]> git.ipfire.org Git - people/ms/linux.git/blob - fs/gfs2/lock_dlm.c
Merge tag 'sound-6.0-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[people/ms/linux.git] / fs / gfs2 / lock_dlm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
30 */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 s64 sample)
33 {
34 /*
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
42 *
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
45 * entry
46 *
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
50 */
51
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
54 index++;
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57
58 /**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
61 *
62 * This assumes that gl->gl_dstamp has been set earlier.
63 *
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
67 *
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
74 */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 s64 rtt;
82
83 preempt_disable();
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
88 preempt_enable();
89
90 trace_gfs2_glock_lock_time(gl, rtt);
91 }
92
93 /**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
96 *
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
100 */
101
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
106 ktime_t dstamp;
107 s64 irt;
108
109 preempt_disable();
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
116 preempt_enable();
117 }
118
119 static void gdlm_ast(void *arg)
120 {
121 struct gfs2_glock *gl = arg;
122 unsigned ret = gl->gl_state;
123
124 gfs2_update_reply_times(gl);
125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126
127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129
130 switch (gl->gl_lksb.sb_status) {
131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 if (gl->gl_ops->go_free)
133 gl->gl_ops->go_free(gl);
134 gfs2_glock_free(gl);
135 return;
136 case -DLM_ECANCEL: /* Cancel while getting lock */
137 ret |= LM_OUT_CANCELED;
138 goto out;
139 case -EAGAIN: /* Try lock fails */
140 case -EDEADLK: /* Deadlock detected */
141 goto out;
142 case -ETIMEDOUT: /* Canceled due to timeout */
143 ret |= LM_OUT_ERROR;
144 goto out;
145 case 0: /* Success */
146 break;
147 default: /* Something unexpected */
148 BUG();
149 }
150
151 ret = gl->gl_req;
152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 if (gl->gl_req == LM_ST_SHARED)
154 ret = LM_ST_DEFERRED;
155 else if (gl->gl_req == LM_ST_DEFERRED)
156 ret = LM_ST_SHARED;
157 else
158 BUG();
159 }
160
161 set_bit(GLF_INITIAL, &gl->gl_flags);
162 gfs2_glock_complete(gl, ret);
163 return;
164 out:
165 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 gl->gl_lksb.sb_lkid = 0;
167 gfs2_glock_complete(gl, ret);
168 }
169
170 static void gdlm_bast(void *arg, int mode)
171 {
172 struct gfs2_glock *gl = arg;
173
174 switch (mode) {
175 case DLM_LOCK_EX:
176 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 break;
178 case DLM_LOCK_CW:
179 gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 break;
181 case DLM_LOCK_PR:
182 gfs2_glock_cb(gl, LM_ST_SHARED);
183 break;
184 default:
185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 BUG();
187 }
188 }
189
190 /* convert gfs lock-state to dlm lock-mode */
191
192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 switch (lmstate) {
195 case LM_ST_UNLOCKED:
196 return DLM_LOCK_NL;
197 case LM_ST_EXCLUSIVE:
198 return DLM_LOCK_EX;
199 case LM_ST_DEFERRED:
200 return DLM_LOCK_CW;
201 case LM_ST_SHARED:
202 return DLM_LOCK_PR;
203 }
204 fs_err(sdp, "unknown LM state %d\n", lmstate);
205 BUG();
206 return -1;
207 }
208
209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 const int req)
211 {
212 u32 lkf = 0;
213
214 if (gl->gl_lksb.sb_lvbptr)
215 lkf |= DLM_LKF_VALBLK;
216
217 if (gfs_flags & LM_FLAG_TRY)
218 lkf |= DLM_LKF_NOQUEUE;
219
220 if (gfs_flags & LM_FLAG_TRY_1CB) {
221 lkf |= DLM_LKF_NOQUEUE;
222 lkf |= DLM_LKF_NOQUEUEBAST;
223 }
224
225 if (gfs_flags & LM_FLAG_PRIORITY) {
226 lkf |= DLM_LKF_NOORDER;
227 lkf |= DLM_LKF_HEADQUE;
228 }
229
230 if (gfs_flags & LM_FLAG_ANY) {
231 if (req == DLM_LOCK_PR)
232 lkf |= DLM_LKF_ALTCW;
233 else if (req == DLM_LOCK_CW)
234 lkf |= DLM_LKF_ALTPR;
235 else
236 BUG();
237 }
238
239 if (gl->gl_lksb.sb_lkid != 0) {
240 lkf |= DLM_LKF_CONVERT;
241 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
242 lkf |= DLM_LKF_QUECVT;
243 }
244
245 return lkf;
246 }
247
248 static void gfs2_reverse_hex(char *c, u64 value)
249 {
250 *c = '0';
251 while (value) {
252 *c-- = hex_asc[value & 0x0f];
253 value >>= 4;
254 }
255 }
256
257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
258 unsigned int flags)
259 {
260 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
261 int req;
262 u32 lkf;
263 char strname[GDLM_STRNAME_BYTES] = "";
264 int error;
265
266 req = make_mode(gl->gl_name.ln_sbd, req_state);
267 lkf = make_flags(gl, flags, req);
268 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
269 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
270 if (gl->gl_lksb.sb_lkid) {
271 gfs2_update_request_times(gl);
272 } else {
273 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
274 strname[GDLM_STRNAME_BYTES - 1] = '\0';
275 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
276 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
277 gl->gl_dstamp = ktime_get_real();
278 }
279 /*
280 * Submit the actual lock request.
281 */
282
283 again:
284 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
285 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
286 if (error == -EBUSY) {
287 msleep(20);
288 goto again;
289 }
290 return error;
291 }
292
293 static void gdlm_put_lock(struct gfs2_glock *gl)
294 {
295 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
296 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
297 int error;
298
299 if (gl->gl_lksb.sb_lkid == 0) {
300 gfs2_glock_free(gl);
301 return;
302 }
303
304 clear_bit(GLF_BLOCKING, &gl->gl_flags);
305 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
306 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
307 gfs2_update_request_times(gl);
308
309 /* don't want to call dlm if we've unmounted the lock protocol */
310 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
311 gfs2_glock_free(gl);
312 return;
313 }
314 /* don't want to skip dlm_unlock writing the lvb when lock has one */
315
316 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
317 !gl->gl_lksb.sb_lvbptr) {
318 gfs2_glock_free(gl);
319 return;
320 }
321
322 again:
323 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
324 NULL, gl);
325 if (error == -EBUSY) {
326 msleep(20);
327 goto again;
328 }
329
330 if (error) {
331 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
332 gl->gl_name.ln_type,
333 (unsigned long long)gl->gl_name.ln_number, error);
334 return;
335 }
336 }
337
338 static void gdlm_cancel(struct gfs2_glock *gl)
339 {
340 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
341 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
342 }
343
344 /*
345 * dlm/gfs2 recovery coordination using dlm_recover callbacks
346 *
347 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
348 * 1. dlm_controld sees lockspace members change
349 * 2. dlm_controld blocks dlm-kernel locking activity
350 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
351 * 4. dlm_controld starts and finishes its own user level recovery
352 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
353 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
354 * 7. dlm_recoverd does its own lock recovery
355 * 8. dlm_recoverd unblocks dlm-kernel locking activity
356 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
357 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
358 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
359 * 12. gfs2_recover dequeues and recovers journals of failed nodes
360 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
361 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
362 * 15. gfs2_control unblocks normal locking when all journals are recovered
363 *
364 * - failures during recovery
365 *
366 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
367 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
368 * recovering for a prior failure. gfs2_control needs a way to detect
369 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
370 * the recover_block and recover_start values.
371 *
372 * recover_done() provides a new lockspace generation number each time it
373 * is called (step 9). This generation number is saved as recover_start.
374 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
375 * recover_block = recover_start. So, while recover_block is equal to
376 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
377 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
378 *
379 * - more specific gfs2 steps in sequence above
380 *
381 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
382 * 6. recover_slot records any failed jids (maybe none)
383 * 9. recover_done sets recover_start = new generation number
384 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
385 * 12. gfs2_recover does journal recoveries for failed jids identified above
386 * 14. gfs2_control clears control_lock lvb bits for recovered jids
387 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
388 * again) then do nothing, otherwise if recover_start > recover_block
389 * then clear BLOCK_LOCKS.
390 *
391 * - parallel recovery steps across all nodes
392 *
393 * All nodes attempt to update the control_lock lvb with the new generation
394 * number and jid bits, but only the first to get the control_lock EX will
395 * do so; others will see that it's already done (lvb already contains new
396 * generation number.)
397 *
398 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
399 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
400 * . One node gets control_lock first and writes the lvb, others see it's done
401 * . All nodes attempt to recover jids for which they see control_lock bits set
402 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
403 * . All nodes will eventually see all lvb bits clear and unblock locks
404 *
405 * - is there a problem with clearing an lvb bit that should be set
406 * and missing a journal recovery?
407 *
408 * 1. jid fails
409 * 2. lvb bit set for step 1
410 * 3. jid recovered for step 1
411 * 4. jid taken again (new mount)
412 * 5. jid fails (for step 4)
413 * 6. lvb bit set for step 5 (will already be set)
414 * 7. lvb bit cleared for step 3
415 *
416 * This is not a problem because the failure in step 5 does not
417 * require recovery, because the mount in step 4 could not have
418 * progressed far enough to unblock locks and access the fs. The
419 * control_mount() function waits for all recoveries to be complete
420 * for the latest lockspace generation before ever unblocking locks
421 * and returning. The mount in step 4 waits until the recovery in
422 * step 1 is done.
423 *
424 * - special case of first mounter: first node to mount the fs
425 *
426 * The first node to mount a gfs2 fs needs to check all the journals
427 * and recover any that need recovery before other nodes are allowed
428 * to mount the fs. (Others may begin mounting, but they must wait
429 * for the first mounter to be done before taking locks on the fs
430 * or accessing the fs.) This has two parts:
431 *
432 * 1. The mounted_lock tells a node it's the first to mount the fs.
433 * Each node holds the mounted_lock in PR while it's mounted.
434 * Each node tries to acquire the mounted_lock in EX when it mounts.
435 * If a node is granted the mounted_lock EX it means there are no
436 * other mounted nodes (no PR locks exist), and it is the first mounter.
437 * The mounted_lock is demoted to PR when first recovery is done, so
438 * others will fail to get an EX lock, but will get a PR lock.
439 *
440 * 2. The control_lock blocks others in control_mount() while the first
441 * mounter is doing first mount recovery of all journals.
442 * A mounting node needs to acquire control_lock in EX mode before
443 * it can proceed. The first mounter holds control_lock in EX while doing
444 * the first mount recovery, blocking mounts from other nodes, then demotes
445 * control_lock to NL when it's done (others_may_mount/first_done),
446 * allowing other nodes to continue mounting.
447 *
448 * first mounter:
449 * control_lock EX/NOQUEUE success
450 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
451 * set first=1
452 * do first mounter recovery
453 * mounted_lock EX->PR
454 * control_lock EX->NL, write lvb generation
455 *
456 * other mounter:
457 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
458 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
459 * mounted_lock PR/NOQUEUE success
460 * read lvb generation
461 * control_lock EX->NL
462 * set first=0
463 *
464 * - mount during recovery
465 *
466 * If a node mounts while others are doing recovery (not first mounter),
467 * the mounting node will get its initial recover_done() callback without
468 * having seen any previous failures/callbacks.
469 *
470 * It must wait for all recoveries preceding its mount to be finished
471 * before it unblocks locks. It does this by repeating the "other mounter"
472 * steps above until the lvb generation number is >= its mount generation
473 * number (from initial recover_done) and all lvb bits are clear.
474 *
475 * - control_lock lvb format
476 *
477 * 4 bytes generation number: the latest dlm lockspace generation number
478 * from recover_done callback. Indicates the jid bitmap has been updated
479 * to reflect all slot failures through that generation.
480 * 4 bytes unused.
481 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
482 * that jid N needs recovery.
483 */
484
485 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
486
487 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
488 char *lvb_bits)
489 {
490 __le32 gen;
491 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
492 memcpy(&gen, lvb_bits, sizeof(__le32));
493 *lvb_gen = le32_to_cpu(gen);
494 }
495
496 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
497 char *lvb_bits)
498 {
499 __le32 gen;
500 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
501 gen = cpu_to_le32(lvb_gen);
502 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
503 }
504
505 static int all_jid_bits_clear(char *lvb)
506 {
507 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
508 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
509 }
510
511 static void sync_wait_cb(void *arg)
512 {
513 struct lm_lockstruct *ls = arg;
514 complete(&ls->ls_sync_wait);
515 }
516
517 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
518 {
519 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
520 int error;
521
522 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
523 if (error) {
524 fs_err(sdp, "%s lkid %x error %d\n",
525 name, lksb->sb_lkid, error);
526 return error;
527 }
528
529 wait_for_completion(&ls->ls_sync_wait);
530
531 if (lksb->sb_status != -DLM_EUNLOCK) {
532 fs_err(sdp, "%s lkid %x status %d\n",
533 name, lksb->sb_lkid, lksb->sb_status);
534 return -1;
535 }
536 return 0;
537 }
538
539 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
540 unsigned int num, struct dlm_lksb *lksb, char *name)
541 {
542 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
543 char strname[GDLM_STRNAME_BYTES];
544 int error, status;
545
546 memset(strname, 0, GDLM_STRNAME_BYTES);
547 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
548
549 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
550 strname, GDLM_STRNAME_BYTES - 1,
551 0, sync_wait_cb, ls, NULL);
552 if (error) {
553 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
554 name, lksb->sb_lkid, flags, mode, error);
555 return error;
556 }
557
558 wait_for_completion(&ls->ls_sync_wait);
559
560 status = lksb->sb_status;
561
562 if (status && status != -EAGAIN) {
563 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
564 name, lksb->sb_lkid, flags, mode, status);
565 }
566
567 return status;
568 }
569
570 static int mounted_unlock(struct gfs2_sbd *sdp)
571 {
572 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
573 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
574 }
575
576 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
577 {
578 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
580 &ls->ls_mounted_lksb, "mounted_lock");
581 }
582
583 static int control_unlock(struct gfs2_sbd *sdp)
584 {
585 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
586 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
587 }
588
589 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
590 {
591 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
592 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
593 &ls->ls_control_lksb, "control_lock");
594 }
595
596 /**
597 * remote_withdraw - react to a node withdrawing from the file system
598 * @sdp: The superblock
599 */
600 static void remote_withdraw(struct gfs2_sbd *sdp)
601 {
602 struct gfs2_jdesc *jd;
603 int ret = 0, count = 0;
604
605 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
606 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
607 continue;
608 ret = gfs2_recover_journal(jd, true);
609 if (ret)
610 break;
611 count++;
612 }
613
614 /* Now drop the additional reference we acquired */
615 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
616 }
617
618 static void gfs2_control_func(struct work_struct *work)
619 {
620 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
621 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
622 uint32_t block_gen, start_gen, lvb_gen, flags;
623 int recover_set = 0;
624 int write_lvb = 0;
625 int recover_size;
626 int i, error;
627
628 /* First check for other nodes that may have done a withdraw. */
629 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
630 remote_withdraw(sdp);
631 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
632 return;
633 }
634
635 spin_lock(&ls->ls_recover_spin);
636 /*
637 * No MOUNT_DONE means we're still mounting; control_mount()
638 * will set this flag, after which this thread will take over
639 * all further clearing of BLOCK_LOCKS.
640 *
641 * FIRST_MOUNT means this node is doing first mounter recovery,
642 * for which recovery control is handled by
643 * control_mount()/control_first_done(), not this thread.
644 */
645 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
646 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
647 spin_unlock(&ls->ls_recover_spin);
648 return;
649 }
650 block_gen = ls->ls_recover_block;
651 start_gen = ls->ls_recover_start;
652 spin_unlock(&ls->ls_recover_spin);
653
654 /*
655 * Equal block_gen and start_gen implies we are between
656 * recover_prep and recover_done callbacks, which means
657 * dlm recovery is in progress and dlm locking is blocked.
658 * There's no point trying to do any work until recover_done.
659 */
660
661 if (block_gen == start_gen)
662 return;
663
664 /*
665 * Propagate recover_submit[] and recover_result[] to lvb:
666 * dlm_recoverd adds to recover_submit[] jids needing recovery
667 * gfs2_recover adds to recover_result[] journal recovery results
668 *
669 * set lvb bit for jids in recover_submit[] if the lvb has not
670 * yet been updated for the generation of the failure
671 *
672 * clear lvb bit for jids in recover_result[] if the result of
673 * the journal recovery is SUCCESS
674 */
675
676 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
677 if (error) {
678 fs_err(sdp, "control lock EX error %d\n", error);
679 return;
680 }
681
682 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
683
684 spin_lock(&ls->ls_recover_spin);
685 if (block_gen != ls->ls_recover_block ||
686 start_gen != ls->ls_recover_start) {
687 fs_info(sdp, "recover generation %u block1 %u %u\n",
688 start_gen, block_gen, ls->ls_recover_block);
689 spin_unlock(&ls->ls_recover_spin);
690 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
691 return;
692 }
693
694 recover_size = ls->ls_recover_size;
695
696 if (lvb_gen <= start_gen) {
697 /*
698 * Clear lvb bits for jids we've successfully recovered.
699 * Because all nodes attempt to recover failed journals,
700 * a journal can be recovered multiple times successfully
701 * in succession. Only the first will really do recovery,
702 * the others find it clean, but still report a successful
703 * recovery. So, another node may have already recovered
704 * the jid and cleared the lvb bit for it.
705 */
706 for (i = 0; i < recover_size; i++) {
707 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
708 continue;
709
710 ls->ls_recover_result[i] = 0;
711
712 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
713 continue;
714
715 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
716 write_lvb = 1;
717 }
718 }
719
720 if (lvb_gen == start_gen) {
721 /*
722 * Failed slots before start_gen are already set in lvb.
723 */
724 for (i = 0; i < recover_size; i++) {
725 if (!ls->ls_recover_submit[i])
726 continue;
727 if (ls->ls_recover_submit[i] < lvb_gen)
728 ls->ls_recover_submit[i] = 0;
729 }
730 } else if (lvb_gen < start_gen) {
731 /*
732 * Failed slots before start_gen are not yet set in lvb.
733 */
734 for (i = 0; i < recover_size; i++) {
735 if (!ls->ls_recover_submit[i])
736 continue;
737 if (ls->ls_recover_submit[i] < start_gen) {
738 ls->ls_recover_submit[i] = 0;
739 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
740 }
741 }
742 /* even if there are no bits to set, we need to write the
743 latest generation to the lvb */
744 write_lvb = 1;
745 } else {
746 /*
747 * we should be getting a recover_done() for lvb_gen soon
748 */
749 }
750 spin_unlock(&ls->ls_recover_spin);
751
752 if (write_lvb) {
753 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
754 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
755 } else {
756 flags = DLM_LKF_CONVERT;
757 }
758
759 error = control_lock(sdp, DLM_LOCK_NL, flags);
760 if (error) {
761 fs_err(sdp, "control lock NL error %d\n", error);
762 return;
763 }
764
765 /*
766 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
767 * and clear a jid bit in the lvb if the recovery is a success.
768 * Eventually all journals will be recovered, all jid bits will
769 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
770 */
771
772 for (i = 0; i < recover_size; i++) {
773 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
774 fs_info(sdp, "recover generation %u jid %d\n",
775 start_gen, i);
776 gfs2_recover_set(sdp, i);
777 recover_set++;
778 }
779 }
780 if (recover_set)
781 return;
782
783 /*
784 * No more jid bits set in lvb, all recovery is done, unblock locks
785 * (unless a new recover_prep callback has occured blocking locks
786 * again while working above)
787 */
788
789 spin_lock(&ls->ls_recover_spin);
790 if (ls->ls_recover_block == block_gen &&
791 ls->ls_recover_start == start_gen) {
792 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
793 spin_unlock(&ls->ls_recover_spin);
794 fs_info(sdp, "recover generation %u done\n", start_gen);
795 gfs2_glock_thaw(sdp);
796 } else {
797 fs_info(sdp, "recover generation %u block2 %u %u\n",
798 start_gen, block_gen, ls->ls_recover_block);
799 spin_unlock(&ls->ls_recover_spin);
800 }
801 }
802
803 static int control_mount(struct gfs2_sbd *sdp)
804 {
805 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
806 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
807 int mounted_mode;
808 int retries = 0;
809 int error;
810
811 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
812 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
813 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
814 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
815 init_completion(&ls->ls_sync_wait);
816
817 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
818
819 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
820 if (error) {
821 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
822 return error;
823 }
824
825 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
826 if (error) {
827 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
828 control_unlock(sdp);
829 return error;
830 }
831 mounted_mode = DLM_LOCK_NL;
832
833 restart:
834 if (retries++ && signal_pending(current)) {
835 error = -EINTR;
836 goto fail;
837 }
838
839 /*
840 * We always start with both locks in NL. control_lock is
841 * demoted to NL below so we don't need to do it here.
842 */
843
844 if (mounted_mode != DLM_LOCK_NL) {
845 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
846 if (error)
847 goto fail;
848 mounted_mode = DLM_LOCK_NL;
849 }
850
851 /*
852 * Other nodes need to do some work in dlm recovery and gfs2_control
853 * before the recover_done and control_lock will be ready for us below.
854 * A delay here is not required but often avoids having to retry.
855 */
856
857 msleep_interruptible(500);
858
859 /*
860 * Acquire control_lock in EX and mounted_lock in either EX or PR.
861 * control_lock lvb keeps track of any pending journal recoveries.
862 * mounted_lock indicates if any other nodes have the fs mounted.
863 */
864
865 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
866 if (error == -EAGAIN) {
867 goto restart;
868 } else if (error) {
869 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
870 goto fail;
871 }
872
873 /**
874 * If we're a spectator, we don't want to take the lock in EX because
875 * we cannot do the first-mount responsibility it implies: recovery.
876 */
877 if (sdp->sd_args.ar_spectator)
878 goto locks_done;
879
880 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
881 if (!error) {
882 mounted_mode = DLM_LOCK_EX;
883 goto locks_done;
884 } else if (error != -EAGAIN) {
885 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
886 goto fail;
887 }
888
889 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
890 if (!error) {
891 mounted_mode = DLM_LOCK_PR;
892 goto locks_done;
893 } else {
894 /* not even -EAGAIN should happen here */
895 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
896 goto fail;
897 }
898
899 locks_done:
900 /*
901 * If we got both locks above in EX, then we're the first mounter.
902 * If not, then we need to wait for the control_lock lvb to be
903 * updated by other mounted nodes to reflect our mount generation.
904 *
905 * In simple first mounter cases, first mounter will see zero lvb_gen,
906 * but in cases where all existing nodes leave/fail before mounting
907 * nodes finish control_mount, then all nodes will be mounting and
908 * lvb_gen will be non-zero.
909 */
910
911 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
912
913 if (lvb_gen == 0xFFFFFFFF) {
914 /* special value to force mount attempts to fail */
915 fs_err(sdp, "control_mount control_lock disabled\n");
916 error = -EINVAL;
917 goto fail;
918 }
919
920 if (mounted_mode == DLM_LOCK_EX) {
921 /* first mounter, keep both EX while doing first recovery */
922 spin_lock(&ls->ls_recover_spin);
923 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
924 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
925 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
926 spin_unlock(&ls->ls_recover_spin);
927 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
928 return 0;
929 }
930
931 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
932 if (error)
933 goto fail;
934
935 /*
936 * We are not first mounter, now we need to wait for the control_lock
937 * lvb generation to be >= the generation from our first recover_done
938 * and all lvb bits to be clear (no pending journal recoveries.)
939 */
940
941 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
942 /* journals need recovery, wait until all are clear */
943 fs_info(sdp, "control_mount wait for journal recovery\n");
944 goto restart;
945 }
946
947 spin_lock(&ls->ls_recover_spin);
948 block_gen = ls->ls_recover_block;
949 start_gen = ls->ls_recover_start;
950 mount_gen = ls->ls_recover_mount;
951
952 if (lvb_gen < mount_gen) {
953 /* wait for mounted nodes to update control_lock lvb to our
954 generation, which might include new recovery bits set */
955 if (sdp->sd_args.ar_spectator) {
956 fs_info(sdp, "Recovery is required. Waiting for a "
957 "non-spectator to mount.\n");
958 msleep_interruptible(1000);
959 } else {
960 fs_info(sdp, "control_mount wait1 block %u start %u "
961 "mount %u lvb %u flags %lx\n", block_gen,
962 start_gen, mount_gen, lvb_gen,
963 ls->ls_recover_flags);
964 }
965 spin_unlock(&ls->ls_recover_spin);
966 goto restart;
967 }
968
969 if (lvb_gen != start_gen) {
970 /* wait for mounted nodes to update control_lock lvb to the
971 latest recovery generation */
972 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
973 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
974 lvb_gen, ls->ls_recover_flags);
975 spin_unlock(&ls->ls_recover_spin);
976 goto restart;
977 }
978
979 if (block_gen == start_gen) {
980 /* dlm recovery in progress, wait for it to finish */
981 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
982 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
983 lvb_gen, ls->ls_recover_flags);
984 spin_unlock(&ls->ls_recover_spin);
985 goto restart;
986 }
987
988 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
989 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
990 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
991 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
992 spin_unlock(&ls->ls_recover_spin);
993 return 0;
994
995 fail:
996 mounted_unlock(sdp);
997 control_unlock(sdp);
998 return error;
999 }
1000
1001 static int control_first_done(struct gfs2_sbd *sdp)
1002 {
1003 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1004 uint32_t start_gen, block_gen;
1005 int error;
1006
1007 restart:
1008 spin_lock(&ls->ls_recover_spin);
1009 start_gen = ls->ls_recover_start;
1010 block_gen = ls->ls_recover_block;
1011
1012 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1013 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1014 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1015 /* sanity check, should not happen */
1016 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1017 start_gen, block_gen, ls->ls_recover_flags);
1018 spin_unlock(&ls->ls_recover_spin);
1019 control_unlock(sdp);
1020 return -1;
1021 }
1022
1023 if (start_gen == block_gen) {
1024 /*
1025 * Wait for the end of a dlm recovery cycle to switch from
1026 * first mounter recovery. We can ignore any recover_slot
1027 * callbacks between the recover_prep and next recover_done
1028 * because we are still the first mounter and any failed nodes
1029 * have not fully mounted, so they don't need recovery.
1030 */
1031 spin_unlock(&ls->ls_recover_spin);
1032 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1033
1034 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1035 TASK_UNINTERRUPTIBLE);
1036 goto restart;
1037 }
1038
1039 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1040 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1041 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1042 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1043 spin_unlock(&ls->ls_recover_spin);
1044
1045 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1046 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1047
1048 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1049 if (error)
1050 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1051
1052 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1053 if (error)
1054 fs_err(sdp, "control_first_done control NL error %d\n", error);
1055
1056 return error;
1057 }
1058
1059 /*
1060 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1061 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1062 * gfs2 jids start at 0, so jid = slot - 1)
1063 */
1064
1065 #define RECOVER_SIZE_INC 16
1066
1067 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1068 int num_slots)
1069 {
1070 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1071 uint32_t *submit = NULL;
1072 uint32_t *result = NULL;
1073 uint32_t old_size, new_size;
1074 int i, max_jid;
1075
1076 if (!ls->ls_lvb_bits) {
1077 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1078 if (!ls->ls_lvb_bits)
1079 return -ENOMEM;
1080 }
1081
1082 max_jid = 0;
1083 for (i = 0; i < num_slots; i++) {
1084 if (max_jid < slots[i].slot - 1)
1085 max_jid = slots[i].slot - 1;
1086 }
1087
1088 old_size = ls->ls_recover_size;
1089 new_size = old_size;
1090 while (new_size < max_jid + 1)
1091 new_size += RECOVER_SIZE_INC;
1092 if (new_size == old_size)
1093 return 0;
1094
1095 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1096 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1097 if (!submit || !result) {
1098 kfree(submit);
1099 kfree(result);
1100 return -ENOMEM;
1101 }
1102
1103 spin_lock(&ls->ls_recover_spin);
1104 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1105 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1106 kfree(ls->ls_recover_submit);
1107 kfree(ls->ls_recover_result);
1108 ls->ls_recover_submit = submit;
1109 ls->ls_recover_result = result;
1110 ls->ls_recover_size = new_size;
1111 spin_unlock(&ls->ls_recover_spin);
1112 return 0;
1113 }
1114
1115 static void free_recover_size(struct lm_lockstruct *ls)
1116 {
1117 kfree(ls->ls_lvb_bits);
1118 kfree(ls->ls_recover_submit);
1119 kfree(ls->ls_recover_result);
1120 ls->ls_recover_submit = NULL;
1121 ls->ls_recover_result = NULL;
1122 ls->ls_recover_size = 0;
1123 ls->ls_lvb_bits = NULL;
1124 }
1125
1126 /* dlm calls before it does lock recovery */
1127
1128 static void gdlm_recover_prep(void *arg)
1129 {
1130 struct gfs2_sbd *sdp = arg;
1131 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1132
1133 if (gfs2_withdrawn(sdp)) {
1134 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1135 return;
1136 }
1137 spin_lock(&ls->ls_recover_spin);
1138 ls->ls_recover_block = ls->ls_recover_start;
1139 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1140
1141 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1142 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1143 spin_unlock(&ls->ls_recover_spin);
1144 return;
1145 }
1146 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1147 spin_unlock(&ls->ls_recover_spin);
1148 }
1149
1150 /* dlm calls after recover_prep has been completed on all lockspace members;
1151 identifies slot/jid of failed member */
1152
1153 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1154 {
1155 struct gfs2_sbd *sdp = arg;
1156 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1157 int jid = slot->slot - 1;
1158
1159 if (gfs2_withdrawn(sdp)) {
1160 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1161 jid);
1162 return;
1163 }
1164 spin_lock(&ls->ls_recover_spin);
1165 if (ls->ls_recover_size < jid + 1) {
1166 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1167 jid, ls->ls_recover_block, ls->ls_recover_size);
1168 spin_unlock(&ls->ls_recover_spin);
1169 return;
1170 }
1171
1172 if (ls->ls_recover_submit[jid]) {
1173 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1174 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1175 }
1176 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1177 spin_unlock(&ls->ls_recover_spin);
1178 }
1179
1180 /* dlm calls after recover_slot and after it completes lock recovery */
1181
1182 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1183 int our_slot, uint32_t generation)
1184 {
1185 struct gfs2_sbd *sdp = arg;
1186 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1187
1188 if (gfs2_withdrawn(sdp)) {
1189 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1190 return;
1191 }
1192 /* ensure the ls jid arrays are large enough */
1193 set_recover_size(sdp, slots, num_slots);
1194
1195 spin_lock(&ls->ls_recover_spin);
1196 ls->ls_recover_start = generation;
1197
1198 if (!ls->ls_recover_mount) {
1199 ls->ls_recover_mount = generation;
1200 ls->ls_jid = our_slot - 1;
1201 }
1202
1203 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1204 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1205
1206 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1207 smp_mb__after_atomic();
1208 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1209 spin_unlock(&ls->ls_recover_spin);
1210 }
1211
1212 /* gfs2_recover thread has a journal recovery result */
1213
1214 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1215 unsigned int result)
1216 {
1217 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1218
1219 if (gfs2_withdrawn(sdp)) {
1220 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1221 jid);
1222 return;
1223 }
1224 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1225 return;
1226
1227 /* don't care about the recovery of own journal during mount */
1228 if (jid == ls->ls_jid)
1229 return;
1230
1231 spin_lock(&ls->ls_recover_spin);
1232 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1233 spin_unlock(&ls->ls_recover_spin);
1234 return;
1235 }
1236 if (ls->ls_recover_size < jid + 1) {
1237 fs_err(sdp, "recovery_result jid %d short size %d\n",
1238 jid, ls->ls_recover_size);
1239 spin_unlock(&ls->ls_recover_spin);
1240 return;
1241 }
1242
1243 fs_info(sdp, "recover jid %d result %s\n", jid,
1244 result == LM_RD_GAVEUP ? "busy" : "success");
1245
1246 ls->ls_recover_result[jid] = result;
1247
1248 /* GAVEUP means another node is recovering the journal; delay our
1249 next attempt to recover it, to give the other node a chance to
1250 finish before trying again */
1251
1252 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1253 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1254 result == LM_RD_GAVEUP ? HZ : 0);
1255 spin_unlock(&ls->ls_recover_spin);
1256 }
1257
1258 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1259 .recover_prep = gdlm_recover_prep,
1260 .recover_slot = gdlm_recover_slot,
1261 .recover_done = gdlm_recover_done,
1262 };
1263
1264 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1265 {
1266 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1267 char cluster[GFS2_LOCKNAME_LEN];
1268 const char *fsname;
1269 uint32_t flags;
1270 int error, ops_result;
1271
1272 /*
1273 * initialize everything
1274 */
1275
1276 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1277 spin_lock_init(&ls->ls_recover_spin);
1278 ls->ls_recover_flags = 0;
1279 ls->ls_recover_mount = 0;
1280 ls->ls_recover_start = 0;
1281 ls->ls_recover_block = 0;
1282 ls->ls_recover_size = 0;
1283 ls->ls_recover_submit = NULL;
1284 ls->ls_recover_result = NULL;
1285 ls->ls_lvb_bits = NULL;
1286
1287 error = set_recover_size(sdp, NULL, 0);
1288 if (error)
1289 goto fail;
1290
1291 /*
1292 * prepare dlm_new_lockspace args
1293 */
1294
1295 fsname = strchr(table, ':');
1296 if (!fsname) {
1297 fs_info(sdp, "no fsname found\n");
1298 error = -EINVAL;
1299 goto fail_free;
1300 }
1301 memset(cluster, 0, sizeof(cluster));
1302 memcpy(cluster, table, strlen(table) - strlen(fsname));
1303 fsname++;
1304
1305 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1306
1307 /*
1308 * create/join lockspace
1309 */
1310
1311 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1312 &gdlm_lockspace_ops, sdp, &ops_result,
1313 &ls->ls_dlm);
1314 if (error) {
1315 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1316 goto fail_free;
1317 }
1318
1319 if (ops_result < 0) {
1320 /*
1321 * dlm does not support ops callbacks,
1322 * old dlm_controld/gfs_controld are used, try without ops.
1323 */
1324 fs_info(sdp, "dlm lockspace ops not used\n");
1325 free_recover_size(ls);
1326 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1327 return 0;
1328 }
1329
1330 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1331 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1332 error = -EINVAL;
1333 goto fail_release;
1334 }
1335
1336 /*
1337 * control_mount() uses control_lock to determine first mounter,
1338 * and for later mounts, waits for any recoveries to be cleared.
1339 */
1340
1341 error = control_mount(sdp);
1342 if (error) {
1343 fs_err(sdp, "mount control error %d\n", error);
1344 goto fail_release;
1345 }
1346
1347 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1348 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1349 smp_mb__after_atomic();
1350 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1351 return 0;
1352
1353 fail_release:
1354 dlm_release_lockspace(ls->ls_dlm, 2);
1355 fail_free:
1356 free_recover_size(ls);
1357 fail:
1358 return error;
1359 }
1360
1361 static void gdlm_first_done(struct gfs2_sbd *sdp)
1362 {
1363 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1364 int error;
1365
1366 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1367 return;
1368
1369 error = control_first_done(sdp);
1370 if (error)
1371 fs_err(sdp, "mount first_done error %d\n", error);
1372 }
1373
1374 static void gdlm_unmount(struct gfs2_sbd *sdp)
1375 {
1376 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1377
1378 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1379 goto release;
1380
1381 /* wait for gfs2_control_wq to be done with this mount */
1382
1383 spin_lock(&ls->ls_recover_spin);
1384 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1385 spin_unlock(&ls->ls_recover_spin);
1386 flush_delayed_work(&sdp->sd_control_work);
1387
1388 /* mounted_lock and control_lock will be purged in dlm recovery */
1389 release:
1390 if (ls->ls_dlm) {
1391 dlm_release_lockspace(ls->ls_dlm, 2);
1392 ls->ls_dlm = NULL;
1393 }
1394
1395 free_recover_size(ls);
1396 }
1397
1398 static const match_table_t dlm_tokens = {
1399 { Opt_jid, "jid=%d"},
1400 { Opt_id, "id=%d"},
1401 { Opt_first, "first=%d"},
1402 { Opt_nodir, "nodir=%d"},
1403 { Opt_err, NULL },
1404 };
1405
1406 const struct lm_lockops gfs2_dlm_ops = {
1407 .lm_proto_name = "lock_dlm",
1408 .lm_mount = gdlm_mount,
1409 .lm_first_done = gdlm_first_done,
1410 .lm_recovery_result = gdlm_recovery_result,
1411 .lm_unmount = gdlm_unmount,
1412 .lm_put_lock = gdlm_put_lock,
1413 .lm_lock = gdlm_lock,
1414 .lm_cancel = gdlm_cancel,
1415 .lm_tokens = &dlm_tokens,
1416 };
1417