /*
1312 * We didn't write back all the pages. nfs_writepages()
1313 * sometimes bales out without doing anything.
1314 */
1315 if (wbc->nr_to_write <= 0) {
1316 /* Slice used up. Queue for next turn. */
1317 requeue_io(inode, wb);
1318 } else {
1319 /*
1320 * Writeback blocked by something other than
1321 * congestion. Delay the inode for some time to
1322 * avoid spinning on the CPU (100% iowait)
1323 * retrying writeback of the dirty page/inode
1324 * that cannot be performed immediately.
1325 */
1326 redirty_tail(inode, wb);
1327 }
1328 } else if (inode->i_state & I_DIRTY) {
1329 /*
1330 * Filesystems can dirty the inode during writeback operations,
1331 * such as delayed allocation during submission or metadata
1332 * updates after data IO completion.
1333 */
1334 redirty_tail(inode, wb);
1335 } else if (inode->i_state & I_DIRTY_TIME) {
1336 inode->dirtied_when = jiffies;
1337 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1338 } else {
1339 /* The inode is clean. Remove from writeback lists. */
1340 inode_io_list_del_locked(inode, wb);
1341 }
1342 }
1343
1344 /*
1345 * Write out an inode and its dirty pages. Do not update the writeback list
1346 * linkage. That is left to the caller. The caller is also responsible for
1347 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1348 */
1349 static int
1350 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1351 {
1352 struct address_space *mapping = inode->i_mapping;
1353 long nr_to_write = wbc->nr_to_write;
1354 unsigned dirty;
1355 int ret;
1356
1357 WARN_ON(!(inode->i_state & I_SYNC));
1358
1359 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1360
1361 ret = do_writepages(mapping, wbc);
1362
1363 /*
1364 * Make sure to wait on the data before writing out the metadata.
1365 * This is important for filesystems that modify metadata on data
1366 * I/O completion. We don't do it for sync(2) writeback because it has a
1367 * separate, external IO completion path and ->sync_fs for guaranteeing
1368 * inode metadata is written back correctly.
1369 */
1370 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1371 int err = filemap_fdatawait(mapping);
1372 if (ret == 0)
1373 ret = err;
1374 }
1375
1376 /*
1377 * Some filesystems may redirty the inode during the writeback
1378 * due to delalloc, clear dirty metadata flags right before
1379 * write_inode()
1380 */
1381 spin_lock(&inode->i_lock);
1382
1383 dirty = inode->i_state & I_DIRTY;
1384 if (inode->i_state & I_DIRTY_TIME) {
1385 if ((dirty & I_DIRTY_INODE) ||
1386 wbc->sync_mode == WB_SYNC_ALL ||
1387 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1388 unlikely(time_after(jiffies,
1389 (inode->dirtied_time_when +
1390 dirtytime_expire_interval * HZ)))) {
1391 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1392 trace_writeback_lazytime(inode);
1393 }
1394 } else
1395 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1396 inode->i_state &= ~dirty;
1397
1398 /*
1399 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1400 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1401 * either they see the I_DIRTY bits cleared or we see the dirtied
1402 * inode.
1403 *
1404 * I_DIRTY_PAGES is always cleared together above even if @mapping
1405 * still has dirty pages. The flag is reinstated after smp_mb() if
1406 * necessary. This guarantees that either __mark_inode_dirty()
1407 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1408 */
1409 smp_mb();
1410
1411 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1412 inode->i_state |= I_DIRTY_PAGES;
1413
1414 spin_unlock(&inode->i_lock);
1415
1416 if (dirty & I_DIRTY_TIME)
1417 mark_inode_dirty_sync(inode);
1418 /* Don't write the inode if only I_DIRTY_PAGES was set */
1419 if (dirty & ~I_DIRTY_PAGES) {
1420 int err = write_inode(inode, wbc);
1421 if (ret == 0)
1422 ret = err;
1423 }
1424 trace_writeback_single_inode(inode, wbc, nr_to_write);
1425 return ret;
1426 }
1427
1428 /*
1429 * Write out an inode's dirty pages. Either the caller has an active reference
1430 * on the inode or the inode has I_WILL_FREE set.
1431 *
1432 * This function is designed to be called for writing back one inode which
1433 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1434 * and does more profound writeback list handling in writeback_sb_inodes().
1435 */
1436 static int writeback_single_inode(struct inode *inode,
1437 struct writeback_control *wbc)
1438 {
1439 struct bdi_writeback *wb;
1440 int ret = 0;
1441
1442 spin_lock(&inode->i_lock);
1443 if (!atomic_read(&inode->i_count))
1444 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1445 else
1446 WARN_ON(inode->i_state & I_WILL_FREE);
1447
1448 if (inode->i_state & I_SYNC) {
1449 if (wbc->sync_mode != WB_SYNC_ALL)
1450 goto out;
1451 /*
1452 * It's a data-integrity sync. We must wait. Since callers hold
1453 * inode reference or inode has I_WILL_FREE set, it cannot go
1454 * away under us.
1455 */
1456 __inode_wait_for_writeback(inode);
1457 }
1458 WARN_ON(inode->i_state & I_SYNC);
1459 /*
1460 * Skip inode if it is clean and we have no outstanding writeback in
1461 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1462 * function since flusher thread may be doing for example sync in
1463 * parallel and if we move the inode, it could get skipped. So here we
1464 * make sure inode is on some writeback list and leave it there unless
1465 * we have completely cleaned the inode.
1466 */
1467 if (!(inode->i_state & I_DIRTY_ALL) &&
1468 (wbc->sync_mode != WB_SYNC_ALL ||
1469 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1470 goto out;
1471 inode->i_state |= I_SYNC;
1472 wbc_attach_and_unlock_inode(wbc, inode);
1473
1474 ret = __writeback_single_inode(inode, wbc);
1475
1476 wbc_detach_inode(wbc);
1477
1478 wb = inode_to_wb_and_lock_list(inode);
1479 spin_lock(&inode->i_lock);
1480 /*
1481 * If inode is clean, remove it from writeback lists. Otherwise don't
1482 * touch it. See comment above for explanation.
1483 */
1484 if (!(inode->i_state & I_DIRTY_ALL))
1485 inode_io_list_del_locked(inode, wb);
1486 spin_unlock(&wb->list_lock);
1487 inode_sync_complete(inode);
1488 out:
1489 spin_unlock(&inode->i_lock);
1490 return ret;
1491 }
1492
1493 static long writeback_chunk_size(struct bdi_writeback *wb,
1494 struct wb_writeback_work *work)
1495 {
1496 long pages;
1497
1498 /*
1499 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1500 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1501 * here avoids calling into writeback_inodes_wb() more than once.
1502 *
1503 * The intended call sequence for WB_SYNC_ALL writeback is:
1504 *
1505 * wb_writeback()
1506 * writeback_sb_inodes() <== called only once
1507 * write_cache_pages() <== called once for each inode
1508 * (quickly) tag currently dirty pages
1509 * (maybe slowly) sync all tagged pages
1510 */
1511 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1512 pages = LONG_MAX;
1513 else {
1514 pages = min(wb->avg_write_bandwidth / 2,
1515 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1516 pages = min(pages, work->nr_pages);
1517 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1518 MIN_WRITEBACK_PAGES);
1519 }
1520
1521 return pages;
1522 }
1523
1524 /*
1525 * Write a portion of b_io inodes which belong to @sb.
1526 *
1527 * Return the number of pages and/or inodes written.
1528 *
1529 * NOTE! This is called with wb->list_lock held, and will
1530 * unlock and relock that for each inode it ends up doing
1531 * IO for.
1532 */
1533 static long writeback_sb_inodes(struct super_block *sb,
1534 struct bdi_writeback *wb,
1535 struct wb_writeback_work *work)
1536 {
1537 struct writeback_control wbc = {
1538 .sync_mode = work->sync_mode,
1539 .tagged_writepages = work->tagged_writepages,
1540 .for_kupdate = work->for_kupdate,
1541 .for_background = work->for_background,
1542 .for_sync = work->for_sync,
1543 .range_cyclic = work->range_cyclic,
1544 .range_start = 0,
1545 .range_end = LLONG_MAX,
1546 };
1547 unsigned long start_time = jiffies;
1548 long write_chunk;
1549 long wrote = 0; /* count both pages and inodes */
1550
1551 while (!list_empty(&wb->b_io)) {
1552 struct inode *inode = wb_inode(wb->b_io.prev);
1553 struct bdi_writeback *tmp_wb;
1554
1555 if (inode->i_sb != sb) {
1556 if (work->sb) {
1557 /*
1558 * We only want to write back data for this
1559 * superblock, move all inodes not belonging
1560 * to it back onto the dirty list.
1561 */
1562 redirty_tail(inode, wb);
1563 continue;
1564 }
1565
1566 /*
1567 * The inode belongs to a different superblock.
1568 * Bounce back to the caller to unpin this and
1569 * pin the next superblock.
1570 */
1571 break;
1572 }
1573
1574 /*
1575 * Don't bother with new inodes or inodes being freed, first
1576 * kind does not need periodic writeout yet, and for the latter
1577 * kind writeout is handled by the freer.
1578 */
1579 spin_lock(&inode->i_lock);
1580 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1581 spin_unlock(&inode->i_lock);
1582 redirty_tail(inode, wb);
1583 continue;
1584 }
1585 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1586 /*
1587 * If this inode is locked for writeback and we are not
1588 * doing writeback-for-data-integrity, move it to
1589 * b_more_io so that writeback can proceed with the
1590 * other inodes on s_io.
1591 *
1592 * We'll have another go at writing back this inode
1593 * when we completed a full scan of b_io.
1594 */
1595 spin_unlock(&inode->i_lock);
1596 requeue_io(inode, wb);
1597 trace_writeback_sb_inodes_requeue(inode);
1598 continue;
1599 }
1600 spin_unlock(&wb->list_lock);
1601
1602 /*
1603 * We already requeued the inode if it had I_SYNC set and we
1604 * are doing WB_SYNC_NONE writeback. So this catches only the
1605 * WB_SYNC_ALL case.
1606 */
1607 if (inode->i_state & I_SYNC) {
1608 /* Wait for I_SYNC. This function drops i_lock... */
1609 inode_sleep_on_writeback(inode);
1610 /* Inode may be gone, start again */
1611 spin_lock(&wb->list_lock);
1612 continue;
1613 }
1614 inode->i_state |= I_SYNC;
1615 wbc_attach_and_unlock_inode(&wbc, inode);
1616
1617 write_chunk = writeback_chunk_size(wb, work);
1618 wbc.nr_to_write = write_chunk;
1619 wbc.pages_skipped = 0;
1620
1621 /*
1622 * We use I_SYNC to pin the inode in memory. While it is set
1623 * evict_inode() will wait so the inode cannot be freed.
1624 */
1625 __writeback_single_inode(inode, &wbc);
1626
1627 wbc_detach_inode(&wbc);
1628 work->nr_pages -= write_chunk - wbc.nr_to_write;
1629 wrote += write_chunk - wbc.nr_to_write;
1630
1631 if (need_resched()) {
1632 /*
1633 * We're trying to balance between building up a nice
1634 * long list of IOs to improve our merge rate, and
1635 * getting those IOs out quickly for anyone throttling
1636 * in balance_dirty_pages(). cond_resched() doesn't
1637 * unplug, so get our IOs out the door before we
1638 * give up the CPU.
1639 */
1640 blk_flush_plug(current);
1641 cond_resched();
1642 }
1643
1644 /*
1645 * Requeue @inode if still dirty. Be careful as @inode may
1646 * have been switched to another wb in the meantime.
1647 */
1648 tmp_wb = inode_to_wb_and_lock_list(inode);
1649 spin_lock(&inode->i_lock);
1650 if (!(inode->i_state & I_DIRTY_ALL))
1651 wrote++;
1652 requeue_inode(inode, tmp_wb, &wbc);
1653 inode_sync_complete(inode);
1654 spin_unlock(&inode->i_lock);
1655
1656 if (unlikely(tmp_wb != wb)) {
1657 spin_unlock(&tmp_wb->list_lock);
1658 spin_lock(&wb->list_lock);
1659 }
1660
1661 /*
1662 * bail out to wb_writeback() often enough to check
1663 * background threshold and other termination conditions.
1664 */
1665 if (wrote) {
1666 if (time_is_before_jiffies(start_time + HZ / 10UL))
1667 break;
1668 if (work->nr_pages <= 0)
1669 break;
1670 }
1671 }
1672 return wrote;
1673 }
1674
1675 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1676 struct wb_writeback_work *work)
1677 {
1678 unsigned long start_time = jiffies;
1679 long wrote = 0;
1680
1681 while (!list_empty(&wb->b_io)) {
1682 struct inode *inode = wb_inode(wb->b_io.prev);
1683 struct super_block *sb = inode->i_sb;
1684
1685 if (!trylock_super(sb)) {
1686 /*
1687 * trylock_super() may fail consistently due to
1688 * s_umount being grabbed by someone else. Don't use
1689 * requeue_io() to avoid busy retrying the inode/sb.
1690 */
1691 redirty_tail(inode, wb);
1692 continue;
1693 }
1694 wrote += writeback_sb_inodes(sb, wb, work);
1695 up_read(&sb->s_umount);
1696
1697 /* refer to the same tests at the end of writeback_sb_inodes */
1698 if (wrote) {
1699 if (time_is_before_jiffies(start_time + HZ / 10UL))
1700 break;
1701 if (work->nr_pages <= 0)
1702 break;
1703 }
1704 }
1705 /* Leave any unwritten inodes on b_io */
1706 return wrote;
1707 }
1708
1709 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1710 enum wb_reason reason)
1711 {
1712 struct wb_writeback_work work = {
1713 .nr_pages = nr_pages,
1714 .sync_mode = WB_SYNC_NONE,
1715 .range_cyclic = 1,
1716 .reason = reason,
1717 };
1718 struct blk_plug plug;
1719
1720 blk_start_plug(&plug);
1721 spin_lock(&wb->list_lock);
1722 if (list_empty(&wb->b_io))
1723 queue_io(wb, &work);
1724 __writeback_inodes_wb(wb, &work);
1725 spin_unlock(&wb->list_lock);
1726 blk_finish_plug(&plug);
1727
1728 return nr_pages - work.nr_pages;
1729 }
1730
1731 /*
1732 * Explicit flushing or periodic writeback of "old" data.
1733 *
1734 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1735 * dirtying-time in the inode's address_space. So this periodic writeback code
1736 * just walks the superblock inode list, writing back any inodes which are
1737 * older than a specific point in time.
1738 *
1739 * Try to run once per dirty_writeback_interval. But if a writeback event
1740 * takes longer than a dirty_writeback_interval interval, then leave a
1741 * one-second gap.
1742 *
1743 * older_than_this takes precedence over nr_to_write. So we'll only write back
1744 * all dirty pages if they are all attached to "old" mappings.
1745 */
1746 static long wb_writeback(struct bdi_writeback *wb,
1747 struct wb_writeback_work *work)
1748 {
1749 unsigned long wb_start = jiffies;
1750 long nr_pages = work->nr_pages;
1751 unsigned long oldest_jif;
1752 struct inode *inode;
1753 long progress;
1754 struct blk_plug plug;
1755
1756 oldest_jif = jiffies;
1757 work->older_than_this = &oldest_jif;
1758
1759 blk_start_plug(&plug);
1760 spin_lock(&wb->list_lock);
1761 for (;;) {
1762 /*
1763 * Stop writeback when nr_pages has been consumed
1764 */
1765 if (work->nr_pages <= 0)
1766 break;
1767
1768 /*
1769 * Background writeout and kupdate-style writeback may
1770 * run forever. Stop them if there is other work to do
1771 * so that e.g. sync can proceed. They'll be restarted
1772 * after the other works are all done.
1773 */
1774 if ((work->for_background || work->for_kupdate) &&
1775 !list_empty(&wb->work_list))
1776 break;
1777
1778 /*
1779 * For background writeout, stop when we are below the
1780 * background dirty threshold
1781 */
1782 if (work->for_background && !wb_over_bg_thresh(wb))
1783 break;
1784
1785 /*
1786 * Kupdate and background works are special and we want to
1787 * include all inodes that need writing. Livelock avoidance is
1788 * handled by these works yielding to any other work so we are
1789 * safe.
1790 */
1791 if (work->for_kupdate) {
1792 oldest_jif = jiffies -
1793 msecs_to_jiffies(dirty_expire_interval * 10);
1794 } else if (work->for_background)
1795 oldest_jif = jiffies;
1796
1797 trace_writeback_start(wb, work);
1798 if (list_empty(&wb->b_io))
1799 queue_io(wb, work);
1800 if (work->sb)
1801 progress = writeback_sb_inodes(work->sb, wb, work);
1802 else
1803 progress = __writeback_inodes_wb(wb, work);
1804 trace_writeback_written(wb, work);
1805
1806 wb_update_bandwidth(wb, wb_start);
1807
1808 /*
1809 * Did we write something? Try for more
1810 *
1811 * Dirty inodes are moved to b_io for writeback in batches.
1812 * The completion of the current batch does not necessarily
1813 * mean the overall work is done. So we keep looping as long
1814 * as made some progress on cleaning pages or inodes.
1815 */
1816 if (progress)
1817 continue;
1818 /*
1819 * No more inodes for IO, bail
1820 */
1821 if (list_empty(&wb->b_more_io))
1822 break;
1823 /*
1824 * Nothing written. Wait for some inode to
1825 * become available for writeback. Otherwise
1826 * we'll just busyloop.
1827 */
1828 trace_writeback_wait(wb, work);
1829 inode = wb_inode(wb->b_more_io.prev);
1830 spin_lock(&inode->i_lock);
1831 spin_unlock(&wb->list_lock);
1832 /* This function drops i_lock... */
1833 inode_sleep_on_writeback(inode);
1834 spin_lock(&wb->list_lock);
1835 }
1836 spin_unlock(&wb->list_lock);
1837 blk_finish_plug(&plug);
1838
1839 return nr_pages - work->nr_pages;
1840 }
1841
1842 /*
1843 * Return the next wb_writeback_work struct that hasn't been processed yet.
1844 */
1845 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1846 {
1847 struct wb_writeback_work *work = NULL;
1848
1849 spin_lock_bh(&wb->work_lock);
1850 if (!list_empty(&wb->work_list)) {
1851 work = list_entry(wb->work_list.next,
1852 struct wb_writeback_work, list);
1853 list_del_init(&work->list);
1854 }
1855 spin_unlock_bh(&wb->work_lock);
1856 return work;
1857 }
1858
1859 static long wb_check_background_flush(struct bdi_writeback *wb)
1860 {
1861 if (wb_over_bg_thresh(wb)) {
1862
1863 struct wb_writeback_work work = {
1864 .nr_pages = LONG_MAX,
1865 .sync_mode = WB_SYNC_NONE,
1866 .for_background = 1,
1867 .range_cyclic = 1,
1868 .reason = WB_REASON_BACKGROUND,
1869 };
1870
1871 return wb_writeback(wb, &work);
1872 }
1873
1874 return 0;
1875 }
1876
1877 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1878 {
1879 unsigned long expired;
1880 long nr_pages;
1881
1882 /*
1883 * When set to zero, disable periodic writeback
1884 */
1885 if (!dirty_writeback_interval)
1886 return 0;
1887
1888 expired = wb->last_old_flush +
1889 msecs_to_jiffies(dirty_writeback_interval * 10);
1890 if (time_before(jiffies, expired))
1891 return 0;
1892
1893 wb->last_old_flush = jiffies;
1894 nr_pages = get_nr_dirty_pages();
1895
1896 if (nr_pages) {
1897 struct wb_writeback_work work = {
1898 .nr_pages = nr_pages,
1899 .sync_mode = WB_SYNC_NONE,
1900 .for_kupdate = 1,
1901 .range_cyclic = 1,
1902 .reason = WB_REASON_PERIODIC,
1903 };
1904
1905 return wb_writeback(wb, &work);
1906 }
1907
1908 return 0;
1909 }
1910
1911 static long wb_check_start_all(struct bdi_writeback *wb)
1912 {
1913 long nr_pages;
1914
1915 if (!test_bit(WB_start_all, &wb->state))
1916 return 0;
1917
1918 nr_pages = get_nr_dirty_pages();
1919 if (nr_pages) {
1920 struct wb_writeback_work work = {
1921 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1922 .sync_mode = WB_SYNC_NONE,
1923 .range_cyclic = 1,
1924 .reason = wb->start_all_reason,
1925 };
1926
1927 nr_pages = wb_writeback(wb, &work);
1928 }
1929
1930 clear_bit(WB_start_all, &wb->state);
1931 return nr_pages;
1932 }
1933
1934
1935 /*
1936 * Retrieve work items and do the writeback they describe
1937 */
1938 static long wb_do_writeback(struct bdi_writeback *wb)
1939 {
1940 struct wb_writeback_work *work;
1941 long wrote = 0;
1942
1943 set_bit(WB_writeback_running, &wb->state);
1944 while ((work = get_next_work_item(wb)) != NULL) {
1945 trace_writeback_exec(wb, work);
1946 wrote += wb_writeback(wb, work);
1947 finish_writeback_work(wb, work);
1948 }
1949
1950 /*
1951 * Check for a flush-everything request
1952 */
1953 wrote += wb_check_start_all(wb);
1954
1955 /*
1956 * Check for periodic writeback, kupdated() style
1957 */
1958 wrote += wb_check_old_data_flush(wb);
1959 wrote += wb_check_background_flush(wb);
1960 clear_bit(WB_writeback_running, &wb->state);
1961
1962 return wrote;
1963 }
1964
1965 /*
1966 * Handle writeback of dirty data for the device backed by this bdi. Also
1967 * reschedules periodically and does kupdated style flushing.
1968 */
1969 void wb_workfn(struct work_struct *work)
1970 {
1971 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1972 struct bdi_writeback, dwork);
1973 long pages_written;
1974
1975 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1976 current->flags |= PF_SWAPWRITE;
1977
1978 if (likely(!current_is_workqueue_rescuer() ||
1979 !test_bit(WB_registered, &wb->state))) {
1980 /*
1981 * The normal path. Keep writing back @wb until its
1982 * work_list is empty. Note that this path is also taken
1983 * if @wb is shutting down even when we're running off the
1984 * rescuer as work_list needs to be drained.
1985 */
1986 do {
1987 pages_written = wb_do_writeback(wb);
1988 trace_writeback_pages_written(pages_written);
1989 } while (!list_empty(&wb->work_list));
1990 } else {
1991 /*
1992 * bdi_wq can't get enough workers and we're running off
1993 * the emergency worker. Don't hog it. Hopefully, 1024 is
1994 * enough for efficient IO.
1995 */
1996 pages_written = writeback_inodes_wb(wb, 1024,
1997 WB_REASON_FORKER_THREAD);
1998 trace_writeback_pages_written(pages_written);
1999 }
2000
2001 if (!list_empty(&wb->work_list))
2002 wb_wakeup(wb);
2003 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2004 wb_wakeup_delayed(wb);
2005
2006 current->flags &= ~PF_SWAPWRITE;
2007 }
2008
2009 /*
2010 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2011 * write back the whole world.
2012 */
2013 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2014 enum wb_reason reason)
2015 {
2016 struct bdi_writeback *wb;
2017
2018 if (!bdi_has_dirty_io(bdi))
2019 return;
2020
2021 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2022 wb_start_writeback(wb, reason);
2023 }
2024
2025 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2026 enum wb_reason reason)
2027 {
2028 rcu_read_lock();
2029 __wakeup_flusher_threads_bdi(bdi, reason);
2030 rcu_read_unlock();
2031 }
2032
2033 /*
2034 * Wakeup the flusher threads to start writeback of all currently dirty pages
2035 */
2036 void wakeup_flusher_threads(enum wb_reason reason)
2037 {
2038 struct backing_dev_info *bdi;
2039
2040 /*
2041 * If we are expecting writeback progress we must submit plugged IO.
2042 */
2043 if (blk_needs_flush_plug(current))
2044 blk_schedule_flush_plug(current);
2045
2046 rcu_read_lock();
2047 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2048 __wakeup_flusher_threads_bdi(bdi, reason);
2049 rcu_read_unlock();
2050 }
2051
2052 /*
2053 * Wake up bdi's periodically to make sure dirtytime inodes gets
2054 * written back periodically. We deliberately do *not* check the
2055 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2056 * kernel to be constantly waking up once there are any dirtytime
2057 * inodes on the system. So instead we define a separate delayed work
2058 * function which gets called much more rarely. (By default, only
2059 * once every 12 hours.)
2060 *
2061 * If there is any other write activity going on in the file system,
2062 * this function won't be necessary. But if the only thing that has
2063 * happened on the file system is a dirtytime inode caused by an atime
2064 * update, we need this infrastructure below to make sure that inode
2065 * eventually gets pushed out to disk.
2066 */
2067 static void wakeup_dirtytime_writeback(struct work_struct *w);
2068 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2069
2070 static void wakeup_dirtytime_writeback(struct work_struct *w)
2071 {
2072 struct backing_dev_info *bdi;
2073
2074 rcu_read_lock();
2075 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2076 struct bdi_writeback *wb;
2077
2078 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2079 if (!list_empty(&wb->b_dirty_time))
2080 wb_wakeup(wb);
2081 }
2082 rcu_read_unlock();
2083 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2084 }
2085
2086 static int __init start_dirtytime_writeback(void)
2087 {
2088 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2089 return 0;
2090 }
2091 __initcall(start_dirtytime_writeback);
2092
2093 int dirtytime_interval_handler(struct ctl_table *table, int write,
2094 void __user *buffer, size_t *lenp, loff_t *ppos)
2095 {
2096 int ret;
2097
2098 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2099 if (ret == 0 && write)
2100 mod_delayed_work(system_wq, &dirtytime_work, 0);
2101 return ret;
2102 }
2103
2104 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2105 {
2106 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2107 struct dentry *dentry;
2108 const char *name = "?";
2109
2110 dentry = d_find_alias(inode);
2111 if (dentry) {
2112 spin_lock(&dentry->d_lock);
2113 name = (const char *) dentry->d_name.name;
2114 }
2115 printk(KERN_DEBUG
2116 "%s(%d): dirtied inode %lu (%s) on %s\n",
2117 current->comm, task_pid_nr(current), inode->i_ino,
2118 name, inode->i_sb->s_id);
2119 if (dentry) {
2120 spin_unlock(&dentry->d_lock);
2121 dput(dentry);
2122 }
2123 }
2124 }
2125
2126 /**
2127 * __mark_inode_dirty - internal function
2128 *
2129 * @inode: inode to mark
2130 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2131 *
2132 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2133 * mark_inode_dirty_sync.
2134 *
2135 * Put the inode on the super block's dirty list.
2136 *
2137 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2138 * dirty list only if it is hashed or if it refers to a blockdev.
2139 * If it was not hashed, it will never be added to the dirty list
2140 * even if it is later hashed, as it will have been marked dirty already.
2141 *
2142 * In short, make sure you hash any inodes _before_ you start marking
2143 * them dirty.
2144 *
2145 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2146 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2147 * the kernel-internal blockdev inode represents the dirtying time of the
2148 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2149 * page->mapping->host, so the page-dirtying time is recorded in the internal
2150 * blockdev inode.
2151 */
2152 void __mark_inode_dirty(struct inode *inode, int flags)
2153 {
2154 struct super_block *sb = inode->i_sb;
2155 int dirtytime;
2156
2157 trace_writeback_mark_inode_dirty(inode, flags);
2158
2159 /*
2160 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2161 * dirty the inode itself
2162 */
2163 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2164 trace_writeback_dirty_inode_start(inode, flags);
2165
2166 if (sb->s_op->dirty_inode)
2167 sb->s_op->dirty_inode(inode, flags);
2168
2169 trace_writeback_dirty_inode(inode, flags);
2170 }
2171 if (flags & I_DIRTY_INODE)
2172 flags &= ~I_DIRTY_TIME;
2173 dirtytime = flags & I_DIRTY_TIME;
2174
2175 /*
2176 * Paired with smp_mb() in __writeback_single_inode() for the
2177 * following lockless i_state test. See there for details.
2178 */
2179 smp_mb();
2180
2181 if (((inode->i_state & flags) == flags) ||
2182 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2183 return;
2184
2185 if (unlikely(block_dump))
2186 block_dump___mark_inode_dirty(inode);
2187
2188 spin_lock(&inode->i_lock);
2189 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2190 goto out_unlock_inode;
2191 if ((inode->i_state & flags) != flags) {
2192 const int was_dirty = inode->i_state & I_DIRTY;
2193
2194 inode_attach_wb(inode, NULL);
2195
2196 if (flags & I_DIRTY_INODE)
2197 inode->i_state &= ~I_DIRTY_TIME;
2198 inode->i_state |= flags;
2199
2200 /*
2201 * If the inode is being synced, just update its dirty state.
2202 * The unlocker will place the inode on the appropriate
2203 * superblock list, based upon its state.
2204 */
2205 if (inode->i_state & I_SYNC)
2206 goto out_unlock_inode;
2207
2208 /*
2209 * Only add valid (hashed) inodes to the superblock's
2210 * dirty list. Add blockdev inodes as well.
2211 */
2212 if (!S_ISBLK(inode->i_mode)) {
2213 if (inode_unhashed(inode))
2214 goto out_unlock_inode;
2215 }
2216 if (inode->i_state & I_FREEING)
2217 goto out_unlock_inode;
2218
2219 /*
2220 * If the inode was already on b_dirty/b_io/b_more_io, don't
2221 * reposition it (that would break b_dirty time-ordering).
2222 */
2223 if (!was_dirty) {
2224 struct bdi_writeback *wb;
2225 struct list_head *dirty_list;
2226 bool wakeup_bdi = false;
2227
2228 wb = locked_inode_to_wb_and_lock_list(inode);
2229
2230 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2231 !test_bit(WB_registered, &wb->state),
2232 "bdi-%s not registered\n", wb->bdi->name);
2233
2234 inode->dirtied_when = jiffies;
2235 if (dirtytime)
2236 inode->dirtied_time_when = jiffies;
2237
2238 if (inode->i_state & I_DIRTY)
2239 dirty_list = &wb->b_dirty;
2240 else
2241 dirty_list = &wb->b_dirty_time;
2242
2243 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2244 dirty_list);
2245
2246 spin_unlock(&wb->list_lock);
2247 trace_writeback_dirty_inode_enqueue(inode);
2248
2249 /*
2250 * If this is the first dirty inode for this bdi,
2251 * we have to wake-up the corresponding bdi thread
2252 * to make sure background write-back happens
2253 * later.
2254 */
2255 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2256 wb_wakeup_delayed(wb);
2257 return;
2258 }
2259 }
2260 out_unlock_inode:
2261 spin_unlock(&inode->i_lock);
2262 }
2263 EXPORT_SYMBOL(__mark_inode_dirty);
2264
2265 /*
2266 * The @s_sync_lock is used to serialise concurrent sync operations
2267 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2268 * Concurrent callers will block on the s_sync_lock rather than doing contending
2269 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2270 * has been issued up to the time this function is enter is guaranteed to be
2271 * completed by the time we have gained the lock and waited for all IO that is
2272 * in progress regardless of the order callers are granted the lock.
2273 */
2274 static void wait_sb_inodes(struct super_block *sb)
2275 {
2276 LIST_HEAD(sync_list);
2277
2278 /*
2279 * We need to be protected against the filesystem going from
2280 * r/o to r/w or vice versa.
2281 */
2282 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2283
2284 mutex_lock(&sb->s_sync_lock);
2285
2286 /*
2287 * Splice the writeback list onto a temporary list to avoid waiting on
2288 * inodes that have started writeback after this point.
2289 *
2290 * Use rcu_read_lock() to keep the inodes around until we have a
2291 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2292 * the local list because inodes can be dropped from either by writeback
2293 * completion.
2294 */
2295 rcu_read_lock();
2296 spin_lock_irq(&sb->s_inode_wblist_lock);
2297 list_splice_init(&sb->s_inodes_wb, &sync_list);
2298
2299 /*
2300 * Data integrity sync. Must wait for all pages under writeback, because
2301 * there may have been pages dirtied before our sync call, but which had
2302 * writeout started before we write it out. In which case, the inode
2303 * may not be on the dirty list, but we still have to wait for that
2304 * writeout.
2305 */
2306 while (!list_empty(&sync_list)) {
2307 struct inode *inode = list_first_entry(&sync_list, struct inode,
2308 i_wb_list);
2309 struct address_space *mapping = inode->i_mapping;
2310
2311 /*
2312 * Move each inode back to the wb list before we drop the lock
2313 * to preserve consistency between i_wb_list and the mapping
2314 * writeback tag. Writeback completion is responsible to remove
2315 * the inode from either list once the writeback tag is cleared.
2316 */
2317 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2318
2319 /*
2320 * The mapping can appear untagged while still on-list since we
2321 * do not have the mapping lock. Skip it here, wb completion
2322 * will remove it.
2323 */
2324 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2325 continue;
2326
2327 spin_unlock_irq(&sb->s_inode_wblist_lock);
2328
2329 spin_lock(&inode->i_lock);
2330 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2331 spin_unlock(&inode->i_lock);
2332
2333 spin_lock_irq(&sb->s_inode_wblist_lock);
2334 continue;
2335 }
2336 __iget(inode);
2337 spin_unlock(&inode->i_lock);
2338 rcu_read_unlock();
2339
2340 /*
2341 * We keep the error status of individual mapping so that
2342 * applications can catch the writeback error using fsync(2).
2343 * See filemap_fdatawait_keep_errors() for details.
2344 */
2345 filemap_fdatawait_keep_errors(mapping);
2346
2347 cond_resched();
2348
2349 iput(inode);
2350
2351 rcu_read_lock();
2352 spin_lock_irq(&sb->s_inode_wblist_lock);
2353 }
2354 spin_unlock_irq(&sb->s_inode_wblist_lock);
2355 rcu_read_unlock();
2356 mutex_unlock(&sb->s_sync_lock);
2357 }
2358
2359 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2360 enum wb_reason reason, bool skip_if_busy)
2361 {
2362 DEFINE_WB_COMPLETION_ONSTACK(done);
2363 struct wb_writeback_work work = {
2364 .sb = sb,
2365 .sync_mode = WB_SYNC_NONE,
2366 .tagged_writepages = 1,
2367 .done = &done,
2368 .nr_pages = nr,
2369 .reason = reason,
2370 };
2371 struct backing_dev_info *bdi = sb->s_bdi;
2372
2373 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2374 return;
2375 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2376
2377 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2378 wb_wait_for_completion(bdi, &done);
2379 }
2380
2381 /**
2382 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2383 * @sb: the superblock
2384 * @nr: the number of pages to write
2385 * @reason: reason why some writeback work initiated
2386 *
2387 * Start writeback on some inodes on this super_block. No guarantees are made
2388 * on how many (if any) will be written, and this function does not wait
2389 * for IO completion of submitted IO.
2390 */
2391 void writeback_inodes_sb_nr(struct super_block *sb,
2392 unsigned long nr,
2393 enum wb_reason reason)
2394 {
2395 __writeback_inodes_sb_nr(sb, nr, reason, false);
2396 }
2397 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2398
2399 /**
2400 * writeback_inodes_sb - writeback dirty inodes from given super_block
2401 * @sb: the superblock
2402 * @reason: reason why some writeback work was initiated
2403 *
2404 * Start writeback on some inodes on this super_block. No guarantees are made
2405 * on how many (if any) will be written, and this function does not wait
2406 * for IO completion of submitted IO.
2407 */
2408 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2409 {
2410 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2411 }
2412 EXPORT_SYMBOL(writeback_inodes_sb);
2413
2414 /**
2415 * try_to_writeback_inodes_sb - try to start writeback if none underway
2416 * @sb: the superblock
2417 * @reason: reason why some writeback work was initiated
2418 *
2419 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2420 */
2421 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2422 {
2423 if (!down_read_trylock(&sb->s_umount))
2424 return;
2425
2426 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2427 up_read(&sb->s_umount);
2428 }
2429 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2430
2431 /**
2432 * sync_inodes_sb - sync sb inode pages
2433 * @sb: the superblock
2434 *
2435 * This function writes and waits on any dirty inode belonging to this
2436 * super_block.
2437 */
2438 void sync_inodes_sb(struct super_block *sb)
2439 {
2440 DEFINE_WB_COMPLETION_ONSTACK(done);
2441 struct wb_writeback_work work = {
2442 .sb = sb,
2443 .sync_mode = WB_SYNC_ALL,
2444 .nr_pages = LONG_MAX,
2445 .range_cyclic = 0,
2446 .done = &done,
2447 .reason = WB_REASON_SYNC,
2448 .for_sync = 1,
2449 };
2450 struct backing_dev_info *bdi = sb->s_bdi;
2451
2452 /*
2453 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2454 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2455 * bdi_has_dirty() need to be written out too.
2456 */
2457 if (bdi == &noop_backing_dev_info)
2458 return;
2459 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2460
2461 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2462 bdi_down_write_wb_switch_rwsem(bdi);
2463 bdi_split_work_to_wbs(bdi, &work, false);
2464 wb_wait_for_completion(bdi, &done);
2465 bdi_up_write_wb_switch_rwsem(bdi);
2466
2467 wait_sb_inodes(sb);
2468 }
2469 EXPORT_SYMBOL(sync_inodes_sb);
2470
2471 /**
2472 * write_inode_now - write an inode to disk
2473 * @inode: inode to write to disk
2474 * @sync: whether the write should be synchronous or not
2475 *
2476 * This function commits an inode to disk immediately if it is dirty. This is
2477 * primarily needed by knfsd.
2478 *
2479 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2480 */
2481 int write_inode_now(struct inode *inode, int sync)
2482 {
2483 struct writeback_control wbc = {
2484 .nr_to_write = LONG_MAX,
2485 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2486 .range_start = 0,
2487 .range_end = LLONG_MAX,
2488 };
2489
2490 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2491 wbc.nr_to_write = 0;
2492
2493 might_sleep();
2494 return writeback_single_inode(inode, &wbc);
2495 }
2496 EXPORT_SYMBOL(write_inode_now);
2497
2498 /**
2499 * sync_inode - write an inode and its pages to disk.
2500 * @inode: the inode to sync
2501 * @wbc: controls the writeback mode
2502 *
2503 * sync_inode() will write an inode and its pages to disk. It will also
2504 * correctly update the inode on its superblock's dirty inode lists and will
2505 * update inode->i_state.
2506 *
2507 * The caller must have a ref on the inode.
2508 */
2509 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2510 {
2511 return writeback_single_inode(inode, wbc);
2512 }
2513 EXPORT_SYMBOL(sync_inode);
2514
2515 /**
2516 * sync_inode_metadata - write an inode to disk
2517 * @inode: the inode to sync
2518 * @wait: wait for I/O to complete.
2519 *
2520 * Write an inode to disk and adjust its dirty state after completion.
2521 *
2522 * Note: only writes the actual inode, no associated data or other metadata.
2523 */
2524 int sync_inode_metadata(struct inode *inode, int wait)
2525 {
2526 struct writeback_control wbc = {
2527 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2528 .nr_to_write = 0, /* metadata-only */
2529 };
2530
2531 return sync_inode(inode, &wbc);
2532 }
2533 EXPORT_SYMBOL(sync_inode_metadata);