]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/inode.c
Merge tag 'sound-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/kernel/linux.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26
27 /*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63 /*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70
71 /*
72 * Statistics gathering..
73 */
74 struct inodes_stat_t inodes_stat;
75
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79 static struct kmem_cache *inode_cachep __read_mostly;
80
81 static long get_nr_inodes(void)
82 {
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88 }
89
90 static inline long get_nr_inodes_unused(void)
91 {
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97 }
98
99 long get_nr_dirty_inodes(void)
100 {
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104 }
105
106 /*
107 * Handle nr_inode sysctl
108 */
109 #ifdef CONFIG_SYSCTL
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118
119 static int no_open(struct inode *inode, struct file *file)
120 {
121 return -ENXIO;
122 }
123
124 /**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
141 atomic64_set(&inode->i_sequence, 0);
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->i_ino = 0;
146 inode->__i_nlink = 1;
147 inode->i_opflags = 0;
148 if (sb->s_xattr)
149 inode->i_opflags |= IOP_XATTR;
150 i_uid_write(inode, 0);
151 i_gid_write(inode, 0);
152 atomic_set(&inode->i_writecount, 0);
153 inode->i_size = 0;
154 inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 inode->i_blocks = 0;
156 inode->i_bytes = 0;
157 inode->i_generation = 0;
158 inode->i_pipe = NULL;
159 inode->i_cdev = NULL;
160 inode->i_link = NULL;
161 inode->i_dir_seq = 0;
162 inode->i_rdev = 0;
163 inode->dirtied_when = 0;
164
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 inode->i_wb_frn_winner = 0;
167 inode->i_wb_frn_avg_time = 0;
168 inode->i_wb_frn_history = 0;
169 #endif
170
171 if (security_inode_alloc(inode))
172 goto out;
173 spin_lock_init(&inode->i_lock);
174 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175
176 init_rwsem(&inode->i_rwsem);
177 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178
179 atomic_set(&inode->i_dio_count, 0);
180
181 mapping->a_ops = &empty_aops;
182 mapping->host = inode;
183 mapping->flags = 0;
184 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
185 __set_bit(AS_THP_SUPPORT, &mapping->flags);
186 mapping->wb_err = 0;
187 atomic_set(&mapping->i_mmap_writable, 0);
188 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
189 atomic_set(&mapping->nr_thps, 0);
190 #endif
191 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
192 mapping->private_data = NULL;
193 mapping->writeback_index = 0;
194 inode->i_private = NULL;
195 inode->i_mapping = mapping;
196 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
197 #ifdef CONFIG_FS_POSIX_ACL
198 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
199 #endif
200
201 #ifdef CONFIG_FSNOTIFY
202 inode->i_fsnotify_mask = 0;
203 #endif
204 inode->i_flctx = NULL;
205 this_cpu_inc(nr_inodes);
206
207 return 0;
208 out:
209 return -ENOMEM;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212
213 void free_inode_nonrcu(struct inode *inode)
214 {
215 kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218
219 static void i_callback(struct rcu_head *head)
220 {
221 struct inode *inode = container_of(head, struct inode, i_rcu);
222 if (inode->free_inode)
223 inode->free_inode(inode);
224 else
225 free_inode_nonrcu(inode);
226 }
227
228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 const struct super_operations *ops = sb->s_op;
231 struct inode *inode;
232
233 if (ops->alloc_inode)
234 inode = ops->alloc_inode(sb);
235 else
236 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237
238 if (!inode)
239 return NULL;
240
241 if (unlikely(inode_init_always(sb, inode))) {
242 if (ops->destroy_inode) {
243 ops->destroy_inode(inode);
244 if (!ops->free_inode)
245 return NULL;
246 }
247 inode->free_inode = ops->free_inode;
248 i_callback(&inode->i_rcu);
249 return NULL;
250 }
251
252 return inode;
253 }
254
255 void __destroy_inode(struct inode *inode)
256 {
257 BUG_ON(inode_has_buffers(inode));
258 inode_detach_wb(inode);
259 security_inode_free(inode);
260 fsnotify_inode_delete(inode);
261 locks_free_lock_context(inode);
262 if (!inode->i_nlink) {
263 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
264 atomic_long_dec(&inode->i_sb->s_remove_count);
265 }
266
267 #ifdef CONFIG_FS_POSIX_ACL
268 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
269 posix_acl_release(inode->i_acl);
270 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
271 posix_acl_release(inode->i_default_acl);
272 #endif
273 this_cpu_dec(nr_inodes);
274 }
275 EXPORT_SYMBOL(__destroy_inode);
276
277 static void destroy_inode(struct inode *inode)
278 {
279 const struct super_operations *ops = inode->i_sb->s_op;
280
281 BUG_ON(!list_empty(&inode->i_lru));
282 __destroy_inode(inode);
283 if (ops->destroy_inode) {
284 ops->destroy_inode(inode);
285 if (!ops->free_inode)
286 return;
287 }
288 inode->free_inode = ops->free_inode;
289 call_rcu(&inode->i_rcu, i_callback);
290 }
291
292 /**
293 * drop_nlink - directly drop an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. In cases
298 * where we are attempting to track writes to the
299 * filesystem, a decrement to zero means an imminent
300 * write when the file is truncated and actually unlinked
301 * on the filesystem.
302 */
303 void drop_nlink(struct inode *inode)
304 {
305 WARN_ON(inode->i_nlink == 0);
306 inode->__i_nlink--;
307 if (!inode->i_nlink)
308 atomic_long_inc(&inode->i_sb->s_remove_count);
309 }
310 EXPORT_SYMBOL(drop_nlink);
311
312 /**
313 * clear_nlink - directly zero an inode's link count
314 * @inode: inode
315 *
316 * This is a low-level filesystem helper to replace any
317 * direct filesystem manipulation of i_nlink. See
318 * drop_nlink() for why we care about i_nlink hitting zero.
319 */
320 void clear_nlink(struct inode *inode)
321 {
322 if (inode->i_nlink) {
323 inode->__i_nlink = 0;
324 atomic_long_inc(&inode->i_sb->s_remove_count);
325 }
326 }
327 EXPORT_SYMBOL(clear_nlink);
328
329 /**
330 * set_nlink - directly set an inode's link count
331 * @inode: inode
332 * @nlink: new nlink (should be non-zero)
333 *
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink.
336 */
337 void set_nlink(struct inode *inode, unsigned int nlink)
338 {
339 if (!nlink) {
340 clear_nlink(inode);
341 } else {
342 /* Yes, some filesystems do change nlink from zero to one */
343 if (inode->i_nlink == 0)
344 atomic_long_dec(&inode->i_sb->s_remove_count);
345
346 inode->__i_nlink = nlink;
347 }
348 }
349 EXPORT_SYMBOL(set_nlink);
350
351 /**
352 * inc_nlink - directly increment an inode's link count
353 * @inode: inode
354 *
355 * This is a low-level filesystem helper to replace any
356 * direct filesystem manipulation of i_nlink. Currently,
357 * it is only here for parity with dec_nlink().
358 */
359 void inc_nlink(struct inode *inode)
360 {
361 if (unlikely(inode->i_nlink == 0)) {
362 WARN_ON(!(inode->i_state & I_LINKABLE));
363 atomic_long_dec(&inode->i_sb->s_remove_count);
364 }
365
366 inode->__i_nlink++;
367 }
368 EXPORT_SYMBOL(inc_nlink);
369
370 static void __address_space_init_once(struct address_space *mapping)
371 {
372 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
373 init_rwsem(&mapping->i_mmap_rwsem);
374 INIT_LIST_HEAD(&mapping->private_list);
375 spin_lock_init(&mapping->private_lock);
376 mapping->i_mmap = RB_ROOT_CACHED;
377 }
378
379 void address_space_init_once(struct address_space *mapping)
380 {
381 memset(mapping, 0, sizeof(*mapping));
382 __address_space_init_once(mapping);
383 }
384 EXPORT_SYMBOL(address_space_init_once);
385
386 /*
387 * These are initializations that only need to be done
388 * once, because the fields are idempotent across use
389 * of the inode, so let the slab aware of that.
390 */
391 void inode_init_once(struct inode *inode)
392 {
393 memset(inode, 0, sizeof(*inode));
394 INIT_HLIST_NODE(&inode->i_hash);
395 INIT_LIST_HEAD(&inode->i_devices);
396 INIT_LIST_HEAD(&inode->i_io_list);
397 INIT_LIST_HEAD(&inode->i_wb_list);
398 INIT_LIST_HEAD(&inode->i_lru);
399 __address_space_init_once(&inode->i_data);
400 i_size_ordered_init(inode);
401 }
402 EXPORT_SYMBOL(inode_init_once);
403
404 static void init_once(void *foo)
405 {
406 struct inode *inode = (struct inode *) foo;
407
408 inode_init_once(inode);
409 }
410
411 /*
412 * inode->i_lock must be held
413 */
414 void __iget(struct inode *inode)
415 {
416 atomic_inc(&inode->i_count);
417 }
418
419 /*
420 * get additional reference to inode; caller must already hold one.
421 */
422 void ihold(struct inode *inode)
423 {
424 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
425 }
426 EXPORT_SYMBOL(ihold);
427
428 static void inode_lru_list_add(struct inode *inode)
429 {
430 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
431 this_cpu_inc(nr_unused);
432 else
433 inode->i_state |= I_REFERENCED;
434 }
435
436 /*
437 * Add inode to LRU if needed (inode is unused and clean).
438 *
439 * Needs inode->i_lock held.
440 */
441 void inode_add_lru(struct inode *inode)
442 {
443 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
444 I_FREEING | I_WILL_FREE)) &&
445 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
446 inode_lru_list_add(inode);
447 }
448
449
450 static void inode_lru_list_del(struct inode *inode)
451 {
452
453 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
454 this_cpu_dec(nr_unused);
455 }
456
457 /**
458 * inode_sb_list_add - add inode to the superblock list of inodes
459 * @inode: inode to add
460 */
461 void inode_sb_list_add(struct inode *inode)
462 {
463 spin_lock(&inode->i_sb->s_inode_list_lock);
464 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
465 spin_unlock(&inode->i_sb->s_inode_list_lock);
466 }
467 EXPORT_SYMBOL_GPL(inode_sb_list_add);
468
469 static inline void inode_sb_list_del(struct inode *inode)
470 {
471 if (!list_empty(&inode->i_sb_list)) {
472 spin_lock(&inode->i_sb->s_inode_list_lock);
473 list_del_init(&inode->i_sb_list);
474 spin_unlock(&inode->i_sb->s_inode_list_lock);
475 }
476 }
477
478 static unsigned long hash(struct super_block *sb, unsigned long hashval)
479 {
480 unsigned long tmp;
481
482 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
483 L1_CACHE_BYTES;
484 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
485 return tmp & i_hash_mask;
486 }
487
488 /**
489 * __insert_inode_hash - hash an inode
490 * @inode: unhashed inode
491 * @hashval: unsigned long value used to locate this object in the
492 * inode_hashtable.
493 *
494 * Add an inode to the inode hash for this superblock.
495 */
496 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
497 {
498 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
499
500 spin_lock(&inode_hash_lock);
501 spin_lock(&inode->i_lock);
502 hlist_add_head_rcu(&inode->i_hash, b);
503 spin_unlock(&inode->i_lock);
504 spin_unlock(&inode_hash_lock);
505 }
506 EXPORT_SYMBOL(__insert_inode_hash);
507
508 /**
509 * __remove_inode_hash - remove an inode from the hash
510 * @inode: inode to unhash
511 *
512 * Remove an inode from the superblock.
513 */
514 void __remove_inode_hash(struct inode *inode)
515 {
516 spin_lock(&inode_hash_lock);
517 spin_lock(&inode->i_lock);
518 hlist_del_init_rcu(&inode->i_hash);
519 spin_unlock(&inode->i_lock);
520 spin_unlock(&inode_hash_lock);
521 }
522 EXPORT_SYMBOL(__remove_inode_hash);
523
524 void clear_inode(struct inode *inode)
525 {
526 /*
527 * We have to cycle the i_pages lock here because reclaim can be in the
528 * process of removing the last page (in __delete_from_page_cache())
529 * and we must not free the mapping under it.
530 */
531 xa_lock_irq(&inode->i_data.i_pages);
532 BUG_ON(inode->i_data.nrpages);
533 BUG_ON(inode->i_data.nrexceptional);
534 xa_unlock_irq(&inode->i_data.i_pages);
535 BUG_ON(!list_empty(&inode->i_data.private_list));
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(inode->i_state & I_CLEAR);
538 BUG_ON(!list_empty(&inode->i_wb_list));
539 /* don't need i_lock here, no concurrent mods to i_state */
540 inode->i_state = I_FREEING | I_CLEAR;
541 }
542 EXPORT_SYMBOL(clear_inode);
543
544 /*
545 * Free the inode passed in, removing it from the lists it is still connected
546 * to. We remove any pages still attached to the inode and wait for any IO that
547 * is still in progress before finally destroying the inode.
548 *
549 * An inode must already be marked I_FREEING so that we avoid the inode being
550 * moved back onto lists if we race with other code that manipulates the lists
551 * (e.g. writeback_single_inode). The caller is responsible for setting this.
552 *
553 * An inode must already be removed from the LRU list before being evicted from
554 * the cache. This should occur atomically with setting the I_FREEING state
555 * flag, so no inodes here should ever be on the LRU when being evicted.
556 */
557 static void evict(struct inode *inode)
558 {
559 const struct super_operations *op = inode->i_sb->s_op;
560
561 BUG_ON(!(inode->i_state & I_FREEING));
562 BUG_ON(!list_empty(&inode->i_lru));
563
564 if (!list_empty(&inode->i_io_list))
565 inode_io_list_del(inode);
566
567 inode_sb_list_del(inode);
568
569 /*
570 * Wait for flusher thread to be done with the inode so that filesystem
571 * does not start destroying it while writeback is still running. Since
572 * the inode has I_FREEING set, flusher thread won't start new work on
573 * the inode. We just have to wait for running writeback to finish.
574 */
575 inode_wait_for_writeback(inode);
576
577 if (op->evict_inode) {
578 op->evict_inode(inode);
579 } else {
580 truncate_inode_pages_final(&inode->i_data);
581 clear_inode(inode);
582 }
583 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
584 cd_forget(inode);
585
586 remove_inode_hash(inode);
587
588 spin_lock(&inode->i_lock);
589 wake_up_bit(&inode->i_state, __I_NEW);
590 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
591 spin_unlock(&inode->i_lock);
592
593 destroy_inode(inode);
594 }
595
596 /*
597 * dispose_list - dispose of the contents of a local list
598 * @head: the head of the list to free
599 *
600 * Dispose-list gets a local list with local inodes in it, so it doesn't
601 * need to worry about list corruption and SMP locks.
602 */
603 static void dispose_list(struct list_head *head)
604 {
605 while (!list_empty(head)) {
606 struct inode *inode;
607
608 inode = list_first_entry(head, struct inode, i_lru);
609 list_del_init(&inode->i_lru);
610
611 evict(inode);
612 cond_resched();
613 }
614 }
615
616 /**
617 * evict_inodes - evict all evictable inodes for a superblock
618 * @sb: superblock to operate on
619 *
620 * Make sure that no inodes with zero refcount are retained. This is
621 * called by superblock shutdown after having SB_ACTIVE flag removed,
622 * so any inode reaching zero refcount during or after that call will
623 * be immediately evicted.
624 */
625 void evict_inodes(struct super_block *sb)
626 {
627 struct inode *inode, *next;
628 LIST_HEAD(dispose);
629
630 again:
631 spin_lock(&sb->s_inode_list_lock);
632 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
633 if (atomic_read(&inode->i_count))
634 continue;
635
636 spin_lock(&inode->i_lock);
637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 spin_unlock(&inode->i_lock);
639 continue;
640 }
641
642 inode->i_state |= I_FREEING;
643 inode_lru_list_del(inode);
644 spin_unlock(&inode->i_lock);
645 list_add(&inode->i_lru, &dispose);
646
647 /*
648 * We can have a ton of inodes to evict at unmount time given
649 * enough memory, check to see if we need to go to sleep for a
650 * bit so we don't livelock.
651 */
652 if (need_resched()) {
653 spin_unlock(&sb->s_inode_list_lock);
654 cond_resched();
655 dispose_list(&dispose);
656 goto again;
657 }
658 }
659 spin_unlock(&sb->s_inode_list_lock);
660
661 dispose_list(&dispose);
662 }
663 EXPORT_SYMBOL_GPL(evict_inodes);
664
665 /**
666 * invalidate_inodes - attempt to free all inodes on a superblock
667 * @sb: superblock to operate on
668 * @kill_dirty: flag to guide handling of dirty inodes
669 *
670 * Attempts to free all inodes for a given superblock. If there were any
671 * busy inodes return a non-zero value, else zero.
672 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
673 * them as busy.
674 */
675 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
676 {
677 int busy = 0;
678 struct inode *inode, *next;
679 LIST_HEAD(dispose);
680
681 again:
682 spin_lock(&sb->s_inode_list_lock);
683 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
684 spin_lock(&inode->i_lock);
685 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
686 spin_unlock(&inode->i_lock);
687 continue;
688 }
689 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
690 spin_unlock(&inode->i_lock);
691 busy = 1;
692 continue;
693 }
694 if (atomic_read(&inode->i_count)) {
695 spin_unlock(&inode->i_lock);
696 busy = 1;
697 continue;
698 }
699
700 inode->i_state |= I_FREEING;
701 inode_lru_list_del(inode);
702 spin_unlock(&inode->i_lock);
703 list_add(&inode->i_lru, &dispose);
704 if (need_resched()) {
705 spin_unlock(&sb->s_inode_list_lock);
706 cond_resched();
707 dispose_list(&dispose);
708 goto again;
709 }
710 }
711 spin_unlock(&sb->s_inode_list_lock);
712
713 dispose_list(&dispose);
714
715 return busy;
716 }
717
718 /*
719 * Isolate the inode from the LRU in preparation for freeing it.
720 *
721 * Any inodes which are pinned purely because of attached pagecache have their
722 * pagecache removed. If the inode has metadata buffers attached to
723 * mapping->private_list then try to remove them.
724 *
725 * If the inode has the I_REFERENCED flag set, then it means that it has been
726 * used recently - the flag is set in iput_final(). When we encounter such an
727 * inode, clear the flag and move it to the back of the LRU so it gets another
728 * pass through the LRU before it gets reclaimed. This is necessary because of
729 * the fact we are doing lazy LRU updates to minimise lock contention so the
730 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
731 * with this flag set because they are the inodes that are out of order.
732 */
733 static enum lru_status inode_lru_isolate(struct list_head *item,
734 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
735 {
736 struct list_head *freeable = arg;
737 struct inode *inode = container_of(item, struct inode, i_lru);
738
739 /*
740 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
741 * If we fail to get the lock, just skip it.
742 */
743 if (!spin_trylock(&inode->i_lock))
744 return LRU_SKIP;
745
746 /*
747 * Referenced or dirty inodes are still in use. Give them another pass
748 * through the LRU as we canot reclaim them now.
749 */
750 if (atomic_read(&inode->i_count) ||
751 (inode->i_state & ~I_REFERENCED)) {
752 list_lru_isolate(lru, &inode->i_lru);
753 spin_unlock(&inode->i_lock);
754 this_cpu_dec(nr_unused);
755 return LRU_REMOVED;
756 }
757
758 /* recently referenced inodes get one more pass */
759 if (inode->i_state & I_REFERENCED) {
760 inode->i_state &= ~I_REFERENCED;
761 spin_unlock(&inode->i_lock);
762 return LRU_ROTATE;
763 }
764
765 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
766 __iget(inode);
767 spin_unlock(&inode->i_lock);
768 spin_unlock(lru_lock);
769 if (remove_inode_buffers(inode)) {
770 unsigned long reap;
771 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
772 if (current_is_kswapd())
773 __count_vm_events(KSWAPD_INODESTEAL, reap);
774 else
775 __count_vm_events(PGINODESTEAL, reap);
776 if (current->reclaim_state)
777 current->reclaim_state->reclaimed_slab += reap;
778 }
779 iput(inode);
780 spin_lock(lru_lock);
781 return LRU_RETRY;
782 }
783
784 WARN_ON(inode->i_state & I_NEW);
785 inode->i_state |= I_FREEING;
786 list_lru_isolate_move(lru, &inode->i_lru, freeable);
787 spin_unlock(&inode->i_lock);
788
789 this_cpu_dec(nr_unused);
790 return LRU_REMOVED;
791 }
792
793 /*
794 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
795 * This is called from the superblock shrinker function with a number of inodes
796 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
797 * then are freed outside inode_lock by dispose_list().
798 */
799 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
800 {
801 LIST_HEAD(freeable);
802 long freed;
803
804 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
805 inode_lru_isolate, &freeable);
806 dispose_list(&freeable);
807 return freed;
808 }
809
810 static void __wait_on_freeing_inode(struct inode *inode);
811 /*
812 * Called with the inode lock held.
813 */
814 static struct inode *find_inode(struct super_block *sb,
815 struct hlist_head *head,
816 int (*test)(struct inode *, void *),
817 void *data)
818 {
819 struct inode *inode = NULL;
820
821 repeat:
822 hlist_for_each_entry(inode, head, i_hash) {
823 if (inode->i_sb != sb)
824 continue;
825 if (!test(inode, data))
826 continue;
827 spin_lock(&inode->i_lock);
828 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
829 __wait_on_freeing_inode(inode);
830 goto repeat;
831 }
832 if (unlikely(inode->i_state & I_CREATING)) {
833 spin_unlock(&inode->i_lock);
834 return ERR_PTR(-ESTALE);
835 }
836 __iget(inode);
837 spin_unlock(&inode->i_lock);
838 return inode;
839 }
840 return NULL;
841 }
842
843 /*
844 * find_inode_fast is the fast path version of find_inode, see the comment at
845 * iget_locked for details.
846 */
847 static struct inode *find_inode_fast(struct super_block *sb,
848 struct hlist_head *head, unsigned long ino)
849 {
850 struct inode *inode = NULL;
851
852 repeat:
853 hlist_for_each_entry(inode, head, i_hash) {
854 if (inode->i_ino != ino)
855 continue;
856 if (inode->i_sb != sb)
857 continue;
858 spin_lock(&inode->i_lock);
859 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
860 __wait_on_freeing_inode(inode);
861 goto repeat;
862 }
863 if (unlikely(inode->i_state & I_CREATING)) {
864 spin_unlock(&inode->i_lock);
865 return ERR_PTR(-ESTALE);
866 }
867 __iget(inode);
868 spin_unlock(&inode->i_lock);
869 return inode;
870 }
871 return NULL;
872 }
873
874 /*
875 * Each cpu owns a range of LAST_INO_BATCH numbers.
876 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
877 * to renew the exhausted range.
878 *
879 * This does not significantly increase overflow rate because every CPU can
880 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
881 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
882 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
883 * overflow rate by 2x, which does not seem too significant.
884 *
885 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
886 * error if st_ino won't fit in target struct field. Use 32bit counter
887 * here to attempt to avoid that.
888 */
889 #define LAST_INO_BATCH 1024
890 static DEFINE_PER_CPU(unsigned int, last_ino);
891
892 unsigned int get_next_ino(void)
893 {
894 unsigned int *p = &get_cpu_var(last_ino);
895 unsigned int res = *p;
896
897 #ifdef CONFIG_SMP
898 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
899 static atomic_t shared_last_ino;
900 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
901
902 res = next - LAST_INO_BATCH;
903 }
904 #endif
905
906 res++;
907 /* get_next_ino should not provide a 0 inode number */
908 if (unlikely(!res))
909 res++;
910 *p = res;
911 put_cpu_var(last_ino);
912 return res;
913 }
914 EXPORT_SYMBOL(get_next_ino);
915
916 /**
917 * new_inode_pseudo - obtain an inode
918 * @sb: superblock
919 *
920 * Allocates a new inode for given superblock.
921 * Inode wont be chained in superblock s_inodes list
922 * This means :
923 * - fs can't be unmount
924 * - quotas, fsnotify, writeback can't work
925 */
926 struct inode *new_inode_pseudo(struct super_block *sb)
927 {
928 struct inode *inode = alloc_inode(sb);
929
930 if (inode) {
931 spin_lock(&inode->i_lock);
932 inode->i_state = 0;
933 spin_unlock(&inode->i_lock);
934 INIT_LIST_HEAD(&inode->i_sb_list);
935 }
936 return inode;
937 }
938
939 /**
940 * new_inode - obtain an inode
941 * @sb: superblock
942 *
943 * Allocates a new inode for given superblock. The default gfp_mask
944 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
945 * If HIGHMEM pages are unsuitable or it is known that pages allocated
946 * for the page cache are not reclaimable or migratable,
947 * mapping_set_gfp_mask() must be called with suitable flags on the
948 * newly created inode's mapping
949 *
950 */
951 struct inode *new_inode(struct super_block *sb)
952 {
953 struct inode *inode;
954
955 spin_lock_prefetch(&sb->s_inode_list_lock);
956
957 inode = new_inode_pseudo(sb);
958 if (inode)
959 inode_sb_list_add(inode);
960 return inode;
961 }
962 EXPORT_SYMBOL(new_inode);
963
964 #ifdef CONFIG_DEBUG_LOCK_ALLOC
965 void lockdep_annotate_inode_mutex_key(struct inode *inode)
966 {
967 if (S_ISDIR(inode->i_mode)) {
968 struct file_system_type *type = inode->i_sb->s_type;
969
970 /* Set new key only if filesystem hasn't already changed it */
971 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
972 /*
973 * ensure nobody is actually holding i_mutex
974 */
975 // mutex_destroy(&inode->i_mutex);
976 init_rwsem(&inode->i_rwsem);
977 lockdep_set_class(&inode->i_rwsem,
978 &type->i_mutex_dir_key);
979 }
980 }
981 }
982 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
983 #endif
984
985 /**
986 * unlock_new_inode - clear the I_NEW state and wake up any waiters
987 * @inode: new inode to unlock
988 *
989 * Called when the inode is fully initialised to clear the new state of the
990 * inode and wake up anyone waiting for the inode to finish initialisation.
991 */
992 void unlock_new_inode(struct inode *inode)
993 {
994 lockdep_annotate_inode_mutex_key(inode);
995 spin_lock(&inode->i_lock);
996 WARN_ON(!(inode->i_state & I_NEW));
997 inode->i_state &= ~I_NEW & ~I_CREATING;
998 smp_mb();
999 wake_up_bit(&inode->i_state, __I_NEW);
1000 spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(unlock_new_inode);
1003
1004 void discard_new_inode(struct inode *inode)
1005 {
1006 lockdep_annotate_inode_mutex_key(inode);
1007 spin_lock(&inode->i_lock);
1008 WARN_ON(!(inode->i_state & I_NEW));
1009 inode->i_state &= ~I_NEW;
1010 smp_mb();
1011 wake_up_bit(&inode->i_state, __I_NEW);
1012 spin_unlock(&inode->i_lock);
1013 iput(inode);
1014 }
1015 EXPORT_SYMBOL(discard_new_inode);
1016
1017 /**
1018 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019 *
1020 * Lock any non-NULL argument that is not a directory.
1021 * Zero, one or two objects may be locked by this function.
1022 *
1023 * @inode1: first inode to lock
1024 * @inode2: second inode to lock
1025 */
1026 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027 {
1028 if (inode1 > inode2)
1029 swap(inode1, inode2);
1030
1031 if (inode1 && !S_ISDIR(inode1->i_mode))
1032 inode_lock(inode1);
1033 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035 }
1036 EXPORT_SYMBOL(lock_two_nondirectories);
1037
1038 /**
1039 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040 * @inode1: first inode to unlock
1041 * @inode2: second inode to unlock
1042 */
1043 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044 {
1045 if (inode1 && !S_ISDIR(inode1->i_mode))
1046 inode_unlock(inode1);
1047 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1048 inode_unlock(inode2);
1049 }
1050 EXPORT_SYMBOL(unlock_two_nondirectories);
1051
1052 /**
1053 * inode_insert5 - obtain an inode from a mounted file system
1054 * @inode: pre-allocated inode to use for insert to cache
1055 * @hashval: hash value (usually inode number) to get
1056 * @test: callback used for comparisons between inodes
1057 * @set: callback used to initialize a new struct inode
1058 * @data: opaque data pointer to pass to @test and @set
1059 *
1060 * Search for the inode specified by @hashval and @data in the inode cache,
1061 * and if present it is return it with an increased reference count. This is
1062 * a variant of iget5_locked() for callers that don't want to fail on memory
1063 * allocation of inode.
1064 *
1065 * If the inode is not in cache, insert the pre-allocated inode to cache and
1066 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067 * to fill it in before unlocking it via unlock_new_inode().
1068 *
1069 * Note both @test and @set are called with the inode_hash_lock held, so can't
1070 * sleep.
1071 */
1072 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073 int (*test)(struct inode *, void *),
1074 int (*set)(struct inode *, void *), void *data)
1075 {
1076 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077 struct inode *old;
1078 bool creating = inode->i_state & I_CREATING;
1079
1080 again:
1081 spin_lock(&inode_hash_lock);
1082 old = find_inode(inode->i_sb, head, test, data);
1083 if (unlikely(old)) {
1084 /*
1085 * Uhhuh, somebody else created the same inode under us.
1086 * Use the old inode instead of the preallocated one.
1087 */
1088 spin_unlock(&inode_hash_lock);
1089 if (IS_ERR(old))
1090 return NULL;
1091 wait_on_inode(old);
1092 if (unlikely(inode_unhashed(old))) {
1093 iput(old);
1094 goto again;
1095 }
1096 return old;
1097 }
1098
1099 if (set && unlikely(set(inode, data))) {
1100 inode = NULL;
1101 goto unlock;
1102 }
1103
1104 /*
1105 * Return the locked inode with I_NEW set, the
1106 * caller is responsible for filling in the contents
1107 */
1108 spin_lock(&inode->i_lock);
1109 inode->i_state |= I_NEW;
1110 hlist_add_head_rcu(&inode->i_hash, head);
1111 spin_unlock(&inode->i_lock);
1112 if (!creating)
1113 inode_sb_list_add(inode);
1114 unlock:
1115 spin_unlock(&inode_hash_lock);
1116
1117 return inode;
1118 }
1119 EXPORT_SYMBOL(inode_insert5);
1120
1121 /**
1122 * iget5_locked - obtain an inode from a mounted file system
1123 * @sb: super block of file system
1124 * @hashval: hash value (usually inode number) to get
1125 * @test: callback used for comparisons between inodes
1126 * @set: callback used to initialize a new struct inode
1127 * @data: opaque data pointer to pass to @test and @set
1128 *
1129 * Search for the inode specified by @hashval and @data in the inode cache,
1130 * and if present it is return it with an increased reference count. This is
1131 * a generalized version of iget_locked() for file systems where the inode
1132 * number is not sufficient for unique identification of an inode.
1133 *
1134 * If the inode is not in cache, allocate a new inode and return it locked,
1135 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136 * before unlocking it via unlock_new_inode().
1137 *
1138 * Note both @test and @set are called with the inode_hash_lock held, so can't
1139 * sleep.
1140 */
1141 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142 int (*test)(struct inode *, void *),
1143 int (*set)(struct inode *, void *), void *data)
1144 {
1145 struct inode *inode = ilookup5(sb, hashval, test, data);
1146
1147 if (!inode) {
1148 struct inode *new = alloc_inode(sb);
1149
1150 if (new) {
1151 new->i_state = 0;
1152 inode = inode_insert5(new, hashval, test, set, data);
1153 if (unlikely(inode != new))
1154 destroy_inode(new);
1155 }
1156 }
1157 return inode;
1158 }
1159 EXPORT_SYMBOL(iget5_locked);
1160
1161 /**
1162 * iget_locked - obtain an inode from a mounted file system
1163 * @sb: super block of file system
1164 * @ino: inode number to get
1165 *
1166 * Search for the inode specified by @ino in the inode cache and if present
1167 * return it with an increased reference count. This is for file systems
1168 * where the inode number is sufficient for unique identification of an inode.
1169 *
1170 * If the inode is not in cache, allocate a new inode and return it locked,
1171 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1172 * before unlocking it via unlock_new_inode().
1173 */
1174 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175 {
1176 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177 struct inode *inode;
1178 again:
1179 spin_lock(&inode_hash_lock);
1180 inode = find_inode_fast(sb, head, ino);
1181 spin_unlock(&inode_hash_lock);
1182 if (inode) {
1183 if (IS_ERR(inode))
1184 return NULL;
1185 wait_on_inode(inode);
1186 if (unlikely(inode_unhashed(inode))) {
1187 iput(inode);
1188 goto again;
1189 }
1190 return inode;
1191 }
1192
1193 inode = alloc_inode(sb);
1194 if (inode) {
1195 struct inode *old;
1196
1197 spin_lock(&inode_hash_lock);
1198 /* We released the lock, so.. */
1199 old = find_inode_fast(sb, head, ino);
1200 if (!old) {
1201 inode->i_ino = ino;
1202 spin_lock(&inode->i_lock);
1203 inode->i_state = I_NEW;
1204 hlist_add_head_rcu(&inode->i_hash, head);
1205 spin_unlock(&inode->i_lock);
1206 inode_sb_list_add(inode);
1207 spin_unlock(&inode_hash_lock);
1208
1209 /* Return the locked inode with I_NEW set, the
1210 * caller is responsible for filling in the contents
1211 */
1212 return inode;
1213 }
1214
1215 /*
1216 * Uhhuh, somebody else created the same inode under
1217 * us. Use the old inode instead of the one we just
1218 * allocated.
1219 */
1220 spin_unlock(&inode_hash_lock);
1221 destroy_inode(inode);
1222 if (IS_ERR(old))
1223 return NULL;
1224 inode = old;
1225 wait_on_inode(inode);
1226 if (unlikely(inode_unhashed(inode))) {
1227 iput(inode);
1228 goto again;
1229 }
1230 }
1231 return inode;
1232 }
1233 EXPORT_SYMBOL(iget_locked);
1234
1235 /*
1236 * search the inode cache for a matching inode number.
1237 * If we find one, then the inode number we are trying to
1238 * allocate is not unique and so we should not use it.
1239 *
1240 * Returns 1 if the inode number is unique, 0 if it is not.
1241 */
1242 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243 {
1244 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245 struct inode *inode;
1246
1247 hlist_for_each_entry_rcu(inode, b, i_hash) {
1248 if (inode->i_ino == ino && inode->i_sb == sb)
1249 return 0;
1250 }
1251 return 1;
1252 }
1253
1254 /**
1255 * iunique - get a unique inode number
1256 * @sb: superblock
1257 * @max_reserved: highest reserved inode number
1258 *
1259 * Obtain an inode number that is unique on the system for a given
1260 * superblock. This is used by file systems that have no natural
1261 * permanent inode numbering system. An inode number is returned that
1262 * is higher than the reserved limit but unique.
1263 *
1264 * BUGS:
1265 * With a large number of inodes live on the file system this function
1266 * currently becomes quite slow.
1267 */
1268 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1269 {
1270 /*
1271 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1272 * error if st_ino won't fit in target struct field. Use 32bit counter
1273 * here to attempt to avoid that.
1274 */
1275 static DEFINE_SPINLOCK(iunique_lock);
1276 static unsigned int counter;
1277 ino_t res;
1278
1279 rcu_read_lock();
1280 spin_lock(&iunique_lock);
1281 do {
1282 if (counter <= max_reserved)
1283 counter = max_reserved + 1;
1284 res = counter++;
1285 } while (!test_inode_iunique(sb, res));
1286 spin_unlock(&iunique_lock);
1287 rcu_read_unlock();
1288
1289 return res;
1290 }
1291 EXPORT_SYMBOL(iunique);
1292
1293 struct inode *igrab(struct inode *inode)
1294 {
1295 spin_lock(&inode->i_lock);
1296 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1297 __iget(inode);
1298 spin_unlock(&inode->i_lock);
1299 } else {
1300 spin_unlock(&inode->i_lock);
1301 /*
1302 * Handle the case where s_op->clear_inode is not been
1303 * called yet, and somebody is calling igrab
1304 * while the inode is getting freed.
1305 */
1306 inode = NULL;
1307 }
1308 return inode;
1309 }
1310 EXPORT_SYMBOL(igrab);
1311
1312 /**
1313 * ilookup5_nowait - search for an inode in the inode cache
1314 * @sb: super block of file system to search
1315 * @hashval: hash value (usually inode number) to search for
1316 * @test: callback used for comparisons between inodes
1317 * @data: opaque data pointer to pass to @test
1318 *
1319 * Search for the inode specified by @hashval and @data in the inode cache.
1320 * If the inode is in the cache, the inode is returned with an incremented
1321 * reference count.
1322 *
1323 * Note: I_NEW is not waited upon so you have to be very careful what you do
1324 * with the returned inode. You probably should be using ilookup5() instead.
1325 *
1326 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327 */
1328 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1329 int (*test)(struct inode *, void *), void *data)
1330 {
1331 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 struct inode *inode;
1333
1334 spin_lock(&inode_hash_lock);
1335 inode = find_inode(sb, head, test, data);
1336 spin_unlock(&inode_hash_lock);
1337
1338 return IS_ERR(inode) ? NULL : inode;
1339 }
1340 EXPORT_SYMBOL(ilookup5_nowait);
1341
1342 /**
1343 * ilookup5 - search for an inode in the inode cache
1344 * @sb: super block of file system to search
1345 * @hashval: hash value (usually inode number) to search for
1346 * @test: callback used for comparisons between inodes
1347 * @data: opaque data pointer to pass to @test
1348 *
1349 * Search for the inode specified by @hashval and @data in the inode cache,
1350 * and if the inode is in the cache, return the inode with an incremented
1351 * reference count. Waits on I_NEW before returning the inode.
1352 * returned with an incremented reference count.
1353 *
1354 * This is a generalized version of ilookup() for file systems where the
1355 * inode number is not sufficient for unique identification of an inode.
1356 *
1357 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358 */
1359 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1360 int (*test)(struct inode *, void *), void *data)
1361 {
1362 struct inode *inode;
1363 again:
1364 inode = ilookup5_nowait(sb, hashval, test, data);
1365 if (inode) {
1366 wait_on_inode(inode);
1367 if (unlikely(inode_unhashed(inode))) {
1368 iput(inode);
1369 goto again;
1370 }
1371 }
1372 return inode;
1373 }
1374 EXPORT_SYMBOL(ilookup5);
1375
1376 /**
1377 * ilookup - search for an inode in the inode cache
1378 * @sb: super block of file system to search
1379 * @ino: inode number to search for
1380 *
1381 * Search for the inode @ino in the inode cache, and if the inode is in the
1382 * cache, the inode is returned with an incremented reference count.
1383 */
1384 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1385 {
1386 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387 struct inode *inode;
1388 again:
1389 spin_lock(&inode_hash_lock);
1390 inode = find_inode_fast(sb, head, ino);
1391 spin_unlock(&inode_hash_lock);
1392
1393 if (inode) {
1394 if (IS_ERR(inode))
1395 return NULL;
1396 wait_on_inode(inode);
1397 if (unlikely(inode_unhashed(inode))) {
1398 iput(inode);
1399 goto again;
1400 }
1401 }
1402 return inode;
1403 }
1404 EXPORT_SYMBOL(ilookup);
1405
1406 /**
1407 * find_inode_nowait - find an inode in the inode cache
1408 * @sb: super block of file system to search
1409 * @hashval: hash value (usually inode number) to search for
1410 * @match: callback used for comparisons between inodes
1411 * @data: opaque data pointer to pass to @match
1412 *
1413 * Search for the inode specified by @hashval and @data in the inode
1414 * cache, where the helper function @match will return 0 if the inode
1415 * does not match, 1 if the inode does match, and -1 if the search
1416 * should be stopped. The @match function must be responsible for
1417 * taking the i_lock spin_lock and checking i_state for an inode being
1418 * freed or being initialized, and incrementing the reference count
1419 * before returning 1. It also must not sleep, since it is called with
1420 * the inode_hash_lock spinlock held.
1421 *
1422 * This is a even more generalized version of ilookup5() when the
1423 * function must never block --- find_inode() can block in
1424 * __wait_on_freeing_inode() --- or when the caller can not increment
1425 * the reference count because the resulting iput() might cause an
1426 * inode eviction. The tradeoff is that the @match funtion must be
1427 * very carefully implemented.
1428 */
1429 struct inode *find_inode_nowait(struct super_block *sb,
1430 unsigned long hashval,
1431 int (*match)(struct inode *, unsigned long,
1432 void *),
1433 void *data)
1434 {
1435 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436 struct inode *inode, *ret_inode = NULL;
1437 int mval;
1438
1439 spin_lock(&inode_hash_lock);
1440 hlist_for_each_entry(inode, head, i_hash) {
1441 if (inode->i_sb != sb)
1442 continue;
1443 mval = match(inode, hashval, data);
1444 if (mval == 0)
1445 continue;
1446 if (mval == 1)
1447 ret_inode = inode;
1448 goto out;
1449 }
1450 out:
1451 spin_unlock(&inode_hash_lock);
1452 return ret_inode;
1453 }
1454 EXPORT_SYMBOL(find_inode_nowait);
1455
1456 /**
1457 * find_inode_rcu - find an inode in the inode cache
1458 * @sb: Super block of file system to search
1459 * @hashval: Key to hash
1460 * @test: Function to test match on an inode
1461 * @data: Data for test function
1462 *
1463 * Search for the inode specified by @hashval and @data in the inode cache,
1464 * where the helper function @test will return 0 if the inode does not match
1465 * and 1 if it does. The @test function must be responsible for taking the
1466 * i_lock spin_lock and checking i_state for an inode being freed or being
1467 * initialized.
1468 *
1469 * If successful, this will return the inode for which the @test function
1470 * returned 1 and NULL otherwise.
1471 *
1472 * The @test function is not permitted to take a ref on any inode presented.
1473 * It is also not permitted to sleep.
1474 *
1475 * The caller must hold the RCU read lock.
1476 */
1477 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1478 int (*test)(struct inode *, void *), void *data)
1479 {
1480 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481 struct inode *inode;
1482
1483 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1484 "suspicious find_inode_rcu() usage");
1485
1486 hlist_for_each_entry_rcu(inode, head, i_hash) {
1487 if (inode->i_sb == sb &&
1488 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1489 test(inode, data))
1490 return inode;
1491 }
1492 return NULL;
1493 }
1494 EXPORT_SYMBOL(find_inode_rcu);
1495
1496 /**
1497 * find_inode_by_ino_rcu - Find an inode in the inode cache
1498 * @sb: Super block of file system to search
1499 * @ino: The inode number to match
1500 *
1501 * Search for the inode specified by @hashval and @data in the inode cache,
1502 * where the helper function @test will return 0 if the inode does not match
1503 * and 1 if it does. The @test function must be responsible for taking the
1504 * i_lock spin_lock and checking i_state for an inode being freed or being
1505 * initialized.
1506 *
1507 * If successful, this will return the inode for which the @test function
1508 * returned 1 and NULL otherwise.
1509 *
1510 * The @test function is not permitted to take a ref on any inode presented.
1511 * It is also not permitted to sleep.
1512 *
1513 * The caller must hold the RCU read lock.
1514 */
1515 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1516 unsigned long ino)
1517 {
1518 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1519 struct inode *inode;
1520
1521 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1522 "suspicious find_inode_by_ino_rcu() usage");
1523
1524 hlist_for_each_entry_rcu(inode, head, i_hash) {
1525 if (inode->i_ino == ino &&
1526 inode->i_sb == sb &&
1527 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1528 return inode;
1529 }
1530 return NULL;
1531 }
1532 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1533
1534 int insert_inode_locked(struct inode *inode)
1535 {
1536 struct super_block *sb = inode->i_sb;
1537 ino_t ino = inode->i_ino;
1538 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1539
1540 while (1) {
1541 struct inode *old = NULL;
1542 spin_lock(&inode_hash_lock);
1543 hlist_for_each_entry(old, head, i_hash) {
1544 if (old->i_ino != ino)
1545 continue;
1546 if (old->i_sb != sb)
1547 continue;
1548 spin_lock(&old->i_lock);
1549 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1550 spin_unlock(&old->i_lock);
1551 continue;
1552 }
1553 break;
1554 }
1555 if (likely(!old)) {
1556 spin_lock(&inode->i_lock);
1557 inode->i_state |= I_NEW | I_CREATING;
1558 hlist_add_head_rcu(&inode->i_hash, head);
1559 spin_unlock(&inode->i_lock);
1560 spin_unlock(&inode_hash_lock);
1561 return 0;
1562 }
1563 if (unlikely(old->i_state & I_CREATING)) {
1564 spin_unlock(&old->i_lock);
1565 spin_unlock(&inode_hash_lock);
1566 return -EBUSY;
1567 }
1568 __iget(old);
1569 spin_unlock(&old->i_lock);
1570 spin_unlock(&inode_hash_lock);
1571 wait_on_inode(old);
1572 if (unlikely(!inode_unhashed(old))) {
1573 iput(old);
1574 return -EBUSY;
1575 }
1576 iput(old);
1577 }
1578 }
1579 EXPORT_SYMBOL(insert_inode_locked);
1580
1581 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1582 int (*test)(struct inode *, void *), void *data)
1583 {
1584 struct inode *old;
1585
1586 inode->i_state |= I_CREATING;
1587 old = inode_insert5(inode, hashval, test, NULL, data);
1588
1589 if (old != inode) {
1590 iput(old);
1591 return -EBUSY;
1592 }
1593 return 0;
1594 }
1595 EXPORT_SYMBOL(insert_inode_locked4);
1596
1597
1598 int generic_delete_inode(struct inode *inode)
1599 {
1600 return 1;
1601 }
1602 EXPORT_SYMBOL(generic_delete_inode);
1603
1604 /*
1605 * Called when we're dropping the last reference
1606 * to an inode.
1607 *
1608 * Call the FS "drop_inode()" function, defaulting to
1609 * the legacy UNIX filesystem behaviour. If it tells
1610 * us to evict inode, do so. Otherwise, retain inode
1611 * in cache if fs is alive, sync and evict if fs is
1612 * shutting down.
1613 */
1614 static void iput_final(struct inode *inode)
1615 {
1616 struct super_block *sb = inode->i_sb;
1617 const struct super_operations *op = inode->i_sb->s_op;
1618 unsigned long state;
1619 int drop;
1620
1621 WARN_ON(inode->i_state & I_NEW);
1622
1623 if (op->drop_inode)
1624 drop = op->drop_inode(inode);
1625 else
1626 drop = generic_drop_inode(inode);
1627
1628 if (!drop &&
1629 !(inode->i_state & I_DONTCACHE) &&
1630 (sb->s_flags & SB_ACTIVE)) {
1631 inode_add_lru(inode);
1632 spin_unlock(&inode->i_lock);
1633 return;
1634 }
1635
1636 state = inode->i_state;
1637 if (!drop) {
1638 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1639 spin_unlock(&inode->i_lock);
1640
1641 write_inode_now(inode, 1);
1642
1643 spin_lock(&inode->i_lock);
1644 state = inode->i_state;
1645 WARN_ON(state & I_NEW);
1646 state &= ~I_WILL_FREE;
1647 }
1648
1649 WRITE_ONCE(inode->i_state, state | I_FREEING);
1650 if (!list_empty(&inode->i_lru))
1651 inode_lru_list_del(inode);
1652 spin_unlock(&inode->i_lock);
1653
1654 evict(inode);
1655 }
1656
1657 /**
1658 * iput - put an inode
1659 * @inode: inode to put
1660 *
1661 * Puts an inode, dropping its usage count. If the inode use count hits
1662 * zero, the inode is then freed and may also be destroyed.
1663 *
1664 * Consequently, iput() can sleep.
1665 */
1666 void iput(struct inode *inode)
1667 {
1668 if (!inode)
1669 return;
1670 BUG_ON(inode->i_state & I_CLEAR);
1671 retry:
1672 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1673 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1674 atomic_inc(&inode->i_count);
1675 spin_unlock(&inode->i_lock);
1676 trace_writeback_lazytime_iput(inode);
1677 mark_inode_dirty_sync(inode);
1678 goto retry;
1679 }
1680 iput_final(inode);
1681 }
1682 }
1683 EXPORT_SYMBOL(iput);
1684
1685 #ifdef CONFIG_BLOCK
1686 /**
1687 * bmap - find a block number in a file
1688 * @inode: inode owning the block number being requested
1689 * @block: pointer containing the block to find
1690 *
1691 * Replaces the value in ``*block`` with the block number on the device holding
1692 * corresponding to the requested block number in the file.
1693 * That is, asked for block 4 of inode 1 the function will replace the
1694 * 4 in ``*block``, with disk block relative to the disk start that holds that
1695 * block of the file.
1696 *
1697 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1698 * hole, returns 0 and ``*block`` is also set to 0.
1699 */
1700 int bmap(struct inode *inode, sector_t *block)
1701 {
1702 if (!inode->i_mapping->a_ops->bmap)
1703 return -EINVAL;
1704
1705 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1706 return 0;
1707 }
1708 EXPORT_SYMBOL(bmap);
1709 #endif
1710
1711 /*
1712 * With relative atime, only update atime if the previous atime is
1713 * earlier than either the ctime or mtime or if at least a day has
1714 * passed since the last atime update.
1715 */
1716 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1717 struct timespec64 now)
1718 {
1719
1720 if (!(mnt->mnt_flags & MNT_RELATIME))
1721 return 1;
1722 /*
1723 * Is mtime younger than atime? If yes, update atime:
1724 */
1725 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1726 return 1;
1727 /*
1728 * Is ctime younger than atime? If yes, update atime:
1729 */
1730 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1731 return 1;
1732
1733 /*
1734 * Is the previous atime value older than a day? If yes,
1735 * update atime:
1736 */
1737 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1738 return 1;
1739 /*
1740 * Good, we can skip the atime update:
1741 */
1742 return 0;
1743 }
1744
1745 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1746 {
1747 int dirty_flags = 0;
1748
1749 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1750 if (flags & S_ATIME)
1751 inode->i_atime = *time;
1752 if (flags & S_CTIME)
1753 inode->i_ctime = *time;
1754 if (flags & S_MTIME)
1755 inode->i_mtime = *time;
1756
1757 if (inode->i_sb->s_flags & SB_LAZYTIME)
1758 dirty_flags |= I_DIRTY_TIME;
1759 else
1760 dirty_flags |= I_DIRTY_SYNC;
1761 }
1762
1763 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1764 dirty_flags |= I_DIRTY_SYNC;
1765
1766 __mark_inode_dirty(inode, dirty_flags);
1767 return 0;
1768 }
1769 EXPORT_SYMBOL(generic_update_time);
1770
1771 /*
1772 * This does the actual work of updating an inodes time or version. Must have
1773 * had called mnt_want_write() before calling this.
1774 */
1775 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1776 {
1777 if (inode->i_op->update_time)
1778 return inode->i_op->update_time(inode, time, flags);
1779 return generic_update_time(inode, time, flags);
1780 }
1781
1782 /**
1783 * atime_needs_update - update the access time
1784 * @path: the &struct path to update
1785 * @inode: inode to update
1786 *
1787 * Update the accessed time on an inode and mark it for writeback.
1788 * This function automatically handles read only file systems and media,
1789 * as well as the "noatime" flag and inode specific "noatime" markers.
1790 */
1791 bool atime_needs_update(const struct path *path, struct inode *inode)
1792 {
1793 struct vfsmount *mnt = path->mnt;
1794 struct timespec64 now;
1795
1796 if (inode->i_flags & S_NOATIME)
1797 return false;
1798
1799 /* Atime updates will likely cause i_uid and i_gid to be written
1800 * back improprely if their true value is unknown to the vfs.
1801 */
1802 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1803 return false;
1804
1805 if (IS_NOATIME(inode))
1806 return false;
1807 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1808 return false;
1809
1810 if (mnt->mnt_flags & MNT_NOATIME)
1811 return false;
1812 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1813 return false;
1814
1815 now = current_time(inode);
1816
1817 if (!relatime_need_update(mnt, inode, now))
1818 return false;
1819
1820 if (timespec64_equal(&inode->i_atime, &now))
1821 return false;
1822
1823 return true;
1824 }
1825
1826 void touch_atime(const struct path *path)
1827 {
1828 struct vfsmount *mnt = path->mnt;
1829 struct inode *inode = d_inode(path->dentry);
1830 struct timespec64 now;
1831
1832 if (!atime_needs_update(path, inode))
1833 return;
1834
1835 if (!sb_start_write_trylock(inode->i_sb))
1836 return;
1837
1838 if (__mnt_want_write(mnt) != 0)
1839 goto skip_update;
1840 /*
1841 * File systems can error out when updating inodes if they need to
1842 * allocate new space to modify an inode (such is the case for
1843 * Btrfs), but since we touch atime while walking down the path we
1844 * really don't care if we failed to update the atime of the file,
1845 * so just ignore the return value.
1846 * We may also fail on filesystems that have the ability to make parts
1847 * of the fs read only, e.g. subvolumes in Btrfs.
1848 */
1849 now = current_time(inode);
1850 update_time(inode, &now, S_ATIME);
1851 __mnt_drop_write(mnt);
1852 skip_update:
1853 sb_end_write(inode->i_sb);
1854 }
1855 EXPORT_SYMBOL(touch_atime);
1856
1857 /*
1858 * The logic we want is
1859 *
1860 * if suid or (sgid and xgrp)
1861 * remove privs
1862 */
1863 int should_remove_suid(struct dentry *dentry)
1864 {
1865 umode_t mode = d_inode(dentry)->i_mode;
1866 int kill = 0;
1867
1868 /* suid always must be killed */
1869 if (unlikely(mode & S_ISUID))
1870 kill = ATTR_KILL_SUID;
1871
1872 /*
1873 * sgid without any exec bits is just a mandatory locking mark; leave
1874 * it alone. If some exec bits are set, it's a real sgid; kill it.
1875 */
1876 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1877 kill |= ATTR_KILL_SGID;
1878
1879 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1880 return kill;
1881
1882 return 0;
1883 }
1884 EXPORT_SYMBOL(should_remove_suid);
1885
1886 /*
1887 * Return mask of changes for notify_change() that need to be done as a
1888 * response to write or truncate. Return 0 if nothing has to be changed.
1889 * Negative value on error (change should be denied).
1890 */
1891 int dentry_needs_remove_privs(struct dentry *dentry)
1892 {
1893 struct inode *inode = d_inode(dentry);
1894 int mask = 0;
1895 int ret;
1896
1897 if (IS_NOSEC(inode))
1898 return 0;
1899
1900 mask = should_remove_suid(dentry);
1901 ret = security_inode_need_killpriv(dentry);
1902 if (ret < 0)
1903 return ret;
1904 if (ret)
1905 mask |= ATTR_KILL_PRIV;
1906 return mask;
1907 }
1908
1909 static int __remove_privs(struct user_namespace *mnt_userns,
1910 struct dentry *dentry, int kill)
1911 {
1912 struct iattr newattrs;
1913
1914 newattrs.ia_valid = ATTR_FORCE | kill;
1915 /*
1916 * Note we call this on write, so notify_change will not
1917 * encounter any conflicting delegations:
1918 */
1919 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1920 }
1921
1922 /*
1923 * Remove special file priviledges (suid, capabilities) when file is written
1924 * to or truncated.
1925 */
1926 int file_remove_privs(struct file *file)
1927 {
1928 struct dentry *dentry = file_dentry(file);
1929 struct inode *inode = file_inode(file);
1930 int kill;
1931 int error = 0;
1932
1933 /*
1934 * Fast path for nothing security related.
1935 * As well for non-regular files, e.g. blkdev inodes.
1936 * For example, blkdev_write_iter() might get here
1937 * trying to remove privs which it is not allowed to.
1938 */
1939 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1940 return 0;
1941
1942 kill = dentry_needs_remove_privs(dentry);
1943 if (kill < 0)
1944 return kill;
1945 if (kill)
1946 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1947 if (!error)
1948 inode_has_no_xattr(inode);
1949
1950 return error;
1951 }
1952 EXPORT_SYMBOL(file_remove_privs);
1953
1954 /**
1955 * file_update_time - update mtime and ctime time
1956 * @file: file accessed
1957 *
1958 * Update the mtime and ctime members of an inode and mark the inode
1959 * for writeback. Note that this function is meant exclusively for
1960 * usage in the file write path of filesystems, and filesystems may
1961 * choose to explicitly ignore update via this function with the
1962 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1963 * timestamps are handled by the server. This can return an error for
1964 * file systems who need to allocate space in order to update an inode.
1965 */
1966
1967 int file_update_time(struct file *file)
1968 {
1969 struct inode *inode = file_inode(file);
1970 struct timespec64 now;
1971 int sync_it = 0;
1972 int ret;
1973
1974 /* First try to exhaust all avenues to not sync */
1975 if (IS_NOCMTIME(inode))
1976 return 0;
1977
1978 now = current_time(inode);
1979 if (!timespec64_equal(&inode->i_mtime, &now))
1980 sync_it = S_MTIME;
1981
1982 if (!timespec64_equal(&inode->i_ctime, &now))
1983 sync_it |= S_CTIME;
1984
1985 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1986 sync_it |= S_VERSION;
1987
1988 if (!sync_it)
1989 return 0;
1990
1991 /* Finally allowed to write? Takes lock. */
1992 if (__mnt_want_write_file(file))
1993 return 0;
1994
1995 ret = update_time(inode, &now, sync_it);
1996 __mnt_drop_write_file(file);
1997
1998 return ret;
1999 }
2000 EXPORT_SYMBOL(file_update_time);
2001
2002 /* Caller must hold the file's inode lock */
2003 int file_modified(struct file *file)
2004 {
2005 int err;
2006
2007 /*
2008 * Clear the security bits if the process is not being run by root.
2009 * This keeps people from modifying setuid and setgid binaries.
2010 */
2011 err = file_remove_privs(file);
2012 if (err)
2013 return err;
2014
2015 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2016 return 0;
2017
2018 return file_update_time(file);
2019 }
2020 EXPORT_SYMBOL(file_modified);
2021
2022 int inode_needs_sync(struct inode *inode)
2023 {
2024 if (IS_SYNC(inode))
2025 return 1;
2026 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2027 return 1;
2028 return 0;
2029 }
2030 EXPORT_SYMBOL(inode_needs_sync);
2031
2032 /*
2033 * If we try to find an inode in the inode hash while it is being
2034 * deleted, we have to wait until the filesystem completes its
2035 * deletion before reporting that it isn't found. This function waits
2036 * until the deletion _might_ have completed. Callers are responsible
2037 * to recheck inode state.
2038 *
2039 * It doesn't matter if I_NEW is not set initially, a call to
2040 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2041 * will DTRT.
2042 */
2043 static void __wait_on_freeing_inode(struct inode *inode)
2044 {
2045 wait_queue_head_t *wq;
2046 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2047 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2048 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2049 spin_unlock(&inode->i_lock);
2050 spin_unlock(&inode_hash_lock);
2051 schedule();
2052 finish_wait(wq, &wait.wq_entry);
2053 spin_lock(&inode_hash_lock);
2054 }
2055
2056 static __initdata unsigned long ihash_entries;
2057 static int __init set_ihash_entries(char *str)
2058 {
2059 if (!str)
2060 return 0;
2061 ihash_entries = simple_strtoul(str, &str, 0);
2062 return 1;
2063 }
2064 __setup("ihash_entries=", set_ihash_entries);
2065
2066 /*
2067 * Initialize the waitqueues and inode hash table.
2068 */
2069 void __init inode_init_early(void)
2070 {
2071 /* If hashes are distributed across NUMA nodes, defer
2072 * hash allocation until vmalloc space is available.
2073 */
2074 if (hashdist)
2075 return;
2076
2077 inode_hashtable =
2078 alloc_large_system_hash("Inode-cache",
2079 sizeof(struct hlist_head),
2080 ihash_entries,
2081 14,
2082 HASH_EARLY | HASH_ZERO,
2083 &i_hash_shift,
2084 &i_hash_mask,
2085 0,
2086 0);
2087 }
2088
2089 void __init inode_init(void)
2090 {
2091 /* inode slab cache */
2092 inode_cachep = kmem_cache_create("inode_cache",
2093 sizeof(struct inode),
2094 0,
2095 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2096 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2097 init_once);
2098
2099 /* Hash may have been set up in inode_init_early */
2100 if (!hashdist)
2101 return;
2102
2103 inode_hashtable =
2104 alloc_large_system_hash("Inode-cache",
2105 sizeof(struct hlist_head),
2106 ihash_entries,
2107 14,
2108 HASH_ZERO,
2109 &i_hash_shift,
2110 &i_hash_mask,
2111 0,
2112 0);
2113 }
2114
2115 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2116 {
2117 inode->i_mode = mode;
2118 if (S_ISCHR(mode)) {
2119 inode->i_fop = &def_chr_fops;
2120 inode->i_rdev = rdev;
2121 } else if (S_ISBLK(mode)) {
2122 inode->i_fop = &def_blk_fops;
2123 inode->i_rdev = rdev;
2124 } else if (S_ISFIFO(mode))
2125 inode->i_fop = &pipefifo_fops;
2126 else if (S_ISSOCK(mode))
2127 ; /* leave it no_open_fops */
2128 else
2129 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2130 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2131 inode->i_ino);
2132 }
2133 EXPORT_SYMBOL(init_special_inode);
2134
2135 /**
2136 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2137 * @mnt_userns: User namespace of the mount the inode was created from
2138 * @inode: New inode
2139 * @dir: Directory inode
2140 * @mode: mode of the new inode
2141 *
2142 * If the inode has been created through an idmapped mount the user namespace of
2143 * the vfsmount must be passed through @mnt_userns. This function will then take
2144 * care to map the inode according to @mnt_userns before checking permissions
2145 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2146 * checking is to be performed on the raw inode simply passs init_user_ns.
2147 */
2148 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2149 const struct inode *dir, umode_t mode)
2150 {
2151 inode->i_uid = fsuid_into_mnt(mnt_userns);
2152 if (dir && dir->i_mode & S_ISGID) {
2153 inode->i_gid = dir->i_gid;
2154
2155 /* Directories are special, and always inherit S_ISGID */
2156 if (S_ISDIR(mode))
2157 mode |= S_ISGID;
2158 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2159 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2160 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2161 mode &= ~S_ISGID;
2162 } else
2163 inode->i_gid = fsgid_into_mnt(mnt_userns);
2164 inode->i_mode = mode;
2165 }
2166 EXPORT_SYMBOL(inode_init_owner);
2167
2168 /**
2169 * inode_owner_or_capable - check current task permissions to inode
2170 * @mnt_userns: user namespace of the mount the inode was found from
2171 * @inode: inode being checked
2172 *
2173 * Return true if current either has CAP_FOWNER in a namespace with the
2174 * inode owner uid mapped, or owns the file.
2175 *
2176 * If the inode has been found through an idmapped mount the user namespace of
2177 * the vfsmount must be passed through @mnt_userns. This function will then take
2178 * care to map the inode according to @mnt_userns before checking permissions.
2179 * On non-idmapped mounts or if permission checking is to be performed on the
2180 * raw inode simply passs init_user_ns.
2181 */
2182 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2183 const struct inode *inode)
2184 {
2185 kuid_t i_uid;
2186 struct user_namespace *ns;
2187
2188 i_uid = i_uid_into_mnt(mnt_userns, inode);
2189 if (uid_eq(current_fsuid(), i_uid))
2190 return true;
2191
2192 ns = current_user_ns();
2193 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2194 return true;
2195 return false;
2196 }
2197 EXPORT_SYMBOL(inode_owner_or_capable);
2198
2199 /*
2200 * Direct i/o helper functions
2201 */
2202 static void __inode_dio_wait(struct inode *inode)
2203 {
2204 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2205 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2206
2207 do {
2208 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2209 if (atomic_read(&inode->i_dio_count))
2210 schedule();
2211 } while (atomic_read(&inode->i_dio_count));
2212 finish_wait(wq, &q.wq_entry);
2213 }
2214
2215 /**
2216 * inode_dio_wait - wait for outstanding DIO requests to finish
2217 * @inode: inode to wait for
2218 *
2219 * Waits for all pending direct I/O requests to finish so that we can
2220 * proceed with a truncate or equivalent operation.
2221 *
2222 * Must be called under a lock that serializes taking new references
2223 * to i_dio_count, usually by inode->i_mutex.
2224 */
2225 void inode_dio_wait(struct inode *inode)
2226 {
2227 if (atomic_read(&inode->i_dio_count))
2228 __inode_dio_wait(inode);
2229 }
2230 EXPORT_SYMBOL(inode_dio_wait);
2231
2232 /*
2233 * inode_set_flags - atomically set some inode flags
2234 *
2235 * Note: the caller should be holding i_mutex, or else be sure that
2236 * they have exclusive access to the inode structure (i.e., while the
2237 * inode is being instantiated). The reason for the cmpxchg() loop
2238 * --- which wouldn't be necessary if all code paths which modify
2239 * i_flags actually followed this rule, is that there is at least one
2240 * code path which doesn't today so we use cmpxchg() out of an abundance
2241 * of caution.
2242 *
2243 * In the long run, i_mutex is overkill, and we should probably look
2244 * at using the i_lock spinlock to protect i_flags, and then make sure
2245 * it is so documented in include/linux/fs.h and that all code follows
2246 * the locking convention!!
2247 */
2248 void inode_set_flags(struct inode *inode, unsigned int flags,
2249 unsigned int mask)
2250 {
2251 WARN_ON_ONCE(flags & ~mask);
2252 set_mask_bits(&inode->i_flags, mask, flags);
2253 }
2254 EXPORT_SYMBOL(inode_set_flags);
2255
2256 void inode_nohighmem(struct inode *inode)
2257 {
2258 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2259 }
2260 EXPORT_SYMBOL(inode_nohighmem);
2261
2262 /**
2263 * timestamp_truncate - Truncate timespec to a granularity
2264 * @t: Timespec
2265 * @inode: inode being updated
2266 *
2267 * Truncate a timespec to the granularity supported by the fs
2268 * containing the inode. Always rounds down. gran must
2269 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2270 */
2271 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2272 {
2273 struct super_block *sb = inode->i_sb;
2274 unsigned int gran = sb->s_time_gran;
2275
2276 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2277 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2278 t.tv_nsec = 0;
2279
2280 /* Avoid division in the common cases 1 ns and 1 s. */
2281 if (gran == 1)
2282 ; /* nothing */
2283 else if (gran == NSEC_PER_SEC)
2284 t.tv_nsec = 0;
2285 else if (gran > 1 && gran < NSEC_PER_SEC)
2286 t.tv_nsec -= t.tv_nsec % gran;
2287 else
2288 WARN(1, "invalid file time granularity: %u", gran);
2289 return t;
2290 }
2291 EXPORT_SYMBOL(timestamp_truncate);
2292
2293 /**
2294 * current_time - Return FS time
2295 * @inode: inode.
2296 *
2297 * Return the current time truncated to the time granularity supported by
2298 * the fs.
2299 *
2300 * Note that inode and inode->sb cannot be NULL.
2301 * Otherwise, the function warns and returns time without truncation.
2302 */
2303 struct timespec64 current_time(struct inode *inode)
2304 {
2305 struct timespec64 now;
2306
2307 ktime_get_coarse_real_ts64(&now);
2308
2309 if (unlikely(!inode->i_sb)) {
2310 WARN(1, "current_time() called with uninitialized super_block in the inode");
2311 return now;
2312 }
2313
2314 return timestamp_truncate(now, inode);
2315 }
2316 EXPORT_SYMBOL(current_time);
2317
2318 /*
2319 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2320 * configurations.
2321 *
2322 * Note: the caller should be holding i_mutex, or else be sure that they have
2323 * exclusive access to the inode structure.
2324 */
2325 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2326 unsigned int flags)
2327 {
2328 /*
2329 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2330 * the relevant capability.
2331 *
2332 * This test looks nicer. Thanks to Pauline Middelink
2333 */
2334 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2335 !capable(CAP_LINUX_IMMUTABLE))
2336 return -EPERM;
2337
2338 return fscrypt_prepare_setflags(inode, oldflags, flags);
2339 }
2340 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2341
2342 /*
2343 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2344 * configurations.
2345 *
2346 * Note: the caller should be holding i_mutex, or else be sure that they have
2347 * exclusive access to the inode structure.
2348 */
2349 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2350 struct fsxattr *fa)
2351 {
2352 /*
2353 * Can't modify an immutable/append-only file unless we have
2354 * appropriate permission.
2355 */
2356 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2357 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2358 !capable(CAP_LINUX_IMMUTABLE))
2359 return -EPERM;
2360
2361 /*
2362 * Project Quota ID state is only allowed to change from within the init
2363 * namespace. Enforce that restriction only if we are trying to change
2364 * the quota ID state. Everything else is allowed in user namespaces.
2365 */
2366 if (current_user_ns() != &init_user_ns) {
2367 if (old_fa->fsx_projid != fa->fsx_projid)
2368 return -EINVAL;
2369 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2370 FS_XFLAG_PROJINHERIT)
2371 return -EINVAL;
2372 }
2373
2374 /* Check extent size hints. */
2375 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2376 return -EINVAL;
2377
2378 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2379 !S_ISDIR(inode->i_mode))
2380 return -EINVAL;
2381
2382 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2383 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2384 return -EINVAL;
2385
2386 /*
2387 * It is only valid to set the DAX flag on regular files and
2388 * directories on filesystems.
2389 */
2390 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2391 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2392 return -EINVAL;
2393
2394 /* Extent size hints of zero turn off the flags. */
2395 if (fa->fsx_extsize == 0)
2396 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2397 if (fa->fsx_cowextsize == 0)
2398 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2399
2400 return 0;
2401 }
2402 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);