]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/fuse/file.c
ddd563fda648b33744afa985527c0b3d73214e42
[thirdparty/kernel/stable.git] / fs / fuse / file.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21
22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
23 unsigned int open_flags, int opcode,
24 struct fuse_open_out *outargp)
25 {
26 struct fuse_open_in inarg;
27 FUSE_ARGS(args);
28
29 memset(&inarg, 0, sizeof(inarg));
30 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
31 if (!fm->fc->atomic_o_trunc)
32 inarg.flags &= ~O_TRUNC;
33
34 if (fm->fc->handle_killpriv_v2 &&
35 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
36 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
37 }
38
39 args.opcode = opcode;
40 args.nodeid = nodeid;
41 args.in_numargs = 1;
42 args.in_args[0].size = sizeof(inarg);
43 args.in_args[0].value = &inarg;
44 args.out_numargs = 1;
45 args.out_args[0].size = sizeof(*outargp);
46 args.out_args[0].value = outargp;
47
48 return fuse_simple_request(fm, &args);
49 }
50
51 struct fuse_release_args {
52 struct fuse_args args;
53 struct fuse_release_in inarg;
54 struct inode *inode;
55 };
56
57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
58 {
59 struct fuse_file *ff;
60
61 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
62 if (unlikely(!ff))
63 return NULL;
64
65 ff->fm = fm;
66 ff->release_args = kzalloc(sizeof(*ff->release_args),
67 GFP_KERNEL_ACCOUNT);
68 if (!ff->release_args) {
69 kfree(ff);
70 return NULL;
71 }
72
73 INIT_LIST_HEAD(&ff->write_entry);
74 mutex_init(&ff->readdir.lock);
75 refcount_set(&ff->count, 1);
76 RB_CLEAR_NODE(&ff->polled_node);
77 init_waitqueue_head(&ff->poll_wait);
78
79 ff->kh = atomic64_inc_return(&fm->fc->khctr);
80
81 return ff;
82 }
83
84 void fuse_file_free(struct fuse_file *ff)
85 {
86 kfree(ff->release_args);
87 mutex_destroy(&ff->readdir.lock);
88 kfree(ff);
89 }
90
91 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
92 {
93 refcount_inc(&ff->count);
94 return ff;
95 }
96
97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
98 int error)
99 {
100 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
101
102 iput(ra->inode);
103 kfree(ra);
104 }
105
106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
107 {
108 if (refcount_dec_and_test(&ff->count)) {
109 struct fuse_args *args = &ff->release_args->args;
110
111 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
112 /* Do nothing when client does not implement 'open' */
113 fuse_release_end(ff->fm, args, 0);
114 } else if (sync) {
115 fuse_simple_request(ff->fm, args);
116 fuse_release_end(ff->fm, args, 0);
117 } else {
118 args->end = fuse_release_end;
119 if (fuse_simple_background(ff->fm, args,
120 GFP_KERNEL | __GFP_NOFAIL))
121 fuse_release_end(ff->fm, args, -ENOTCONN);
122 }
123 kfree(ff);
124 }
125 }
126
127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
128 unsigned int open_flags, bool isdir)
129 {
130 struct fuse_conn *fc = fm->fc;
131 struct fuse_file *ff;
132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
133
134 ff = fuse_file_alloc(fm);
135 if (!ff)
136 return ERR_PTR(-ENOMEM);
137
138 ff->fh = 0;
139 /* Default for no-open */
140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 if (isdir ? !fc->no_opendir : !fc->no_open) {
142 struct fuse_open_out outarg;
143 int err;
144
145 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg);
146 if (!err) {
147 ff->fh = outarg.fh;
148 ff->open_flags = outarg.open_flags;
149
150 } else if (err != -ENOSYS) {
151 fuse_file_free(ff);
152 return ERR_PTR(err);
153 } else {
154 if (isdir)
155 fc->no_opendir = 1;
156 else
157 fc->no_open = 1;
158 }
159 }
160
161 if (isdir)
162 ff->open_flags &= ~FOPEN_DIRECT_IO;
163
164 ff->nodeid = nodeid;
165
166 return ff;
167 }
168
169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
170 bool isdir)
171 {
172 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
173
174 if (!IS_ERR(ff))
175 file->private_data = ff;
176
177 return PTR_ERR_OR_ZERO(ff);
178 }
179 EXPORT_SYMBOL_GPL(fuse_do_open);
180
181 static void fuse_link_write_file(struct file *file)
182 {
183 struct inode *inode = file_inode(file);
184 struct fuse_inode *fi = get_fuse_inode(inode);
185 struct fuse_file *ff = file->private_data;
186 /*
187 * file may be written through mmap, so chain it onto the
188 * inodes's write_file list
189 */
190 spin_lock(&fi->lock);
191 if (list_empty(&ff->write_entry))
192 list_add(&ff->write_entry, &fi->write_files);
193 spin_unlock(&fi->lock);
194 }
195
196 void fuse_finish_open(struct inode *inode, struct file *file)
197 {
198 struct fuse_file *ff = file->private_data;
199 struct fuse_conn *fc = get_fuse_conn(inode);
200
201 if (ff->open_flags & FOPEN_STREAM)
202 stream_open(inode, file);
203 else if (ff->open_flags & FOPEN_NONSEEKABLE)
204 nonseekable_open(inode, file);
205
206 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
207 struct fuse_inode *fi = get_fuse_inode(inode);
208
209 spin_lock(&fi->lock);
210 fi->attr_version = atomic64_inc_return(&fc->attr_version);
211 i_size_write(inode, 0);
212 spin_unlock(&fi->lock);
213 truncate_pagecache(inode, 0);
214 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
215 if (fc->writeback_cache)
216 file_update_time(file);
217 } else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
218 invalidate_inode_pages2(inode->i_mapping);
219 }
220
221 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
222 fuse_link_write_file(file);
223 }
224
225 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
226 {
227 struct fuse_mount *fm = get_fuse_mount(inode);
228 struct fuse_conn *fc = fm->fc;
229 int err;
230 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
231 fc->atomic_o_trunc &&
232 fc->writeback_cache;
233 bool dax_truncate = (file->f_flags & O_TRUNC) &&
234 fc->atomic_o_trunc && FUSE_IS_DAX(inode);
235
236 if (fuse_is_bad(inode))
237 return -EIO;
238
239 err = generic_file_open(inode, file);
240 if (err)
241 return err;
242
243 if (is_wb_truncate || dax_truncate) {
244 inode_lock(inode);
245 fuse_set_nowrite(inode);
246 }
247
248 if (dax_truncate) {
249 filemap_invalidate_lock(inode->i_mapping);
250 err = fuse_dax_break_layouts(inode, 0, 0);
251 if (err)
252 goto out;
253 }
254
255 err = fuse_do_open(fm, get_node_id(inode), file, isdir);
256 if (!err)
257 fuse_finish_open(inode, file);
258
259 out:
260 if (dax_truncate)
261 filemap_invalidate_unlock(inode->i_mapping);
262
263 if (is_wb_truncate | dax_truncate) {
264 fuse_release_nowrite(inode);
265 inode_unlock(inode);
266 }
267
268 return err;
269 }
270
271 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
272 unsigned int flags, int opcode)
273 {
274 struct fuse_conn *fc = ff->fm->fc;
275 struct fuse_release_args *ra = ff->release_args;
276
277 /* Inode is NULL on error path of fuse_create_open() */
278 if (likely(fi)) {
279 spin_lock(&fi->lock);
280 list_del(&ff->write_entry);
281 spin_unlock(&fi->lock);
282 }
283 spin_lock(&fc->lock);
284 if (!RB_EMPTY_NODE(&ff->polled_node))
285 rb_erase(&ff->polled_node, &fc->polled_files);
286 spin_unlock(&fc->lock);
287
288 wake_up_interruptible_all(&ff->poll_wait);
289
290 ra->inarg.fh = ff->fh;
291 ra->inarg.flags = flags;
292 ra->args.in_numargs = 1;
293 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
294 ra->args.in_args[0].value = &ra->inarg;
295 ra->args.opcode = opcode;
296 ra->args.nodeid = ff->nodeid;
297 ra->args.force = true;
298 ra->args.nocreds = true;
299 }
300
301 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
302 unsigned int open_flags, fl_owner_t id, bool isdir)
303 {
304 struct fuse_inode *fi = get_fuse_inode(inode);
305 struct fuse_release_args *ra = ff->release_args;
306 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
307
308 fuse_prepare_release(fi, ff, open_flags, opcode);
309
310 if (ff->flock) {
311 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
312 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
313 }
314 /* Hold inode until release is finished */
315 ra->inode = igrab(inode);
316
317 /*
318 * Normally this will send the RELEASE request, however if
319 * some asynchronous READ or WRITE requests are outstanding,
320 * the sending will be delayed.
321 *
322 * Make the release synchronous if this is a fuseblk mount,
323 * synchronous RELEASE is allowed (and desirable) in this case
324 * because the server can be trusted not to screw up.
325 */
326 fuse_file_put(ff, ff->fm->fc->destroy, isdir);
327 }
328
329 void fuse_release_common(struct file *file, bool isdir)
330 {
331 fuse_file_release(file_inode(file), file->private_data, file->f_flags,
332 (fl_owner_t) file, isdir);
333 }
334
335 static int fuse_open(struct inode *inode, struct file *file)
336 {
337 return fuse_open_common(inode, file, false);
338 }
339
340 static int fuse_release(struct inode *inode, struct file *file)
341 {
342 fuse_release_common(file, false);
343
344 /* return value is ignored by VFS */
345 return 0;
346 }
347
348 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
349 unsigned int flags)
350 {
351 WARN_ON(refcount_read(&ff->count) > 1);
352 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
353 /*
354 * iput(NULL) is a no-op and since the refcount is 1 and everything's
355 * synchronous, we are fine with not doing igrab() here"
356 */
357 fuse_file_put(ff, true, false);
358 }
359 EXPORT_SYMBOL_GPL(fuse_sync_release);
360
361 /*
362 * Scramble the ID space with XTEA, so that the value of the files_struct
363 * pointer is not exposed to userspace.
364 */
365 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
366 {
367 u32 *k = fc->scramble_key;
368 u64 v = (unsigned long) id;
369 u32 v0 = v;
370 u32 v1 = v >> 32;
371 u32 sum = 0;
372 int i;
373
374 for (i = 0; i < 32; i++) {
375 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
376 sum += 0x9E3779B9;
377 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
378 }
379
380 return (u64) v0 + ((u64) v1 << 32);
381 }
382
383 struct fuse_writepage_args {
384 struct fuse_io_args ia;
385 struct rb_node writepages_entry;
386 struct list_head queue_entry;
387 struct fuse_writepage_args *next;
388 struct inode *inode;
389 struct fuse_sync_bucket *bucket;
390 };
391
392 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
393 pgoff_t idx_from, pgoff_t idx_to)
394 {
395 struct rb_node *n;
396
397 n = fi->writepages.rb_node;
398
399 while (n) {
400 struct fuse_writepage_args *wpa;
401 pgoff_t curr_index;
402
403 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
404 WARN_ON(get_fuse_inode(wpa->inode) != fi);
405 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
406 if (idx_from >= curr_index + wpa->ia.ap.num_pages)
407 n = n->rb_right;
408 else if (idx_to < curr_index)
409 n = n->rb_left;
410 else
411 return wpa;
412 }
413 return NULL;
414 }
415
416 /*
417 * Check if any page in a range is under writeback
418 *
419 * This is currently done by walking the list of writepage requests
420 * for the inode, which can be pretty inefficient.
421 */
422 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
423 pgoff_t idx_to)
424 {
425 struct fuse_inode *fi = get_fuse_inode(inode);
426 bool found;
427
428 spin_lock(&fi->lock);
429 found = fuse_find_writeback(fi, idx_from, idx_to);
430 spin_unlock(&fi->lock);
431
432 return found;
433 }
434
435 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
436 {
437 return fuse_range_is_writeback(inode, index, index);
438 }
439
440 /*
441 * Wait for page writeback to be completed.
442 *
443 * Since fuse doesn't rely on the VM writeback tracking, this has to
444 * use some other means.
445 */
446 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
447 {
448 struct fuse_inode *fi = get_fuse_inode(inode);
449
450 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
451 }
452
453 /*
454 * Wait for all pending writepages on the inode to finish.
455 *
456 * This is currently done by blocking further writes with FUSE_NOWRITE
457 * and waiting for all sent writes to complete.
458 *
459 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
460 * could conflict with truncation.
461 */
462 static void fuse_sync_writes(struct inode *inode)
463 {
464 fuse_set_nowrite(inode);
465 fuse_release_nowrite(inode);
466 }
467
468 static int fuse_flush(struct file *file, fl_owner_t id)
469 {
470 struct inode *inode = file_inode(file);
471 struct fuse_mount *fm = get_fuse_mount(inode);
472 struct fuse_file *ff = file->private_data;
473 struct fuse_flush_in inarg;
474 FUSE_ARGS(args);
475 int err;
476
477 if (fuse_is_bad(inode))
478 return -EIO;
479
480 err = write_inode_now(inode, 1);
481 if (err)
482 return err;
483
484 inode_lock(inode);
485 fuse_sync_writes(inode);
486 inode_unlock(inode);
487
488 err = filemap_check_errors(file->f_mapping);
489 if (err)
490 return err;
491
492 err = 0;
493 if (fm->fc->no_flush)
494 goto inval_attr_out;
495
496 memset(&inarg, 0, sizeof(inarg));
497 inarg.fh = ff->fh;
498 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
499 args.opcode = FUSE_FLUSH;
500 args.nodeid = get_node_id(inode);
501 args.in_numargs = 1;
502 args.in_args[0].size = sizeof(inarg);
503 args.in_args[0].value = &inarg;
504 args.force = true;
505
506 err = fuse_simple_request(fm, &args);
507 if (err == -ENOSYS) {
508 fm->fc->no_flush = 1;
509 err = 0;
510 }
511
512 inval_attr_out:
513 /*
514 * In memory i_blocks is not maintained by fuse, if writeback cache is
515 * enabled, i_blocks from cached attr may not be accurate.
516 */
517 if (!err && fm->fc->writeback_cache)
518 fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
519 return err;
520 }
521
522 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
523 int datasync, int opcode)
524 {
525 struct inode *inode = file->f_mapping->host;
526 struct fuse_mount *fm = get_fuse_mount(inode);
527 struct fuse_file *ff = file->private_data;
528 FUSE_ARGS(args);
529 struct fuse_fsync_in inarg;
530
531 memset(&inarg, 0, sizeof(inarg));
532 inarg.fh = ff->fh;
533 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
534 args.opcode = opcode;
535 args.nodeid = get_node_id(inode);
536 args.in_numargs = 1;
537 args.in_args[0].size = sizeof(inarg);
538 args.in_args[0].value = &inarg;
539 return fuse_simple_request(fm, &args);
540 }
541
542 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
543 int datasync)
544 {
545 struct inode *inode = file->f_mapping->host;
546 struct fuse_conn *fc = get_fuse_conn(inode);
547 int err;
548
549 if (fuse_is_bad(inode))
550 return -EIO;
551
552 inode_lock(inode);
553
554 /*
555 * Start writeback against all dirty pages of the inode, then
556 * wait for all outstanding writes, before sending the FSYNC
557 * request.
558 */
559 err = file_write_and_wait_range(file, start, end);
560 if (err)
561 goto out;
562
563 fuse_sync_writes(inode);
564
565 /*
566 * Due to implementation of fuse writeback
567 * file_write_and_wait_range() does not catch errors.
568 * We have to do this directly after fuse_sync_writes()
569 */
570 err = file_check_and_advance_wb_err(file);
571 if (err)
572 goto out;
573
574 err = sync_inode_metadata(inode, 1);
575 if (err)
576 goto out;
577
578 if (fc->no_fsync)
579 goto out;
580
581 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
582 if (err == -ENOSYS) {
583 fc->no_fsync = 1;
584 err = 0;
585 }
586 out:
587 inode_unlock(inode);
588
589 return err;
590 }
591
592 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
593 size_t count, int opcode)
594 {
595 struct fuse_file *ff = file->private_data;
596 struct fuse_args *args = &ia->ap.args;
597
598 ia->read.in.fh = ff->fh;
599 ia->read.in.offset = pos;
600 ia->read.in.size = count;
601 ia->read.in.flags = file->f_flags;
602 args->opcode = opcode;
603 args->nodeid = ff->nodeid;
604 args->in_numargs = 1;
605 args->in_args[0].size = sizeof(ia->read.in);
606 args->in_args[0].value = &ia->read.in;
607 args->out_argvar = true;
608 args->out_numargs = 1;
609 args->out_args[0].size = count;
610 }
611
612 static void fuse_release_user_pages(struct fuse_args_pages *ap,
613 bool should_dirty)
614 {
615 unsigned int i;
616
617 for (i = 0; i < ap->num_pages; i++) {
618 if (should_dirty)
619 set_page_dirty_lock(ap->pages[i]);
620 put_page(ap->pages[i]);
621 }
622 }
623
624 static void fuse_io_release(struct kref *kref)
625 {
626 kfree(container_of(kref, struct fuse_io_priv, refcnt));
627 }
628
629 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
630 {
631 if (io->err)
632 return io->err;
633
634 if (io->bytes >= 0 && io->write)
635 return -EIO;
636
637 return io->bytes < 0 ? io->size : io->bytes;
638 }
639
640 /**
641 * In case of short read, the caller sets 'pos' to the position of
642 * actual end of fuse request in IO request. Otherwise, if bytes_requested
643 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
644 *
645 * An example:
646 * User requested DIO read of 64K. It was split into two 32K fuse requests,
647 * both submitted asynchronously. The first of them was ACKed by userspace as
648 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
649 * second request was ACKed as short, e.g. only 1K was read, resulting in
650 * pos == 33K.
651 *
652 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
653 * will be equal to the length of the longest contiguous fragment of
654 * transferred data starting from the beginning of IO request.
655 */
656 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
657 {
658 int left;
659
660 spin_lock(&io->lock);
661 if (err)
662 io->err = io->err ? : err;
663 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
664 io->bytes = pos;
665
666 left = --io->reqs;
667 if (!left && io->blocking)
668 complete(io->done);
669 spin_unlock(&io->lock);
670
671 if (!left && !io->blocking) {
672 ssize_t res = fuse_get_res_by_io(io);
673
674 if (res >= 0) {
675 struct inode *inode = file_inode(io->iocb->ki_filp);
676 struct fuse_conn *fc = get_fuse_conn(inode);
677 struct fuse_inode *fi = get_fuse_inode(inode);
678
679 spin_lock(&fi->lock);
680 fi->attr_version = atomic64_inc_return(&fc->attr_version);
681 spin_unlock(&fi->lock);
682 }
683
684 io->iocb->ki_complete(io->iocb, res, 0);
685 }
686
687 kref_put(&io->refcnt, fuse_io_release);
688 }
689
690 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
691 unsigned int npages)
692 {
693 struct fuse_io_args *ia;
694
695 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
696 if (ia) {
697 ia->io = io;
698 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
699 &ia->ap.descs);
700 if (!ia->ap.pages) {
701 kfree(ia);
702 ia = NULL;
703 }
704 }
705 return ia;
706 }
707
708 static void fuse_io_free(struct fuse_io_args *ia)
709 {
710 kfree(ia->ap.pages);
711 kfree(ia);
712 }
713
714 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
715 int err)
716 {
717 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
718 struct fuse_io_priv *io = ia->io;
719 ssize_t pos = -1;
720
721 fuse_release_user_pages(&ia->ap, io->should_dirty);
722
723 if (err) {
724 /* Nothing */
725 } else if (io->write) {
726 if (ia->write.out.size > ia->write.in.size) {
727 err = -EIO;
728 } else if (ia->write.in.size != ia->write.out.size) {
729 pos = ia->write.in.offset - io->offset +
730 ia->write.out.size;
731 }
732 } else {
733 u32 outsize = args->out_args[0].size;
734
735 if (ia->read.in.size != outsize)
736 pos = ia->read.in.offset - io->offset + outsize;
737 }
738
739 fuse_aio_complete(io, err, pos);
740 fuse_io_free(ia);
741 }
742
743 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
744 struct fuse_io_args *ia, size_t num_bytes)
745 {
746 ssize_t err;
747 struct fuse_io_priv *io = ia->io;
748
749 spin_lock(&io->lock);
750 kref_get(&io->refcnt);
751 io->size += num_bytes;
752 io->reqs++;
753 spin_unlock(&io->lock);
754
755 ia->ap.args.end = fuse_aio_complete_req;
756 ia->ap.args.may_block = io->should_dirty;
757 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
758 if (err)
759 fuse_aio_complete_req(fm, &ia->ap.args, err);
760
761 return num_bytes;
762 }
763
764 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
765 fl_owner_t owner)
766 {
767 struct file *file = ia->io->iocb->ki_filp;
768 struct fuse_file *ff = file->private_data;
769 struct fuse_mount *fm = ff->fm;
770
771 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
772 if (owner != NULL) {
773 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
774 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
775 }
776
777 if (ia->io->async)
778 return fuse_async_req_send(fm, ia, count);
779
780 return fuse_simple_request(fm, &ia->ap.args);
781 }
782
783 static void fuse_read_update_size(struct inode *inode, loff_t size,
784 u64 attr_ver)
785 {
786 struct fuse_conn *fc = get_fuse_conn(inode);
787 struct fuse_inode *fi = get_fuse_inode(inode);
788
789 spin_lock(&fi->lock);
790 if (attr_ver >= fi->attr_version && size < inode->i_size &&
791 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
792 fi->attr_version = atomic64_inc_return(&fc->attr_version);
793 i_size_write(inode, size);
794 }
795 spin_unlock(&fi->lock);
796 }
797
798 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
799 struct fuse_args_pages *ap)
800 {
801 struct fuse_conn *fc = get_fuse_conn(inode);
802
803 /*
804 * If writeback_cache is enabled, a short read means there's a hole in
805 * the file. Some data after the hole is in page cache, but has not
806 * reached the client fs yet. So the hole is not present there.
807 */
808 if (!fc->writeback_cache) {
809 loff_t pos = page_offset(ap->pages[0]) + num_read;
810 fuse_read_update_size(inode, pos, attr_ver);
811 }
812 }
813
814 static int fuse_do_readpage(struct file *file, struct page *page)
815 {
816 struct inode *inode = page->mapping->host;
817 struct fuse_mount *fm = get_fuse_mount(inode);
818 loff_t pos = page_offset(page);
819 struct fuse_page_desc desc = { .length = PAGE_SIZE };
820 struct fuse_io_args ia = {
821 .ap.args.page_zeroing = true,
822 .ap.args.out_pages = true,
823 .ap.num_pages = 1,
824 .ap.pages = &page,
825 .ap.descs = &desc,
826 };
827 ssize_t res;
828 u64 attr_ver;
829
830 /*
831 * Page writeback can extend beyond the lifetime of the
832 * page-cache page, so make sure we read a properly synced
833 * page.
834 */
835 fuse_wait_on_page_writeback(inode, page->index);
836
837 attr_ver = fuse_get_attr_version(fm->fc);
838
839 /* Don't overflow end offset */
840 if (pos + (desc.length - 1) == LLONG_MAX)
841 desc.length--;
842
843 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
844 res = fuse_simple_request(fm, &ia.ap.args);
845 if (res < 0)
846 return res;
847 /*
848 * Short read means EOF. If file size is larger, truncate it
849 */
850 if (res < desc.length)
851 fuse_short_read(inode, attr_ver, res, &ia.ap);
852
853 SetPageUptodate(page);
854
855 return 0;
856 }
857
858 static int fuse_readpage(struct file *file, struct page *page)
859 {
860 struct inode *inode = page->mapping->host;
861 int err;
862
863 err = -EIO;
864 if (fuse_is_bad(inode))
865 goto out;
866
867 err = fuse_do_readpage(file, page);
868 fuse_invalidate_atime(inode);
869 out:
870 unlock_page(page);
871 return err;
872 }
873
874 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
875 int err)
876 {
877 int i;
878 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
879 struct fuse_args_pages *ap = &ia->ap;
880 size_t count = ia->read.in.size;
881 size_t num_read = args->out_args[0].size;
882 struct address_space *mapping = NULL;
883
884 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
885 mapping = ap->pages[i]->mapping;
886
887 if (mapping) {
888 struct inode *inode = mapping->host;
889
890 /*
891 * Short read means EOF. If file size is larger, truncate it
892 */
893 if (!err && num_read < count)
894 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
895
896 fuse_invalidate_atime(inode);
897 }
898
899 for (i = 0; i < ap->num_pages; i++) {
900 struct page *page = ap->pages[i];
901
902 if (!err)
903 SetPageUptodate(page);
904 else
905 SetPageError(page);
906 unlock_page(page);
907 put_page(page);
908 }
909 if (ia->ff)
910 fuse_file_put(ia->ff, false, false);
911
912 fuse_io_free(ia);
913 }
914
915 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
916 {
917 struct fuse_file *ff = file->private_data;
918 struct fuse_mount *fm = ff->fm;
919 struct fuse_args_pages *ap = &ia->ap;
920 loff_t pos = page_offset(ap->pages[0]);
921 size_t count = ap->num_pages << PAGE_SHIFT;
922 ssize_t res;
923 int err;
924
925 ap->args.out_pages = true;
926 ap->args.page_zeroing = true;
927 ap->args.page_replace = true;
928
929 /* Don't overflow end offset */
930 if (pos + (count - 1) == LLONG_MAX) {
931 count--;
932 ap->descs[ap->num_pages - 1].length--;
933 }
934 WARN_ON((loff_t) (pos + count) < 0);
935
936 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
937 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
938 if (fm->fc->async_read) {
939 ia->ff = fuse_file_get(ff);
940 ap->args.end = fuse_readpages_end;
941 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
942 if (!err)
943 return;
944 } else {
945 res = fuse_simple_request(fm, &ap->args);
946 err = res < 0 ? res : 0;
947 }
948 fuse_readpages_end(fm, &ap->args, err);
949 }
950
951 static void fuse_readahead(struct readahead_control *rac)
952 {
953 struct inode *inode = rac->mapping->host;
954 struct fuse_conn *fc = get_fuse_conn(inode);
955 unsigned int i, max_pages, nr_pages = 0;
956
957 if (fuse_is_bad(inode))
958 return;
959
960 max_pages = min_t(unsigned int, fc->max_pages,
961 fc->max_read / PAGE_SIZE);
962
963 for (;;) {
964 struct fuse_io_args *ia;
965 struct fuse_args_pages *ap;
966
967 nr_pages = readahead_count(rac) - nr_pages;
968 if (nr_pages > max_pages)
969 nr_pages = max_pages;
970 if (nr_pages == 0)
971 break;
972 ia = fuse_io_alloc(NULL, nr_pages);
973 if (!ia)
974 return;
975 ap = &ia->ap;
976 nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
977 for (i = 0; i < nr_pages; i++) {
978 fuse_wait_on_page_writeback(inode,
979 readahead_index(rac) + i);
980 ap->descs[i].length = PAGE_SIZE;
981 }
982 ap->num_pages = nr_pages;
983 fuse_send_readpages(ia, rac->file);
984 }
985 }
986
987 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
988 {
989 struct inode *inode = iocb->ki_filp->f_mapping->host;
990 struct fuse_conn *fc = get_fuse_conn(inode);
991
992 /*
993 * In auto invalidate mode, always update attributes on read.
994 * Otherwise, only update if we attempt to read past EOF (to ensure
995 * i_size is up to date).
996 */
997 if (fc->auto_inval_data ||
998 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
999 int err;
1000 err = fuse_update_attributes(inode, iocb->ki_filp);
1001 if (err)
1002 return err;
1003 }
1004
1005 return generic_file_read_iter(iocb, to);
1006 }
1007
1008 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1009 loff_t pos, size_t count)
1010 {
1011 struct fuse_args *args = &ia->ap.args;
1012
1013 ia->write.in.fh = ff->fh;
1014 ia->write.in.offset = pos;
1015 ia->write.in.size = count;
1016 args->opcode = FUSE_WRITE;
1017 args->nodeid = ff->nodeid;
1018 args->in_numargs = 2;
1019 if (ff->fm->fc->minor < 9)
1020 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1021 else
1022 args->in_args[0].size = sizeof(ia->write.in);
1023 args->in_args[0].value = &ia->write.in;
1024 args->in_args[1].size = count;
1025 args->out_numargs = 1;
1026 args->out_args[0].size = sizeof(ia->write.out);
1027 args->out_args[0].value = &ia->write.out;
1028 }
1029
1030 static unsigned int fuse_write_flags(struct kiocb *iocb)
1031 {
1032 unsigned int flags = iocb->ki_filp->f_flags;
1033
1034 if (iocb->ki_flags & IOCB_DSYNC)
1035 flags |= O_DSYNC;
1036 if (iocb->ki_flags & IOCB_SYNC)
1037 flags |= O_SYNC;
1038
1039 return flags;
1040 }
1041
1042 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1043 size_t count, fl_owner_t owner)
1044 {
1045 struct kiocb *iocb = ia->io->iocb;
1046 struct file *file = iocb->ki_filp;
1047 struct fuse_file *ff = file->private_data;
1048 struct fuse_mount *fm = ff->fm;
1049 struct fuse_write_in *inarg = &ia->write.in;
1050 ssize_t err;
1051
1052 fuse_write_args_fill(ia, ff, pos, count);
1053 inarg->flags = fuse_write_flags(iocb);
1054 if (owner != NULL) {
1055 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1056 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1057 }
1058
1059 if (ia->io->async)
1060 return fuse_async_req_send(fm, ia, count);
1061
1062 err = fuse_simple_request(fm, &ia->ap.args);
1063 if (!err && ia->write.out.size > count)
1064 err = -EIO;
1065
1066 return err ?: ia->write.out.size;
1067 }
1068
1069 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1070 {
1071 struct fuse_conn *fc = get_fuse_conn(inode);
1072 struct fuse_inode *fi = get_fuse_inode(inode);
1073 bool ret = false;
1074
1075 spin_lock(&fi->lock);
1076 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1077 if (written > 0 && pos > inode->i_size) {
1078 i_size_write(inode, pos);
1079 ret = true;
1080 }
1081 spin_unlock(&fi->lock);
1082
1083 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1084
1085 return ret;
1086 }
1087
1088 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1089 struct kiocb *iocb, struct inode *inode,
1090 loff_t pos, size_t count)
1091 {
1092 struct fuse_args_pages *ap = &ia->ap;
1093 struct file *file = iocb->ki_filp;
1094 struct fuse_file *ff = file->private_data;
1095 struct fuse_mount *fm = ff->fm;
1096 unsigned int offset, i;
1097 bool short_write;
1098 int err;
1099
1100 for (i = 0; i < ap->num_pages; i++)
1101 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1102
1103 fuse_write_args_fill(ia, ff, pos, count);
1104 ia->write.in.flags = fuse_write_flags(iocb);
1105 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1106 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1107
1108 err = fuse_simple_request(fm, &ap->args);
1109 if (!err && ia->write.out.size > count)
1110 err = -EIO;
1111
1112 short_write = ia->write.out.size < count;
1113 offset = ap->descs[0].offset;
1114 count = ia->write.out.size;
1115 for (i = 0; i < ap->num_pages; i++) {
1116 struct page *page = ap->pages[i];
1117
1118 if (err) {
1119 ClearPageUptodate(page);
1120 } else {
1121 if (count >= PAGE_SIZE - offset)
1122 count -= PAGE_SIZE - offset;
1123 else {
1124 if (short_write)
1125 ClearPageUptodate(page);
1126 count = 0;
1127 }
1128 offset = 0;
1129 }
1130 if (ia->write.page_locked && (i == ap->num_pages - 1))
1131 unlock_page(page);
1132 put_page(page);
1133 }
1134
1135 return err;
1136 }
1137
1138 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1139 struct address_space *mapping,
1140 struct iov_iter *ii, loff_t pos,
1141 unsigned int max_pages)
1142 {
1143 struct fuse_args_pages *ap = &ia->ap;
1144 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1145 unsigned offset = pos & (PAGE_SIZE - 1);
1146 size_t count = 0;
1147 int err;
1148
1149 ap->args.in_pages = true;
1150 ap->descs[0].offset = offset;
1151
1152 do {
1153 size_t tmp;
1154 struct page *page;
1155 pgoff_t index = pos >> PAGE_SHIFT;
1156 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1157 iov_iter_count(ii));
1158
1159 bytes = min_t(size_t, bytes, fc->max_write - count);
1160
1161 again:
1162 err = -EFAULT;
1163 if (iov_iter_fault_in_readable(ii, bytes))
1164 break;
1165
1166 err = -ENOMEM;
1167 page = grab_cache_page_write_begin(mapping, index, 0);
1168 if (!page)
1169 break;
1170
1171 if (mapping_writably_mapped(mapping))
1172 flush_dcache_page(page);
1173
1174 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1175 flush_dcache_page(page);
1176
1177 if (!tmp) {
1178 unlock_page(page);
1179 put_page(page);
1180 goto again;
1181 }
1182
1183 err = 0;
1184 ap->pages[ap->num_pages] = page;
1185 ap->descs[ap->num_pages].length = tmp;
1186 ap->num_pages++;
1187
1188 count += tmp;
1189 pos += tmp;
1190 offset += tmp;
1191 if (offset == PAGE_SIZE)
1192 offset = 0;
1193
1194 /* If we copied full page, mark it uptodate */
1195 if (tmp == PAGE_SIZE)
1196 SetPageUptodate(page);
1197
1198 if (PageUptodate(page)) {
1199 unlock_page(page);
1200 } else {
1201 ia->write.page_locked = true;
1202 break;
1203 }
1204 if (!fc->big_writes)
1205 break;
1206 } while (iov_iter_count(ii) && count < fc->max_write &&
1207 ap->num_pages < max_pages && offset == 0);
1208
1209 return count > 0 ? count : err;
1210 }
1211
1212 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1213 unsigned int max_pages)
1214 {
1215 return min_t(unsigned int,
1216 ((pos + len - 1) >> PAGE_SHIFT) -
1217 (pos >> PAGE_SHIFT) + 1,
1218 max_pages);
1219 }
1220
1221 static ssize_t fuse_perform_write(struct kiocb *iocb,
1222 struct address_space *mapping,
1223 struct iov_iter *ii, loff_t pos)
1224 {
1225 struct inode *inode = mapping->host;
1226 struct fuse_conn *fc = get_fuse_conn(inode);
1227 struct fuse_inode *fi = get_fuse_inode(inode);
1228 int err = 0;
1229 ssize_t res = 0;
1230
1231 if (inode->i_size < pos + iov_iter_count(ii))
1232 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1233
1234 do {
1235 ssize_t count;
1236 struct fuse_io_args ia = {};
1237 struct fuse_args_pages *ap = &ia.ap;
1238 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1239 fc->max_pages);
1240
1241 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1242 if (!ap->pages) {
1243 err = -ENOMEM;
1244 break;
1245 }
1246
1247 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1248 if (count <= 0) {
1249 err = count;
1250 } else {
1251 err = fuse_send_write_pages(&ia, iocb, inode,
1252 pos, count);
1253 if (!err) {
1254 size_t num_written = ia.write.out.size;
1255
1256 res += num_written;
1257 pos += num_written;
1258
1259 /* break out of the loop on short write */
1260 if (num_written != count)
1261 err = -EIO;
1262 }
1263 }
1264 kfree(ap->pages);
1265 } while (!err && iov_iter_count(ii));
1266
1267 fuse_write_update_attr(inode, pos, res);
1268 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1269
1270 return res > 0 ? res : err;
1271 }
1272
1273 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1274 {
1275 struct file *file = iocb->ki_filp;
1276 struct address_space *mapping = file->f_mapping;
1277 ssize_t written = 0;
1278 ssize_t written_buffered = 0;
1279 struct inode *inode = mapping->host;
1280 ssize_t err;
1281 struct fuse_conn *fc = get_fuse_conn(inode);
1282 loff_t endbyte = 0;
1283
1284 if (fc->writeback_cache) {
1285 /* Update size (EOF optimization) and mode (SUID clearing) */
1286 err = fuse_update_attributes(mapping->host, file);
1287 if (err)
1288 return err;
1289
1290 if (fc->handle_killpriv_v2 &&
1291 should_remove_suid(file_dentry(file))) {
1292 goto writethrough;
1293 }
1294
1295 return generic_file_write_iter(iocb, from);
1296 }
1297
1298 writethrough:
1299 inode_lock(inode);
1300
1301 /* We can write back this queue in page reclaim */
1302 current->backing_dev_info = inode_to_bdi(inode);
1303
1304 err = generic_write_checks(iocb, from);
1305 if (err <= 0)
1306 goto out;
1307
1308 err = file_remove_privs(file);
1309 if (err)
1310 goto out;
1311
1312 err = file_update_time(file);
1313 if (err)
1314 goto out;
1315
1316 if (iocb->ki_flags & IOCB_DIRECT) {
1317 loff_t pos = iocb->ki_pos;
1318 written = generic_file_direct_write(iocb, from);
1319 if (written < 0 || !iov_iter_count(from))
1320 goto out;
1321
1322 pos += written;
1323
1324 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1325 if (written_buffered < 0) {
1326 err = written_buffered;
1327 goto out;
1328 }
1329 endbyte = pos + written_buffered - 1;
1330
1331 err = filemap_write_and_wait_range(file->f_mapping, pos,
1332 endbyte);
1333 if (err)
1334 goto out;
1335
1336 invalidate_mapping_pages(file->f_mapping,
1337 pos >> PAGE_SHIFT,
1338 endbyte >> PAGE_SHIFT);
1339
1340 written += written_buffered;
1341 iocb->ki_pos = pos + written_buffered;
1342 } else {
1343 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1344 if (written >= 0)
1345 iocb->ki_pos += written;
1346 }
1347 out:
1348 current->backing_dev_info = NULL;
1349 inode_unlock(inode);
1350 if (written > 0)
1351 written = generic_write_sync(iocb, written);
1352
1353 return written ? written : err;
1354 }
1355
1356 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1357 {
1358 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1359 }
1360
1361 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1362 size_t max_size)
1363 {
1364 return min(iov_iter_single_seg_count(ii), max_size);
1365 }
1366
1367 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1368 size_t *nbytesp, int write,
1369 unsigned int max_pages)
1370 {
1371 size_t nbytes = 0; /* # bytes already packed in req */
1372 ssize_t ret = 0;
1373
1374 /* Special case for kernel I/O: can copy directly into the buffer */
1375 if (iov_iter_is_kvec(ii)) {
1376 unsigned long user_addr = fuse_get_user_addr(ii);
1377 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1378
1379 if (write)
1380 ap->args.in_args[1].value = (void *) user_addr;
1381 else
1382 ap->args.out_args[0].value = (void *) user_addr;
1383
1384 iov_iter_advance(ii, frag_size);
1385 *nbytesp = frag_size;
1386 return 0;
1387 }
1388
1389 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1390 unsigned npages;
1391 size_t start;
1392 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1393 *nbytesp - nbytes,
1394 max_pages - ap->num_pages,
1395 &start);
1396 if (ret < 0)
1397 break;
1398
1399 iov_iter_advance(ii, ret);
1400 nbytes += ret;
1401
1402 ret += start;
1403 npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1404
1405 ap->descs[ap->num_pages].offset = start;
1406 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1407
1408 ap->num_pages += npages;
1409 ap->descs[ap->num_pages - 1].length -=
1410 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1411 }
1412
1413 if (write)
1414 ap->args.in_pages = true;
1415 else
1416 ap->args.out_pages = true;
1417
1418 *nbytesp = nbytes;
1419
1420 return ret < 0 ? ret : 0;
1421 }
1422
1423 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1424 loff_t *ppos, int flags)
1425 {
1426 int write = flags & FUSE_DIO_WRITE;
1427 int cuse = flags & FUSE_DIO_CUSE;
1428 struct file *file = io->iocb->ki_filp;
1429 struct inode *inode = file->f_mapping->host;
1430 struct fuse_file *ff = file->private_data;
1431 struct fuse_conn *fc = ff->fm->fc;
1432 size_t nmax = write ? fc->max_write : fc->max_read;
1433 loff_t pos = *ppos;
1434 size_t count = iov_iter_count(iter);
1435 pgoff_t idx_from = pos >> PAGE_SHIFT;
1436 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1437 ssize_t res = 0;
1438 int err = 0;
1439 struct fuse_io_args *ia;
1440 unsigned int max_pages;
1441
1442 max_pages = iov_iter_npages(iter, fc->max_pages);
1443 ia = fuse_io_alloc(io, max_pages);
1444 if (!ia)
1445 return -ENOMEM;
1446
1447 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1448 if (!write)
1449 inode_lock(inode);
1450 fuse_sync_writes(inode);
1451 if (!write)
1452 inode_unlock(inode);
1453 }
1454
1455 io->should_dirty = !write && iter_is_iovec(iter);
1456 while (count) {
1457 ssize_t nres;
1458 fl_owner_t owner = current->files;
1459 size_t nbytes = min(count, nmax);
1460
1461 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1462 max_pages);
1463 if (err && !nbytes)
1464 break;
1465
1466 if (write) {
1467 if (!capable(CAP_FSETID))
1468 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1469
1470 nres = fuse_send_write(ia, pos, nbytes, owner);
1471 } else {
1472 nres = fuse_send_read(ia, pos, nbytes, owner);
1473 }
1474
1475 if (!io->async || nres < 0) {
1476 fuse_release_user_pages(&ia->ap, io->should_dirty);
1477 fuse_io_free(ia);
1478 }
1479 ia = NULL;
1480 if (nres < 0) {
1481 iov_iter_revert(iter, nbytes);
1482 err = nres;
1483 break;
1484 }
1485 WARN_ON(nres > nbytes);
1486
1487 count -= nres;
1488 res += nres;
1489 pos += nres;
1490 if (nres != nbytes) {
1491 iov_iter_revert(iter, nbytes - nres);
1492 break;
1493 }
1494 if (count) {
1495 max_pages = iov_iter_npages(iter, fc->max_pages);
1496 ia = fuse_io_alloc(io, max_pages);
1497 if (!ia)
1498 break;
1499 }
1500 }
1501 if (ia)
1502 fuse_io_free(ia);
1503 if (res > 0)
1504 *ppos = pos;
1505
1506 return res > 0 ? res : err;
1507 }
1508 EXPORT_SYMBOL_GPL(fuse_direct_io);
1509
1510 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1511 struct iov_iter *iter,
1512 loff_t *ppos)
1513 {
1514 ssize_t res;
1515 struct inode *inode = file_inode(io->iocb->ki_filp);
1516
1517 res = fuse_direct_io(io, iter, ppos, 0);
1518
1519 fuse_invalidate_atime(inode);
1520
1521 return res;
1522 }
1523
1524 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1525
1526 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1527 {
1528 ssize_t res;
1529
1530 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1531 res = fuse_direct_IO(iocb, to);
1532 } else {
1533 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1534
1535 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1536 }
1537
1538 return res;
1539 }
1540
1541 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1542 {
1543 struct inode *inode = file_inode(iocb->ki_filp);
1544 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1545 ssize_t res;
1546
1547 /* Don't allow parallel writes to the same file */
1548 inode_lock(inode);
1549 res = generic_write_checks(iocb, from);
1550 if (res > 0) {
1551 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1552 res = fuse_direct_IO(iocb, from);
1553 } else {
1554 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1555 FUSE_DIO_WRITE);
1556 fuse_write_update_attr(inode, iocb->ki_pos, res);
1557 }
1558 }
1559 inode_unlock(inode);
1560
1561 return res;
1562 }
1563
1564 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1565 {
1566 struct file *file = iocb->ki_filp;
1567 struct fuse_file *ff = file->private_data;
1568 struct inode *inode = file_inode(file);
1569
1570 if (fuse_is_bad(inode))
1571 return -EIO;
1572
1573 if (FUSE_IS_DAX(inode))
1574 return fuse_dax_read_iter(iocb, to);
1575
1576 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1577 return fuse_cache_read_iter(iocb, to);
1578 else
1579 return fuse_direct_read_iter(iocb, to);
1580 }
1581
1582 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1583 {
1584 struct file *file = iocb->ki_filp;
1585 struct fuse_file *ff = file->private_data;
1586 struct inode *inode = file_inode(file);
1587
1588 if (fuse_is_bad(inode))
1589 return -EIO;
1590
1591 if (FUSE_IS_DAX(inode))
1592 return fuse_dax_write_iter(iocb, from);
1593
1594 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1595 return fuse_cache_write_iter(iocb, from);
1596 else
1597 return fuse_direct_write_iter(iocb, from);
1598 }
1599
1600 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1601 {
1602 struct fuse_args_pages *ap = &wpa->ia.ap;
1603 int i;
1604
1605 if (wpa->bucket)
1606 fuse_sync_bucket_dec(wpa->bucket);
1607
1608 for (i = 0; i < ap->num_pages; i++)
1609 __free_page(ap->pages[i]);
1610
1611 if (wpa->ia.ff)
1612 fuse_file_put(wpa->ia.ff, false, false);
1613
1614 kfree(ap->pages);
1615 kfree(wpa);
1616 }
1617
1618 static void fuse_writepage_finish(struct fuse_mount *fm,
1619 struct fuse_writepage_args *wpa)
1620 {
1621 struct fuse_args_pages *ap = &wpa->ia.ap;
1622 struct inode *inode = wpa->inode;
1623 struct fuse_inode *fi = get_fuse_inode(inode);
1624 struct backing_dev_info *bdi = inode_to_bdi(inode);
1625 int i;
1626
1627 for (i = 0; i < ap->num_pages; i++) {
1628 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1629 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1630 wb_writeout_inc(&bdi->wb);
1631 }
1632 wake_up(&fi->page_waitq);
1633 }
1634
1635 /* Called under fi->lock, may release and reacquire it */
1636 static void fuse_send_writepage(struct fuse_mount *fm,
1637 struct fuse_writepage_args *wpa, loff_t size)
1638 __releases(fi->lock)
1639 __acquires(fi->lock)
1640 {
1641 struct fuse_writepage_args *aux, *next;
1642 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1643 struct fuse_write_in *inarg = &wpa->ia.write.in;
1644 struct fuse_args *args = &wpa->ia.ap.args;
1645 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1646 int err;
1647
1648 fi->writectr++;
1649 if (inarg->offset + data_size <= size) {
1650 inarg->size = data_size;
1651 } else if (inarg->offset < size) {
1652 inarg->size = size - inarg->offset;
1653 } else {
1654 /* Got truncated off completely */
1655 goto out_free;
1656 }
1657
1658 args->in_args[1].size = inarg->size;
1659 args->force = true;
1660 args->nocreds = true;
1661
1662 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1663 if (err == -ENOMEM) {
1664 spin_unlock(&fi->lock);
1665 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1666 spin_lock(&fi->lock);
1667 }
1668
1669 /* Fails on broken connection only */
1670 if (unlikely(err))
1671 goto out_free;
1672
1673 return;
1674
1675 out_free:
1676 fi->writectr--;
1677 rb_erase(&wpa->writepages_entry, &fi->writepages);
1678 fuse_writepage_finish(fm, wpa);
1679 spin_unlock(&fi->lock);
1680
1681 /* After fuse_writepage_finish() aux request list is private */
1682 for (aux = wpa->next; aux; aux = next) {
1683 next = aux->next;
1684 aux->next = NULL;
1685 fuse_writepage_free(aux);
1686 }
1687
1688 fuse_writepage_free(wpa);
1689 spin_lock(&fi->lock);
1690 }
1691
1692 /*
1693 * If fi->writectr is positive (no truncate or fsync going on) send
1694 * all queued writepage requests.
1695 *
1696 * Called with fi->lock
1697 */
1698 void fuse_flush_writepages(struct inode *inode)
1699 __releases(fi->lock)
1700 __acquires(fi->lock)
1701 {
1702 struct fuse_mount *fm = get_fuse_mount(inode);
1703 struct fuse_inode *fi = get_fuse_inode(inode);
1704 loff_t crop = i_size_read(inode);
1705 struct fuse_writepage_args *wpa;
1706
1707 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1708 wpa = list_entry(fi->queued_writes.next,
1709 struct fuse_writepage_args, queue_entry);
1710 list_del_init(&wpa->queue_entry);
1711 fuse_send_writepage(fm, wpa, crop);
1712 }
1713 }
1714
1715 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1716 struct fuse_writepage_args *wpa)
1717 {
1718 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1719 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1720 struct rb_node **p = &root->rb_node;
1721 struct rb_node *parent = NULL;
1722
1723 WARN_ON(!wpa->ia.ap.num_pages);
1724 while (*p) {
1725 struct fuse_writepage_args *curr;
1726 pgoff_t curr_index;
1727
1728 parent = *p;
1729 curr = rb_entry(parent, struct fuse_writepage_args,
1730 writepages_entry);
1731 WARN_ON(curr->inode != wpa->inode);
1732 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1733
1734 if (idx_from >= curr_index + curr->ia.ap.num_pages)
1735 p = &(*p)->rb_right;
1736 else if (idx_to < curr_index)
1737 p = &(*p)->rb_left;
1738 else
1739 return curr;
1740 }
1741
1742 rb_link_node(&wpa->writepages_entry, parent, p);
1743 rb_insert_color(&wpa->writepages_entry, root);
1744 return NULL;
1745 }
1746
1747 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1748 {
1749 WARN_ON(fuse_insert_writeback(root, wpa));
1750 }
1751
1752 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1753 int error)
1754 {
1755 struct fuse_writepage_args *wpa =
1756 container_of(args, typeof(*wpa), ia.ap.args);
1757 struct inode *inode = wpa->inode;
1758 struct fuse_inode *fi = get_fuse_inode(inode);
1759 struct fuse_conn *fc = get_fuse_conn(inode);
1760
1761 mapping_set_error(inode->i_mapping, error);
1762 /*
1763 * A writeback finished and this might have updated mtime/ctime on
1764 * server making local mtime/ctime stale. Hence invalidate attrs.
1765 * Do this only if writeback_cache is not enabled. If writeback_cache
1766 * is enabled, we trust local ctime/mtime.
1767 */
1768 if (!fc->writeback_cache)
1769 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1770 spin_lock(&fi->lock);
1771 rb_erase(&wpa->writepages_entry, &fi->writepages);
1772 while (wpa->next) {
1773 struct fuse_mount *fm = get_fuse_mount(inode);
1774 struct fuse_write_in *inarg = &wpa->ia.write.in;
1775 struct fuse_writepage_args *next = wpa->next;
1776
1777 wpa->next = next->next;
1778 next->next = NULL;
1779 next->ia.ff = fuse_file_get(wpa->ia.ff);
1780 tree_insert(&fi->writepages, next);
1781
1782 /*
1783 * Skip fuse_flush_writepages() to make it easy to crop requests
1784 * based on primary request size.
1785 *
1786 * 1st case (trivial): there are no concurrent activities using
1787 * fuse_set/release_nowrite. Then we're on safe side because
1788 * fuse_flush_writepages() would call fuse_send_writepage()
1789 * anyway.
1790 *
1791 * 2nd case: someone called fuse_set_nowrite and it is waiting
1792 * now for completion of all in-flight requests. This happens
1793 * rarely and no more than once per page, so this should be
1794 * okay.
1795 *
1796 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1797 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1798 * that fuse_set_nowrite returned implies that all in-flight
1799 * requests were completed along with all of their secondary
1800 * requests. Further primary requests are blocked by negative
1801 * writectr. Hence there cannot be any in-flight requests and
1802 * no invocations of fuse_writepage_end() while we're in
1803 * fuse_set_nowrite..fuse_release_nowrite section.
1804 */
1805 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1806 }
1807 fi->writectr--;
1808 fuse_writepage_finish(fm, wpa);
1809 spin_unlock(&fi->lock);
1810 fuse_writepage_free(wpa);
1811 }
1812
1813 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1814 {
1815 struct fuse_file *ff;
1816
1817 spin_lock(&fi->lock);
1818 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1819 write_entry);
1820 if (ff)
1821 fuse_file_get(ff);
1822 spin_unlock(&fi->lock);
1823
1824 return ff;
1825 }
1826
1827 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1828 {
1829 struct fuse_file *ff = __fuse_write_file_get(fi);
1830 WARN_ON(!ff);
1831 return ff;
1832 }
1833
1834 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1835 {
1836 struct fuse_inode *fi = get_fuse_inode(inode);
1837 struct fuse_file *ff;
1838 int err;
1839
1840 /*
1841 * Inode is always written before the last reference is dropped and
1842 * hence this should not be reached from reclaim.
1843 *
1844 * Writing back the inode from reclaim can deadlock if the request
1845 * processing itself needs an allocation. Allocations triggering
1846 * reclaim while serving a request can't be prevented, because it can
1847 * involve any number of unrelated userspace processes.
1848 */
1849 WARN_ON(wbc->for_reclaim);
1850
1851 ff = __fuse_write_file_get(fi);
1852 err = fuse_flush_times(inode, ff);
1853 if (ff)
1854 fuse_file_put(ff, false, false);
1855
1856 return err;
1857 }
1858
1859 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1860 {
1861 struct fuse_writepage_args *wpa;
1862 struct fuse_args_pages *ap;
1863
1864 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1865 if (wpa) {
1866 ap = &wpa->ia.ap;
1867 ap->num_pages = 0;
1868 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1869 if (!ap->pages) {
1870 kfree(wpa);
1871 wpa = NULL;
1872 }
1873 }
1874 return wpa;
1875
1876 }
1877
1878 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
1879 struct fuse_writepage_args *wpa)
1880 {
1881 if (!fc->sync_fs)
1882 return;
1883
1884 rcu_read_lock();
1885 /* Prevent resurrection of dead bucket in unlikely race with syncfs */
1886 do {
1887 wpa->bucket = rcu_dereference(fc->curr_bucket);
1888 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
1889 rcu_read_unlock();
1890 }
1891
1892 static int fuse_writepage_locked(struct page *page)
1893 {
1894 struct address_space *mapping = page->mapping;
1895 struct inode *inode = mapping->host;
1896 struct fuse_conn *fc = get_fuse_conn(inode);
1897 struct fuse_inode *fi = get_fuse_inode(inode);
1898 struct fuse_writepage_args *wpa;
1899 struct fuse_args_pages *ap;
1900 struct page *tmp_page;
1901 int error = -ENOMEM;
1902
1903 set_page_writeback(page);
1904
1905 wpa = fuse_writepage_args_alloc();
1906 if (!wpa)
1907 goto err;
1908 ap = &wpa->ia.ap;
1909
1910 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1911 if (!tmp_page)
1912 goto err_free;
1913
1914 error = -EIO;
1915 wpa->ia.ff = fuse_write_file_get(fi);
1916 if (!wpa->ia.ff)
1917 goto err_nofile;
1918
1919 fuse_writepage_add_to_bucket(fc, wpa);
1920 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1921
1922 copy_highpage(tmp_page, page);
1923 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1924 wpa->next = NULL;
1925 ap->args.in_pages = true;
1926 ap->num_pages = 1;
1927 ap->pages[0] = tmp_page;
1928 ap->descs[0].offset = 0;
1929 ap->descs[0].length = PAGE_SIZE;
1930 ap->args.end = fuse_writepage_end;
1931 wpa->inode = inode;
1932
1933 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1934 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1935
1936 spin_lock(&fi->lock);
1937 tree_insert(&fi->writepages, wpa);
1938 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1939 fuse_flush_writepages(inode);
1940 spin_unlock(&fi->lock);
1941
1942 end_page_writeback(page);
1943
1944 return 0;
1945
1946 err_nofile:
1947 __free_page(tmp_page);
1948 err_free:
1949 kfree(wpa);
1950 err:
1951 mapping_set_error(page->mapping, error);
1952 end_page_writeback(page);
1953 return error;
1954 }
1955
1956 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1957 {
1958 int err;
1959
1960 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1961 /*
1962 * ->writepages() should be called for sync() and friends. We
1963 * should only get here on direct reclaim and then we are
1964 * allowed to skip a page which is already in flight
1965 */
1966 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1967
1968 redirty_page_for_writepage(wbc, page);
1969 unlock_page(page);
1970 return 0;
1971 }
1972
1973 err = fuse_writepage_locked(page);
1974 unlock_page(page);
1975
1976 return err;
1977 }
1978
1979 struct fuse_fill_wb_data {
1980 struct fuse_writepage_args *wpa;
1981 struct fuse_file *ff;
1982 struct inode *inode;
1983 struct page **orig_pages;
1984 unsigned int max_pages;
1985 };
1986
1987 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1988 {
1989 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1990 struct fuse_conn *fc = get_fuse_conn(data->inode);
1991 struct page **pages;
1992 struct fuse_page_desc *descs;
1993 unsigned int npages = min_t(unsigned int,
1994 max_t(unsigned int, data->max_pages * 2,
1995 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1996 fc->max_pages);
1997 WARN_ON(npages <= data->max_pages);
1998
1999 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2000 if (!pages)
2001 return false;
2002
2003 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2004 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2005 kfree(ap->pages);
2006 ap->pages = pages;
2007 ap->descs = descs;
2008 data->max_pages = npages;
2009
2010 return true;
2011 }
2012
2013 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2014 {
2015 struct fuse_writepage_args *wpa = data->wpa;
2016 struct inode *inode = data->inode;
2017 struct fuse_inode *fi = get_fuse_inode(inode);
2018 int num_pages = wpa->ia.ap.num_pages;
2019 int i;
2020
2021 wpa->ia.ff = fuse_file_get(data->ff);
2022 spin_lock(&fi->lock);
2023 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2024 fuse_flush_writepages(inode);
2025 spin_unlock(&fi->lock);
2026
2027 for (i = 0; i < num_pages; i++)
2028 end_page_writeback(data->orig_pages[i]);
2029 }
2030
2031 /*
2032 * Check under fi->lock if the page is under writeback, and insert it onto the
2033 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2034 * one already added for a page at this offset. If there's none, then insert
2035 * this new request onto the auxiliary list, otherwise reuse the existing one by
2036 * swapping the new temp page with the old one.
2037 */
2038 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2039 struct page *page)
2040 {
2041 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2042 struct fuse_writepage_args *tmp;
2043 struct fuse_writepage_args *old_wpa;
2044 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2045
2046 WARN_ON(new_ap->num_pages != 0);
2047 new_ap->num_pages = 1;
2048
2049 spin_lock(&fi->lock);
2050 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2051 if (!old_wpa) {
2052 spin_unlock(&fi->lock);
2053 return true;
2054 }
2055
2056 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2057 pgoff_t curr_index;
2058
2059 WARN_ON(tmp->inode != new_wpa->inode);
2060 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2061 if (curr_index == page->index) {
2062 WARN_ON(tmp->ia.ap.num_pages != 1);
2063 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2064 break;
2065 }
2066 }
2067
2068 if (!tmp) {
2069 new_wpa->next = old_wpa->next;
2070 old_wpa->next = new_wpa;
2071 }
2072
2073 spin_unlock(&fi->lock);
2074
2075 if (tmp) {
2076 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2077
2078 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2079 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2080 wb_writeout_inc(&bdi->wb);
2081 fuse_writepage_free(new_wpa);
2082 }
2083
2084 return false;
2085 }
2086
2087 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2088 struct fuse_args_pages *ap,
2089 struct fuse_fill_wb_data *data)
2090 {
2091 WARN_ON(!ap->num_pages);
2092
2093 /*
2094 * Being under writeback is unlikely but possible. For example direct
2095 * read to an mmaped fuse file will set the page dirty twice; once when
2096 * the pages are faulted with get_user_pages(), and then after the read
2097 * completed.
2098 */
2099 if (fuse_page_is_writeback(data->inode, page->index))
2100 return true;
2101
2102 /* Reached max pages */
2103 if (ap->num_pages == fc->max_pages)
2104 return true;
2105
2106 /* Reached max write bytes */
2107 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2108 return true;
2109
2110 /* Discontinuity */
2111 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2112 return true;
2113
2114 /* Need to grow the pages array? If so, did the expansion fail? */
2115 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2116 return true;
2117
2118 return false;
2119 }
2120
2121 static int fuse_writepages_fill(struct page *page,
2122 struct writeback_control *wbc, void *_data)
2123 {
2124 struct fuse_fill_wb_data *data = _data;
2125 struct fuse_writepage_args *wpa = data->wpa;
2126 struct fuse_args_pages *ap = &wpa->ia.ap;
2127 struct inode *inode = data->inode;
2128 struct fuse_inode *fi = get_fuse_inode(inode);
2129 struct fuse_conn *fc = get_fuse_conn(inode);
2130 struct page *tmp_page;
2131 int err;
2132
2133 if (!data->ff) {
2134 err = -EIO;
2135 data->ff = fuse_write_file_get(fi);
2136 if (!data->ff)
2137 goto out_unlock;
2138 }
2139
2140 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2141 fuse_writepages_send(data);
2142 data->wpa = NULL;
2143 }
2144
2145 err = -ENOMEM;
2146 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2147 if (!tmp_page)
2148 goto out_unlock;
2149
2150 /*
2151 * The page must not be redirtied until the writeout is completed
2152 * (i.e. userspace has sent a reply to the write request). Otherwise
2153 * there could be more than one temporary page instance for each real
2154 * page.
2155 *
2156 * This is ensured by holding the page lock in page_mkwrite() while
2157 * checking fuse_page_is_writeback(). We already hold the page lock
2158 * since clear_page_dirty_for_io() and keep it held until we add the
2159 * request to the fi->writepages list and increment ap->num_pages.
2160 * After this fuse_page_is_writeback() will indicate that the page is
2161 * under writeback, so we can release the page lock.
2162 */
2163 if (data->wpa == NULL) {
2164 err = -ENOMEM;
2165 wpa = fuse_writepage_args_alloc();
2166 if (!wpa) {
2167 __free_page(tmp_page);
2168 goto out_unlock;
2169 }
2170 fuse_writepage_add_to_bucket(fc, wpa);
2171
2172 data->max_pages = 1;
2173
2174 ap = &wpa->ia.ap;
2175 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2176 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2177 wpa->next = NULL;
2178 ap->args.in_pages = true;
2179 ap->args.end = fuse_writepage_end;
2180 ap->num_pages = 0;
2181 wpa->inode = inode;
2182 }
2183 set_page_writeback(page);
2184
2185 copy_highpage(tmp_page, page);
2186 ap->pages[ap->num_pages] = tmp_page;
2187 ap->descs[ap->num_pages].offset = 0;
2188 ap->descs[ap->num_pages].length = PAGE_SIZE;
2189 data->orig_pages[ap->num_pages] = page;
2190
2191 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2192 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2193
2194 err = 0;
2195 if (data->wpa) {
2196 /*
2197 * Protected by fi->lock against concurrent access by
2198 * fuse_page_is_writeback().
2199 */
2200 spin_lock(&fi->lock);
2201 ap->num_pages++;
2202 spin_unlock(&fi->lock);
2203 } else if (fuse_writepage_add(wpa, page)) {
2204 data->wpa = wpa;
2205 } else {
2206 end_page_writeback(page);
2207 }
2208 out_unlock:
2209 unlock_page(page);
2210
2211 return err;
2212 }
2213
2214 static int fuse_writepages(struct address_space *mapping,
2215 struct writeback_control *wbc)
2216 {
2217 struct inode *inode = mapping->host;
2218 struct fuse_conn *fc = get_fuse_conn(inode);
2219 struct fuse_fill_wb_data data;
2220 int err;
2221
2222 err = -EIO;
2223 if (fuse_is_bad(inode))
2224 goto out;
2225
2226 data.inode = inode;
2227 data.wpa = NULL;
2228 data.ff = NULL;
2229
2230 err = -ENOMEM;
2231 data.orig_pages = kcalloc(fc->max_pages,
2232 sizeof(struct page *),
2233 GFP_NOFS);
2234 if (!data.orig_pages)
2235 goto out;
2236
2237 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2238 if (data.wpa) {
2239 WARN_ON(!data.wpa->ia.ap.num_pages);
2240 fuse_writepages_send(&data);
2241 }
2242 if (data.ff)
2243 fuse_file_put(data.ff, false, false);
2244
2245 kfree(data.orig_pages);
2246 out:
2247 return err;
2248 }
2249
2250 /*
2251 * It's worthy to make sure that space is reserved on disk for the write,
2252 * but how to implement it without killing performance need more thinking.
2253 */
2254 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2255 loff_t pos, unsigned len, unsigned flags,
2256 struct page **pagep, void **fsdata)
2257 {
2258 pgoff_t index = pos >> PAGE_SHIFT;
2259 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2260 struct page *page;
2261 loff_t fsize;
2262 int err = -ENOMEM;
2263
2264 WARN_ON(!fc->writeback_cache);
2265
2266 page = grab_cache_page_write_begin(mapping, index, flags);
2267 if (!page)
2268 goto error;
2269
2270 fuse_wait_on_page_writeback(mapping->host, page->index);
2271
2272 if (PageUptodate(page) || len == PAGE_SIZE)
2273 goto success;
2274 /*
2275 * Check if the start this page comes after the end of file, in which
2276 * case the readpage can be optimized away.
2277 */
2278 fsize = i_size_read(mapping->host);
2279 if (fsize <= (pos & PAGE_MASK)) {
2280 size_t off = pos & ~PAGE_MASK;
2281 if (off)
2282 zero_user_segment(page, 0, off);
2283 goto success;
2284 }
2285 err = fuse_do_readpage(file, page);
2286 if (err)
2287 goto cleanup;
2288 success:
2289 *pagep = page;
2290 return 0;
2291
2292 cleanup:
2293 unlock_page(page);
2294 put_page(page);
2295 error:
2296 return err;
2297 }
2298
2299 static int fuse_write_end(struct file *file, struct address_space *mapping,
2300 loff_t pos, unsigned len, unsigned copied,
2301 struct page *page, void *fsdata)
2302 {
2303 struct inode *inode = page->mapping->host;
2304
2305 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2306 if (!copied)
2307 goto unlock;
2308
2309 pos += copied;
2310 if (!PageUptodate(page)) {
2311 /* Zero any unwritten bytes at the end of the page */
2312 size_t endoff = pos & ~PAGE_MASK;
2313 if (endoff)
2314 zero_user_segment(page, endoff, PAGE_SIZE);
2315 SetPageUptodate(page);
2316 }
2317
2318 if (pos > inode->i_size)
2319 i_size_write(inode, pos);
2320
2321 set_page_dirty(page);
2322
2323 unlock:
2324 unlock_page(page);
2325 put_page(page);
2326
2327 return copied;
2328 }
2329
2330 static int fuse_launder_page(struct page *page)
2331 {
2332 int err = 0;
2333 if (clear_page_dirty_for_io(page)) {
2334 struct inode *inode = page->mapping->host;
2335
2336 /* Serialize with pending writeback for the same page */
2337 fuse_wait_on_page_writeback(inode, page->index);
2338 err = fuse_writepage_locked(page);
2339 if (!err)
2340 fuse_wait_on_page_writeback(inode, page->index);
2341 }
2342 return err;
2343 }
2344
2345 /*
2346 * Write back dirty data/metadata now (there may not be any suitable
2347 * open files later for data)
2348 */
2349 static void fuse_vma_close(struct vm_area_struct *vma)
2350 {
2351 int err;
2352
2353 err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2354 mapping_set_error(vma->vm_file->f_mapping, err);
2355 }
2356
2357 /*
2358 * Wait for writeback against this page to complete before allowing it
2359 * to be marked dirty again, and hence written back again, possibly
2360 * before the previous writepage completed.
2361 *
2362 * Block here, instead of in ->writepage(), so that the userspace fs
2363 * can only block processes actually operating on the filesystem.
2364 *
2365 * Otherwise unprivileged userspace fs would be able to block
2366 * unrelated:
2367 *
2368 * - page migration
2369 * - sync(2)
2370 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2371 */
2372 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2373 {
2374 struct page *page = vmf->page;
2375 struct inode *inode = file_inode(vmf->vma->vm_file);
2376
2377 file_update_time(vmf->vma->vm_file);
2378 lock_page(page);
2379 if (page->mapping != inode->i_mapping) {
2380 unlock_page(page);
2381 return VM_FAULT_NOPAGE;
2382 }
2383
2384 fuse_wait_on_page_writeback(inode, page->index);
2385 return VM_FAULT_LOCKED;
2386 }
2387
2388 static const struct vm_operations_struct fuse_file_vm_ops = {
2389 .close = fuse_vma_close,
2390 .fault = filemap_fault,
2391 .map_pages = filemap_map_pages,
2392 .page_mkwrite = fuse_page_mkwrite,
2393 };
2394
2395 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2396 {
2397 struct fuse_file *ff = file->private_data;
2398
2399 /* DAX mmap is superior to direct_io mmap */
2400 if (FUSE_IS_DAX(file_inode(file)))
2401 return fuse_dax_mmap(file, vma);
2402
2403 if (ff->open_flags & FOPEN_DIRECT_IO) {
2404 /* Can't provide the coherency needed for MAP_SHARED */
2405 if (vma->vm_flags & VM_MAYSHARE)
2406 return -ENODEV;
2407
2408 invalidate_inode_pages2(file->f_mapping);
2409
2410 return generic_file_mmap(file, vma);
2411 }
2412
2413 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2414 fuse_link_write_file(file);
2415
2416 file_accessed(file);
2417 vma->vm_ops = &fuse_file_vm_ops;
2418 return 0;
2419 }
2420
2421 static int convert_fuse_file_lock(struct fuse_conn *fc,
2422 const struct fuse_file_lock *ffl,
2423 struct file_lock *fl)
2424 {
2425 switch (ffl->type) {
2426 case F_UNLCK:
2427 break;
2428
2429 case F_RDLCK:
2430 case F_WRLCK:
2431 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2432 ffl->end < ffl->start)
2433 return -EIO;
2434
2435 fl->fl_start = ffl->start;
2436 fl->fl_end = ffl->end;
2437
2438 /*
2439 * Convert pid into init's pid namespace. The locks API will
2440 * translate it into the caller's pid namespace.
2441 */
2442 rcu_read_lock();
2443 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2444 rcu_read_unlock();
2445 break;
2446
2447 default:
2448 return -EIO;
2449 }
2450 fl->fl_type = ffl->type;
2451 return 0;
2452 }
2453
2454 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2455 const struct file_lock *fl, int opcode, pid_t pid,
2456 int flock, struct fuse_lk_in *inarg)
2457 {
2458 struct inode *inode = file_inode(file);
2459 struct fuse_conn *fc = get_fuse_conn(inode);
2460 struct fuse_file *ff = file->private_data;
2461
2462 memset(inarg, 0, sizeof(*inarg));
2463 inarg->fh = ff->fh;
2464 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2465 inarg->lk.start = fl->fl_start;
2466 inarg->lk.end = fl->fl_end;
2467 inarg->lk.type = fl->fl_type;
2468 inarg->lk.pid = pid;
2469 if (flock)
2470 inarg->lk_flags |= FUSE_LK_FLOCK;
2471 args->opcode = opcode;
2472 args->nodeid = get_node_id(inode);
2473 args->in_numargs = 1;
2474 args->in_args[0].size = sizeof(*inarg);
2475 args->in_args[0].value = inarg;
2476 }
2477
2478 static int fuse_getlk(struct file *file, struct file_lock *fl)
2479 {
2480 struct inode *inode = file_inode(file);
2481 struct fuse_mount *fm = get_fuse_mount(inode);
2482 FUSE_ARGS(args);
2483 struct fuse_lk_in inarg;
2484 struct fuse_lk_out outarg;
2485 int err;
2486
2487 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2488 args.out_numargs = 1;
2489 args.out_args[0].size = sizeof(outarg);
2490 args.out_args[0].value = &outarg;
2491 err = fuse_simple_request(fm, &args);
2492 if (!err)
2493 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2494
2495 return err;
2496 }
2497
2498 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2499 {
2500 struct inode *inode = file_inode(file);
2501 struct fuse_mount *fm = get_fuse_mount(inode);
2502 FUSE_ARGS(args);
2503 struct fuse_lk_in inarg;
2504 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2505 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2506 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2507 int err;
2508
2509 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2510 /* NLM needs asynchronous locks, which we don't support yet */
2511 return -ENOLCK;
2512 }
2513
2514 /* Unlock on close is handled by the flush method */
2515 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2516 return 0;
2517
2518 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2519 err = fuse_simple_request(fm, &args);
2520
2521 /* locking is restartable */
2522 if (err == -EINTR)
2523 err = -ERESTARTSYS;
2524
2525 return err;
2526 }
2527
2528 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2529 {
2530 struct inode *inode = file_inode(file);
2531 struct fuse_conn *fc = get_fuse_conn(inode);
2532 int err;
2533
2534 if (cmd == F_CANCELLK) {
2535 err = 0;
2536 } else if (cmd == F_GETLK) {
2537 if (fc->no_lock) {
2538 posix_test_lock(file, fl);
2539 err = 0;
2540 } else
2541 err = fuse_getlk(file, fl);
2542 } else {
2543 if (fc->no_lock)
2544 err = posix_lock_file(file, fl, NULL);
2545 else
2546 err = fuse_setlk(file, fl, 0);
2547 }
2548 return err;
2549 }
2550
2551 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2552 {
2553 struct inode *inode = file_inode(file);
2554 struct fuse_conn *fc = get_fuse_conn(inode);
2555 int err;
2556
2557 if (fc->no_flock) {
2558 err = locks_lock_file_wait(file, fl);
2559 } else {
2560 struct fuse_file *ff = file->private_data;
2561
2562 /* emulate flock with POSIX locks */
2563 ff->flock = true;
2564 err = fuse_setlk(file, fl, 1);
2565 }
2566
2567 return err;
2568 }
2569
2570 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2571 {
2572 struct inode *inode = mapping->host;
2573 struct fuse_mount *fm = get_fuse_mount(inode);
2574 FUSE_ARGS(args);
2575 struct fuse_bmap_in inarg;
2576 struct fuse_bmap_out outarg;
2577 int err;
2578
2579 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2580 return 0;
2581
2582 memset(&inarg, 0, sizeof(inarg));
2583 inarg.block = block;
2584 inarg.blocksize = inode->i_sb->s_blocksize;
2585 args.opcode = FUSE_BMAP;
2586 args.nodeid = get_node_id(inode);
2587 args.in_numargs = 1;
2588 args.in_args[0].size = sizeof(inarg);
2589 args.in_args[0].value = &inarg;
2590 args.out_numargs = 1;
2591 args.out_args[0].size = sizeof(outarg);
2592 args.out_args[0].value = &outarg;
2593 err = fuse_simple_request(fm, &args);
2594 if (err == -ENOSYS)
2595 fm->fc->no_bmap = 1;
2596
2597 return err ? 0 : outarg.block;
2598 }
2599
2600 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2601 {
2602 struct inode *inode = file->f_mapping->host;
2603 struct fuse_mount *fm = get_fuse_mount(inode);
2604 struct fuse_file *ff = file->private_data;
2605 FUSE_ARGS(args);
2606 struct fuse_lseek_in inarg = {
2607 .fh = ff->fh,
2608 .offset = offset,
2609 .whence = whence
2610 };
2611 struct fuse_lseek_out outarg;
2612 int err;
2613
2614 if (fm->fc->no_lseek)
2615 goto fallback;
2616
2617 args.opcode = FUSE_LSEEK;
2618 args.nodeid = ff->nodeid;
2619 args.in_numargs = 1;
2620 args.in_args[0].size = sizeof(inarg);
2621 args.in_args[0].value = &inarg;
2622 args.out_numargs = 1;
2623 args.out_args[0].size = sizeof(outarg);
2624 args.out_args[0].value = &outarg;
2625 err = fuse_simple_request(fm, &args);
2626 if (err) {
2627 if (err == -ENOSYS) {
2628 fm->fc->no_lseek = 1;
2629 goto fallback;
2630 }
2631 return err;
2632 }
2633
2634 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2635
2636 fallback:
2637 err = fuse_update_attributes(inode, file);
2638 if (!err)
2639 return generic_file_llseek(file, offset, whence);
2640 else
2641 return err;
2642 }
2643
2644 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2645 {
2646 loff_t retval;
2647 struct inode *inode = file_inode(file);
2648
2649 switch (whence) {
2650 case SEEK_SET:
2651 case SEEK_CUR:
2652 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2653 retval = generic_file_llseek(file, offset, whence);
2654 break;
2655 case SEEK_END:
2656 inode_lock(inode);
2657 retval = fuse_update_attributes(inode, file);
2658 if (!retval)
2659 retval = generic_file_llseek(file, offset, whence);
2660 inode_unlock(inode);
2661 break;
2662 case SEEK_HOLE:
2663 case SEEK_DATA:
2664 inode_lock(inode);
2665 retval = fuse_lseek(file, offset, whence);
2666 inode_unlock(inode);
2667 break;
2668 default:
2669 retval = -EINVAL;
2670 }
2671
2672 return retval;
2673 }
2674
2675 /*
2676 * All files which have been polled are linked to RB tree
2677 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2678 * find the matching one.
2679 */
2680 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2681 struct rb_node **parent_out)
2682 {
2683 struct rb_node **link = &fc->polled_files.rb_node;
2684 struct rb_node *last = NULL;
2685
2686 while (*link) {
2687 struct fuse_file *ff;
2688
2689 last = *link;
2690 ff = rb_entry(last, struct fuse_file, polled_node);
2691
2692 if (kh < ff->kh)
2693 link = &last->rb_left;
2694 else if (kh > ff->kh)
2695 link = &last->rb_right;
2696 else
2697 return link;
2698 }
2699
2700 if (parent_out)
2701 *parent_out = last;
2702 return link;
2703 }
2704
2705 /*
2706 * The file is about to be polled. Make sure it's on the polled_files
2707 * RB tree. Note that files once added to the polled_files tree are
2708 * not removed before the file is released. This is because a file
2709 * polled once is likely to be polled again.
2710 */
2711 static void fuse_register_polled_file(struct fuse_conn *fc,
2712 struct fuse_file *ff)
2713 {
2714 spin_lock(&fc->lock);
2715 if (RB_EMPTY_NODE(&ff->polled_node)) {
2716 struct rb_node **link, *parent;
2717
2718 link = fuse_find_polled_node(fc, ff->kh, &parent);
2719 BUG_ON(*link);
2720 rb_link_node(&ff->polled_node, parent, link);
2721 rb_insert_color(&ff->polled_node, &fc->polled_files);
2722 }
2723 spin_unlock(&fc->lock);
2724 }
2725
2726 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2727 {
2728 struct fuse_file *ff = file->private_data;
2729 struct fuse_mount *fm = ff->fm;
2730 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2731 struct fuse_poll_out outarg;
2732 FUSE_ARGS(args);
2733 int err;
2734
2735 if (fm->fc->no_poll)
2736 return DEFAULT_POLLMASK;
2737
2738 poll_wait(file, &ff->poll_wait, wait);
2739 inarg.events = mangle_poll(poll_requested_events(wait));
2740
2741 /*
2742 * Ask for notification iff there's someone waiting for it.
2743 * The client may ignore the flag and always notify.
2744 */
2745 if (waitqueue_active(&ff->poll_wait)) {
2746 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2747 fuse_register_polled_file(fm->fc, ff);
2748 }
2749
2750 args.opcode = FUSE_POLL;
2751 args.nodeid = ff->nodeid;
2752 args.in_numargs = 1;
2753 args.in_args[0].size = sizeof(inarg);
2754 args.in_args[0].value = &inarg;
2755 args.out_numargs = 1;
2756 args.out_args[0].size = sizeof(outarg);
2757 args.out_args[0].value = &outarg;
2758 err = fuse_simple_request(fm, &args);
2759
2760 if (!err)
2761 return demangle_poll(outarg.revents);
2762 if (err == -ENOSYS) {
2763 fm->fc->no_poll = 1;
2764 return DEFAULT_POLLMASK;
2765 }
2766 return EPOLLERR;
2767 }
2768 EXPORT_SYMBOL_GPL(fuse_file_poll);
2769
2770 /*
2771 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2772 * wakes up the poll waiters.
2773 */
2774 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2775 struct fuse_notify_poll_wakeup_out *outarg)
2776 {
2777 u64 kh = outarg->kh;
2778 struct rb_node **link;
2779
2780 spin_lock(&fc->lock);
2781
2782 link = fuse_find_polled_node(fc, kh, NULL);
2783 if (*link) {
2784 struct fuse_file *ff;
2785
2786 ff = rb_entry(*link, struct fuse_file, polled_node);
2787 wake_up_interruptible_sync(&ff->poll_wait);
2788 }
2789
2790 spin_unlock(&fc->lock);
2791 return 0;
2792 }
2793
2794 static void fuse_do_truncate(struct file *file)
2795 {
2796 struct inode *inode = file->f_mapping->host;
2797 struct iattr attr;
2798
2799 attr.ia_valid = ATTR_SIZE;
2800 attr.ia_size = i_size_read(inode);
2801
2802 attr.ia_file = file;
2803 attr.ia_valid |= ATTR_FILE;
2804
2805 fuse_do_setattr(file_dentry(file), &attr, file);
2806 }
2807
2808 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2809 {
2810 return round_up(off, fc->max_pages << PAGE_SHIFT);
2811 }
2812
2813 static ssize_t
2814 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2815 {
2816 DECLARE_COMPLETION_ONSTACK(wait);
2817 ssize_t ret = 0;
2818 struct file *file = iocb->ki_filp;
2819 struct fuse_file *ff = file->private_data;
2820 loff_t pos = 0;
2821 struct inode *inode;
2822 loff_t i_size;
2823 size_t count = iov_iter_count(iter), shortened = 0;
2824 loff_t offset = iocb->ki_pos;
2825 struct fuse_io_priv *io;
2826
2827 pos = offset;
2828 inode = file->f_mapping->host;
2829 i_size = i_size_read(inode);
2830
2831 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
2832 return 0;
2833
2834 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2835 if (!io)
2836 return -ENOMEM;
2837 spin_lock_init(&io->lock);
2838 kref_init(&io->refcnt);
2839 io->reqs = 1;
2840 io->bytes = -1;
2841 io->size = 0;
2842 io->offset = offset;
2843 io->write = (iov_iter_rw(iter) == WRITE);
2844 io->err = 0;
2845 /*
2846 * By default, we want to optimize all I/Os with async request
2847 * submission to the client filesystem if supported.
2848 */
2849 io->async = ff->fm->fc->async_dio;
2850 io->iocb = iocb;
2851 io->blocking = is_sync_kiocb(iocb);
2852
2853 /* optimization for short read */
2854 if (io->async && !io->write && offset + count > i_size) {
2855 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
2856 shortened = count - iov_iter_count(iter);
2857 count -= shortened;
2858 }
2859
2860 /*
2861 * We cannot asynchronously extend the size of a file.
2862 * In such case the aio will behave exactly like sync io.
2863 */
2864 if ((offset + count > i_size) && io->write)
2865 io->blocking = true;
2866
2867 if (io->async && io->blocking) {
2868 /*
2869 * Additional reference to keep io around after
2870 * calling fuse_aio_complete()
2871 */
2872 kref_get(&io->refcnt);
2873 io->done = &wait;
2874 }
2875
2876 if (iov_iter_rw(iter) == WRITE) {
2877 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2878 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
2879 } else {
2880 ret = __fuse_direct_read(io, iter, &pos);
2881 }
2882 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
2883
2884 if (io->async) {
2885 bool blocking = io->blocking;
2886
2887 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2888
2889 /* we have a non-extending, async request, so return */
2890 if (!blocking)
2891 return -EIOCBQUEUED;
2892
2893 wait_for_completion(&wait);
2894 ret = fuse_get_res_by_io(io);
2895 }
2896
2897 kref_put(&io->refcnt, fuse_io_release);
2898
2899 if (iov_iter_rw(iter) == WRITE) {
2900 fuse_write_update_attr(inode, pos, ret);
2901 if (ret < 0 && offset + count > i_size)
2902 fuse_do_truncate(file);
2903 }
2904
2905 return ret;
2906 }
2907
2908 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
2909 {
2910 int err = filemap_write_and_wait_range(inode->i_mapping, start, -1);
2911
2912 if (!err)
2913 fuse_sync_writes(inode);
2914
2915 return err;
2916 }
2917
2918 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2919 loff_t length)
2920 {
2921 struct fuse_file *ff = file->private_data;
2922 struct inode *inode = file_inode(file);
2923 struct fuse_inode *fi = get_fuse_inode(inode);
2924 struct fuse_mount *fm = ff->fm;
2925 FUSE_ARGS(args);
2926 struct fuse_fallocate_in inarg = {
2927 .fh = ff->fh,
2928 .offset = offset,
2929 .length = length,
2930 .mode = mode
2931 };
2932 int err;
2933 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2934 (mode & (FALLOC_FL_PUNCH_HOLE |
2935 FALLOC_FL_ZERO_RANGE));
2936
2937 bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
2938
2939 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2940 FALLOC_FL_ZERO_RANGE))
2941 return -EOPNOTSUPP;
2942
2943 if (fm->fc->no_fallocate)
2944 return -EOPNOTSUPP;
2945
2946 if (lock_inode) {
2947 inode_lock(inode);
2948 if (block_faults) {
2949 filemap_invalidate_lock(inode->i_mapping);
2950 err = fuse_dax_break_layouts(inode, 0, 0);
2951 if (err)
2952 goto out;
2953 }
2954
2955 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
2956 loff_t endbyte = offset + length - 1;
2957
2958 err = fuse_writeback_range(inode, offset, endbyte);
2959 if (err)
2960 goto out;
2961 }
2962 }
2963
2964 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2965 offset + length > i_size_read(inode)) {
2966 err = inode_newsize_ok(inode, offset + length);
2967 if (err)
2968 goto out;
2969 }
2970
2971 if (!(mode & FALLOC_FL_KEEP_SIZE))
2972 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2973
2974 args.opcode = FUSE_FALLOCATE;
2975 args.nodeid = ff->nodeid;
2976 args.in_numargs = 1;
2977 args.in_args[0].size = sizeof(inarg);
2978 args.in_args[0].value = &inarg;
2979 err = fuse_simple_request(fm, &args);
2980 if (err == -ENOSYS) {
2981 fm->fc->no_fallocate = 1;
2982 err = -EOPNOTSUPP;
2983 }
2984 if (err)
2985 goto out;
2986
2987 /* we could have extended the file */
2988 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2989 bool changed = fuse_write_update_attr(inode, offset + length,
2990 length);
2991
2992 if (changed && fm->fc->writeback_cache)
2993 file_update_time(file);
2994 }
2995
2996 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
2997 truncate_pagecache_range(inode, offset, offset + length - 1);
2998
2999 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3000
3001 out:
3002 if (!(mode & FALLOC_FL_KEEP_SIZE))
3003 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3004
3005 if (block_faults)
3006 filemap_invalidate_unlock(inode->i_mapping);
3007
3008 if (lock_inode)
3009 inode_unlock(inode);
3010
3011 fuse_flush_time_update(inode);
3012
3013 return err;
3014 }
3015
3016 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3017 struct file *file_out, loff_t pos_out,
3018 size_t len, unsigned int flags)
3019 {
3020 struct fuse_file *ff_in = file_in->private_data;
3021 struct fuse_file *ff_out = file_out->private_data;
3022 struct inode *inode_in = file_inode(file_in);
3023 struct inode *inode_out = file_inode(file_out);
3024 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3025 struct fuse_mount *fm = ff_in->fm;
3026 struct fuse_conn *fc = fm->fc;
3027 FUSE_ARGS(args);
3028 struct fuse_copy_file_range_in inarg = {
3029 .fh_in = ff_in->fh,
3030 .off_in = pos_in,
3031 .nodeid_out = ff_out->nodeid,
3032 .fh_out = ff_out->fh,
3033 .off_out = pos_out,
3034 .len = len,
3035 .flags = flags
3036 };
3037 struct fuse_write_out outarg;
3038 ssize_t err;
3039 /* mark unstable when write-back is not used, and file_out gets
3040 * extended */
3041 bool is_unstable = (!fc->writeback_cache) &&
3042 ((pos_out + len) > inode_out->i_size);
3043
3044 if (fc->no_copy_file_range)
3045 return -EOPNOTSUPP;
3046
3047 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3048 return -EXDEV;
3049
3050 inode_lock(inode_in);
3051 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3052 inode_unlock(inode_in);
3053 if (err)
3054 return err;
3055
3056 inode_lock(inode_out);
3057
3058 err = file_modified(file_out);
3059 if (err)
3060 goto out;
3061
3062 /*
3063 * Write out dirty pages in the destination file before sending the COPY
3064 * request to userspace. After the request is completed, truncate off
3065 * pages (including partial ones) from the cache that have been copied,
3066 * since these contain stale data at that point.
3067 *
3068 * This should be mostly correct, but if the COPY writes to partial
3069 * pages (at the start or end) and the parts not covered by the COPY are
3070 * written through a memory map after calling fuse_writeback_range(),
3071 * then these partial page modifications will be lost on truncation.
3072 *
3073 * It is unlikely that someone would rely on such mixed style
3074 * modifications. Yet this does give less guarantees than if the
3075 * copying was performed with write(2).
3076 *
3077 * To fix this a mapping->invalidate_lock could be used to prevent new
3078 * faults while the copy is ongoing.
3079 */
3080 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3081 if (err)
3082 goto out;
3083
3084 if (is_unstable)
3085 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3086
3087 args.opcode = FUSE_COPY_FILE_RANGE;
3088 args.nodeid = ff_in->nodeid;
3089 args.in_numargs = 1;
3090 args.in_args[0].size = sizeof(inarg);
3091 args.in_args[0].value = &inarg;
3092 args.out_numargs = 1;
3093 args.out_args[0].size = sizeof(outarg);
3094 args.out_args[0].value = &outarg;
3095 err = fuse_simple_request(fm, &args);
3096 if (err == -ENOSYS) {
3097 fc->no_copy_file_range = 1;
3098 err = -EOPNOTSUPP;
3099 }
3100 if (err)
3101 goto out;
3102
3103 truncate_inode_pages_range(inode_out->i_mapping,
3104 ALIGN_DOWN(pos_out, PAGE_SIZE),
3105 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3106
3107 if (fc->writeback_cache) {
3108 fuse_write_update_attr(inode_out, pos_out + outarg.size,
3109 outarg.size);
3110 file_update_time(file_out);
3111 }
3112
3113 fuse_invalidate_attr_mask(inode_out, FUSE_STATX_MODSIZE);
3114
3115 err = outarg.size;
3116 out:
3117 if (is_unstable)
3118 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3119
3120 inode_unlock(inode_out);
3121 file_accessed(file_in);
3122
3123 fuse_flush_time_update(inode_out);
3124
3125 return err;
3126 }
3127
3128 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3129 struct file *dst_file, loff_t dst_off,
3130 size_t len, unsigned int flags)
3131 {
3132 ssize_t ret;
3133
3134 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3135 len, flags);
3136
3137 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3138 ret = generic_copy_file_range(src_file, src_off, dst_file,
3139 dst_off, len, flags);
3140 return ret;
3141 }
3142
3143 static const struct file_operations fuse_file_operations = {
3144 .llseek = fuse_file_llseek,
3145 .read_iter = fuse_file_read_iter,
3146 .write_iter = fuse_file_write_iter,
3147 .mmap = fuse_file_mmap,
3148 .open = fuse_open,
3149 .flush = fuse_flush,
3150 .release = fuse_release,
3151 .fsync = fuse_fsync,
3152 .lock = fuse_file_lock,
3153 .get_unmapped_area = thp_get_unmapped_area,
3154 .flock = fuse_file_flock,
3155 .splice_read = generic_file_splice_read,
3156 .splice_write = iter_file_splice_write,
3157 .unlocked_ioctl = fuse_file_ioctl,
3158 .compat_ioctl = fuse_file_compat_ioctl,
3159 .poll = fuse_file_poll,
3160 .fallocate = fuse_file_fallocate,
3161 .copy_file_range = fuse_copy_file_range,
3162 };
3163
3164 static const struct address_space_operations fuse_file_aops = {
3165 .readpage = fuse_readpage,
3166 .readahead = fuse_readahead,
3167 .writepage = fuse_writepage,
3168 .writepages = fuse_writepages,
3169 .launder_page = fuse_launder_page,
3170 .set_page_dirty = __set_page_dirty_nobuffers,
3171 .bmap = fuse_bmap,
3172 .direct_IO = fuse_direct_IO,
3173 .write_begin = fuse_write_begin,
3174 .write_end = fuse_write_end,
3175 };
3176
3177 void fuse_init_file_inode(struct inode *inode)
3178 {
3179 struct fuse_inode *fi = get_fuse_inode(inode);
3180
3181 inode->i_fop = &fuse_file_operations;
3182 inode->i_data.a_ops = &fuse_file_aops;
3183
3184 INIT_LIST_HEAD(&fi->write_files);
3185 INIT_LIST_HEAD(&fi->queued_writes);
3186 fi->writectr = 0;
3187 init_waitqueue_head(&fi->page_waitq);
3188 fi->writepages = RB_ROOT;
3189
3190 if (IS_ENABLED(CONFIG_FUSE_DAX))
3191 fuse_dax_inode_init(inode);
3192 }