]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/inode.c
Merge tag 'usb-serial-5.2-rc5' of https://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 if (sb->s_xattr)
146 inode->i_opflags |= IOP_XATTR;
147 i_uid_write(inode, 0);
148 i_gid_write(inode, 0);
149 atomic_set(&inode->i_writecount, 0);
150 inode->i_size = 0;
151 inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 inode->i_pipe = NULL;
156 inode->i_bdev = NULL;
157 inode->i_cdev = NULL;
158 inode->i_link = NULL;
159 inode->i_dir_seq = 0;
160 inode->i_rdev = 0;
161 inode->dirtied_when = 0;
162
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 inode->i_wb_frn_winner = 0;
165 inode->i_wb_frn_avg_time = 0;
166 inode->i_wb_frn_history = 0;
167 #endif
168
169 if (security_inode_alloc(inode))
170 goto out;
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 mapping->wb_err = 0;
183 atomic_set(&mapping->i_mmap_writable, 0);
184 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
185 mapping->private_data = NULL;
186 mapping->writeback_index = 0;
187 inode->i_private = NULL;
188 inode->i_mapping = mapping;
189 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193
194 #ifdef CONFIG_FSNOTIFY
195 inode->i_fsnotify_mask = 0;
196 #endif
197 inode->i_flctx = NULL;
198 this_cpu_inc(nr_inodes);
199
200 return 0;
201 out:
202 return -ENOMEM;
203 }
204 EXPORT_SYMBOL(inode_init_always);
205
206 void free_inode_nonrcu(struct inode *inode)
207 {
208 kmem_cache_free(inode_cachep, inode);
209 }
210 EXPORT_SYMBOL(free_inode_nonrcu);
211
212 static void i_callback(struct rcu_head *head)
213 {
214 struct inode *inode = container_of(head, struct inode, i_rcu);
215 if (inode->free_inode)
216 inode->free_inode(inode);
217 else
218 free_inode_nonrcu(inode);
219 }
220
221 static struct inode *alloc_inode(struct super_block *sb)
222 {
223 const struct super_operations *ops = sb->s_op;
224 struct inode *inode;
225
226 if (ops->alloc_inode)
227 inode = ops->alloc_inode(sb);
228 else
229 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
230
231 if (!inode)
232 return NULL;
233
234 if (unlikely(inode_init_always(sb, inode))) {
235 if (ops->destroy_inode) {
236 ops->destroy_inode(inode);
237 if (!ops->free_inode)
238 return NULL;
239 }
240 inode->free_inode = ops->free_inode;
241 i_callback(&inode->i_rcu);
242 return NULL;
243 }
244
245 return inode;
246 }
247
248 void __destroy_inode(struct inode *inode)
249 {
250 BUG_ON(inode_has_buffers(inode));
251 inode_detach_wb(inode);
252 security_inode_free(inode);
253 fsnotify_inode_delete(inode);
254 locks_free_lock_context(inode);
255 if (!inode->i_nlink) {
256 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
257 atomic_long_dec(&inode->i_sb->s_remove_count);
258 }
259
260 #ifdef CONFIG_FS_POSIX_ACL
261 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
262 posix_acl_release(inode->i_acl);
263 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
264 posix_acl_release(inode->i_default_acl);
265 #endif
266 this_cpu_dec(nr_inodes);
267 }
268 EXPORT_SYMBOL(__destroy_inode);
269
270 static void destroy_inode(struct inode *inode)
271 {
272 const struct super_operations *ops = inode->i_sb->s_op;
273
274 BUG_ON(!list_empty(&inode->i_lru));
275 __destroy_inode(inode);
276 if (ops->destroy_inode) {
277 ops->destroy_inode(inode);
278 if (!ops->free_inode)
279 return;
280 }
281 inode->free_inode = ops->free_inode;
282 call_rcu(&inode->i_rcu, i_callback);
283 }
284
285 /**
286 * drop_nlink - directly drop an inode's link count
287 * @inode: inode
288 *
289 * This is a low-level filesystem helper to replace any
290 * direct filesystem manipulation of i_nlink. In cases
291 * where we are attempting to track writes to the
292 * filesystem, a decrement to zero means an imminent
293 * write when the file is truncated and actually unlinked
294 * on the filesystem.
295 */
296 void drop_nlink(struct inode *inode)
297 {
298 WARN_ON(inode->i_nlink == 0);
299 inode->__i_nlink--;
300 if (!inode->i_nlink)
301 atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303 EXPORT_SYMBOL(drop_nlink);
304
305 /**
306 * clear_nlink - directly zero an inode's link count
307 * @inode: inode
308 *
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink. See
311 * drop_nlink() for why we care about i_nlink hitting zero.
312 */
313 void clear_nlink(struct inode *inode)
314 {
315 if (inode->i_nlink) {
316 inode->__i_nlink = 0;
317 atomic_long_inc(&inode->i_sb->s_remove_count);
318 }
319 }
320 EXPORT_SYMBOL(clear_nlink);
321
322 /**
323 * set_nlink - directly set an inode's link count
324 * @inode: inode
325 * @nlink: new nlink (should be non-zero)
326 *
327 * This is a low-level filesystem helper to replace any
328 * direct filesystem manipulation of i_nlink.
329 */
330 void set_nlink(struct inode *inode, unsigned int nlink)
331 {
332 if (!nlink) {
333 clear_nlink(inode);
334 } else {
335 /* Yes, some filesystems do change nlink from zero to one */
336 if (inode->i_nlink == 0)
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338
339 inode->__i_nlink = nlink;
340 }
341 }
342 EXPORT_SYMBOL(set_nlink);
343
344 /**
345 * inc_nlink - directly increment an inode's link count
346 * @inode: inode
347 *
348 * This is a low-level filesystem helper to replace any
349 * direct filesystem manipulation of i_nlink. Currently,
350 * it is only here for parity with dec_nlink().
351 */
352 void inc_nlink(struct inode *inode)
353 {
354 if (unlikely(inode->i_nlink == 0)) {
355 WARN_ON(!(inode->i_state & I_LINKABLE));
356 atomic_long_dec(&inode->i_sb->s_remove_count);
357 }
358
359 inode->__i_nlink++;
360 }
361 EXPORT_SYMBOL(inc_nlink);
362
363 static void __address_space_init_once(struct address_space *mapping)
364 {
365 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ);
366 init_rwsem(&mapping->i_mmap_rwsem);
367 INIT_LIST_HEAD(&mapping->private_list);
368 spin_lock_init(&mapping->private_lock);
369 mapping->i_mmap = RB_ROOT_CACHED;
370 }
371
372 void address_space_init_once(struct address_space *mapping)
373 {
374 memset(mapping, 0, sizeof(*mapping));
375 __address_space_init_once(mapping);
376 }
377 EXPORT_SYMBOL(address_space_init_once);
378
379 /*
380 * These are initializations that only need to be done
381 * once, because the fields are idempotent across use
382 * of the inode, so let the slab aware of that.
383 */
384 void inode_init_once(struct inode *inode)
385 {
386 memset(inode, 0, sizeof(*inode));
387 INIT_HLIST_NODE(&inode->i_hash);
388 INIT_LIST_HEAD(&inode->i_devices);
389 INIT_LIST_HEAD(&inode->i_io_list);
390 INIT_LIST_HEAD(&inode->i_wb_list);
391 INIT_LIST_HEAD(&inode->i_lru);
392 __address_space_init_once(&inode->i_data);
393 i_size_ordered_init(inode);
394 }
395 EXPORT_SYMBOL(inode_init_once);
396
397 static void init_once(void *foo)
398 {
399 struct inode *inode = (struct inode *) foo;
400
401 inode_init_once(inode);
402 }
403
404 /*
405 * inode->i_lock must be held
406 */
407 void __iget(struct inode *inode)
408 {
409 atomic_inc(&inode->i_count);
410 }
411
412 /*
413 * get additional reference to inode; caller must already hold one.
414 */
415 void ihold(struct inode *inode)
416 {
417 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
418 }
419 EXPORT_SYMBOL(ihold);
420
421 static void inode_lru_list_add(struct inode *inode)
422 {
423 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 this_cpu_inc(nr_unused);
425 else
426 inode->i_state |= I_REFERENCED;
427 }
428
429 /*
430 * Add inode to LRU if needed (inode is unused and clean).
431 *
432 * Needs inode->i_lock held.
433 */
434 void inode_add_lru(struct inode *inode)
435 {
436 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
437 I_FREEING | I_WILL_FREE)) &&
438 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
439 inode_lru_list_add(inode);
440 }
441
442
443 static void inode_lru_list_del(struct inode *inode)
444 {
445
446 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
447 this_cpu_dec(nr_unused);
448 }
449
450 /**
451 * inode_sb_list_add - add inode to the superblock list of inodes
452 * @inode: inode to add
453 */
454 void inode_sb_list_add(struct inode *inode)
455 {
456 spin_lock(&inode->i_sb->s_inode_list_lock);
457 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
458 spin_unlock(&inode->i_sb->s_inode_list_lock);
459 }
460 EXPORT_SYMBOL_GPL(inode_sb_list_add);
461
462 static inline void inode_sb_list_del(struct inode *inode)
463 {
464 if (!list_empty(&inode->i_sb_list)) {
465 spin_lock(&inode->i_sb->s_inode_list_lock);
466 list_del_init(&inode->i_sb_list);
467 spin_unlock(&inode->i_sb->s_inode_list_lock);
468 }
469 }
470
471 static unsigned long hash(struct super_block *sb, unsigned long hashval)
472 {
473 unsigned long tmp;
474
475 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
476 L1_CACHE_BYTES;
477 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
478 return tmp & i_hash_mask;
479 }
480
481 /**
482 * __insert_inode_hash - hash an inode
483 * @inode: unhashed inode
484 * @hashval: unsigned long value used to locate this object in the
485 * inode_hashtable.
486 *
487 * Add an inode to the inode hash for this superblock.
488 */
489 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
490 {
491 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
492
493 spin_lock(&inode_hash_lock);
494 spin_lock(&inode->i_lock);
495 hlist_add_head(&inode->i_hash, b);
496 spin_unlock(&inode->i_lock);
497 spin_unlock(&inode_hash_lock);
498 }
499 EXPORT_SYMBOL(__insert_inode_hash);
500
501 /**
502 * __remove_inode_hash - remove an inode from the hash
503 * @inode: inode to unhash
504 *
505 * Remove an inode from the superblock.
506 */
507 void __remove_inode_hash(struct inode *inode)
508 {
509 spin_lock(&inode_hash_lock);
510 spin_lock(&inode->i_lock);
511 hlist_del_init(&inode->i_hash);
512 spin_unlock(&inode->i_lock);
513 spin_unlock(&inode_hash_lock);
514 }
515 EXPORT_SYMBOL(__remove_inode_hash);
516
517 void clear_inode(struct inode *inode)
518 {
519 /*
520 * We have to cycle the i_pages lock here because reclaim can be in the
521 * process of removing the last page (in __delete_from_page_cache())
522 * and we must not free the mapping under it.
523 */
524 xa_lock_irq(&inode->i_data.i_pages);
525 BUG_ON(inode->i_data.nrpages);
526 BUG_ON(inode->i_data.nrexceptional);
527 xa_unlock_irq(&inode->i_data.i_pages);
528 BUG_ON(!list_empty(&inode->i_data.private_list));
529 BUG_ON(!(inode->i_state & I_FREEING));
530 BUG_ON(inode->i_state & I_CLEAR);
531 BUG_ON(!list_empty(&inode->i_wb_list));
532 /* don't need i_lock here, no concurrent mods to i_state */
533 inode->i_state = I_FREEING | I_CLEAR;
534 }
535 EXPORT_SYMBOL(clear_inode);
536
537 /*
538 * Free the inode passed in, removing it from the lists it is still connected
539 * to. We remove any pages still attached to the inode and wait for any IO that
540 * is still in progress before finally destroying the inode.
541 *
542 * An inode must already be marked I_FREEING so that we avoid the inode being
543 * moved back onto lists if we race with other code that manipulates the lists
544 * (e.g. writeback_single_inode). The caller is responsible for setting this.
545 *
546 * An inode must already be removed from the LRU list before being evicted from
547 * the cache. This should occur atomically with setting the I_FREEING state
548 * flag, so no inodes here should ever be on the LRU when being evicted.
549 */
550 static void evict(struct inode *inode)
551 {
552 const struct super_operations *op = inode->i_sb->s_op;
553
554 BUG_ON(!(inode->i_state & I_FREEING));
555 BUG_ON(!list_empty(&inode->i_lru));
556
557 if (!list_empty(&inode->i_io_list))
558 inode_io_list_del(inode);
559
560 inode_sb_list_del(inode);
561
562 /*
563 * Wait for flusher thread to be done with the inode so that filesystem
564 * does not start destroying it while writeback is still running. Since
565 * the inode has I_FREEING set, flusher thread won't start new work on
566 * the inode. We just have to wait for running writeback to finish.
567 */
568 inode_wait_for_writeback(inode);
569
570 if (op->evict_inode) {
571 op->evict_inode(inode);
572 } else {
573 truncate_inode_pages_final(&inode->i_data);
574 clear_inode(inode);
575 }
576 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
577 bd_forget(inode);
578 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
579 cd_forget(inode);
580
581 remove_inode_hash(inode);
582
583 spin_lock(&inode->i_lock);
584 wake_up_bit(&inode->i_state, __I_NEW);
585 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
586 spin_unlock(&inode->i_lock);
587
588 destroy_inode(inode);
589 }
590
591 /*
592 * dispose_list - dispose of the contents of a local list
593 * @head: the head of the list to free
594 *
595 * Dispose-list gets a local list with local inodes in it, so it doesn't
596 * need to worry about list corruption and SMP locks.
597 */
598 static void dispose_list(struct list_head *head)
599 {
600 while (!list_empty(head)) {
601 struct inode *inode;
602
603 inode = list_first_entry(head, struct inode, i_lru);
604 list_del_init(&inode->i_lru);
605
606 evict(inode);
607 cond_resched();
608 }
609 }
610
611 /**
612 * evict_inodes - evict all evictable inodes for a superblock
613 * @sb: superblock to operate on
614 *
615 * Make sure that no inodes with zero refcount are retained. This is
616 * called by superblock shutdown after having SB_ACTIVE flag removed,
617 * so any inode reaching zero refcount during or after that call will
618 * be immediately evicted.
619 */
620 void evict_inodes(struct super_block *sb)
621 {
622 struct inode *inode, *next;
623 LIST_HEAD(dispose);
624
625 again:
626 spin_lock(&sb->s_inode_list_lock);
627 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
628 if (atomic_read(&inode->i_count))
629 continue;
630
631 spin_lock(&inode->i_lock);
632 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
633 spin_unlock(&inode->i_lock);
634 continue;
635 }
636
637 inode->i_state |= I_FREEING;
638 inode_lru_list_del(inode);
639 spin_unlock(&inode->i_lock);
640 list_add(&inode->i_lru, &dispose);
641
642 /*
643 * We can have a ton of inodes to evict at unmount time given
644 * enough memory, check to see if we need to go to sleep for a
645 * bit so we don't livelock.
646 */
647 if (need_resched()) {
648 spin_unlock(&sb->s_inode_list_lock);
649 cond_resched();
650 dispose_list(&dispose);
651 goto again;
652 }
653 }
654 spin_unlock(&sb->s_inode_list_lock);
655
656 dispose_list(&dispose);
657 }
658 EXPORT_SYMBOL_GPL(evict_inodes);
659
660 /**
661 * invalidate_inodes - attempt to free all inodes on a superblock
662 * @sb: superblock to operate on
663 * @kill_dirty: flag to guide handling of dirty inodes
664 *
665 * Attempts to free all inodes for a given superblock. If there were any
666 * busy inodes return a non-zero value, else zero.
667 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
668 * them as busy.
669 */
670 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
671 {
672 int busy = 0;
673 struct inode *inode, *next;
674 LIST_HEAD(dispose);
675
676 spin_lock(&sb->s_inode_list_lock);
677 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
678 spin_lock(&inode->i_lock);
679 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
680 spin_unlock(&inode->i_lock);
681 continue;
682 }
683 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
684 spin_unlock(&inode->i_lock);
685 busy = 1;
686 continue;
687 }
688 if (atomic_read(&inode->i_count)) {
689 spin_unlock(&inode->i_lock);
690 busy = 1;
691 continue;
692 }
693
694 inode->i_state |= I_FREEING;
695 inode_lru_list_del(inode);
696 spin_unlock(&inode->i_lock);
697 list_add(&inode->i_lru, &dispose);
698 }
699 spin_unlock(&sb->s_inode_list_lock);
700
701 dispose_list(&dispose);
702
703 return busy;
704 }
705
706 /*
707 * Isolate the inode from the LRU in preparation for freeing it.
708 *
709 * Any inodes which are pinned purely because of attached pagecache have their
710 * pagecache removed. If the inode has metadata buffers attached to
711 * mapping->private_list then try to remove them.
712 *
713 * If the inode has the I_REFERENCED flag set, then it means that it has been
714 * used recently - the flag is set in iput_final(). When we encounter such an
715 * inode, clear the flag and move it to the back of the LRU so it gets another
716 * pass through the LRU before it gets reclaimed. This is necessary because of
717 * the fact we are doing lazy LRU updates to minimise lock contention so the
718 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
719 * with this flag set because they are the inodes that are out of order.
720 */
721 static enum lru_status inode_lru_isolate(struct list_head *item,
722 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
723 {
724 struct list_head *freeable = arg;
725 struct inode *inode = container_of(item, struct inode, i_lru);
726
727 /*
728 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
729 * If we fail to get the lock, just skip it.
730 */
731 if (!spin_trylock(&inode->i_lock))
732 return LRU_SKIP;
733
734 /*
735 * Referenced or dirty inodes are still in use. Give them another pass
736 * through the LRU as we canot reclaim them now.
737 */
738 if (atomic_read(&inode->i_count) ||
739 (inode->i_state & ~I_REFERENCED)) {
740 list_lru_isolate(lru, &inode->i_lru);
741 spin_unlock(&inode->i_lock);
742 this_cpu_dec(nr_unused);
743 return LRU_REMOVED;
744 }
745
746 /* recently referenced inodes get one more pass */
747 if (inode->i_state & I_REFERENCED) {
748 inode->i_state &= ~I_REFERENCED;
749 spin_unlock(&inode->i_lock);
750 return LRU_ROTATE;
751 }
752
753 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
754 __iget(inode);
755 spin_unlock(&inode->i_lock);
756 spin_unlock(lru_lock);
757 if (remove_inode_buffers(inode)) {
758 unsigned long reap;
759 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
760 if (current_is_kswapd())
761 __count_vm_events(KSWAPD_INODESTEAL, reap);
762 else
763 __count_vm_events(PGINODESTEAL, reap);
764 if (current->reclaim_state)
765 current->reclaim_state->reclaimed_slab += reap;
766 }
767 iput(inode);
768 spin_lock(lru_lock);
769 return LRU_RETRY;
770 }
771
772 WARN_ON(inode->i_state & I_NEW);
773 inode->i_state |= I_FREEING;
774 list_lru_isolate_move(lru, &inode->i_lru, freeable);
775 spin_unlock(&inode->i_lock);
776
777 this_cpu_dec(nr_unused);
778 return LRU_REMOVED;
779 }
780
781 /*
782 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
783 * This is called from the superblock shrinker function with a number of inodes
784 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
785 * then are freed outside inode_lock by dispose_list().
786 */
787 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
788 {
789 LIST_HEAD(freeable);
790 long freed;
791
792 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
793 inode_lru_isolate, &freeable);
794 dispose_list(&freeable);
795 return freed;
796 }
797
798 static void __wait_on_freeing_inode(struct inode *inode);
799 /*
800 * Called with the inode lock held.
801 */
802 static struct inode *find_inode(struct super_block *sb,
803 struct hlist_head *head,
804 int (*test)(struct inode *, void *),
805 void *data)
806 {
807 struct inode *inode = NULL;
808
809 repeat:
810 hlist_for_each_entry(inode, head, i_hash) {
811 if (inode->i_sb != sb)
812 continue;
813 if (!test(inode, data))
814 continue;
815 spin_lock(&inode->i_lock);
816 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
817 __wait_on_freeing_inode(inode);
818 goto repeat;
819 }
820 if (unlikely(inode->i_state & I_CREATING)) {
821 spin_unlock(&inode->i_lock);
822 return ERR_PTR(-ESTALE);
823 }
824 __iget(inode);
825 spin_unlock(&inode->i_lock);
826 return inode;
827 }
828 return NULL;
829 }
830
831 /*
832 * find_inode_fast is the fast path version of find_inode, see the comment at
833 * iget_locked for details.
834 */
835 static struct inode *find_inode_fast(struct super_block *sb,
836 struct hlist_head *head, unsigned long ino)
837 {
838 struct inode *inode = NULL;
839
840 repeat:
841 hlist_for_each_entry(inode, head, i_hash) {
842 if (inode->i_ino != ino)
843 continue;
844 if (inode->i_sb != sb)
845 continue;
846 spin_lock(&inode->i_lock);
847 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
848 __wait_on_freeing_inode(inode);
849 goto repeat;
850 }
851 if (unlikely(inode->i_state & I_CREATING)) {
852 spin_unlock(&inode->i_lock);
853 return ERR_PTR(-ESTALE);
854 }
855 __iget(inode);
856 spin_unlock(&inode->i_lock);
857 return inode;
858 }
859 return NULL;
860 }
861
862 /*
863 * Each cpu owns a range of LAST_INO_BATCH numbers.
864 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
865 * to renew the exhausted range.
866 *
867 * This does not significantly increase overflow rate because every CPU can
868 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
869 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
870 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
871 * overflow rate by 2x, which does not seem too significant.
872 *
873 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
874 * error if st_ino won't fit in target struct field. Use 32bit counter
875 * here to attempt to avoid that.
876 */
877 #define LAST_INO_BATCH 1024
878 static DEFINE_PER_CPU(unsigned int, last_ino);
879
880 unsigned int get_next_ino(void)
881 {
882 unsigned int *p = &get_cpu_var(last_ino);
883 unsigned int res = *p;
884
885 #ifdef CONFIG_SMP
886 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
887 static atomic_t shared_last_ino;
888 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
889
890 res = next - LAST_INO_BATCH;
891 }
892 #endif
893
894 res++;
895 /* get_next_ino should not provide a 0 inode number */
896 if (unlikely(!res))
897 res++;
898 *p = res;
899 put_cpu_var(last_ino);
900 return res;
901 }
902 EXPORT_SYMBOL(get_next_ino);
903
904 /**
905 * new_inode_pseudo - obtain an inode
906 * @sb: superblock
907 *
908 * Allocates a new inode for given superblock.
909 * Inode wont be chained in superblock s_inodes list
910 * This means :
911 * - fs can't be unmount
912 * - quotas, fsnotify, writeback can't work
913 */
914 struct inode *new_inode_pseudo(struct super_block *sb)
915 {
916 struct inode *inode = alloc_inode(sb);
917
918 if (inode) {
919 spin_lock(&inode->i_lock);
920 inode->i_state = 0;
921 spin_unlock(&inode->i_lock);
922 INIT_LIST_HEAD(&inode->i_sb_list);
923 }
924 return inode;
925 }
926
927 /**
928 * new_inode - obtain an inode
929 * @sb: superblock
930 *
931 * Allocates a new inode for given superblock. The default gfp_mask
932 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
933 * If HIGHMEM pages are unsuitable or it is known that pages allocated
934 * for the page cache are not reclaimable or migratable,
935 * mapping_set_gfp_mask() must be called with suitable flags on the
936 * newly created inode's mapping
937 *
938 */
939 struct inode *new_inode(struct super_block *sb)
940 {
941 struct inode *inode;
942
943 spin_lock_prefetch(&sb->s_inode_list_lock);
944
945 inode = new_inode_pseudo(sb);
946 if (inode)
947 inode_sb_list_add(inode);
948 return inode;
949 }
950 EXPORT_SYMBOL(new_inode);
951
952 #ifdef CONFIG_DEBUG_LOCK_ALLOC
953 void lockdep_annotate_inode_mutex_key(struct inode *inode)
954 {
955 if (S_ISDIR(inode->i_mode)) {
956 struct file_system_type *type = inode->i_sb->s_type;
957
958 /* Set new key only if filesystem hasn't already changed it */
959 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
960 /*
961 * ensure nobody is actually holding i_mutex
962 */
963 // mutex_destroy(&inode->i_mutex);
964 init_rwsem(&inode->i_rwsem);
965 lockdep_set_class(&inode->i_rwsem,
966 &type->i_mutex_dir_key);
967 }
968 }
969 }
970 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
971 #endif
972
973 /**
974 * unlock_new_inode - clear the I_NEW state and wake up any waiters
975 * @inode: new inode to unlock
976 *
977 * Called when the inode is fully initialised to clear the new state of the
978 * inode and wake up anyone waiting for the inode to finish initialisation.
979 */
980 void unlock_new_inode(struct inode *inode)
981 {
982 lockdep_annotate_inode_mutex_key(inode);
983 spin_lock(&inode->i_lock);
984 WARN_ON(!(inode->i_state & I_NEW));
985 inode->i_state &= ~I_NEW & ~I_CREATING;
986 smp_mb();
987 wake_up_bit(&inode->i_state, __I_NEW);
988 spin_unlock(&inode->i_lock);
989 }
990 EXPORT_SYMBOL(unlock_new_inode);
991
992 void discard_new_inode(struct inode *inode)
993 {
994 lockdep_annotate_inode_mutex_key(inode);
995 spin_lock(&inode->i_lock);
996 WARN_ON(!(inode->i_state & I_NEW));
997 inode->i_state &= ~I_NEW;
998 smp_mb();
999 wake_up_bit(&inode->i_state, __I_NEW);
1000 spin_unlock(&inode->i_lock);
1001 iput(inode);
1002 }
1003 EXPORT_SYMBOL(discard_new_inode);
1004
1005 /**
1006 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1007 *
1008 * Lock any non-NULL argument that is not a directory.
1009 * Zero, one or two objects may be locked by this function.
1010 *
1011 * @inode1: first inode to lock
1012 * @inode2: second inode to lock
1013 */
1014 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1015 {
1016 if (inode1 > inode2)
1017 swap(inode1, inode2);
1018
1019 if (inode1 && !S_ISDIR(inode1->i_mode))
1020 inode_lock(inode1);
1021 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1022 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1023 }
1024 EXPORT_SYMBOL(lock_two_nondirectories);
1025
1026 /**
1027 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1028 * @inode1: first inode to unlock
1029 * @inode2: second inode to unlock
1030 */
1031 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1032 {
1033 if (inode1 && !S_ISDIR(inode1->i_mode))
1034 inode_unlock(inode1);
1035 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1036 inode_unlock(inode2);
1037 }
1038 EXPORT_SYMBOL(unlock_two_nondirectories);
1039
1040 /**
1041 * inode_insert5 - obtain an inode from a mounted file system
1042 * @inode: pre-allocated inode to use for insert to cache
1043 * @hashval: hash value (usually inode number) to get
1044 * @test: callback used for comparisons between inodes
1045 * @set: callback used to initialize a new struct inode
1046 * @data: opaque data pointer to pass to @test and @set
1047 *
1048 * Search for the inode specified by @hashval and @data in the inode cache,
1049 * and if present it is return it with an increased reference count. This is
1050 * a variant of iget5_locked() for callers that don't want to fail on memory
1051 * allocation of inode.
1052 *
1053 * If the inode is not in cache, insert the pre-allocated inode to cache and
1054 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1055 * to fill it in before unlocking it via unlock_new_inode().
1056 *
1057 * Note both @test and @set are called with the inode_hash_lock held, so can't
1058 * sleep.
1059 */
1060 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1061 int (*test)(struct inode *, void *),
1062 int (*set)(struct inode *, void *), void *data)
1063 {
1064 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1065 struct inode *old;
1066 bool creating = inode->i_state & I_CREATING;
1067
1068 again:
1069 spin_lock(&inode_hash_lock);
1070 old = find_inode(inode->i_sb, head, test, data);
1071 if (unlikely(old)) {
1072 /*
1073 * Uhhuh, somebody else created the same inode under us.
1074 * Use the old inode instead of the preallocated one.
1075 */
1076 spin_unlock(&inode_hash_lock);
1077 if (IS_ERR(old))
1078 return NULL;
1079 wait_on_inode(old);
1080 if (unlikely(inode_unhashed(old))) {
1081 iput(old);
1082 goto again;
1083 }
1084 return old;
1085 }
1086
1087 if (set && unlikely(set(inode, data))) {
1088 inode = NULL;
1089 goto unlock;
1090 }
1091
1092 /*
1093 * Return the locked inode with I_NEW set, the
1094 * caller is responsible for filling in the contents
1095 */
1096 spin_lock(&inode->i_lock);
1097 inode->i_state |= I_NEW;
1098 hlist_add_head(&inode->i_hash, head);
1099 spin_unlock(&inode->i_lock);
1100 if (!creating)
1101 inode_sb_list_add(inode);
1102 unlock:
1103 spin_unlock(&inode_hash_lock);
1104
1105 return inode;
1106 }
1107 EXPORT_SYMBOL(inode_insert5);
1108
1109 /**
1110 * iget5_locked - obtain an inode from a mounted file system
1111 * @sb: super block of file system
1112 * @hashval: hash value (usually inode number) to get
1113 * @test: callback used for comparisons between inodes
1114 * @set: callback used to initialize a new struct inode
1115 * @data: opaque data pointer to pass to @test and @set
1116 *
1117 * Search for the inode specified by @hashval and @data in the inode cache,
1118 * and if present it is return it with an increased reference count. This is
1119 * a generalized version of iget_locked() for file systems where the inode
1120 * number is not sufficient for unique identification of an inode.
1121 *
1122 * If the inode is not in cache, allocate a new inode and return it locked,
1123 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1124 * before unlocking it via unlock_new_inode().
1125 *
1126 * Note both @test and @set are called with the inode_hash_lock held, so can't
1127 * sleep.
1128 */
1129 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1130 int (*test)(struct inode *, void *),
1131 int (*set)(struct inode *, void *), void *data)
1132 {
1133 struct inode *inode = ilookup5(sb, hashval, test, data);
1134
1135 if (!inode) {
1136 struct inode *new = alloc_inode(sb);
1137
1138 if (new) {
1139 new->i_state = 0;
1140 inode = inode_insert5(new, hashval, test, set, data);
1141 if (unlikely(inode != new))
1142 destroy_inode(new);
1143 }
1144 }
1145 return inode;
1146 }
1147 EXPORT_SYMBOL(iget5_locked);
1148
1149 /**
1150 * iget_locked - obtain an inode from a mounted file system
1151 * @sb: super block of file system
1152 * @ino: inode number to get
1153 *
1154 * Search for the inode specified by @ino in the inode cache and if present
1155 * return it with an increased reference count. This is for file systems
1156 * where the inode number is sufficient for unique identification of an inode.
1157 *
1158 * If the inode is not in cache, allocate a new inode and return it locked,
1159 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1160 * before unlocking it via unlock_new_inode().
1161 */
1162 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1163 {
1164 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1165 struct inode *inode;
1166 again:
1167 spin_lock(&inode_hash_lock);
1168 inode = find_inode_fast(sb, head, ino);
1169 spin_unlock(&inode_hash_lock);
1170 if (inode) {
1171 if (IS_ERR(inode))
1172 return NULL;
1173 wait_on_inode(inode);
1174 if (unlikely(inode_unhashed(inode))) {
1175 iput(inode);
1176 goto again;
1177 }
1178 return inode;
1179 }
1180
1181 inode = alloc_inode(sb);
1182 if (inode) {
1183 struct inode *old;
1184
1185 spin_lock(&inode_hash_lock);
1186 /* We released the lock, so.. */
1187 old = find_inode_fast(sb, head, ino);
1188 if (!old) {
1189 inode->i_ino = ino;
1190 spin_lock(&inode->i_lock);
1191 inode->i_state = I_NEW;
1192 hlist_add_head(&inode->i_hash, head);
1193 spin_unlock(&inode->i_lock);
1194 inode_sb_list_add(inode);
1195 spin_unlock(&inode_hash_lock);
1196
1197 /* Return the locked inode with I_NEW set, the
1198 * caller is responsible for filling in the contents
1199 */
1200 return inode;
1201 }
1202
1203 /*
1204 * Uhhuh, somebody else created the same inode under
1205 * us. Use the old inode instead of the one we just
1206 * allocated.
1207 */
1208 spin_unlock(&inode_hash_lock);
1209 destroy_inode(inode);
1210 if (IS_ERR(old))
1211 return NULL;
1212 inode = old;
1213 wait_on_inode(inode);
1214 if (unlikely(inode_unhashed(inode))) {
1215 iput(inode);
1216 goto again;
1217 }
1218 }
1219 return inode;
1220 }
1221 EXPORT_SYMBOL(iget_locked);
1222
1223 /*
1224 * search the inode cache for a matching inode number.
1225 * If we find one, then the inode number we are trying to
1226 * allocate is not unique and so we should not use it.
1227 *
1228 * Returns 1 if the inode number is unique, 0 if it is not.
1229 */
1230 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1231 {
1232 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1233 struct inode *inode;
1234
1235 spin_lock(&inode_hash_lock);
1236 hlist_for_each_entry(inode, b, i_hash) {
1237 if (inode->i_ino == ino && inode->i_sb == sb) {
1238 spin_unlock(&inode_hash_lock);
1239 return 0;
1240 }
1241 }
1242 spin_unlock(&inode_hash_lock);
1243
1244 return 1;
1245 }
1246
1247 /**
1248 * iunique - get a unique inode number
1249 * @sb: superblock
1250 * @max_reserved: highest reserved inode number
1251 *
1252 * Obtain an inode number that is unique on the system for a given
1253 * superblock. This is used by file systems that have no natural
1254 * permanent inode numbering system. An inode number is returned that
1255 * is higher than the reserved limit but unique.
1256 *
1257 * BUGS:
1258 * With a large number of inodes live on the file system this function
1259 * currently becomes quite slow.
1260 */
1261 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1262 {
1263 /*
1264 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1265 * error if st_ino won't fit in target struct field. Use 32bit counter
1266 * here to attempt to avoid that.
1267 */
1268 static DEFINE_SPINLOCK(iunique_lock);
1269 static unsigned int counter;
1270 ino_t res;
1271
1272 spin_lock(&iunique_lock);
1273 do {
1274 if (counter <= max_reserved)
1275 counter = max_reserved + 1;
1276 res = counter++;
1277 } while (!test_inode_iunique(sb, res));
1278 spin_unlock(&iunique_lock);
1279
1280 return res;
1281 }
1282 EXPORT_SYMBOL(iunique);
1283
1284 struct inode *igrab(struct inode *inode)
1285 {
1286 spin_lock(&inode->i_lock);
1287 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1288 __iget(inode);
1289 spin_unlock(&inode->i_lock);
1290 } else {
1291 spin_unlock(&inode->i_lock);
1292 /*
1293 * Handle the case where s_op->clear_inode is not been
1294 * called yet, and somebody is calling igrab
1295 * while the inode is getting freed.
1296 */
1297 inode = NULL;
1298 }
1299 return inode;
1300 }
1301 EXPORT_SYMBOL(igrab);
1302
1303 /**
1304 * ilookup5_nowait - search for an inode in the inode cache
1305 * @sb: super block of file system to search
1306 * @hashval: hash value (usually inode number) to search for
1307 * @test: callback used for comparisons between inodes
1308 * @data: opaque data pointer to pass to @test
1309 *
1310 * Search for the inode specified by @hashval and @data in the inode cache.
1311 * If the inode is in the cache, the inode is returned with an incremented
1312 * reference count.
1313 *
1314 * Note: I_NEW is not waited upon so you have to be very careful what you do
1315 * with the returned inode. You probably should be using ilookup5() instead.
1316 *
1317 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1318 */
1319 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1320 int (*test)(struct inode *, void *), void *data)
1321 {
1322 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1323 struct inode *inode;
1324
1325 spin_lock(&inode_hash_lock);
1326 inode = find_inode(sb, head, test, data);
1327 spin_unlock(&inode_hash_lock);
1328
1329 return IS_ERR(inode) ? NULL : inode;
1330 }
1331 EXPORT_SYMBOL(ilookup5_nowait);
1332
1333 /**
1334 * ilookup5 - search for an inode in the inode cache
1335 * @sb: super block of file system to search
1336 * @hashval: hash value (usually inode number) to search for
1337 * @test: callback used for comparisons between inodes
1338 * @data: opaque data pointer to pass to @test
1339 *
1340 * Search for the inode specified by @hashval and @data in the inode cache,
1341 * and if the inode is in the cache, return the inode with an incremented
1342 * reference count. Waits on I_NEW before returning the inode.
1343 * returned with an incremented reference count.
1344 *
1345 * This is a generalized version of ilookup() for file systems where the
1346 * inode number is not sufficient for unique identification of an inode.
1347 *
1348 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1349 */
1350 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1351 int (*test)(struct inode *, void *), void *data)
1352 {
1353 struct inode *inode;
1354 again:
1355 inode = ilookup5_nowait(sb, hashval, test, data);
1356 if (inode) {
1357 wait_on_inode(inode);
1358 if (unlikely(inode_unhashed(inode))) {
1359 iput(inode);
1360 goto again;
1361 }
1362 }
1363 return inode;
1364 }
1365 EXPORT_SYMBOL(ilookup5);
1366
1367 /**
1368 * ilookup - search for an inode in the inode cache
1369 * @sb: super block of file system to search
1370 * @ino: inode number to search for
1371 *
1372 * Search for the inode @ino in the inode cache, and if the inode is in the
1373 * cache, the inode is returned with an incremented reference count.
1374 */
1375 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1376 {
1377 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1378 struct inode *inode;
1379 again:
1380 spin_lock(&inode_hash_lock);
1381 inode = find_inode_fast(sb, head, ino);
1382 spin_unlock(&inode_hash_lock);
1383
1384 if (inode) {
1385 if (IS_ERR(inode))
1386 return NULL;
1387 wait_on_inode(inode);
1388 if (unlikely(inode_unhashed(inode))) {
1389 iput(inode);
1390 goto again;
1391 }
1392 }
1393 return inode;
1394 }
1395 EXPORT_SYMBOL(ilookup);
1396
1397 /**
1398 * find_inode_nowait - find an inode in the inode cache
1399 * @sb: super block of file system to search
1400 * @hashval: hash value (usually inode number) to search for
1401 * @match: callback used for comparisons between inodes
1402 * @data: opaque data pointer to pass to @match
1403 *
1404 * Search for the inode specified by @hashval and @data in the inode
1405 * cache, where the helper function @match will return 0 if the inode
1406 * does not match, 1 if the inode does match, and -1 if the search
1407 * should be stopped. The @match function must be responsible for
1408 * taking the i_lock spin_lock and checking i_state for an inode being
1409 * freed or being initialized, and incrementing the reference count
1410 * before returning 1. It also must not sleep, since it is called with
1411 * the inode_hash_lock spinlock held.
1412 *
1413 * This is a even more generalized version of ilookup5() when the
1414 * function must never block --- find_inode() can block in
1415 * __wait_on_freeing_inode() --- or when the caller can not increment
1416 * the reference count because the resulting iput() might cause an
1417 * inode eviction. The tradeoff is that the @match funtion must be
1418 * very carefully implemented.
1419 */
1420 struct inode *find_inode_nowait(struct super_block *sb,
1421 unsigned long hashval,
1422 int (*match)(struct inode *, unsigned long,
1423 void *),
1424 void *data)
1425 {
1426 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1427 struct inode *inode, *ret_inode = NULL;
1428 int mval;
1429
1430 spin_lock(&inode_hash_lock);
1431 hlist_for_each_entry(inode, head, i_hash) {
1432 if (inode->i_sb != sb)
1433 continue;
1434 mval = match(inode, hashval, data);
1435 if (mval == 0)
1436 continue;
1437 if (mval == 1)
1438 ret_inode = inode;
1439 goto out;
1440 }
1441 out:
1442 spin_unlock(&inode_hash_lock);
1443 return ret_inode;
1444 }
1445 EXPORT_SYMBOL(find_inode_nowait);
1446
1447 int insert_inode_locked(struct inode *inode)
1448 {
1449 struct super_block *sb = inode->i_sb;
1450 ino_t ino = inode->i_ino;
1451 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1452
1453 while (1) {
1454 struct inode *old = NULL;
1455 spin_lock(&inode_hash_lock);
1456 hlist_for_each_entry(old, head, i_hash) {
1457 if (old->i_ino != ino)
1458 continue;
1459 if (old->i_sb != sb)
1460 continue;
1461 spin_lock(&old->i_lock);
1462 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1463 spin_unlock(&old->i_lock);
1464 continue;
1465 }
1466 break;
1467 }
1468 if (likely(!old)) {
1469 spin_lock(&inode->i_lock);
1470 inode->i_state |= I_NEW | I_CREATING;
1471 hlist_add_head(&inode->i_hash, head);
1472 spin_unlock(&inode->i_lock);
1473 spin_unlock(&inode_hash_lock);
1474 return 0;
1475 }
1476 if (unlikely(old->i_state & I_CREATING)) {
1477 spin_unlock(&old->i_lock);
1478 spin_unlock(&inode_hash_lock);
1479 return -EBUSY;
1480 }
1481 __iget(old);
1482 spin_unlock(&old->i_lock);
1483 spin_unlock(&inode_hash_lock);
1484 wait_on_inode(old);
1485 if (unlikely(!inode_unhashed(old))) {
1486 iput(old);
1487 return -EBUSY;
1488 }
1489 iput(old);
1490 }
1491 }
1492 EXPORT_SYMBOL(insert_inode_locked);
1493
1494 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1495 int (*test)(struct inode *, void *), void *data)
1496 {
1497 struct inode *old;
1498
1499 inode->i_state |= I_CREATING;
1500 old = inode_insert5(inode, hashval, test, NULL, data);
1501
1502 if (old != inode) {
1503 iput(old);
1504 return -EBUSY;
1505 }
1506 return 0;
1507 }
1508 EXPORT_SYMBOL(insert_inode_locked4);
1509
1510
1511 int generic_delete_inode(struct inode *inode)
1512 {
1513 return 1;
1514 }
1515 EXPORT_SYMBOL(generic_delete_inode);
1516
1517 /*
1518 * Called when we're dropping the last reference
1519 * to an inode.
1520 *
1521 * Call the FS "drop_inode()" function, defaulting to
1522 * the legacy UNIX filesystem behaviour. If it tells
1523 * us to evict inode, do so. Otherwise, retain inode
1524 * in cache if fs is alive, sync and evict if fs is
1525 * shutting down.
1526 */
1527 static void iput_final(struct inode *inode)
1528 {
1529 struct super_block *sb = inode->i_sb;
1530 const struct super_operations *op = inode->i_sb->s_op;
1531 int drop;
1532
1533 WARN_ON(inode->i_state & I_NEW);
1534
1535 if (op->drop_inode)
1536 drop = op->drop_inode(inode);
1537 else
1538 drop = generic_drop_inode(inode);
1539
1540 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1541 inode_add_lru(inode);
1542 spin_unlock(&inode->i_lock);
1543 return;
1544 }
1545
1546 if (!drop) {
1547 inode->i_state |= I_WILL_FREE;
1548 spin_unlock(&inode->i_lock);
1549 write_inode_now(inode, 1);
1550 spin_lock(&inode->i_lock);
1551 WARN_ON(inode->i_state & I_NEW);
1552 inode->i_state &= ~I_WILL_FREE;
1553 }
1554
1555 inode->i_state |= I_FREEING;
1556 if (!list_empty(&inode->i_lru))
1557 inode_lru_list_del(inode);
1558 spin_unlock(&inode->i_lock);
1559
1560 evict(inode);
1561 }
1562
1563 /**
1564 * iput - put an inode
1565 * @inode: inode to put
1566 *
1567 * Puts an inode, dropping its usage count. If the inode use count hits
1568 * zero, the inode is then freed and may also be destroyed.
1569 *
1570 * Consequently, iput() can sleep.
1571 */
1572 void iput(struct inode *inode)
1573 {
1574 if (!inode)
1575 return;
1576 BUG_ON(inode->i_state & I_CLEAR);
1577 retry:
1578 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1579 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1580 atomic_inc(&inode->i_count);
1581 spin_unlock(&inode->i_lock);
1582 trace_writeback_lazytime_iput(inode);
1583 mark_inode_dirty_sync(inode);
1584 goto retry;
1585 }
1586 iput_final(inode);
1587 }
1588 }
1589 EXPORT_SYMBOL(iput);
1590
1591 /**
1592 * bmap - find a block number in a file
1593 * @inode: inode of file
1594 * @block: block to find
1595 *
1596 * Returns the block number on the device holding the inode that
1597 * is the disk block number for the block of the file requested.
1598 * That is, asked for block 4 of inode 1 the function will return the
1599 * disk block relative to the disk start that holds that block of the
1600 * file.
1601 */
1602 sector_t bmap(struct inode *inode, sector_t block)
1603 {
1604 sector_t res = 0;
1605 if (inode->i_mapping->a_ops->bmap)
1606 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1607 return res;
1608 }
1609 EXPORT_SYMBOL(bmap);
1610
1611 /*
1612 * With relative atime, only update atime if the previous atime is
1613 * earlier than either the ctime or mtime or if at least a day has
1614 * passed since the last atime update.
1615 */
1616 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1617 struct timespec64 now)
1618 {
1619
1620 if (!(mnt->mnt_flags & MNT_RELATIME))
1621 return 1;
1622 /*
1623 * Is mtime younger than atime? If yes, update atime:
1624 */
1625 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1626 return 1;
1627 /*
1628 * Is ctime younger than atime? If yes, update atime:
1629 */
1630 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1631 return 1;
1632
1633 /*
1634 * Is the previous atime value older than a day? If yes,
1635 * update atime:
1636 */
1637 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1638 return 1;
1639 /*
1640 * Good, we can skip the atime update:
1641 */
1642 return 0;
1643 }
1644
1645 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1646 {
1647 int iflags = I_DIRTY_TIME;
1648 bool dirty = false;
1649
1650 if (flags & S_ATIME)
1651 inode->i_atime = *time;
1652 if (flags & S_VERSION)
1653 dirty = inode_maybe_inc_iversion(inode, false);
1654 if (flags & S_CTIME)
1655 inode->i_ctime = *time;
1656 if (flags & S_MTIME)
1657 inode->i_mtime = *time;
1658 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1659 !(inode->i_sb->s_flags & SB_LAZYTIME))
1660 dirty = true;
1661
1662 if (dirty)
1663 iflags |= I_DIRTY_SYNC;
1664 __mark_inode_dirty(inode, iflags);
1665 return 0;
1666 }
1667 EXPORT_SYMBOL(generic_update_time);
1668
1669 /*
1670 * This does the actual work of updating an inodes time or version. Must have
1671 * had called mnt_want_write() before calling this.
1672 */
1673 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1674 {
1675 int (*update_time)(struct inode *, struct timespec64 *, int);
1676
1677 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1678 generic_update_time;
1679
1680 return update_time(inode, time, flags);
1681 }
1682
1683 /**
1684 * touch_atime - update the access time
1685 * @path: the &struct path to update
1686 * @inode: inode to update
1687 *
1688 * Update the accessed time on an inode and mark it for writeback.
1689 * This function automatically handles read only file systems and media,
1690 * as well as the "noatime" flag and inode specific "noatime" markers.
1691 */
1692 bool atime_needs_update(const struct path *path, struct inode *inode)
1693 {
1694 struct vfsmount *mnt = path->mnt;
1695 struct timespec64 now;
1696
1697 if (inode->i_flags & S_NOATIME)
1698 return false;
1699
1700 /* Atime updates will likely cause i_uid and i_gid to be written
1701 * back improprely if their true value is unknown to the vfs.
1702 */
1703 if (HAS_UNMAPPED_ID(inode))
1704 return false;
1705
1706 if (IS_NOATIME(inode))
1707 return false;
1708 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1709 return false;
1710
1711 if (mnt->mnt_flags & MNT_NOATIME)
1712 return false;
1713 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1714 return false;
1715
1716 now = current_time(inode);
1717
1718 if (!relatime_need_update(mnt, inode, now))
1719 return false;
1720
1721 if (timespec64_equal(&inode->i_atime, &now))
1722 return false;
1723
1724 return true;
1725 }
1726
1727 void touch_atime(const struct path *path)
1728 {
1729 struct vfsmount *mnt = path->mnt;
1730 struct inode *inode = d_inode(path->dentry);
1731 struct timespec64 now;
1732
1733 if (!atime_needs_update(path, inode))
1734 return;
1735
1736 if (!sb_start_write_trylock(inode->i_sb))
1737 return;
1738
1739 if (__mnt_want_write(mnt) != 0)
1740 goto skip_update;
1741 /*
1742 * File systems can error out when updating inodes if they need to
1743 * allocate new space to modify an inode (such is the case for
1744 * Btrfs), but since we touch atime while walking down the path we
1745 * really don't care if we failed to update the atime of the file,
1746 * so just ignore the return value.
1747 * We may also fail on filesystems that have the ability to make parts
1748 * of the fs read only, e.g. subvolumes in Btrfs.
1749 */
1750 now = current_time(inode);
1751 update_time(inode, &now, S_ATIME);
1752 __mnt_drop_write(mnt);
1753 skip_update:
1754 sb_end_write(inode->i_sb);
1755 }
1756 EXPORT_SYMBOL(touch_atime);
1757
1758 /*
1759 * The logic we want is
1760 *
1761 * if suid or (sgid and xgrp)
1762 * remove privs
1763 */
1764 int should_remove_suid(struct dentry *dentry)
1765 {
1766 umode_t mode = d_inode(dentry)->i_mode;
1767 int kill = 0;
1768
1769 /* suid always must be killed */
1770 if (unlikely(mode & S_ISUID))
1771 kill = ATTR_KILL_SUID;
1772
1773 /*
1774 * sgid without any exec bits is just a mandatory locking mark; leave
1775 * it alone. If some exec bits are set, it's a real sgid; kill it.
1776 */
1777 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1778 kill |= ATTR_KILL_SGID;
1779
1780 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1781 return kill;
1782
1783 return 0;
1784 }
1785 EXPORT_SYMBOL(should_remove_suid);
1786
1787 /*
1788 * Return mask of changes for notify_change() that need to be done as a
1789 * response to write or truncate. Return 0 if nothing has to be changed.
1790 * Negative value on error (change should be denied).
1791 */
1792 int dentry_needs_remove_privs(struct dentry *dentry)
1793 {
1794 struct inode *inode = d_inode(dentry);
1795 int mask = 0;
1796 int ret;
1797
1798 if (IS_NOSEC(inode))
1799 return 0;
1800
1801 mask = should_remove_suid(dentry);
1802 ret = security_inode_need_killpriv(dentry);
1803 if (ret < 0)
1804 return ret;
1805 if (ret)
1806 mask |= ATTR_KILL_PRIV;
1807 return mask;
1808 }
1809
1810 static int __remove_privs(struct dentry *dentry, int kill)
1811 {
1812 struct iattr newattrs;
1813
1814 newattrs.ia_valid = ATTR_FORCE | kill;
1815 /*
1816 * Note we call this on write, so notify_change will not
1817 * encounter any conflicting delegations:
1818 */
1819 return notify_change(dentry, &newattrs, NULL);
1820 }
1821
1822 /*
1823 * Remove special file priviledges (suid, capabilities) when file is written
1824 * to or truncated.
1825 */
1826 int file_remove_privs(struct file *file)
1827 {
1828 struct dentry *dentry = file_dentry(file);
1829 struct inode *inode = file_inode(file);
1830 int kill;
1831 int error = 0;
1832
1833 /*
1834 * Fast path for nothing security related.
1835 * As well for non-regular files, e.g. blkdev inodes.
1836 * For example, blkdev_write_iter() might get here
1837 * trying to remove privs which it is not allowed to.
1838 */
1839 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1840 return 0;
1841
1842 kill = dentry_needs_remove_privs(dentry);
1843 if (kill < 0)
1844 return kill;
1845 if (kill)
1846 error = __remove_privs(dentry, kill);
1847 if (!error)
1848 inode_has_no_xattr(inode);
1849
1850 return error;
1851 }
1852 EXPORT_SYMBOL(file_remove_privs);
1853
1854 /**
1855 * file_update_time - update mtime and ctime time
1856 * @file: file accessed
1857 *
1858 * Update the mtime and ctime members of an inode and mark the inode
1859 * for writeback. Note that this function is meant exclusively for
1860 * usage in the file write path of filesystems, and filesystems may
1861 * choose to explicitly ignore update via this function with the
1862 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1863 * timestamps are handled by the server. This can return an error for
1864 * file systems who need to allocate space in order to update an inode.
1865 */
1866
1867 int file_update_time(struct file *file)
1868 {
1869 struct inode *inode = file_inode(file);
1870 struct timespec64 now;
1871 int sync_it = 0;
1872 int ret;
1873
1874 /* First try to exhaust all avenues to not sync */
1875 if (IS_NOCMTIME(inode))
1876 return 0;
1877
1878 now = current_time(inode);
1879 if (!timespec64_equal(&inode->i_mtime, &now))
1880 sync_it = S_MTIME;
1881
1882 if (!timespec64_equal(&inode->i_ctime, &now))
1883 sync_it |= S_CTIME;
1884
1885 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1886 sync_it |= S_VERSION;
1887
1888 if (!sync_it)
1889 return 0;
1890
1891 /* Finally allowed to write? Takes lock. */
1892 if (__mnt_want_write_file(file))
1893 return 0;
1894
1895 ret = update_time(inode, &now, sync_it);
1896 __mnt_drop_write_file(file);
1897
1898 return ret;
1899 }
1900 EXPORT_SYMBOL(file_update_time);
1901
1902 int inode_needs_sync(struct inode *inode)
1903 {
1904 if (IS_SYNC(inode))
1905 return 1;
1906 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1907 return 1;
1908 return 0;
1909 }
1910 EXPORT_SYMBOL(inode_needs_sync);
1911
1912 /*
1913 * If we try to find an inode in the inode hash while it is being
1914 * deleted, we have to wait until the filesystem completes its
1915 * deletion before reporting that it isn't found. This function waits
1916 * until the deletion _might_ have completed. Callers are responsible
1917 * to recheck inode state.
1918 *
1919 * It doesn't matter if I_NEW is not set initially, a call to
1920 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1921 * will DTRT.
1922 */
1923 static void __wait_on_freeing_inode(struct inode *inode)
1924 {
1925 wait_queue_head_t *wq;
1926 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1927 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1928 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1929 spin_unlock(&inode->i_lock);
1930 spin_unlock(&inode_hash_lock);
1931 schedule();
1932 finish_wait(wq, &wait.wq_entry);
1933 spin_lock(&inode_hash_lock);
1934 }
1935
1936 static __initdata unsigned long ihash_entries;
1937 static int __init set_ihash_entries(char *str)
1938 {
1939 if (!str)
1940 return 0;
1941 ihash_entries = simple_strtoul(str, &str, 0);
1942 return 1;
1943 }
1944 __setup("ihash_entries=", set_ihash_entries);
1945
1946 /*
1947 * Initialize the waitqueues and inode hash table.
1948 */
1949 void __init inode_init_early(void)
1950 {
1951 /* If hashes are distributed across NUMA nodes, defer
1952 * hash allocation until vmalloc space is available.
1953 */
1954 if (hashdist)
1955 return;
1956
1957 inode_hashtable =
1958 alloc_large_system_hash("Inode-cache",
1959 sizeof(struct hlist_head),
1960 ihash_entries,
1961 14,
1962 HASH_EARLY | HASH_ZERO,
1963 &i_hash_shift,
1964 &i_hash_mask,
1965 0,
1966 0);
1967 }
1968
1969 void __init inode_init(void)
1970 {
1971 /* inode slab cache */
1972 inode_cachep = kmem_cache_create("inode_cache",
1973 sizeof(struct inode),
1974 0,
1975 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1976 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1977 init_once);
1978
1979 /* Hash may have been set up in inode_init_early */
1980 if (!hashdist)
1981 return;
1982
1983 inode_hashtable =
1984 alloc_large_system_hash("Inode-cache",
1985 sizeof(struct hlist_head),
1986 ihash_entries,
1987 14,
1988 HASH_ZERO,
1989 &i_hash_shift,
1990 &i_hash_mask,
1991 0,
1992 0);
1993 }
1994
1995 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1996 {
1997 inode->i_mode = mode;
1998 if (S_ISCHR(mode)) {
1999 inode->i_fop = &def_chr_fops;
2000 inode->i_rdev = rdev;
2001 } else if (S_ISBLK(mode)) {
2002 inode->i_fop = &def_blk_fops;
2003 inode->i_rdev = rdev;
2004 } else if (S_ISFIFO(mode))
2005 inode->i_fop = &pipefifo_fops;
2006 else if (S_ISSOCK(mode))
2007 ; /* leave it no_open_fops */
2008 else
2009 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2010 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2011 inode->i_ino);
2012 }
2013 EXPORT_SYMBOL(init_special_inode);
2014
2015 /**
2016 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2017 * @inode: New inode
2018 * @dir: Directory inode
2019 * @mode: mode of the new inode
2020 */
2021 void inode_init_owner(struct inode *inode, const struct inode *dir,
2022 umode_t mode)
2023 {
2024 inode->i_uid = current_fsuid();
2025 if (dir && dir->i_mode & S_ISGID) {
2026 inode->i_gid = dir->i_gid;
2027
2028 /* Directories are special, and always inherit S_ISGID */
2029 if (S_ISDIR(mode))
2030 mode |= S_ISGID;
2031 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2032 !in_group_p(inode->i_gid) &&
2033 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2034 mode &= ~S_ISGID;
2035 } else
2036 inode->i_gid = current_fsgid();
2037 inode->i_mode = mode;
2038 }
2039 EXPORT_SYMBOL(inode_init_owner);
2040
2041 /**
2042 * inode_owner_or_capable - check current task permissions to inode
2043 * @inode: inode being checked
2044 *
2045 * Return true if current either has CAP_FOWNER in a namespace with the
2046 * inode owner uid mapped, or owns the file.
2047 */
2048 bool inode_owner_or_capable(const struct inode *inode)
2049 {
2050 struct user_namespace *ns;
2051
2052 if (uid_eq(current_fsuid(), inode->i_uid))
2053 return true;
2054
2055 ns = current_user_ns();
2056 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2057 return true;
2058 return false;
2059 }
2060 EXPORT_SYMBOL(inode_owner_or_capable);
2061
2062 /*
2063 * Direct i/o helper functions
2064 */
2065 static void __inode_dio_wait(struct inode *inode)
2066 {
2067 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2068 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2069
2070 do {
2071 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2072 if (atomic_read(&inode->i_dio_count))
2073 schedule();
2074 } while (atomic_read(&inode->i_dio_count));
2075 finish_wait(wq, &q.wq_entry);
2076 }
2077
2078 /**
2079 * inode_dio_wait - wait for outstanding DIO requests to finish
2080 * @inode: inode to wait for
2081 *
2082 * Waits for all pending direct I/O requests to finish so that we can
2083 * proceed with a truncate or equivalent operation.
2084 *
2085 * Must be called under a lock that serializes taking new references
2086 * to i_dio_count, usually by inode->i_mutex.
2087 */
2088 void inode_dio_wait(struct inode *inode)
2089 {
2090 if (atomic_read(&inode->i_dio_count))
2091 __inode_dio_wait(inode);
2092 }
2093 EXPORT_SYMBOL(inode_dio_wait);
2094
2095 /*
2096 * inode_set_flags - atomically set some inode flags
2097 *
2098 * Note: the caller should be holding i_mutex, or else be sure that
2099 * they have exclusive access to the inode structure (i.e., while the
2100 * inode is being instantiated). The reason for the cmpxchg() loop
2101 * --- which wouldn't be necessary if all code paths which modify
2102 * i_flags actually followed this rule, is that there is at least one
2103 * code path which doesn't today so we use cmpxchg() out of an abundance
2104 * of caution.
2105 *
2106 * In the long run, i_mutex is overkill, and we should probably look
2107 * at using the i_lock spinlock to protect i_flags, and then make sure
2108 * it is so documented in include/linux/fs.h and that all code follows
2109 * the locking convention!!
2110 */
2111 void inode_set_flags(struct inode *inode, unsigned int flags,
2112 unsigned int mask)
2113 {
2114 WARN_ON_ONCE(flags & ~mask);
2115 set_mask_bits(&inode->i_flags, mask, flags);
2116 }
2117 EXPORT_SYMBOL(inode_set_flags);
2118
2119 void inode_nohighmem(struct inode *inode)
2120 {
2121 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2122 }
2123 EXPORT_SYMBOL(inode_nohighmem);
2124
2125 /**
2126 * timespec64_trunc - Truncate timespec64 to a granularity
2127 * @t: Timespec64
2128 * @gran: Granularity in ns.
2129 *
2130 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2131 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2132 */
2133 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2134 {
2135 /* Avoid division in the common cases 1 ns and 1 s. */
2136 if (gran == 1) {
2137 /* nothing */
2138 } else if (gran == NSEC_PER_SEC) {
2139 t.tv_nsec = 0;
2140 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2141 t.tv_nsec -= t.tv_nsec % gran;
2142 } else {
2143 WARN(1, "illegal file time granularity: %u", gran);
2144 }
2145 return t;
2146 }
2147 EXPORT_SYMBOL(timespec64_trunc);
2148
2149 /**
2150 * current_time - Return FS time
2151 * @inode: inode.
2152 *
2153 * Return the current time truncated to the time granularity supported by
2154 * the fs.
2155 *
2156 * Note that inode and inode->sb cannot be NULL.
2157 * Otherwise, the function warns and returns time without truncation.
2158 */
2159 struct timespec64 current_time(struct inode *inode)
2160 {
2161 struct timespec64 now;
2162
2163 ktime_get_coarse_real_ts64(&now);
2164
2165 if (unlikely(!inode->i_sb)) {
2166 WARN(1, "current_time() called with uninitialized super_block in the inode");
2167 return now;
2168 }
2169
2170 return timespec64_trunc(now, inode->i_sb->s_time_gran);
2171 }
2172 EXPORT_SYMBOL(current_time);