2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/hugetlbfs.h>
45 static const struct address_space_operations hugetlbfs_aops
;
46 static const struct file_operations hugetlbfs_file_operations
;
47 static const struct inode_operations hugetlbfs_dir_inode_operations
;
48 static const struct inode_operations hugetlbfs_inode_operations
;
50 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
52 struct hugetlbfs_fs_context
{
53 struct hstate
*hstate
;
54 unsigned long long max_size_opt
;
55 unsigned long long min_size_opt
;
59 enum hugetlbfs_size_type max_val_type
;
60 enum hugetlbfs_size_type min_val_type
;
66 int sysctl_hugetlb_shm_group
;
78 static const struct fs_parameter_spec hugetlb_fs_parameters
[] = {
79 fsparam_gid ("gid", Opt_gid
),
80 fsparam_string("min_size", Opt_min_size
),
81 fsparam_u32oct("mode", Opt_mode
),
82 fsparam_string("nr_inodes", Opt_nr_inodes
),
83 fsparam_string("pagesize", Opt_pagesize
),
84 fsparam_string("size", Opt_size
),
85 fsparam_uid ("uid", Opt_uid
),
90 * Mask used when checking the page offset value passed in via system
91 * calls. This value will be converted to a loff_t which is signed.
92 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
93 * value. The extra bit (- 1 in the shift value) is to take the sign
96 #define PGOFF_LOFFT_MAX \
97 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
99 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
101 struct inode
*inode
= file_inode(file
);
104 struct hstate
*h
= hstate_file(file
);
108 * vma address alignment (but not the pgoff alignment) has
109 * already been checked by prepare_hugepage_range. If you add
110 * any error returns here, do so after setting VM_HUGETLB, so
111 * is_vm_hugetlb_page tests below unmap_region go the right
112 * way when do_mmap unwinds (may be important on powerpc
115 vm_flags_set(vma
, VM_HUGETLB
| VM_DONTEXPAND
);
116 vma
->vm_ops
= &hugetlb_vm_ops
;
119 * page based offset in vm_pgoff could be sufficiently large to
120 * overflow a loff_t when converted to byte offset. This can
121 * only happen on architectures where sizeof(loff_t) ==
122 * sizeof(unsigned long). So, only check in those instances.
124 if (sizeof(unsigned long) == sizeof(loff_t
)) {
125 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
129 /* must be huge page aligned */
130 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
133 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
134 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
135 /* check for overflow */
144 vm_flags
= vma
->vm_flags
;
146 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
147 * reserving here. Note: only for SHM hugetlbfs file, the inode
148 * flag S_PRIVATE is set.
150 if (inode
->i_flags
& S_PRIVATE
)
151 vm_flags
|= VM_NORESERVE
;
153 if (hugetlb_reserve_pages(inode
,
154 vma
->vm_pgoff
>> huge_page_order(h
),
155 len
>> huge_page_shift(h
), vma
,
160 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
161 i_size_write(inode
, len
);
169 * Called under mmap_write_lock(mm).
173 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
174 unsigned long len
, unsigned long pgoff
,
177 unsigned long addr0
= 0;
178 struct hstate
*h
= hstate_file(file
);
180 if (len
& ~huge_page_mask(h
))
182 if ((flags
& MAP_FIXED
) && (addr
& ~huge_page_mask(h
)))
185 addr0
= ALIGN(addr
, huge_page_size(h
));
187 return mm_get_unmapped_area_vmflags(current
->mm
, file
, addr0
, len
, pgoff
,
192 * Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
193 * Returns the maximum number of bytes one can read without touching the 1st raw
196 static size_t adjust_range_hwpoison(struct folio
*folio
, size_t offset
,
199 struct page
*page
= folio_page(folio
, offset
/ PAGE_SIZE
);
202 if (is_raw_hwpoison_page_in_hugepage(page
))
204 /* Safe to read the remaining bytes in this page. */
205 safe_bytes
= PAGE_SIZE
- (offset
% PAGE_SIZE
);
208 /* Check each remaining page as long as we are not done yet. */
209 for (; safe_bytes
< bytes
; safe_bytes
+= PAGE_SIZE
, page
++)
210 if (is_raw_hwpoison_page_in_hugepage(page
))
213 return min(safe_bytes
, bytes
);
217 * Support for read() - Find the page attached to f_mapping and copy out the
218 * data. This provides functionality similar to filemap_read().
220 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
222 struct file
*file
= iocb
->ki_filp
;
223 struct hstate
*h
= hstate_file(file
);
224 struct address_space
*mapping
= file
->f_mapping
;
225 struct inode
*inode
= mapping
->host
;
226 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
227 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
228 unsigned long end_index
;
232 while (iov_iter_count(to
)) {
234 size_t nr
, copied
, want
;
236 /* nr is the maximum number of bytes to copy from this page */
237 nr
= huge_page_size(h
);
238 isize
= i_size_read(inode
);
241 end_index
= (isize
- 1) >> huge_page_shift(h
);
242 if (index
> end_index
)
244 if (index
== end_index
) {
245 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
252 folio
= filemap_lock_hugetlb_folio(h
, mapping
, index
);
255 * We have a HOLE, zero out the user-buffer for the
256 * length of the hole or request.
258 copied
= iov_iter_zero(nr
, to
);
262 if (!folio_test_hwpoison(folio
))
266 * Adjust how many bytes safe to read without
267 * touching the 1st raw HWPOISON page after
270 want
= adjust_range_hwpoison(folio
, offset
, nr
);
279 * We have the folio, copy it to user space buffer.
281 copied
= copy_folio_to_iter(folio
, offset
, want
, to
);
286 if (copied
!= nr
&& iov_iter_count(to
)) {
291 index
+= offset
>> huge_page_shift(h
);
292 offset
&= ~huge_page_mask(h
);
294 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
298 static int hugetlbfs_write_begin(const struct kiocb
*iocb
,
299 struct address_space
*mapping
,
300 loff_t pos
, unsigned len
,
301 struct folio
**foliop
, void **fsdata
)
306 static int hugetlbfs_write_end(const struct kiocb
*iocb
,
307 struct address_space
*mapping
,
308 loff_t pos
, unsigned len
, unsigned copied
,
309 struct folio
*folio
, void *fsdata
)
315 static void hugetlb_delete_from_page_cache(struct folio
*folio
)
317 folio_clear_dirty(folio
);
318 folio_clear_uptodate(folio
);
319 filemap_remove_folio(folio
);
323 * Called with i_mmap_rwsem held for inode based vma maps. This makes
324 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
325 * mutex for the page in the mapping. So, we can not race with page being
326 * faulted into the vma.
328 static bool hugetlb_vma_maps_pfn(struct vm_area_struct
*vma
,
329 unsigned long addr
, unsigned long pfn
)
333 ptep
= hugetlb_walk(vma
, addr
, huge_page_size(hstate_vma(vma
)));
337 pte
= huge_ptep_get(vma
->vm_mm
, addr
, ptep
);
338 if (huge_pte_none(pte
) || !pte_present(pte
))
341 if (pte_pfn(pte
) == pfn
)
348 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
349 * No, because the interval tree returns us only those vmas
350 * which overlap the truncated area starting at pgoff,
351 * and no vma on a 32-bit arch can span beyond the 4GB.
353 static unsigned long vma_offset_start(struct vm_area_struct
*vma
, pgoff_t start
)
355 unsigned long offset
= 0;
357 if (vma
->vm_pgoff
< start
)
358 offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
360 return vma
->vm_start
+ offset
;
363 static unsigned long vma_offset_end(struct vm_area_struct
*vma
, pgoff_t end
)
370 t_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
) + vma
->vm_start
;
371 if (t_end
> vma
->vm_end
)
377 * Called with hugetlb fault mutex held. Therefore, no more mappings to
378 * this folio can be created while executing the routine.
380 static void hugetlb_unmap_file_folio(struct hstate
*h
,
381 struct address_space
*mapping
,
382 struct folio
*folio
, pgoff_t index
)
384 struct rb_root_cached
*root
= &mapping
->i_mmap
;
385 struct hugetlb_vma_lock
*vma_lock
;
386 unsigned long pfn
= folio_pfn(folio
);
387 struct vm_area_struct
*vma
;
388 unsigned long v_start
;
392 start
= index
* pages_per_huge_page(h
);
393 end
= (index
+ 1) * pages_per_huge_page(h
);
395 i_mmap_lock_write(mapping
);
398 vma_interval_tree_foreach(vma
, root
, start
, end
- 1) {
399 v_start
= vma_offset_start(vma
, start
);
400 v_end
= vma_offset_end(vma
, end
);
402 if (!hugetlb_vma_maps_pfn(vma
, v_start
, pfn
))
405 if (!hugetlb_vma_trylock_write(vma
)) {
406 vma_lock
= vma
->vm_private_data
;
408 * If we can not get vma lock, we need to drop
409 * immap_sema and take locks in order. First,
410 * take a ref on the vma_lock structure so that
411 * we can be guaranteed it will not go away when
412 * dropping immap_sema.
414 kref_get(&vma_lock
->refs
);
418 unmap_hugepage_range(vma
, v_start
, v_end
, NULL
,
419 ZAP_FLAG_DROP_MARKER
);
420 hugetlb_vma_unlock_write(vma
);
423 i_mmap_unlock_write(mapping
);
427 * Wait on vma_lock. We know it is still valid as we have
428 * a reference. We must 'open code' vma locking as we do
429 * not know if vma_lock is still attached to vma.
431 down_write(&vma_lock
->rw_sema
);
432 i_mmap_lock_write(mapping
);
437 * If lock is no longer attached to vma, then just
438 * unlock, drop our reference and retry looking for
441 up_write(&vma_lock
->rw_sema
);
442 kref_put(&vma_lock
->refs
, hugetlb_vma_lock_release
);
447 * vma_lock is still attached to vma. Check to see if vma
448 * still maps page and if so, unmap.
450 v_start
= vma_offset_start(vma
, start
);
451 v_end
= vma_offset_end(vma
, end
);
452 if (hugetlb_vma_maps_pfn(vma
, v_start
, pfn
))
453 unmap_hugepage_range(vma
, v_start
, v_end
, NULL
,
454 ZAP_FLAG_DROP_MARKER
);
456 kref_put(&vma_lock
->refs
, hugetlb_vma_lock_release
);
457 hugetlb_vma_unlock_write(vma
);
464 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
,
465 zap_flags_t zap_flags
)
467 struct vm_area_struct
*vma
;
470 * end == 0 indicates that the entire range after start should be
471 * unmapped. Note, end is exclusive, whereas the interval tree takes
472 * an inclusive "last".
474 vma_interval_tree_foreach(vma
, root
, start
, end
? end
- 1 : ULONG_MAX
) {
475 unsigned long v_start
;
478 if (!hugetlb_vma_trylock_write(vma
))
481 v_start
= vma_offset_start(vma
, start
);
482 v_end
= vma_offset_end(vma
, end
);
484 unmap_hugepage_range(vma
, v_start
, v_end
, NULL
, zap_flags
);
487 * Note that vma lock only exists for shared/non-private
488 * vmas. Therefore, lock is not held when calling
489 * unmap_hugepage_range for private vmas.
491 hugetlb_vma_unlock_write(vma
);
496 * Called with hugetlb fault mutex held.
497 * Returns true if page was actually removed, false otherwise.
499 static bool remove_inode_single_folio(struct hstate
*h
, struct inode
*inode
,
500 struct address_space
*mapping
,
501 struct folio
*folio
, pgoff_t index
,
507 * If folio is mapped, it was faulted in after being
508 * unmapped in caller or hugetlb_vmdelete_list() skips
509 * unmapping it due to fail to grab lock. Unmap (again)
510 * while holding the fault mutex. The mutex will prevent
511 * faults until we finish removing the folio. Hold folio
512 * lock to guarantee no concurrent migration.
515 if (unlikely(folio_mapped(folio
)))
516 hugetlb_unmap_file_folio(h
, mapping
, folio
, index
);
519 * We must remove the folio from page cache before removing
520 * the region/ reserve map (hugetlb_unreserve_pages). In
521 * rare out of memory conditions, removal of the region/reserve
522 * map could fail. Correspondingly, the subpool and global
523 * reserve usage count can need to be adjusted.
525 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio
), folio
);
526 hugetlb_delete_from_page_cache(folio
);
529 if (unlikely(hugetlb_unreserve_pages(inode
, index
,
531 hugetlb_fix_reserve_counts(inode
);
539 * remove_inode_hugepages handles two distinct cases: truncation and hole
540 * punch. There are subtle differences in operation for each case.
542 * truncation is indicated by end of range being LLONG_MAX
543 * In this case, we first scan the range and release found pages.
544 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
545 * maps and global counts. Page faults can race with truncation.
546 * During faults, hugetlb_no_page() checks i_size before page allocation,
547 * and again after obtaining page table lock. It will 'back out'
548 * allocations in the truncated range.
549 * hole punch is indicated if end is not LLONG_MAX
550 * In the hole punch case we scan the range and release found pages.
551 * Only when releasing a page is the associated region/reserve map
552 * deleted. The region/reserve map for ranges without associated
553 * pages are not modified. Page faults can race with hole punch.
554 * This is indicated if we find a mapped page.
555 * Note: If the passed end of range value is beyond the end of file, but
556 * not LLONG_MAX this routine still performs a hole punch operation.
558 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
561 struct hstate
*h
= hstate_inode(inode
);
562 struct address_space
*mapping
= &inode
->i_data
;
563 const pgoff_t end
= lend
>> PAGE_SHIFT
;
564 struct folio_batch fbatch
;
567 bool truncate_op
= (lend
== LLONG_MAX
);
569 folio_batch_init(&fbatch
);
570 next
= lstart
>> PAGE_SHIFT
;
571 while (filemap_get_folios(mapping
, &next
, end
- 1, &fbatch
)) {
572 for (i
= 0; i
< folio_batch_count(&fbatch
); ++i
) {
573 struct folio
*folio
= fbatch
.folios
[i
];
576 index
= folio
->index
>> huge_page_order(h
);
577 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
578 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
581 * Remove folio that was part of folio_batch.
583 if (remove_inode_single_folio(h
, inode
, mapping
, folio
,
587 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
589 folio_batch_release(&fbatch
);
594 (void)hugetlb_unreserve_pages(inode
,
595 lstart
>> huge_page_shift(h
),
599 static void hugetlbfs_evict_inode(struct inode
*inode
)
601 struct resv_map
*resv_map
;
603 trace_hugetlbfs_evict_inode(inode
);
604 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
607 * Get the resv_map from the address space embedded in the inode.
608 * This is the address space which points to any resv_map allocated
609 * at inode creation time. If this is a device special inode,
610 * i_mapping may not point to the original address space.
612 resv_map
= (struct resv_map
*)(&inode
->i_data
)->i_private_data
;
613 /* Only regular and link inodes have associated reserve maps */
615 resv_map_release(&resv_map
->refs
);
619 static void hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
622 struct address_space
*mapping
= inode
->i_mapping
;
623 struct hstate
*h
= hstate_inode(inode
);
625 BUG_ON(offset
& ~huge_page_mask(h
));
626 pgoff
= offset
>> PAGE_SHIFT
;
628 i_size_write(inode
, offset
);
629 i_mmap_lock_write(mapping
);
630 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
631 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0,
632 ZAP_FLAG_DROP_MARKER
);
633 i_mmap_unlock_write(mapping
);
634 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
637 static void hugetlbfs_zero_partial_page(struct hstate
*h
,
638 struct address_space
*mapping
,
642 pgoff_t idx
= start
>> huge_page_shift(h
);
645 folio
= filemap_lock_hugetlb_folio(h
, mapping
, idx
);
649 start
= start
& ~huge_page_mask(h
);
650 end
= end
& ~huge_page_mask(h
);
652 end
= huge_page_size(h
);
654 folio_zero_segment(folio
, (size_t)start
, (size_t)end
);
660 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
662 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
663 struct address_space
*mapping
= inode
->i_mapping
;
664 struct hstate
*h
= hstate_inode(inode
);
665 loff_t hpage_size
= huge_page_size(h
);
666 loff_t hole_start
, hole_end
;
669 * hole_start and hole_end indicate the full pages within the hole.
671 hole_start
= round_up(offset
, hpage_size
);
672 hole_end
= round_down(offset
+ len
, hpage_size
);
676 /* protected by i_rwsem */
677 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
682 i_mmap_lock_write(mapping
);
684 /* If range starts before first full page, zero partial page. */
685 if (offset
< hole_start
)
686 hugetlbfs_zero_partial_page(h
, mapping
,
687 offset
, min(offset
+ len
, hole_start
));
689 /* Unmap users of full pages in the hole. */
690 if (hole_end
> hole_start
) {
691 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
692 hugetlb_vmdelete_list(&mapping
->i_mmap
,
693 hole_start
>> PAGE_SHIFT
,
694 hole_end
>> PAGE_SHIFT
, 0);
697 /* If range extends beyond last full page, zero partial page. */
698 if ((offset
+ len
) > hole_end
&& (offset
+ len
) > hole_start
)
699 hugetlbfs_zero_partial_page(h
, mapping
,
700 hole_end
, offset
+ len
);
702 i_mmap_unlock_write(mapping
);
704 /* Remove full pages from the file. */
705 if (hole_end
> hole_start
)
706 remove_inode_hugepages(inode
, hole_start
, hole_end
);
713 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
716 struct inode
*inode
= file_inode(file
);
717 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
718 struct address_space
*mapping
= inode
->i_mapping
;
719 struct hstate
*h
= hstate_inode(inode
);
720 struct vm_area_struct pseudo_vma
;
721 struct mm_struct
*mm
= current
->mm
;
722 loff_t hpage_size
= huge_page_size(h
);
723 unsigned long hpage_shift
= huge_page_shift(h
);
724 pgoff_t start
, index
, end
;
728 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
731 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
732 error
= hugetlbfs_punch_hole(inode
, offset
, len
);
737 * Default preallocate case.
738 * For this range, start is rounded down and end is rounded up
739 * as well as being converted to page offsets.
741 start
= offset
>> hpage_shift
;
742 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
746 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
747 error
= inode_newsize_ok(inode
, offset
+ len
);
751 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
757 * Initialize a pseudo vma as this is required by the huge page
758 * allocation routines.
760 vma_init(&pseudo_vma
, mm
);
761 vm_flags_init(&pseudo_vma
, VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
762 pseudo_vma
.vm_file
= file
;
764 for (index
= start
; index
< end
; index
++) {
766 * This is supposed to be the vaddr where the page is being
767 * faulted in, but we have no vaddr here.
775 * fallocate(2) manpage permits EINTR; we may have been
776 * interrupted because we are using up too much memory.
778 if (signal_pending(current
)) {
783 /* addr is the offset within the file (zero based) */
784 addr
= index
* hpage_size
;
786 /* mutex taken here, fault path and hole punch */
787 hash
= hugetlb_fault_mutex_hash(mapping
, index
);
788 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
790 /* See if already present in mapping to avoid alloc/free */
791 folio
= filemap_get_folio(mapping
, index
<< huge_page_order(h
));
792 if (!IS_ERR(folio
)) {
794 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
799 * Allocate folio without setting the avoid_reserve argument.
800 * There certainly are no reserves associated with the
801 * pseudo_vma. However, there could be shared mappings with
802 * reserves for the file at the inode level. If we fallocate
803 * folios in these areas, we need to consume the reserves
804 * to keep reservation accounting consistent.
806 folio
= alloc_hugetlb_folio(&pseudo_vma
, addr
, false);
808 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
809 error
= PTR_ERR(folio
);
812 folio_zero_user(folio
, addr
);
813 __folio_mark_uptodate(folio
);
814 error
= hugetlb_add_to_page_cache(folio
, mapping
, index
);
815 if (unlikely(error
)) {
816 restore_reserve_on_error(h
, &pseudo_vma
, addr
, folio
);
818 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
822 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
824 folio_set_hugetlb_migratable(folio
);
826 * folio_unlock because locked by hugetlb_add_to_page_cache()
827 * folio_put() due to reference from alloc_hugetlb_folio()
833 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
834 i_size_write(inode
, offset
+ len
);
835 inode_set_ctime_current(inode
);
840 trace_hugetlbfs_fallocate(inode
, mode
, offset
, len
, error
);
844 static int hugetlbfs_setattr(struct mnt_idmap
*idmap
,
845 struct dentry
*dentry
, struct iattr
*attr
)
847 struct inode
*inode
= d_inode(dentry
);
848 struct hstate
*h
= hstate_inode(inode
);
850 unsigned int ia_valid
= attr
->ia_valid
;
851 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
853 error
= setattr_prepare(idmap
, dentry
, attr
);
857 trace_hugetlbfs_setattr(inode
, dentry
, attr
);
859 if (ia_valid
& ATTR_SIZE
) {
860 loff_t oldsize
= inode
->i_size
;
861 loff_t newsize
= attr
->ia_size
;
863 if (newsize
& ~huge_page_mask(h
))
865 /* protected by i_rwsem */
866 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
867 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
869 hugetlb_vmtruncate(inode
, newsize
);
872 setattr_copy(idmap
, inode
, attr
);
873 mark_inode_dirty(inode
);
877 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
878 struct hugetlbfs_fs_context
*ctx
)
882 inode
= new_inode(sb
);
884 inode
->i_ino
= get_next_ino();
885 inode
->i_mode
= S_IFDIR
| ctx
->mode
;
886 inode
->i_uid
= ctx
->uid
;
887 inode
->i_gid
= ctx
->gid
;
888 simple_inode_init_ts(inode
);
889 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
890 inode
->i_fop
= &simple_dir_operations
;
891 /* directory inodes start off with i_nlink == 2 (for "." entry) */
893 lockdep_annotate_inode_mutex_key(inode
);
899 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
900 * be taken from reclaim -- unlike regular filesystems. This needs an
901 * annotation because huge_pmd_share() does an allocation under hugetlb's
904 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
906 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
907 struct mnt_idmap
*idmap
,
909 umode_t mode
, dev_t dev
)
912 struct resv_map
*resv_map
= NULL
;
915 * Reserve maps are only needed for inodes that can have associated
918 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
919 resv_map
= resv_map_alloc();
924 inode
= new_inode(sb
);
926 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
928 inode
->i_ino
= get_next_ino();
929 inode_init_owner(idmap
, inode
, dir
, mode
);
930 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
931 &hugetlbfs_i_mmap_rwsem_key
);
932 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
933 simple_inode_init_ts(inode
);
934 inode
->i_mapping
->i_private_data
= resv_map
;
935 info
->seals
= F_SEAL_SEAL
;
936 switch (mode
& S_IFMT
) {
938 init_special_inode(inode
, mode
, dev
);
941 inode
->i_op
= &hugetlbfs_inode_operations
;
942 inode
->i_fop
= &hugetlbfs_file_operations
;
945 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
946 inode
->i_fop
= &simple_dir_operations
;
948 /* directory inodes start off with i_nlink == 2 (for "." entry) */
952 inode
->i_op
= &page_symlink_inode_operations
;
953 inode_nohighmem(inode
);
956 lockdep_annotate_inode_mutex_key(inode
);
957 trace_hugetlbfs_alloc_inode(inode
, dir
, mode
);
960 kref_put(&resv_map
->refs
, resv_map_release
);
967 * File creation. Allocate an inode, and we're done..
969 static int hugetlbfs_mknod(struct mnt_idmap
*idmap
, struct inode
*dir
,
970 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
974 inode
= hugetlbfs_get_inode(dir
->i_sb
, idmap
, dir
, mode
, dev
);
977 inode_set_mtime_to_ts(dir
, inode_set_ctime_current(dir
));
978 d_instantiate(dentry
, inode
);
979 dget(dentry
);/* Extra count - pin the dentry in core */
983 static struct dentry
*hugetlbfs_mkdir(struct mnt_idmap
*idmap
, struct inode
*dir
,
984 struct dentry
*dentry
, umode_t mode
)
986 int retval
= hugetlbfs_mknod(idmap
, dir
, dentry
,
990 return ERR_PTR(retval
);
993 static int hugetlbfs_create(struct mnt_idmap
*idmap
,
994 struct inode
*dir
, struct dentry
*dentry
,
995 umode_t mode
, bool excl
)
997 return hugetlbfs_mknod(idmap
, dir
, dentry
, mode
| S_IFREG
, 0);
1000 static int hugetlbfs_tmpfile(struct mnt_idmap
*idmap
,
1001 struct inode
*dir
, struct file
*file
,
1004 struct inode
*inode
;
1006 inode
= hugetlbfs_get_inode(dir
->i_sb
, idmap
, dir
, mode
| S_IFREG
, 0);
1009 inode_set_mtime_to_ts(dir
, inode_set_ctime_current(dir
));
1010 d_tmpfile(file
, inode
);
1011 return finish_open_simple(file
, 0);
1014 static int hugetlbfs_symlink(struct mnt_idmap
*idmap
,
1015 struct inode
*dir
, struct dentry
*dentry
,
1016 const char *symname
)
1018 const umode_t mode
= S_IFLNK
|S_IRWXUGO
;
1019 struct inode
*inode
;
1020 int error
= -ENOSPC
;
1022 inode
= hugetlbfs_get_inode(dir
->i_sb
, idmap
, dir
, mode
, 0);
1024 int l
= strlen(symname
)+1;
1025 error
= page_symlink(inode
, symname
, l
);
1027 d_instantiate(dentry
, inode
);
1032 inode_set_mtime_to_ts(dir
, inode_set_ctime_current(dir
));
1037 #ifdef CONFIG_MIGRATION
1038 static int hugetlbfs_migrate_folio(struct address_space
*mapping
,
1039 struct folio
*dst
, struct folio
*src
,
1040 enum migrate_mode mode
)
1044 rc
= migrate_huge_page_move_mapping(mapping
, dst
, src
);
1048 if (hugetlb_folio_subpool(src
)) {
1049 hugetlb_set_folio_subpool(dst
,
1050 hugetlb_folio_subpool(src
));
1051 hugetlb_set_folio_subpool(src
, NULL
);
1054 folio_migrate_flags(dst
, src
);
1059 #define hugetlbfs_migrate_folio NULL
1062 static int hugetlbfs_error_remove_folio(struct address_space
*mapping
,
1063 struct folio
*folio
)
1069 * Display the mount options in /proc/mounts.
1071 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
1073 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
1074 struct hugepage_subpool
*spool
= sbinfo
->spool
;
1075 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
1076 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
1079 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
1080 seq_printf(m
, ",uid=%u",
1081 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
1082 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
1083 seq_printf(m
, ",gid=%u",
1084 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
1085 if (sbinfo
->mode
!= 0755)
1086 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
1087 if (sbinfo
->max_inodes
!= -1)
1088 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
1092 if (hpage_size
>= 1024) {
1096 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
1098 if (spool
->max_hpages
!= -1)
1099 seq_printf(m
, ",size=%llu",
1100 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
1101 if (spool
->min_hpages
!= -1)
1102 seq_printf(m
, ",min_size=%llu",
1103 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
1108 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1110 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
1111 struct hstate
*h
= hstate_inode(d_inode(dentry
));
1112 u64 id
= huge_encode_dev(dentry
->d_sb
->s_dev
);
1114 buf
->f_fsid
= u64_to_fsid(id
);
1115 buf
->f_type
= HUGETLBFS_MAGIC
;
1116 buf
->f_bsize
= huge_page_size(h
);
1118 spin_lock(&sbinfo
->stat_lock
);
1119 /* If no limits set, just report 0 or -1 for max/free/used
1120 * blocks, like simple_statfs() */
1121 if (sbinfo
->spool
) {
1124 spin_lock_irq(&sbinfo
->spool
->lock
);
1125 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
1126 free_pages
= sbinfo
->spool
->max_hpages
1127 - sbinfo
->spool
->used_hpages
;
1128 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
1129 spin_unlock_irq(&sbinfo
->spool
->lock
);
1130 buf
->f_files
= sbinfo
->max_inodes
;
1131 buf
->f_ffree
= sbinfo
->free_inodes
;
1133 spin_unlock(&sbinfo
->stat_lock
);
1135 buf
->f_namelen
= NAME_MAX
;
1139 static void hugetlbfs_put_super(struct super_block
*sb
)
1141 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
1144 sb
->s_fs_info
= NULL
;
1147 hugepage_put_subpool(sbi
->spool
);
1153 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1155 if (sbinfo
->free_inodes
>= 0) {
1156 spin_lock(&sbinfo
->stat_lock
);
1157 if (unlikely(!sbinfo
->free_inodes
)) {
1158 spin_unlock(&sbinfo
->stat_lock
);
1161 sbinfo
->free_inodes
--;
1162 spin_unlock(&sbinfo
->stat_lock
);
1168 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1170 if (sbinfo
->free_inodes
>= 0) {
1171 spin_lock(&sbinfo
->stat_lock
);
1172 sbinfo
->free_inodes
++;
1173 spin_unlock(&sbinfo
->stat_lock
);
1178 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1180 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1182 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1183 struct hugetlbfs_inode_info
*p
;
1185 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1187 p
= alloc_inode_sb(sb
, hugetlbfs_inode_cachep
, GFP_KERNEL
);
1189 hugetlbfs_inc_free_inodes(sbinfo
);
1192 return &p
->vfs_inode
;
1195 static void hugetlbfs_free_inode(struct inode
*inode
)
1197 trace_hugetlbfs_free_inode(inode
);
1198 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1201 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1203 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1206 static const struct address_space_operations hugetlbfs_aops
= {
1207 .write_begin
= hugetlbfs_write_begin
,
1208 .write_end
= hugetlbfs_write_end
,
1209 .dirty_folio
= noop_dirty_folio
,
1210 .migrate_folio
= hugetlbfs_migrate_folio
,
1211 .error_remove_folio
= hugetlbfs_error_remove_folio
,
1215 static void init_once(void *foo
)
1217 struct hugetlbfs_inode_info
*ei
= foo
;
1219 inode_init_once(&ei
->vfs_inode
);
1222 static const struct file_operations hugetlbfs_file_operations
= {
1223 .read_iter
= hugetlbfs_read_iter
,
1224 .mmap
= hugetlbfs_file_mmap
,
1225 .fsync
= noop_fsync
,
1226 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1227 .llseek
= default_llseek
,
1228 .fallocate
= hugetlbfs_fallocate
,
1229 .fop_flags
= FOP_HUGE_PAGES
,
1232 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1233 .create
= hugetlbfs_create
,
1234 .lookup
= simple_lookup
,
1235 .link
= simple_link
,
1236 .unlink
= simple_unlink
,
1237 .symlink
= hugetlbfs_symlink
,
1238 .mkdir
= hugetlbfs_mkdir
,
1239 .rmdir
= simple_rmdir
,
1240 .mknod
= hugetlbfs_mknod
,
1241 .rename
= simple_rename
,
1242 .setattr
= hugetlbfs_setattr
,
1243 .tmpfile
= hugetlbfs_tmpfile
,
1246 static const struct inode_operations hugetlbfs_inode_operations
= {
1247 .setattr
= hugetlbfs_setattr
,
1250 static const struct super_operations hugetlbfs_ops
= {
1251 .alloc_inode
= hugetlbfs_alloc_inode
,
1252 .free_inode
= hugetlbfs_free_inode
,
1253 .destroy_inode
= hugetlbfs_destroy_inode
,
1254 .evict_inode
= hugetlbfs_evict_inode
,
1255 .statfs
= hugetlbfs_statfs
,
1256 .put_super
= hugetlbfs_put_super
,
1257 .show_options
= hugetlbfs_show_options
,
1261 * Convert size option passed from command line to number of huge pages
1262 * in the pool specified by hstate. Size option could be in bytes
1263 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1266 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1267 enum hugetlbfs_size_type val_type
)
1269 if (val_type
== NO_SIZE
)
1272 if (val_type
== SIZE_PERCENT
) {
1273 size_opt
<<= huge_page_shift(h
);
1274 size_opt
*= h
->max_huge_pages
;
1275 do_div(size_opt
, 100);
1278 size_opt
>>= huge_page_shift(h
);
1283 * Parse one mount parameter.
1285 static int hugetlbfs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1287 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1288 struct fs_parse_result result
;
1294 opt
= fs_parse(fc
, hugetlb_fs_parameters
, param
, &result
);
1300 ctx
->uid
= result
.uid
;
1304 ctx
->gid
= result
.gid
;
1308 ctx
->mode
= result
.uint_32
& 01777U;
1312 /* memparse() will accept a K/M/G without a digit */
1313 if (!param
->string
|| !isdigit(param
->string
[0]))
1315 ctx
->max_size_opt
= memparse(param
->string
, &rest
);
1316 ctx
->max_val_type
= SIZE_STD
;
1318 ctx
->max_val_type
= SIZE_PERCENT
;
1322 /* memparse() will accept a K/M/G without a digit */
1323 if (!param
->string
|| !isdigit(param
->string
[0]))
1325 ctx
->nr_inodes
= memparse(param
->string
, &rest
);
1329 ps
= memparse(param
->string
, &rest
);
1330 h
= size_to_hstate(ps
);
1332 pr_err("Unsupported page size %lu MB\n", ps
/ SZ_1M
);
1339 /* memparse() will accept a K/M/G without a digit */
1340 if (!param
->string
|| !isdigit(param
->string
[0]))
1342 ctx
->min_size_opt
= memparse(param
->string
, &rest
);
1343 ctx
->min_val_type
= SIZE_STD
;
1345 ctx
->min_val_type
= SIZE_PERCENT
;
1353 return invalfc(fc
, "Bad value '%s' for mount option '%s'\n",
1354 param
->string
, param
->key
);
1358 * Validate the parsed options.
1360 static int hugetlbfs_validate(struct fs_context
*fc
)
1362 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1365 * Use huge page pool size (in hstate) to convert the size
1366 * options to number of huge pages. If NO_SIZE, -1 is returned.
1368 ctx
->max_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1371 ctx
->min_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1376 * If max_size was specified, then min_size must be smaller
1378 if (ctx
->max_val_type
> NO_SIZE
&&
1379 ctx
->min_hpages
> ctx
->max_hpages
) {
1380 pr_err("Minimum size can not be greater than maximum size\n");
1388 hugetlbfs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
1390 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1391 struct hugetlbfs_sb_info
*sbinfo
;
1393 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1396 sb
->s_fs_info
= sbinfo
;
1397 spin_lock_init(&sbinfo
->stat_lock
);
1398 sbinfo
->hstate
= ctx
->hstate
;
1399 sbinfo
->max_inodes
= ctx
->nr_inodes
;
1400 sbinfo
->free_inodes
= ctx
->nr_inodes
;
1401 sbinfo
->spool
= NULL
;
1402 sbinfo
->uid
= ctx
->uid
;
1403 sbinfo
->gid
= ctx
->gid
;
1404 sbinfo
->mode
= ctx
->mode
;
1407 * Allocate and initialize subpool if maximum or minimum size is
1408 * specified. Any needed reservations (for minimum size) are taken
1409 * when the subpool is created.
1411 if (ctx
->max_hpages
!= -1 || ctx
->min_hpages
!= -1) {
1412 sbinfo
->spool
= hugepage_new_subpool(ctx
->hstate
,
1418 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1419 sb
->s_blocksize
= huge_page_size(ctx
->hstate
);
1420 sb
->s_blocksize_bits
= huge_page_shift(ctx
->hstate
);
1421 sb
->s_magic
= HUGETLBFS_MAGIC
;
1422 sb
->s_op
= &hugetlbfs_ops
;
1423 sb
->s_d_flags
= DCACHE_DONTCACHE
;
1424 sb
->s_time_gran
= 1;
1427 * Due to the special and limited functionality of hugetlbfs, it does
1428 * not work well as a stacking filesystem.
1430 sb
->s_stack_depth
= FILESYSTEM_MAX_STACK_DEPTH
;
1431 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, ctx
));
1436 kfree(sbinfo
->spool
);
1441 static int hugetlbfs_get_tree(struct fs_context
*fc
)
1443 int err
= hugetlbfs_validate(fc
);
1446 return get_tree_nodev(fc
, hugetlbfs_fill_super
);
1449 static void hugetlbfs_fs_context_free(struct fs_context
*fc
)
1451 kfree(fc
->fs_private
);
1454 static const struct fs_context_operations hugetlbfs_fs_context_ops
= {
1455 .free
= hugetlbfs_fs_context_free
,
1456 .parse_param
= hugetlbfs_parse_param
,
1457 .get_tree
= hugetlbfs_get_tree
,
1460 static int hugetlbfs_init_fs_context(struct fs_context
*fc
)
1462 struct hugetlbfs_fs_context
*ctx
;
1464 ctx
= kzalloc(sizeof(struct hugetlbfs_fs_context
), GFP_KERNEL
);
1468 ctx
->max_hpages
= -1; /* No limit on size by default */
1469 ctx
->nr_inodes
= -1; /* No limit on number of inodes by default */
1470 ctx
->uid
= current_fsuid();
1471 ctx
->gid
= current_fsgid();
1473 ctx
->hstate
= &default_hstate
;
1474 ctx
->min_hpages
= -1; /* No default minimum size */
1475 ctx
->max_val_type
= NO_SIZE
;
1476 ctx
->min_val_type
= NO_SIZE
;
1477 fc
->fs_private
= ctx
;
1478 fc
->ops
= &hugetlbfs_fs_context_ops
;
1482 static struct file_system_type hugetlbfs_fs_type
= {
1483 .name
= "hugetlbfs",
1484 .init_fs_context
= hugetlbfs_init_fs_context
,
1485 .parameters
= hugetlb_fs_parameters
,
1486 .kill_sb
= kill_litter_super
,
1487 .fs_flags
= FS_ALLOW_IDMAP
,
1490 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1492 static int can_do_hugetlb_shm(void)
1495 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1496 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1499 static int get_hstate_idx(int page_size_log
)
1501 struct hstate
*h
= hstate_sizelog(page_size_log
);
1505 return hstate_index(h
);
1509 * Note that size should be aligned to proper hugepage size in caller side,
1510 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1512 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1513 vm_flags_t acctflag
, int creat_flags
,
1516 struct inode
*inode
;
1517 struct vfsmount
*mnt
;
1521 hstate_idx
= get_hstate_idx(page_size_log
);
1523 return ERR_PTR(-ENODEV
);
1525 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1527 return ERR_PTR(-ENOENT
);
1529 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1530 struct ucounts
*ucounts
= current_ucounts();
1532 if (user_shm_lock(size
, ucounts
)) {
1533 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1534 current
->comm
, current
->pid
);
1535 user_shm_unlock(size
, ucounts
);
1537 return ERR_PTR(-EPERM
);
1540 file
= ERR_PTR(-ENOSPC
);
1541 /* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
1542 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, &nop_mnt_idmap
, NULL
,
1543 S_IFREG
| S_IRWXUGO
, 0);
1546 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1547 inode
->i_flags
|= S_PRIVATE
;
1549 inode
->i_size
= size
;
1552 if (hugetlb_reserve_pages(inode
, 0,
1553 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1555 file
= ERR_PTR(-ENOMEM
);
1557 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1558 &hugetlbfs_file_operations
);
1567 static struct vfsmount
*__init
mount_one_hugetlbfs(struct hstate
*h
)
1569 struct fs_context
*fc
;
1570 struct vfsmount
*mnt
;
1572 fc
= fs_context_for_mount(&hugetlbfs_fs_type
, SB_KERNMOUNT
);
1576 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1578 mnt
= fc_mount_longterm(fc
);
1582 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1583 huge_page_size(h
) / SZ_1K
);
1587 static int __init
init_hugetlbfs_fs(void)
1589 struct vfsmount
*mnt
;
1594 if (!hugepages_supported()) {
1595 pr_info("disabling because there are no supported hugepage sizes\n");
1600 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1601 sizeof(struct hugetlbfs_inode_info
),
1602 0, SLAB_ACCOUNT
, init_once
);
1603 if (hugetlbfs_inode_cachep
== NULL
)
1606 error
= register_filesystem(&hugetlbfs_fs_type
);
1610 /* default hstate mount is required */
1611 mnt
= mount_one_hugetlbfs(&default_hstate
);
1613 error
= PTR_ERR(mnt
);
1616 hugetlbfs_vfsmount
[default_hstate_idx
] = mnt
;
1618 /* other hstates are optional */
1620 for_each_hstate(h
) {
1621 if (i
== default_hstate_idx
) {
1626 mnt
= mount_one_hugetlbfs(h
);
1628 hugetlbfs_vfsmount
[i
] = NULL
;
1630 hugetlbfs_vfsmount
[i
] = mnt
;
1637 (void)unregister_filesystem(&hugetlbfs_fs_type
);
1639 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1643 fs_initcall(init_hugetlbfs_fs
)