]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/fs-writeback.c
NFSv4.1: Fix bug only first CB_NOTIFY_LOCK is handled
[thirdparty/kernel/stable.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
349 struct backing_dev_info *bdi = inode_to_bdi(inode);
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
352 struct bdi_writeback *new_wb = isw->new_wb;
353 XA_STATE(xas, &mapping->i_pages, 0);
354 struct page *page;
355 bool switched = false;
356
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against the i_pages lock.
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
372 */
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
380 spin_lock(&inode->i_lock);
381 xa_lock_irq(&mapping->i_pages);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
385 * the inode and we shouldn't modify ->i_io_list.
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under writeback.
394 */
395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (PageDirty(page)) {
397 dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 }
400 }
401
402 xas_set(&xas, 0);
403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 WARN_ON_ONCE(!PageWriteback(page));
405 dec_wb_stat(old_wb, WB_WRITEBACK);
406 inc_wb_stat(new_wb, WB_WRITEBACK);
407 }
408
409 wb_get(new_wb);
410
411 /*
412 * Transfer to @new_wb's IO list if necessary. The specific list
413 * @inode was on is ignored and the inode is put on ->b_dirty which
414 * is always correct including from ->b_dirty_time. The transfer
415 * preserves @inode->dirtied_when ordering.
416 */
417 if (!list_empty(&inode->i_io_list)) {
418 struct inode *pos;
419
420 inode_io_list_del_locked(inode, old_wb);
421 inode->i_wb = new_wb;
422 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
423 if (time_after_eq(inode->dirtied_when,
424 pos->dirtied_when))
425 break;
426 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
427 } else {
428 inode->i_wb = new_wb;
429 }
430
431 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
432 inode->i_wb_frn_winner = 0;
433 inode->i_wb_frn_avg_time = 0;
434 inode->i_wb_frn_history = 0;
435 switched = true;
436 skip_switch:
437 /*
438 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
439 * ensures that the new wb is visible if they see !I_WB_SWITCH.
440 */
441 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
442
443 xa_unlock_irq(&mapping->i_pages);
444 spin_unlock(&inode->i_lock);
445 spin_unlock(&new_wb->list_lock);
446 spin_unlock(&old_wb->list_lock);
447
448 up_read(&bdi->wb_switch_rwsem);
449
450 if (switched) {
451 wb_wakeup(new_wb);
452 wb_put(old_wb);
453 }
454 wb_put(new_wb);
455
456 iput(inode);
457 kfree(isw);
458
459 atomic_dec(&isw_nr_in_flight);
460 }
461
462 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
463 {
464 struct inode_switch_wbs_context *isw = container_of(rcu_head,
465 struct inode_switch_wbs_context, rcu_head);
466
467 /* needs to grab bh-unsafe locks, bounce to work item */
468 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
469 queue_work(isw_wq, &isw->work);
470 }
471
472 /**
473 * inode_switch_wbs - change the wb association of an inode
474 * @inode: target inode
475 * @new_wb_id: ID of the new wb
476 *
477 * Switch @inode's wb association to the wb identified by @new_wb_id. The
478 * switching is performed asynchronously and may fail silently.
479 */
480 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
481 {
482 struct backing_dev_info *bdi = inode_to_bdi(inode);
483 struct cgroup_subsys_state *memcg_css;
484 struct inode_switch_wbs_context *isw;
485
486 /* noop if seems to be already in progress */
487 if (inode->i_state & I_WB_SWITCH)
488 return;
489
490 /*
491 * Avoid starting new switches while sync_inodes_sb() is in
492 * progress. Otherwise, if the down_write protected issue path
493 * blocks heavily, we might end up starting a large number of
494 * switches which will block on the rwsem.
495 */
496 if (!down_read_trylock(&bdi->wb_switch_rwsem))
497 return;
498
499 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
500 if (!isw)
501 goto out_unlock;
502
503 /* find and pin the new wb */
504 rcu_read_lock();
505 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
506 if (memcg_css)
507 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
508 rcu_read_unlock();
509 if (!isw->new_wb)
510 goto out_free;
511
512 /* while holding I_WB_SWITCH, no one else can update the association */
513 spin_lock(&inode->i_lock);
514 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
515 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
516 inode_to_wb(inode) == isw->new_wb) {
517 spin_unlock(&inode->i_lock);
518 goto out_free;
519 }
520 inode->i_state |= I_WB_SWITCH;
521 __iget(inode);
522 spin_unlock(&inode->i_lock);
523
524 isw->inode = inode;
525
526 /*
527 * In addition to synchronizing among switchers, I_WB_SWITCH tells
528 * the RCU protected stat update paths to grab the i_page
529 * lock so that stat transfer can synchronize against them.
530 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
531 */
532 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
533
534 atomic_inc(&isw_nr_in_flight);
535
536 goto out_unlock;
537
538 out_free:
539 if (isw->new_wb)
540 wb_put(isw->new_wb);
541 kfree(isw);
542 out_unlock:
543 up_read(&bdi->wb_switch_rwsem);
544 }
545
546 /**
547 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
548 * @wbc: writeback_control of interest
549 * @inode: target inode
550 *
551 * @inode is locked and about to be written back under the control of @wbc.
552 * Record @inode's writeback context into @wbc and unlock the i_lock. On
553 * writeback completion, wbc_detach_inode() should be called. This is used
554 * to track the cgroup writeback context.
555 */
556 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
557 struct inode *inode)
558 {
559 if (!inode_cgwb_enabled(inode)) {
560 spin_unlock(&inode->i_lock);
561 return;
562 }
563
564 wbc->wb = inode_to_wb(inode);
565 wbc->inode = inode;
566
567 wbc->wb_id = wbc->wb->memcg_css->id;
568 wbc->wb_lcand_id = inode->i_wb_frn_winner;
569 wbc->wb_tcand_id = 0;
570 wbc->wb_bytes = 0;
571 wbc->wb_lcand_bytes = 0;
572 wbc->wb_tcand_bytes = 0;
573
574 wb_get(wbc->wb);
575 spin_unlock(&inode->i_lock);
576
577 /*
578 * A dying wb indicates that the memcg-blkcg mapping has changed
579 * and a new wb is already serving the memcg. Switch immediately.
580 */
581 if (unlikely(wb_dying(wbc->wb)))
582 inode_switch_wbs(inode, wbc->wb_id);
583 }
584
585 /**
586 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
587 * @wbc: writeback_control of the just finished writeback
588 *
589 * To be called after a writeback attempt of an inode finishes and undoes
590 * wbc_attach_and_unlock_inode(). Can be called under any context.
591 *
592 * As concurrent write sharing of an inode is expected to be very rare and
593 * memcg only tracks page ownership on first-use basis severely confining
594 * the usefulness of such sharing, cgroup writeback tracks ownership
595 * per-inode. While the support for concurrent write sharing of an inode
596 * is deemed unnecessary, an inode being written to by different cgroups at
597 * different points in time is a lot more common, and, more importantly,
598 * charging only by first-use can too readily lead to grossly incorrect
599 * behaviors (single foreign page can lead to gigabytes of writeback to be
600 * incorrectly attributed).
601 *
602 * To resolve this issue, cgroup writeback detects the majority dirtier of
603 * an inode and transfers the ownership to it. To avoid unnnecessary
604 * oscillation, the detection mechanism keeps track of history and gives
605 * out the switch verdict only if the foreign usage pattern is stable over
606 * a certain amount of time and/or writeback attempts.
607 *
608 * On each writeback attempt, @wbc tries to detect the majority writer
609 * using Boyer-Moore majority vote algorithm. In addition to the byte
610 * count from the majority voting, it also counts the bytes written for the
611 * current wb and the last round's winner wb (max of last round's current
612 * wb, the winner from two rounds ago, and the last round's majority
613 * candidate). Keeping track of the historical winner helps the algorithm
614 * to semi-reliably detect the most active writer even when it's not the
615 * absolute majority.
616 *
617 * Once the winner of the round is determined, whether the winner is
618 * foreign or not and how much IO time the round consumed is recorded in
619 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
620 * over a certain threshold, the switch verdict is given.
621 */
622 void wbc_detach_inode(struct writeback_control *wbc)
623 {
624 struct bdi_writeback *wb = wbc->wb;
625 struct inode *inode = wbc->inode;
626 unsigned long avg_time, max_bytes, max_time;
627 u16 history;
628 int max_id;
629
630 if (!wb)
631 return;
632
633 history = inode->i_wb_frn_history;
634 avg_time = inode->i_wb_frn_avg_time;
635
636 /* pick the winner of this round */
637 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
638 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
639 max_id = wbc->wb_id;
640 max_bytes = wbc->wb_bytes;
641 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
642 max_id = wbc->wb_lcand_id;
643 max_bytes = wbc->wb_lcand_bytes;
644 } else {
645 max_id = wbc->wb_tcand_id;
646 max_bytes = wbc->wb_tcand_bytes;
647 }
648
649 /*
650 * Calculate the amount of IO time the winner consumed and fold it
651 * into the running average kept per inode. If the consumed IO
652 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
653 * deciding whether to switch or not. This is to prevent one-off
654 * small dirtiers from skewing the verdict.
655 */
656 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
657 wb->avg_write_bandwidth);
658 if (avg_time)
659 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
660 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
661 else
662 avg_time = max_time; /* immediate catch up on first run */
663
664 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
665 int slots;
666
667 /*
668 * The switch verdict is reached if foreign wb's consume
669 * more than a certain proportion of IO time in a
670 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
671 * history mask where each bit represents one sixteenth of
672 * the period. Determine the number of slots to shift into
673 * history from @max_time.
674 */
675 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
676 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
677 history <<= slots;
678 if (wbc->wb_id != max_id)
679 history |= (1U << slots) - 1;
680
681 /*
682 * Switch if the current wb isn't the consistent winner.
683 * If there are multiple closely competing dirtiers, the
684 * inode may switch across them repeatedly over time, which
685 * is okay. The main goal is avoiding keeping an inode on
686 * the wrong wb for an extended period of time.
687 */
688 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
689 inode_switch_wbs(inode, max_id);
690 }
691
692 /*
693 * Multiple instances of this function may race to update the
694 * following fields but we don't mind occassional inaccuracies.
695 */
696 inode->i_wb_frn_winner = max_id;
697 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
698 inode->i_wb_frn_history = history;
699
700 wb_put(wbc->wb);
701 wbc->wb = NULL;
702 }
703
704 /**
705 * wbc_account_io - account IO issued during writeback
706 * @wbc: writeback_control of the writeback in progress
707 * @page: page being written out
708 * @bytes: number of bytes being written out
709 *
710 * @bytes from @page are about to written out during the writeback
711 * controlled by @wbc. Keep the book for foreign inode detection. See
712 * wbc_detach_inode().
713 */
714 void wbc_account_io(struct writeback_control *wbc, struct page *page,
715 size_t bytes)
716 {
717 int id;
718
719 /*
720 * pageout() path doesn't attach @wbc to the inode being written
721 * out. This is intentional as we don't want the function to block
722 * behind a slow cgroup. Ultimately, we want pageout() to kick off
723 * regular writeback instead of writing things out itself.
724 */
725 if (!wbc->wb)
726 return;
727
728 id = mem_cgroup_css_from_page(page)->id;
729
730 if (id == wbc->wb_id) {
731 wbc->wb_bytes += bytes;
732 return;
733 }
734
735 if (id == wbc->wb_lcand_id)
736 wbc->wb_lcand_bytes += bytes;
737
738 /* Boyer-Moore majority vote algorithm */
739 if (!wbc->wb_tcand_bytes)
740 wbc->wb_tcand_id = id;
741 if (id == wbc->wb_tcand_id)
742 wbc->wb_tcand_bytes += bytes;
743 else
744 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
745 }
746 EXPORT_SYMBOL_GPL(wbc_account_io);
747
748 /**
749 * inode_congested - test whether an inode is congested
750 * @inode: inode to test for congestion (may be NULL)
751 * @cong_bits: mask of WB_[a]sync_congested bits to test
752 *
753 * Tests whether @inode is congested. @cong_bits is the mask of congestion
754 * bits to test and the return value is the mask of set bits.
755 *
756 * If cgroup writeback is enabled for @inode, the congestion state is
757 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
758 * associated with @inode is congested; otherwise, the root wb's congestion
759 * state is used.
760 *
761 * @inode is allowed to be NULL as this function is often called on
762 * mapping->host which is NULL for the swapper space.
763 */
764 int inode_congested(struct inode *inode, int cong_bits)
765 {
766 /*
767 * Once set, ->i_wb never becomes NULL while the inode is alive.
768 * Start transaction iff ->i_wb is visible.
769 */
770 if (inode && inode_to_wb_is_valid(inode)) {
771 struct bdi_writeback *wb;
772 struct wb_lock_cookie lock_cookie = {};
773 bool congested;
774
775 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
776 congested = wb_congested(wb, cong_bits);
777 unlocked_inode_to_wb_end(inode, &lock_cookie);
778 return congested;
779 }
780
781 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
782 }
783 EXPORT_SYMBOL_GPL(inode_congested);
784
785 /**
786 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
787 * @wb: target bdi_writeback to split @nr_pages to
788 * @nr_pages: number of pages to write for the whole bdi
789 *
790 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
791 * relation to the total write bandwidth of all wb's w/ dirty inodes on
792 * @wb->bdi.
793 */
794 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
795 {
796 unsigned long this_bw = wb->avg_write_bandwidth;
797 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
798
799 if (nr_pages == LONG_MAX)
800 return LONG_MAX;
801
802 /*
803 * This may be called on clean wb's and proportional distribution
804 * may not make sense, just use the original @nr_pages in those
805 * cases. In general, we wanna err on the side of writing more.
806 */
807 if (!tot_bw || this_bw >= tot_bw)
808 return nr_pages;
809 else
810 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
811 }
812
813 /**
814 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
815 * @bdi: target backing_dev_info
816 * @base_work: wb_writeback_work to issue
817 * @skip_if_busy: skip wb's which already have writeback in progress
818 *
819 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
820 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
821 * distributed to the busy wbs according to each wb's proportion in the
822 * total active write bandwidth of @bdi.
823 */
824 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
825 struct wb_writeback_work *base_work,
826 bool skip_if_busy)
827 {
828 struct bdi_writeback *last_wb = NULL;
829 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
830 struct bdi_writeback, bdi_node);
831
832 might_sleep();
833 restart:
834 rcu_read_lock();
835 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
836 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
837 struct wb_writeback_work fallback_work;
838 struct wb_writeback_work *work;
839 long nr_pages;
840
841 if (last_wb) {
842 wb_put(last_wb);
843 last_wb = NULL;
844 }
845
846 /* SYNC_ALL writes out I_DIRTY_TIME too */
847 if (!wb_has_dirty_io(wb) &&
848 (base_work->sync_mode == WB_SYNC_NONE ||
849 list_empty(&wb->b_dirty_time)))
850 continue;
851 if (skip_if_busy && writeback_in_progress(wb))
852 continue;
853
854 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
855
856 work = kmalloc(sizeof(*work), GFP_ATOMIC);
857 if (work) {
858 *work = *base_work;
859 work->nr_pages = nr_pages;
860 work->auto_free = 1;
861 wb_queue_work(wb, work);
862 continue;
863 }
864
865 /* alloc failed, execute synchronously using on-stack fallback */
866 work = &fallback_work;
867 *work = *base_work;
868 work->nr_pages = nr_pages;
869 work->auto_free = 0;
870 work->done = &fallback_work_done;
871
872 wb_queue_work(wb, work);
873
874 /*
875 * Pin @wb so that it stays on @bdi->wb_list. This allows
876 * continuing iteration from @wb after dropping and
877 * regrabbing rcu read lock.
878 */
879 wb_get(wb);
880 last_wb = wb;
881
882 rcu_read_unlock();
883 wb_wait_for_completion(bdi, &fallback_work_done);
884 goto restart;
885 }
886 rcu_read_unlock();
887
888 if (last_wb)
889 wb_put(last_wb);
890 }
891
892 /**
893 * cgroup_writeback_umount - flush inode wb switches for umount
894 *
895 * This function is called when a super_block is about to be destroyed and
896 * flushes in-flight inode wb switches. An inode wb switch goes through
897 * RCU and then workqueue, so the two need to be flushed in order to ensure
898 * that all previously scheduled switches are finished. As wb switches are
899 * rare occurrences and synchronize_rcu() can take a while, perform
900 * flushing iff wb switches are in flight.
901 */
902 void cgroup_writeback_umount(void)
903 {
904 if (atomic_read(&isw_nr_in_flight)) {
905 /*
906 * Use rcu_barrier() to wait for all pending callbacks to
907 * ensure that all in-flight wb switches are in the workqueue.
908 */
909 rcu_barrier();
910 flush_workqueue(isw_wq);
911 }
912 }
913
914 static int __init cgroup_writeback_init(void)
915 {
916 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
917 if (!isw_wq)
918 return -ENOMEM;
919 return 0;
920 }
921 fs_initcall(cgroup_writeback_init);
922
923 #else /* CONFIG_CGROUP_WRITEBACK */
924
925 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
926 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
927
928 static struct bdi_writeback *
929 locked_inode_to_wb_and_lock_list(struct inode *inode)
930 __releases(&inode->i_lock)
931 __acquires(&wb->list_lock)
932 {
933 struct bdi_writeback *wb = inode_to_wb(inode);
934
935 spin_unlock(&inode->i_lock);
936 spin_lock(&wb->list_lock);
937 return wb;
938 }
939
940 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
941 __acquires(&wb->list_lock)
942 {
943 struct bdi_writeback *wb = inode_to_wb(inode);
944
945 spin_lock(&wb->list_lock);
946 return wb;
947 }
948
949 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
950 {
951 return nr_pages;
952 }
953
954 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
955 struct wb_writeback_work *base_work,
956 bool skip_if_busy)
957 {
958 might_sleep();
959
960 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
961 base_work->auto_free = 0;
962 wb_queue_work(&bdi->wb, base_work);
963 }
964 }
965
966 #endif /* CONFIG_CGROUP_WRITEBACK */
967
968 /*
969 * Add in the number of potentially dirty inodes, because each inode
970 * write can dirty pagecache in the underlying blockdev.
971 */
972 static unsigned long get_nr_dirty_pages(void)
973 {
974 return global_node_page_state(NR_FILE_DIRTY) +
975 global_node_page_state(NR_UNSTABLE_NFS) +
976 get_nr_dirty_inodes();
977 }
978
979 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
980 {
981 if (!wb_has_dirty_io(wb))
982 return;
983
984 /*
985 * All callers of this function want to start writeback of all
986 * dirty pages. Places like vmscan can call this at a very
987 * high frequency, causing pointless allocations of tons of
988 * work items and keeping the flusher threads busy retrieving
989 * that work. Ensure that we only allow one of them pending and
990 * inflight at the time.
991 */
992 if (test_bit(WB_start_all, &wb->state) ||
993 test_and_set_bit(WB_start_all, &wb->state))
994 return;
995
996 wb->start_all_reason = reason;
997 wb_wakeup(wb);
998 }
999
1000 /**
1001 * wb_start_background_writeback - start background writeback
1002 * @wb: bdi_writback to write from
1003 *
1004 * Description:
1005 * This makes sure WB_SYNC_NONE background writeback happens. When
1006 * this function returns, it is only guaranteed that for given wb
1007 * some IO is happening if we are over background dirty threshold.
1008 * Caller need not hold sb s_umount semaphore.
1009 */
1010 void wb_start_background_writeback(struct bdi_writeback *wb)
1011 {
1012 /*
1013 * We just wake up the flusher thread. It will perform background
1014 * writeback as soon as there is no other work to do.
1015 */
1016 trace_writeback_wake_background(wb);
1017 wb_wakeup(wb);
1018 }
1019
1020 /*
1021 * Remove the inode from the writeback list it is on.
1022 */
1023 void inode_io_list_del(struct inode *inode)
1024 {
1025 struct bdi_writeback *wb;
1026
1027 wb = inode_to_wb_and_lock_list(inode);
1028 inode_io_list_del_locked(inode, wb);
1029 spin_unlock(&wb->list_lock);
1030 }
1031
1032 /*
1033 * mark an inode as under writeback on the sb
1034 */
1035 void sb_mark_inode_writeback(struct inode *inode)
1036 {
1037 struct super_block *sb = inode->i_sb;
1038 unsigned long flags;
1039
1040 if (list_empty(&inode->i_wb_list)) {
1041 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1042 if (list_empty(&inode->i_wb_list)) {
1043 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1044 trace_sb_mark_inode_writeback(inode);
1045 }
1046 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1047 }
1048 }
1049
1050 /*
1051 * clear an inode as under writeback on the sb
1052 */
1053 void sb_clear_inode_writeback(struct inode *inode)
1054 {
1055 struct super_block *sb = inode->i_sb;
1056 unsigned long flags;
1057
1058 if (!list_empty(&inode->i_wb_list)) {
1059 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1060 if (!list_empty(&inode->i_wb_list)) {
1061 list_del_init(&inode->i_wb_list);
1062 trace_sb_clear_inode_writeback(inode);
1063 }
1064 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1065 }
1066 }
1067
1068 /*
1069 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1070 * furthest end of its superblock's dirty-inode list.
1071 *
1072 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1073 * already the most-recently-dirtied inode on the b_dirty list. If that is
1074 * the case then the inode must have been redirtied while it was being written
1075 * out and we don't reset its dirtied_when.
1076 */
1077 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1078 {
1079 if (!list_empty(&wb->b_dirty)) {
1080 struct inode *tail;
1081
1082 tail = wb_inode(wb->b_dirty.next);
1083 if (time_before(inode->dirtied_when, tail->dirtied_when))
1084 inode->dirtied_when = jiffies;
1085 }
1086 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1087 }
1088
1089 /*
1090 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1091 */
1092 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1093 {
1094 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1095 }
1096
1097 static void inode_sync_complete(struct inode *inode)
1098 {
1099 inode->i_state &= ~I_SYNC;
1100 /* If inode is clean an unused, put it into LRU now... */
1101 inode_add_lru(inode);
1102 /* Waiters must see I_SYNC cleared before being woken up */
1103 smp_mb();
1104 wake_up_bit(&inode->i_state, __I_SYNC);
1105 }
1106
1107 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1108 {
1109 bool ret = time_after(inode->dirtied_when, t);
1110 #ifndef CONFIG_64BIT
1111 /*
1112 * For inodes being constantly redirtied, dirtied_when can get stuck.
1113 * It _appears_ to be in the future, but is actually in distant past.
1114 * This test is necessary to prevent such wrapped-around relative times
1115 * from permanently stopping the whole bdi writeback.
1116 */
1117 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1118 #endif
1119 return ret;
1120 }
1121
1122 #define EXPIRE_DIRTY_ATIME 0x0001
1123
1124 /*
1125 * Move expired (dirtied before work->older_than_this) dirty inodes from
1126 * @delaying_queue to @dispatch_queue.
1127 */
1128 static int move_expired_inodes(struct list_head *delaying_queue,
1129 struct list_head *dispatch_queue,
1130 int flags,
1131 struct wb_writeback_work *work)
1132 {
1133 unsigned long *older_than_this = NULL;
1134 unsigned long expire_time;
1135 LIST_HEAD(tmp);
1136 struct list_head *pos, *node;
1137 struct super_block *sb = NULL;
1138 struct inode *inode;
1139 int do_sb_sort = 0;
1140 int moved = 0;
1141
1142 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1143 older_than_this = work->older_than_this;
1144 else if (!work->for_sync) {
1145 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1146 older_than_this = &expire_time;
1147 }
1148 while (!list_empty(delaying_queue)) {
1149 inode = wb_inode(delaying_queue->prev);
1150 if (older_than_this &&
1151 inode_dirtied_after(inode, *older_than_this))
1152 break;
1153 list_move(&inode->i_io_list, &tmp);
1154 moved++;
1155 if (flags & EXPIRE_DIRTY_ATIME)
1156 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1157 if (sb_is_blkdev_sb(inode->i_sb))
1158 continue;
1159 if (sb && sb != inode->i_sb)
1160 do_sb_sort = 1;
1161 sb = inode->i_sb;
1162 }
1163
1164 /* just one sb in list, splice to dispatch_queue and we're done */
1165 if (!do_sb_sort) {
1166 list_splice(&tmp, dispatch_queue);
1167 goto out;
1168 }
1169
1170 /* Move inodes from one superblock together */
1171 while (!list_empty(&tmp)) {
1172 sb = wb_inode(tmp.prev)->i_sb;
1173 list_for_each_prev_safe(pos, node, &tmp) {
1174 inode = wb_inode(pos);
1175 if (inode->i_sb == sb)
1176 list_move(&inode->i_io_list, dispatch_queue);
1177 }
1178 }
1179 out:
1180 return moved;
1181 }
1182
1183 /*
1184 * Queue all expired dirty inodes for io, eldest first.
1185 * Before
1186 * newly dirtied b_dirty b_io b_more_io
1187 * =============> gf edc BA
1188 * After
1189 * newly dirtied b_dirty b_io b_more_io
1190 * =============> g fBAedc
1191 * |
1192 * +--> dequeue for IO
1193 */
1194 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1195 {
1196 int moved;
1197
1198 assert_spin_locked(&wb->list_lock);
1199 list_splice_init(&wb->b_more_io, &wb->b_io);
1200 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1201 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1202 EXPIRE_DIRTY_ATIME, work);
1203 if (moved)
1204 wb_io_lists_populated(wb);
1205 trace_writeback_queue_io(wb, work, moved);
1206 }
1207
1208 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1209 {
1210 int ret;
1211
1212 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1213 trace_writeback_write_inode_start(inode, wbc);
1214 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1215 trace_writeback_write_inode(inode, wbc);
1216 return ret;
1217 }
1218 return 0;
1219 }
1220
1221 /*
1222 * Wait for writeback on an inode to complete. Called with i_lock held.
1223 * Caller must make sure inode cannot go away when we drop i_lock.
1224 */
1225 static void __inode_wait_for_writeback(struct inode *inode)
1226 __releases(inode->i_lock)
1227 __acquires(inode->i_lock)
1228 {
1229 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1230 wait_queue_head_t *wqh;
1231
1232 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1233 while (inode->i_state & I_SYNC) {
1234 spin_unlock(&inode->i_lock);
1235 __wait_on_bit(wqh, &wq, bit_wait,
1236 TASK_UNINTERRUPTIBLE);
1237 spin_lock(&inode->i_lock);
1238 }
1239 }
1240
1241 /*
1242 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1243 */
1244 void inode_wait_for_writeback(struct inode *inode)
1245 {
1246 spin_lock(&inode->i_lock);
1247 __inode_wait_for_writeback(inode);
1248 spin_unlock(&inode->i_lock);
1249 }
1250
1251 /*
1252 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1253 * held and drops it. It is aimed for callers not holding any inode reference
1254 * so once i_lock is dropped, inode can go away.
1255 */
1256 static void inode_sleep_on_writeback(struct inode *inode)
1257 __releases(inode->i_lock)
1258 {
1259 DEFINE_WAIT(wait);
1260 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1261 int sleep;
1262
1263 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1264 sleep = inode->i_state & I_SYNC;
1265 spin_unlock(&inode->i_lock);
1266 if (sleep)
1267 schedule();
1268 finish_wait(wqh, &wait);
1269 }
1270
1271 /*
1272 * Find proper writeback list for the inode depending on its current state and
1273 * possibly also change of its state while we were doing writeback. Here we
1274 * handle things such as livelock prevention or fairness of writeback among
1275 * inodes. This function can be called only by flusher thread - noone else
1276 * processes all inodes in writeback lists and requeueing inodes behind flusher
1277 * thread's back can have unexpected consequences.
1278 */
1279 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1280 struct writeback_control *wbc)
1281 {
1282 if (inode->i_state & I_FREEING)
1283 return;
1284
1285 /*
1286 * Sync livelock prevention. Each inode is tagged and synced in one
1287 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1288 * the dirty time to prevent enqueue and sync it again.
1289 */
1290 if ((inode->i_state & I_DIRTY) &&
1291 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1292 inode->dirtied_when = jiffies;
1293
1294 if (wbc->pages_skipped) {
1295 /*
1296 * writeback is not making progress due to locked
1297 * buffers. Skip this inode for now.
1298 */
1299 redirty_tail(inode, wb);
1300 return;
1301 }
1302
1303 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1304 /*
1305 * We didn't write back all the pages. nfs_writepages()
1306 * sometimes bales out without doing anything.
1307 */
1308 if (wbc->nr_to_write <= 0) {
1309 /* Slice used up. Queue for next turn. */
1310 requeue_io(inode, wb);
1311 } else {
1312 /*
1313 * Writeback blocked by something other than
1314 * congestion. Delay the inode for some time to
1315 * avoid spinning on the CPU (100% iowait)
1316 * retrying writeback of the dirty page/inode
1317 * that cannot be performed immediately.
1318 */
1319 redirty_tail(inode, wb);
1320 }
1321 } else if (inode->i_state & I_DIRTY) {
1322 /*
1323 * Filesystems can dirty the inode during writeback operations,
1324 * such as delayed allocation during submission or metadata
1325 * updates after data IO completion.
1326 */
1327 redirty_tail(inode, wb);
1328 } else if (inode->i_state & I_DIRTY_TIME) {
1329 inode->dirtied_when = jiffies;
1330 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1331 } else {
1332 /* The inode is clean. Remove from writeback lists. */
1333 inode_io_list_del_locked(inode, wb);
1334 }
1335 }
1336
1337 /*
1338 * Write out an inode and its dirty pages. Do not update the writeback list
1339 * linkage. That is left to the caller. The caller is also responsible for
1340 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1341 */
1342 static int
1343 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1344 {
1345 struct address_space *mapping = inode->i_mapping;
1346 long nr_to_write = wbc->nr_to_write;
1347 unsigned dirty;
1348 int ret;
1349
1350 WARN_ON(!(inode->i_state & I_SYNC));
1351
1352 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1353
1354 ret = do_writepages(mapping, wbc);
1355
1356 /*
1357 * Make sure to wait on the data before writing out the metadata.
1358 * This is important for filesystems that modify metadata on data
1359 * I/O completion. We don't do it for sync(2) writeback because it has a
1360 * separate, external IO completion path and ->sync_fs for guaranteeing
1361 * inode metadata is written back correctly.
1362 */
1363 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1364 int err = filemap_fdatawait(mapping);
1365 if (ret == 0)
1366 ret = err;
1367 }
1368
1369 /*
1370 * Some filesystems may redirty the inode during the writeback
1371 * due to delalloc, clear dirty metadata flags right before
1372 * write_inode()
1373 */
1374 spin_lock(&inode->i_lock);
1375
1376 dirty = inode->i_state & I_DIRTY;
1377 if (inode->i_state & I_DIRTY_TIME) {
1378 if ((dirty & I_DIRTY_INODE) ||
1379 wbc->sync_mode == WB_SYNC_ALL ||
1380 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1381 unlikely(time_after(jiffies,
1382 (inode->dirtied_time_when +
1383 dirtytime_expire_interval * HZ)))) {
1384 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1385 trace_writeback_lazytime(inode);
1386 }
1387 } else
1388 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1389 inode->i_state &= ~dirty;
1390
1391 /*
1392 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1393 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1394 * either they see the I_DIRTY bits cleared or we see the dirtied
1395 * inode.
1396 *
1397 * I_DIRTY_PAGES is always cleared together above even if @mapping
1398 * still has dirty pages. The flag is reinstated after smp_mb() if
1399 * necessary. This guarantees that either __mark_inode_dirty()
1400 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1401 */
1402 smp_mb();
1403
1404 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1405 inode->i_state |= I_DIRTY_PAGES;
1406
1407 spin_unlock(&inode->i_lock);
1408
1409 if (dirty & I_DIRTY_TIME)
1410 mark_inode_dirty_sync(inode);
1411 /* Don't write the inode if only I_DIRTY_PAGES was set */
1412 if (dirty & ~I_DIRTY_PAGES) {
1413 int err = write_inode(inode, wbc);
1414 if (ret == 0)
1415 ret = err;
1416 }
1417 trace_writeback_single_inode(inode, wbc, nr_to_write);
1418 return ret;
1419 }
1420
1421 /*
1422 * Write out an inode's dirty pages. Either the caller has an active reference
1423 * on the inode or the inode has I_WILL_FREE set.
1424 *
1425 * This function is designed to be called for writing back one inode which
1426 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1427 * and does more profound writeback list handling in writeback_sb_inodes().
1428 */
1429 static int writeback_single_inode(struct inode *inode,
1430 struct writeback_control *wbc)
1431 {
1432 struct bdi_writeback *wb;
1433 int ret = 0;
1434
1435 spin_lock(&inode->i_lock);
1436 if (!atomic_read(&inode->i_count))
1437 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1438 else
1439 WARN_ON(inode->i_state & I_WILL_FREE);
1440
1441 if (inode->i_state & I_SYNC) {
1442 if (wbc->sync_mode != WB_SYNC_ALL)
1443 goto out;
1444 /*
1445 * It's a data-integrity sync. We must wait. Since callers hold
1446 * inode reference or inode has I_WILL_FREE set, it cannot go
1447 * away under us.
1448 */
1449 __inode_wait_for_writeback(inode);
1450 }
1451 WARN_ON(inode->i_state & I_SYNC);
1452 /*
1453 * Skip inode if it is clean and we have no outstanding writeback in
1454 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1455 * function since flusher thread may be doing for example sync in
1456 * parallel and if we move the inode, it could get skipped. So here we
1457 * make sure inode is on some writeback list and leave it there unless
1458 * we have completely cleaned the inode.
1459 */
1460 if (!(inode->i_state & I_DIRTY_ALL) &&
1461 (wbc->sync_mode != WB_SYNC_ALL ||
1462 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1463 goto out;
1464 inode->i_state |= I_SYNC;
1465 wbc_attach_and_unlock_inode(wbc, inode);
1466
1467 ret = __writeback_single_inode(inode, wbc);
1468
1469 wbc_detach_inode(wbc);
1470
1471 wb = inode_to_wb_and_lock_list(inode);
1472 spin_lock(&inode->i_lock);
1473 /*
1474 * If inode is clean, remove it from writeback lists. Otherwise don't
1475 * touch it. See comment above for explanation.
1476 */
1477 if (!(inode->i_state & I_DIRTY_ALL))
1478 inode_io_list_del_locked(inode, wb);
1479 spin_unlock(&wb->list_lock);
1480 inode_sync_complete(inode);
1481 out:
1482 spin_unlock(&inode->i_lock);
1483 return ret;
1484 }
1485
1486 static long writeback_chunk_size(struct bdi_writeback *wb,
1487 struct wb_writeback_work *work)
1488 {
1489 long pages;
1490
1491 /*
1492 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1493 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1494 * here avoids calling into writeback_inodes_wb() more than once.
1495 *
1496 * The intended call sequence for WB_SYNC_ALL writeback is:
1497 *
1498 * wb_writeback()
1499 * writeback_sb_inodes() <== called only once
1500 * write_cache_pages() <== called once for each inode
1501 * (quickly) tag currently dirty pages
1502 * (maybe slowly) sync all tagged pages
1503 */
1504 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1505 pages = LONG_MAX;
1506 else {
1507 pages = min(wb->avg_write_bandwidth / 2,
1508 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1509 pages = min(pages, work->nr_pages);
1510 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1511 MIN_WRITEBACK_PAGES);
1512 }
1513
1514 return pages;
1515 }
1516
1517 /*
1518 * Write a portion of b_io inodes which belong to @sb.
1519 *
1520 * Return the number of pages and/or inodes written.
1521 *
1522 * NOTE! This is called with wb->list_lock held, and will
1523 * unlock and relock that for each inode it ends up doing
1524 * IO for.
1525 */
1526 static long writeback_sb_inodes(struct super_block *sb,
1527 struct bdi_writeback *wb,
1528 struct wb_writeback_work *work)
1529 {
1530 struct writeback_control wbc = {
1531 .sync_mode = work->sync_mode,
1532 .tagged_writepages = work->tagged_writepages,
1533 .for_kupdate = work->for_kupdate,
1534 .for_background = work->for_background,
1535 .for_sync = work->for_sync,
1536 .range_cyclic = work->range_cyclic,
1537 .range_start = 0,
1538 .range_end = LLONG_MAX,
1539 };
1540 unsigned long start_time = jiffies;
1541 long write_chunk;
1542 long wrote = 0; /* count both pages and inodes */
1543
1544 while (!list_empty(&wb->b_io)) {
1545 struct inode *inode = wb_inode(wb->b_io.prev);
1546 struct bdi_writeback *tmp_wb;
1547
1548 if (inode->i_sb != sb) {
1549 if (work->sb) {
1550 /*
1551 * We only want to write back data for this
1552 * superblock, move all inodes not belonging
1553 * to it back onto the dirty list.
1554 */
1555 redirty_tail(inode, wb);
1556 continue;
1557 }
1558
1559 /*
1560 * The inode belongs to a different superblock.
1561 * Bounce back to the caller to unpin this and
1562 * pin the next superblock.
1563 */
1564 break;
1565 }
1566
1567 /*
1568 * Don't bother with new inodes or inodes being freed, first
1569 * kind does not need periodic writeout yet, and for the latter
1570 * kind writeout is handled by the freer.
1571 */
1572 spin_lock(&inode->i_lock);
1573 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1574 spin_unlock(&inode->i_lock);
1575 redirty_tail(inode, wb);
1576 continue;
1577 }
1578 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1579 /*
1580 * If this inode is locked for writeback and we are not
1581 * doing writeback-for-data-integrity, move it to
1582 * b_more_io so that writeback can proceed with the
1583 * other inodes on s_io.
1584 *
1585 * We'll have another go at writing back this inode
1586 * when we completed a full scan of b_io.
1587 */
1588 spin_unlock(&inode->i_lock);
1589 requeue_io(inode, wb);
1590 trace_writeback_sb_inodes_requeue(inode);
1591 continue;
1592 }
1593 spin_unlock(&wb->list_lock);
1594
1595 /*
1596 * We already requeued the inode if it had I_SYNC set and we
1597 * are doing WB_SYNC_NONE writeback. So this catches only the
1598 * WB_SYNC_ALL case.
1599 */
1600 if (inode->i_state & I_SYNC) {
1601 /* Wait for I_SYNC. This function drops i_lock... */
1602 inode_sleep_on_writeback(inode);
1603 /* Inode may be gone, start again */
1604 spin_lock(&wb->list_lock);
1605 continue;
1606 }
1607 inode->i_state |= I_SYNC;
1608 wbc_attach_and_unlock_inode(&wbc, inode);
1609
1610 write_chunk = writeback_chunk_size(wb, work);
1611 wbc.nr_to_write = write_chunk;
1612 wbc.pages_skipped = 0;
1613
1614 /*
1615 * We use I_SYNC to pin the inode in memory. While it is set
1616 * evict_inode() will wait so the inode cannot be freed.
1617 */
1618 __writeback_single_inode(inode, &wbc);
1619
1620 wbc_detach_inode(&wbc);
1621 work->nr_pages -= write_chunk - wbc.nr_to_write;
1622 wrote += write_chunk - wbc.nr_to_write;
1623
1624 if (need_resched()) {
1625 /*
1626 * We're trying to balance between building up a nice
1627 * long list of IOs to improve our merge rate, and
1628 * getting those IOs out quickly for anyone throttling
1629 * in balance_dirty_pages(). cond_resched() doesn't
1630 * unplug, so get our IOs out the door before we
1631 * give up the CPU.
1632 */
1633 blk_flush_plug(current);
1634 cond_resched();
1635 }
1636
1637 /*
1638 * Requeue @inode if still dirty. Be careful as @inode may
1639 * have been switched to another wb in the meantime.
1640 */
1641 tmp_wb = inode_to_wb_and_lock_list(inode);
1642 spin_lock(&inode->i_lock);
1643 if (!(inode->i_state & I_DIRTY_ALL))
1644 wrote++;
1645 requeue_inode(inode, tmp_wb, &wbc);
1646 inode_sync_complete(inode);
1647 spin_unlock(&inode->i_lock);
1648
1649 if (unlikely(tmp_wb != wb)) {
1650 spin_unlock(&tmp_wb->list_lock);
1651 spin_lock(&wb->list_lock);
1652 }
1653
1654 /*
1655 * bail out to wb_writeback() often enough to check
1656 * background threshold and other termination conditions.
1657 */
1658 if (wrote) {
1659 if (time_is_before_jiffies(start_time + HZ / 10UL))
1660 break;
1661 if (work->nr_pages <= 0)
1662 break;
1663 }
1664 }
1665 return wrote;
1666 }
1667
1668 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1669 struct wb_writeback_work *work)
1670 {
1671 unsigned long start_time = jiffies;
1672 long wrote = 0;
1673
1674 while (!list_empty(&wb->b_io)) {
1675 struct inode *inode = wb_inode(wb->b_io.prev);
1676 struct super_block *sb = inode->i_sb;
1677
1678 if (!trylock_super(sb)) {
1679 /*
1680 * trylock_super() may fail consistently due to
1681 * s_umount being grabbed by someone else. Don't use
1682 * requeue_io() to avoid busy retrying the inode/sb.
1683 */
1684 redirty_tail(inode, wb);
1685 continue;
1686 }
1687 wrote += writeback_sb_inodes(sb, wb, work);
1688 up_read(&sb->s_umount);
1689
1690 /* refer to the same tests at the end of writeback_sb_inodes */
1691 if (wrote) {
1692 if (time_is_before_jiffies(start_time + HZ / 10UL))
1693 break;
1694 if (work->nr_pages <= 0)
1695 break;
1696 }
1697 }
1698 /* Leave any unwritten inodes on b_io */
1699 return wrote;
1700 }
1701
1702 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1703 enum wb_reason reason)
1704 {
1705 struct wb_writeback_work work = {
1706 .nr_pages = nr_pages,
1707 .sync_mode = WB_SYNC_NONE,
1708 .range_cyclic = 1,
1709 .reason = reason,
1710 };
1711 struct blk_plug plug;
1712
1713 blk_start_plug(&plug);
1714 spin_lock(&wb->list_lock);
1715 if (list_empty(&wb->b_io))
1716 queue_io(wb, &work);
1717 __writeback_inodes_wb(wb, &work);
1718 spin_unlock(&wb->list_lock);
1719 blk_finish_plug(&plug);
1720
1721 return nr_pages - work.nr_pages;
1722 }
1723
1724 /*
1725 * Explicit flushing or periodic writeback of "old" data.
1726 *
1727 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1728 * dirtying-time in the inode's address_space. So this periodic writeback code
1729 * just walks the superblock inode list, writing back any inodes which are
1730 * older than a specific point in time.
1731 *
1732 * Try to run once per dirty_writeback_interval. But if a writeback event
1733 * takes longer than a dirty_writeback_interval interval, then leave a
1734 * one-second gap.
1735 *
1736 * older_than_this takes precedence over nr_to_write. So we'll only write back
1737 * all dirty pages if they are all attached to "old" mappings.
1738 */
1739 static long wb_writeback(struct bdi_writeback *wb,
1740 struct wb_writeback_work *work)
1741 {
1742 unsigned long wb_start = jiffies;
1743 long nr_pages = work->nr_pages;
1744 unsigned long oldest_jif;
1745 struct inode *inode;
1746 long progress;
1747 struct blk_plug plug;
1748
1749 oldest_jif = jiffies;
1750 work->older_than_this = &oldest_jif;
1751
1752 blk_start_plug(&plug);
1753 spin_lock(&wb->list_lock);
1754 for (;;) {
1755 /*
1756 * Stop writeback when nr_pages has been consumed
1757 */
1758 if (work->nr_pages <= 0)
1759 break;
1760
1761 /*
1762 * Background writeout and kupdate-style writeback may
1763 * run forever. Stop them if there is other work to do
1764 * so that e.g. sync can proceed. They'll be restarted
1765 * after the other works are all done.
1766 */
1767 if ((work->for_background || work->for_kupdate) &&
1768 !list_empty(&wb->work_list))
1769 break;
1770
1771 /*
1772 * For background writeout, stop when we are below the
1773 * background dirty threshold
1774 */
1775 if (work->for_background && !wb_over_bg_thresh(wb))
1776 break;
1777
1778 /*
1779 * Kupdate and background works are special and we want to
1780 * include all inodes that need writing. Livelock avoidance is
1781 * handled by these works yielding to any other work so we are
1782 * safe.
1783 */
1784 if (work->for_kupdate) {
1785 oldest_jif = jiffies -
1786 msecs_to_jiffies(dirty_expire_interval * 10);
1787 } else if (work->for_background)
1788 oldest_jif = jiffies;
1789
1790 trace_writeback_start(wb, work);
1791 if (list_empty(&wb->b_io))
1792 queue_io(wb, work);
1793 if (work->sb)
1794 progress = writeback_sb_inodes(work->sb, wb, work);
1795 else
1796 progress = __writeback_inodes_wb(wb, work);
1797 trace_writeback_written(wb, work);
1798
1799 wb_update_bandwidth(wb, wb_start);
1800
1801 /*
1802 * Did we write something? Try for more
1803 *
1804 * Dirty inodes are moved to b_io for writeback in batches.
1805 * The completion of the current batch does not necessarily
1806 * mean the overall work is done. So we keep looping as long
1807 * as made some progress on cleaning pages or inodes.
1808 */
1809 if (progress)
1810 continue;
1811 /*
1812 * No more inodes for IO, bail
1813 */
1814 if (list_empty(&wb->b_more_io))
1815 break;
1816 /*
1817 * Nothing written. Wait for some inode to
1818 * become available for writeback. Otherwise
1819 * we'll just busyloop.
1820 */
1821 trace_writeback_wait(wb, work);
1822 inode = wb_inode(wb->b_more_io.prev);
1823 spin_lock(&inode->i_lock);
1824 spin_unlock(&wb->list_lock);
1825 /* This function drops i_lock... */
1826 inode_sleep_on_writeback(inode);
1827 spin_lock(&wb->list_lock);
1828 }
1829 spin_unlock(&wb->list_lock);
1830 blk_finish_plug(&plug);
1831
1832 return nr_pages - work->nr_pages;
1833 }
1834
1835 /*
1836 * Return the next wb_writeback_work struct that hasn't been processed yet.
1837 */
1838 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1839 {
1840 struct wb_writeback_work *work = NULL;
1841
1842 spin_lock_bh(&wb->work_lock);
1843 if (!list_empty(&wb->work_list)) {
1844 work = list_entry(wb->work_list.next,
1845 struct wb_writeback_work, list);
1846 list_del_init(&work->list);
1847 }
1848 spin_unlock_bh(&wb->work_lock);
1849 return work;
1850 }
1851
1852 static long wb_check_background_flush(struct bdi_writeback *wb)
1853 {
1854 if (wb_over_bg_thresh(wb)) {
1855
1856 struct wb_writeback_work work = {
1857 .nr_pages = LONG_MAX,
1858 .sync_mode = WB_SYNC_NONE,
1859 .for_background = 1,
1860 .range_cyclic = 1,
1861 .reason = WB_REASON_BACKGROUND,
1862 };
1863
1864 return wb_writeback(wb, &work);
1865 }
1866
1867 return 0;
1868 }
1869
1870 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1871 {
1872 unsigned long expired;
1873 long nr_pages;
1874
1875 /*
1876 * When set to zero, disable periodic writeback
1877 */
1878 if (!dirty_writeback_interval)
1879 return 0;
1880
1881 expired = wb->last_old_flush +
1882 msecs_to_jiffies(dirty_writeback_interval * 10);
1883 if (time_before(jiffies, expired))
1884 return 0;
1885
1886 wb->last_old_flush = jiffies;
1887 nr_pages = get_nr_dirty_pages();
1888
1889 if (nr_pages) {
1890 struct wb_writeback_work work = {
1891 .nr_pages = nr_pages,
1892 .sync_mode = WB_SYNC_NONE,
1893 .for_kupdate = 1,
1894 .range_cyclic = 1,
1895 .reason = WB_REASON_PERIODIC,
1896 };
1897
1898 return wb_writeback(wb, &work);
1899 }
1900
1901 return 0;
1902 }
1903
1904 static long wb_check_start_all(struct bdi_writeback *wb)
1905 {
1906 long nr_pages;
1907
1908 if (!test_bit(WB_start_all, &wb->state))
1909 return 0;
1910
1911 nr_pages = get_nr_dirty_pages();
1912 if (nr_pages) {
1913 struct wb_writeback_work work = {
1914 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1915 .sync_mode = WB_SYNC_NONE,
1916 .range_cyclic = 1,
1917 .reason = wb->start_all_reason,
1918 };
1919
1920 nr_pages = wb_writeback(wb, &work);
1921 }
1922
1923 clear_bit(WB_start_all, &wb->state);
1924 return nr_pages;
1925 }
1926
1927
1928 /*
1929 * Retrieve work items and do the writeback they describe
1930 */
1931 static long wb_do_writeback(struct bdi_writeback *wb)
1932 {
1933 struct wb_writeback_work *work;
1934 long wrote = 0;
1935
1936 set_bit(WB_writeback_running, &wb->state);
1937 while ((work = get_next_work_item(wb)) != NULL) {
1938 trace_writeback_exec(wb, work);
1939 wrote += wb_writeback(wb, work);
1940 finish_writeback_work(wb, work);
1941 }
1942
1943 /*
1944 * Check for a flush-everything request
1945 */
1946 wrote += wb_check_start_all(wb);
1947
1948 /*
1949 * Check for periodic writeback, kupdated() style
1950 */
1951 wrote += wb_check_old_data_flush(wb);
1952 wrote += wb_check_background_flush(wb);
1953 clear_bit(WB_writeback_running, &wb->state);
1954
1955 return wrote;
1956 }
1957
1958 /*
1959 * Handle writeback of dirty data for the device backed by this bdi. Also
1960 * reschedules periodically and does kupdated style flushing.
1961 */
1962 void wb_workfn(struct work_struct *work)
1963 {
1964 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1965 struct bdi_writeback, dwork);
1966 long pages_written;
1967
1968 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1969 current->flags |= PF_SWAPWRITE;
1970
1971 if (likely(!current_is_workqueue_rescuer() ||
1972 !test_bit(WB_registered, &wb->state))) {
1973 /*
1974 * The normal path. Keep writing back @wb until its
1975 * work_list is empty. Note that this path is also taken
1976 * if @wb is shutting down even when we're running off the
1977 * rescuer as work_list needs to be drained.
1978 */
1979 do {
1980 pages_written = wb_do_writeback(wb);
1981 trace_writeback_pages_written(pages_written);
1982 } while (!list_empty(&wb->work_list));
1983 } else {
1984 /*
1985 * bdi_wq can't get enough workers and we're running off
1986 * the emergency worker. Don't hog it. Hopefully, 1024 is
1987 * enough for efficient IO.
1988 */
1989 pages_written = writeback_inodes_wb(wb, 1024,
1990 WB_REASON_FORKER_THREAD);
1991 trace_writeback_pages_written(pages_written);
1992 }
1993
1994 if (!list_empty(&wb->work_list))
1995 wb_wakeup(wb);
1996 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1997 wb_wakeup_delayed(wb);
1998
1999 current->flags &= ~PF_SWAPWRITE;
2000 }
2001
2002 /*
2003 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2004 * write back the whole world.
2005 */
2006 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2007 enum wb_reason reason)
2008 {
2009 struct bdi_writeback *wb;
2010
2011 if (!bdi_has_dirty_io(bdi))
2012 return;
2013
2014 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2015 wb_start_writeback(wb, reason);
2016 }
2017
2018 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2019 enum wb_reason reason)
2020 {
2021 rcu_read_lock();
2022 __wakeup_flusher_threads_bdi(bdi, reason);
2023 rcu_read_unlock();
2024 }
2025
2026 /*
2027 * Wakeup the flusher threads to start writeback of all currently dirty pages
2028 */
2029 void wakeup_flusher_threads(enum wb_reason reason)
2030 {
2031 struct backing_dev_info *bdi;
2032
2033 /*
2034 * If we are expecting writeback progress we must submit plugged IO.
2035 */
2036 if (blk_needs_flush_plug(current))
2037 blk_schedule_flush_plug(current);
2038
2039 rcu_read_lock();
2040 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2041 __wakeup_flusher_threads_bdi(bdi, reason);
2042 rcu_read_unlock();
2043 }
2044
2045 /*
2046 * Wake up bdi's periodically to make sure dirtytime inodes gets
2047 * written back periodically. We deliberately do *not* check the
2048 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2049 * kernel to be constantly waking up once there are any dirtytime
2050 * inodes on the system. So instead we define a separate delayed work
2051 * function which gets called much more rarely. (By default, only
2052 * once every 12 hours.)
2053 *
2054 * If there is any other write activity going on in the file system,
2055 * this function won't be necessary. But if the only thing that has
2056 * happened on the file system is a dirtytime inode caused by an atime
2057 * update, we need this infrastructure below to make sure that inode
2058 * eventually gets pushed out to disk.
2059 */
2060 static void wakeup_dirtytime_writeback(struct work_struct *w);
2061 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2062
2063 static void wakeup_dirtytime_writeback(struct work_struct *w)
2064 {
2065 struct backing_dev_info *bdi;
2066
2067 rcu_read_lock();
2068 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2069 struct bdi_writeback *wb;
2070
2071 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2072 if (!list_empty(&wb->b_dirty_time))
2073 wb_wakeup(wb);
2074 }
2075 rcu_read_unlock();
2076 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2077 }
2078
2079 static int __init start_dirtytime_writeback(void)
2080 {
2081 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2082 return 0;
2083 }
2084 __initcall(start_dirtytime_writeback);
2085
2086 int dirtytime_interval_handler(struct ctl_table *table, int write,
2087 void __user *buffer, size_t *lenp, loff_t *ppos)
2088 {
2089 int ret;
2090
2091 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2092 if (ret == 0 && write)
2093 mod_delayed_work(system_wq, &dirtytime_work, 0);
2094 return ret;
2095 }
2096
2097 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2098 {
2099 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2100 struct dentry *dentry;
2101 const char *name = "?";
2102
2103 dentry = d_find_alias(inode);
2104 if (dentry) {
2105 spin_lock(&dentry->d_lock);
2106 name = (const char *) dentry->d_name.name;
2107 }
2108 printk(KERN_DEBUG
2109 "%s(%d): dirtied inode %lu (%s) on %s\n",
2110 current->comm, task_pid_nr(current), inode->i_ino,
2111 name, inode->i_sb->s_id);
2112 if (dentry) {
2113 spin_unlock(&dentry->d_lock);
2114 dput(dentry);
2115 }
2116 }
2117 }
2118
2119 /**
2120 * __mark_inode_dirty - internal function
2121 *
2122 * @inode: inode to mark
2123 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2124 *
2125 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2126 * mark_inode_dirty_sync.
2127 *
2128 * Put the inode on the super block's dirty list.
2129 *
2130 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2131 * dirty list only if it is hashed or if it refers to a blockdev.
2132 * If it was not hashed, it will never be added to the dirty list
2133 * even if it is later hashed, as it will have been marked dirty already.
2134 *
2135 * In short, make sure you hash any inodes _before_ you start marking
2136 * them dirty.
2137 *
2138 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2139 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2140 * the kernel-internal blockdev inode represents the dirtying time of the
2141 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2142 * page->mapping->host, so the page-dirtying time is recorded in the internal
2143 * blockdev inode.
2144 */
2145 void __mark_inode_dirty(struct inode *inode, int flags)
2146 {
2147 struct super_block *sb = inode->i_sb;
2148 int dirtytime;
2149
2150 trace_writeback_mark_inode_dirty(inode, flags);
2151
2152 /*
2153 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2154 * dirty the inode itself
2155 */
2156 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2157 trace_writeback_dirty_inode_start(inode, flags);
2158
2159 if (sb->s_op->dirty_inode)
2160 sb->s_op->dirty_inode(inode, flags);
2161
2162 trace_writeback_dirty_inode(inode, flags);
2163 }
2164 if (flags & I_DIRTY_INODE)
2165 flags &= ~I_DIRTY_TIME;
2166 dirtytime = flags & I_DIRTY_TIME;
2167
2168 /*
2169 * Paired with smp_mb() in __writeback_single_inode() for the
2170 * following lockless i_state test. See there for details.
2171 */
2172 smp_mb();
2173
2174 if (((inode->i_state & flags) == flags) ||
2175 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2176 return;
2177
2178 if (unlikely(block_dump))
2179 block_dump___mark_inode_dirty(inode);
2180
2181 spin_lock(&inode->i_lock);
2182 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2183 goto out_unlock_inode;
2184 if ((inode->i_state & flags) != flags) {
2185 const int was_dirty = inode->i_state & I_DIRTY;
2186
2187 inode_attach_wb(inode, NULL);
2188
2189 if (flags & I_DIRTY_INODE)
2190 inode->i_state &= ~I_DIRTY_TIME;
2191 inode->i_state |= flags;
2192
2193 /*
2194 * If the inode is being synced, just update its dirty state.
2195 * The unlocker will place the inode on the appropriate
2196 * superblock list, based upon its state.
2197 */
2198 if (inode->i_state & I_SYNC)
2199 goto out_unlock_inode;
2200
2201 /*
2202 * Only add valid (hashed) inodes to the superblock's
2203 * dirty list. Add blockdev inodes as well.
2204 */
2205 if (!S_ISBLK(inode->i_mode)) {
2206 if (inode_unhashed(inode))
2207 goto out_unlock_inode;
2208 }
2209 if (inode->i_state & I_FREEING)
2210 goto out_unlock_inode;
2211
2212 /*
2213 * If the inode was already on b_dirty/b_io/b_more_io, don't
2214 * reposition it (that would break b_dirty time-ordering).
2215 */
2216 if (!was_dirty) {
2217 struct bdi_writeback *wb;
2218 struct list_head *dirty_list;
2219 bool wakeup_bdi = false;
2220
2221 wb = locked_inode_to_wb_and_lock_list(inode);
2222
2223 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2224 !test_bit(WB_registered, &wb->state),
2225 "bdi-%s not registered\n", wb->bdi->name);
2226
2227 inode->dirtied_when = jiffies;
2228 if (dirtytime)
2229 inode->dirtied_time_when = jiffies;
2230
2231 if (inode->i_state & I_DIRTY)
2232 dirty_list = &wb->b_dirty;
2233 else
2234 dirty_list = &wb->b_dirty_time;
2235
2236 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2237 dirty_list);
2238
2239 spin_unlock(&wb->list_lock);
2240 trace_writeback_dirty_inode_enqueue(inode);
2241
2242 /*
2243 * If this is the first dirty inode for this bdi,
2244 * we have to wake-up the corresponding bdi thread
2245 * to make sure background write-back happens
2246 * later.
2247 */
2248 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2249 wb_wakeup_delayed(wb);
2250 return;
2251 }
2252 }
2253 out_unlock_inode:
2254 spin_unlock(&inode->i_lock);
2255 }
2256 EXPORT_SYMBOL(__mark_inode_dirty);
2257
2258 /*
2259 * The @s_sync_lock is used to serialise concurrent sync operations
2260 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2261 * Concurrent callers will block on the s_sync_lock rather than doing contending
2262 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2263 * has been issued up to the time this function is enter is guaranteed to be
2264 * completed by the time we have gained the lock and waited for all IO that is
2265 * in progress regardless of the order callers are granted the lock.
2266 */
2267 static void wait_sb_inodes(struct super_block *sb)
2268 {
2269 LIST_HEAD(sync_list);
2270
2271 /*
2272 * We need to be protected against the filesystem going from
2273 * r/o to r/w or vice versa.
2274 */
2275 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2276
2277 mutex_lock(&sb->s_sync_lock);
2278
2279 /*
2280 * Splice the writeback list onto a temporary list to avoid waiting on
2281 * inodes that have started writeback after this point.
2282 *
2283 * Use rcu_read_lock() to keep the inodes around until we have a
2284 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2285 * the local list because inodes can be dropped from either by writeback
2286 * completion.
2287 */
2288 rcu_read_lock();
2289 spin_lock_irq(&sb->s_inode_wblist_lock);
2290 list_splice_init(&sb->s_inodes_wb, &sync_list);
2291
2292 /*
2293 * Data integrity sync. Must wait for all pages under writeback, because
2294 * there may have been pages dirtied before our sync call, but which had
2295 * writeout started before we write it out. In which case, the inode
2296 * may not be on the dirty list, but we still have to wait for that
2297 * writeout.
2298 */
2299 while (!list_empty(&sync_list)) {
2300 struct inode *inode = list_first_entry(&sync_list, struct inode,
2301 i_wb_list);
2302 struct address_space *mapping = inode->i_mapping;
2303
2304 /*
2305 * Move each inode back to the wb list before we drop the lock
2306 * to preserve consistency between i_wb_list and the mapping
2307 * writeback tag. Writeback completion is responsible to remove
2308 * the inode from either list once the writeback tag is cleared.
2309 */
2310 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2311
2312 /*
2313 * The mapping can appear untagged while still on-list since we
2314 * do not have the mapping lock. Skip it here, wb completion
2315 * will remove it.
2316 */
2317 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2318 continue;
2319
2320 spin_unlock_irq(&sb->s_inode_wblist_lock);
2321
2322 spin_lock(&inode->i_lock);
2323 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2324 spin_unlock(&inode->i_lock);
2325
2326 spin_lock_irq(&sb->s_inode_wblist_lock);
2327 continue;
2328 }
2329 __iget(inode);
2330 spin_unlock(&inode->i_lock);
2331 rcu_read_unlock();
2332
2333 /*
2334 * We keep the error status of individual mapping so that
2335 * applications can catch the writeback error using fsync(2).
2336 * See filemap_fdatawait_keep_errors() for details.
2337 */
2338 filemap_fdatawait_keep_errors(mapping);
2339
2340 cond_resched();
2341
2342 iput(inode);
2343
2344 rcu_read_lock();
2345 spin_lock_irq(&sb->s_inode_wblist_lock);
2346 }
2347 spin_unlock_irq(&sb->s_inode_wblist_lock);
2348 rcu_read_unlock();
2349 mutex_unlock(&sb->s_sync_lock);
2350 }
2351
2352 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2353 enum wb_reason reason, bool skip_if_busy)
2354 {
2355 DEFINE_WB_COMPLETION_ONSTACK(done);
2356 struct wb_writeback_work work = {
2357 .sb = sb,
2358 .sync_mode = WB_SYNC_NONE,
2359 .tagged_writepages = 1,
2360 .done = &done,
2361 .nr_pages = nr,
2362 .reason = reason,
2363 };
2364 struct backing_dev_info *bdi = sb->s_bdi;
2365
2366 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2367 return;
2368 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2369
2370 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2371 wb_wait_for_completion(bdi, &done);
2372 }
2373
2374 /**
2375 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2376 * @sb: the superblock
2377 * @nr: the number of pages to write
2378 * @reason: reason why some writeback work initiated
2379 *
2380 * Start writeback on some inodes on this super_block. No guarantees are made
2381 * on how many (if any) will be written, and this function does not wait
2382 * for IO completion of submitted IO.
2383 */
2384 void writeback_inodes_sb_nr(struct super_block *sb,
2385 unsigned long nr,
2386 enum wb_reason reason)
2387 {
2388 __writeback_inodes_sb_nr(sb, nr, reason, false);
2389 }
2390 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2391
2392 /**
2393 * writeback_inodes_sb - writeback dirty inodes from given super_block
2394 * @sb: the superblock
2395 * @reason: reason why some writeback work was initiated
2396 *
2397 * Start writeback on some inodes on this super_block. No guarantees are made
2398 * on how many (if any) will be written, and this function does not wait
2399 * for IO completion of submitted IO.
2400 */
2401 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2402 {
2403 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2404 }
2405 EXPORT_SYMBOL(writeback_inodes_sb);
2406
2407 /**
2408 * try_to_writeback_inodes_sb - try to start writeback if none underway
2409 * @sb: the superblock
2410 * @reason: reason why some writeback work was initiated
2411 *
2412 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2413 */
2414 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2415 {
2416 if (!down_read_trylock(&sb->s_umount))
2417 return;
2418
2419 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2420 up_read(&sb->s_umount);
2421 }
2422 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2423
2424 /**
2425 * sync_inodes_sb - sync sb inode pages
2426 * @sb: the superblock
2427 *
2428 * This function writes and waits on any dirty inode belonging to this
2429 * super_block.
2430 */
2431 void sync_inodes_sb(struct super_block *sb)
2432 {
2433 DEFINE_WB_COMPLETION_ONSTACK(done);
2434 struct wb_writeback_work work = {
2435 .sb = sb,
2436 .sync_mode = WB_SYNC_ALL,
2437 .nr_pages = LONG_MAX,
2438 .range_cyclic = 0,
2439 .done = &done,
2440 .reason = WB_REASON_SYNC,
2441 .for_sync = 1,
2442 };
2443 struct backing_dev_info *bdi = sb->s_bdi;
2444
2445 /*
2446 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2447 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2448 * bdi_has_dirty() need to be written out too.
2449 */
2450 if (bdi == &noop_backing_dev_info)
2451 return;
2452 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2453
2454 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2455 bdi_down_write_wb_switch_rwsem(bdi);
2456 bdi_split_work_to_wbs(bdi, &work, false);
2457 wb_wait_for_completion(bdi, &done);
2458 bdi_up_write_wb_switch_rwsem(bdi);
2459
2460 wait_sb_inodes(sb);
2461 }
2462 EXPORT_SYMBOL(sync_inodes_sb);
2463
2464 /**
2465 * write_inode_now - write an inode to disk
2466 * @inode: inode to write to disk
2467 * @sync: whether the write should be synchronous or not
2468 *
2469 * This function commits an inode to disk immediately if it is dirty. This is
2470 * primarily needed by knfsd.
2471 *
2472 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2473 */
2474 int write_inode_now(struct inode *inode, int sync)
2475 {
2476 struct writeback_control wbc = {
2477 .nr_to_write = LONG_MAX,
2478 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2479 .range_start = 0,
2480 .range_end = LLONG_MAX,
2481 };
2482
2483 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2484 wbc.nr_to_write = 0;
2485
2486 might_sleep();
2487 return writeback_single_inode(inode, &wbc);
2488 }
2489 EXPORT_SYMBOL(write_inode_now);
2490
2491 /**
2492 * sync_inode - write an inode and its pages to disk.
2493 * @inode: the inode to sync
2494 * @wbc: controls the writeback mode
2495 *
2496 * sync_inode() will write an inode and its pages to disk. It will also
2497 * correctly update the inode on its superblock's dirty inode lists and will
2498 * update inode->i_state.
2499 *
2500 * The caller must have a ref on the inode.
2501 */
2502 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2503 {
2504 return writeback_single_inode(inode, wbc);
2505 }
2506 EXPORT_SYMBOL(sync_inode);
2507
2508 /**
2509 * sync_inode_metadata - write an inode to disk
2510 * @inode: the inode to sync
2511 * @wait: wait for I/O to complete.
2512 *
2513 * Write an inode to disk and adjust its dirty state after completion.
2514 *
2515 * Note: only writes the actual inode, no associated data or other metadata.
2516 */
2517 int sync_inode_metadata(struct inode *inode, int wait)
2518 {
2519 struct writeback_control wbc = {
2520 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2521 .nr_to_write = 0, /* metadata-only */
2522 };
2523
2524 return sync_inode(inode, &wbc);
2525 }
2526 EXPORT_SYMBOL(sync_inode_metadata);