]> git.ipfire.org Git - people/ms/linux.git/blob - fs/io_uring.c
io_uring: use original request task for inflight tracking
[people/ms/linux.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blk-mq.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/audit.h>
82 #include <linux/security.h>
83 #include <linux/xattr.h>
84
85 #define CREATE_TRACE_POINTS
86 #include <trace/events/io_uring.h>
87
88 #include <uapi/linux/io_uring.h>
89
90 #include "internal.h"
91 #include "io-wq.h"
92
93 #define IORING_MAX_ENTRIES 32768
94 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
95 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
96
97 /* only define max */
98 #define IORING_MAX_FIXED_FILES (1U << 20)
99 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
100 IORING_REGISTER_LAST + IORING_OP_LAST)
101
102 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
103 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
104 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
105
106 #define IORING_MAX_REG_BUFFERS (1U << 14)
107
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110
111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113
114 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
116 REQ_F_ASYNC_DATA)
117
118 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
119 IO_REQ_CLEAN_FLAGS)
120
121 #define IO_APOLL_MULTI_POLLED (REQ_F_APOLL_MULTISHOT | REQ_F_POLLED)
122
123 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125 struct io_uring {
126 u32 head ____cacheline_aligned_in_smp;
127 u32 tail ____cacheline_aligned_in_smp;
128 };
129
130 /*
131 * This data is shared with the application through the mmap at offsets
132 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
133 *
134 * The offsets to the member fields are published through struct
135 * io_sqring_offsets when calling io_uring_setup.
136 */
137 struct io_rings {
138 /*
139 * Head and tail offsets into the ring; the offsets need to be
140 * masked to get valid indices.
141 *
142 * The kernel controls head of the sq ring and the tail of the cq ring,
143 * and the application controls tail of the sq ring and the head of the
144 * cq ring.
145 */
146 struct io_uring sq, cq;
147 /*
148 * Bitmasks to apply to head and tail offsets (constant, equals
149 * ring_entries - 1)
150 */
151 u32 sq_ring_mask, cq_ring_mask;
152 /* Ring sizes (constant, power of 2) */
153 u32 sq_ring_entries, cq_ring_entries;
154 /*
155 * Number of invalid entries dropped by the kernel due to
156 * invalid index stored in array
157 *
158 * Written by the kernel, shouldn't be modified by the
159 * application (i.e. get number of "new events" by comparing to
160 * cached value).
161 *
162 * After a new SQ head value was read by the application this
163 * counter includes all submissions that were dropped reaching
164 * the new SQ head (and possibly more).
165 */
166 u32 sq_dropped;
167 /*
168 * Runtime SQ flags
169 *
170 * Written by the kernel, shouldn't be modified by the
171 * application.
172 *
173 * The application needs a full memory barrier before checking
174 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
175 */
176 atomic_t sq_flags;
177 /*
178 * Runtime CQ flags
179 *
180 * Written by the application, shouldn't be modified by the
181 * kernel.
182 */
183 u32 cq_flags;
184 /*
185 * Number of completion events lost because the queue was full;
186 * this should be avoided by the application by making sure
187 * there are not more requests pending than there is space in
188 * the completion queue.
189 *
190 * Written by the kernel, shouldn't be modified by the
191 * application (i.e. get number of "new events" by comparing to
192 * cached value).
193 *
194 * As completion events come in out of order this counter is not
195 * ordered with any other data.
196 */
197 u32 cq_overflow;
198 /*
199 * Ring buffer of completion events.
200 *
201 * The kernel writes completion events fresh every time they are
202 * produced, so the application is allowed to modify pending
203 * entries.
204 */
205 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
206 };
207
208 struct io_mapped_ubuf {
209 u64 ubuf;
210 u64 ubuf_end;
211 unsigned int nr_bvecs;
212 unsigned long acct_pages;
213 struct bio_vec bvec[];
214 };
215
216 struct io_ring_ctx;
217
218 struct io_overflow_cqe {
219 struct list_head list;
220 struct io_uring_cqe cqe;
221 };
222
223 /*
224 * FFS_SCM is only available on 64-bit archs, for 32-bit we just define it as 0
225 * and define IO_URING_SCM_ALL. For this case, we use SCM for all files as we
226 * can't safely always dereference the file when the task has exited and ring
227 * cleanup is done. If a file is tracked and part of SCM, then unix gc on
228 * process exit may reap it before __io_sqe_files_unregister() is run.
229 */
230 #define FFS_NOWAIT 0x1UL
231 #define FFS_ISREG 0x2UL
232 #if defined(CONFIG_64BIT)
233 #define FFS_SCM 0x4UL
234 #else
235 #define IO_URING_SCM_ALL
236 #define FFS_SCM 0x0UL
237 #endif
238 #define FFS_MASK ~(FFS_NOWAIT|FFS_ISREG|FFS_SCM)
239
240 struct io_fixed_file {
241 /* file * with additional FFS_* flags */
242 unsigned long file_ptr;
243 };
244
245 struct io_rsrc_put {
246 struct list_head list;
247 u64 tag;
248 union {
249 void *rsrc;
250 struct file *file;
251 struct io_mapped_ubuf *buf;
252 };
253 };
254
255 struct io_file_table {
256 struct io_fixed_file *files;
257 unsigned long *bitmap;
258 unsigned int alloc_hint;
259 };
260
261 struct io_rsrc_node {
262 struct percpu_ref refs;
263 struct list_head node;
264 struct list_head rsrc_list;
265 struct io_rsrc_data *rsrc_data;
266 struct llist_node llist;
267 bool done;
268 };
269
270 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
271
272 struct io_rsrc_data {
273 struct io_ring_ctx *ctx;
274
275 u64 **tags;
276 unsigned int nr;
277 rsrc_put_fn *do_put;
278 atomic_t refs;
279 struct completion done;
280 bool quiesce;
281 };
282
283 #define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
284 struct io_buffer_list {
285 /*
286 * If ->buf_nr_pages is set, then buf_pages/buf_ring are used. If not,
287 * then these are classic provided buffers and ->buf_list is used.
288 */
289 union {
290 struct list_head buf_list;
291 struct {
292 struct page **buf_pages;
293 struct io_uring_buf_ring *buf_ring;
294 };
295 };
296 __u16 bgid;
297
298 /* below is for ring provided buffers */
299 __u16 buf_nr_pages;
300 __u16 nr_entries;
301 __u16 head;
302 __u16 mask;
303 };
304
305 struct io_buffer {
306 struct list_head list;
307 __u64 addr;
308 __u32 len;
309 __u16 bid;
310 __u16 bgid;
311 };
312
313 struct io_restriction {
314 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
315 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
316 u8 sqe_flags_allowed;
317 u8 sqe_flags_required;
318 bool registered;
319 };
320
321 enum {
322 IO_SQ_THREAD_SHOULD_STOP = 0,
323 IO_SQ_THREAD_SHOULD_PARK,
324 };
325
326 struct io_sq_data {
327 refcount_t refs;
328 atomic_t park_pending;
329 struct mutex lock;
330
331 /* ctx's that are using this sqd */
332 struct list_head ctx_list;
333
334 struct task_struct *thread;
335 struct wait_queue_head wait;
336
337 unsigned sq_thread_idle;
338 int sq_cpu;
339 pid_t task_pid;
340 pid_t task_tgid;
341
342 unsigned long state;
343 struct completion exited;
344 };
345
346 #define IO_COMPL_BATCH 32
347 #define IO_REQ_CACHE_SIZE 32
348 #define IO_REQ_ALLOC_BATCH 8
349
350 struct io_submit_link {
351 struct io_kiocb *head;
352 struct io_kiocb *last;
353 };
354
355 struct io_submit_state {
356 /* inline/task_work completion list, under ->uring_lock */
357 struct io_wq_work_node free_list;
358 /* batch completion logic */
359 struct io_wq_work_list compl_reqs;
360 struct io_submit_link link;
361
362 bool plug_started;
363 bool need_plug;
364 bool flush_cqes;
365 unsigned short submit_nr;
366 struct blk_plug plug;
367 };
368
369 struct io_ev_fd {
370 struct eventfd_ctx *cq_ev_fd;
371 unsigned int eventfd_async: 1;
372 struct rcu_head rcu;
373 };
374
375 #define BGID_ARRAY 64
376
377 struct io_ring_ctx {
378 /* const or read-mostly hot data */
379 struct {
380 struct percpu_ref refs;
381
382 struct io_rings *rings;
383 unsigned int flags;
384 enum task_work_notify_mode notify_method;
385 unsigned int compat: 1;
386 unsigned int drain_next: 1;
387 unsigned int restricted: 1;
388 unsigned int off_timeout_used: 1;
389 unsigned int drain_active: 1;
390 unsigned int drain_disabled: 1;
391 unsigned int has_evfd: 1;
392 unsigned int syscall_iopoll: 1;
393 } ____cacheline_aligned_in_smp;
394
395 /* submission data */
396 struct {
397 struct mutex uring_lock;
398
399 /*
400 * Ring buffer of indices into array of io_uring_sqe, which is
401 * mmapped by the application using the IORING_OFF_SQES offset.
402 *
403 * This indirection could e.g. be used to assign fixed
404 * io_uring_sqe entries to operations and only submit them to
405 * the queue when needed.
406 *
407 * The kernel modifies neither the indices array nor the entries
408 * array.
409 */
410 u32 *sq_array;
411 struct io_uring_sqe *sq_sqes;
412 unsigned cached_sq_head;
413 unsigned sq_entries;
414 struct list_head defer_list;
415
416 /*
417 * Fixed resources fast path, should be accessed only under
418 * uring_lock, and updated through io_uring_register(2)
419 */
420 struct io_rsrc_node *rsrc_node;
421 int rsrc_cached_refs;
422 atomic_t cancel_seq;
423 struct io_file_table file_table;
424 unsigned nr_user_files;
425 unsigned nr_user_bufs;
426 struct io_mapped_ubuf **user_bufs;
427
428 struct io_submit_state submit_state;
429
430 struct io_buffer_list *io_bl;
431 struct xarray io_bl_xa;
432 struct list_head io_buffers_cache;
433
434 struct list_head timeout_list;
435 struct list_head ltimeout_list;
436 struct list_head cq_overflow_list;
437 struct list_head apoll_cache;
438 struct xarray personalities;
439 u32 pers_next;
440 unsigned sq_thread_idle;
441 } ____cacheline_aligned_in_smp;
442
443 /* IRQ completion list, under ->completion_lock */
444 struct io_wq_work_list locked_free_list;
445 unsigned int locked_free_nr;
446
447 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
448 struct io_sq_data *sq_data; /* if using sq thread polling */
449
450 struct wait_queue_head sqo_sq_wait;
451 struct list_head sqd_list;
452
453 unsigned long check_cq;
454
455 struct {
456 /*
457 * We cache a range of free CQEs we can use, once exhausted it
458 * should go through a slower range setup, see __io_get_cqe()
459 */
460 struct io_uring_cqe *cqe_cached;
461 struct io_uring_cqe *cqe_sentinel;
462
463 unsigned cached_cq_tail;
464 unsigned cq_entries;
465 struct io_ev_fd __rcu *io_ev_fd;
466 struct wait_queue_head cq_wait;
467 unsigned cq_extra;
468 atomic_t cq_timeouts;
469 unsigned cq_last_tm_flush;
470 } ____cacheline_aligned_in_smp;
471
472 struct {
473 spinlock_t completion_lock;
474
475 spinlock_t timeout_lock;
476
477 /*
478 * ->iopoll_list is protected by the ctx->uring_lock for
479 * io_uring instances that don't use IORING_SETUP_SQPOLL.
480 * For SQPOLL, only the single threaded io_sq_thread() will
481 * manipulate the list, hence no extra locking is needed there.
482 */
483 struct io_wq_work_list iopoll_list;
484 struct hlist_head *cancel_hash;
485 unsigned cancel_hash_bits;
486 bool poll_multi_queue;
487
488 struct list_head io_buffers_comp;
489 } ____cacheline_aligned_in_smp;
490
491 struct io_restriction restrictions;
492
493 /* slow path rsrc auxilary data, used by update/register */
494 struct {
495 struct io_rsrc_node *rsrc_backup_node;
496 struct io_mapped_ubuf *dummy_ubuf;
497 struct io_rsrc_data *file_data;
498 struct io_rsrc_data *buf_data;
499
500 struct delayed_work rsrc_put_work;
501 struct llist_head rsrc_put_llist;
502 struct list_head rsrc_ref_list;
503 spinlock_t rsrc_ref_lock;
504
505 struct list_head io_buffers_pages;
506 };
507
508 /* Keep this last, we don't need it for the fast path */
509 struct {
510 #if defined(CONFIG_UNIX)
511 struct socket *ring_sock;
512 #endif
513 /* hashed buffered write serialization */
514 struct io_wq_hash *hash_map;
515
516 /* Only used for accounting purposes */
517 struct user_struct *user;
518 struct mm_struct *mm_account;
519
520 /* ctx exit and cancelation */
521 struct llist_head fallback_llist;
522 struct delayed_work fallback_work;
523 struct work_struct exit_work;
524 struct list_head tctx_list;
525 struct completion ref_comp;
526 u32 iowq_limits[2];
527 bool iowq_limits_set;
528 };
529 };
530
531 /*
532 * Arbitrary limit, can be raised if need be
533 */
534 #define IO_RINGFD_REG_MAX 16
535
536 struct io_uring_task {
537 /* submission side */
538 int cached_refs;
539 struct xarray xa;
540 struct wait_queue_head wait;
541 const struct io_ring_ctx *last;
542 struct io_wq *io_wq;
543 struct percpu_counter inflight;
544 atomic_t inflight_tracked;
545 atomic_t in_idle;
546
547 spinlock_t task_lock;
548 struct io_wq_work_list task_list;
549 struct io_wq_work_list prio_task_list;
550 struct callback_head task_work;
551 struct file **registered_rings;
552 bool task_running;
553 };
554
555 /*
556 * First field must be the file pointer in all the
557 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
558 */
559 struct io_poll_iocb {
560 struct file *file;
561 struct wait_queue_head *head;
562 __poll_t events;
563 struct wait_queue_entry wait;
564 };
565
566 struct io_poll_update {
567 struct file *file;
568 u64 old_user_data;
569 u64 new_user_data;
570 __poll_t events;
571 bool update_events;
572 bool update_user_data;
573 };
574
575 struct io_close {
576 struct file *file;
577 int fd;
578 u32 file_slot;
579 };
580
581 struct io_timeout_data {
582 struct io_kiocb *req;
583 struct hrtimer timer;
584 struct timespec64 ts;
585 enum hrtimer_mode mode;
586 u32 flags;
587 };
588
589 struct io_accept {
590 struct file *file;
591 struct sockaddr __user *addr;
592 int __user *addr_len;
593 int flags;
594 u32 file_slot;
595 unsigned long nofile;
596 };
597
598 struct io_socket {
599 struct file *file;
600 int domain;
601 int type;
602 int protocol;
603 int flags;
604 u32 file_slot;
605 unsigned long nofile;
606 };
607
608 struct io_sync {
609 struct file *file;
610 loff_t len;
611 loff_t off;
612 int flags;
613 int mode;
614 };
615
616 struct io_cancel {
617 struct file *file;
618 u64 addr;
619 u32 flags;
620 s32 fd;
621 };
622
623 struct io_timeout {
624 struct file *file;
625 u32 off;
626 u32 target_seq;
627 struct list_head list;
628 /* head of the link, used by linked timeouts only */
629 struct io_kiocb *head;
630 /* for linked completions */
631 struct io_kiocb *prev;
632 };
633
634 struct io_timeout_rem {
635 struct file *file;
636 u64 addr;
637
638 /* timeout update */
639 struct timespec64 ts;
640 u32 flags;
641 bool ltimeout;
642 };
643
644 struct io_rw {
645 /* NOTE: kiocb has the file as the first member, so don't do it here */
646 struct kiocb kiocb;
647 u64 addr;
648 u32 len;
649 rwf_t flags;
650 };
651
652 struct io_connect {
653 struct file *file;
654 struct sockaddr __user *addr;
655 int addr_len;
656 };
657
658 struct io_sr_msg {
659 struct file *file;
660 union {
661 struct compat_msghdr __user *umsg_compat;
662 struct user_msghdr __user *umsg;
663 void __user *buf;
664 };
665 int msg_flags;
666 size_t len;
667 size_t done_io;
668 unsigned int flags;
669 };
670
671 struct io_open {
672 struct file *file;
673 int dfd;
674 u32 file_slot;
675 struct filename *filename;
676 struct open_how how;
677 unsigned long nofile;
678 };
679
680 struct io_rsrc_update {
681 struct file *file;
682 u64 arg;
683 u32 nr_args;
684 u32 offset;
685 };
686
687 struct io_fadvise {
688 struct file *file;
689 u64 offset;
690 u32 len;
691 u32 advice;
692 };
693
694 struct io_madvise {
695 struct file *file;
696 u64 addr;
697 u32 len;
698 u32 advice;
699 };
700
701 struct io_epoll {
702 struct file *file;
703 int epfd;
704 int op;
705 int fd;
706 struct epoll_event event;
707 };
708
709 struct io_splice {
710 struct file *file_out;
711 loff_t off_out;
712 loff_t off_in;
713 u64 len;
714 int splice_fd_in;
715 unsigned int flags;
716 };
717
718 struct io_provide_buf {
719 struct file *file;
720 __u64 addr;
721 __u32 len;
722 __u32 bgid;
723 __u16 nbufs;
724 __u16 bid;
725 };
726
727 struct io_statx {
728 struct file *file;
729 int dfd;
730 unsigned int mask;
731 unsigned int flags;
732 struct filename *filename;
733 struct statx __user *buffer;
734 };
735
736 struct io_shutdown {
737 struct file *file;
738 int how;
739 };
740
741 struct io_rename {
742 struct file *file;
743 int old_dfd;
744 int new_dfd;
745 struct filename *oldpath;
746 struct filename *newpath;
747 int flags;
748 };
749
750 struct io_unlink {
751 struct file *file;
752 int dfd;
753 int flags;
754 struct filename *filename;
755 };
756
757 struct io_mkdir {
758 struct file *file;
759 int dfd;
760 umode_t mode;
761 struct filename *filename;
762 };
763
764 struct io_symlink {
765 struct file *file;
766 int new_dfd;
767 struct filename *oldpath;
768 struct filename *newpath;
769 };
770
771 struct io_hardlink {
772 struct file *file;
773 int old_dfd;
774 int new_dfd;
775 struct filename *oldpath;
776 struct filename *newpath;
777 int flags;
778 };
779
780 struct io_msg {
781 struct file *file;
782 u64 user_data;
783 u32 len;
784 };
785
786 struct io_async_connect {
787 struct sockaddr_storage address;
788 };
789
790 struct io_async_msghdr {
791 struct iovec fast_iov[UIO_FASTIOV];
792 /* points to an allocated iov, if NULL we use fast_iov instead */
793 struct iovec *free_iov;
794 struct sockaddr __user *uaddr;
795 struct msghdr msg;
796 struct sockaddr_storage addr;
797 };
798
799 struct io_rw_state {
800 struct iov_iter iter;
801 struct iov_iter_state iter_state;
802 struct iovec fast_iov[UIO_FASTIOV];
803 };
804
805 struct io_async_rw {
806 struct io_rw_state s;
807 const struct iovec *free_iovec;
808 size_t bytes_done;
809 struct wait_page_queue wpq;
810 };
811
812 struct io_xattr {
813 struct file *file;
814 struct xattr_ctx ctx;
815 struct filename *filename;
816 };
817
818 enum {
819 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
820 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
821 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
822 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
823 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
824 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
825 REQ_F_CQE_SKIP_BIT = IOSQE_CQE_SKIP_SUCCESS_BIT,
826
827 /* first byte is taken by user flags, shift it to not overlap */
828 REQ_F_FAIL_BIT = 8,
829 REQ_F_INFLIGHT_BIT,
830 REQ_F_CUR_POS_BIT,
831 REQ_F_NOWAIT_BIT,
832 REQ_F_LINK_TIMEOUT_BIT,
833 REQ_F_NEED_CLEANUP_BIT,
834 REQ_F_POLLED_BIT,
835 REQ_F_BUFFER_SELECTED_BIT,
836 REQ_F_BUFFER_RING_BIT,
837 REQ_F_COMPLETE_INLINE_BIT,
838 REQ_F_REISSUE_BIT,
839 REQ_F_CREDS_BIT,
840 REQ_F_REFCOUNT_BIT,
841 REQ_F_ARM_LTIMEOUT_BIT,
842 REQ_F_ASYNC_DATA_BIT,
843 REQ_F_SKIP_LINK_CQES_BIT,
844 REQ_F_SINGLE_POLL_BIT,
845 REQ_F_DOUBLE_POLL_BIT,
846 REQ_F_PARTIAL_IO_BIT,
847 REQ_F_CQE32_INIT_BIT,
848 REQ_F_APOLL_MULTISHOT_BIT,
849 /* keep async read/write and isreg together and in order */
850 REQ_F_SUPPORT_NOWAIT_BIT,
851 REQ_F_ISREG_BIT,
852
853 /* not a real bit, just to check we're not overflowing the space */
854 __REQ_F_LAST_BIT,
855 };
856
857 enum {
858 /* ctx owns file */
859 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
860 /* drain existing IO first */
861 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
862 /* linked sqes */
863 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
864 /* doesn't sever on completion < 0 */
865 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
866 /* IOSQE_ASYNC */
867 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
868 /* IOSQE_BUFFER_SELECT */
869 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
870 /* IOSQE_CQE_SKIP_SUCCESS */
871 REQ_F_CQE_SKIP = BIT(REQ_F_CQE_SKIP_BIT),
872
873 /* fail rest of links */
874 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
875 /* on inflight list, should be cancelled and waited on exit reliably */
876 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
877 /* read/write uses file position */
878 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
879 /* must not punt to workers */
880 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
881 /* has or had linked timeout */
882 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
883 /* needs cleanup */
884 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
885 /* already went through poll handler */
886 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
887 /* buffer already selected */
888 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
889 /* buffer selected from ring, needs commit */
890 REQ_F_BUFFER_RING = BIT(REQ_F_BUFFER_RING_BIT),
891 /* completion is deferred through io_comp_state */
892 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
893 /* caller should reissue async */
894 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
895 /* supports async reads/writes */
896 REQ_F_SUPPORT_NOWAIT = BIT(REQ_F_SUPPORT_NOWAIT_BIT),
897 /* regular file */
898 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
899 /* has creds assigned */
900 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
901 /* skip refcounting if not set */
902 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
903 /* there is a linked timeout that has to be armed */
904 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
905 /* ->async_data allocated */
906 REQ_F_ASYNC_DATA = BIT(REQ_F_ASYNC_DATA_BIT),
907 /* don't post CQEs while failing linked requests */
908 REQ_F_SKIP_LINK_CQES = BIT(REQ_F_SKIP_LINK_CQES_BIT),
909 /* single poll may be active */
910 REQ_F_SINGLE_POLL = BIT(REQ_F_SINGLE_POLL_BIT),
911 /* double poll may active */
912 REQ_F_DOUBLE_POLL = BIT(REQ_F_DOUBLE_POLL_BIT),
913 /* request has already done partial IO */
914 REQ_F_PARTIAL_IO = BIT(REQ_F_PARTIAL_IO_BIT),
915 /* fast poll multishot mode */
916 REQ_F_APOLL_MULTISHOT = BIT(REQ_F_APOLL_MULTISHOT_BIT),
917 /* ->extra1 and ->extra2 are initialised */
918 REQ_F_CQE32_INIT = BIT(REQ_F_CQE32_INIT_BIT),
919 };
920
921 struct async_poll {
922 struct io_poll_iocb poll;
923 struct io_poll_iocb *double_poll;
924 };
925
926 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
927
928 struct io_task_work {
929 union {
930 struct io_wq_work_node node;
931 struct llist_node fallback_node;
932 };
933 io_req_tw_func_t func;
934 };
935
936 enum {
937 IORING_RSRC_FILE = 0,
938 IORING_RSRC_BUFFER = 1,
939 };
940
941 struct io_cqe {
942 __u64 user_data;
943 __s32 res;
944 /* fd initially, then cflags for completion */
945 union {
946 __u32 flags;
947 int fd;
948 };
949 };
950
951 enum {
952 IO_CHECK_CQ_OVERFLOW_BIT,
953 IO_CHECK_CQ_DROPPED_BIT,
954 };
955
956 /*
957 * NOTE! Each of the iocb union members has the file pointer
958 * as the first entry in their struct definition. So you can
959 * access the file pointer through any of the sub-structs,
960 * or directly as just 'file' in this struct.
961 */
962 struct io_kiocb {
963 union {
964 struct file *file;
965 struct io_rw rw;
966 struct io_poll_iocb poll;
967 struct io_poll_update poll_update;
968 struct io_accept accept;
969 struct io_sync sync;
970 struct io_cancel cancel;
971 struct io_timeout timeout;
972 struct io_timeout_rem timeout_rem;
973 struct io_connect connect;
974 struct io_sr_msg sr_msg;
975 struct io_open open;
976 struct io_close close;
977 struct io_rsrc_update rsrc_update;
978 struct io_fadvise fadvise;
979 struct io_madvise madvise;
980 struct io_epoll epoll;
981 struct io_splice splice;
982 struct io_provide_buf pbuf;
983 struct io_statx statx;
984 struct io_shutdown shutdown;
985 struct io_rename rename;
986 struct io_unlink unlink;
987 struct io_mkdir mkdir;
988 struct io_symlink symlink;
989 struct io_hardlink hardlink;
990 struct io_msg msg;
991 struct io_xattr xattr;
992 struct io_socket sock;
993 struct io_uring_cmd uring_cmd;
994 };
995
996 u8 opcode;
997 /* polled IO has completed */
998 u8 iopoll_completed;
999 /*
1000 * Can be either a fixed buffer index, or used with provided buffers.
1001 * For the latter, before issue it points to the buffer group ID,
1002 * and after selection it points to the buffer ID itself.
1003 */
1004 u16 buf_index;
1005 unsigned int flags;
1006
1007 struct io_cqe cqe;
1008
1009 struct io_ring_ctx *ctx;
1010 struct task_struct *task;
1011
1012 struct io_rsrc_node *rsrc_node;
1013
1014 union {
1015 /* store used ubuf, so we can prevent reloading */
1016 struct io_mapped_ubuf *imu;
1017
1018 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
1019 struct io_buffer *kbuf;
1020
1021 /*
1022 * stores buffer ID for ring provided buffers, valid IFF
1023 * REQ_F_BUFFER_RING is set.
1024 */
1025 struct io_buffer_list *buf_list;
1026 };
1027
1028 union {
1029 /* used by request caches, completion batching and iopoll */
1030 struct io_wq_work_node comp_list;
1031 /* cache ->apoll->events */
1032 __poll_t apoll_events;
1033 };
1034 atomic_t refs;
1035 atomic_t poll_refs;
1036 struct io_task_work io_task_work;
1037 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
1038 union {
1039 struct hlist_node hash_node;
1040 struct {
1041 u64 extra1;
1042 u64 extra2;
1043 };
1044 };
1045 /* internal polling, see IORING_FEAT_FAST_POLL */
1046 struct async_poll *apoll;
1047 /* opcode allocated if it needs to store data for async defer */
1048 void *async_data;
1049 /* linked requests, IFF REQ_F_HARDLINK or REQ_F_LINK are set */
1050 struct io_kiocb *link;
1051 /* custom credentials, valid IFF REQ_F_CREDS is set */
1052 const struct cred *creds;
1053 struct io_wq_work work;
1054 };
1055
1056 struct io_tctx_node {
1057 struct list_head ctx_node;
1058 struct task_struct *task;
1059 struct io_ring_ctx *ctx;
1060 };
1061
1062 struct io_defer_entry {
1063 struct list_head list;
1064 struct io_kiocb *req;
1065 u32 seq;
1066 };
1067
1068 struct io_cancel_data {
1069 struct io_ring_ctx *ctx;
1070 union {
1071 u64 data;
1072 struct file *file;
1073 };
1074 u32 flags;
1075 int seq;
1076 };
1077
1078 /*
1079 * The URING_CMD payload starts at 'cmd' in the first sqe, and continues into
1080 * the following sqe if SQE128 is used.
1081 */
1082 #define uring_cmd_pdu_size(is_sqe128) \
1083 ((1 + !!(is_sqe128)) * sizeof(struct io_uring_sqe) - \
1084 offsetof(struct io_uring_sqe, cmd))
1085
1086 struct io_op_def {
1087 /* needs req->file assigned */
1088 unsigned needs_file : 1;
1089 /* should block plug */
1090 unsigned plug : 1;
1091 /* hash wq insertion if file is a regular file */
1092 unsigned hash_reg_file : 1;
1093 /* unbound wq insertion if file is a non-regular file */
1094 unsigned unbound_nonreg_file : 1;
1095 /* set if opcode supports polled "wait" */
1096 unsigned pollin : 1;
1097 unsigned pollout : 1;
1098 unsigned poll_exclusive : 1;
1099 /* op supports buffer selection */
1100 unsigned buffer_select : 1;
1101 /* do prep async if is going to be punted */
1102 unsigned needs_async_setup : 1;
1103 /* opcode is not supported by this kernel */
1104 unsigned not_supported : 1;
1105 /* skip auditing */
1106 unsigned audit_skip : 1;
1107 /* supports ioprio */
1108 unsigned ioprio : 1;
1109 /* supports iopoll */
1110 unsigned iopoll : 1;
1111 /* size of async data needed, if any */
1112 unsigned short async_size;
1113 };
1114
1115 static const struct io_op_def io_op_defs[] = {
1116 [IORING_OP_NOP] = {
1117 .audit_skip = 1,
1118 .iopoll = 1,
1119 },
1120 [IORING_OP_READV] = {
1121 .needs_file = 1,
1122 .unbound_nonreg_file = 1,
1123 .pollin = 1,
1124 .buffer_select = 1,
1125 .needs_async_setup = 1,
1126 .plug = 1,
1127 .audit_skip = 1,
1128 .ioprio = 1,
1129 .iopoll = 1,
1130 .async_size = sizeof(struct io_async_rw),
1131 },
1132 [IORING_OP_WRITEV] = {
1133 .needs_file = 1,
1134 .hash_reg_file = 1,
1135 .unbound_nonreg_file = 1,
1136 .pollout = 1,
1137 .needs_async_setup = 1,
1138 .plug = 1,
1139 .audit_skip = 1,
1140 .ioprio = 1,
1141 .iopoll = 1,
1142 .async_size = sizeof(struct io_async_rw),
1143 },
1144 [IORING_OP_FSYNC] = {
1145 .needs_file = 1,
1146 .audit_skip = 1,
1147 },
1148 [IORING_OP_READ_FIXED] = {
1149 .needs_file = 1,
1150 .unbound_nonreg_file = 1,
1151 .pollin = 1,
1152 .plug = 1,
1153 .audit_skip = 1,
1154 .ioprio = 1,
1155 .iopoll = 1,
1156 .async_size = sizeof(struct io_async_rw),
1157 },
1158 [IORING_OP_WRITE_FIXED] = {
1159 .needs_file = 1,
1160 .hash_reg_file = 1,
1161 .unbound_nonreg_file = 1,
1162 .pollout = 1,
1163 .plug = 1,
1164 .audit_skip = 1,
1165 .ioprio = 1,
1166 .iopoll = 1,
1167 .async_size = sizeof(struct io_async_rw),
1168 },
1169 [IORING_OP_POLL_ADD] = {
1170 .needs_file = 1,
1171 .unbound_nonreg_file = 1,
1172 .audit_skip = 1,
1173 },
1174 [IORING_OP_POLL_REMOVE] = {
1175 .audit_skip = 1,
1176 },
1177 [IORING_OP_SYNC_FILE_RANGE] = {
1178 .needs_file = 1,
1179 .audit_skip = 1,
1180 },
1181 [IORING_OP_SENDMSG] = {
1182 .needs_file = 1,
1183 .unbound_nonreg_file = 1,
1184 .pollout = 1,
1185 .needs_async_setup = 1,
1186 .async_size = sizeof(struct io_async_msghdr),
1187 },
1188 [IORING_OP_RECVMSG] = {
1189 .needs_file = 1,
1190 .unbound_nonreg_file = 1,
1191 .pollin = 1,
1192 .buffer_select = 1,
1193 .needs_async_setup = 1,
1194 .async_size = sizeof(struct io_async_msghdr),
1195 },
1196 [IORING_OP_TIMEOUT] = {
1197 .audit_skip = 1,
1198 .async_size = sizeof(struct io_timeout_data),
1199 },
1200 [IORING_OP_TIMEOUT_REMOVE] = {
1201 /* used by timeout updates' prep() */
1202 .audit_skip = 1,
1203 },
1204 [IORING_OP_ACCEPT] = {
1205 .needs_file = 1,
1206 .unbound_nonreg_file = 1,
1207 .pollin = 1,
1208 .poll_exclusive = 1,
1209 .ioprio = 1, /* used for flags */
1210 },
1211 [IORING_OP_ASYNC_CANCEL] = {
1212 .audit_skip = 1,
1213 },
1214 [IORING_OP_LINK_TIMEOUT] = {
1215 .audit_skip = 1,
1216 .async_size = sizeof(struct io_timeout_data),
1217 },
1218 [IORING_OP_CONNECT] = {
1219 .needs_file = 1,
1220 .unbound_nonreg_file = 1,
1221 .pollout = 1,
1222 .needs_async_setup = 1,
1223 .async_size = sizeof(struct io_async_connect),
1224 },
1225 [IORING_OP_FALLOCATE] = {
1226 .needs_file = 1,
1227 },
1228 [IORING_OP_OPENAT] = {},
1229 [IORING_OP_CLOSE] = {},
1230 [IORING_OP_FILES_UPDATE] = {
1231 .audit_skip = 1,
1232 .iopoll = 1,
1233 },
1234 [IORING_OP_STATX] = {
1235 .audit_skip = 1,
1236 },
1237 [IORING_OP_READ] = {
1238 .needs_file = 1,
1239 .unbound_nonreg_file = 1,
1240 .pollin = 1,
1241 .buffer_select = 1,
1242 .plug = 1,
1243 .audit_skip = 1,
1244 .ioprio = 1,
1245 .iopoll = 1,
1246 .async_size = sizeof(struct io_async_rw),
1247 },
1248 [IORING_OP_WRITE] = {
1249 .needs_file = 1,
1250 .hash_reg_file = 1,
1251 .unbound_nonreg_file = 1,
1252 .pollout = 1,
1253 .plug = 1,
1254 .audit_skip = 1,
1255 .ioprio = 1,
1256 .iopoll = 1,
1257 .async_size = sizeof(struct io_async_rw),
1258 },
1259 [IORING_OP_FADVISE] = {
1260 .needs_file = 1,
1261 .audit_skip = 1,
1262 },
1263 [IORING_OP_MADVISE] = {},
1264 [IORING_OP_SEND] = {
1265 .needs_file = 1,
1266 .unbound_nonreg_file = 1,
1267 .pollout = 1,
1268 .audit_skip = 1,
1269 },
1270 [IORING_OP_RECV] = {
1271 .needs_file = 1,
1272 .unbound_nonreg_file = 1,
1273 .pollin = 1,
1274 .buffer_select = 1,
1275 .audit_skip = 1,
1276 },
1277 [IORING_OP_OPENAT2] = {
1278 },
1279 [IORING_OP_EPOLL_CTL] = {
1280 .unbound_nonreg_file = 1,
1281 .audit_skip = 1,
1282 },
1283 [IORING_OP_SPLICE] = {
1284 .needs_file = 1,
1285 .hash_reg_file = 1,
1286 .unbound_nonreg_file = 1,
1287 .audit_skip = 1,
1288 },
1289 [IORING_OP_PROVIDE_BUFFERS] = {
1290 .audit_skip = 1,
1291 .iopoll = 1,
1292 },
1293 [IORING_OP_REMOVE_BUFFERS] = {
1294 .audit_skip = 1,
1295 .iopoll = 1,
1296 },
1297 [IORING_OP_TEE] = {
1298 .needs_file = 1,
1299 .hash_reg_file = 1,
1300 .unbound_nonreg_file = 1,
1301 .audit_skip = 1,
1302 },
1303 [IORING_OP_SHUTDOWN] = {
1304 .needs_file = 1,
1305 },
1306 [IORING_OP_RENAMEAT] = {},
1307 [IORING_OP_UNLINKAT] = {},
1308 [IORING_OP_MKDIRAT] = {},
1309 [IORING_OP_SYMLINKAT] = {},
1310 [IORING_OP_LINKAT] = {},
1311 [IORING_OP_MSG_RING] = {
1312 .needs_file = 1,
1313 .iopoll = 1,
1314 },
1315 [IORING_OP_FSETXATTR] = {
1316 .needs_file = 1
1317 },
1318 [IORING_OP_SETXATTR] = {},
1319 [IORING_OP_FGETXATTR] = {
1320 .needs_file = 1
1321 },
1322 [IORING_OP_GETXATTR] = {},
1323 [IORING_OP_SOCKET] = {
1324 .audit_skip = 1,
1325 },
1326 [IORING_OP_URING_CMD] = {
1327 .needs_file = 1,
1328 .plug = 1,
1329 .needs_async_setup = 1,
1330 .async_size = uring_cmd_pdu_size(1),
1331 },
1332 };
1333
1334 /* requests with any of those set should undergo io_disarm_next() */
1335 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1336 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
1337
1338 static bool io_disarm_next(struct io_kiocb *req);
1339 static void io_uring_del_tctx_node(unsigned long index);
1340 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1341 struct task_struct *task,
1342 bool cancel_all);
1343 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1344
1345 static void __io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags);
1346 static void io_dismantle_req(struct io_kiocb *req);
1347 static void io_queue_linked_timeout(struct io_kiocb *req);
1348 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1349 struct io_uring_rsrc_update2 *up,
1350 unsigned nr_args);
1351 static void io_clean_op(struct io_kiocb *req);
1352 static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1353 unsigned issue_flags);
1354 static struct file *io_file_get_normal(struct io_kiocb *req, int fd);
1355 static void io_queue_sqe(struct io_kiocb *req);
1356 static void io_rsrc_put_work(struct work_struct *work);
1357
1358 static void io_req_task_queue(struct io_kiocb *req);
1359 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
1360 static int io_req_prep_async(struct io_kiocb *req);
1361
1362 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1363 unsigned int issue_flags, u32 slot_index);
1364 static int __io_close_fixed(struct io_kiocb *req, unsigned int issue_flags,
1365 unsigned int offset);
1366 static inline int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1367
1368 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1369 static void io_eventfd_signal(struct io_ring_ctx *ctx);
1370 static void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags);
1371
1372 static struct kmem_cache *req_cachep;
1373
1374 static const struct file_operations io_uring_fops;
1375
1376 const char *io_uring_get_opcode(u8 opcode)
1377 {
1378 switch ((enum io_uring_op)opcode) {
1379 case IORING_OP_NOP:
1380 return "NOP";
1381 case IORING_OP_READV:
1382 return "READV";
1383 case IORING_OP_WRITEV:
1384 return "WRITEV";
1385 case IORING_OP_FSYNC:
1386 return "FSYNC";
1387 case IORING_OP_READ_FIXED:
1388 return "READ_FIXED";
1389 case IORING_OP_WRITE_FIXED:
1390 return "WRITE_FIXED";
1391 case IORING_OP_POLL_ADD:
1392 return "POLL_ADD";
1393 case IORING_OP_POLL_REMOVE:
1394 return "POLL_REMOVE";
1395 case IORING_OP_SYNC_FILE_RANGE:
1396 return "SYNC_FILE_RANGE";
1397 case IORING_OP_SENDMSG:
1398 return "SENDMSG";
1399 case IORING_OP_RECVMSG:
1400 return "RECVMSG";
1401 case IORING_OP_TIMEOUT:
1402 return "TIMEOUT";
1403 case IORING_OP_TIMEOUT_REMOVE:
1404 return "TIMEOUT_REMOVE";
1405 case IORING_OP_ACCEPT:
1406 return "ACCEPT";
1407 case IORING_OP_ASYNC_CANCEL:
1408 return "ASYNC_CANCEL";
1409 case IORING_OP_LINK_TIMEOUT:
1410 return "LINK_TIMEOUT";
1411 case IORING_OP_CONNECT:
1412 return "CONNECT";
1413 case IORING_OP_FALLOCATE:
1414 return "FALLOCATE";
1415 case IORING_OP_OPENAT:
1416 return "OPENAT";
1417 case IORING_OP_CLOSE:
1418 return "CLOSE";
1419 case IORING_OP_FILES_UPDATE:
1420 return "FILES_UPDATE";
1421 case IORING_OP_STATX:
1422 return "STATX";
1423 case IORING_OP_READ:
1424 return "READ";
1425 case IORING_OP_WRITE:
1426 return "WRITE";
1427 case IORING_OP_FADVISE:
1428 return "FADVISE";
1429 case IORING_OP_MADVISE:
1430 return "MADVISE";
1431 case IORING_OP_SEND:
1432 return "SEND";
1433 case IORING_OP_RECV:
1434 return "RECV";
1435 case IORING_OP_OPENAT2:
1436 return "OPENAT2";
1437 case IORING_OP_EPOLL_CTL:
1438 return "EPOLL_CTL";
1439 case IORING_OP_SPLICE:
1440 return "SPLICE";
1441 case IORING_OP_PROVIDE_BUFFERS:
1442 return "PROVIDE_BUFFERS";
1443 case IORING_OP_REMOVE_BUFFERS:
1444 return "REMOVE_BUFFERS";
1445 case IORING_OP_TEE:
1446 return "TEE";
1447 case IORING_OP_SHUTDOWN:
1448 return "SHUTDOWN";
1449 case IORING_OP_RENAMEAT:
1450 return "RENAMEAT";
1451 case IORING_OP_UNLINKAT:
1452 return "UNLINKAT";
1453 case IORING_OP_MKDIRAT:
1454 return "MKDIRAT";
1455 case IORING_OP_SYMLINKAT:
1456 return "SYMLINKAT";
1457 case IORING_OP_LINKAT:
1458 return "LINKAT";
1459 case IORING_OP_MSG_RING:
1460 return "MSG_RING";
1461 case IORING_OP_FSETXATTR:
1462 return "FSETXATTR";
1463 case IORING_OP_SETXATTR:
1464 return "SETXATTR";
1465 case IORING_OP_FGETXATTR:
1466 return "FGETXATTR";
1467 case IORING_OP_GETXATTR:
1468 return "GETXATTR";
1469 case IORING_OP_SOCKET:
1470 return "SOCKET";
1471 case IORING_OP_URING_CMD:
1472 return "URING_CMD";
1473 case IORING_OP_LAST:
1474 return "INVALID";
1475 }
1476 return "INVALID";
1477 }
1478
1479 struct sock *io_uring_get_socket(struct file *file)
1480 {
1481 #if defined(CONFIG_UNIX)
1482 if (file->f_op == &io_uring_fops) {
1483 struct io_ring_ctx *ctx = file->private_data;
1484
1485 return ctx->ring_sock->sk;
1486 }
1487 #endif
1488 return NULL;
1489 }
1490 EXPORT_SYMBOL(io_uring_get_socket);
1491
1492 #if defined(CONFIG_UNIX)
1493 static inline bool io_file_need_scm(struct file *filp)
1494 {
1495 #if defined(IO_URING_SCM_ALL)
1496 return true;
1497 #else
1498 return !!unix_get_socket(filp);
1499 #endif
1500 }
1501 #else
1502 static inline bool io_file_need_scm(struct file *filp)
1503 {
1504 return false;
1505 }
1506 #endif
1507
1508 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, unsigned issue_flags)
1509 {
1510 lockdep_assert_held(&ctx->uring_lock);
1511 if (issue_flags & IO_URING_F_UNLOCKED)
1512 mutex_unlock(&ctx->uring_lock);
1513 }
1514
1515 static void io_ring_submit_lock(struct io_ring_ctx *ctx, unsigned issue_flags)
1516 {
1517 /*
1518 * "Normal" inline submissions always hold the uring_lock, since we
1519 * grab it from the system call. Same is true for the SQPOLL offload.
1520 * The only exception is when we've detached the request and issue it
1521 * from an async worker thread, grab the lock for that case.
1522 */
1523 if (issue_flags & IO_URING_F_UNLOCKED)
1524 mutex_lock(&ctx->uring_lock);
1525 lockdep_assert_held(&ctx->uring_lock);
1526 }
1527
1528 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1529 {
1530 if (!*locked) {
1531 mutex_lock(&ctx->uring_lock);
1532 *locked = true;
1533 }
1534 }
1535
1536 #define io_for_each_link(pos, head) \
1537 for (pos = (head); pos; pos = pos->link)
1538
1539 /*
1540 * Shamelessly stolen from the mm implementation of page reference checking,
1541 * see commit f958d7b528b1 for details.
1542 */
1543 #define req_ref_zero_or_close_to_overflow(req) \
1544 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1545
1546 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1547 {
1548 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1549 return atomic_inc_not_zero(&req->refs);
1550 }
1551
1552 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1553 {
1554 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1555 return true;
1556
1557 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1558 return atomic_dec_and_test(&req->refs);
1559 }
1560
1561 static inline void req_ref_get(struct io_kiocb *req)
1562 {
1563 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1564 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1565 atomic_inc(&req->refs);
1566 }
1567
1568 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
1569 {
1570 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
1571 __io_submit_flush_completions(ctx);
1572 }
1573
1574 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1575 {
1576 if (!(req->flags & REQ_F_REFCOUNT)) {
1577 req->flags |= REQ_F_REFCOUNT;
1578 atomic_set(&req->refs, nr);
1579 }
1580 }
1581
1582 static inline void io_req_set_refcount(struct io_kiocb *req)
1583 {
1584 __io_req_set_refcount(req, 1);
1585 }
1586
1587 #define IO_RSRC_REF_BATCH 100
1588
1589 static void io_rsrc_put_node(struct io_rsrc_node *node, int nr)
1590 {
1591 percpu_ref_put_many(&node->refs, nr);
1592 }
1593
1594 static inline void io_req_put_rsrc_locked(struct io_kiocb *req,
1595 struct io_ring_ctx *ctx)
1596 __must_hold(&ctx->uring_lock)
1597 {
1598 struct io_rsrc_node *node = req->rsrc_node;
1599
1600 if (node) {
1601 if (node == ctx->rsrc_node)
1602 ctx->rsrc_cached_refs++;
1603 else
1604 io_rsrc_put_node(node, 1);
1605 }
1606 }
1607
1608 static inline void io_req_put_rsrc(struct io_kiocb *req)
1609 {
1610 if (req->rsrc_node)
1611 io_rsrc_put_node(req->rsrc_node, 1);
1612 }
1613
1614 static __cold void io_rsrc_refs_drop(struct io_ring_ctx *ctx)
1615 __must_hold(&ctx->uring_lock)
1616 {
1617 if (ctx->rsrc_cached_refs) {
1618 io_rsrc_put_node(ctx->rsrc_node, ctx->rsrc_cached_refs);
1619 ctx->rsrc_cached_refs = 0;
1620 }
1621 }
1622
1623 static void io_rsrc_refs_refill(struct io_ring_ctx *ctx)
1624 __must_hold(&ctx->uring_lock)
1625 {
1626 ctx->rsrc_cached_refs += IO_RSRC_REF_BATCH;
1627 percpu_ref_get_many(&ctx->rsrc_node->refs, IO_RSRC_REF_BATCH);
1628 }
1629
1630 static inline void io_req_set_rsrc_node(struct io_kiocb *req,
1631 struct io_ring_ctx *ctx,
1632 unsigned int issue_flags)
1633 {
1634 if (!req->rsrc_node) {
1635 req->rsrc_node = ctx->rsrc_node;
1636
1637 if (!(issue_flags & IO_URING_F_UNLOCKED)) {
1638 lockdep_assert_held(&ctx->uring_lock);
1639 ctx->rsrc_cached_refs--;
1640 if (unlikely(ctx->rsrc_cached_refs < 0))
1641 io_rsrc_refs_refill(ctx);
1642 } else {
1643 percpu_ref_get(&req->rsrc_node->refs);
1644 }
1645 }
1646 }
1647
1648 static unsigned int __io_put_kbuf(struct io_kiocb *req, struct list_head *list)
1649 {
1650 if (req->flags & REQ_F_BUFFER_RING) {
1651 if (req->buf_list)
1652 req->buf_list->head++;
1653 req->flags &= ~REQ_F_BUFFER_RING;
1654 } else {
1655 list_add(&req->kbuf->list, list);
1656 req->flags &= ~REQ_F_BUFFER_SELECTED;
1657 }
1658
1659 return IORING_CQE_F_BUFFER | (req->buf_index << IORING_CQE_BUFFER_SHIFT);
1660 }
1661
1662 static inline unsigned int io_put_kbuf_comp(struct io_kiocb *req)
1663 {
1664 lockdep_assert_held(&req->ctx->completion_lock);
1665
1666 if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
1667 return 0;
1668 return __io_put_kbuf(req, &req->ctx->io_buffers_comp);
1669 }
1670
1671 static inline unsigned int io_put_kbuf(struct io_kiocb *req,
1672 unsigned issue_flags)
1673 {
1674 unsigned int cflags;
1675
1676 if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
1677 return 0;
1678
1679 /*
1680 * We can add this buffer back to two lists:
1681 *
1682 * 1) The io_buffers_cache list. This one is protected by the
1683 * ctx->uring_lock. If we already hold this lock, add back to this
1684 * list as we can grab it from issue as well.
1685 * 2) The io_buffers_comp list. This one is protected by the
1686 * ctx->completion_lock.
1687 *
1688 * We migrate buffers from the comp_list to the issue cache list
1689 * when we need one.
1690 */
1691 if (req->flags & REQ_F_BUFFER_RING) {
1692 /* no buffers to recycle for this case */
1693 cflags = __io_put_kbuf(req, NULL);
1694 } else if (issue_flags & IO_URING_F_UNLOCKED) {
1695 struct io_ring_ctx *ctx = req->ctx;
1696
1697 spin_lock(&ctx->completion_lock);
1698 cflags = __io_put_kbuf(req, &ctx->io_buffers_comp);
1699 spin_unlock(&ctx->completion_lock);
1700 } else {
1701 lockdep_assert_held(&req->ctx->uring_lock);
1702
1703 cflags = __io_put_kbuf(req, &req->ctx->io_buffers_cache);
1704 }
1705
1706 return cflags;
1707 }
1708
1709 static struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
1710 unsigned int bgid)
1711 {
1712 if (ctx->io_bl && bgid < BGID_ARRAY)
1713 return &ctx->io_bl[bgid];
1714
1715 return xa_load(&ctx->io_bl_xa, bgid);
1716 }
1717
1718 static void io_kbuf_recycle(struct io_kiocb *req, unsigned issue_flags)
1719 {
1720 struct io_ring_ctx *ctx = req->ctx;
1721 struct io_buffer_list *bl;
1722 struct io_buffer *buf;
1723
1724 if (!(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)))
1725 return;
1726 /*
1727 * For legacy provided buffer mode, don't recycle if we already did
1728 * IO to this buffer. For ring-mapped provided buffer mode, we should
1729 * increment ring->head to explicitly monopolize the buffer to avoid
1730 * multiple use.
1731 */
1732 if ((req->flags & REQ_F_BUFFER_SELECTED) &&
1733 (req->flags & REQ_F_PARTIAL_IO))
1734 return;
1735
1736 /*
1737 * We don't need to recycle for REQ_F_BUFFER_RING, we can just clear
1738 * the flag and hence ensure that bl->head doesn't get incremented.
1739 * If the tail has already been incremented, hang on to it.
1740 */
1741 if (req->flags & REQ_F_BUFFER_RING) {
1742 if (req->buf_list) {
1743 if (req->flags & REQ_F_PARTIAL_IO) {
1744 req->buf_list->head++;
1745 req->buf_list = NULL;
1746 } else {
1747 req->buf_index = req->buf_list->bgid;
1748 req->flags &= ~REQ_F_BUFFER_RING;
1749 }
1750 }
1751 return;
1752 }
1753
1754 io_ring_submit_lock(ctx, issue_flags);
1755
1756 buf = req->kbuf;
1757 bl = io_buffer_get_list(ctx, buf->bgid);
1758 list_add(&buf->list, &bl->buf_list);
1759 req->flags &= ~REQ_F_BUFFER_SELECTED;
1760 req->buf_index = buf->bgid;
1761
1762 io_ring_submit_unlock(ctx, issue_flags);
1763 }
1764
1765 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1766 bool cancel_all)
1767 __must_hold(&req->ctx->timeout_lock)
1768 {
1769 struct io_kiocb *req;
1770
1771 if (task && head->task != task)
1772 return false;
1773 if (cancel_all)
1774 return true;
1775
1776 io_for_each_link(req, head) {
1777 if (req->flags & REQ_F_INFLIGHT)
1778 return true;
1779 }
1780 return false;
1781 }
1782
1783 static bool io_match_linked(struct io_kiocb *head)
1784 {
1785 struct io_kiocb *req;
1786
1787 io_for_each_link(req, head) {
1788 if (req->flags & REQ_F_INFLIGHT)
1789 return true;
1790 }
1791 return false;
1792 }
1793
1794 /*
1795 * As io_match_task() but protected against racing with linked timeouts.
1796 * User must not hold timeout_lock.
1797 */
1798 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1799 bool cancel_all)
1800 {
1801 bool matched;
1802
1803 if (task && head->task != task)
1804 return false;
1805 if (cancel_all)
1806 return true;
1807
1808 if (head->flags & REQ_F_LINK_TIMEOUT) {
1809 struct io_ring_ctx *ctx = head->ctx;
1810
1811 /* protect against races with linked timeouts */
1812 spin_lock_irq(&ctx->timeout_lock);
1813 matched = io_match_linked(head);
1814 spin_unlock_irq(&ctx->timeout_lock);
1815 } else {
1816 matched = io_match_linked(head);
1817 }
1818 return matched;
1819 }
1820
1821 static inline bool req_has_async_data(struct io_kiocb *req)
1822 {
1823 return req->flags & REQ_F_ASYNC_DATA;
1824 }
1825
1826 static inline void req_set_fail(struct io_kiocb *req)
1827 {
1828 req->flags |= REQ_F_FAIL;
1829 if (req->flags & REQ_F_CQE_SKIP) {
1830 req->flags &= ~REQ_F_CQE_SKIP;
1831 req->flags |= REQ_F_SKIP_LINK_CQES;
1832 }
1833 }
1834
1835 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1836 {
1837 req_set_fail(req);
1838 req->cqe.res = res;
1839 }
1840
1841 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
1842 {
1843 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
1844 }
1845
1846 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
1847 {
1848 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1849
1850 complete(&ctx->ref_comp);
1851 }
1852
1853 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1854 {
1855 return !req->timeout.off;
1856 }
1857
1858 static __cold void io_fallback_req_func(struct work_struct *work)
1859 {
1860 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1861 fallback_work.work);
1862 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1863 struct io_kiocb *req, *tmp;
1864 bool locked = false;
1865
1866 percpu_ref_get(&ctx->refs);
1867 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1868 req->io_task_work.func(req, &locked);
1869
1870 if (locked) {
1871 io_submit_flush_completions(ctx);
1872 mutex_unlock(&ctx->uring_lock);
1873 }
1874 percpu_ref_put(&ctx->refs);
1875 }
1876
1877 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1878 {
1879 struct io_ring_ctx *ctx;
1880 int hash_bits;
1881
1882 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1883 if (!ctx)
1884 return NULL;
1885
1886 xa_init(&ctx->io_bl_xa);
1887
1888 /*
1889 * Use 5 bits less than the max cq entries, that should give us around
1890 * 32 entries per hash list if totally full and uniformly spread.
1891 */
1892 hash_bits = ilog2(p->cq_entries);
1893 hash_bits -= 5;
1894 if (hash_bits <= 0)
1895 hash_bits = 1;
1896 ctx->cancel_hash_bits = hash_bits;
1897 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1898 GFP_KERNEL);
1899 if (!ctx->cancel_hash)
1900 goto err;
1901 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1902
1903 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1904 if (!ctx->dummy_ubuf)
1905 goto err;
1906 /* set invalid range, so io_import_fixed() fails meeting it */
1907 ctx->dummy_ubuf->ubuf = -1UL;
1908
1909 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1910 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1911 goto err;
1912
1913 ctx->flags = p->flags;
1914 init_waitqueue_head(&ctx->sqo_sq_wait);
1915 INIT_LIST_HEAD(&ctx->sqd_list);
1916 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1917 INIT_LIST_HEAD(&ctx->io_buffers_cache);
1918 INIT_LIST_HEAD(&ctx->apoll_cache);
1919 init_completion(&ctx->ref_comp);
1920 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1921 mutex_init(&ctx->uring_lock);
1922 init_waitqueue_head(&ctx->cq_wait);
1923 spin_lock_init(&ctx->completion_lock);
1924 spin_lock_init(&ctx->timeout_lock);
1925 INIT_WQ_LIST(&ctx->iopoll_list);
1926 INIT_LIST_HEAD(&ctx->io_buffers_pages);
1927 INIT_LIST_HEAD(&ctx->io_buffers_comp);
1928 INIT_LIST_HEAD(&ctx->defer_list);
1929 INIT_LIST_HEAD(&ctx->timeout_list);
1930 INIT_LIST_HEAD(&ctx->ltimeout_list);
1931 spin_lock_init(&ctx->rsrc_ref_lock);
1932 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1933 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1934 init_llist_head(&ctx->rsrc_put_llist);
1935 INIT_LIST_HEAD(&ctx->tctx_list);
1936 ctx->submit_state.free_list.next = NULL;
1937 INIT_WQ_LIST(&ctx->locked_free_list);
1938 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1939 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
1940 return ctx;
1941 err:
1942 kfree(ctx->dummy_ubuf);
1943 kfree(ctx->cancel_hash);
1944 kfree(ctx->io_bl);
1945 xa_destroy(&ctx->io_bl_xa);
1946 kfree(ctx);
1947 return NULL;
1948 }
1949
1950 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1951 {
1952 struct io_rings *r = ctx->rings;
1953
1954 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1955 ctx->cq_extra--;
1956 }
1957
1958 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1959 {
1960 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1961 struct io_ring_ctx *ctx = req->ctx;
1962
1963 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1964 }
1965
1966 return false;
1967 }
1968
1969 static inline bool io_req_ffs_set(struct io_kiocb *req)
1970 {
1971 return req->flags & REQ_F_FIXED_FILE;
1972 }
1973
1974 static inline void io_req_track_inflight(struct io_kiocb *req)
1975 {
1976 if (!(req->flags & REQ_F_INFLIGHT)) {
1977 req->flags |= REQ_F_INFLIGHT;
1978 atomic_inc(&req->task->io_uring->inflight_tracked);
1979 }
1980 }
1981
1982 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1983 {
1984 if (WARN_ON_ONCE(!req->link))
1985 return NULL;
1986
1987 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1988 req->flags |= REQ_F_LINK_TIMEOUT;
1989
1990 /* linked timeouts should have two refs once prep'ed */
1991 io_req_set_refcount(req);
1992 __io_req_set_refcount(req->link, 2);
1993 return req->link;
1994 }
1995
1996 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1997 {
1998 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1999 return NULL;
2000 return __io_prep_linked_timeout(req);
2001 }
2002
2003 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
2004 {
2005 io_queue_linked_timeout(__io_prep_linked_timeout(req));
2006 }
2007
2008 static inline void io_arm_ltimeout(struct io_kiocb *req)
2009 {
2010 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
2011 __io_arm_ltimeout(req);
2012 }
2013
2014 static void io_prep_async_work(struct io_kiocb *req)
2015 {
2016 const struct io_op_def *def = &io_op_defs[req->opcode];
2017 struct io_ring_ctx *ctx = req->ctx;
2018
2019 if (!(req->flags & REQ_F_CREDS)) {
2020 req->flags |= REQ_F_CREDS;
2021 req->creds = get_current_cred();
2022 }
2023
2024 req->work.list.next = NULL;
2025 req->work.flags = 0;
2026 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
2027 if (req->flags & REQ_F_FORCE_ASYNC)
2028 req->work.flags |= IO_WQ_WORK_CONCURRENT;
2029
2030 if (req->flags & REQ_F_ISREG) {
2031 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
2032 io_wq_hash_work(&req->work, file_inode(req->file));
2033 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
2034 if (def->unbound_nonreg_file)
2035 req->work.flags |= IO_WQ_WORK_UNBOUND;
2036 }
2037 }
2038
2039 static void io_prep_async_link(struct io_kiocb *req)
2040 {
2041 struct io_kiocb *cur;
2042
2043 if (req->flags & REQ_F_LINK_TIMEOUT) {
2044 struct io_ring_ctx *ctx = req->ctx;
2045
2046 spin_lock_irq(&ctx->timeout_lock);
2047 io_for_each_link(cur, req)
2048 io_prep_async_work(cur);
2049 spin_unlock_irq(&ctx->timeout_lock);
2050 } else {
2051 io_for_each_link(cur, req)
2052 io_prep_async_work(cur);
2053 }
2054 }
2055
2056 static inline void io_req_add_compl_list(struct io_kiocb *req)
2057 {
2058 struct io_submit_state *state = &req->ctx->submit_state;
2059
2060 if (!(req->flags & REQ_F_CQE_SKIP))
2061 state->flush_cqes = true;
2062 wq_list_add_tail(&req->comp_list, &state->compl_reqs);
2063 }
2064
2065 static void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
2066 {
2067 struct io_kiocb *link = io_prep_linked_timeout(req);
2068 struct io_uring_task *tctx = req->task->io_uring;
2069
2070 BUG_ON(!tctx);
2071 BUG_ON(!tctx->io_wq);
2072
2073 /* init ->work of the whole link before punting */
2074 io_prep_async_link(req);
2075
2076 /*
2077 * Not expected to happen, but if we do have a bug where this _can_
2078 * happen, catch it here and ensure the request is marked as
2079 * canceled. That will make io-wq go through the usual work cancel
2080 * procedure rather than attempt to run this request (or create a new
2081 * worker for it).
2082 */
2083 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
2084 req->work.flags |= IO_WQ_WORK_CANCEL;
2085
2086 trace_io_uring_queue_async_work(req->ctx, req, req->cqe.user_data,
2087 req->opcode, req->flags, &req->work,
2088 io_wq_is_hashed(&req->work));
2089 io_wq_enqueue(tctx->io_wq, &req->work);
2090 if (link)
2091 io_queue_linked_timeout(link);
2092 }
2093
2094 static void io_kill_timeout(struct io_kiocb *req, int status)
2095 __must_hold(&req->ctx->completion_lock)
2096 __must_hold(&req->ctx->timeout_lock)
2097 {
2098 struct io_timeout_data *io = req->async_data;
2099
2100 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2101 if (status)
2102 req_set_fail(req);
2103 atomic_set(&req->ctx->cq_timeouts,
2104 atomic_read(&req->ctx->cq_timeouts) + 1);
2105 list_del_init(&req->timeout.list);
2106 io_req_tw_post_queue(req, status, 0);
2107 }
2108 }
2109
2110 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
2111 {
2112 while (!list_empty(&ctx->defer_list)) {
2113 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
2114 struct io_defer_entry, list);
2115
2116 if (req_need_defer(de->req, de->seq))
2117 break;
2118 list_del_init(&de->list);
2119 io_req_task_queue(de->req);
2120 kfree(de);
2121 }
2122 }
2123
2124 static __cold void io_flush_timeouts(struct io_ring_ctx *ctx)
2125 __must_hold(&ctx->completion_lock)
2126 {
2127 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
2128 struct io_kiocb *req, *tmp;
2129
2130 spin_lock_irq(&ctx->timeout_lock);
2131 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
2132 u32 events_needed, events_got;
2133
2134 if (io_is_timeout_noseq(req))
2135 break;
2136
2137 /*
2138 * Since seq can easily wrap around over time, subtract
2139 * the last seq at which timeouts were flushed before comparing.
2140 * Assuming not more than 2^31-1 events have happened since,
2141 * these subtractions won't have wrapped, so we can check if
2142 * target is in [last_seq, current_seq] by comparing the two.
2143 */
2144 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
2145 events_got = seq - ctx->cq_last_tm_flush;
2146 if (events_got < events_needed)
2147 break;
2148
2149 io_kill_timeout(req, 0);
2150 }
2151 ctx->cq_last_tm_flush = seq;
2152 spin_unlock_irq(&ctx->timeout_lock);
2153 }
2154
2155 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
2156 {
2157 /* order cqe stores with ring update */
2158 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
2159 }
2160
2161 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
2162 {
2163 if (ctx->off_timeout_used || ctx->drain_active) {
2164 spin_lock(&ctx->completion_lock);
2165 if (ctx->off_timeout_used)
2166 io_flush_timeouts(ctx);
2167 if (ctx->drain_active)
2168 io_queue_deferred(ctx);
2169 io_commit_cqring(ctx);
2170 spin_unlock(&ctx->completion_lock);
2171 }
2172 if (ctx->has_evfd)
2173 io_eventfd_signal(ctx);
2174 }
2175
2176 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
2177 {
2178 struct io_rings *r = ctx->rings;
2179
2180 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
2181 }
2182
2183 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
2184 {
2185 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
2186 }
2187
2188 /*
2189 * writes to the cq entry need to come after reading head; the
2190 * control dependency is enough as we're using WRITE_ONCE to
2191 * fill the cq entry
2192 */
2193 static noinline struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx)
2194 {
2195 struct io_rings *rings = ctx->rings;
2196 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
2197 unsigned int shift = 0;
2198 unsigned int free, queued, len;
2199
2200 if (ctx->flags & IORING_SETUP_CQE32)
2201 shift = 1;
2202
2203 /* userspace may cheat modifying the tail, be safe and do min */
2204 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
2205 free = ctx->cq_entries - queued;
2206 /* we need a contiguous range, limit based on the current array offset */
2207 len = min(free, ctx->cq_entries - off);
2208 if (!len)
2209 return NULL;
2210
2211 ctx->cached_cq_tail++;
2212 ctx->cqe_cached = &rings->cqes[off];
2213 ctx->cqe_sentinel = ctx->cqe_cached + len;
2214 ctx->cqe_cached++;
2215 return &rings->cqes[off << shift];
2216 }
2217
2218 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
2219 {
2220 if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
2221 struct io_uring_cqe *cqe = ctx->cqe_cached;
2222
2223 if (ctx->flags & IORING_SETUP_CQE32) {
2224 unsigned int off = ctx->cqe_cached - ctx->rings->cqes;
2225
2226 cqe += off;
2227 }
2228
2229 ctx->cached_cq_tail++;
2230 ctx->cqe_cached++;
2231 return cqe;
2232 }
2233
2234 return __io_get_cqe(ctx);
2235 }
2236
2237 static void io_eventfd_signal(struct io_ring_ctx *ctx)
2238 {
2239 struct io_ev_fd *ev_fd;
2240
2241 rcu_read_lock();
2242 /*
2243 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
2244 * and eventfd_signal
2245 */
2246 ev_fd = rcu_dereference(ctx->io_ev_fd);
2247
2248 /*
2249 * Check again if ev_fd exists incase an io_eventfd_unregister call
2250 * completed between the NULL check of ctx->io_ev_fd at the start of
2251 * the function and rcu_read_lock.
2252 */
2253 if (unlikely(!ev_fd))
2254 goto out;
2255 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
2256 goto out;
2257
2258 if (!ev_fd->eventfd_async || io_wq_current_is_worker())
2259 eventfd_signal(ev_fd->cq_ev_fd, 1);
2260 out:
2261 rcu_read_unlock();
2262 }
2263
2264 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
2265 {
2266 /*
2267 * wake_up_all() may seem excessive, but io_wake_function() and
2268 * io_should_wake() handle the termination of the loop and only
2269 * wake as many waiters as we need to.
2270 */
2271 if (wq_has_sleeper(&ctx->cq_wait))
2272 wake_up_all(&ctx->cq_wait);
2273 }
2274
2275 /*
2276 * This should only get called when at least one event has been posted.
2277 * Some applications rely on the eventfd notification count only changing
2278 * IFF a new CQE has been added to the CQ ring. There's no depedency on
2279 * 1:1 relationship between how many times this function is called (and
2280 * hence the eventfd count) and number of CQEs posted to the CQ ring.
2281 */
2282 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
2283 {
2284 if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
2285 ctx->has_evfd))
2286 __io_commit_cqring_flush(ctx);
2287
2288 io_cqring_wake(ctx);
2289 }
2290
2291 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
2292 {
2293 if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
2294 ctx->has_evfd))
2295 __io_commit_cqring_flush(ctx);
2296
2297 if (ctx->flags & IORING_SETUP_SQPOLL)
2298 io_cqring_wake(ctx);
2299 }
2300
2301 /* Returns true if there are no backlogged entries after the flush */
2302 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
2303 {
2304 bool all_flushed, posted;
2305 size_t cqe_size = sizeof(struct io_uring_cqe);
2306
2307 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
2308 return false;
2309
2310 if (ctx->flags & IORING_SETUP_CQE32)
2311 cqe_size <<= 1;
2312
2313 posted = false;
2314 spin_lock(&ctx->completion_lock);
2315 while (!list_empty(&ctx->cq_overflow_list)) {
2316 struct io_uring_cqe *cqe = io_get_cqe(ctx);
2317 struct io_overflow_cqe *ocqe;
2318
2319 if (!cqe && !force)
2320 break;
2321 ocqe = list_first_entry(&ctx->cq_overflow_list,
2322 struct io_overflow_cqe, list);
2323 if (cqe)
2324 memcpy(cqe, &ocqe->cqe, cqe_size);
2325 else
2326 io_account_cq_overflow(ctx);
2327
2328 posted = true;
2329 list_del(&ocqe->list);
2330 kfree(ocqe);
2331 }
2332
2333 all_flushed = list_empty(&ctx->cq_overflow_list);
2334 if (all_flushed) {
2335 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
2336 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
2337 }
2338
2339 io_commit_cqring(ctx);
2340 spin_unlock(&ctx->completion_lock);
2341 if (posted)
2342 io_cqring_ev_posted(ctx);
2343 return all_flushed;
2344 }
2345
2346 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
2347 {
2348 bool ret = true;
2349
2350 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2351 /* iopoll syncs against uring_lock, not completion_lock */
2352 if (ctx->flags & IORING_SETUP_IOPOLL)
2353 mutex_lock(&ctx->uring_lock);
2354 ret = __io_cqring_overflow_flush(ctx, false);
2355 if (ctx->flags & IORING_SETUP_IOPOLL)
2356 mutex_unlock(&ctx->uring_lock);
2357 }
2358
2359 return ret;
2360 }
2361
2362 static void __io_put_task(struct task_struct *task, int nr)
2363 {
2364 struct io_uring_task *tctx = task->io_uring;
2365
2366 percpu_counter_sub(&tctx->inflight, nr);
2367 if (unlikely(atomic_read(&tctx->in_idle)))
2368 wake_up(&tctx->wait);
2369 put_task_struct_many(task, nr);
2370 }
2371
2372 /* must to be called somewhat shortly after putting a request */
2373 static inline void io_put_task(struct task_struct *task, int nr)
2374 {
2375 if (likely(task == current))
2376 task->io_uring->cached_refs += nr;
2377 else
2378 __io_put_task(task, nr);
2379 }
2380
2381 static void io_task_refs_refill(struct io_uring_task *tctx)
2382 {
2383 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
2384
2385 percpu_counter_add(&tctx->inflight, refill);
2386 refcount_add(refill, &current->usage);
2387 tctx->cached_refs += refill;
2388 }
2389
2390 static inline void io_get_task_refs(int nr)
2391 {
2392 struct io_uring_task *tctx = current->io_uring;
2393
2394 tctx->cached_refs -= nr;
2395 if (unlikely(tctx->cached_refs < 0))
2396 io_task_refs_refill(tctx);
2397 }
2398
2399 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
2400 {
2401 struct io_uring_task *tctx = task->io_uring;
2402 unsigned int refs = tctx->cached_refs;
2403
2404 if (refs) {
2405 tctx->cached_refs = 0;
2406 percpu_counter_sub(&tctx->inflight, refs);
2407 put_task_struct_many(task, refs);
2408 }
2409 }
2410
2411 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
2412 s32 res, u32 cflags, u64 extra1,
2413 u64 extra2)
2414 {
2415 struct io_overflow_cqe *ocqe;
2416 size_t ocq_size = sizeof(struct io_overflow_cqe);
2417 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
2418
2419 if (is_cqe32)
2420 ocq_size += sizeof(struct io_uring_cqe);
2421
2422 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
2423 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
2424 if (!ocqe) {
2425 /*
2426 * If we're in ring overflow flush mode, or in task cancel mode,
2427 * or cannot allocate an overflow entry, then we need to drop it
2428 * on the floor.
2429 */
2430 io_account_cq_overflow(ctx);
2431 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
2432 return false;
2433 }
2434 if (list_empty(&ctx->cq_overflow_list)) {
2435 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
2436 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
2437
2438 }
2439 ocqe->cqe.user_data = user_data;
2440 ocqe->cqe.res = res;
2441 ocqe->cqe.flags = cflags;
2442 if (is_cqe32) {
2443 ocqe->cqe.big_cqe[0] = extra1;
2444 ocqe->cqe.big_cqe[1] = extra2;
2445 }
2446 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
2447 return true;
2448 }
2449
2450 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
2451 struct io_kiocb *req)
2452 {
2453 struct io_uring_cqe *cqe;
2454
2455 if (!(ctx->flags & IORING_SETUP_CQE32)) {
2456 trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
2457 req->cqe.res, req->cqe.flags, 0, 0);
2458
2459 /*
2460 * If we can't get a cq entry, userspace overflowed the
2461 * submission (by quite a lot). Increment the overflow count in
2462 * the ring.
2463 */
2464 cqe = io_get_cqe(ctx);
2465 if (likely(cqe)) {
2466 memcpy(cqe, &req->cqe, sizeof(*cqe));
2467 return true;
2468 }
2469
2470 return io_cqring_event_overflow(ctx, req->cqe.user_data,
2471 req->cqe.res, req->cqe.flags,
2472 0, 0);
2473 } else {
2474 u64 extra1 = 0, extra2 = 0;
2475
2476 if (req->flags & REQ_F_CQE32_INIT) {
2477 extra1 = req->extra1;
2478 extra2 = req->extra2;
2479 }
2480
2481 trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
2482 req->cqe.res, req->cqe.flags, extra1, extra2);
2483
2484 /*
2485 * If we can't get a cq entry, userspace overflowed the
2486 * submission (by quite a lot). Increment the overflow count in
2487 * the ring.
2488 */
2489 cqe = io_get_cqe(ctx);
2490 if (likely(cqe)) {
2491 memcpy(cqe, &req->cqe, sizeof(struct io_uring_cqe));
2492 WRITE_ONCE(cqe->big_cqe[0], extra1);
2493 WRITE_ONCE(cqe->big_cqe[1], extra2);
2494 return true;
2495 }
2496
2497 return io_cqring_event_overflow(ctx, req->cqe.user_data,
2498 req->cqe.res, req->cqe.flags,
2499 extra1, extra2);
2500 }
2501 }
2502
2503 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
2504 s32 res, u32 cflags)
2505 {
2506 struct io_uring_cqe *cqe;
2507
2508 ctx->cq_extra++;
2509 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
2510
2511 /*
2512 * If we can't get a cq entry, userspace overflowed the
2513 * submission (by quite a lot). Increment the overflow count in
2514 * the ring.
2515 */
2516 cqe = io_get_cqe(ctx);
2517 if (likely(cqe)) {
2518 WRITE_ONCE(cqe->user_data, user_data);
2519 WRITE_ONCE(cqe->res, res);
2520 WRITE_ONCE(cqe->flags, cflags);
2521
2522 if (ctx->flags & IORING_SETUP_CQE32) {
2523 WRITE_ONCE(cqe->big_cqe[0], 0);
2524 WRITE_ONCE(cqe->big_cqe[1], 0);
2525 }
2526 return true;
2527 }
2528 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
2529 }
2530
2531 static void __io_req_complete_put(struct io_kiocb *req)
2532 {
2533 /*
2534 * If we're the last reference to this request, add to our locked
2535 * free_list cache.
2536 */
2537 if (req_ref_put_and_test(req)) {
2538 struct io_ring_ctx *ctx = req->ctx;
2539
2540 if (req->flags & IO_REQ_LINK_FLAGS) {
2541 if (req->flags & IO_DISARM_MASK)
2542 io_disarm_next(req);
2543 if (req->link) {
2544 io_req_task_queue(req->link);
2545 req->link = NULL;
2546 }
2547 }
2548 io_req_put_rsrc(req);
2549 /*
2550 * Selected buffer deallocation in io_clean_op() assumes that
2551 * we don't hold ->completion_lock. Clean them here to avoid
2552 * deadlocks.
2553 */
2554 io_put_kbuf_comp(req);
2555 io_dismantle_req(req);
2556 io_put_task(req->task, 1);
2557 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
2558 ctx->locked_free_nr++;
2559 }
2560 }
2561
2562 static void __io_req_complete_post(struct io_kiocb *req, s32 res,
2563 u32 cflags)
2564 {
2565 if (!(req->flags & REQ_F_CQE_SKIP)) {
2566 req->cqe.res = res;
2567 req->cqe.flags = cflags;
2568 __io_fill_cqe_req(req->ctx, req);
2569 }
2570 __io_req_complete_put(req);
2571 }
2572
2573 static void io_req_complete_post(struct io_kiocb *req, s32 res, u32 cflags)
2574 {
2575 struct io_ring_ctx *ctx = req->ctx;
2576
2577 spin_lock(&ctx->completion_lock);
2578 __io_req_complete_post(req, res, cflags);
2579 io_commit_cqring(ctx);
2580 spin_unlock(&ctx->completion_lock);
2581 io_cqring_ev_posted(ctx);
2582 }
2583
2584 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
2585 u32 cflags)
2586 {
2587 req->cqe.res = res;
2588 req->cqe.flags = cflags;
2589 req->flags |= REQ_F_COMPLETE_INLINE;
2590 }
2591
2592 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
2593 s32 res, u32 cflags)
2594 {
2595 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
2596 io_req_complete_state(req, res, cflags);
2597 else
2598 io_req_complete_post(req, res, cflags);
2599 }
2600
2601 static inline void io_req_complete(struct io_kiocb *req, s32 res)
2602 {
2603 if (res < 0)
2604 req_set_fail(req);
2605 __io_req_complete(req, 0, res, 0);
2606 }
2607
2608 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
2609 {
2610 req_set_fail(req);
2611 io_req_complete_post(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
2612 }
2613
2614 /*
2615 * Don't initialise the fields below on every allocation, but do that in
2616 * advance and keep them valid across allocations.
2617 */
2618 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
2619 {
2620 req->ctx = ctx;
2621 req->link = NULL;
2622 req->async_data = NULL;
2623 /* not necessary, but safer to zero */
2624 req->cqe.res = 0;
2625 }
2626
2627 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
2628 struct io_submit_state *state)
2629 {
2630 spin_lock(&ctx->completion_lock);
2631 wq_list_splice(&ctx->locked_free_list, &state->free_list);
2632 ctx->locked_free_nr = 0;
2633 spin_unlock(&ctx->completion_lock);
2634 }
2635
2636 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
2637 {
2638 return !ctx->submit_state.free_list.next;
2639 }
2640
2641 /*
2642 * A request might get retired back into the request caches even before opcode
2643 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
2644 * Because of that, io_alloc_req() should be called only under ->uring_lock
2645 * and with extra caution to not get a request that is still worked on.
2646 */
2647 static __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
2648 __must_hold(&ctx->uring_lock)
2649 {
2650 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2651 void *reqs[IO_REQ_ALLOC_BATCH];
2652 int ret, i;
2653
2654 /*
2655 * If we have more than a batch's worth of requests in our IRQ side
2656 * locked cache, grab the lock and move them over to our submission
2657 * side cache.
2658 */
2659 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
2660 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2661 if (!io_req_cache_empty(ctx))
2662 return true;
2663 }
2664
2665 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
2666
2667 /*
2668 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2669 * retry single alloc to be on the safe side.
2670 */
2671 if (unlikely(ret <= 0)) {
2672 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2673 if (!reqs[0])
2674 return false;
2675 ret = 1;
2676 }
2677
2678 percpu_ref_get_many(&ctx->refs, ret);
2679 for (i = 0; i < ret; i++) {
2680 struct io_kiocb *req = reqs[i];
2681
2682 io_preinit_req(req, ctx);
2683 io_req_add_to_cache(req, ctx);
2684 }
2685 return true;
2686 }
2687
2688 static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
2689 {
2690 if (unlikely(io_req_cache_empty(ctx)))
2691 return __io_alloc_req_refill(ctx);
2692 return true;
2693 }
2694
2695 static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2696 {
2697 struct io_wq_work_node *node;
2698
2699 node = wq_stack_extract(&ctx->submit_state.free_list);
2700 return container_of(node, struct io_kiocb, comp_list);
2701 }
2702
2703 static inline void io_put_file(struct file *file)
2704 {
2705 if (file)
2706 fput(file);
2707 }
2708
2709 static inline void io_dismantle_req(struct io_kiocb *req)
2710 {
2711 unsigned int flags = req->flags;
2712
2713 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
2714 io_clean_op(req);
2715 if (!(flags & REQ_F_FIXED_FILE))
2716 io_put_file(req->file);
2717 }
2718
2719 static __cold void io_free_req(struct io_kiocb *req)
2720 {
2721 struct io_ring_ctx *ctx = req->ctx;
2722
2723 io_req_put_rsrc(req);
2724 io_dismantle_req(req);
2725 io_put_task(req->task, 1);
2726
2727 spin_lock(&ctx->completion_lock);
2728 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
2729 ctx->locked_free_nr++;
2730 spin_unlock(&ctx->completion_lock);
2731 }
2732
2733 static inline void io_remove_next_linked(struct io_kiocb *req)
2734 {
2735 struct io_kiocb *nxt = req->link;
2736
2737 req->link = nxt->link;
2738 nxt->link = NULL;
2739 }
2740
2741 static struct io_kiocb *io_disarm_linked_timeout(struct io_kiocb *req)
2742 __must_hold(&req->ctx->completion_lock)
2743 __must_hold(&req->ctx->timeout_lock)
2744 {
2745 struct io_kiocb *link = req->link;
2746
2747 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2748 struct io_timeout_data *io = link->async_data;
2749
2750 io_remove_next_linked(req);
2751 link->timeout.head = NULL;
2752 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2753 list_del(&link->timeout.list);
2754 return link;
2755 }
2756 }
2757 return NULL;
2758 }
2759
2760 static void io_fail_links(struct io_kiocb *req)
2761 __must_hold(&req->ctx->completion_lock)
2762 {
2763 struct io_kiocb *nxt, *link = req->link;
2764 bool ignore_cqes = req->flags & REQ_F_SKIP_LINK_CQES;
2765
2766 req->link = NULL;
2767 while (link) {
2768 long res = -ECANCELED;
2769
2770 if (link->flags & REQ_F_FAIL)
2771 res = link->cqe.res;
2772
2773 nxt = link->link;
2774 link->link = NULL;
2775
2776 trace_io_uring_fail_link(req->ctx, req, req->cqe.user_data,
2777 req->opcode, link);
2778
2779 if (ignore_cqes)
2780 link->flags |= REQ_F_CQE_SKIP;
2781 else
2782 link->flags &= ~REQ_F_CQE_SKIP;
2783 __io_req_complete_post(link, res, 0);
2784 link = nxt;
2785 }
2786 }
2787
2788 static bool io_disarm_next(struct io_kiocb *req)
2789 __must_hold(&req->ctx->completion_lock)
2790 {
2791 struct io_kiocb *link = NULL;
2792 bool posted = false;
2793
2794 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2795 link = req->link;
2796 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2797 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2798 io_remove_next_linked(req);
2799 io_req_tw_post_queue(link, -ECANCELED, 0);
2800 posted = true;
2801 }
2802 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2803 struct io_ring_ctx *ctx = req->ctx;
2804
2805 spin_lock_irq(&ctx->timeout_lock);
2806 link = io_disarm_linked_timeout(req);
2807 spin_unlock_irq(&ctx->timeout_lock);
2808 if (link) {
2809 posted = true;
2810 io_req_tw_post_queue(link, -ECANCELED, 0);
2811 }
2812 }
2813 if (unlikely((req->flags & REQ_F_FAIL) &&
2814 !(req->flags & REQ_F_HARDLINK))) {
2815 posted |= (req->link != NULL);
2816 io_fail_links(req);
2817 }
2818 return posted;
2819 }
2820
2821 static void __io_req_find_next_prep(struct io_kiocb *req)
2822 {
2823 struct io_ring_ctx *ctx = req->ctx;
2824 bool posted;
2825
2826 spin_lock(&ctx->completion_lock);
2827 posted = io_disarm_next(req);
2828 io_commit_cqring(ctx);
2829 spin_unlock(&ctx->completion_lock);
2830 if (posted)
2831 io_cqring_ev_posted(ctx);
2832 }
2833
2834 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2835 {
2836 struct io_kiocb *nxt;
2837
2838 /*
2839 * If LINK is set, we have dependent requests in this chain. If we
2840 * didn't fail this request, queue the first one up, moving any other
2841 * dependencies to the next request. In case of failure, fail the rest
2842 * of the chain.
2843 */
2844 if (unlikely(req->flags & IO_DISARM_MASK))
2845 __io_req_find_next_prep(req);
2846 nxt = req->link;
2847 req->link = NULL;
2848 return nxt;
2849 }
2850
2851 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2852 {
2853 if (!ctx)
2854 return;
2855 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
2856 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
2857 if (*locked) {
2858 io_submit_flush_completions(ctx);
2859 mutex_unlock(&ctx->uring_lock);
2860 *locked = false;
2861 }
2862 percpu_ref_put(&ctx->refs);
2863 }
2864
2865 static inline void ctx_commit_and_unlock(struct io_ring_ctx *ctx)
2866 {
2867 io_commit_cqring(ctx);
2868 spin_unlock(&ctx->completion_lock);
2869 io_cqring_ev_posted(ctx);
2870 }
2871
2872 static void handle_prev_tw_list(struct io_wq_work_node *node,
2873 struct io_ring_ctx **ctx, bool *uring_locked)
2874 {
2875 if (*ctx && !*uring_locked)
2876 spin_lock(&(*ctx)->completion_lock);
2877
2878 do {
2879 struct io_wq_work_node *next = node->next;
2880 struct io_kiocb *req = container_of(node, struct io_kiocb,
2881 io_task_work.node);
2882
2883 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
2884
2885 if (req->ctx != *ctx) {
2886 if (unlikely(!*uring_locked && *ctx))
2887 ctx_commit_and_unlock(*ctx);
2888
2889 ctx_flush_and_put(*ctx, uring_locked);
2890 *ctx = req->ctx;
2891 /* if not contended, grab and improve batching */
2892 *uring_locked = mutex_trylock(&(*ctx)->uring_lock);
2893 percpu_ref_get(&(*ctx)->refs);
2894 if (unlikely(!*uring_locked))
2895 spin_lock(&(*ctx)->completion_lock);
2896 }
2897 if (likely(*uring_locked))
2898 req->io_task_work.func(req, uring_locked);
2899 else
2900 __io_req_complete_post(req, req->cqe.res,
2901 io_put_kbuf_comp(req));
2902 node = next;
2903 } while (node);
2904
2905 if (unlikely(!*uring_locked))
2906 ctx_commit_and_unlock(*ctx);
2907 }
2908
2909 static void handle_tw_list(struct io_wq_work_node *node,
2910 struct io_ring_ctx **ctx, bool *locked)
2911 {
2912 do {
2913 struct io_wq_work_node *next = node->next;
2914 struct io_kiocb *req = container_of(node, struct io_kiocb,
2915 io_task_work.node);
2916
2917 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
2918
2919 if (req->ctx != *ctx) {
2920 ctx_flush_and_put(*ctx, locked);
2921 *ctx = req->ctx;
2922 /* if not contended, grab and improve batching */
2923 *locked = mutex_trylock(&(*ctx)->uring_lock);
2924 percpu_ref_get(&(*ctx)->refs);
2925 }
2926 req->io_task_work.func(req, locked);
2927 node = next;
2928 } while (node);
2929 }
2930
2931 static void tctx_task_work(struct callback_head *cb)
2932 {
2933 bool uring_locked = false;
2934 struct io_ring_ctx *ctx = NULL;
2935 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2936 task_work);
2937
2938 while (1) {
2939 struct io_wq_work_node *node1, *node2;
2940
2941 spin_lock_irq(&tctx->task_lock);
2942 node1 = tctx->prio_task_list.first;
2943 node2 = tctx->task_list.first;
2944 INIT_WQ_LIST(&tctx->task_list);
2945 INIT_WQ_LIST(&tctx->prio_task_list);
2946 if (!node2 && !node1)
2947 tctx->task_running = false;
2948 spin_unlock_irq(&tctx->task_lock);
2949 if (!node2 && !node1)
2950 break;
2951
2952 if (node1)
2953 handle_prev_tw_list(node1, &ctx, &uring_locked);
2954 if (node2)
2955 handle_tw_list(node2, &ctx, &uring_locked);
2956 cond_resched();
2957
2958 if (data_race(!tctx->task_list.first) &&
2959 data_race(!tctx->prio_task_list.first) && uring_locked)
2960 io_submit_flush_completions(ctx);
2961 }
2962
2963 ctx_flush_and_put(ctx, &uring_locked);
2964
2965 /* relaxed read is enough as only the task itself sets ->in_idle */
2966 if (unlikely(atomic_read(&tctx->in_idle)))
2967 io_uring_drop_tctx_refs(current);
2968 }
2969
2970 static void __io_req_task_work_add(struct io_kiocb *req,
2971 struct io_uring_task *tctx,
2972 struct io_wq_work_list *list)
2973 {
2974 struct io_ring_ctx *ctx = req->ctx;
2975 struct io_wq_work_node *node;
2976 unsigned long flags;
2977 bool running;
2978
2979 spin_lock_irqsave(&tctx->task_lock, flags);
2980 wq_list_add_tail(&req->io_task_work.node, list);
2981 running = tctx->task_running;
2982 if (!running)
2983 tctx->task_running = true;
2984 spin_unlock_irqrestore(&tctx->task_lock, flags);
2985
2986 /* task_work already pending, we're done */
2987 if (running)
2988 return;
2989
2990 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
2991 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
2992
2993 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
2994 return;
2995
2996 spin_lock_irqsave(&tctx->task_lock, flags);
2997 tctx->task_running = false;
2998 node = wq_list_merge(&tctx->prio_task_list, &tctx->task_list);
2999 spin_unlock_irqrestore(&tctx->task_lock, flags);
3000
3001 while (node) {
3002 req = container_of(node, struct io_kiocb, io_task_work.node);
3003 node = node->next;
3004 if (llist_add(&req->io_task_work.fallback_node,
3005 &req->ctx->fallback_llist))
3006 schedule_delayed_work(&req->ctx->fallback_work, 1);
3007 }
3008 }
3009
3010 static void io_req_task_work_add(struct io_kiocb *req)
3011 {
3012 struct io_uring_task *tctx = req->task->io_uring;
3013
3014 __io_req_task_work_add(req, tctx, &tctx->task_list);
3015 }
3016
3017 static void io_req_task_prio_work_add(struct io_kiocb *req)
3018 {
3019 struct io_uring_task *tctx = req->task->io_uring;
3020
3021 if (req->ctx->flags & IORING_SETUP_SQPOLL)
3022 __io_req_task_work_add(req, tctx, &tctx->prio_task_list);
3023 else
3024 __io_req_task_work_add(req, tctx, &tctx->task_list);
3025 }
3026
3027 static void io_req_tw_post(struct io_kiocb *req, bool *locked)
3028 {
3029 io_req_complete_post(req, req->cqe.res, req->cqe.flags);
3030 }
3031
3032 static void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
3033 {
3034 req->cqe.res = res;
3035 req->cqe.flags = cflags;
3036 req->io_task_work.func = io_req_tw_post;
3037 io_req_task_work_add(req);
3038 }
3039
3040 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
3041 {
3042 /* not needed for normal modes, but SQPOLL depends on it */
3043 io_tw_lock(req->ctx, locked);
3044 io_req_complete_failed(req, req->cqe.res);
3045 }
3046
3047 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
3048 {
3049 io_tw_lock(req->ctx, locked);
3050 /* req->task == current here, checking PF_EXITING is safe */
3051 if (likely(!(req->task->flags & PF_EXITING)))
3052 io_queue_sqe(req);
3053 else
3054 io_req_complete_failed(req, -EFAULT);
3055 }
3056
3057 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
3058 {
3059 req->cqe.res = ret;
3060 req->io_task_work.func = io_req_task_cancel;
3061 io_req_task_work_add(req);
3062 }
3063
3064 static void io_req_task_queue(struct io_kiocb *req)
3065 {
3066 req->io_task_work.func = io_req_task_submit;
3067 io_req_task_work_add(req);
3068 }
3069
3070 static void io_req_task_queue_reissue(struct io_kiocb *req)
3071 {
3072 req->io_task_work.func = io_queue_iowq;
3073 io_req_task_work_add(req);
3074 }
3075
3076 static void io_queue_next(struct io_kiocb *req)
3077 {
3078 struct io_kiocb *nxt = io_req_find_next(req);
3079
3080 if (nxt)
3081 io_req_task_queue(nxt);
3082 }
3083
3084 static void io_free_batch_list(struct io_ring_ctx *ctx,
3085 struct io_wq_work_node *node)
3086 __must_hold(&ctx->uring_lock)
3087 {
3088 struct task_struct *task = NULL;
3089 int task_refs = 0;
3090
3091 do {
3092 struct io_kiocb *req = container_of(node, struct io_kiocb,
3093 comp_list);
3094
3095 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
3096 if (req->flags & REQ_F_REFCOUNT) {
3097 node = req->comp_list.next;
3098 if (!req_ref_put_and_test(req))
3099 continue;
3100 }
3101 if ((req->flags & REQ_F_POLLED) && req->apoll) {
3102 struct async_poll *apoll = req->apoll;
3103
3104 if (apoll->double_poll)
3105 kfree(apoll->double_poll);
3106 list_add(&apoll->poll.wait.entry,
3107 &ctx->apoll_cache);
3108 req->flags &= ~REQ_F_POLLED;
3109 }
3110 if (req->flags & IO_REQ_LINK_FLAGS)
3111 io_queue_next(req);
3112 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
3113 io_clean_op(req);
3114 }
3115 if (!(req->flags & REQ_F_FIXED_FILE))
3116 io_put_file(req->file);
3117
3118 io_req_put_rsrc_locked(req, ctx);
3119
3120 if (req->task != task) {
3121 if (task)
3122 io_put_task(task, task_refs);
3123 task = req->task;
3124 task_refs = 0;
3125 }
3126 task_refs++;
3127 node = req->comp_list.next;
3128 io_req_add_to_cache(req, ctx);
3129 } while (node);
3130
3131 if (task)
3132 io_put_task(task, task_refs);
3133 }
3134
3135 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
3136 __must_hold(&ctx->uring_lock)
3137 {
3138 struct io_wq_work_node *node, *prev;
3139 struct io_submit_state *state = &ctx->submit_state;
3140
3141 if (state->flush_cqes) {
3142 spin_lock(&ctx->completion_lock);
3143 wq_list_for_each(node, prev, &state->compl_reqs) {
3144 struct io_kiocb *req = container_of(node, struct io_kiocb,
3145 comp_list);
3146
3147 if (!(req->flags & REQ_F_CQE_SKIP))
3148 __io_fill_cqe_req(ctx, req);
3149 }
3150
3151 io_commit_cqring(ctx);
3152 spin_unlock(&ctx->completion_lock);
3153 io_cqring_ev_posted(ctx);
3154 state->flush_cqes = false;
3155 }
3156
3157 io_free_batch_list(ctx, state->compl_reqs.first);
3158 INIT_WQ_LIST(&state->compl_reqs);
3159 }
3160
3161 /*
3162 * Drop reference to request, return next in chain (if there is one) if this
3163 * was the last reference to this request.
3164 */
3165 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
3166 {
3167 struct io_kiocb *nxt = NULL;
3168
3169 if (req_ref_put_and_test(req)) {
3170 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
3171 nxt = io_req_find_next(req);
3172 io_free_req(req);
3173 }
3174 return nxt;
3175 }
3176
3177 static inline void io_put_req(struct io_kiocb *req)
3178 {
3179 if (req_ref_put_and_test(req)) {
3180 io_queue_next(req);
3181 io_free_req(req);
3182 }
3183 }
3184
3185 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
3186 {
3187 /* See comment at the top of this file */
3188 smp_rmb();
3189 return __io_cqring_events(ctx);
3190 }
3191
3192 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
3193 {
3194 struct io_rings *rings = ctx->rings;
3195
3196 /* make sure SQ entry isn't read before tail */
3197 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
3198 }
3199
3200 static inline bool io_run_task_work(void)
3201 {
3202 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || task_work_pending(current)) {
3203 __set_current_state(TASK_RUNNING);
3204 clear_notify_signal();
3205 if (task_work_pending(current))
3206 task_work_run();
3207 return true;
3208 }
3209
3210 return false;
3211 }
3212
3213 static int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
3214 {
3215 struct io_wq_work_node *pos, *start, *prev;
3216 unsigned int poll_flags = BLK_POLL_NOSLEEP;
3217 DEFINE_IO_COMP_BATCH(iob);
3218 int nr_events = 0;
3219
3220 /*
3221 * Only spin for completions if we don't have multiple devices hanging
3222 * off our complete list.
3223 */
3224 if (ctx->poll_multi_queue || force_nonspin)
3225 poll_flags |= BLK_POLL_ONESHOT;
3226
3227 wq_list_for_each(pos, start, &ctx->iopoll_list) {
3228 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
3229 struct kiocb *kiocb = &req->rw.kiocb;
3230 int ret;
3231
3232 /*
3233 * Move completed and retryable entries to our local lists.
3234 * If we find a request that requires polling, break out
3235 * and complete those lists first, if we have entries there.
3236 */
3237 if (READ_ONCE(req->iopoll_completed))
3238 break;
3239
3240 ret = kiocb->ki_filp->f_op->iopoll(kiocb, &iob, poll_flags);
3241 if (unlikely(ret < 0))
3242 return ret;
3243 else if (ret)
3244 poll_flags |= BLK_POLL_ONESHOT;
3245
3246 /* iopoll may have completed current req */
3247 if (!rq_list_empty(iob.req_list) ||
3248 READ_ONCE(req->iopoll_completed))
3249 break;
3250 }
3251
3252 if (!rq_list_empty(iob.req_list))
3253 iob.complete(&iob);
3254 else if (!pos)
3255 return 0;
3256
3257 prev = start;
3258 wq_list_for_each_resume(pos, prev) {
3259 struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
3260
3261 /* order with io_complete_rw_iopoll(), e.g. ->result updates */
3262 if (!smp_load_acquire(&req->iopoll_completed))
3263 break;
3264 nr_events++;
3265 if (unlikely(req->flags & REQ_F_CQE_SKIP))
3266 continue;
3267
3268 req->cqe.flags = io_put_kbuf(req, 0);
3269 __io_fill_cqe_req(req->ctx, req);
3270 }
3271
3272 if (unlikely(!nr_events))
3273 return 0;
3274
3275 io_commit_cqring(ctx);
3276 io_cqring_ev_posted_iopoll(ctx);
3277 pos = start ? start->next : ctx->iopoll_list.first;
3278 wq_list_cut(&ctx->iopoll_list, prev, start);
3279 io_free_batch_list(ctx, pos);
3280 return nr_events;
3281 }
3282
3283 /*
3284 * We can't just wait for polled events to come to us, we have to actively
3285 * find and complete them.
3286 */
3287 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
3288 {
3289 if (!(ctx->flags & IORING_SETUP_IOPOLL))
3290 return;
3291
3292 mutex_lock(&ctx->uring_lock);
3293 while (!wq_list_empty(&ctx->iopoll_list)) {
3294 /* let it sleep and repeat later if can't complete a request */
3295 if (io_do_iopoll(ctx, true) == 0)
3296 break;
3297 /*
3298 * Ensure we allow local-to-the-cpu processing to take place,
3299 * in this case we need to ensure that we reap all events.
3300 * Also let task_work, etc. to progress by releasing the mutex
3301 */
3302 if (need_resched()) {
3303 mutex_unlock(&ctx->uring_lock);
3304 cond_resched();
3305 mutex_lock(&ctx->uring_lock);
3306 }
3307 }
3308 mutex_unlock(&ctx->uring_lock);
3309 }
3310
3311 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
3312 {
3313 unsigned int nr_events = 0;
3314 int ret = 0;
3315 unsigned long check_cq;
3316
3317 /*
3318 * Don't enter poll loop if we already have events pending.
3319 * If we do, we can potentially be spinning for commands that
3320 * already triggered a CQE (eg in error).
3321 */
3322 check_cq = READ_ONCE(ctx->check_cq);
3323 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
3324 __io_cqring_overflow_flush(ctx, false);
3325 if (io_cqring_events(ctx))
3326 return 0;
3327
3328 /*
3329 * Similarly do not spin if we have not informed the user of any
3330 * dropped CQE.
3331 */
3332 if (unlikely(check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)))
3333 return -EBADR;
3334
3335 do {
3336 /*
3337 * If a submit got punted to a workqueue, we can have the
3338 * application entering polling for a command before it gets
3339 * issued. That app will hold the uring_lock for the duration
3340 * of the poll right here, so we need to take a breather every
3341 * now and then to ensure that the issue has a chance to add
3342 * the poll to the issued list. Otherwise we can spin here
3343 * forever, while the workqueue is stuck trying to acquire the
3344 * very same mutex.
3345 */
3346 if (wq_list_empty(&ctx->iopoll_list)) {
3347 u32 tail = ctx->cached_cq_tail;
3348
3349 mutex_unlock(&ctx->uring_lock);
3350 io_run_task_work();
3351 mutex_lock(&ctx->uring_lock);
3352
3353 /* some requests don't go through iopoll_list */
3354 if (tail != ctx->cached_cq_tail ||
3355 wq_list_empty(&ctx->iopoll_list))
3356 break;
3357 }
3358 ret = io_do_iopoll(ctx, !min);
3359 if (ret < 0)
3360 break;
3361 nr_events += ret;
3362 ret = 0;
3363 } while (nr_events < min && !need_resched());
3364
3365 return ret;
3366 }
3367
3368 static void kiocb_end_write(struct io_kiocb *req)
3369 {
3370 /*
3371 * Tell lockdep we inherited freeze protection from submission
3372 * thread.
3373 */
3374 if (req->flags & REQ_F_ISREG) {
3375 struct super_block *sb = file_inode(req->file)->i_sb;
3376
3377 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
3378 sb_end_write(sb);
3379 }
3380 }
3381
3382 #ifdef CONFIG_BLOCK
3383 static bool io_resubmit_prep(struct io_kiocb *req)
3384 {
3385 struct io_async_rw *rw = req->async_data;
3386
3387 if (!req_has_async_data(req))
3388 return !io_req_prep_async(req);
3389 iov_iter_restore(&rw->s.iter, &rw->s.iter_state);
3390 return true;
3391 }
3392
3393 static bool io_rw_should_reissue(struct io_kiocb *req)
3394 {
3395 umode_t mode = file_inode(req->file)->i_mode;
3396 struct io_ring_ctx *ctx = req->ctx;
3397
3398 if (!S_ISBLK(mode) && !S_ISREG(mode))
3399 return false;
3400 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
3401 !(ctx->flags & IORING_SETUP_IOPOLL)))
3402 return false;
3403 /*
3404 * If ref is dying, we might be running poll reap from the exit work.
3405 * Don't attempt to reissue from that path, just let it fail with
3406 * -EAGAIN.
3407 */
3408 if (percpu_ref_is_dying(&ctx->refs))
3409 return false;
3410 /*
3411 * Play it safe and assume not safe to re-import and reissue if we're
3412 * not in the original thread group (or in task context).
3413 */
3414 if (!same_thread_group(req->task, current) || !in_task())
3415 return false;
3416 return true;
3417 }
3418 #else
3419 static bool io_resubmit_prep(struct io_kiocb *req)
3420 {
3421 return false;
3422 }
3423 static bool io_rw_should_reissue(struct io_kiocb *req)
3424 {
3425 return false;
3426 }
3427 #endif
3428
3429 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
3430 {
3431 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
3432 kiocb_end_write(req);
3433 fsnotify_modify(req->file);
3434 } else {
3435 fsnotify_access(req->file);
3436 }
3437 if (unlikely(res != req->cqe.res)) {
3438 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
3439 io_rw_should_reissue(req)) {
3440 req->flags |= REQ_F_REISSUE | REQ_F_PARTIAL_IO;
3441 return true;
3442 }
3443 req_set_fail(req);
3444 req->cqe.res = res;
3445 }
3446 return false;
3447 }
3448
3449 static inline void io_req_task_complete(struct io_kiocb *req, bool *locked)
3450 {
3451 int res = req->cqe.res;
3452
3453 if (*locked) {
3454 io_req_complete_state(req, res, io_put_kbuf(req, 0));
3455 io_req_add_compl_list(req);
3456 } else {
3457 io_req_complete_post(req, res,
3458 io_put_kbuf(req, IO_URING_F_UNLOCKED));
3459 }
3460 }
3461
3462 static void __io_complete_rw(struct io_kiocb *req, long res,
3463 unsigned int issue_flags)
3464 {
3465 if (__io_complete_rw_common(req, res))
3466 return;
3467 __io_req_complete(req, issue_flags, req->cqe.res,
3468 io_put_kbuf(req, issue_flags));
3469 }
3470
3471 static void io_complete_rw(struct kiocb *kiocb, long res)
3472 {
3473 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3474
3475 if (__io_complete_rw_common(req, res))
3476 return;
3477 req->cqe.res = res;
3478 req->io_task_work.func = io_req_task_complete;
3479 io_req_task_prio_work_add(req);
3480 }
3481
3482 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
3483 {
3484 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3485
3486 if (kiocb->ki_flags & IOCB_WRITE)
3487 kiocb_end_write(req);
3488 if (unlikely(res != req->cqe.res)) {
3489 if (res == -EAGAIN && io_rw_should_reissue(req)) {
3490 req->flags |= REQ_F_REISSUE | REQ_F_PARTIAL_IO;
3491 return;
3492 }
3493 req->cqe.res = res;
3494 }
3495
3496 /* order with io_iopoll_complete() checking ->iopoll_completed */
3497 smp_store_release(&req->iopoll_completed, 1);
3498 }
3499
3500 /*
3501 * After the iocb has been issued, it's safe to be found on the poll list.
3502 * Adding the kiocb to the list AFTER submission ensures that we don't
3503 * find it from a io_do_iopoll() thread before the issuer is done
3504 * accessing the kiocb cookie.
3505 */
3506 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
3507 {
3508 struct io_ring_ctx *ctx = req->ctx;
3509 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
3510
3511 /* workqueue context doesn't hold uring_lock, grab it now */
3512 if (unlikely(needs_lock))
3513 mutex_lock(&ctx->uring_lock);
3514
3515 /*
3516 * Track whether we have multiple files in our lists. This will impact
3517 * how we do polling eventually, not spinning if we're on potentially
3518 * different devices.
3519 */
3520 if (wq_list_empty(&ctx->iopoll_list)) {
3521 ctx->poll_multi_queue = false;
3522 } else if (!ctx->poll_multi_queue) {
3523 struct io_kiocb *list_req;
3524
3525 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
3526 comp_list);
3527 if (list_req->file != req->file)
3528 ctx->poll_multi_queue = true;
3529 }
3530
3531 /*
3532 * For fast devices, IO may have already completed. If it has, add
3533 * it to the front so we find it first.
3534 */
3535 if (READ_ONCE(req->iopoll_completed))
3536 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
3537 else
3538 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
3539
3540 if (unlikely(needs_lock)) {
3541 /*
3542 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
3543 * in sq thread task context or in io worker task context. If
3544 * current task context is sq thread, we don't need to check
3545 * whether should wake up sq thread.
3546 */
3547 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
3548 wq_has_sleeper(&ctx->sq_data->wait))
3549 wake_up(&ctx->sq_data->wait);
3550
3551 mutex_unlock(&ctx->uring_lock);
3552 }
3553 }
3554
3555 static bool io_bdev_nowait(struct block_device *bdev)
3556 {
3557 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
3558 }
3559
3560 /*
3561 * If we tracked the file through the SCM inflight mechanism, we could support
3562 * any file. For now, just ensure that anything potentially problematic is done
3563 * inline.
3564 */
3565 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
3566 {
3567 if (S_ISBLK(mode)) {
3568 if (IS_ENABLED(CONFIG_BLOCK) &&
3569 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
3570 return true;
3571 return false;
3572 }
3573 if (S_ISSOCK(mode))
3574 return true;
3575 if (S_ISREG(mode)) {
3576 if (IS_ENABLED(CONFIG_BLOCK) &&
3577 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
3578 file->f_op != &io_uring_fops)
3579 return true;
3580 return false;
3581 }
3582
3583 /* any ->read/write should understand O_NONBLOCK */
3584 if (file->f_flags & O_NONBLOCK)
3585 return true;
3586 return file->f_mode & FMODE_NOWAIT;
3587 }
3588
3589 /*
3590 * If we tracked the file through the SCM inflight mechanism, we could support
3591 * any file. For now, just ensure that anything potentially problematic is done
3592 * inline.
3593 */
3594 static unsigned int io_file_get_flags(struct file *file)
3595 {
3596 umode_t mode = file_inode(file)->i_mode;
3597 unsigned int res = 0;
3598
3599 if (S_ISREG(mode))
3600 res |= FFS_ISREG;
3601 if (__io_file_supports_nowait(file, mode))
3602 res |= FFS_NOWAIT;
3603 if (io_file_need_scm(file))
3604 res |= FFS_SCM;
3605 return res;
3606 }
3607
3608 static inline bool io_file_supports_nowait(struct io_kiocb *req)
3609 {
3610 return req->flags & REQ_F_SUPPORT_NOWAIT;
3611 }
3612
3613 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3614 {
3615 struct kiocb *kiocb = &req->rw.kiocb;
3616 unsigned ioprio;
3617 int ret;
3618
3619 kiocb->ki_pos = READ_ONCE(sqe->off);
3620 /* used for fixed read/write too - just read unconditionally */
3621 req->buf_index = READ_ONCE(sqe->buf_index);
3622
3623 if (req->opcode == IORING_OP_READ_FIXED ||
3624 req->opcode == IORING_OP_WRITE_FIXED) {
3625 struct io_ring_ctx *ctx = req->ctx;
3626 u16 index;
3627
3628 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
3629 return -EFAULT;
3630 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
3631 req->imu = ctx->user_bufs[index];
3632 io_req_set_rsrc_node(req, ctx, 0);
3633 }
3634
3635 ioprio = READ_ONCE(sqe->ioprio);
3636 if (ioprio) {
3637 ret = ioprio_check_cap(ioprio);
3638 if (ret)
3639 return ret;
3640
3641 kiocb->ki_ioprio = ioprio;
3642 } else {
3643 kiocb->ki_ioprio = get_current_ioprio();
3644 }
3645
3646 req->rw.addr = READ_ONCE(sqe->addr);
3647 req->rw.len = READ_ONCE(sqe->len);
3648 req->rw.flags = READ_ONCE(sqe->rw_flags);
3649 return 0;
3650 }
3651
3652 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3653 {
3654 switch (ret) {
3655 case -EIOCBQUEUED:
3656 break;
3657 case -ERESTARTSYS:
3658 case -ERESTARTNOINTR:
3659 case -ERESTARTNOHAND:
3660 case -ERESTART_RESTARTBLOCK:
3661 /*
3662 * We can't just restart the syscall, since previously
3663 * submitted sqes may already be in progress. Just fail this
3664 * IO with EINTR.
3665 */
3666 ret = -EINTR;
3667 fallthrough;
3668 default:
3669 kiocb->ki_complete(kiocb, ret);
3670 }
3671 }
3672
3673 static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
3674 {
3675 struct kiocb *kiocb = &req->rw.kiocb;
3676
3677 if (kiocb->ki_pos != -1)
3678 return &kiocb->ki_pos;
3679
3680 if (!(req->file->f_mode & FMODE_STREAM)) {
3681 req->flags |= REQ_F_CUR_POS;
3682 kiocb->ki_pos = req->file->f_pos;
3683 return &kiocb->ki_pos;
3684 }
3685
3686 kiocb->ki_pos = 0;
3687 return NULL;
3688 }
3689
3690 static void kiocb_done(struct io_kiocb *req, ssize_t ret,
3691 unsigned int issue_flags)
3692 {
3693 struct io_async_rw *io = req->async_data;
3694
3695 /* add previously done IO, if any */
3696 if (req_has_async_data(req) && io->bytes_done > 0) {
3697 if (ret < 0)
3698 ret = io->bytes_done;
3699 else
3700 ret += io->bytes_done;
3701 }
3702
3703 if (req->flags & REQ_F_CUR_POS)
3704 req->file->f_pos = req->rw.kiocb.ki_pos;
3705 if (ret >= 0 && (req->rw.kiocb.ki_complete == io_complete_rw))
3706 __io_complete_rw(req, ret, issue_flags);
3707 else
3708 io_rw_done(&req->rw.kiocb, ret);
3709
3710 if (req->flags & REQ_F_REISSUE) {
3711 req->flags &= ~REQ_F_REISSUE;
3712 if (io_resubmit_prep(req))
3713 io_req_task_queue_reissue(req);
3714 else
3715 io_req_task_queue_fail(req, ret);
3716 }
3717 }
3718
3719 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3720 struct io_mapped_ubuf *imu)
3721 {
3722 size_t len = req->rw.len;
3723 u64 buf_end, buf_addr = req->rw.addr;
3724 size_t offset;
3725
3726 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3727 return -EFAULT;
3728 /* not inside the mapped region */
3729 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3730 return -EFAULT;
3731
3732 /*
3733 * May not be a start of buffer, set size appropriately
3734 * and advance us to the beginning.
3735 */
3736 offset = buf_addr - imu->ubuf;
3737 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3738
3739 if (offset) {
3740 /*
3741 * Don't use iov_iter_advance() here, as it's really slow for
3742 * using the latter parts of a big fixed buffer - it iterates
3743 * over each segment manually. We can cheat a bit here, because
3744 * we know that:
3745 *
3746 * 1) it's a BVEC iter, we set it up
3747 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3748 * first and last bvec
3749 *
3750 * So just find our index, and adjust the iterator afterwards.
3751 * If the offset is within the first bvec (or the whole first
3752 * bvec, just use iov_iter_advance(). This makes it easier
3753 * since we can just skip the first segment, which may not
3754 * be PAGE_SIZE aligned.
3755 */
3756 const struct bio_vec *bvec = imu->bvec;
3757
3758 if (offset <= bvec->bv_len) {
3759 iov_iter_advance(iter, offset);
3760 } else {
3761 unsigned long seg_skip;
3762
3763 /* skip first vec */
3764 offset -= bvec->bv_len;
3765 seg_skip = 1 + (offset >> PAGE_SHIFT);
3766
3767 iter->bvec = bvec + seg_skip;
3768 iter->nr_segs -= seg_skip;
3769 iter->count -= bvec->bv_len + offset;
3770 iter->iov_offset = offset & ~PAGE_MASK;
3771 }
3772 }
3773
3774 return 0;
3775 }
3776
3777 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3778 unsigned int issue_flags)
3779 {
3780 if (WARN_ON_ONCE(!req->imu))
3781 return -EFAULT;
3782 return __io_import_fixed(req, rw, iter, req->imu);
3783 }
3784
3785 static int io_buffer_add_list(struct io_ring_ctx *ctx,
3786 struct io_buffer_list *bl, unsigned int bgid)
3787 {
3788 bl->bgid = bgid;
3789 if (bgid < BGID_ARRAY)
3790 return 0;
3791
3792 return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
3793 }
3794
3795 static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
3796 struct io_buffer_list *bl)
3797 {
3798 if (!list_empty(&bl->buf_list)) {
3799 struct io_buffer *kbuf;
3800
3801 kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
3802 list_del(&kbuf->list);
3803 if (*len > kbuf->len)
3804 *len = kbuf->len;
3805 req->flags |= REQ_F_BUFFER_SELECTED;
3806 req->kbuf = kbuf;
3807 req->buf_index = kbuf->bid;
3808 return u64_to_user_ptr(kbuf->addr);
3809 }
3810 return NULL;
3811 }
3812
3813 static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
3814 struct io_buffer_list *bl,
3815 unsigned int issue_flags)
3816 {
3817 struct io_uring_buf_ring *br = bl->buf_ring;
3818 struct io_uring_buf *buf;
3819 __u16 head = bl->head;
3820
3821 if (unlikely(smp_load_acquire(&br->tail) == head))
3822 return NULL;
3823
3824 head &= bl->mask;
3825 if (head < IO_BUFFER_LIST_BUF_PER_PAGE) {
3826 buf = &br->bufs[head];
3827 } else {
3828 int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
3829 int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
3830 buf = page_address(bl->buf_pages[index]);
3831 buf += off;
3832 }
3833 if (*len > buf->len)
3834 *len = buf->len;
3835 req->flags |= REQ_F_BUFFER_RING;
3836 req->buf_list = bl;
3837 req->buf_index = buf->bid;
3838
3839 if (issue_flags & IO_URING_F_UNLOCKED || !file_can_poll(req->file)) {
3840 /*
3841 * If we came in unlocked, we have no choice but to consume the
3842 * buffer here. This does mean it'll be pinned until the IO
3843 * completes. But coming in unlocked means we're in io-wq
3844 * context, hence there should be no further retry. For the
3845 * locked case, the caller must ensure to call the commit when
3846 * the transfer completes (or if we get -EAGAIN and must poll
3847 * or retry).
3848 */
3849 req->buf_list = NULL;
3850 bl->head++;
3851 }
3852 return u64_to_user_ptr(buf->addr);
3853 }
3854
3855 static void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
3856 unsigned int issue_flags)
3857 {
3858 struct io_ring_ctx *ctx = req->ctx;
3859 struct io_buffer_list *bl;
3860 void __user *ret = NULL;
3861
3862 io_ring_submit_lock(req->ctx, issue_flags);
3863
3864 bl = io_buffer_get_list(ctx, req->buf_index);
3865 if (likely(bl)) {
3866 if (bl->buf_nr_pages)
3867 ret = io_ring_buffer_select(req, len, bl, issue_flags);
3868 else
3869 ret = io_provided_buffer_select(req, len, bl);
3870 }
3871 io_ring_submit_unlock(req->ctx, issue_flags);
3872 return ret;
3873 }
3874
3875 #ifdef CONFIG_COMPAT
3876 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3877 unsigned int issue_flags)
3878 {
3879 struct compat_iovec __user *uiov;
3880 compat_ssize_t clen;
3881 void __user *buf;
3882 size_t len;
3883
3884 uiov = u64_to_user_ptr(req->rw.addr);
3885 if (!access_ok(uiov, sizeof(*uiov)))
3886 return -EFAULT;
3887 if (__get_user(clen, &uiov->iov_len))
3888 return -EFAULT;
3889 if (clen < 0)
3890 return -EINVAL;
3891
3892 len = clen;
3893 buf = io_buffer_select(req, &len, issue_flags);
3894 if (!buf)
3895 return -ENOBUFS;
3896 req->rw.addr = (unsigned long) buf;
3897 iov[0].iov_base = buf;
3898 req->rw.len = iov[0].iov_len = (compat_size_t) len;
3899 return 0;
3900 }
3901 #endif
3902
3903 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3904 unsigned int issue_flags)
3905 {
3906 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3907 void __user *buf;
3908 ssize_t len;
3909
3910 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3911 return -EFAULT;
3912
3913 len = iov[0].iov_len;
3914 if (len < 0)
3915 return -EINVAL;
3916 buf = io_buffer_select(req, &len, issue_flags);
3917 if (!buf)
3918 return -ENOBUFS;
3919 req->rw.addr = (unsigned long) buf;
3920 iov[0].iov_base = buf;
3921 req->rw.len = iov[0].iov_len = len;
3922 return 0;
3923 }
3924
3925 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3926 unsigned int issue_flags)
3927 {
3928 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
3929 iov[0].iov_base = u64_to_user_ptr(req->rw.addr);
3930 iov[0].iov_len = req->rw.len;
3931 return 0;
3932 }
3933 if (req->rw.len != 1)
3934 return -EINVAL;
3935
3936 #ifdef CONFIG_COMPAT
3937 if (req->ctx->compat)
3938 return io_compat_import(req, iov, issue_flags);
3939 #endif
3940
3941 return __io_iov_buffer_select(req, iov, issue_flags);
3942 }
3943
3944 static inline bool io_do_buffer_select(struct io_kiocb *req)
3945 {
3946 if (!(req->flags & REQ_F_BUFFER_SELECT))
3947 return false;
3948 return !(req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING));
3949 }
3950
3951 static struct iovec *__io_import_iovec(int rw, struct io_kiocb *req,
3952 struct io_rw_state *s,
3953 unsigned int issue_flags)
3954 {
3955 struct iov_iter *iter = &s->iter;
3956 u8 opcode = req->opcode;
3957 struct iovec *iovec;
3958 void __user *buf;
3959 size_t sqe_len;
3960 ssize_t ret;
3961
3962 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3963 ret = io_import_fixed(req, rw, iter, issue_flags);
3964 if (ret)
3965 return ERR_PTR(ret);
3966 return NULL;
3967 }
3968
3969 buf = u64_to_user_ptr(req->rw.addr);
3970 sqe_len = req->rw.len;
3971
3972 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3973 if (io_do_buffer_select(req)) {
3974 buf = io_buffer_select(req, &sqe_len, issue_flags);
3975 if (!buf)
3976 return ERR_PTR(-ENOBUFS);
3977 req->rw.addr = (unsigned long) buf;
3978 req->rw.len = sqe_len;
3979 }
3980
3981 ret = import_single_range(rw, buf, sqe_len, s->fast_iov, iter);
3982 if (ret)
3983 return ERR_PTR(ret);
3984 return NULL;
3985 }
3986
3987 iovec = s->fast_iov;
3988 if (req->flags & REQ_F_BUFFER_SELECT) {
3989 ret = io_iov_buffer_select(req, iovec, issue_flags);
3990 if (ret)
3991 return ERR_PTR(ret);
3992 iov_iter_init(iter, rw, iovec, 1, iovec->iov_len);
3993 return NULL;
3994 }
3995
3996 ret = __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, &iovec, iter,
3997 req->ctx->compat);
3998 if (unlikely(ret < 0))
3999 return ERR_PTR(ret);
4000 return iovec;
4001 }
4002
4003 static inline int io_import_iovec(int rw, struct io_kiocb *req,
4004 struct iovec **iovec, struct io_rw_state *s,
4005 unsigned int issue_flags)
4006 {
4007 *iovec = __io_import_iovec(rw, req, s, issue_flags);
4008 if (unlikely(IS_ERR(*iovec)))
4009 return PTR_ERR(*iovec);
4010
4011 iov_iter_save_state(&s->iter, &s->iter_state);
4012 return 0;
4013 }
4014
4015 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
4016 {
4017 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
4018 }
4019
4020 /*
4021 * For files that don't have ->read_iter() and ->write_iter(), handle them
4022 * by looping over ->read() or ->write() manually.
4023 */
4024 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
4025 {
4026 struct kiocb *kiocb = &req->rw.kiocb;
4027 struct file *file = req->file;
4028 ssize_t ret = 0;
4029 loff_t *ppos;
4030
4031 /*
4032 * Don't support polled IO through this interface, and we can't
4033 * support non-blocking either. For the latter, this just causes
4034 * the kiocb to be handled from an async context.
4035 */
4036 if (kiocb->ki_flags & IOCB_HIPRI)
4037 return -EOPNOTSUPP;
4038 if ((kiocb->ki_flags & IOCB_NOWAIT) &&
4039 !(kiocb->ki_filp->f_flags & O_NONBLOCK))
4040 return -EAGAIN;
4041
4042 ppos = io_kiocb_ppos(kiocb);
4043
4044 while (iov_iter_count(iter)) {
4045 struct iovec iovec;
4046 ssize_t nr;
4047
4048 if (!iov_iter_is_bvec(iter)) {
4049 iovec = iov_iter_iovec(iter);
4050 } else {
4051 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
4052 iovec.iov_len = req->rw.len;
4053 }
4054
4055 if (rw == READ) {
4056 nr = file->f_op->read(file, iovec.iov_base,
4057 iovec.iov_len, ppos);
4058 } else {
4059 nr = file->f_op->write(file, iovec.iov_base,
4060 iovec.iov_len, ppos);
4061 }
4062
4063 if (nr < 0) {
4064 if (!ret)
4065 ret = nr;
4066 break;
4067 }
4068 ret += nr;
4069 if (!iov_iter_is_bvec(iter)) {
4070 iov_iter_advance(iter, nr);
4071 } else {
4072 req->rw.addr += nr;
4073 req->rw.len -= nr;
4074 if (!req->rw.len)
4075 break;
4076 }
4077 if (nr != iovec.iov_len)
4078 break;
4079 }
4080
4081 return ret;
4082 }
4083
4084 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
4085 const struct iovec *fast_iov, struct iov_iter *iter)
4086 {
4087 struct io_async_rw *rw = req->async_data;
4088
4089 memcpy(&rw->s.iter, iter, sizeof(*iter));
4090 rw->free_iovec = iovec;
4091 rw->bytes_done = 0;
4092 /* can only be fixed buffers, no need to do anything */
4093 if (iov_iter_is_bvec(iter))
4094 return;
4095 if (!iovec) {
4096 unsigned iov_off = 0;
4097
4098 rw->s.iter.iov = rw->s.fast_iov;
4099 if (iter->iov != fast_iov) {
4100 iov_off = iter->iov - fast_iov;
4101 rw->s.iter.iov += iov_off;
4102 }
4103 if (rw->s.fast_iov != fast_iov)
4104 memcpy(rw->s.fast_iov + iov_off, fast_iov + iov_off,
4105 sizeof(struct iovec) * iter->nr_segs);
4106 } else {
4107 req->flags |= REQ_F_NEED_CLEANUP;
4108 }
4109 }
4110
4111 static inline bool io_alloc_async_data(struct io_kiocb *req)
4112 {
4113 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
4114 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
4115 if (req->async_data) {
4116 req->flags |= REQ_F_ASYNC_DATA;
4117 return false;
4118 }
4119 return true;
4120 }
4121
4122 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
4123 struct io_rw_state *s, bool force)
4124 {
4125 if (!force && !io_op_defs[req->opcode].needs_async_setup)
4126 return 0;
4127 if (!req_has_async_data(req)) {
4128 struct io_async_rw *iorw;
4129
4130 if (io_alloc_async_data(req)) {
4131 kfree(iovec);
4132 return -ENOMEM;
4133 }
4134
4135 io_req_map_rw(req, iovec, s->fast_iov, &s->iter);
4136 iorw = req->async_data;
4137 /* we've copied and mapped the iter, ensure state is saved */
4138 iov_iter_save_state(&iorw->s.iter, &iorw->s.iter_state);
4139 }
4140 return 0;
4141 }
4142
4143 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
4144 {
4145 struct io_async_rw *iorw = req->async_data;
4146 struct iovec *iov;
4147 int ret;
4148
4149 /* submission path, ->uring_lock should already be taken */
4150 ret = io_import_iovec(rw, req, &iov, &iorw->s, 0);
4151 if (unlikely(ret < 0))
4152 return ret;
4153
4154 iorw->bytes_done = 0;
4155 iorw->free_iovec = iov;
4156 if (iov)
4157 req->flags |= REQ_F_NEED_CLEANUP;
4158 return 0;
4159 }
4160
4161 static int io_readv_prep_async(struct io_kiocb *req)
4162 {
4163 return io_rw_prep_async(req, READ);
4164 }
4165
4166 static int io_writev_prep_async(struct io_kiocb *req)
4167 {
4168 return io_rw_prep_async(req, WRITE);
4169 }
4170
4171 /*
4172 * This is our waitqueue callback handler, registered through __folio_lock_async()
4173 * when we initially tried to do the IO with the iocb armed our waitqueue.
4174 * This gets called when the page is unlocked, and we generally expect that to
4175 * happen when the page IO is completed and the page is now uptodate. This will
4176 * queue a task_work based retry of the operation, attempting to copy the data
4177 * again. If the latter fails because the page was NOT uptodate, then we will
4178 * do a thread based blocking retry of the operation. That's the unexpected
4179 * slow path.
4180 */
4181 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
4182 int sync, void *arg)
4183 {
4184 struct wait_page_queue *wpq;
4185 struct io_kiocb *req = wait->private;
4186 struct wait_page_key *key = arg;
4187
4188 wpq = container_of(wait, struct wait_page_queue, wait);
4189
4190 if (!wake_page_match(wpq, key))
4191 return 0;
4192
4193 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
4194 list_del_init(&wait->entry);
4195 io_req_task_queue(req);
4196 return 1;
4197 }
4198
4199 /*
4200 * This controls whether a given IO request should be armed for async page
4201 * based retry. If we return false here, the request is handed to the async
4202 * worker threads for retry. If we're doing buffered reads on a regular file,
4203 * we prepare a private wait_page_queue entry and retry the operation. This
4204 * will either succeed because the page is now uptodate and unlocked, or it
4205 * will register a callback when the page is unlocked at IO completion. Through
4206 * that callback, io_uring uses task_work to setup a retry of the operation.
4207 * That retry will attempt the buffered read again. The retry will generally
4208 * succeed, or in rare cases where it fails, we then fall back to using the
4209 * async worker threads for a blocking retry.
4210 */
4211 static bool io_rw_should_retry(struct io_kiocb *req)
4212 {
4213 struct io_async_rw *rw = req->async_data;
4214 struct wait_page_queue *wait = &rw->wpq;
4215 struct kiocb *kiocb = &req->rw.kiocb;
4216
4217 /* never retry for NOWAIT, we just complete with -EAGAIN */
4218 if (req->flags & REQ_F_NOWAIT)
4219 return false;
4220
4221 /* Only for buffered IO */
4222 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
4223 return false;
4224
4225 /*
4226 * just use poll if we can, and don't attempt if the fs doesn't
4227 * support callback based unlocks
4228 */
4229 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
4230 return false;
4231
4232 wait->wait.func = io_async_buf_func;
4233 wait->wait.private = req;
4234 wait->wait.flags = 0;
4235 INIT_LIST_HEAD(&wait->wait.entry);
4236 kiocb->ki_flags |= IOCB_WAITQ;
4237 kiocb->ki_flags &= ~IOCB_NOWAIT;
4238 kiocb->ki_waitq = wait;
4239 return true;
4240 }
4241
4242 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
4243 {
4244 if (likely(req->file->f_op->read_iter))
4245 return call_read_iter(req->file, &req->rw.kiocb, iter);
4246 else if (req->file->f_op->read)
4247 return loop_rw_iter(READ, req, iter);
4248 else
4249 return -EINVAL;
4250 }
4251
4252 static bool need_read_all(struct io_kiocb *req)
4253 {
4254 return req->flags & REQ_F_ISREG ||
4255 S_ISBLK(file_inode(req->file)->i_mode);
4256 }
4257
4258 static int io_rw_init_file(struct io_kiocb *req, fmode_t mode)
4259 {
4260 struct kiocb *kiocb = &req->rw.kiocb;
4261 struct io_ring_ctx *ctx = req->ctx;
4262 struct file *file = req->file;
4263 int ret;
4264
4265 if (unlikely(!file || !(file->f_mode & mode)))
4266 return -EBADF;
4267
4268 if (!io_req_ffs_set(req))
4269 req->flags |= io_file_get_flags(file) << REQ_F_SUPPORT_NOWAIT_BIT;
4270
4271 kiocb->ki_flags = iocb_flags(file);
4272 ret = kiocb_set_rw_flags(kiocb, req->rw.flags);
4273 if (unlikely(ret))
4274 return ret;
4275
4276 /*
4277 * If the file is marked O_NONBLOCK, still allow retry for it if it
4278 * supports async. Otherwise it's impossible to use O_NONBLOCK files
4279 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
4280 */
4281 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
4282 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req)))
4283 req->flags |= REQ_F_NOWAIT;
4284
4285 if (ctx->flags & IORING_SETUP_IOPOLL) {
4286 if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
4287 return -EOPNOTSUPP;
4288
4289 kiocb->private = NULL;
4290 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
4291 kiocb->ki_complete = io_complete_rw_iopoll;
4292 req->iopoll_completed = 0;
4293 } else {
4294 if (kiocb->ki_flags & IOCB_HIPRI)
4295 return -EINVAL;
4296 kiocb->ki_complete = io_complete_rw;
4297 }
4298
4299 return 0;
4300 }
4301
4302 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
4303 {
4304 struct io_rw_state __s, *s = &__s;
4305 struct iovec *iovec;
4306 struct kiocb *kiocb = &req->rw.kiocb;
4307 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4308 struct io_async_rw *rw;
4309 ssize_t ret, ret2;
4310 loff_t *ppos;
4311
4312 if (!req_has_async_data(req)) {
4313 ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
4314 if (unlikely(ret < 0))
4315 return ret;
4316 } else {
4317 /*
4318 * Safe and required to re-import if we're using provided
4319 * buffers, as we dropped the selected one before retry.
4320 */
4321 if (req->flags & REQ_F_BUFFER_SELECT) {
4322 ret = io_import_iovec(READ, req, &iovec, s, issue_flags);
4323 if (unlikely(ret < 0))
4324 return ret;
4325 }
4326
4327 rw = req->async_data;
4328 s = &rw->s;
4329 /*
4330 * We come here from an earlier attempt, restore our state to
4331 * match in case it doesn't. It's cheap enough that we don't
4332 * need to make this conditional.
4333 */
4334 iov_iter_restore(&s->iter, &s->iter_state);
4335 iovec = NULL;
4336 }
4337 ret = io_rw_init_file(req, FMODE_READ);
4338 if (unlikely(ret)) {
4339 kfree(iovec);
4340 return ret;
4341 }
4342 req->cqe.res = iov_iter_count(&s->iter);
4343
4344 if (force_nonblock) {
4345 /* If the file doesn't support async, just async punt */
4346 if (unlikely(!io_file_supports_nowait(req))) {
4347 ret = io_setup_async_rw(req, iovec, s, true);
4348 return ret ?: -EAGAIN;
4349 }
4350 kiocb->ki_flags |= IOCB_NOWAIT;
4351 } else {
4352 /* Ensure we clear previously set non-block flag */
4353 kiocb->ki_flags &= ~IOCB_NOWAIT;
4354 }
4355
4356 ppos = io_kiocb_update_pos(req);
4357
4358 ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
4359 if (unlikely(ret)) {
4360 kfree(iovec);
4361 return ret;
4362 }
4363
4364 ret = io_iter_do_read(req, &s->iter);
4365
4366 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
4367 req->flags &= ~REQ_F_REISSUE;
4368 /* if we can poll, just do that */
4369 if (req->opcode == IORING_OP_READ && file_can_poll(req->file))
4370 return -EAGAIN;
4371 /* IOPOLL retry should happen for io-wq threads */
4372 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
4373 goto done;
4374 /* no retry on NONBLOCK nor RWF_NOWAIT */
4375 if (req->flags & REQ_F_NOWAIT)
4376 goto done;
4377 ret = 0;
4378 } else if (ret == -EIOCBQUEUED) {
4379 goto out_free;
4380 } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
4381 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
4382 /* read all, failed, already did sync or don't want to retry */
4383 goto done;
4384 }
4385
4386 /*
4387 * Don't depend on the iter state matching what was consumed, or being
4388 * untouched in case of error. Restore it and we'll advance it
4389 * manually if we need to.
4390 */
4391 iov_iter_restore(&s->iter, &s->iter_state);
4392
4393 ret2 = io_setup_async_rw(req, iovec, s, true);
4394 if (ret2)
4395 return ret2;
4396
4397 iovec = NULL;
4398 rw = req->async_data;
4399 s = &rw->s;
4400 /*
4401 * Now use our persistent iterator and state, if we aren't already.
4402 * We've restored and mapped the iter to match.
4403 */
4404
4405 do {
4406 /*
4407 * We end up here because of a partial read, either from
4408 * above or inside this loop. Advance the iter by the bytes
4409 * that were consumed.
4410 */
4411 iov_iter_advance(&s->iter, ret);
4412 if (!iov_iter_count(&s->iter))
4413 break;
4414 rw->bytes_done += ret;
4415 iov_iter_save_state(&s->iter, &s->iter_state);
4416
4417 /* if we can retry, do so with the callbacks armed */
4418 if (!io_rw_should_retry(req)) {
4419 kiocb->ki_flags &= ~IOCB_WAITQ;
4420 return -EAGAIN;
4421 }
4422
4423 /*
4424 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
4425 * we get -EIOCBQUEUED, then we'll get a notification when the
4426 * desired page gets unlocked. We can also get a partial read
4427 * here, and if we do, then just retry at the new offset.
4428 */
4429 ret = io_iter_do_read(req, &s->iter);
4430 if (ret == -EIOCBQUEUED)
4431 return 0;
4432 /* we got some bytes, but not all. retry. */
4433 kiocb->ki_flags &= ~IOCB_WAITQ;
4434 iov_iter_restore(&s->iter, &s->iter_state);
4435 } while (ret > 0);
4436 done:
4437 kiocb_done(req, ret, issue_flags);
4438 out_free:
4439 /* it's faster to check here then delegate to kfree */
4440 if (iovec)
4441 kfree(iovec);
4442 return 0;
4443 }
4444
4445 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
4446 {
4447 struct io_rw_state __s, *s = &__s;
4448 struct iovec *iovec;
4449 struct kiocb *kiocb = &req->rw.kiocb;
4450 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4451 ssize_t ret, ret2;
4452 loff_t *ppos;
4453
4454 if (!req_has_async_data(req)) {
4455 ret = io_import_iovec(WRITE, req, &iovec, s, issue_flags);
4456 if (unlikely(ret < 0))
4457 return ret;
4458 } else {
4459 struct io_async_rw *rw = req->async_data;
4460
4461 s = &rw->s;
4462 iov_iter_restore(&s->iter, &s->iter_state);
4463 iovec = NULL;
4464 }
4465 ret = io_rw_init_file(req, FMODE_WRITE);
4466 if (unlikely(ret)) {
4467 kfree(iovec);
4468 return ret;
4469 }
4470 req->cqe.res = iov_iter_count(&s->iter);
4471
4472 if (force_nonblock) {
4473 /* If the file doesn't support async, just async punt */
4474 if (unlikely(!io_file_supports_nowait(req)))
4475 goto copy_iov;
4476
4477 /* file path doesn't support NOWAIT for non-direct_IO */
4478 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
4479 (req->flags & REQ_F_ISREG))
4480 goto copy_iov;
4481
4482 kiocb->ki_flags |= IOCB_NOWAIT;
4483 } else {
4484 /* Ensure we clear previously set non-block flag */
4485 kiocb->ki_flags &= ~IOCB_NOWAIT;
4486 }
4487
4488 ppos = io_kiocb_update_pos(req);
4489
4490 ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
4491 if (unlikely(ret))
4492 goto out_free;
4493
4494 /*
4495 * Open-code file_start_write here to grab freeze protection,
4496 * which will be released by another thread in
4497 * io_complete_rw(). Fool lockdep by telling it the lock got
4498 * released so that it doesn't complain about the held lock when
4499 * we return to userspace.
4500 */
4501 if (req->flags & REQ_F_ISREG) {
4502 sb_start_write(file_inode(req->file)->i_sb);
4503 __sb_writers_release(file_inode(req->file)->i_sb,
4504 SB_FREEZE_WRITE);
4505 }
4506 kiocb->ki_flags |= IOCB_WRITE;
4507
4508 if (likely(req->file->f_op->write_iter))
4509 ret2 = call_write_iter(req->file, kiocb, &s->iter);
4510 else if (req->file->f_op->write)
4511 ret2 = loop_rw_iter(WRITE, req, &s->iter);
4512 else
4513 ret2 = -EINVAL;
4514
4515 if (req->flags & REQ_F_REISSUE) {
4516 req->flags &= ~REQ_F_REISSUE;
4517 ret2 = -EAGAIN;
4518 }
4519
4520 /*
4521 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
4522 * retry them without IOCB_NOWAIT.
4523 */
4524 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
4525 ret2 = -EAGAIN;
4526 /* no retry on NONBLOCK nor RWF_NOWAIT */
4527 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
4528 goto done;
4529 if (!force_nonblock || ret2 != -EAGAIN) {
4530 /* IOPOLL retry should happen for io-wq threads */
4531 if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
4532 goto copy_iov;
4533 done:
4534 kiocb_done(req, ret2, issue_flags);
4535 } else {
4536 copy_iov:
4537 iov_iter_restore(&s->iter, &s->iter_state);
4538 ret = io_setup_async_rw(req, iovec, s, false);
4539 return ret ?: -EAGAIN;
4540 }
4541 out_free:
4542 /* it's reportedly faster than delegating the null check to kfree() */
4543 if (iovec)
4544 kfree(iovec);
4545 return ret;
4546 }
4547
4548 static int io_renameat_prep(struct io_kiocb *req,
4549 const struct io_uring_sqe *sqe)
4550 {
4551 struct io_rename *ren = &req->rename;
4552 const char __user *oldf, *newf;
4553
4554 if (sqe->buf_index || sqe->splice_fd_in)
4555 return -EINVAL;
4556 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4557 return -EBADF;
4558
4559 ren->old_dfd = READ_ONCE(sqe->fd);
4560 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4561 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4562 ren->new_dfd = READ_ONCE(sqe->len);
4563 ren->flags = READ_ONCE(sqe->rename_flags);
4564
4565 ren->oldpath = getname(oldf);
4566 if (IS_ERR(ren->oldpath))
4567 return PTR_ERR(ren->oldpath);
4568
4569 ren->newpath = getname(newf);
4570 if (IS_ERR(ren->newpath)) {
4571 putname(ren->oldpath);
4572 return PTR_ERR(ren->newpath);
4573 }
4574
4575 req->flags |= REQ_F_NEED_CLEANUP;
4576 return 0;
4577 }
4578
4579 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
4580 {
4581 struct io_rename *ren = &req->rename;
4582 int ret;
4583
4584 if (issue_flags & IO_URING_F_NONBLOCK)
4585 return -EAGAIN;
4586
4587 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
4588 ren->newpath, ren->flags);
4589
4590 req->flags &= ~REQ_F_NEED_CLEANUP;
4591 io_req_complete(req, ret);
4592 return 0;
4593 }
4594
4595 static inline void __io_xattr_finish(struct io_kiocb *req)
4596 {
4597 struct io_xattr *ix = &req->xattr;
4598
4599 if (ix->filename)
4600 putname(ix->filename);
4601
4602 kfree(ix->ctx.kname);
4603 kvfree(ix->ctx.kvalue);
4604 }
4605
4606 static void io_xattr_finish(struct io_kiocb *req, int ret)
4607 {
4608 req->flags &= ~REQ_F_NEED_CLEANUP;
4609
4610 __io_xattr_finish(req);
4611 io_req_complete(req, ret);
4612 }
4613
4614 static int __io_getxattr_prep(struct io_kiocb *req,
4615 const struct io_uring_sqe *sqe)
4616 {
4617 struct io_xattr *ix = &req->xattr;
4618 const char __user *name;
4619 int ret;
4620
4621 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4622 return -EBADF;
4623
4624 ix->filename = NULL;
4625 ix->ctx.kvalue = NULL;
4626 name = u64_to_user_ptr(READ_ONCE(sqe->addr));
4627 ix->ctx.cvalue = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4628 ix->ctx.size = READ_ONCE(sqe->len);
4629 ix->ctx.flags = READ_ONCE(sqe->xattr_flags);
4630
4631 if (ix->ctx.flags)
4632 return -EINVAL;
4633
4634 ix->ctx.kname = kmalloc(sizeof(*ix->ctx.kname), GFP_KERNEL);
4635 if (!ix->ctx.kname)
4636 return -ENOMEM;
4637
4638 ret = strncpy_from_user(ix->ctx.kname->name, name,
4639 sizeof(ix->ctx.kname->name));
4640 if (!ret || ret == sizeof(ix->ctx.kname->name))
4641 ret = -ERANGE;
4642 if (ret < 0) {
4643 kfree(ix->ctx.kname);
4644 return ret;
4645 }
4646
4647 req->flags |= REQ_F_NEED_CLEANUP;
4648 return 0;
4649 }
4650
4651 static int io_fgetxattr_prep(struct io_kiocb *req,
4652 const struct io_uring_sqe *sqe)
4653 {
4654 return __io_getxattr_prep(req, sqe);
4655 }
4656
4657 static int io_getxattr_prep(struct io_kiocb *req,
4658 const struct io_uring_sqe *sqe)
4659 {
4660 struct io_xattr *ix = &req->xattr;
4661 const char __user *path;
4662 int ret;
4663
4664 ret = __io_getxattr_prep(req, sqe);
4665 if (ret)
4666 return ret;
4667
4668 path = u64_to_user_ptr(READ_ONCE(sqe->addr3));
4669
4670 ix->filename = getname_flags(path, LOOKUP_FOLLOW, NULL);
4671 if (IS_ERR(ix->filename)) {
4672 ret = PTR_ERR(ix->filename);
4673 ix->filename = NULL;
4674 }
4675
4676 return ret;
4677 }
4678
4679 static int io_fgetxattr(struct io_kiocb *req, unsigned int issue_flags)
4680 {
4681 struct io_xattr *ix = &req->xattr;
4682 int ret;
4683
4684 if (issue_flags & IO_URING_F_NONBLOCK)
4685 return -EAGAIN;
4686
4687 ret = do_getxattr(mnt_user_ns(req->file->f_path.mnt),
4688 req->file->f_path.dentry,
4689 &ix->ctx);
4690
4691 io_xattr_finish(req, ret);
4692 return 0;
4693 }
4694
4695 static int io_getxattr(struct io_kiocb *req, unsigned int issue_flags)
4696 {
4697 struct io_xattr *ix = &req->xattr;
4698 unsigned int lookup_flags = LOOKUP_FOLLOW;
4699 struct path path;
4700 int ret;
4701
4702 if (issue_flags & IO_URING_F_NONBLOCK)
4703 return -EAGAIN;
4704
4705 retry:
4706 ret = filename_lookup(AT_FDCWD, ix->filename, lookup_flags, &path, NULL);
4707 if (!ret) {
4708 ret = do_getxattr(mnt_user_ns(path.mnt),
4709 path.dentry,
4710 &ix->ctx);
4711
4712 path_put(&path);
4713 if (retry_estale(ret, lookup_flags)) {
4714 lookup_flags |= LOOKUP_REVAL;
4715 goto retry;
4716 }
4717 }
4718
4719 io_xattr_finish(req, ret);
4720 return 0;
4721 }
4722
4723 static int __io_setxattr_prep(struct io_kiocb *req,
4724 const struct io_uring_sqe *sqe)
4725 {
4726 struct io_xattr *ix = &req->xattr;
4727 const char __user *name;
4728 int ret;
4729
4730 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4731 return -EBADF;
4732
4733 ix->filename = NULL;
4734 name = u64_to_user_ptr(READ_ONCE(sqe->addr));
4735 ix->ctx.cvalue = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4736 ix->ctx.kvalue = NULL;
4737 ix->ctx.size = READ_ONCE(sqe->len);
4738 ix->ctx.flags = READ_ONCE(sqe->xattr_flags);
4739
4740 ix->ctx.kname = kmalloc(sizeof(*ix->ctx.kname), GFP_KERNEL);
4741 if (!ix->ctx.kname)
4742 return -ENOMEM;
4743
4744 ret = setxattr_copy(name, &ix->ctx);
4745 if (ret) {
4746 kfree(ix->ctx.kname);
4747 return ret;
4748 }
4749
4750 req->flags |= REQ_F_NEED_CLEANUP;
4751 return 0;
4752 }
4753
4754 static int io_setxattr_prep(struct io_kiocb *req,
4755 const struct io_uring_sqe *sqe)
4756 {
4757 struct io_xattr *ix = &req->xattr;
4758 const char __user *path;
4759 int ret;
4760
4761 ret = __io_setxattr_prep(req, sqe);
4762 if (ret)
4763 return ret;
4764
4765 path = u64_to_user_ptr(READ_ONCE(sqe->addr3));
4766
4767 ix->filename = getname_flags(path, LOOKUP_FOLLOW, NULL);
4768 if (IS_ERR(ix->filename)) {
4769 ret = PTR_ERR(ix->filename);
4770 ix->filename = NULL;
4771 }
4772
4773 return ret;
4774 }
4775
4776 static int io_fsetxattr_prep(struct io_kiocb *req,
4777 const struct io_uring_sqe *sqe)
4778 {
4779 return __io_setxattr_prep(req, sqe);
4780 }
4781
4782 static int __io_setxattr(struct io_kiocb *req, unsigned int issue_flags,
4783 struct path *path)
4784 {
4785 struct io_xattr *ix = &req->xattr;
4786 int ret;
4787
4788 ret = mnt_want_write(path->mnt);
4789 if (!ret) {
4790 ret = do_setxattr(mnt_user_ns(path->mnt), path->dentry, &ix->ctx);
4791 mnt_drop_write(path->mnt);
4792 }
4793
4794 return ret;
4795 }
4796
4797 static int io_fsetxattr(struct io_kiocb *req, unsigned int issue_flags)
4798 {
4799 int ret;
4800
4801 if (issue_flags & IO_URING_F_NONBLOCK)
4802 return -EAGAIN;
4803
4804 ret = __io_setxattr(req, issue_flags, &req->file->f_path);
4805 io_xattr_finish(req, ret);
4806
4807 return 0;
4808 }
4809
4810 static int io_setxattr(struct io_kiocb *req, unsigned int issue_flags)
4811 {
4812 struct io_xattr *ix = &req->xattr;
4813 unsigned int lookup_flags = LOOKUP_FOLLOW;
4814 struct path path;
4815 int ret;
4816
4817 if (issue_flags & IO_URING_F_NONBLOCK)
4818 return -EAGAIN;
4819
4820 retry:
4821 ret = filename_lookup(AT_FDCWD, ix->filename, lookup_flags, &path, NULL);
4822 if (!ret) {
4823 ret = __io_setxattr(req, issue_flags, &path);
4824 path_put(&path);
4825 if (retry_estale(ret, lookup_flags)) {
4826 lookup_flags |= LOOKUP_REVAL;
4827 goto retry;
4828 }
4829 }
4830
4831 io_xattr_finish(req, ret);
4832 return 0;
4833 }
4834
4835 static int io_unlinkat_prep(struct io_kiocb *req,
4836 const struct io_uring_sqe *sqe)
4837 {
4838 struct io_unlink *un = &req->unlink;
4839 const char __user *fname;
4840
4841 if (sqe->off || sqe->len || sqe->buf_index || sqe->splice_fd_in)
4842 return -EINVAL;
4843 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4844 return -EBADF;
4845
4846 un->dfd = READ_ONCE(sqe->fd);
4847
4848 un->flags = READ_ONCE(sqe->unlink_flags);
4849 if (un->flags & ~AT_REMOVEDIR)
4850 return -EINVAL;
4851
4852 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4853 un->filename = getname(fname);
4854 if (IS_ERR(un->filename))
4855 return PTR_ERR(un->filename);
4856
4857 req->flags |= REQ_F_NEED_CLEANUP;
4858 return 0;
4859 }
4860
4861 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
4862 {
4863 struct io_unlink *un = &req->unlink;
4864 int ret;
4865
4866 if (issue_flags & IO_URING_F_NONBLOCK)
4867 return -EAGAIN;
4868
4869 if (un->flags & AT_REMOVEDIR)
4870 ret = do_rmdir(un->dfd, un->filename);
4871 else
4872 ret = do_unlinkat(un->dfd, un->filename);
4873
4874 req->flags &= ~REQ_F_NEED_CLEANUP;
4875 io_req_complete(req, ret);
4876 return 0;
4877 }
4878
4879 static int io_mkdirat_prep(struct io_kiocb *req,
4880 const struct io_uring_sqe *sqe)
4881 {
4882 struct io_mkdir *mkd = &req->mkdir;
4883 const char __user *fname;
4884
4885 if (sqe->off || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4886 return -EINVAL;
4887 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4888 return -EBADF;
4889
4890 mkd->dfd = READ_ONCE(sqe->fd);
4891 mkd->mode = READ_ONCE(sqe->len);
4892
4893 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4894 mkd->filename = getname(fname);
4895 if (IS_ERR(mkd->filename))
4896 return PTR_ERR(mkd->filename);
4897
4898 req->flags |= REQ_F_NEED_CLEANUP;
4899 return 0;
4900 }
4901
4902 static int io_mkdirat(struct io_kiocb *req, unsigned int issue_flags)
4903 {
4904 struct io_mkdir *mkd = &req->mkdir;
4905 int ret;
4906
4907 if (issue_flags & IO_URING_F_NONBLOCK)
4908 return -EAGAIN;
4909
4910 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
4911
4912 req->flags &= ~REQ_F_NEED_CLEANUP;
4913 io_req_complete(req, ret);
4914 return 0;
4915 }
4916
4917 static int io_symlinkat_prep(struct io_kiocb *req,
4918 const struct io_uring_sqe *sqe)
4919 {
4920 struct io_symlink *sl = &req->symlink;
4921 const char __user *oldpath, *newpath;
4922
4923 if (sqe->len || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4924 return -EINVAL;
4925 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4926 return -EBADF;
4927
4928 sl->new_dfd = READ_ONCE(sqe->fd);
4929 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
4930 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4931
4932 sl->oldpath = getname(oldpath);
4933 if (IS_ERR(sl->oldpath))
4934 return PTR_ERR(sl->oldpath);
4935
4936 sl->newpath = getname(newpath);
4937 if (IS_ERR(sl->newpath)) {
4938 putname(sl->oldpath);
4939 return PTR_ERR(sl->newpath);
4940 }
4941
4942 req->flags |= REQ_F_NEED_CLEANUP;
4943 return 0;
4944 }
4945
4946 static int io_symlinkat(struct io_kiocb *req, unsigned int issue_flags)
4947 {
4948 struct io_symlink *sl = &req->symlink;
4949 int ret;
4950
4951 if (issue_flags & IO_URING_F_NONBLOCK)
4952 return -EAGAIN;
4953
4954 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
4955
4956 req->flags &= ~REQ_F_NEED_CLEANUP;
4957 io_req_complete(req, ret);
4958 return 0;
4959 }
4960
4961 static int io_linkat_prep(struct io_kiocb *req,
4962 const struct io_uring_sqe *sqe)
4963 {
4964 struct io_hardlink *lnk = &req->hardlink;
4965 const char __user *oldf, *newf;
4966
4967 if (sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4968 return -EINVAL;
4969 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4970 return -EBADF;
4971
4972 lnk->old_dfd = READ_ONCE(sqe->fd);
4973 lnk->new_dfd = READ_ONCE(sqe->len);
4974 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
4975 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4976 lnk->flags = READ_ONCE(sqe->hardlink_flags);
4977
4978 lnk->oldpath = getname(oldf);
4979 if (IS_ERR(lnk->oldpath))
4980 return PTR_ERR(lnk->oldpath);
4981
4982 lnk->newpath = getname(newf);
4983 if (IS_ERR(lnk->newpath)) {
4984 putname(lnk->oldpath);
4985 return PTR_ERR(lnk->newpath);
4986 }
4987
4988 req->flags |= REQ_F_NEED_CLEANUP;
4989 return 0;
4990 }
4991
4992 static int io_linkat(struct io_kiocb *req, unsigned int issue_flags)
4993 {
4994 struct io_hardlink *lnk = &req->hardlink;
4995 int ret;
4996
4997 if (issue_flags & IO_URING_F_NONBLOCK)
4998 return -EAGAIN;
4999
5000 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
5001 lnk->newpath, lnk->flags);
5002
5003 req->flags &= ~REQ_F_NEED_CLEANUP;
5004 io_req_complete(req, ret);
5005 return 0;
5006 }
5007
5008 static void io_uring_cmd_work(struct io_kiocb *req, bool *locked)
5009 {
5010 req->uring_cmd.task_work_cb(&req->uring_cmd);
5011 }
5012
5013 void io_uring_cmd_complete_in_task(struct io_uring_cmd *ioucmd,
5014 void (*task_work_cb)(struct io_uring_cmd *))
5015 {
5016 struct io_kiocb *req = container_of(ioucmd, struct io_kiocb, uring_cmd);
5017
5018 req->uring_cmd.task_work_cb = task_work_cb;
5019 req->io_task_work.func = io_uring_cmd_work;
5020 io_req_task_work_add(req);
5021 }
5022 EXPORT_SYMBOL_GPL(io_uring_cmd_complete_in_task);
5023
5024 static inline void io_req_set_cqe32_extra(struct io_kiocb *req,
5025 u64 extra1, u64 extra2)
5026 {
5027 req->extra1 = extra1;
5028 req->extra2 = extra2;
5029 req->flags |= REQ_F_CQE32_INIT;
5030 }
5031
5032 /*
5033 * Called by consumers of io_uring_cmd, if they originally returned
5034 * -EIOCBQUEUED upon receiving the command.
5035 */
5036 void io_uring_cmd_done(struct io_uring_cmd *ioucmd, ssize_t ret, ssize_t res2)
5037 {
5038 struct io_kiocb *req = container_of(ioucmd, struct io_kiocb, uring_cmd);
5039
5040 if (ret < 0)
5041 req_set_fail(req);
5042
5043 if (req->ctx->flags & IORING_SETUP_CQE32)
5044 io_req_set_cqe32_extra(req, res2, 0);
5045 io_req_complete(req, ret);
5046 }
5047 EXPORT_SYMBOL_GPL(io_uring_cmd_done);
5048
5049 static int io_uring_cmd_prep_async(struct io_kiocb *req)
5050 {
5051 size_t cmd_size;
5052
5053 cmd_size = uring_cmd_pdu_size(req->ctx->flags & IORING_SETUP_SQE128);
5054
5055 memcpy(req->async_data, req->uring_cmd.cmd, cmd_size);
5056 return 0;
5057 }
5058
5059 static int io_uring_cmd_prep(struct io_kiocb *req,
5060 const struct io_uring_sqe *sqe)
5061 {
5062 struct io_uring_cmd *ioucmd = &req->uring_cmd;
5063
5064 if (sqe->rw_flags)
5065 return -EINVAL;
5066 ioucmd->cmd = sqe->cmd;
5067 ioucmd->cmd_op = READ_ONCE(sqe->cmd_op);
5068 return 0;
5069 }
5070
5071 static int io_uring_cmd(struct io_kiocb *req, unsigned int issue_flags)
5072 {
5073 struct io_uring_cmd *ioucmd = &req->uring_cmd;
5074 struct io_ring_ctx *ctx = req->ctx;
5075 struct file *file = req->file;
5076 int ret;
5077
5078 if (!req->file->f_op->uring_cmd)
5079 return -EOPNOTSUPP;
5080
5081 if (ctx->flags & IORING_SETUP_SQE128)
5082 issue_flags |= IO_URING_F_SQE128;
5083 if (ctx->flags & IORING_SETUP_CQE32)
5084 issue_flags |= IO_URING_F_CQE32;
5085 if (ctx->flags & IORING_SETUP_IOPOLL)
5086 issue_flags |= IO_URING_F_IOPOLL;
5087
5088 if (req_has_async_data(req))
5089 ioucmd->cmd = req->async_data;
5090
5091 ret = file->f_op->uring_cmd(ioucmd, issue_flags);
5092 if (ret == -EAGAIN) {
5093 if (!req_has_async_data(req)) {
5094 if (io_alloc_async_data(req))
5095 return -ENOMEM;
5096 io_uring_cmd_prep_async(req);
5097 }
5098 return -EAGAIN;
5099 }
5100
5101 if (ret != -EIOCBQUEUED)
5102 io_uring_cmd_done(ioucmd, ret, 0);
5103 return 0;
5104 }
5105
5106 static int __io_splice_prep(struct io_kiocb *req,
5107 const struct io_uring_sqe *sqe)
5108 {
5109 struct io_splice *sp = &req->splice;
5110 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
5111
5112 sp->len = READ_ONCE(sqe->len);
5113 sp->flags = READ_ONCE(sqe->splice_flags);
5114 if (unlikely(sp->flags & ~valid_flags))
5115 return -EINVAL;
5116 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
5117 return 0;
5118 }
5119
5120 static int io_tee_prep(struct io_kiocb *req,
5121 const struct io_uring_sqe *sqe)
5122 {
5123 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
5124 return -EINVAL;
5125 return __io_splice_prep(req, sqe);
5126 }
5127
5128 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
5129 {
5130 struct io_splice *sp = &req->splice;
5131 struct file *out = sp->file_out;
5132 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
5133 struct file *in;
5134 long ret = 0;
5135
5136 if (issue_flags & IO_URING_F_NONBLOCK)
5137 return -EAGAIN;
5138
5139 if (sp->flags & SPLICE_F_FD_IN_FIXED)
5140 in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
5141 else
5142 in = io_file_get_normal(req, sp->splice_fd_in);
5143 if (!in) {
5144 ret = -EBADF;
5145 goto done;
5146 }
5147
5148 if (sp->len)
5149 ret = do_tee(in, out, sp->len, flags);
5150
5151 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
5152 io_put_file(in);
5153 done:
5154 if (ret != sp->len)
5155 req_set_fail(req);
5156 __io_req_complete(req, 0, ret, 0);
5157 return 0;
5158 }
5159
5160 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5161 {
5162 struct io_splice *sp = &req->splice;
5163
5164 sp->off_in = READ_ONCE(sqe->splice_off_in);
5165 sp->off_out = READ_ONCE(sqe->off);
5166 return __io_splice_prep(req, sqe);
5167 }
5168
5169 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
5170 {
5171 struct io_splice *sp = &req->splice;
5172 struct file *out = sp->file_out;
5173 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
5174 loff_t *poff_in, *poff_out;
5175 struct file *in;
5176 long ret = 0;
5177
5178 if (issue_flags & IO_URING_F_NONBLOCK)
5179 return -EAGAIN;
5180
5181 if (sp->flags & SPLICE_F_FD_IN_FIXED)
5182 in = io_file_get_fixed(req, sp->splice_fd_in, issue_flags);
5183 else
5184 in = io_file_get_normal(req, sp->splice_fd_in);
5185 if (!in) {
5186 ret = -EBADF;
5187 goto done;
5188 }
5189
5190 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
5191 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
5192
5193 if (sp->len)
5194 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
5195
5196 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
5197 io_put_file(in);
5198 done:
5199 if (ret != sp->len)
5200 req_set_fail(req);
5201 __io_req_complete(req, 0, ret, 0);
5202 return 0;
5203 }
5204
5205 static int io_nop_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5206 {
5207 return 0;
5208 }
5209
5210 /*
5211 * IORING_OP_NOP just posts a completion event, nothing else.
5212 */
5213 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
5214 {
5215 __io_req_complete(req, issue_flags, 0, 0);
5216 return 0;
5217 }
5218
5219 static int io_msg_ring_prep(struct io_kiocb *req,
5220 const struct io_uring_sqe *sqe)
5221 {
5222 if (unlikely(sqe->addr || sqe->rw_flags || sqe->splice_fd_in ||
5223 sqe->buf_index || sqe->personality))
5224 return -EINVAL;
5225
5226 req->msg.user_data = READ_ONCE(sqe->off);
5227 req->msg.len = READ_ONCE(sqe->len);
5228 return 0;
5229 }
5230
5231 static int io_msg_ring(struct io_kiocb *req, unsigned int issue_flags)
5232 {
5233 struct io_ring_ctx *target_ctx;
5234 struct io_msg *msg = &req->msg;
5235 bool filled;
5236 int ret;
5237
5238 ret = -EBADFD;
5239 if (req->file->f_op != &io_uring_fops)
5240 goto done;
5241
5242 ret = -EOVERFLOW;
5243 target_ctx = req->file->private_data;
5244
5245 spin_lock(&target_ctx->completion_lock);
5246 filled = io_fill_cqe_aux(target_ctx, msg->user_data, msg->len, 0);
5247 io_commit_cqring(target_ctx);
5248 spin_unlock(&target_ctx->completion_lock);
5249
5250 if (filled) {
5251 io_cqring_ev_posted(target_ctx);
5252 ret = 0;
5253 }
5254
5255 done:
5256 if (ret < 0)
5257 req_set_fail(req);
5258 __io_req_complete(req, issue_flags, ret, 0);
5259 /* put file to avoid an attempt to IOPOLL the req */
5260 io_put_file(req->file);
5261 req->file = NULL;
5262 return 0;
5263 }
5264
5265 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5266 {
5267 if (unlikely(sqe->addr || sqe->buf_index || sqe->splice_fd_in))
5268 return -EINVAL;
5269
5270 req->sync.flags = READ_ONCE(sqe->fsync_flags);
5271 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
5272 return -EINVAL;
5273
5274 req->sync.off = READ_ONCE(sqe->off);
5275 req->sync.len = READ_ONCE(sqe->len);
5276 return 0;
5277 }
5278
5279 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
5280 {
5281 loff_t end = req->sync.off + req->sync.len;
5282 int ret;
5283
5284 /* fsync always requires a blocking context */
5285 if (issue_flags & IO_URING_F_NONBLOCK)
5286 return -EAGAIN;
5287
5288 ret = vfs_fsync_range(req->file, req->sync.off,
5289 end > 0 ? end : LLONG_MAX,
5290 req->sync.flags & IORING_FSYNC_DATASYNC);
5291 io_req_complete(req, ret);
5292 return 0;
5293 }
5294
5295 static int io_fallocate_prep(struct io_kiocb *req,
5296 const struct io_uring_sqe *sqe)
5297 {
5298 if (sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
5299 return -EINVAL;
5300
5301 req->sync.off = READ_ONCE(sqe->off);
5302 req->sync.len = READ_ONCE(sqe->addr);
5303 req->sync.mode = READ_ONCE(sqe->len);
5304 return 0;
5305 }
5306
5307 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
5308 {
5309 int ret;
5310
5311 /* fallocate always requiring blocking context */
5312 if (issue_flags & IO_URING_F_NONBLOCK)
5313 return -EAGAIN;
5314 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
5315 req->sync.len);
5316 if (ret >= 0)
5317 fsnotify_modify(req->file);
5318 io_req_complete(req, ret);
5319 return 0;
5320 }
5321
5322 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5323 {
5324 const char __user *fname;
5325 int ret;
5326
5327 if (unlikely(sqe->buf_index))
5328 return -EINVAL;
5329 if (unlikely(req->flags & REQ_F_FIXED_FILE))
5330 return -EBADF;
5331
5332 /* open.how should be already initialised */
5333 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
5334 req->open.how.flags |= O_LARGEFILE;
5335
5336 req->open.dfd = READ_ONCE(sqe->fd);
5337 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
5338 req->open.filename = getname(fname);
5339 if (IS_ERR(req->open.filename)) {
5340 ret = PTR_ERR(req->open.filename);
5341 req->open.filename = NULL;
5342 return ret;
5343 }
5344
5345 req->open.file_slot = READ_ONCE(sqe->file_index);
5346 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
5347 return -EINVAL;
5348
5349 req->open.nofile = rlimit(RLIMIT_NOFILE);
5350 req->flags |= REQ_F_NEED_CLEANUP;
5351 return 0;
5352 }
5353
5354 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5355 {
5356 u64 mode = READ_ONCE(sqe->len);
5357 u64 flags = READ_ONCE(sqe->open_flags);
5358
5359 req->open.how = build_open_how(flags, mode);
5360 return __io_openat_prep(req, sqe);
5361 }
5362
5363 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5364 {
5365 struct open_how __user *how;
5366 size_t len;
5367 int ret;
5368
5369 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5370 len = READ_ONCE(sqe->len);
5371 if (len < OPEN_HOW_SIZE_VER0)
5372 return -EINVAL;
5373
5374 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
5375 len);
5376 if (ret)
5377 return ret;
5378
5379 return __io_openat_prep(req, sqe);
5380 }
5381
5382 static int io_file_bitmap_get(struct io_ring_ctx *ctx)
5383 {
5384 struct io_file_table *table = &ctx->file_table;
5385 unsigned long nr = ctx->nr_user_files;
5386 int ret;
5387
5388 do {
5389 ret = find_next_zero_bit(table->bitmap, nr, table->alloc_hint);
5390 if (ret != nr)
5391 return ret;
5392
5393 if (!table->alloc_hint)
5394 break;
5395
5396 nr = table->alloc_hint;
5397 table->alloc_hint = 0;
5398 } while (1);
5399
5400 return -ENFILE;
5401 }
5402
5403 /*
5404 * Note when io_fixed_fd_install() returns error value, it will ensure
5405 * fput() is called correspondingly.
5406 */
5407 static int io_fixed_fd_install(struct io_kiocb *req, unsigned int issue_flags,
5408 struct file *file, unsigned int file_slot)
5409 {
5410 bool alloc_slot = file_slot == IORING_FILE_INDEX_ALLOC;
5411 struct io_ring_ctx *ctx = req->ctx;
5412 int ret;
5413
5414 io_ring_submit_lock(ctx, issue_flags);
5415
5416 if (alloc_slot) {
5417 ret = io_file_bitmap_get(ctx);
5418 if (unlikely(ret < 0))
5419 goto err;
5420 file_slot = ret;
5421 } else {
5422 file_slot--;
5423 }
5424
5425 ret = io_install_fixed_file(req, file, issue_flags, file_slot);
5426 if (!ret && alloc_slot)
5427 ret = file_slot;
5428 err:
5429 io_ring_submit_unlock(ctx, issue_flags);
5430 if (unlikely(ret < 0))
5431 fput(file);
5432 return ret;
5433 }
5434
5435 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
5436 {
5437 struct open_flags op;
5438 struct file *file;
5439 bool resolve_nonblock, nonblock_set;
5440 bool fixed = !!req->open.file_slot;
5441 int ret;
5442
5443 ret = build_open_flags(&req->open.how, &op);
5444 if (ret)
5445 goto err;
5446 nonblock_set = op.open_flag & O_NONBLOCK;
5447 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
5448 if (issue_flags & IO_URING_F_NONBLOCK) {
5449 /*
5450 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
5451 * it'll always -EAGAIN
5452 */
5453 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
5454 return -EAGAIN;
5455 op.lookup_flags |= LOOKUP_CACHED;
5456 op.open_flag |= O_NONBLOCK;
5457 }
5458
5459 if (!fixed) {
5460 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
5461 if (ret < 0)
5462 goto err;
5463 }
5464
5465 file = do_filp_open(req->open.dfd, req->open.filename, &op);
5466 if (IS_ERR(file)) {
5467 /*
5468 * We could hang on to this 'fd' on retrying, but seems like
5469 * marginal gain for something that is now known to be a slower
5470 * path. So just put it, and we'll get a new one when we retry.
5471 */
5472 if (!fixed)
5473 put_unused_fd(ret);
5474
5475 ret = PTR_ERR(file);
5476 /* only retry if RESOLVE_CACHED wasn't already set by application */
5477 if (ret == -EAGAIN &&
5478 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
5479 return -EAGAIN;
5480 goto err;
5481 }
5482
5483 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
5484 file->f_flags &= ~O_NONBLOCK;
5485 fsnotify_open(file);
5486
5487 if (!fixed)
5488 fd_install(ret, file);
5489 else
5490 ret = io_fixed_fd_install(req, issue_flags, file,
5491 req->open.file_slot);
5492 err:
5493 putname(req->open.filename);
5494 req->flags &= ~REQ_F_NEED_CLEANUP;
5495 if (ret < 0)
5496 req_set_fail(req);
5497 __io_req_complete(req, issue_flags, ret, 0);
5498 return 0;
5499 }
5500
5501 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
5502 {
5503 return io_openat2(req, issue_flags);
5504 }
5505
5506 static int io_remove_buffers_prep(struct io_kiocb *req,
5507 const struct io_uring_sqe *sqe)
5508 {
5509 struct io_provide_buf *p = &req->pbuf;
5510 u64 tmp;
5511
5512 if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
5513 sqe->splice_fd_in)
5514 return -EINVAL;
5515
5516 tmp = READ_ONCE(sqe->fd);
5517 if (!tmp || tmp > USHRT_MAX)
5518 return -EINVAL;
5519
5520 memset(p, 0, sizeof(*p));
5521 p->nbufs = tmp;
5522 p->bgid = READ_ONCE(sqe->buf_group);
5523 return 0;
5524 }
5525
5526 static int __io_remove_buffers(struct io_ring_ctx *ctx,
5527 struct io_buffer_list *bl, unsigned nbufs)
5528 {
5529 unsigned i = 0;
5530
5531 /* shouldn't happen */
5532 if (!nbufs)
5533 return 0;
5534
5535 if (bl->buf_nr_pages) {
5536 int j;
5537
5538 i = bl->buf_ring->tail - bl->head;
5539 for (j = 0; j < bl->buf_nr_pages; j++)
5540 unpin_user_page(bl->buf_pages[j]);
5541 kvfree(bl->buf_pages);
5542 bl->buf_pages = NULL;
5543 bl->buf_nr_pages = 0;
5544 /* make sure it's seen as empty */
5545 INIT_LIST_HEAD(&bl->buf_list);
5546 return i;
5547 }
5548
5549 /* the head kbuf is the list itself */
5550 while (!list_empty(&bl->buf_list)) {
5551 struct io_buffer *nxt;
5552
5553 nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
5554 list_del(&nxt->list);
5555 if (++i == nbufs)
5556 return i;
5557 cond_resched();
5558 }
5559 i++;
5560
5561 return i;
5562 }
5563
5564 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
5565 {
5566 struct io_provide_buf *p = &req->pbuf;
5567 struct io_ring_ctx *ctx = req->ctx;
5568 struct io_buffer_list *bl;
5569 int ret = 0;
5570
5571 io_ring_submit_lock(ctx, issue_flags);
5572
5573 ret = -ENOENT;
5574 bl = io_buffer_get_list(ctx, p->bgid);
5575 if (bl) {
5576 ret = -EINVAL;
5577 /* can't use provide/remove buffers command on mapped buffers */
5578 if (!bl->buf_nr_pages)
5579 ret = __io_remove_buffers(ctx, bl, p->nbufs);
5580 }
5581 if (ret < 0)
5582 req_set_fail(req);
5583
5584 /* complete before unlock, IOPOLL may need the lock */
5585 __io_req_complete(req, issue_flags, ret, 0);
5586 io_ring_submit_unlock(ctx, issue_flags);
5587 return 0;
5588 }
5589
5590 static int io_provide_buffers_prep(struct io_kiocb *req,
5591 const struct io_uring_sqe *sqe)
5592 {
5593 unsigned long size, tmp_check;
5594 struct io_provide_buf *p = &req->pbuf;
5595 u64 tmp;
5596
5597 if (sqe->rw_flags || sqe->splice_fd_in)
5598 return -EINVAL;
5599
5600 tmp = READ_ONCE(sqe->fd);
5601 if (!tmp || tmp > USHRT_MAX)
5602 return -E2BIG;
5603 p->nbufs = tmp;
5604 p->addr = READ_ONCE(sqe->addr);
5605 p->len = READ_ONCE(sqe->len);
5606
5607 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
5608 &size))
5609 return -EOVERFLOW;
5610 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
5611 return -EOVERFLOW;
5612
5613 size = (unsigned long)p->len * p->nbufs;
5614 if (!access_ok(u64_to_user_ptr(p->addr), size))
5615 return -EFAULT;
5616
5617 p->bgid = READ_ONCE(sqe->buf_group);
5618 tmp = READ_ONCE(sqe->off);
5619 if (tmp > USHRT_MAX)
5620 return -E2BIG;
5621 p->bid = tmp;
5622 return 0;
5623 }
5624
5625 static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
5626 {
5627 struct io_buffer *buf;
5628 struct page *page;
5629 int bufs_in_page;
5630
5631 /*
5632 * Completions that don't happen inline (eg not under uring_lock) will
5633 * add to ->io_buffers_comp. If we don't have any free buffers, check
5634 * the completion list and splice those entries first.
5635 */
5636 if (!list_empty_careful(&ctx->io_buffers_comp)) {
5637 spin_lock(&ctx->completion_lock);
5638 if (!list_empty(&ctx->io_buffers_comp)) {
5639 list_splice_init(&ctx->io_buffers_comp,
5640 &ctx->io_buffers_cache);
5641 spin_unlock(&ctx->completion_lock);
5642 return 0;
5643 }
5644 spin_unlock(&ctx->completion_lock);
5645 }
5646
5647 /*
5648 * No free buffers and no completion entries either. Allocate a new
5649 * page worth of buffer entries and add those to our freelist.
5650 */
5651 page = alloc_page(GFP_KERNEL_ACCOUNT);
5652 if (!page)
5653 return -ENOMEM;
5654
5655 list_add(&page->lru, &ctx->io_buffers_pages);
5656
5657 buf = page_address(page);
5658 bufs_in_page = PAGE_SIZE / sizeof(*buf);
5659 while (bufs_in_page) {
5660 list_add_tail(&buf->list, &ctx->io_buffers_cache);
5661 buf++;
5662 bufs_in_page--;
5663 }
5664
5665 return 0;
5666 }
5667
5668 static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
5669 struct io_buffer_list *bl)
5670 {
5671 struct io_buffer *buf;
5672 u64 addr = pbuf->addr;
5673 int i, bid = pbuf->bid;
5674
5675 for (i = 0; i < pbuf->nbufs; i++) {
5676 if (list_empty(&ctx->io_buffers_cache) &&
5677 io_refill_buffer_cache(ctx))
5678 break;
5679 buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
5680 list);
5681 list_move_tail(&buf->list, &bl->buf_list);
5682 buf->addr = addr;
5683 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
5684 buf->bid = bid;
5685 buf->bgid = pbuf->bgid;
5686 addr += pbuf->len;
5687 bid++;
5688 cond_resched();
5689 }
5690
5691 return i ? 0 : -ENOMEM;
5692 }
5693
5694 static __cold int io_init_bl_list(struct io_ring_ctx *ctx)
5695 {
5696 int i;
5697
5698 ctx->io_bl = kcalloc(BGID_ARRAY, sizeof(struct io_buffer_list),
5699 GFP_KERNEL);
5700 if (!ctx->io_bl)
5701 return -ENOMEM;
5702
5703 for (i = 0; i < BGID_ARRAY; i++) {
5704 INIT_LIST_HEAD(&ctx->io_bl[i].buf_list);
5705 ctx->io_bl[i].bgid = i;
5706 }
5707
5708 return 0;
5709 }
5710
5711 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
5712 {
5713 struct io_provide_buf *p = &req->pbuf;
5714 struct io_ring_ctx *ctx = req->ctx;
5715 struct io_buffer_list *bl;
5716 int ret = 0;
5717
5718 io_ring_submit_lock(ctx, issue_flags);
5719
5720 if (unlikely(p->bgid < BGID_ARRAY && !ctx->io_bl)) {
5721 ret = io_init_bl_list(ctx);
5722 if (ret)
5723 goto err;
5724 }
5725
5726 bl = io_buffer_get_list(ctx, p->bgid);
5727 if (unlikely(!bl)) {
5728 bl = kzalloc(sizeof(*bl), GFP_KERNEL);
5729 if (!bl) {
5730 ret = -ENOMEM;
5731 goto err;
5732 }
5733 INIT_LIST_HEAD(&bl->buf_list);
5734 ret = io_buffer_add_list(ctx, bl, p->bgid);
5735 if (ret) {
5736 kfree(bl);
5737 goto err;
5738 }
5739 }
5740 /* can't add buffers via this command for a mapped buffer ring */
5741 if (bl->buf_nr_pages) {
5742 ret = -EINVAL;
5743 goto err;
5744 }
5745
5746 ret = io_add_buffers(ctx, p, bl);
5747 err:
5748 if (ret < 0)
5749 req_set_fail(req);
5750 /* complete before unlock, IOPOLL may need the lock */
5751 __io_req_complete(req, issue_flags, ret, 0);
5752 io_ring_submit_unlock(ctx, issue_flags);
5753 return 0;
5754 }
5755
5756 static int io_epoll_ctl_prep(struct io_kiocb *req,
5757 const struct io_uring_sqe *sqe)
5758 {
5759 #if defined(CONFIG_EPOLL)
5760 if (sqe->buf_index || sqe->splice_fd_in)
5761 return -EINVAL;
5762
5763 req->epoll.epfd = READ_ONCE(sqe->fd);
5764 req->epoll.op = READ_ONCE(sqe->len);
5765 req->epoll.fd = READ_ONCE(sqe->off);
5766
5767 if (ep_op_has_event(req->epoll.op)) {
5768 struct epoll_event __user *ev;
5769
5770 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
5771 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
5772 return -EFAULT;
5773 }
5774
5775 return 0;
5776 #else
5777 return -EOPNOTSUPP;
5778 #endif
5779 }
5780
5781 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
5782 {
5783 #if defined(CONFIG_EPOLL)
5784 struct io_epoll *ie = &req->epoll;
5785 int ret;
5786 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5787
5788 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
5789 if (force_nonblock && ret == -EAGAIN)
5790 return -EAGAIN;
5791
5792 if (ret < 0)
5793 req_set_fail(req);
5794 __io_req_complete(req, issue_flags, ret, 0);
5795 return 0;
5796 #else
5797 return -EOPNOTSUPP;
5798 #endif
5799 }
5800
5801 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5802 {
5803 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
5804 if (sqe->buf_index || sqe->off || sqe->splice_fd_in)
5805 return -EINVAL;
5806
5807 req->madvise.addr = READ_ONCE(sqe->addr);
5808 req->madvise.len = READ_ONCE(sqe->len);
5809 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
5810 return 0;
5811 #else
5812 return -EOPNOTSUPP;
5813 #endif
5814 }
5815
5816 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
5817 {
5818 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
5819 struct io_madvise *ma = &req->madvise;
5820 int ret;
5821
5822 if (issue_flags & IO_URING_F_NONBLOCK)
5823 return -EAGAIN;
5824
5825 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
5826 io_req_complete(req, ret);
5827 return 0;
5828 #else
5829 return -EOPNOTSUPP;
5830 #endif
5831 }
5832
5833 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5834 {
5835 if (sqe->buf_index || sqe->addr || sqe->splice_fd_in)
5836 return -EINVAL;
5837
5838 req->fadvise.offset = READ_ONCE(sqe->off);
5839 req->fadvise.len = READ_ONCE(sqe->len);
5840 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
5841 return 0;
5842 }
5843
5844 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
5845 {
5846 struct io_fadvise *fa = &req->fadvise;
5847 int ret;
5848
5849 if (issue_flags & IO_URING_F_NONBLOCK) {
5850 switch (fa->advice) {
5851 case POSIX_FADV_NORMAL:
5852 case POSIX_FADV_RANDOM:
5853 case POSIX_FADV_SEQUENTIAL:
5854 break;
5855 default:
5856 return -EAGAIN;
5857 }
5858 }
5859
5860 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
5861 if (ret < 0)
5862 req_set_fail(req);
5863 __io_req_complete(req, issue_flags, ret, 0);
5864 return 0;
5865 }
5866
5867 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5868 {
5869 const char __user *path;
5870
5871 if (sqe->buf_index || sqe->splice_fd_in)
5872 return -EINVAL;
5873 if (req->flags & REQ_F_FIXED_FILE)
5874 return -EBADF;
5875
5876 req->statx.dfd = READ_ONCE(sqe->fd);
5877 req->statx.mask = READ_ONCE(sqe->len);
5878 path = u64_to_user_ptr(READ_ONCE(sqe->addr));
5879 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5880 req->statx.flags = READ_ONCE(sqe->statx_flags);
5881
5882 req->statx.filename = getname_flags(path,
5883 getname_statx_lookup_flags(req->statx.flags),
5884 NULL);
5885
5886 if (IS_ERR(req->statx.filename)) {
5887 int ret = PTR_ERR(req->statx.filename);
5888
5889 req->statx.filename = NULL;
5890 return ret;
5891 }
5892
5893 req->flags |= REQ_F_NEED_CLEANUP;
5894 return 0;
5895 }
5896
5897 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
5898 {
5899 struct io_statx *ctx = &req->statx;
5900 int ret;
5901
5902 if (issue_flags & IO_URING_F_NONBLOCK)
5903 return -EAGAIN;
5904
5905 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
5906 ctx->buffer);
5907 io_req_complete(req, ret);
5908 return 0;
5909 }
5910
5911 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5912 {
5913 if (sqe->off || sqe->addr || sqe->len || sqe->rw_flags || sqe->buf_index)
5914 return -EINVAL;
5915 if (req->flags & REQ_F_FIXED_FILE)
5916 return -EBADF;
5917
5918 req->close.fd = READ_ONCE(sqe->fd);
5919 req->close.file_slot = READ_ONCE(sqe->file_index);
5920 if (req->close.file_slot && req->close.fd)
5921 return -EINVAL;
5922
5923 return 0;
5924 }
5925
5926 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
5927 {
5928 struct files_struct *files = current->files;
5929 struct io_close *close = &req->close;
5930 struct fdtable *fdt;
5931 struct file *file;
5932 int ret = -EBADF;
5933
5934 if (req->close.file_slot) {
5935 ret = io_close_fixed(req, issue_flags);
5936 goto err;
5937 }
5938
5939 spin_lock(&files->file_lock);
5940 fdt = files_fdtable(files);
5941 if (close->fd >= fdt->max_fds) {
5942 spin_unlock(&files->file_lock);
5943 goto err;
5944 }
5945 file = rcu_dereference_protected(fdt->fd[close->fd],
5946 lockdep_is_held(&files->file_lock));
5947 if (!file || file->f_op == &io_uring_fops) {
5948 spin_unlock(&files->file_lock);
5949 goto err;
5950 }
5951
5952 /* if the file has a flush method, be safe and punt to async */
5953 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
5954 spin_unlock(&files->file_lock);
5955 return -EAGAIN;
5956 }
5957
5958 file = __close_fd_get_file(close->fd);
5959 spin_unlock(&files->file_lock);
5960 if (!file)
5961 goto err;
5962
5963 /* No ->flush() or already async, safely close from here */
5964 ret = filp_close(file, current->files);
5965 err:
5966 if (ret < 0)
5967 req_set_fail(req);
5968 __io_req_complete(req, issue_flags, ret, 0);
5969 return 0;
5970 }
5971
5972 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5973 {
5974 if (unlikely(sqe->addr || sqe->buf_index || sqe->splice_fd_in))
5975 return -EINVAL;
5976
5977 req->sync.off = READ_ONCE(sqe->off);
5978 req->sync.len = READ_ONCE(sqe->len);
5979 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
5980 return 0;
5981 }
5982
5983 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
5984 {
5985 int ret;
5986
5987 /* sync_file_range always requires a blocking context */
5988 if (issue_flags & IO_URING_F_NONBLOCK)
5989 return -EAGAIN;
5990
5991 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
5992 req->sync.flags);
5993 io_req_complete(req, ret);
5994 return 0;
5995 }
5996
5997 #if defined(CONFIG_NET)
5998 static int io_shutdown_prep(struct io_kiocb *req,
5999 const struct io_uring_sqe *sqe)
6000 {
6001 if (unlikely(sqe->off || sqe->addr || sqe->rw_flags ||
6002 sqe->buf_index || sqe->splice_fd_in))
6003 return -EINVAL;
6004
6005 req->shutdown.how = READ_ONCE(sqe->len);
6006 return 0;
6007 }
6008
6009 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
6010 {
6011 struct socket *sock;
6012 int ret;
6013
6014 if (issue_flags & IO_URING_F_NONBLOCK)
6015 return -EAGAIN;
6016
6017 sock = sock_from_file(req->file);
6018 if (unlikely(!sock))
6019 return -ENOTSOCK;
6020
6021 ret = __sys_shutdown_sock(sock, req->shutdown.how);
6022 io_req_complete(req, ret);
6023 return 0;
6024 }
6025
6026 static bool io_net_retry(struct socket *sock, int flags)
6027 {
6028 if (!(flags & MSG_WAITALL))
6029 return false;
6030 return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
6031 }
6032
6033 static int io_setup_async_msg(struct io_kiocb *req,
6034 struct io_async_msghdr *kmsg)
6035 {
6036 struct io_async_msghdr *async_msg = req->async_data;
6037
6038 if (async_msg)
6039 return -EAGAIN;
6040 if (io_alloc_async_data(req)) {
6041 kfree(kmsg->free_iov);
6042 return -ENOMEM;
6043 }
6044 async_msg = req->async_data;
6045 req->flags |= REQ_F_NEED_CLEANUP;
6046 memcpy(async_msg, kmsg, sizeof(*kmsg));
6047 async_msg->msg.msg_name = &async_msg->addr;
6048 /* if were using fast_iov, set it to the new one */
6049 if (!async_msg->free_iov)
6050 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
6051
6052 return -EAGAIN;
6053 }
6054
6055 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
6056 struct io_async_msghdr *iomsg)
6057 {
6058 iomsg->msg.msg_name = &iomsg->addr;
6059 iomsg->free_iov = iomsg->fast_iov;
6060 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
6061 req->sr_msg.msg_flags, &iomsg->free_iov);
6062 }
6063
6064 static int io_sendmsg_prep_async(struct io_kiocb *req)
6065 {
6066 int ret;
6067
6068 ret = io_sendmsg_copy_hdr(req, req->async_data);
6069 if (!ret)
6070 req->flags |= REQ_F_NEED_CLEANUP;
6071 return ret;
6072 }
6073
6074 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6075 {
6076 struct io_sr_msg *sr = &req->sr_msg;
6077
6078 if (unlikely(sqe->file_index))
6079 return -EINVAL;
6080
6081 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
6082 sr->len = READ_ONCE(sqe->len);
6083 sr->flags = READ_ONCE(sqe->addr2);
6084 if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
6085 return -EINVAL;
6086 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
6087 if (sr->msg_flags & MSG_DONTWAIT)
6088 req->flags |= REQ_F_NOWAIT;
6089
6090 #ifdef CONFIG_COMPAT
6091 if (req->ctx->compat)
6092 sr->msg_flags |= MSG_CMSG_COMPAT;
6093 #endif
6094 sr->done_io = 0;
6095 return 0;
6096 }
6097
6098 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
6099 {
6100 struct io_async_msghdr iomsg, *kmsg;
6101 struct io_sr_msg *sr = &req->sr_msg;
6102 struct socket *sock;
6103 unsigned flags;
6104 int min_ret = 0;
6105 int ret;
6106
6107 sock = sock_from_file(req->file);
6108 if (unlikely(!sock))
6109 return -ENOTSOCK;
6110
6111 if (req_has_async_data(req)) {
6112 kmsg = req->async_data;
6113 } else {
6114 ret = io_sendmsg_copy_hdr(req, &iomsg);
6115 if (ret)
6116 return ret;
6117 kmsg = &iomsg;
6118 }
6119
6120 if (!(req->flags & REQ_F_POLLED) &&
6121 (sr->flags & IORING_RECVSEND_POLL_FIRST))
6122 return io_setup_async_msg(req, kmsg);
6123
6124 flags = sr->msg_flags;
6125 if (issue_flags & IO_URING_F_NONBLOCK)
6126 flags |= MSG_DONTWAIT;
6127 if (flags & MSG_WAITALL)
6128 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
6129
6130 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
6131
6132 if (ret < min_ret) {
6133 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
6134 return io_setup_async_msg(req, kmsg);
6135 if (ret == -ERESTARTSYS)
6136 ret = -EINTR;
6137 if (ret > 0 && io_net_retry(sock, flags)) {
6138 sr->done_io += ret;
6139 req->flags |= REQ_F_PARTIAL_IO;
6140 return io_setup_async_msg(req, kmsg);
6141 }
6142 req_set_fail(req);
6143 }
6144 /* fast path, check for non-NULL to avoid function call */
6145 if (kmsg->free_iov)
6146 kfree(kmsg->free_iov);
6147 req->flags &= ~REQ_F_NEED_CLEANUP;
6148 if (ret >= 0)
6149 ret += sr->done_io;
6150 else if (sr->done_io)
6151 ret = sr->done_io;
6152 __io_req_complete(req, issue_flags, ret, 0);
6153 return 0;
6154 }
6155
6156 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
6157 {
6158 struct io_sr_msg *sr = &req->sr_msg;
6159 struct msghdr msg;
6160 struct iovec iov;
6161 struct socket *sock;
6162 unsigned flags;
6163 int min_ret = 0;
6164 int ret;
6165
6166 if (!(req->flags & REQ_F_POLLED) &&
6167 (sr->flags & IORING_RECVSEND_POLL_FIRST))
6168 return -EAGAIN;
6169
6170 sock = sock_from_file(req->file);
6171 if (unlikely(!sock))
6172 return -ENOTSOCK;
6173
6174 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
6175 if (unlikely(ret))
6176 return ret;
6177
6178 msg.msg_name = NULL;
6179 msg.msg_control = NULL;
6180 msg.msg_controllen = 0;
6181 msg.msg_namelen = 0;
6182
6183 flags = sr->msg_flags;
6184 if (issue_flags & IO_URING_F_NONBLOCK)
6185 flags |= MSG_DONTWAIT;
6186 if (flags & MSG_WAITALL)
6187 min_ret = iov_iter_count(&msg.msg_iter);
6188
6189 msg.msg_flags = flags;
6190 ret = sock_sendmsg(sock, &msg);
6191 if (ret < min_ret) {
6192 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
6193 return -EAGAIN;
6194 if (ret == -ERESTARTSYS)
6195 ret = -EINTR;
6196 if (ret > 0 && io_net_retry(sock, flags)) {
6197 sr->len -= ret;
6198 sr->buf += ret;
6199 sr->done_io += ret;
6200 req->flags |= REQ_F_PARTIAL_IO;
6201 return -EAGAIN;
6202 }
6203 req_set_fail(req);
6204 }
6205 if (ret >= 0)
6206 ret += sr->done_io;
6207 else if (sr->done_io)
6208 ret = sr->done_io;
6209 __io_req_complete(req, issue_flags, ret, 0);
6210 return 0;
6211 }
6212
6213 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
6214 struct io_async_msghdr *iomsg)
6215 {
6216 struct io_sr_msg *sr = &req->sr_msg;
6217 struct iovec __user *uiov;
6218 size_t iov_len;
6219 int ret;
6220
6221 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
6222 &iomsg->uaddr, &uiov, &iov_len);
6223 if (ret)
6224 return ret;
6225
6226 if (req->flags & REQ_F_BUFFER_SELECT) {
6227 if (iov_len > 1)
6228 return -EINVAL;
6229 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
6230 return -EFAULT;
6231 sr->len = iomsg->fast_iov[0].iov_len;
6232 iomsg->free_iov = NULL;
6233 } else {
6234 iomsg->free_iov = iomsg->fast_iov;
6235 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
6236 &iomsg->free_iov, &iomsg->msg.msg_iter,
6237 false);
6238 if (ret > 0)
6239 ret = 0;
6240 }
6241
6242 return ret;
6243 }
6244
6245 #ifdef CONFIG_COMPAT
6246 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
6247 struct io_async_msghdr *iomsg)
6248 {
6249 struct io_sr_msg *sr = &req->sr_msg;
6250 struct compat_iovec __user *uiov;
6251 compat_uptr_t ptr;
6252 compat_size_t len;
6253 int ret;
6254
6255 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
6256 &ptr, &len);
6257 if (ret)
6258 return ret;
6259
6260 uiov = compat_ptr(ptr);
6261 if (req->flags & REQ_F_BUFFER_SELECT) {
6262 compat_ssize_t clen;
6263
6264 if (len > 1)
6265 return -EINVAL;
6266 if (!access_ok(uiov, sizeof(*uiov)))
6267 return -EFAULT;
6268 if (__get_user(clen, &uiov->iov_len))
6269 return -EFAULT;
6270 if (clen < 0)
6271 return -EINVAL;
6272 sr->len = clen;
6273 iomsg->free_iov = NULL;
6274 } else {
6275 iomsg->free_iov = iomsg->fast_iov;
6276 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
6277 UIO_FASTIOV, &iomsg->free_iov,
6278 &iomsg->msg.msg_iter, true);
6279 if (ret < 0)
6280 return ret;
6281 }
6282
6283 return 0;
6284 }
6285 #endif
6286
6287 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
6288 struct io_async_msghdr *iomsg)
6289 {
6290 iomsg->msg.msg_name = &iomsg->addr;
6291
6292 #ifdef CONFIG_COMPAT
6293 if (req->ctx->compat)
6294 return __io_compat_recvmsg_copy_hdr(req, iomsg);
6295 #endif
6296
6297 return __io_recvmsg_copy_hdr(req, iomsg);
6298 }
6299
6300 static int io_recvmsg_prep_async(struct io_kiocb *req)
6301 {
6302 int ret;
6303
6304 ret = io_recvmsg_copy_hdr(req, req->async_data);
6305 if (!ret)
6306 req->flags |= REQ_F_NEED_CLEANUP;
6307 return ret;
6308 }
6309
6310 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6311 {
6312 struct io_sr_msg *sr = &req->sr_msg;
6313
6314 if (unlikely(sqe->file_index))
6315 return -EINVAL;
6316
6317 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
6318 sr->len = READ_ONCE(sqe->len);
6319 sr->flags = READ_ONCE(sqe->addr2);
6320 if (sr->flags & ~IORING_RECVSEND_POLL_FIRST)
6321 return -EINVAL;
6322 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
6323 if (sr->msg_flags & MSG_DONTWAIT)
6324 req->flags |= REQ_F_NOWAIT;
6325
6326 #ifdef CONFIG_COMPAT
6327 if (req->ctx->compat)
6328 sr->msg_flags |= MSG_CMSG_COMPAT;
6329 #endif
6330 sr->done_io = 0;
6331 return 0;
6332 }
6333
6334 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
6335 {
6336 struct io_async_msghdr iomsg, *kmsg;
6337 struct io_sr_msg *sr = &req->sr_msg;
6338 struct socket *sock;
6339 unsigned int cflags;
6340 unsigned flags;
6341 int ret, min_ret = 0;
6342 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6343
6344 sock = sock_from_file(req->file);
6345 if (unlikely(!sock))
6346 return -ENOTSOCK;
6347
6348 if (req_has_async_data(req)) {
6349 kmsg = req->async_data;
6350 } else {
6351 ret = io_recvmsg_copy_hdr(req, &iomsg);
6352 if (ret)
6353 return ret;
6354 kmsg = &iomsg;
6355 }
6356
6357 if (!(req->flags & REQ_F_POLLED) &&
6358 (sr->flags & IORING_RECVSEND_POLL_FIRST))
6359 return io_setup_async_msg(req, kmsg);
6360
6361 if (io_do_buffer_select(req)) {
6362 void __user *buf;
6363
6364 buf = io_buffer_select(req, &sr->len, issue_flags);
6365 if (!buf)
6366 return -ENOBUFS;
6367 kmsg->fast_iov[0].iov_base = buf;
6368 kmsg->fast_iov[0].iov_len = sr->len;
6369 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov, 1,
6370 sr->len);
6371 }
6372
6373 flags = sr->msg_flags;
6374 if (force_nonblock)
6375 flags |= MSG_DONTWAIT;
6376 if (flags & MSG_WAITALL)
6377 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
6378
6379 kmsg->msg.msg_get_inq = 1;
6380 ret = __sys_recvmsg_sock(sock, &kmsg->msg, sr->umsg, kmsg->uaddr, flags);
6381 if (ret < min_ret) {
6382 if (ret == -EAGAIN && force_nonblock)
6383 return io_setup_async_msg(req, kmsg);
6384 if (ret == -ERESTARTSYS)
6385 ret = -EINTR;
6386 if (ret > 0 && io_net_retry(sock, flags)) {
6387 sr->done_io += ret;
6388 req->flags |= REQ_F_PARTIAL_IO;
6389 return io_setup_async_msg(req, kmsg);
6390 }
6391 req_set_fail(req);
6392 } else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
6393 req_set_fail(req);
6394 }
6395
6396 /* fast path, check for non-NULL to avoid function call */
6397 if (kmsg->free_iov)
6398 kfree(kmsg->free_iov);
6399 req->flags &= ~REQ_F_NEED_CLEANUP;
6400 if (ret >= 0)
6401 ret += sr->done_io;
6402 else if (sr->done_io)
6403 ret = sr->done_io;
6404 cflags = io_put_kbuf(req, issue_flags);
6405 if (kmsg->msg.msg_inq)
6406 cflags |= IORING_CQE_F_SOCK_NONEMPTY;
6407 __io_req_complete(req, issue_flags, ret, cflags);
6408 return 0;
6409 }
6410
6411 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
6412 {
6413 struct io_sr_msg *sr = &req->sr_msg;
6414 struct msghdr msg;
6415 struct socket *sock;
6416 struct iovec iov;
6417 unsigned int cflags;
6418 unsigned flags;
6419 int ret, min_ret = 0;
6420 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6421
6422 if (!(req->flags & REQ_F_POLLED) &&
6423 (sr->flags & IORING_RECVSEND_POLL_FIRST))
6424 return -EAGAIN;
6425
6426 sock = sock_from_file(req->file);
6427 if (unlikely(!sock))
6428 return -ENOTSOCK;
6429
6430 if (io_do_buffer_select(req)) {
6431 void __user *buf;
6432
6433 buf = io_buffer_select(req, &sr->len, issue_flags);
6434 if (!buf)
6435 return -ENOBUFS;
6436 sr->buf = buf;
6437 }
6438
6439 ret = import_single_range(READ, sr->buf, sr->len, &iov, &msg.msg_iter);
6440 if (unlikely(ret))
6441 goto out_free;
6442
6443 msg.msg_name = NULL;
6444 msg.msg_namelen = 0;
6445 msg.msg_control = NULL;
6446 msg.msg_get_inq = 1;
6447 msg.msg_flags = 0;
6448 msg.msg_controllen = 0;
6449 msg.msg_iocb = NULL;
6450
6451 flags = sr->msg_flags;
6452 if (force_nonblock)
6453 flags |= MSG_DONTWAIT;
6454 if (flags & MSG_WAITALL)
6455 min_ret = iov_iter_count(&msg.msg_iter);
6456
6457 ret = sock_recvmsg(sock, &msg, flags);
6458 if (ret < min_ret) {
6459 if (ret == -EAGAIN && force_nonblock)
6460 return -EAGAIN;
6461 if (ret == -ERESTARTSYS)
6462 ret = -EINTR;
6463 if (ret > 0 && io_net_retry(sock, flags)) {
6464 sr->len -= ret;
6465 sr->buf += ret;
6466 sr->done_io += ret;
6467 req->flags |= REQ_F_PARTIAL_IO;
6468 return -EAGAIN;
6469 }
6470 req_set_fail(req);
6471 } else if ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
6472 out_free:
6473 req_set_fail(req);
6474 }
6475
6476 if (ret >= 0)
6477 ret += sr->done_io;
6478 else if (sr->done_io)
6479 ret = sr->done_io;
6480 cflags = io_put_kbuf(req, issue_flags);
6481 if (msg.msg_inq)
6482 cflags |= IORING_CQE_F_SOCK_NONEMPTY;
6483 __io_req_complete(req, issue_flags, ret, cflags);
6484 return 0;
6485 }
6486
6487 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6488 {
6489 struct io_accept *accept = &req->accept;
6490 unsigned flags;
6491
6492 if (sqe->len || sqe->buf_index)
6493 return -EINVAL;
6494
6495 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
6496 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
6497 accept->flags = READ_ONCE(sqe->accept_flags);
6498 accept->nofile = rlimit(RLIMIT_NOFILE);
6499 flags = READ_ONCE(sqe->ioprio);
6500 if (flags & ~IORING_ACCEPT_MULTISHOT)
6501 return -EINVAL;
6502
6503 accept->file_slot = READ_ONCE(sqe->file_index);
6504 if (accept->file_slot) {
6505 if (accept->flags & SOCK_CLOEXEC)
6506 return -EINVAL;
6507 if (flags & IORING_ACCEPT_MULTISHOT &&
6508 accept->file_slot != IORING_FILE_INDEX_ALLOC)
6509 return -EINVAL;
6510 }
6511 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
6512 return -EINVAL;
6513 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
6514 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
6515 if (flags & IORING_ACCEPT_MULTISHOT)
6516 req->flags |= REQ_F_APOLL_MULTISHOT;
6517 return 0;
6518 }
6519
6520 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
6521 {
6522 struct io_ring_ctx *ctx = req->ctx;
6523 struct io_accept *accept = &req->accept;
6524 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6525 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
6526 bool fixed = !!accept->file_slot;
6527 struct file *file;
6528 int ret, fd;
6529
6530 retry:
6531 if (!fixed) {
6532 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
6533 if (unlikely(fd < 0))
6534 return fd;
6535 }
6536 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
6537 accept->flags);
6538 if (IS_ERR(file)) {
6539 if (!fixed)
6540 put_unused_fd(fd);
6541 ret = PTR_ERR(file);
6542 if (ret == -EAGAIN && force_nonblock) {
6543 /*
6544 * if it's multishot and polled, we don't need to
6545 * return EAGAIN to arm the poll infra since it
6546 * has already been done
6547 */
6548 if ((req->flags & IO_APOLL_MULTI_POLLED) ==
6549 IO_APOLL_MULTI_POLLED)
6550 ret = 0;
6551 return ret;
6552 }
6553 if (ret == -ERESTARTSYS)
6554 ret = -EINTR;
6555 req_set_fail(req);
6556 } else if (!fixed) {
6557 fd_install(fd, file);
6558 ret = fd;
6559 } else {
6560 ret = io_fixed_fd_install(req, issue_flags, file,
6561 accept->file_slot);
6562 }
6563
6564 if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
6565 __io_req_complete(req, issue_flags, ret, 0);
6566 return 0;
6567 }
6568 if (ret >= 0) {
6569 bool filled;
6570
6571 spin_lock(&ctx->completion_lock);
6572 filled = io_fill_cqe_aux(ctx, req->cqe.user_data, ret,
6573 IORING_CQE_F_MORE);
6574 io_commit_cqring(ctx);
6575 spin_unlock(&ctx->completion_lock);
6576 if (filled) {
6577 io_cqring_ev_posted(ctx);
6578 goto retry;
6579 }
6580 ret = -ECANCELED;
6581 }
6582
6583 return ret;
6584 }
6585
6586 static int io_socket_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6587 {
6588 struct io_socket *sock = &req->sock;
6589
6590 if (sqe->addr || sqe->rw_flags || sqe->buf_index)
6591 return -EINVAL;
6592
6593 sock->domain = READ_ONCE(sqe->fd);
6594 sock->type = READ_ONCE(sqe->off);
6595 sock->protocol = READ_ONCE(sqe->len);
6596 sock->file_slot = READ_ONCE(sqe->file_index);
6597 sock->nofile = rlimit(RLIMIT_NOFILE);
6598
6599 sock->flags = sock->type & ~SOCK_TYPE_MASK;
6600 if (sock->file_slot && (sock->flags & SOCK_CLOEXEC))
6601 return -EINVAL;
6602 if (sock->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
6603 return -EINVAL;
6604 return 0;
6605 }
6606
6607 static int io_socket(struct io_kiocb *req, unsigned int issue_flags)
6608 {
6609 struct io_socket *sock = &req->sock;
6610 bool fixed = !!sock->file_slot;
6611 struct file *file;
6612 int ret, fd;
6613
6614 if (!fixed) {
6615 fd = __get_unused_fd_flags(sock->flags, sock->nofile);
6616 if (unlikely(fd < 0))
6617 return fd;
6618 }
6619 file = __sys_socket_file(sock->domain, sock->type, sock->protocol);
6620 if (IS_ERR(file)) {
6621 if (!fixed)
6622 put_unused_fd(fd);
6623 ret = PTR_ERR(file);
6624 if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
6625 return -EAGAIN;
6626 if (ret == -ERESTARTSYS)
6627 ret = -EINTR;
6628 req_set_fail(req);
6629 } else if (!fixed) {
6630 fd_install(fd, file);
6631 ret = fd;
6632 } else {
6633 ret = io_fixed_fd_install(req, issue_flags, file,
6634 sock->file_slot);
6635 }
6636 __io_req_complete(req, issue_flags, ret, 0);
6637 return 0;
6638 }
6639
6640 static int io_connect_prep_async(struct io_kiocb *req)
6641 {
6642 struct io_async_connect *io = req->async_data;
6643 struct io_connect *conn = &req->connect;
6644
6645 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
6646 }
6647
6648 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6649 {
6650 struct io_connect *conn = &req->connect;
6651
6652 if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
6653 return -EINVAL;
6654
6655 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
6656 conn->addr_len = READ_ONCE(sqe->addr2);
6657 return 0;
6658 }
6659
6660 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
6661 {
6662 struct io_async_connect __io, *io;
6663 unsigned file_flags;
6664 int ret;
6665 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
6666
6667 if (req_has_async_data(req)) {
6668 io = req->async_data;
6669 } else {
6670 ret = move_addr_to_kernel(req->connect.addr,
6671 req->connect.addr_len,
6672 &__io.address);
6673 if (ret)
6674 goto out;
6675 io = &__io;
6676 }
6677
6678 file_flags = force_nonblock ? O_NONBLOCK : 0;
6679
6680 ret = __sys_connect_file(req->file, &io->address,
6681 req->connect.addr_len, file_flags);
6682 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
6683 if (req_has_async_data(req))
6684 return -EAGAIN;
6685 if (io_alloc_async_data(req)) {
6686 ret = -ENOMEM;
6687 goto out;
6688 }
6689 memcpy(req->async_data, &__io, sizeof(__io));
6690 return -EAGAIN;
6691 }
6692 if (ret == -ERESTARTSYS)
6693 ret = -EINTR;
6694 out:
6695 if (ret < 0)
6696 req_set_fail(req);
6697 __io_req_complete(req, issue_flags, ret, 0);
6698 return 0;
6699 }
6700 #else /* !CONFIG_NET */
6701 #define IO_NETOP_FN(op) \
6702 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
6703 { \
6704 return -EOPNOTSUPP; \
6705 }
6706
6707 #define IO_NETOP_PREP(op) \
6708 IO_NETOP_FN(op) \
6709 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
6710 { \
6711 return -EOPNOTSUPP; \
6712 } \
6713
6714 #define IO_NETOP_PREP_ASYNC(op) \
6715 IO_NETOP_PREP(op) \
6716 static int io_##op##_prep_async(struct io_kiocb *req) \
6717 { \
6718 return -EOPNOTSUPP; \
6719 }
6720
6721 IO_NETOP_PREP_ASYNC(sendmsg);
6722 IO_NETOP_PREP_ASYNC(recvmsg);
6723 IO_NETOP_PREP_ASYNC(connect);
6724 IO_NETOP_PREP(accept);
6725 IO_NETOP_PREP(socket);
6726 IO_NETOP_PREP(shutdown);
6727 IO_NETOP_FN(send);
6728 IO_NETOP_FN(recv);
6729 #endif /* CONFIG_NET */
6730
6731 struct io_poll_table {
6732 struct poll_table_struct pt;
6733 struct io_kiocb *req;
6734 int nr_entries;
6735 int error;
6736 };
6737
6738 #define IO_POLL_CANCEL_FLAG BIT(31)
6739 #define IO_POLL_REF_MASK GENMASK(30, 0)
6740
6741 /*
6742 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
6743 * bump it and acquire ownership. It's disallowed to modify requests while not
6744 * owning it, that prevents from races for enqueueing task_work's and b/w
6745 * arming poll and wakeups.
6746 */
6747 static inline bool io_poll_get_ownership(struct io_kiocb *req)
6748 {
6749 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
6750 }
6751
6752 static void io_poll_mark_cancelled(struct io_kiocb *req)
6753 {
6754 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
6755 }
6756
6757 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
6758 {
6759 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
6760 if (req->opcode == IORING_OP_POLL_ADD)
6761 return req->async_data;
6762 return req->apoll->double_poll;
6763 }
6764
6765 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
6766 {
6767 if (req->opcode == IORING_OP_POLL_ADD)
6768 return &req->poll;
6769 return &req->apoll->poll;
6770 }
6771
6772 static void io_poll_req_insert(struct io_kiocb *req)
6773 {
6774 struct io_ring_ctx *ctx = req->ctx;
6775 struct hlist_head *list;
6776
6777 list = &ctx->cancel_hash[hash_long(req->cqe.user_data, ctx->cancel_hash_bits)];
6778 hlist_add_head(&req->hash_node, list);
6779 }
6780
6781 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
6782 wait_queue_func_t wake_func)
6783 {
6784 poll->head = NULL;
6785 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
6786 /* mask in events that we always want/need */
6787 poll->events = events | IO_POLL_UNMASK;
6788 INIT_LIST_HEAD(&poll->wait.entry);
6789 init_waitqueue_func_entry(&poll->wait, wake_func);
6790 }
6791
6792 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
6793 {
6794 struct wait_queue_head *head = smp_load_acquire(&poll->head);
6795
6796 if (head) {
6797 spin_lock_irq(&head->lock);
6798 list_del_init(&poll->wait.entry);
6799 poll->head = NULL;
6800 spin_unlock_irq(&head->lock);
6801 }
6802 }
6803
6804 static void io_poll_remove_entries(struct io_kiocb *req)
6805 {
6806 /*
6807 * Nothing to do if neither of those flags are set. Avoid dipping
6808 * into the poll/apoll/double cachelines if we can.
6809 */
6810 if (!(req->flags & (REQ_F_SINGLE_POLL | REQ_F_DOUBLE_POLL)))
6811 return;
6812
6813 /*
6814 * While we hold the waitqueue lock and the waitqueue is nonempty,
6815 * wake_up_pollfree() will wait for us. However, taking the waitqueue
6816 * lock in the first place can race with the waitqueue being freed.
6817 *
6818 * We solve this as eventpoll does: by taking advantage of the fact that
6819 * all users of wake_up_pollfree() will RCU-delay the actual free. If
6820 * we enter rcu_read_lock() and see that the pointer to the queue is
6821 * non-NULL, we can then lock it without the memory being freed out from
6822 * under us.
6823 *
6824 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
6825 * case the caller deletes the entry from the queue, leaving it empty.
6826 * In that case, only RCU prevents the queue memory from being freed.
6827 */
6828 rcu_read_lock();
6829 if (req->flags & REQ_F_SINGLE_POLL)
6830 io_poll_remove_entry(io_poll_get_single(req));
6831 if (req->flags & REQ_F_DOUBLE_POLL)
6832 io_poll_remove_entry(io_poll_get_double(req));
6833 rcu_read_unlock();
6834 }
6835
6836 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags);
6837 /*
6838 * All poll tw should go through this. Checks for poll events, manages
6839 * references, does rewait, etc.
6840 *
6841 * Returns a negative error on failure. >0 when no action require, which is
6842 * either spurious wakeup or multishot CQE is served. 0 when it's done with
6843 * the request, then the mask is stored in req->cqe.res.
6844 */
6845 static int io_poll_check_events(struct io_kiocb *req, bool *locked)
6846 {
6847 struct io_ring_ctx *ctx = req->ctx;
6848 int v, ret;
6849
6850 /* req->task == current here, checking PF_EXITING is safe */
6851 if (unlikely(req->task->flags & PF_EXITING))
6852 return -ECANCELED;
6853
6854 do {
6855 v = atomic_read(&req->poll_refs);
6856
6857 /* tw handler should be the owner, and so have some references */
6858 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
6859 return 0;
6860 if (v & IO_POLL_CANCEL_FLAG)
6861 return -ECANCELED;
6862
6863 if (!req->cqe.res) {
6864 struct poll_table_struct pt = { ._key = req->apoll_events };
6865 req->cqe.res = vfs_poll(req->file, &pt) & req->apoll_events;
6866 }
6867
6868 if ((unlikely(!req->cqe.res)))
6869 continue;
6870 if (req->apoll_events & EPOLLONESHOT)
6871 return 0;
6872
6873 /* multishot, just fill a CQE and proceed */
6874 if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
6875 __poll_t mask = mangle_poll(req->cqe.res &
6876 req->apoll_events);
6877 bool filled;
6878
6879 spin_lock(&ctx->completion_lock);
6880 filled = io_fill_cqe_aux(ctx, req->cqe.user_data,
6881 mask, IORING_CQE_F_MORE);
6882 io_commit_cqring(ctx);
6883 spin_unlock(&ctx->completion_lock);
6884 if (filled) {
6885 io_cqring_ev_posted(ctx);
6886 continue;
6887 }
6888 return -ECANCELED;
6889 }
6890
6891 io_tw_lock(req->ctx, locked);
6892 if (unlikely(req->task->flags & PF_EXITING))
6893 return -EFAULT;
6894 ret = io_issue_sqe(req,
6895 IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6896 if (ret)
6897 return ret;
6898
6899 /*
6900 * Release all references, retry if someone tried to restart
6901 * task_work while we were executing it.
6902 */
6903 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs));
6904
6905 return 1;
6906 }
6907
6908 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
6909 {
6910 struct io_ring_ctx *ctx = req->ctx;
6911 int ret;
6912
6913 ret = io_poll_check_events(req, locked);
6914 if (ret > 0)
6915 return;
6916
6917 if (!ret) {
6918 req->cqe.res = mangle_poll(req->cqe.res & req->poll.events);
6919 } else {
6920 req->cqe.res = ret;
6921 req_set_fail(req);
6922 }
6923
6924 io_poll_remove_entries(req);
6925 spin_lock(&ctx->completion_lock);
6926 hash_del(&req->hash_node);
6927 __io_req_complete_post(req, req->cqe.res, 0);
6928 io_commit_cqring(ctx);
6929 spin_unlock(&ctx->completion_lock);
6930 io_cqring_ev_posted(ctx);
6931 }
6932
6933 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
6934 {
6935 struct io_ring_ctx *ctx = req->ctx;
6936 int ret;
6937
6938 ret = io_poll_check_events(req, locked);
6939 if (ret > 0)
6940 return;
6941
6942 io_poll_remove_entries(req);
6943 spin_lock(&ctx->completion_lock);
6944 hash_del(&req->hash_node);
6945 spin_unlock(&ctx->completion_lock);
6946
6947 if (!ret)
6948 io_req_task_submit(req, locked);
6949 else
6950 io_req_complete_failed(req, ret);
6951 }
6952
6953 static void __io_poll_execute(struct io_kiocb *req, int mask,
6954 __poll_t __maybe_unused events)
6955 {
6956 req->cqe.res = mask;
6957 /*
6958 * This is useful for poll that is armed on behalf of another
6959 * request, and where the wakeup path could be on a different
6960 * CPU. We want to avoid pulling in req->apoll->events for that
6961 * case.
6962 */
6963 if (req->opcode == IORING_OP_POLL_ADD)
6964 req->io_task_work.func = io_poll_task_func;
6965 else
6966 req->io_task_work.func = io_apoll_task_func;
6967
6968 trace_io_uring_task_add(req->ctx, req, req->cqe.user_data, req->opcode, mask);
6969 io_req_task_work_add(req);
6970 }
6971
6972 static inline void io_poll_execute(struct io_kiocb *req, int res,
6973 __poll_t events)
6974 {
6975 if (io_poll_get_ownership(req))
6976 __io_poll_execute(req, res, events);
6977 }
6978
6979 static void io_poll_cancel_req(struct io_kiocb *req)
6980 {
6981 io_poll_mark_cancelled(req);
6982 /* kick tw, which should complete the request */
6983 io_poll_execute(req, 0, 0);
6984 }
6985
6986 #define wqe_to_req(wait) ((void *)((unsigned long) (wait)->private & ~1))
6987 #define wqe_is_double(wait) ((unsigned long) (wait)->private & 1)
6988 #define IO_ASYNC_POLL_COMMON (EPOLLONESHOT | EPOLLPRI)
6989
6990 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
6991 void *key)
6992 {
6993 struct io_kiocb *req = wqe_to_req(wait);
6994 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
6995 wait);
6996 __poll_t mask = key_to_poll(key);
6997
6998 if (unlikely(mask & POLLFREE)) {
6999 io_poll_mark_cancelled(req);
7000 /* we have to kick tw in case it's not already */
7001 io_poll_execute(req, 0, poll->events);
7002
7003 /*
7004 * If the waitqueue is being freed early but someone is already
7005 * holds ownership over it, we have to tear down the request as
7006 * best we can. That means immediately removing the request from
7007 * its waitqueue and preventing all further accesses to the
7008 * waitqueue via the request.
7009 */
7010 list_del_init(&poll->wait.entry);
7011
7012 /*
7013 * Careful: this *must* be the last step, since as soon
7014 * as req->head is NULL'ed out, the request can be
7015 * completed and freed, since aio_poll_complete_work()
7016 * will no longer need to take the waitqueue lock.
7017 */
7018 smp_store_release(&poll->head, NULL);
7019 return 1;
7020 }
7021
7022 /* for instances that support it check for an event match first */
7023 if (mask && !(mask & (poll->events & ~IO_ASYNC_POLL_COMMON)))
7024 return 0;
7025
7026 if (io_poll_get_ownership(req)) {
7027 /* optional, saves extra locking for removal in tw handler */
7028 if (mask && poll->events & EPOLLONESHOT) {
7029 list_del_init(&poll->wait.entry);
7030 poll->head = NULL;
7031 if (wqe_is_double(wait))
7032 req->flags &= ~REQ_F_DOUBLE_POLL;
7033 else
7034 req->flags &= ~REQ_F_SINGLE_POLL;
7035 }
7036 __io_poll_execute(req, mask, poll->events);
7037 }
7038 return 1;
7039 }
7040
7041 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
7042 struct wait_queue_head *head,
7043 struct io_poll_iocb **poll_ptr)
7044 {
7045 struct io_kiocb *req = pt->req;
7046 unsigned long wqe_private = (unsigned long) req;
7047
7048 /*
7049 * The file being polled uses multiple waitqueues for poll handling
7050 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
7051 * if this happens.
7052 */
7053 if (unlikely(pt->nr_entries)) {
7054 struct io_poll_iocb *first = poll;
7055
7056 /* double add on the same waitqueue head, ignore */
7057 if (first->head == head)
7058 return;
7059 /* already have a 2nd entry, fail a third attempt */
7060 if (*poll_ptr) {
7061 if ((*poll_ptr)->head == head)
7062 return;
7063 pt->error = -EINVAL;
7064 return;
7065 }
7066
7067 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
7068 if (!poll) {
7069 pt->error = -ENOMEM;
7070 return;
7071 }
7072 /* mark as double wq entry */
7073 wqe_private |= 1;
7074 req->flags |= REQ_F_DOUBLE_POLL;
7075 io_init_poll_iocb(poll, first->events, first->wait.func);
7076 *poll_ptr = poll;
7077 if (req->opcode == IORING_OP_POLL_ADD)
7078 req->flags |= REQ_F_ASYNC_DATA;
7079 }
7080
7081 req->flags |= REQ_F_SINGLE_POLL;
7082 pt->nr_entries++;
7083 poll->head = head;
7084 poll->wait.private = (void *) wqe_private;
7085
7086 if (poll->events & EPOLLEXCLUSIVE)
7087 add_wait_queue_exclusive(head, &poll->wait);
7088 else
7089 add_wait_queue(head, &poll->wait);
7090 }
7091
7092 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
7093 struct poll_table_struct *p)
7094 {
7095 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
7096
7097 __io_queue_proc(&pt->req->poll, pt, head,
7098 (struct io_poll_iocb **) &pt->req->async_data);
7099 }
7100
7101 static int __io_arm_poll_handler(struct io_kiocb *req,
7102 struct io_poll_iocb *poll,
7103 struct io_poll_table *ipt, __poll_t mask)
7104 {
7105 struct io_ring_ctx *ctx = req->ctx;
7106 int v;
7107
7108 INIT_HLIST_NODE(&req->hash_node);
7109 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
7110 io_init_poll_iocb(poll, mask, io_poll_wake);
7111 poll->file = req->file;
7112
7113 req->apoll_events = poll->events;
7114
7115 ipt->pt._key = mask;
7116 ipt->req = req;
7117 ipt->error = 0;
7118 ipt->nr_entries = 0;
7119
7120 /*
7121 * Take the ownership to delay any tw execution up until we're done
7122 * with poll arming. see io_poll_get_ownership().
7123 */
7124 atomic_set(&req->poll_refs, 1);
7125 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
7126
7127 if (mask && (poll->events & EPOLLONESHOT)) {
7128 io_poll_remove_entries(req);
7129 /* no one else has access to the req, forget about the ref */
7130 return mask;
7131 }
7132 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
7133 io_poll_remove_entries(req);
7134 if (!ipt->error)
7135 ipt->error = -EINVAL;
7136 return 0;
7137 }
7138
7139 spin_lock(&ctx->completion_lock);
7140 io_poll_req_insert(req);
7141 spin_unlock(&ctx->completion_lock);
7142
7143 if (mask) {
7144 /* can't multishot if failed, just queue the event we've got */
7145 if (unlikely(ipt->error || !ipt->nr_entries)) {
7146 poll->events |= EPOLLONESHOT;
7147 req->apoll_events |= EPOLLONESHOT;
7148 ipt->error = 0;
7149 }
7150 __io_poll_execute(req, mask, poll->events);
7151 return 0;
7152 }
7153
7154 /*
7155 * Release ownership. If someone tried to queue a tw while it was
7156 * locked, kick it off for them.
7157 */
7158 v = atomic_dec_return(&req->poll_refs);
7159 if (unlikely(v & IO_POLL_REF_MASK))
7160 __io_poll_execute(req, 0, poll->events);
7161 return 0;
7162 }
7163
7164 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
7165 struct poll_table_struct *p)
7166 {
7167 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
7168 struct async_poll *apoll = pt->req->apoll;
7169
7170 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
7171 }
7172
7173 enum {
7174 IO_APOLL_OK,
7175 IO_APOLL_ABORTED,
7176 IO_APOLL_READY
7177 };
7178
7179 static int io_arm_poll_handler(struct io_kiocb *req, unsigned issue_flags)
7180 {
7181 const struct io_op_def *def = &io_op_defs[req->opcode];
7182 struct io_ring_ctx *ctx = req->ctx;
7183 struct async_poll *apoll;
7184 struct io_poll_table ipt;
7185 __poll_t mask = POLLPRI | POLLERR;
7186 int ret;
7187
7188 if (!def->pollin && !def->pollout)
7189 return IO_APOLL_ABORTED;
7190 if (!file_can_poll(req->file))
7191 return IO_APOLL_ABORTED;
7192 if ((req->flags & (REQ_F_POLLED|REQ_F_PARTIAL_IO)) == REQ_F_POLLED)
7193 return IO_APOLL_ABORTED;
7194 if (!(req->flags & REQ_F_APOLL_MULTISHOT))
7195 mask |= EPOLLONESHOT;
7196
7197 if (def->pollin) {
7198 mask |= EPOLLIN | EPOLLRDNORM;
7199
7200 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
7201 if ((req->opcode == IORING_OP_RECVMSG) &&
7202 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
7203 mask &= ~EPOLLIN;
7204 } else {
7205 mask |= EPOLLOUT | EPOLLWRNORM;
7206 }
7207 if (def->poll_exclusive)
7208 mask |= EPOLLEXCLUSIVE;
7209 if (req->flags & REQ_F_POLLED) {
7210 apoll = req->apoll;
7211 kfree(apoll->double_poll);
7212 } else if (!(issue_flags & IO_URING_F_UNLOCKED) &&
7213 !list_empty(&ctx->apoll_cache)) {
7214 apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
7215 poll.wait.entry);
7216 list_del_init(&apoll->poll.wait.entry);
7217 } else {
7218 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
7219 if (unlikely(!apoll))
7220 return IO_APOLL_ABORTED;
7221 }
7222 apoll->double_poll = NULL;
7223 req->apoll = apoll;
7224 req->flags |= REQ_F_POLLED;
7225 ipt.pt._qproc = io_async_queue_proc;
7226
7227 io_kbuf_recycle(req, issue_flags);
7228
7229 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
7230 if (ret || ipt.error)
7231 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
7232
7233 trace_io_uring_poll_arm(ctx, req, req->cqe.user_data, req->opcode,
7234 mask, apoll->poll.events);
7235 return IO_APOLL_OK;
7236 }
7237
7238 /*
7239 * Returns true if we found and killed one or more poll requests
7240 */
7241 static __cold bool io_poll_remove_all(struct io_ring_ctx *ctx,
7242 struct task_struct *tsk, bool cancel_all)
7243 {
7244 struct hlist_node *tmp;
7245 struct io_kiocb *req;
7246 bool found = false;
7247 int i;
7248
7249 spin_lock(&ctx->completion_lock);
7250 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7251 struct hlist_head *list;
7252
7253 list = &ctx->cancel_hash[i];
7254 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
7255 if (io_match_task_safe(req, tsk, cancel_all)) {
7256 hlist_del_init(&req->hash_node);
7257 io_poll_cancel_req(req);
7258 found = true;
7259 }
7260 }
7261 }
7262 spin_unlock(&ctx->completion_lock);
7263 return found;
7264 }
7265
7266 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, bool poll_only,
7267 struct io_cancel_data *cd)
7268 __must_hold(&ctx->completion_lock)
7269 {
7270 struct hlist_head *list;
7271 struct io_kiocb *req;
7272
7273 list = &ctx->cancel_hash[hash_long(cd->data, ctx->cancel_hash_bits)];
7274 hlist_for_each_entry(req, list, hash_node) {
7275 if (cd->data != req->cqe.user_data)
7276 continue;
7277 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
7278 continue;
7279 if (cd->flags & IORING_ASYNC_CANCEL_ALL) {
7280 if (cd->seq == req->work.cancel_seq)
7281 continue;
7282 req->work.cancel_seq = cd->seq;
7283 }
7284 return req;
7285 }
7286 return NULL;
7287 }
7288
7289 static struct io_kiocb *io_poll_file_find(struct io_ring_ctx *ctx,
7290 struct io_cancel_data *cd)
7291 __must_hold(&ctx->completion_lock)
7292 {
7293 struct io_kiocb *req;
7294 int i;
7295
7296 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7297 struct hlist_head *list;
7298
7299 list = &ctx->cancel_hash[i];
7300 hlist_for_each_entry(req, list, hash_node) {
7301 if (!(cd->flags & IORING_ASYNC_CANCEL_ANY) &&
7302 req->file != cd->file)
7303 continue;
7304 if (cd->seq == req->work.cancel_seq)
7305 continue;
7306 req->work.cancel_seq = cd->seq;
7307 return req;
7308 }
7309 }
7310 return NULL;
7311 }
7312
7313 static bool io_poll_disarm(struct io_kiocb *req)
7314 __must_hold(&ctx->completion_lock)
7315 {
7316 if (!io_poll_get_ownership(req))
7317 return false;
7318 io_poll_remove_entries(req);
7319 hash_del(&req->hash_node);
7320 return true;
7321 }
7322
7323 static int io_poll_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
7324 __must_hold(&ctx->completion_lock)
7325 {
7326 struct io_kiocb *req;
7327
7328 if (cd->flags & (IORING_ASYNC_CANCEL_FD|IORING_ASYNC_CANCEL_ANY))
7329 req = io_poll_file_find(ctx, cd);
7330 else
7331 req = io_poll_find(ctx, false, cd);
7332 if (!req)
7333 return -ENOENT;
7334 io_poll_cancel_req(req);
7335 return 0;
7336 }
7337
7338 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
7339 unsigned int flags)
7340 {
7341 u32 events;
7342
7343 events = READ_ONCE(sqe->poll32_events);
7344 #ifdef __BIG_ENDIAN
7345 events = swahw32(events);
7346 #endif
7347 if (!(flags & IORING_POLL_ADD_MULTI))
7348 events |= EPOLLONESHOT;
7349 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
7350 }
7351
7352 static int io_poll_remove_prep(struct io_kiocb *req,
7353 const struct io_uring_sqe *sqe)
7354 {
7355 struct io_poll_update *upd = &req->poll_update;
7356 u32 flags;
7357
7358 if (sqe->buf_index || sqe->splice_fd_in)
7359 return -EINVAL;
7360 flags = READ_ONCE(sqe->len);
7361 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
7362 IORING_POLL_ADD_MULTI))
7363 return -EINVAL;
7364 /* meaningless without update */
7365 if (flags == IORING_POLL_ADD_MULTI)
7366 return -EINVAL;
7367
7368 upd->old_user_data = READ_ONCE(sqe->addr);
7369 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
7370 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
7371
7372 upd->new_user_data = READ_ONCE(sqe->off);
7373 if (!upd->update_user_data && upd->new_user_data)
7374 return -EINVAL;
7375 if (upd->update_events)
7376 upd->events = io_poll_parse_events(sqe, flags);
7377 else if (sqe->poll32_events)
7378 return -EINVAL;
7379
7380 return 0;
7381 }
7382
7383 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
7384 {
7385 struct io_poll_iocb *poll = &req->poll;
7386 u32 flags;
7387
7388 if (sqe->buf_index || sqe->off || sqe->addr)
7389 return -EINVAL;
7390 flags = READ_ONCE(sqe->len);
7391 if (flags & ~IORING_POLL_ADD_MULTI)
7392 return -EINVAL;
7393 if ((flags & IORING_POLL_ADD_MULTI) && (req->flags & REQ_F_CQE_SKIP))
7394 return -EINVAL;
7395
7396 io_req_set_refcount(req);
7397 poll->events = io_poll_parse_events(sqe, flags);
7398 return 0;
7399 }
7400
7401 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
7402 {
7403 struct io_poll_iocb *poll = &req->poll;
7404 struct io_poll_table ipt;
7405 int ret;
7406
7407 ipt.pt._qproc = io_poll_queue_proc;
7408
7409 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
7410 if (!ret && ipt.error)
7411 req_set_fail(req);
7412 ret = ret ?: ipt.error;
7413 if (ret)
7414 __io_req_complete(req, issue_flags, ret, 0);
7415 return 0;
7416 }
7417
7418 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
7419 {
7420 struct io_cancel_data cd = { .data = req->poll_update.old_user_data, };
7421 struct io_ring_ctx *ctx = req->ctx;
7422 struct io_kiocb *preq;
7423 int ret2, ret = 0;
7424 bool locked;
7425
7426 spin_lock(&ctx->completion_lock);
7427 preq = io_poll_find(ctx, true, &cd);
7428 if (!preq || !io_poll_disarm(preq)) {
7429 spin_unlock(&ctx->completion_lock);
7430 ret = preq ? -EALREADY : -ENOENT;
7431 goto out;
7432 }
7433 spin_unlock(&ctx->completion_lock);
7434
7435 if (req->poll_update.update_events || req->poll_update.update_user_data) {
7436 /* only mask one event flags, keep behavior flags */
7437 if (req->poll_update.update_events) {
7438 preq->poll.events &= ~0xffff;
7439 preq->poll.events |= req->poll_update.events & 0xffff;
7440 preq->poll.events |= IO_POLL_UNMASK;
7441 }
7442 if (req->poll_update.update_user_data)
7443 preq->cqe.user_data = req->poll_update.new_user_data;
7444
7445 ret2 = io_poll_add(preq, issue_flags);
7446 /* successfully updated, don't complete poll request */
7447 if (!ret2)
7448 goto out;
7449 }
7450
7451 req_set_fail(preq);
7452 preq->cqe.res = -ECANCELED;
7453 locked = !(issue_flags & IO_URING_F_UNLOCKED);
7454 io_req_task_complete(preq, &locked);
7455 out:
7456 if (ret < 0)
7457 req_set_fail(req);
7458 /* complete update request, we're done with it */
7459 __io_req_complete(req, issue_flags, ret, 0);
7460 return 0;
7461 }
7462
7463 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
7464 {
7465 struct io_timeout_data *data = container_of(timer,
7466 struct io_timeout_data, timer);
7467 struct io_kiocb *req = data->req;
7468 struct io_ring_ctx *ctx = req->ctx;
7469 unsigned long flags;
7470
7471 spin_lock_irqsave(&ctx->timeout_lock, flags);
7472 list_del_init(&req->timeout.list);
7473 atomic_set(&req->ctx->cq_timeouts,
7474 atomic_read(&req->ctx->cq_timeouts) + 1);
7475 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
7476
7477 if (!(data->flags & IORING_TIMEOUT_ETIME_SUCCESS))
7478 req_set_fail(req);
7479
7480 req->cqe.res = -ETIME;
7481 req->io_task_work.func = io_req_task_complete;
7482 io_req_task_work_add(req);
7483 return HRTIMER_NORESTART;
7484 }
7485
7486 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
7487 struct io_cancel_data *cd)
7488 __must_hold(&ctx->timeout_lock)
7489 {
7490 struct io_timeout_data *io;
7491 struct io_kiocb *req;
7492 bool found = false;
7493
7494 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
7495 if (!(cd->flags & IORING_ASYNC_CANCEL_ANY) &&
7496 cd->data != req->cqe.user_data)
7497 continue;
7498 if (cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY)) {
7499 if (cd->seq == req->work.cancel_seq)
7500 continue;
7501 req->work.cancel_seq = cd->seq;
7502 }
7503 found = true;
7504 break;
7505 }
7506 if (!found)
7507 return ERR_PTR(-ENOENT);
7508
7509 io = req->async_data;
7510 if (hrtimer_try_to_cancel(&io->timer) == -1)
7511 return ERR_PTR(-EALREADY);
7512 list_del_init(&req->timeout.list);
7513 return req;
7514 }
7515
7516 static int io_timeout_cancel(struct io_ring_ctx *ctx, struct io_cancel_data *cd)
7517 __must_hold(&ctx->completion_lock)
7518 {
7519 struct io_kiocb *req;
7520
7521 spin_lock_irq(&ctx->timeout_lock);
7522 req = io_timeout_extract(ctx, cd);
7523 spin_unlock_irq(&ctx->timeout_lock);
7524
7525 if (IS_ERR(req))
7526 return PTR_ERR(req);
7527 io_req_task_queue_fail(req, -ECANCELED);
7528 return 0;
7529 }
7530
7531 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
7532 {
7533 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
7534 case IORING_TIMEOUT_BOOTTIME:
7535 return CLOCK_BOOTTIME;
7536 case IORING_TIMEOUT_REALTIME:
7537 return CLOCK_REALTIME;
7538 default:
7539 /* can't happen, vetted at prep time */
7540 WARN_ON_ONCE(1);
7541 fallthrough;
7542 case 0:
7543 return CLOCK_MONOTONIC;
7544 }
7545 }
7546
7547 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
7548 struct timespec64 *ts, enum hrtimer_mode mode)
7549 __must_hold(&ctx->timeout_lock)
7550 {
7551 struct io_timeout_data *io;
7552 struct io_kiocb *req;
7553 bool found = false;
7554
7555 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
7556 found = user_data == req->cqe.user_data;
7557 if (found)
7558 break;
7559 }
7560 if (!found)
7561 return -ENOENT;
7562
7563 io = req->async_data;
7564 if (hrtimer_try_to_cancel(&io->timer) == -1)
7565 return -EALREADY;
7566 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
7567 io->timer.function = io_link_timeout_fn;
7568 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
7569 return 0;
7570 }
7571
7572 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
7573 struct timespec64 *ts, enum hrtimer_mode mode)
7574 __must_hold(&ctx->timeout_lock)
7575 {
7576 struct io_cancel_data cd = { .data = user_data, };
7577 struct io_kiocb *req = io_timeout_extract(ctx, &cd);
7578 struct io_timeout_data *data;
7579
7580 if (IS_ERR(req))
7581 return PTR_ERR(req);
7582
7583 req->timeout.off = 0; /* noseq */
7584 data = req->async_data;
7585 list_add_tail(&req->timeout.list, &ctx->timeout_list);
7586 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
7587 data->timer.function = io_timeout_fn;
7588 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
7589 return 0;
7590 }
7591
7592 static int io_timeout_remove_prep(struct io_kiocb *req,
7593 const struct io_uring_sqe *sqe)
7594 {
7595 struct io_timeout_rem *tr = &req->timeout_rem;
7596
7597 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
7598 return -EINVAL;
7599 if (sqe->buf_index || sqe->len || sqe->splice_fd_in)
7600 return -EINVAL;
7601
7602 tr->ltimeout = false;
7603 tr->addr = READ_ONCE(sqe->addr);
7604 tr->flags = READ_ONCE(sqe->timeout_flags);
7605 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
7606 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
7607 return -EINVAL;
7608 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
7609 tr->ltimeout = true;
7610 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
7611 return -EINVAL;
7612 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
7613 return -EFAULT;
7614 if (tr->ts.tv_sec < 0 || tr->ts.tv_nsec < 0)
7615 return -EINVAL;
7616 } else if (tr->flags) {
7617 /* timeout removal doesn't support flags */
7618 return -EINVAL;
7619 }
7620
7621 return 0;
7622 }
7623
7624 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
7625 {
7626 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
7627 : HRTIMER_MODE_REL;
7628 }
7629
7630 /*
7631 * Remove or update an existing timeout command
7632 */
7633 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
7634 {
7635 struct io_timeout_rem *tr = &req->timeout_rem;
7636 struct io_ring_ctx *ctx = req->ctx;
7637 int ret;
7638
7639 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
7640 struct io_cancel_data cd = { .data = tr->addr, };
7641
7642 spin_lock(&ctx->completion_lock);
7643 ret = io_timeout_cancel(ctx, &cd);
7644 spin_unlock(&ctx->completion_lock);
7645 } else {
7646 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
7647
7648 spin_lock_irq(&ctx->timeout_lock);
7649 if (tr->ltimeout)
7650 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
7651 else
7652 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
7653 spin_unlock_irq(&ctx->timeout_lock);
7654 }
7655
7656 if (ret < 0)
7657 req_set_fail(req);
7658 io_req_complete_post(req, ret, 0);
7659 return 0;
7660 }
7661
7662 static int __io_timeout_prep(struct io_kiocb *req,
7663 const struct io_uring_sqe *sqe,
7664 bool is_timeout_link)
7665 {
7666 struct io_timeout_data *data;
7667 unsigned flags;
7668 u32 off = READ_ONCE(sqe->off);
7669
7670 if (sqe->buf_index || sqe->len != 1 || sqe->splice_fd_in)
7671 return -EINVAL;
7672 if (off && is_timeout_link)
7673 return -EINVAL;
7674 flags = READ_ONCE(sqe->timeout_flags);
7675 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK |
7676 IORING_TIMEOUT_ETIME_SUCCESS))
7677 return -EINVAL;
7678 /* more than one clock specified is invalid, obviously */
7679 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
7680 return -EINVAL;
7681
7682 INIT_LIST_HEAD(&req->timeout.list);
7683 req->timeout.off = off;
7684 if (unlikely(off && !req->ctx->off_timeout_used))
7685 req->ctx->off_timeout_used = true;
7686
7687 if (WARN_ON_ONCE(req_has_async_data(req)))
7688 return -EFAULT;
7689 if (io_alloc_async_data(req))
7690 return -ENOMEM;
7691
7692 data = req->async_data;
7693 data->req = req;
7694 data->flags = flags;
7695
7696 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
7697 return -EFAULT;
7698
7699 if (data->ts.tv_sec < 0 || data->ts.tv_nsec < 0)
7700 return -EINVAL;
7701
7702 INIT_LIST_HEAD(&req->timeout.list);
7703 data->mode = io_translate_timeout_mode(flags);
7704 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
7705
7706 if (is_timeout_link) {
7707 struct io_submit_link *link = &req->ctx->submit_state.link;
7708
7709 if (!link->head)
7710 return -EINVAL;
7711 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
7712 return -EINVAL;
7713 req->timeout.head = link->last;
7714 link->last->flags |= REQ_F_ARM_LTIMEOUT;
7715 }
7716 return 0;
7717 }
7718
7719 static int io_timeout_prep(struct io_kiocb *req,
7720 const struct io_uring_sqe *sqe)
7721 {
7722 return __io_timeout_prep(req, sqe, false);
7723 }
7724
7725 static int io_link_timeout_prep(struct io_kiocb *req,
7726 const struct io_uring_sqe *sqe)
7727 {
7728 return __io_timeout_prep(req, sqe, true);
7729 }
7730
7731 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
7732 {
7733 struct io_ring_ctx *ctx = req->ctx;
7734 struct io_timeout_data *data = req->async_data;
7735 struct list_head *entry;
7736 u32 tail, off = req->timeout.off;
7737
7738 spin_lock_irq(&ctx->timeout_lock);
7739
7740 /*
7741 * sqe->off holds how many events that need to occur for this
7742 * timeout event to be satisfied. If it isn't set, then this is
7743 * a pure timeout request, sequence isn't used.
7744 */
7745 if (io_is_timeout_noseq(req)) {
7746 entry = ctx->timeout_list.prev;
7747 goto add;
7748 }
7749
7750 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
7751 req->timeout.target_seq = tail + off;
7752
7753 /* Update the last seq here in case io_flush_timeouts() hasn't.
7754 * This is safe because ->completion_lock is held, and submissions
7755 * and completions are never mixed in the same ->completion_lock section.
7756 */
7757 ctx->cq_last_tm_flush = tail;
7758
7759 /*
7760 * Insertion sort, ensuring the first entry in the list is always
7761 * the one we need first.
7762 */
7763 list_for_each_prev(entry, &ctx->timeout_list) {
7764 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
7765 timeout.list);
7766
7767 if (io_is_timeout_noseq(nxt))
7768 continue;
7769 /* nxt.seq is behind @tail, otherwise would've been completed */
7770 if (off >= nxt->timeout.target_seq - tail)
7771 break;
7772 }
7773 add:
7774 list_add(&req->timeout.list, entry);
7775 data->timer.function = io_timeout_fn;
7776 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
7777 spin_unlock_irq(&ctx->timeout_lock);
7778 return 0;
7779 }
7780
7781 static bool io_cancel_cb(struct io_wq_work *work, void *data)
7782 {
7783 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7784 struct io_cancel_data *cd = data;
7785
7786 if (req->ctx != cd->ctx)
7787 return false;
7788 if (cd->flags & IORING_ASYNC_CANCEL_ANY) {
7789 ;
7790 } else if (cd->flags & IORING_ASYNC_CANCEL_FD) {
7791 if (req->file != cd->file)
7792 return false;
7793 } else {
7794 if (req->cqe.user_data != cd->data)
7795 return false;
7796 }
7797 if (cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY)) {
7798 if (cd->seq == req->work.cancel_seq)
7799 return false;
7800 req->work.cancel_seq = cd->seq;
7801 }
7802 return true;
7803 }
7804
7805 static int io_async_cancel_one(struct io_uring_task *tctx,
7806 struct io_cancel_data *cd)
7807 {
7808 enum io_wq_cancel cancel_ret;
7809 int ret = 0;
7810 bool all;
7811
7812 if (!tctx || !tctx->io_wq)
7813 return -ENOENT;
7814
7815 all = cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY);
7816 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, cd, all);
7817 switch (cancel_ret) {
7818 case IO_WQ_CANCEL_OK:
7819 ret = 0;
7820 break;
7821 case IO_WQ_CANCEL_RUNNING:
7822 ret = -EALREADY;
7823 break;
7824 case IO_WQ_CANCEL_NOTFOUND:
7825 ret = -ENOENT;
7826 break;
7827 }
7828
7829 return ret;
7830 }
7831
7832 static int io_try_cancel(struct io_kiocb *req, struct io_cancel_data *cd)
7833 {
7834 struct io_ring_ctx *ctx = req->ctx;
7835 int ret;
7836
7837 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
7838
7839 ret = io_async_cancel_one(req->task->io_uring, cd);
7840 /*
7841 * Fall-through even for -EALREADY, as we may have poll armed
7842 * that need unarming.
7843 */
7844 if (!ret)
7845 return 0;
7846
7847 spin_lock(&ctx->completion_lock);
7848 ret = io_poll_cancel(ctx, cd);
7849 if (ret != -ENOENT)
7850 goto out;
7851 if (!(cd->flags & IORING_ASYNC_CANCEL_FD))
7852 ret = io_timeout_cancel(ctx, cd);
7853 out:
7854 spin_unlock(&ctx->completion_lock);
7855 return ret;
7856 }
7857
7858 #define CANCEL_FLAGS (IORING_ASYNC_CANCEL_ALL | IORING_ASYNC_CANCEL_FD | \
7859 IORING_ASYNC_CANCEL_ANY)
7860
7861 static int io_async_cancel_prep(struct io_kiocb *req,
7862 const struct io_uring_sqe *sqe)
7863 {
7864 if (unlikely(req->flags & REQ_F_BUFFER_SELECT))
7865 return -EINVAL;
7866 if (sqe->off || sqe->len || sqe->splice_fd_in)
7867 return -EINVAL;
7868
7869 req->cancel.addr = READ_ONCE(sqe->addr);
7870 req->cancel.flags = READ_ONCE(sqe->cancel_flags);
7871 if (req->cancel.flags & ~CANCEL_FLAGS)
7872 return -EINVAL;
7873 if (req->cancel.flags & IORING_ASYNC_CANCEL_FD) {
7874 if (req->cancel.flags & IORING_ASYNC_CANCEL_ANY)
7875 return -EINVAL;
7876 req->cancel.fd = READ_ONCE(sqe->fd);
7877 }
7878
7879 return 0;
7880 }
7881
7882 static int __io_async_cancel(struct io_cancel_data *cd, struct io_kiocb *req,
7883 unsigned int issue_flags)
7884 {
7885 bool all = cd->flags & (IORING_ASYNC_CANCEL_ALL|IORING_ASYNC_CANCEL_ANY);
7886 struct io_ring_ctx *ctx = cd->ctx;
7887 struct io_tctx_node *node;
7888 int ret, nr = 0;
7889
7890 do {
7891 ret = io_try_cancel(req, cd);
7892 if (ret == -ENOENT)
7893 break;
7894 if (!all)
7895 return ret;
7896 nr++;
7897 } while (1);
7898
7899 /* slow path, try all io-wq's */
7900 io_ring_submit_lock(ctx, issue_flags);
7901 ret = -ENOENT;
7902 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
7903 struct io_uring_task *tctx = node->task->io_uring;
7904
7905 ret = io_async_cancel_one(tctx, cd);
7906 if (ret != -ENOENT) {
7907 if (!all)
7908 break;
7909 nr++;
7910 }
7911 }
7912 io_ring_submit_unlock(ctx, issue_flags);
7913 return all ? nr : ret;
7914 }
7915
7916 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
7917 {
7918 struct io_cancel_data cd = {
7919 .ctx = req->ctx,
7920 .data = req->cancel.addr,
7921 .flags = req->cancel.flags,
7922 .seq = atomic_inc_return(&req->ctx->cancel_seq),
7923 };
7924 int ret;
7925
7926 if (cd.flags & IORING_ASYNC_CANCEL_FD) {
7927 if (req->flags & REQ_F_FIXED_FILE)
7928 req->file = io_file_get_fixed(req, req->cancel.fd,
7929 issue_flags);
7930 else
7931 req->file = io_file_get_normal(req, req->cancel.fd);
7932 if (!req->file) {
7933 ret = -EBADF;
7934 goto done;
7935 }
7936 cd.file = req->file;
7937 }
7938
7939 ret = __io_async_cancel(&cd, req, issue_flags);
7940 done:
7941 if (ret < 0)
7942 req_set_fail(req);
7943 io_req_complete_post(req, ret, 0);
7944 return 0;
7945 }
7946
7947 static int io_files_update_prep(struct io_kiocb *req,
7948 const struct io_uring_sqe *sqe)
7949 {
7950 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
7951 return -EINVAL;
7952 if (sqe->rw_flags || sqe->splice_fd_in)
7953 return -EINVAL;
7954
7955 req->rsrc_update.offset = READ_ONCE(sqe->off);
7956 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
7957 if (!req->rsrc_update.nr_args)
7958 return -EINVAL;
7959 req->rsrc_update.arg = READ_ONCE(sqe->addr);
7960 return 0;
7961 }
7962
7963 static int io_files_update_with_index_alloc(struct io_kiocb *req,
7964 unsigned int issue_flags)
7965 {
7966 __s32 __user *fds = u64_to_user_ptr(req->rsrc_update.arg);
7967 unsigned int done;
7968 struct file *file;
7969 int ret, fd;
7970
7971 for (done = 0; done < req->rsrc_update.nr_args; done++) {
7972 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7973 ret = -EFAULT;
7974 break;
7975 }
7976
7977 file = fget(fd);
7978 if (!file) {
7979 ret = -EBADF;
7980 break;
7981 }
7982 ret = io_fixed_fd_install(req, issue_flags, file,
7983 IORING_FILE_INDEX_ALLOC);
7984 if (ret < 0)
7985 break;
7986 if (copy_to_user(&fds[done], &ret, sizeof(ret))) {
7987 __io_close_fixed(req, issue_flags, ret);
7988 ret = -EFAULT;
7989 break;
7990 }
7991 }
7992
7993 if (done)
7994 return done;
7995 return ret;
7996 }
7997
7998 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
7999 {
8000 struct io_ring_ctx *ctx = req->ctx;
8001 struct io_uring_rsrc_update2 up;
8002 int ret;
8003
8004 up.offset = req->rsrc_update.offset;
8005 up.data = req->rsrc_update.arg;
8006 up.nr = 0;
8007 up.tags = 0;
8008 up.resv = 0;
8009 up.resv2 = 0;
8010
8011 if (req->rsrc_update.offset == IORING_FILE_INDEX_ALLOC) {
8012 ret = io_files_update_with_index_alloc(req, issue_flags);
8013 } else {
8014 io_ring_submit_lock(ctx, issue_flags);
8015 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
8016 &up, req->rsrc_update.nr_args);
8017 io_ring_submit_unlock(ctx, issue_flags);
8018 }
8019
8020 if (ret < 0)
8021 req_set_fail(req);
8022 __io_req_complete(req, issue_flags, ret, 0);
8023 return 0;
8024 }
8025
8026 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
8027 {
8028 switch (req->opcode) {
8029 case IORING_OP_NOP:
8030 return io_nop_prep(req, sqe);
8031 case IORING_OP_READV:
8032 case IORING_OP_READ_FIXED:
8033 case IORING_OP_READ:
8034 case IORING_OP_WRITEV:
8035 case IORING_OP_WRITE_FIXED:
8036 case IORING_OP_WRITE:
8037 return io_prep_rw(req, sqe);
8038 case IORING_OP_POLL_ADD:
8039 return io_poll_add_prep(req, sqe);
8040 case IORING_OP_POLL_REMOVE:
8041 return io_poll_remove_prep(req, sqe);
8042 case IORING_OP_FSYNC:
8043 return io_fsync_prep(req, sqe);
8044 case IORING_OP_SYNC_FILE_RANGE:
8045 return io_sfr_prep(req, sqe);
8046 case IORING_OP_SENDMSG:
8047 case IORING_OP_SEND:
8048 return io_sendmsg_prep(req, sqe);
8049 case IORING_OP_RECVMSG:
8050 case IORING_OP_RECV:
8051 return io_recvmsg_prep(req, sqe);
8052 case IORING_OP_CONNECT:
8053 return io_connect_prep(req, sqe);
8054 case IORING_OP_TIMEOUT:
8055 return io_timeout_prep(req, sqe);
8056 case IORING_OP_TIMEOUT_REMOVE:
8057 return io_timeout_remove_prep(req, sqe);
8058 case IORING_OP_ASYNC_CANCEL:
8059 return io_async_cancel_prep(req, sqe);
8060 case IORING_OP_LINK_TIMEOUT:
8061 return io_link_timeout_prep(req, sqe);
8062 case IORING_OP_ACCEPT:
8063 return io_accept_prep(req, sqe);
8064 case IORING_OP_FALLOCATE:
8065 return io_fallocate_prep(req, sqe);
8066 case IORING_OP_OPENAT:
8067 return io_openat_prep(req, sqe);
8068 case IORING_OP_CLOSE:
8069 return io_close_prep(req, sqe);
8070 case IORING_OP_FILES_UPDATE:
8071 return io_files_update_prep(req, sqe);
8072 case IORING_OP_STATX:
8073 return io_statx_prep(req, sqe);
8074 case IORING_OP_FADVISE:
8075 return io_fadvise_prep(req, sqe);
8076 case IORING_OP_MADVISE:
8077 return io_madvise_prep(req, sqe);
8078 case IORING_OP_OPENAT2:
8079 return io_openat2_prep(req, sqe);
8080 case IORING_OP_EPOLL_CTL:
8081 return io_epoll_ctl_prep(req, sqe);
8082 case IORING_OP_SPLICE:
8083 return io_splice_prep(req, sqe);
8084 case IORING_OP_PROVIDE_BUFFERS:
8085 return io_provide_buffers_prep(req, sqe);
8086 case IORING_OP_REMOVE_BUFFERS:
8087 return io_remove_buffers_prep(req, sqe);
8088 case IORING_OP_TEE:
8089 return io_tee_prep(req, sqe);
8090 case IORING_OP_SHUTDOWN:
8091 return io_shutdown_prep(req, sqe);
8092 case IORING_OP_RENAMEAT:
8093 return io_renameat_prep(req, sqe);
8094 case IORING_OP_UNLINKAT:
8095 return io_unlinkat_prep(req, sqe);
8096 case IORING_OP_MKDIRAT:
8097 return io_mkdirat_prep(req, sqe);
8098 case IORING_OP_SYMLINKAT:
8099 return io_symlinkat_prep(req, sqe);
8100 case IORING_OP_LINKAT:
8101 return io_linkat_prep(req, sqe);
8102 case IORING_OP_MSG_RING:
8103 return io_msg_ring_prep(req, sqe);
8104 case IORING_OP_FSETXATTR:
8105 return io_fsetxattr_prep(req, sqe);
8106 case IORING_OP_SETXATTR:
8107 return io_setxattr_prep(req, sqe);
8108 case IORING_OP_FGETXATTR:
8109 return io_fgetxattr_prep(req, sqe);
8110 case IORING_OP_GETXATTR:
8111 return io_getxattr_prep(req, sqe);
8112 case IORING_OP_SOCKET:
8113 return io_socket_prep(req, sqe);
8114 case IORING_OP_URING_CMD:
8115 return io_uring_cmd_prep(req, sqe);
8116 }
8117
8118 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
8119 req->opcode);
8120 return -EINVAL;
8121 }
8122
8123 static int io_req_prep_async(struct io_kiocb *req)
8124 {
8125 const struct io_op_def *def = &io_op_defs[req->opcode];
8126
8127 /* assign early for deferred execution for non-fixed file */
8128 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
8129 req->file = io_file_get_normal(req, req->cqe.fd);
8130 if (!def->needs_async_setup)
8131 return 0;
8132 if (WARN_ON_ONCE(req_has_async_data(req)))
8133 return -EFAULT;
8134 if (io_alloc_async_data(req))
8135 return -EAGAIN;
8136
8137 switch (req->opcode) {
8138 case IORING_OP_READV:
8139 return io_readv_prep_async(req);
8140 case IORING_OP_WRITEV:
8141 return io_writev_prep_async(req);
8142 case IORING_OP_SENDMSG:
8143 return io_sendmsg_prep_async(req);
8144 case IORING_OP_RECVMSG:
8145 return io_recvmsg_prep_async(req);
8146 case IORING_OP_CONNECT:
8147 return io_connect_prep_async(req);
8148 case IORING_OP_URING_CMD:
8149 return io_uring_cmd_prep_async(req);
8150 }
8151 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
8152 req->opcode);
8153 return -EFAULT;
8154 }
8155
8156 static u32 io_get_sequence(struct io_kiocb *req)
8157 {
8158 u32 seq = req->ctx->cached_sq_head;
8159 struct io_kiocb *cur;
8160
8161 /* need original cached_sq_head, but it was increased for each req */
8162 io_for_each_link(cur, req)
8163 seq--;
8164 return seq;
8165 }
8166
8167 static __cold void io_drain_req(struct io_kiocb *req)
8168 {
8169 struct io_ring_ctx *ctx = req->ctx;
8170 struct io_defer_entry *de;
8171 int ret;
8172 u32 seq = io_get_sequence(req);
8173
8174 /* Still need defer if there is pending req in defer list. */
8175 spin_lock(&ctx->completion_lock);
8176 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
8177 spin_unlock(&ctx->completion_lock);
8178 queue:
8179 ctx->drain_active = false;
8180 io_req_task_queue(req);
8181 return;
8182 }
8183 spin_unlock(&ctx->completion_lock);
8184
8185 ret = io_req_prep_async(req);
8186 if (ret) {
8187 fail:
8188 io_req_complete_failed(req, ret);
8189 return;
8190 }
8191 io_prep_async_link(req);
8192 de = kmalloc(sizeof(*de), GFP_KERNEL);
8193 if (!de) {
8194 ret = -ENOMEM;
8195 goto fail;
8196 }
8197
8198 spin_lock(&ctx->completion_lock);
8199 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
8200 spin_unlock(&ctx->completion_lock);
8201 kfree(de);
8202 goto queue;
8203 }
8204
8205 trace_io_uring_defer(ctx, req, req->cqe.user_data, req->opcode);
8206 de->req = req;
8207 de->seq = seq;
8208 list_add_tail(&de->list, &ctx->defer_list);
8209 spin_unlock(&ctx->completion_lock);
8210 }
8211
8212 static void io_clean_op(struct io_kiocb *req)
8213 {
8214 if (req->flags & REQ_F_BUFFER_SELECTED) {
8215 spin_lock(&req->ctx->completion_lock);
8216 io_put_kbuf_comp(req);
8217 spin_unlock(&req->ctx->completion_lock);
8218 }
8219
8220 if (req->flags & REQ_F_NEED_CLEANUP) {
8221 switch (req->opcode) {
8222 case IORING_OP_READV:
8223 case IORING_OP_READ_FIXED:
8224 case IORING_OP_READ:
8225 case IORING_OP_WRITEV:
8226 case IORING_OP_WRITE_FIXED:
8227 case IORING_OP_WRITE: {
8228 struct io_async_rw *io = req->async_data;
8229
8230 kfree(io->free_iovec);
8231 break;
8232 }
8233 case IORING_OP_RECVMSG:
8234 case IORING_OP_SENDMSG: {
8235 struct io_async_msghdr *io = req->async_data;
8236
8237 kfree(io->free_iov);
8238 break;
8239 }
8240 case IORING_OP_OPENAT:
8241 case IORING_OP_OPENAT2:
8242 if (req->open.filename)
8243 putname(req->open.filename);
8244 break;
8245 case IORING_OP_RENAMEAT:
8246 putname(req->rename.oldpath);
8247 putname(req->rename.newpath);
8248 break;
8249 case IORING_OP_UNLINKAT:
8250 putname(req->unlink.filename);
8251 break;
8252 case IORING_OP_MKDIRAT:
8253 putname(req->mkdir.filename);
8254 break;
8255 case IORING_OP_SYMLINKAT:
8256 putname(req->symlink.oldpath);
8257 putname(req->symlink.newpath);
8258 break;
8259 case IORING_OP_LINKAT:
8260 putname(req->hardlink.oldpath);
8261 putname(req->hardlink.newpath);
8262 break;
8263 case IORING_OP_STATX:
8264 if (req->statx.filename)
8265 putname(req->statx.filename);
8266 break;
8267 case IORING_OP_SETXATTR:
8268 case IORING_OP_FSETXATTR:
8269 case IORING_OP_GETXATTR:
8270 case IORING_OP_FGETXATTR:
8271 __io_xattr_finish(req);
8272 break;
8273 }
8274 }
8275 if ((req->flags & REQ_F_POLLED) && req->apoll) {
8276 kfree(req->apoll->double_poll);
8277 kfree(req->apoll);
8278 req->apoll = NULL;
8279 }
8280 if (req->flags & REQ_F_INFLIGHT) {
8281 struct io_uring_task *tctx = req->task->io_uring;
8282
8283 atomic_dec(&tctx->inflight_tracked);
8284 }
8285 if (req->flags & REQ_F_CREDS)
8286 put_cred(req->creds);
8287 if (req->flags & REQ_F_ASYNC_DATA) {
8288 kfree(req->async_data);
8289 req->async_data = NULL;
8290 }
8291 req->flags &= ~IO_REQ_CLEAN_FLAGS;
8292 }
8293
8294 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
8295 {
8296 if (req->file || !io_op_defs[req->opcode].needs_file)
8297 return true;
8298
8299 if (req->flags & REQ_F_FIXED_FILE)
8300 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
8301 else
8302 req->file = io_file_get_normal(req, req->cqe.fd);
8303
8304 return !!req->file;
8305 }
8306
8307 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
8308 {
8309 const struct io_op_def *def = &io_op_defs[req->opcode];
8310 const struct cred *creds = NULL;
8311 int ret;
8312
8313 if (unlikely(!io_assign_file(req, issue_flags)))
8314 return -EBADF;
8315
8316 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
8317 creds = override_creds(req->creds);
8318
8319 if (!def->audit_skip)
8320 audit_uring_entry(req->opcode);
8321
8322 switch (req->opcode) {
8323 case IORING_OP_NOP:
8324 ret = io_nop(req, issue_flags);
8325 break;
8326 case IORING_OP_READV:
8327 case IORING_OP_READ_FIXED:
8328 case IORING_OP_READ:
8329 ret = io_read(req, issue_flags);
8330 break;
8331 case IORING_OP_WRITEV:
8332 case IORING_OP_WRITE_FIXED:
8333 case IORING_OP_WRITE:
8334 ret = io_write(req, issue_flags);
8335 break;
8336 case IORING_OP_FSYNC:
8337 ret = io_fsync(req, issue_flags);
8338 break;
8339 case IORING_OP_POLL_ADD:
8340 ret = io_poll_add(req, issue_flags);
8341 break;
8342 case IORING_OP_POLL_REMOVE:
8343 ret = io_poll_remove(req, issue_flags);
8344 break;
8345 case IORING_OP_SYNC_FILE_RANGE:
8346 ret = io_sync_file_range(req, issue_flags);
8347 break;
8348 case IORING_OP_SENDMSG:
8349 ret = io_sendmsg(req, issue_flags);
8350 break;
8351 case IORING_OP_SEND:
8352 ret = io_send(req, issue_flags);
8353 break;
8354 case IORING_OP_RECVMSG:
8355 ret = io_recvmsg(req, issue_flags);
8356 break;
8357 case IORING_OP_RECV:
8358 ret = io_recv(req, issue_flags);
8359 break;
8360 case IORING_OP_TIMEOUT:
8361 ret = io_timeout(req, issue_flags);
8362 break;
8363 case IORING_OP_TIMEOUT_REMOVE:
8364 ret = io_timeout_remove(req, issue_flags);
8365 break;
8366 case IORING_OP_ACCEPT:
8367 ret = io_accept(req, issue_flags);
8368 break;
8369 case IORING_OP_CONNECT:
8370 ret = io_connect(req, issue_flags);
8371 break;
8372 case IORING_OP_ASYNC_CANCEL:
8373 ret = io_async_cancel(req, issue_flags);
8374 break;
8375 case IORING_OP_FALLOCATE:
8376 ret = io_fallocate(req, issue_flags);
8377 break;
8378 case IORING_OP_OPENAT:
8379 ret = io_openat(req, issue_flags);
8380 break;
8381 case IORING_OP_CLOSE:
8382 ret = io_close(req, issue_flags);
8383 break;
8384 case IORING_OP_FILES_UPDATE:
8385 ret = io_files_update(req, issue_flags);
8386 break;
8387 case IORING_OP_STATX:
8388 ret = io_statx(req, issue_flags);
8389 break;
8390 case IORING_OP_FADVISE:
8391 ret = io_fadvise(req, issue_flags);
8392 break;
8393 case IORING_OP_MADVISE:
8394 ret = io_madvise(req, issue_flags);
8395 break;
8396 case IORING_OP_OPENAT2:
8397 ret = io_openat2(req, issue_flags);
8398 break;
8399 case IORING_OP_EPOLL_CTL:
8400 ret = io_epoll_ctl(req, issue_flags);
8401 break;
8402 case IORING_OP_SPLICE:
8403 ret = io_splice(req, issue_flags);
8404 break;
8405 case IORING_OP_PROVIDE_BUFFERS:
8406 ret = io_provide_buffers(req, issue_flags);
8407 break;
8408 case IORING_OP_REMOVE_BUFFERS:
8409 ret = io_remove_buffers(req, issue_flags);
8410 break;
8411 case IORING_OP_TEE:
8412 ret = io_tee(req, issue_flags);
8413 break;
8414 case IORING_OP_SHUTDOWN:
8415 ret = io_shutdown(req, issue_flags);
8416 break;
8417 case IORING_OP_RENAMEAT:
8418 ret = io_renameat(req, issue_flags);
8419 break;
8420 case IORING_OP_UNLINKAT:
8421 ret = io_unlinkat(req, issue_flags);
8422 break;
8423 case IORING_OP_MKDIRAT:
8424 ret = io_mkdirat(req, issue_flags);
8425 break;
8426 case IORING_OP_SYMLINKAT:
8427 ret = io_symlinkat(req, issue_flags);
8428 break;
8429 case IORING_OP_LINKAT:
8430 ret = io_linkat(req, issue_flags);
8431 break;
8432 case IORING_OP_MSG_RING:
8433 ret = io_msg_ring(req, issue_flags);
8434 break;
8435 case IORING_OP_FSETXATTR:
8436 ret = io_fsetxattr(req, issue_flags);
8437 break;
8438 case IORING_OP_SETXATTR:
8439 ret = io_setxattr(req, issue_flags);
8440 break;
8441 case IORING_OP_FGETXATTR:
8442 ret = io_fgetxattr(req, issue_flags);
8443 break;
8444 case IORING_OP_GETXATTR:
8445 ret = io_getxattr(req, issue_flags);
8446 break;
8447 case IORING_OP_SOCKET:
8448 ret = io_socket(req, issue_flags);
8449 break;
8450 case IORING_OP_URING_CMD:
8451 ret = io_uring_cmd(req, issue_flags);
8452 break;
8453 default:
8454 ret = -EINVAL;
8455 break;
8456 }
8457
8458 if (!def->audit_skip)
8459 audit_uring_exit(!ret, ret);
8460
8461 if (creds)
8462 revert_creds(creds);
8463 if (ret)
8464 return ret;
8465 /* If the op doesn't have a file, we're not polling for it */
8466 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
8467 io_iopoll_req_issued(req, issue_flags);
8468
8469 return 0;
8470 }
8471
8472 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
8473 {
8474 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8475
8476 req = io_put_req_find_next(req);
8477 return req ? &req->work : NULL;
8478 }
8479
8480 static void io_wq_submit_work(struct io_wq_work *work)
8481 {
8482 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8483 const struct io_op_def *def = &io_op_defs[req->opcode];
8484 unsigned int issue_flags = IO_URING_F_UNLOCKED;
8485 bool needs_poll = false;
8486 int ret = 0, err = -ECANCELED;
8487
8488 /* one will be dropped by ->io_free_work() after returning to io-wq */
8489 if (!(req->flags & REQ_F_REFCOUNT))
8490 __io_req_set_refcount(req, 2);
8491 else
8492 req_ref_get(req);
8493
8494 io_arm_ltimeout(req);
8495
8496 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
8497 if (work->flags & IO_WQ_WORK_CANCEL) {
8498 fail:
8499 io_req_task_queue_fail(req, err);
8500 return;
8501 }
8502 if (!io_assign_file(req, issue_flags)) {
8503 err = -EBADF;
8504 work->flags |= IO_WQ_WORK_CANCEL;
8505 goto fail;
8506 }
8507
8508 if (req->flags & REQ_F_FORCE_ASYNC) {
8509 bool opcode_poll = def->pollin || def->pollout;
8510
8511 if (opcode_poll && file_can_poll(req->file)) {
8512 needs_poll = true;
8513 issue_flags |= IO_URING_F_NONBLOCK;
8514 }
8515 }
8516
8517 do {
8518 ret = io_issue_sqe(req, issue_flags);
8519 if (ret != -EAGAIN)
8520 break;
8521 /*
8522 * We can get EAGAIN for iopolled IO even though we're
8523 * forcing a sync submission from here, since we can't
8524 * wait for request slots on the block side.
8525 */
8526 if (!needs_poll) {
8527 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
8528 break;
8529 cond_resched();
8530 continue;
8531 }
8532
8533 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
8534 return;
8535 /* aborted or ready, in either case retry blocking */
8536 needs_poll = false;
8537 issue_flags &= ~IO_URING_F_NONBLOCK;
8538 } while (1);
8539
8540 /* avoid locking problems by failing it from a clean context */
8541 if (ret)
8542 io_req_task_queue_fail(req, ret);
8543 }
8544
8545 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
8546 unsigned i)
8547 {
8548 return &table->files[i];
8549 }
8550
8551 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
8552 int index)
8553 {
8554 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
8555
8556 return (struct file *) (slot->file_ptr & FFS_MASK);
8557 }
8558
8559 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
8560 {
8561 unsigned long file_ptr = (unsigned long) file;
8562
8563 file_ptr |= io_file_get_flags(file);
8564 file_slot->file_ptr = file_ptr;
8565 }
8566
8567 static inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
8568 unsigned int issue_flags)
8569 {
8570 struct io_ring_ctx *ctx = req->ctx;
8571 struct file *file = NULL;
8572 unsigned long file_ptr;
8573
8574 io_ring_submit_lock(ctx, issue_flags);
8575
8576 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
8577 goto out;
8578 fd = array_index_nospec(fd, ctx->nr_user_files);
8579 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
8580 file = (struct file *) (file_ptr & FFS_MASK);
8581 file_ptr &= ~FFS_MASK;
8582 /* mask in overlapping REQ_F and FFS bits */
8583 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
8584 io_req_set_rsrc_node(req, ctx, 0);
8585 WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
8586 out:
8587 io_ring_submit_unlock(ctx, issue_flags);
8588 return file;
8589 }
8590
8591 static struct file *io_file_get_normal(struct io_kiocb *req, int fd)
8592 {
8593 struct file *file = fget(fd);
8594
8595 trace_io_uring_file_get(req->ctx, req, req->cqe.user_data, fd);
8596
8597 /* we don't allow fixed io_uring files */
8598 if (file && file->f_op == &io_uring_fops)
8599 io_req_track_inflight(req);
8600 return file;
8601 }
8602
8603 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
8604 {
8605 struct io_kiocb *prev = req->timeout.prev;
8606 int ret = -ENOENT;
8607
8608 if (prev) {
8609 if (!(req->task->flags & PF_EXITING)) {
8610 struct io_cancel_data cd = {
8611 .ctx = req->ctx,
8612 .data = prev->cqe.user_data,
8613 };
8614
8615 ret = io_try_cancel(req, &cd);
8616 }
8617 io_req_complete_post(req, ret ?: -ETIME, 0);
8618 io_put_req(prev);
8619 } else {
8620 io_req_complete_post(req, -ETIME, 0);
8621 }
8622 }
8623
8624 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
8625 {
8626 struct io_timeout_data *data = container_of(timer,
8627 struct io_timeout_data, timer);
8628 struct io_kiocb *prev, *req = data->req;
8629 struct io_ring_ctx *ctx = req->ctx;
8630 unsigned long flags;
8631
8632 spin_lock_irqsave(&ctx->timeout_lock, flags);
8633 prev = req->timeout.head;
8634 req->timeout.head = NULL;
8635
8636 /*
8637 * We don't expect the list to be empty, that will only happen if we
8638 * race with the completion of the linked work.
8639 */
8640 if (prev) {
8641 io_remove_next_linked(prev);
8642 if (!req_ref_inc_not_zero(prev))
8643 prev = NULL;
8644 }
8645 list_del(&req->timeout.list);
8646 req->timeout.prev = prev;
8647 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
8648
8649 req->io_task_work.func = io_req_task_link_timeout;
8650 io_req_task_work_add(req);
8651 return HRTIMER_NORESTART;
8652 }
8653
8654 static void io_queue_linked_timeout(struct io_kiocb *req)
8655 {
8656 struct io_ring_ctx *ctx = req->ctx;
8657
8658 spin_lock_irq(&ctx->timeout_lock);
8659 /*
8660 * If the back reference is NULL, then our linked request finished
8661 * before we got a chance to setup the timer
8662 */
8663 if (req->timeout.head) {
8664 struct io_timeout_data *data = req->async_data;
8665
8666 data->timer.function = io_link_timeout_fn;
8667 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
8668 data->mode);
8669 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
8670 }
8671 spin_unlock_irq(&ctx->timeout_lock);
8672 /* drop submission reference */
8673 io_put_req(req);
8674 }
8675
8676 static void io_queue_async(struct io_kiocb *req, int ret)
8677 __must_hold(&req->ctx->uring_lock)
8678 {
8679 struct io_kiocb *linked_timeout;
8680
8681 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
8682 io_req_complete_failed(req, ret);
8683 return;
8684 }
8685
8686 linked_timeout = io_prep_linked_timeout(req);
8687
8688 switch (io_arm_poll_handler(req, 0)) {
8689 case IO_APOLL_READY:
8690 io_req_task_queue(req);
8691 break;
8692 case IO_APOLL_ABORTED:
8693 /*
8694 * Queued up for async execution, worker will release
8695 * submit reference when the iocb is actually submitted.
8696 */
8697 io_kbuf_recycle(req, 0);
8698 io_queue_iowq(req, NULL);
8699 break;
8700 case IO_APOLL_OK:
8701 break;
8702 }
8703
8704 if (linked_timeout)
8705 io_queue_linked_timeout(linked_timeout);
8706 }
8707
8708 static inline void io_queue_sqe(struct io_kiocb *req)
8709 __must_hold(&req->ctx->uring_lock)
8710 {
8711 int ret;
8712
8713 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
8714
8715 if (req->flags & REQ_F_COMPLETE_INLINE) {
8716 io_req_add_compl_list(req);
8717 return;
8718 }
8719 /*
8720 * We async punt it if the file wasn't marked NOWAIT, or if the file
8721 * doesn't support non-blocking read/write attempts
8722 */
8723 if (likely(!ret))
8724 io_arm_ltimeout(req);
8725 else
8726 io_queue_async(req, ret);
8727 }
8728
8729 static void io_queue_sqe_fallback(struct io_kiocb *req)
8730 __must_hold(&req->ctx->uring_lock)
8731 {
8732 if (unlikely(req->flags & REQ_F_FAIL)) {
8733 /*
8734 * We don't submit, fail them all, for that replace hardlinks
8735 * with normal links. Extra REQ_F_LINK is tolerated.
8736 */
8737 req->flags &= ~REQ_F_HARDLINK;
8738 req->flags |= REQ_F_LINK;
8739 io_req_complete_failed(req, req->cqe.res);
8740 } else if (unlikely(req->ctx->drain_active)) {
8741 io_drain_req(req);
8742 } else {
8743 int ret = io_req_prep_async(req);
8744
8745 if (unlikely(ret))
8746 io_req_complete_failed(req, ret);
8747 else
8748 io_queue_iowq(req, NULL);
8749 }
8750 }
8751
8752 /*
8753 * Check SQE restrictions (opcode and flags).
8754 *
8755 * Returns 'true' if SQE is allowed, 'false' otherwise.
8756 */
8757 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
8758 struct io_kiocb *req,
8759 unsigned int sqe_flags)
8760 {
8761 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
8762 return false;
8763
8764 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
8765 ctx->restrictions.sqe_flags_required)
8766 return false;
8767
8768 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
8769 ctx->restrictions.sqe_flags_required))
8770 return false;
8771
8772 return true;
8773 }
8774
8775 static void io_init_req_drain(struct io_kiocb *req)
8776 {
8777 struct io_ring_ctx *ctx = req->ctx;
8778 struct io_kiocb *head = ctx->submit_state.link.head;
8779
8780 ctx->drain_active = true;
8781 if (head) {
8782 /*
8783 * If we need to drain a request in the middle of a link, drain
8784 * the head request and the next request/link after the current
8785 * link. Considering sequential execution of links,
8786 * REQ_F_IO_DRAIN will be maintained for every request of our
8787 * link.
8788 */
8789 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
8790 ctx->drain_next = true;
8791 }
8792 }
8793
8794 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
8795 const struct io_uring_sqe *sqe)
8796 __must_hold(&ctx->uring_lock)
8797 {
8798 const struct io_op_def *def;
8799 unsigned int sqe_flags;
8800 int personality;
8801 u8 opcode;
8802
8803 /* req is partially pre-initialised, see io_preinit_req() */
8804 req->opcode = opcode = READ_ONCE(sqe->opcode);
8805 /* same numerical values with corresponding REQ_F_*, safe to copy */
8806 req->flags = sqe_flags = READ_ONCE(sqe->flags);
8807 req->cqe.user_data = READ_ONCE(sqe->user_data);
8808 req->file = NULL;
8809 req->rsrc_node = NULL;
8810 req->task = current;
8811
8812 if (unlikely(opcode >= IORING_OP_LAST)) {
8813 req->opcode = 0;
8814 return -EINVAL;
8815 }
8816 def = &io_op_defs[opcode];
8817 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
8818 /* enforce forwards compatibility on users */
8819 if (sqe_flags & ~SQE_VALID_FLAGS)
8820 return -EINVAL;
8821 if (sqe_flags & IOSQE_BUFFER_SELECT) {
8822 if (!def->buffer_select)
8823 return -EOPNOTSUPP;
8824 req->buf_index = READ_ONCE(sqe->buf_group);
8825 }
8826 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
8827 ctx->drain_disabled = true;
8828 if (sqe_flags & IOSQE_IO_DRAIN) {
8829 if (ctx->drain_disabled)
8830 return -EOPNOTSUPP;
8831 io_init_req_drain(req);
8832 }
8833 }
8834 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
8835 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
8836 return -EACCES;
8837 /* knock it to the slow queue path, will be drained there */
8838 if (ctx->drain_active)
8839 req->flags |= REQ_F_FORCE_ASYNC;
8840 /* if there is no link, we're at "next" request and need to drain */
8841 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
8842 ctx->drain_next = false;
8843 ctx->drain_active = true;
8844 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
8845 }
8846 }
8847
8848 if (!def->ioprio && sqe->ioprio)
8849 return -EINVAL;
8850 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
8851 return -EINVAL;
8852
8853 if (def->needs_file) {
8854 struct io_submit_state *state = &ctx->submit_state;
8855
8856 req->cqe.fd = READ_ONCE(sqe->fd);
8857
8858 /*
8859 * Plug now if we have more than 2 IO left after this, and the
8860 * target is potentially a read/write to block based storage.
8861 */
8862 if (state->need_plug && def->plug) {
8863 state->plug_started = true;
8864 state->need_plug = false;
8865 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
8866 }
8867 }
8868
8869 personality = READ_ONCE(sqe->personality);
8870 if (personality) {
8871 int ret;
8872
8873 req->creds = xa_load(&ctx->personalities, personality);
8874 if (!req->creds)
8875 return -EINVAL;
8876 get_cred(req->creds);
8877 ret = security_uring_override_creds(req->creds);
8878 if (ret) {
8879 put_cred(req->creds);
8880 return ret;
8881 }
8882 req->flags |= REQ_F_CREDS;
8883 }
8884
8885 return io_req_prep(req, sqe);
8886 }
8887
8888 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
8889 struct io_kiocb *req, int ret)
8890 {
8891 struct io_ring_ctx *ctx = req->ctx;
8892 struct io_submit_link *link = &ctx->submit_state.link;
8893 struct io_kiocb *head = link->head;
8894
8895 trace_io_uring_req_failed(sqe, ctx, req, ret);
8896
8897 /*
8898 * Avoid breaking links in the middle as it renders links with SQPOLL
8899 * unusable. Instead of failing eagerly, continue assembling the link if
8900 * applicable and mark the head with REQ_F_FAIL. The link flushing code
8901 * should find the flag and handle the rest.
8902 */
8903 req_fail_link_node(req, ret);
8904 if (head && !(head->flags & REQ_F_FAIL))
8905 req_fail_link_node(head, -ECANCELED);
8906
8907 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
8908 if (head) {
8909 link->last->link = req;
8910 link->head = NULL;
8911 req = head;
8912 }
8913 io_queue_sqe_fallback(req);
8914 return ret;
8915 }
8916
8917 if (head)
8918 link->last->link = req;
8919 else
8920 link->head = req;
8921 link->last = req;
8922 return 0;
8923 }
8924
8925 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
8926 const struct io_uring_sqe *sqe)
8927 __must_hold(&ctx->uring_lock)
8928 {
8929 struct io_submit_link *link = &ctx->submit_state.link;
8930 int ret;
8931
8932 ret = io_init_req(ctx, req, sqe);
8933 if (unlikely(ret))
8934 return io_submit_fail_init(sqe, req, ret);
8935
8936 /* don't need @sqe from now on */
8937 trace_io_uring_submit_sqe(ctx, req, req->cqe.user_data, req->opcode,
8938 req->flags, true,
8939 ctx->flags & IORING_SETUP_SQPOLL);
8940
8941 /*
8942 * If we already have a head request, queue this one for async
8943 * submittal once the head completes. If we don't have a head but
8944 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
8945 * submitted sync once the chain is complete. If none of those
8946 * conditions are true (normal request), then just queue it.
8947 */
8948 if (unlikely(link->head)) {
8949 ret = io_req_prep_async(req);
8950 if (unlikely(ret))
8951 return io_submit_fail_init(sqe, req, ret);
8952
8953 trace_io_uring_link(ctx, req, link->head);
8954 link->last->link = req;
8955 link->last = req;
8956
8957 if (req->flags & IO_REQ_LINK_FLAGS)
8958 return 0;
8959 /* last request of the link, flush it */
8960 req = link->head;
8961 link->head = NULL;
8962 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
8963 goto fallback;
8964
8965 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
8966 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
8967 if (req->flags & IO_REQ_LINK_FLAGS) {
8968 link->head = req;
8969 link->last = req;
8970 } else {
8971 fallback:
8972 io_queue_sqe_fallback(req);
8973 }
8974 return 0;
8975 }
8976
8977 io_queue_sqe(req);
8978 return 0;
8979 }
8980
8981 /*
8982 * Batched submission is done, ensure local IO is flushed out.
8983 */
8984 static void io_submit_state_end(struct io_ring_ctx *ctx)
8985 {
8986 struct io_submit_state *state = &ctx->submit_state;
8987
8988 if (unlikely(state->link.head))
8989 io_queue_sqe_fallback(state->link.head);
8990 /* flush only after queuing links as they can generate completions */
8991 io_submit_flush_completions(ctx);
8992 if (state->plug_started)
8993 blk_finish_plug(&state->plug);
8994 }
8995
8996 /*
8997 * Start submission side cache.
8998 */
8999 static void io_submit_state_start(struct io_submit_state *state,
9000 unsigned int max_ios)
9001 {
9002 state->plug_started = false;
9003 state->need_plug = max_ios > 2;
9004 state->submit_nr = max_ios;
9005 /* set only head, no need to init link_last in advance */
9006 state->link.head = NULL;
9007 }
9008
9009 static void io_commit_sqring(struct io_ring_ctx *ctx)
9010 {
9011 struct io_rings *rings = ctx->rings;
9012
9013 /*
9014 * Ensure any loads from the SQEs are done at this point,
9015 * since once we write the new head, the application could
9016 * write new data to them.
9017 */
9018 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
9019 }
9020
9021 /*
9022 * Fetch an sqe, if one is available. Note this returns a pointer to memory
9023 * that is mapped by userspace. This means that care needs to be taken to
9024 * ensure that reads are stable, as we cannot rely on userspace always
9025 * being a good citizen. If members of the sqe are validated and then later
9026 * used, it's important that those reads are done through READ_ONCE() to
9027 * prevent a re-load down the line.
9028 */
9029 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
9030 {
9031 unsigned head, mask = ctx->sq_entries - 1;
9032 unsigned sq_idx = ctx->cached_sq_head++ & mask;
9033
9034 /*
9035 * The cached sq head (or cq tail) serves two purposes:
9036 *
9037 * 1) allows us to batch the cost of updating the user visible
9038 * head updates.
9039 * 2) allows the kernel side to track the head on its own, even
9040 * though the application is the one updating it.
9041 */
9042 head = READ_ONCE(ctx->sq_array[sq_idx]);
9043 if (likely(head < ctx->sq_entries)) {
9044 /* double index for 128-byte SQEs, twice as long */
9045 if (ctx->flags & IORING_SETUP_SQE128)
9046 head <<= 1;
9047 return &ctx->sq_sqes[head];
9048 }
9049
9050 /* drop invalid entries */
9051 ctx->cq_extra--;
9052 WRITE_ONCE(ctx->rings->sq_dropped,
9053 READ_ONCE(ctx->rings->sq_dropped) + 1);
9054 return NULL;
9055 }
9056
9057 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
9058 __must_hold(&ctx->uring_lock)
9059 {
9060 unsigned int entries = io_sqring_entries(ctx);
9061 unsigned int left;
9062 int ret;
9063
9064 if (unlikely(!entries))
9065 return 0;
9066 /* make sure SQ entry isn't read before tail */
9067 ret = left = min3(nr, ctx->sq_entries, entries);
9068 io_get_task_refs(left);
9069 io_submit_state_start(&ctx->submit_state, left);
9070
9071 do {
9072 const struct io_uring_sqe *sqe;
9073 struct io_kiocb *req;
9074
9075 if (unlikely(!io_alloc_req_refill(ctx)))
9076 break;
9077 req = io_alloc_req(ctx);
9078 sqe = io_get_sqe(ctx);
9079 if (unlikely(!sqe)) {
9080 io_req_add_to_cache(req, ctx);
9081 break;
9082 }
9083
9084 /*
9085 * Continue submitting even for sqe failure if the
9086 * ring was setup with IORING_SETUP_SUBMIT_ALL
9087 */
9088 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
9089 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
9090 left--;
9091 break;
9092 }
9093 } while (--left);
9094
9095 if (unlikely(left)) {
9096 ret -= left;
9097 /* try again if it submitted nothing and can't allocate a req */
9098 if (!ret && io_req_cache_empty(ctx))
9099 ret = -EAGAIN;
9100 current->io_uring->cached_refs += left;
9101 }
9102
9103 io_submit_state_end(ctx);
9104 /* Commit SQ ring head once we've consumed and submitted all SQEs */
9105 io_commit_sqring(ctx);
9106 return ret;
9107 }
9108
9109 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
9110 {
9111 return READ_ONCE(sqd->state);
9112 }
9113
9114 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
9115 {
9116 unsigned int to_submit;
9117 int ret = 0;
9118
9119 to_submit = io_sqring_entries(ctx);
9120 /* if we're handling multiple rings, cap submit size for fairness */
9121 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
9122 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
9123
9124 if (!wq_list_empty(&ctx->iopoll_list) || to_submit) {
9125 const struct cred *creds = NULL;
9126
9127 if (ctx->sq_creds != current_cred())
9128 creds = override_creds(ctx->sq_creds);
9129
9130 mutex_lock(&ctx->uring_lock);
9131 if (!wq_list_empty(&ctx->iopoll_list))
9132 io_do_iopoll(ctx, true);
9133
9134 /*
9135 * Don't submit if refs are dying, good for io_uring_register(),
9136 * but also it is relied upon by io_ring_exit_work()
9137 */
9138 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
9139 !(ctx->flags & IORING_SETUP_R_DISABLED))
9140 ret = io_submit_sqes(ctx, to_submit);
9141 mutex_unlock(&ctx->uring_lock);
9142
9143 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
9144 wake_up(&ctx->sqo_sq_wait);
9145 if (creds)
9146 revert_creds(creds);
9147 }
9148
9149 return ret;
9150 }
9151
9152 static __cold void io_sqd_update_thread_idle(struct io_sq_data *sqd)
9153 {
9154 struct io_ring_ctx *ctx;
9155 unsigned sq_thread_idle = 0;
9156
9157 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9158 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
9159 sqd->sq_thread_idle = sq_thread_idle;
9160 }
9161
9162 static bool io_sqd_handle_event(struct io_sq_data *sqd)
9163 {
9164 bool did_sig = false;
9165 struct ksignal ksig;
9166
9167 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
9168 signal_pending(current)) {
9169 mutex_unlock(&sqd->lock);
9170 if (signal_pending(current))
9171 did_sig = get_signal(&ksig);
9172 cond_resched();
9173 mutex_lock(&sqd->lock);
9174 }
9175 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
9176 }
9177
9178 static int io_sq_thread(void *data)
9179 {
9180 struct io_sq_data *sqd = data;
9181 struct io_ring_ctx *ctx;
9182 unsigned long timeout = 0;
9183 char buf[TASK_COMM_LEN];
9184 DEFINE_WAIT(wait);
9185
9186 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
9187 set_task_comm(current, buf);
9188
9189 if (sqd->sq_cpu != -1)
9190 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
9191 else
9192 set_cpus_allowed_ptr(current, cpu_online_mask);
9193 current->flags |= PF_NO_SETAFFINITY;
9194
9195 audit_alloc_kernel(current);
9196
9197 mutex_lock(&sqd->lock);
9198 while (1) {
9199 bool cap_entries, sqt_spin = false;
9200
9201 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
9202 if (io_sqd_handle_event(sqd))
9203 break;
9204 timeout = jiffies + sqd->sq_thread_idle;
9205 }
9206
9207 cap_entries = !list_is_singular(&sqd->ctx_list);
9208 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
9209 int ret = __io_sq_thread(ctx, cap_entries);
9210
9211 if (!sqt_spin && (ret > 0 || !wq_list_empty(&ctx->iopoll_list)))
9212 sqt_spin = true;
9213 }
9214 if (io_run_task_work())
9215 sqt_spin = true;
9216
9217 if (sqt_spin || !time_after(jiffies, timeout)) {
9218 cond_resched();
9219 if (sqt_spin)
9220 timeout = jiffies + sqd->sq_thread_idle;
9221 continue;
9222 }
9223
9224 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
9225 if (!io_sqd_events_pending(sqd) && !task_work_pending(current)) {
9226 bool needs_sched = true;
9227
9228 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
9229 atomic_or(IORING_SQ_NEED_WAKEUP,
9230 &ctx->rings->sq_flags);
9231 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
9232 !wq_list_empty(&ctx->iopoll_list)) {
9233 needs_sched = false;
9234 break;
9235 }
9236
9237 /*
9238 * Ensure the store of the wakeup flag is not
9239 * reordered with the load of the SQ tail
9240 */
9241 smp_mb__after_atomic();
9242
9243 if (io_sqring_entries(ctx)) {
9244 needs_sched = false;
9245 break;
9246 }
9247 }
9248
9249 if (needs_sched) {
9250 mutex_unlock(&sqd->lock);
9251 schedule();
9252 mutex_lock(&sqd->lock);
9253 }
9254 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9255 atomic_andnot(IORING_SQ_NEED_WAKEUP,
9256 &ctx->rings->sq_flags);
9257 }
9258
9259 finish_wait(&sqd->wait, &wait);
9260 timeout = jiffies + sqd->sq_thread_idle;
9261 }
9262
9263 io_uring_cancel_generic(true, sqd);
9264 sqd->thread = NULL;
9265 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9266 atomic_or(IORING_SQ_NEED_WAKEUP, &ctx->rings->sq_flags);
9267 io_run_task_work();
9268 mutex_unlock(&sqd->lock);
9269
9270 audit_free(current);
9271
9272 complete(&sqd->exited);
9273 do_exit(0);
9274 }
9275
9276 struct io_wait_queue {
9277 struct wait_queue_entry wq;
9278 struct io_ring_ctx *ctx;
9279 unsigned cq_tail;
9280 unsigned nr_timeouts;
9281 };
9282
9283 static inline bool io_should_wake(struct io_wait_queue *iowq)
9284 {
9285 struct io_ring_ctx *ctx = iowq->ctx;
9286 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
9287
9288 /*
9289 * Wake up if we have enough events, or if a timeout occurred since we
9290 * started waiting. For timeouts, we always want to return to userspace,
9291 * regardless of event count.
9292 */
9293 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
9294 }
9295
9296 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
9297 int wake_flags, void *key)
9298 {
9299 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
9300 wq);
9301
9302 /*
9303 * Cannot safely flush overflowed CQEs from here, ensure we wake up
9304 * the task, and the next invocation will do it.
9305 */
9306 if (io_should_wake(iowq) ||
9307 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq))
9308 return autoremove_wake_function(curr, mode, wake_flags, key);
9309 return -1;
9310 }
9311
9312 static int io_run_task_work_sig(void)
9313 {
9314 if (io_run_task_work())
9315 return 1;
9316 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
9317 return -ERESTARTSYS;
9318 if (task_sigpending(current))
9319 return -EINTR;
9320 return 0;
9321 }
9322
9323 /* when returns >0, the caller should retry */
9324 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
9325 struct io_wait_queue *iowq,
9326 ktime_t timeout)
9327 {
9328 int ret;
9329 unsigned long check_cq;
9330
9331 /* make sure we run task_work before checking for signals */
9332 ret = io_run_task_work_sig();
9333 if (ret || io_should_wake(iowq))
9334 return ret;
9335 check_cq = READ_ONCE(ctx->check_cq);
9336 /* let the caller flush overflows, retry */
9337 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
9338 return 1;
9339 if (unlikely(check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)))
9340 return -EBADR;
9341 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
9342 return -ETIME;
9343 return 1;
9344 }
9345
9346 /*
9347 * Wait until events become available, if we don't already have some. The
9348 * application must reap them itself, as they reside on the shared cq ring.
9349 */
9350 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
9351 const sigset_t __user *sig, size_t sigsz,
9352 struct __kernel_timespec __user *uts)
9353 {
9354 struct io_wait_queue iowq;
9355 struct io_rings *rings = ctx->rings;
9356 ktime_t timeout = KTIME_MAX;
9357 int ret;
9358
9359 do {
9360 io_cqring_overflow_flush(ctx);
9361 if (io_cqring_events(ctx) >= min_events)
9362 return 0;
9363 if (!io_run_task_work())
9364 break;
9365 } while (1);
9366
9367 if (sig) {
9368 #ifdef CONFIG_COMPAT
9369 if (in_compat_syscall())
9370 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
9371 sigsz);
9372 else
9373 #endif
9374 ret = set_user_sigmask(sig, sigsz);
9375
9376 if (ret)
9377 return ret;
9378 }
9379
9380 if (uts) {
9381 struct timespec64 ts;
9382
9383 if (get_timespec64(&ts, uts))
9384 return -EFAULT;
9385 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
9386 }
9387
9388 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
9389 iowq.wq.private = current;
9390 INIT_LIST_HEAD(&iowq.wq.entry);
9391 iowq.ctx = ctx;
9392 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
9393 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
9394
9395 trace_io_uring_cqring_wait(ctx, min_events);
9396 do {
9397 /* if we can't even flush overflow, don't wait for more */
9398 if (!io_cqring_overflow_flush(ctx)) {
9399 ret = -EBUSY;
9400 break;
9401 }
9402 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
9403 TASK_INTERRUPTIBLE);
9404 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
9405 cond_resched();
9406 } while (ret > 0);
9407
9408 finish_wait(&ctx->cq_wait, &iowq.wq);
9409 restore_saved_sigmask_unless(ret == -EINTR);
9410
9411 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
9412 }
9413
9414 static void io_free_page_table(void **table, size_t size)
9415 {
9416 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
9417
9418 for (i = 0; i < nr_tables; i++)
9419 kfree(table[i]);
9420 kfree(table);
9421 }
9422
9423 static __cold void **io_alloc_page_table(size_t size)
9424 {
9425 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
9426 size_t init_size = size;
9427 void **table;
9428
9429 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
9430 if (!table)
9431 return NULL;
9432
9433 for (i = 0; i < nr_tables; i++) {
9434 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
9435
9436 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
9437 if (!table[i]) {
9438 io_free_page_table(table, init_size);
9439 return NULL;
9440 }
9441 size -= this_size;
9442 }
9443 return table;
9444 }
9445
9446 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
9447 {
9448 percpu_ref_exit(&ref_node->refs);
9449 kfree(ref_node);
9450 }
9451
9452 static __cold void io_rsrc_node_ref_zero(struct percpu_ref *ref)
9453 {
9454 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
9455 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
9456 unsigned long flags;
9457 bool first_add = false;
9458 unsigned long delay = HZ;
9459
9460 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
9461 node->done = true;
9462
9463 /* if we are mid-quiesce then do not delay */
9464 if (node->rsrc_data->quiesce)
9465 delay = 0;
9466
9467 while (!list_empty(&ctx->rsrc_ref_list)) {
9468 node = list_first_entry(&ctx->rsrc_ref_list,
9469 struct io_rsrc_node, node);
9470 /* recycle ref nodes in order */
9471 if (!node->done)
9472 break;
9473 list_del(&node->node);
9474 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
9475 }
9476 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
9477
9478 if (first_add)
9479 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
9480 }
9481
9482 static struct io_rsrc_node *io_rsrc_node_alloc(void)
9483 {
9484 struct io_rsrc_node *ref_node;
9485
9486 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
9487 if (!ref_node)
9488 return NULL;
9489
9490 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
9491 0, GFP_KERNEL)) {
9492 kfree(ref_node);
9493 return NULL;
9494 }
9495 INIT_LIST_HEAD(&ref_node->node);
9496 INIT_LIST_HEAD(&ref_node->rsrc_list);
9497 ref_node->done = false;
9498 return ref_node;
9499 }
9500
9501 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
9502 struct io_rsrc_data *data_to_kill)
9503 __must_hold(&ctx->uring_lock)
9504 {
9505 WARN_ON_ONCE(!ctx->rsrc_backup_node);
9506 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
9507
9508 io_rsrc_refs_drop(ctx);
9509
9510 if (data_to_kill) {
9511 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
9512
9513 rsrc_node->rsrc_data = data_to_kill;
9514 spin_lock_irq(&ctx->rsrc_ref_lock);
9515 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
9516 spin_unlock_irq(&ctx->rsrc_ref_lock);
9517
9518 atomic_inc(&data_to_kill->refs);
9519 percpu_ref_kill(&rsrc_node->refs);
9520 ctx->rsrc_node = NULL;
9521 }
9522
9523 if (!ctx->rsrc_node) {
9524 ctx->rsrc_node = ctx->rsrc_backup_node;
9525 ctx->rsrc_backup_node = NULL;
9526 }
9527 }
9528
9529 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
9530 {
9531 if (ctx->rsrc_backup_node)
9532 return 0;
9533 ctx->rsrc_backup_node = io_rsrc_node_alloc();
9534 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
9535 }
9536
9537 static __cold int io_rsrc_ref_quiesce(struct io_rsrc_data *data,
9538 struct io_ring_ctx *ctx)
9539 {
9540 int ret;
9541
9542 /* As we may drop ->uring_lock, other task may have started quiesce */
9543 if (data->quiesce)
9544 return -ENXIO;
9545
9546 data->quiesce = true;
9547 do {
9548 ret = io_rsrc_node_switch_start(ctx);
9549 if (ret)
9550 break;
9551 io_rsrc_node_switch(ctx, data);
9552
9553 /* kill initial ref, already quiesced if zero */
9554 if (atomic_dec_and_test(&data->refs))
9555 break;
9556 mutex_unlock(&ctx->uring_lock);
9557 flush_delayed_work(&ctx->rsrc_put_work);
9558 ret = wait_for_completion_interruptible(&data->done);
9559 if (!ret) {
9560 mutex_lock(&ctx->uring_lock);
9561 if (atomic_read(&data->refs) > 0) {
9562 /*
9563 * it has been revived by another thread while
9564 * we were unlocked
9565 */
9566 mutex_unlock(&ctx->uring_lock);
9567 } else {
9568 break;
9569 }
9570 }
9571
9572 atomic_inc(&data->refs);
9573 /* wait for all works potentially completing data->done */
9574 flush_delayed_work(&ctx->rsrc_put_work);
9575 reinit_completion(&data->done);
9576
9577 ret = io_run_task_work_sig();
9578 mutex_lock(&ctx->uring_lock);
9579 } while (ret >= 0);
9580 data->quiesce = false;
9581
9582 return ret;
9583 }
9584
9585 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
9586 {
9587 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
9588 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
9589
9590 return &data->tags[table_idx][off];
9591 }
9592
9593 static void io_rsrc_data_free(struct io_rsrc_data *data)
9594 {
9595 size_t size = data->nr * sizeof(data->tags[0][0]);
9596
9597 if (data->tags)
9598 io_free_page_table((void **)data->tags, size);
9599 kfree(data);
9600 }
9601
9602 static __cold int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
9603 u64 __user *utags, unsigned nr,
9604 struct io_rsrc_data **pdata)
9605 {
9606 struct io_rsrc_data *data;
9607 int ret = -ENOMEM;
9608 unsigned i;
9609
9610 data = kzalloc(sizeof(*data), GFP_KERNEL);
9611 if (!data)
9612 return -ENOMEM;
9613 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
9614 if (!data->tags) {
9615 kfree(data);
9616 return -ENOMEM;
9617 }
9618
9619 data->nr = nr;
9620 data->ctx = ctx;
9621 data->do_put = do_put;
9622 if (utags) {
9623 ret = -EFAULT;
9624 for (i = 0; i < nr; i++) {
9625 u64 *tag_slot = io_get_tag_slot(data, i);
9626
9627 if (copy_from_user(tag_slot, &utags[i],
9628 sizeof(*tag_slot)))
9629 goto fail;
9630 }
9631 }
9632
9633 atomic_set(&data->refs, 1);
9634 init_completion(&data->done);
9635 *pdata = data;
9636 return 0;
9637 fail:
9638 io_rsrc_data_free(data);
9639 return ret;
9640 }
9641
9642 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
9643 {
9644 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
9645 GFP_KERNEL_ACCOUNT);
9646 if (unlikely(!table->files))
9647 return false;
9648
9649 table->bitmap = bitmap_zalloc(nr_files, GFP_KERNEL_ACCOUNT);
9650 if (unlikely(!table->bitmap)) {
9651 kvfree(table->files);
9652 return false;
9653 }
9654
9655 return true;
9656 }
9657
9658 static void io_free_file_tables(struct io_file_table *table)
9659 {
9660 kvfree(table->files);
9661 bitmap_free(table->bitmap);
9662 table->files = NULL;
9663 table->bitmap = NULL;
9664 }
9665
9666 static inline void io_file_bitmap_set(struct io_file_table *table, int bit)
9667 {
9668 WARN_ON_ONCE(test_bit(bit, table->bitmap));
9669 __set_bit(bit, table->bitmap);
9670 table->alloc_hint = bit + 1;
9671 }
9672
9673 static inline void io_file_bitmap_clear(struct io_file_table *table, int bit)
9674 {
9675 __clear_bit(bit, table->bitmap);
9676 table->alloc_hint = bit;
9677 }
9678
9679 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
9680 {
9681 #if !defined(IO_URING_SCM_ALL)
9682 int i;
9683
9684 for (i = 0; i < ctx->nr_user_files; i++) {
9685 struct file *file = io_file_from_index(ctx, i);
9686
9687 if (!file)
9688 continue;
9689 if (io_fixed_file_slot(&ctx->file_table, i)->file_ptr & FFS_SCM)
9690 continue;
9691 io_file_bitmap_clear(&ctx->file_table, i);
9692 fput(file);
9693 }
9694 #endif
9695
9696 #if defined(CONFIG_UNIX)
9697 if (ctx->ring_sock) {
9698 struct sock *sock = ctx->ring_sock->sk;
9699 struct sk_buff *skb;
9700
9701 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
9702 kfree_skb(skb);
9703 }
9704 #endif
9705 io_free_file_tables(&ctx->file_table);
9706 io_rsrc_data_free(ctx->file_data);
9707 ctx->file_data = NULL;
9708 ctx->nr_user_files = 0;
9709 }
9710
9711 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
9712 {
9713 unsigned nr = ctx->nr_user_files;
9714 int ret;
9715
9716 if (!ctx->file_data)
9717 return -ENXIO;
9718
9719 /*
9720 * Quiesce may unlock ->uring_lock, and while it's not held
9721 * prevent new requests using the table.
9722 */
9723 ctx->nr_user_files = 0;
9724 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
9725 ctx->nr_user_files = nr;
9726 if (!ret)
9727 __io_sqe_files_unregister(ctx);
9728 return ret;
9729 }
9730
9731 static void io_sq_thread_unpark(struct io_sq_data *sqd)
9732 __releases(&sqd->lock)
9733 {
9734 WARN_ON_ONCE(sqd->thread == current);
9735
9736 /*
9737 * Do the dance but not conditional clear_bit() because it'd race with
9738 * other threads incrementing park_pending and setting the bit.
9739 */
9740 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
9741 if (atomic_dec_return(&sqd->park_pending))
9742 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
9743 mutex_unlock(&sqd->lock);
9744 }
9745
9746 static void io_sq_thread_park(struct io_sq_data *sqd)
9747 __acquires(&sqd->lock)
9748 {
9749 WARN_ON_ONCE(sqd->thread == current);
9750
9751 atomic_inc(&sqd->park_pending);
9752 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
9753 mutex_lock(&sqd->lock);
9754 if (sqd->thread)
9755 wake_up_process(sqd->thread);
9756 }
9757
9758 static void io_sq_thread_stop(struct io_sq_data *sqd)
9759 {
9760 WARN_ON_ONCE(sqd->thread == current);
9761 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
9762
9763 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
9764 mutex_lock(&sqd->lock);
9765 if (sqd->thread)
9766 wake_up_process(sqd->thread);
9767 mutex_unlock(&sqd->lock);
9768 wait_for_completion(&sqd->exited);
9769 }
9770
9771 static void io_put_sq_data(struct io_sq_data *sqd)
9772 {
9773 if (refcount_dec_and_test(&sqd->refs)) {
9774 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
9775
9776 io_sq_thread_stop(sqd);
9777 kfree(sqd);
9778 }
9779 }
9780
9781 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
9782 {
9783 struct io_sq_data *sqd = ctx->sq_data;
9784
9785 if (sqd) {
9786 io_sq_thread_park(sqd);
9787 list_del_init(&ctx->sqd_list);
9788 io_sqd_update_thread_idle(sqd);
9789 io_sq_thread_unpark(sqd);
9790
9791 io_put_sq_data(sqd);
9792 ctx->sq_data = NULL;
9793 }
9794 }
9795
9796 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
9797 {
9798 struct io_ring_ctx *ctx_attach;
9799 struct io_sq_data *sqd;
9800 struct fd f;
9801
9802 f = fdget(p->wq_fd);
9803 if (!f.file)
9804 return ERR_PTR(-ENXIO);
9805 if (f.file->f_op != &io_uring_fops) {
9806 fdput(f);
9807 return ERR_PTR(-EINVAL);
9808 }
9809
9810 ctx_attach = f.file->private_data;
9811 sqd = ctx_attach->sq_data;
9812 if (!sqd) {
9813 fdput(f);
9814 return ERR_PTR(-EINVAL);
9815 }
9816 if (sqd->task_tgid != current->tgid) {
9817 fdput(f);
9818 return ERR_PTR(-EPERM);
9819 }
9820
9821 refcount_inc(&sqd->refs);
9822 fdput(f);
9823 return sqd;
9824 }
9825
9826 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
9827 bool *attached)
9828 {
9829 struct io_sq_data *sqd;
9830
9831 *attached = false;
9832 if (p->flags & IORING_SETUP_ATTACH_WQ) {
9833 sqd = io_attach_sq_data(p);
9834 if (!IS_ERR(sqd)) {
9835 *attached = true;
9836 return sqd;
9837 }
9838 /* fall through for EPERM case, setup new sqd/task */
9839 if (PTR_ERR(sqd) != -EPERM)
9840 return sqd;
9841 }
9842
9843 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
9844 if (!sqd)
9845 return ERR_PTR(-ENOMEM);
9846
9847 atomic_set(&sqd->park_pending, 0);
9848 refcount_set(&sqd->refs, 1);
9849 INIT_LIST_HEAD(&sqd->ctx_list);
9850 mutex_init(&sqd->lock);
9851 init_waitqueue_head(&sqd->wait);
9852 init_completion(&sqd->exited);
9853 return sqd;
9854 }
9855
9856 /*
9857 * Ensure the UNIX gc is aware of our file set, so we are certain that
9858 * the io_uring can be safely unregistered on process exit, even if we have
9859 * loops in the file referencing. We account only files that can hold other
9860 * files because otherwise they can't form a loop and so are not interesting
9861 * for GC.
9862 */
9863 static int io_scm_file_account(struct io_ring_ctx *ctx, struct file *file)
9864 {
9865 #if defined(CONFIG_UNIX)
9866 struct sock *sk = ctx->ring_sock->sk;
9867 struct sk_buff_head *head = &sk->sk_receive_queue;
9868 struct scm_fp_list *fpl;
9869 struct sk_buff *skb;
9870
9871 if (likely(!io_file_need_scm(file)))
9872 return 0;
9873
9874 /*
9875 * See if we can merge this file into an existing skb SCM_RIGHTS
9876 * file set. If there's no room, fall back to allocating a new skb
9877 * and filling it in.
9878 */
9879 spin_lock_irq(&head->lock);
9880 skb = skb_peek(head);
9881 if (skb && UNIXCB(skb).fp->count < SCM_MAX_FD)
9882 __skb_unlink(skb, head);
9883 else
9884 skb = NULL;
9885 spin_unlock_irq(&head->lock);
9886
9887 if (!skb) {
9888 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
9889 if (!fpl)
9890 return -ENOMEM;
9891
9892 skb = alloc_skb(0, GFP_KERNEL);
9893 if (!skb) {
9894 kfree(fpl);
9895 return -ENOMEM;
9896 }
9897
9898 fpl->user = get_uid(current_user());
9899 fpl->max = SCM_MAX_FD;
9900 fpl->count = 0;
9901
9902 UNIXCB(skb).fp = fpl;
9903 skb->sk = sk;
9904 skb->destructor = unix_destruct_scm;
9905 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
9906 }
9907
9908 fpl = UNIXCB(skb).fp;
9909 fpl->fp[fpl->count++] = get_file(file);
9910 unix_inflight(fpl->user, file);
9911 skb_queue_head(head, skb);
9912 fput(file);
9913 #endif
9914 return 0;
9915 }
9916
9917 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
9918 {
9919 struct file *file = prsrc->file;
9920 #if defined(CONFIG_UNIX)
9921 struct sock *sock = ctx->ring_sock->sk;
9922 struct sk_buff_head list, *head = &sock->sk_receive_queue;
9923 struct sk_buff *skb;
9924 int i;
9925
9926 if (!io_file_need_scm(file)) {
9927 fput(file);
9928 return;
9929 }
9930
9931 __skb_queue_head_init(&list);
9932
9933 /*
9934 * Find the skb that holds this file in its SCM_RIGHTS. When found,
9935 * remove this entry and rearrange the file array.
9936 */
9937 skb = skb_dequeue(head);
9938 while (skb) {
9939 struct scm_fp_list *fp;
9940
9941 fp = UNIXCB(skb).fp;
9942 for (i = 0; i < fp->count; i++) {
9943 int left;
9944
9945 if (fp->fp[i] != file)
9946 continue;
9947
9948 unix_notinflight(fp->user, fp->fp[i]);
9949 left = fp->count - 1 - i;
9950 if (left) {
9951 memmove(&fp->fp[i], &fp->fp[i + 1],
9952 left * sizeof(struct file *));
9953 }
9954 fp->count--;
9955 if (!fp->count) {
9956 kfree_skb(skb);
9957 skb = NULL;
9958 } else {
9959 __skb_queue_tail(&list, skb);
9960 }
9961 fput(file);
9962 file = NULL;
9963 break;
9964 }
9965
9966 if (!file)
9967 break;
9968
9969 __skb_queue_tail(&list, skb);
9970
9971 skb = skb_dequeue(head);
9972 }
9973
9974 if (skb_peek(&list)) {
9975 spin_lock_irq(&head->lock);
9976 while ((skb = __skb_dequeue(&list)) != NULL)
9977 __skb_queue_tail(head, skb);
9978 spin_unlock_irq(&head->lock);
9979 }
9980 #else
9981 fput(file);
9982 #endif
9983 }
9984
9985 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
9986 {
9987 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
9988 struct io_ring_ctx *ctx = rsrc_data->ctx;
9989 struct io_rsrc_put *prsrc, *tmp;
9990
9991 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
9992 list_del(&prsrc->list);
9993
9994 if (prsrc->tag) {
9995 if (ctx->flags & IORING_SETUP_IOPOLL)
9996 mutex_lock(&ctx->uring_lock);
9997
9998 spin_lock(&ctx->completion_lock);
9999 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
10000 io_commit_cqring(ctx);
10001 spin_unlock(&ctx->completion_lock);
10002 io_cqring_ev_posted(ctx);
10003
10004 if (ctx->flags & IORING_SETUP_IOPOLL)
10005 mutex_unlock(&ctx->uring_lock);
10006 }
10007
10008 rsrc_data->do_put(ctx, prsrc);
10009 kfree(prsrc);
10010 }
10011
10012 io_rsrc_node_destroy(ref_node);
10013 if (atomic_dec_and_test(&rsrc_data->refs))
10014 complete(&rsrc_data->done);
10015 }
10016
10017 static void io_rsrc_put_work(struct work_struct *work)
10018 {
10019 struct io_ring_ctx *ctx;
10020 struct llist_node *node;
10021
10022 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
10023 node = llist_del_all(&ctx->rsrc_put_llist);
10024
10025 while (node) {
10026 struct io_rsrc_node *ref_node;
10027 struct llist_node *next = node->next;
10028
10029 ref_node = llist_entry(node, struct io_rsrc_node, llist);
10030 __io_rsrc_put_work(ref_node);
10031 node = next;
10032 }
10033 }
10034
10035 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
10036 unsigned nr_args, u64 __user *tags)
10037 {
10038 __s32 __user *fds = (__s32 __user *) arg;
10039 struct file *file;
10040 int fd, ret;
10041 unsigned i;
10042
10043 if (ctx->file_data)
10044 return -EBUSY;
10045 if (!nr_args)
10046 return -EINVAL;
10047 if (nr_args > IORING_MAX_FIXED_FILES)
10048 return -EMFILE;
10049 if (nr_args > rlimit(RLIMIT_NOFILE))
10050 return -EMFILE;
10051 ret = io_rsrc_node_switch_start(ctx);
10052 if (ret)
10053 return ret;
10054 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
10055 &ctx->file_data);
10056 if (ret)
10057 return ret;
10058
10059 if (!io_alloc_file_tables(&ctx->file_table, nr_args)) {
10060 io_rsrc_data_free(ctx->file_data);
10061 ctx->file_data = NULL;
10062 return -ENOMEM;
10063 }
10064
10065 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
10066 struct io_fixed_file *file_slot;
10067
10068 if (fds && copy_from_user(&fd, &fds[i], sizeof(fd))) {
10069 ret = -EFAULT;
10070 goto fail;
10071 }
10072 /* allow sparse sets */
10073 if (!fds || fd == -1) {
10074 ret = -EINVAL;
10075 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
10076 goto fail;
10077 continue;
10078 }
10079
10080 file = fget(fd);
10081 ret = -EBADF;
10082 if (unlikely(!file))
10083 goto fail;
10084
10085 /*
10086 * Don't allow io_uring instances to be registered. If UNIX
10087 * isn't enabled, then this causes a reference cycle and this
10088 * instance can never get freed. If UNIX is enabled we'll
10089 * handle it just fine, but there's still no point in allowing
10090 * a ring fd as it doesn't support regular read/write anyway.
10091 */
10092 if (file->f_op == &io_uring_fops) {
10093 fput(file);
10094 goto fail;
10095 }
10096 ret = io_scm_file_account(ctx, file);
10097 if (ret) {
10098 fput(file);
10099 goto fail;
10100 }
10101 file_slot = io_fixed_file_slot(&ctx->file_table, i);
10102 io_fixed_file_set(file_slot, file);
10103 io_file_bitmap_set(&ctx->file_table, i);
10104 }
10105
10106 io_rsrc_node_switch(ctx, NULL);
10107 return 0;
10108 fail:
10109 __io_sqe_files_unregister(ctx);
10110 return ret;
10111 }
10112
10113 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
10114 struct io_rsrc_node *node, void *rsrc)
10115 {
10116 u64 *tag_slot = io_get_tag_slot(data, idx);
10117 struct io_rsrc_put *prsrc;
10118
10119 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
10120 if (!prsrc)
10121 return -ENOMEM;
10122
10123 prsrc->tag = *tag_slot;
10124 *tag_slot = 0;
10125 prsrc->rsrc = rsrc;
10126 list_add(&prsrc->list, &node->rsrc_list);
10127 return 0;
10128 }
10129
10130 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
10131 unsigned int issue_flags, u32 slot_index)
10132 __must_hold(&req->ctx->uring_lock)
10133 {
10134 struct io_ring_ctx *ctx = req->ctx;
10135 bool needs_switch = false;
10136 struct io_fixed_file *file_slot;
10137 int ret;
10138
10139 if (file->f_op == &io_uring_fops)
10140 return -EBADF;
10141 if (!ctx->file_data)
10142 return -ENXIO;
10143 if (slot_index >= ctx->nr_user_files)
10144 return -EINVAL;
10145
10146 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
10147 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
10148
10149 if (file_slot->file_ptr) {
10150 struct file *old_file;
10151
10152 ret = io_rsrc_node_switch_start(ctx);
10153 if (ret)
10154 goto err;
10155
10156 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
10157 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
10158 ctx->rsrc_node, old_file);
10159 if (ret)
10160 goto err;
10161 file_slot->file_ptr = 0;
10162 io_file_bitmap_clear(&ctx->file_table, slot_index);
10163 needs_switch = true;
10164 }
10165
10166 ret = io_scm_file_account(ctx, file);
10167 if (!ret) {
10168 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
10169 io_fixed_file_set(file_slot, file);
10170 io_file_bitmap_set(&ctx->file_table, slot_index);
10171 }
10172 err:
10173 if (needs_switch)
10174 io_rsrc_node_switch(ctx, ctx->file_data);
10175 if (ret)
10176 fput(file);
10177 return ret;
10178 }
10179
10180 static int __io_close_fixed(struct io_kiocb *req, unsigned int issue_flags,
10181 unsigned int offset)
10182 {
10183 struct io_ring_ctx *ctx = req->ctx;
10184 struct io_fixed_file *file_slot;
10185 struct file *file;
10186 int ret;
10187
10188 io_ring_submit_lock(ctx, issue_flags);
10189 ret = -ENXIO;
10190 if (unlikely(!ctx->file_data))
10191 goto out;
10192 ret = -EINVAL;
10193 if (offset >= ctx->nr_user_files)
10194 goto out;
10195 ret = io_rsrc_node_switch_start(ctx);
10196 if (ret)
10197 goto out;
10198
10199 offset = array_index_nospec(offset, ctx->nr_user_files);
10200 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
10201 ret = -EBADF;
10202 if (!file_slot->file_ptr)
10203 goto out;
10204
10205 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
10206 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
10207 if (ret)
10208 goto out;
10209
10210 file_slot->file_ptr = 0;
10211 io_file_bitmap_clear(&ctx->file_table, offset);
10212 io_rsrc_node_switch(ctx, ctx->file_data);
10213 ret = 0;
10214 out:
10215 io_ring_submit_unlock(ctx, issue_flags);
10216 return ret;
10217 }
10218
10219 static inline int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
10220 {
10221 return __io_close_fixed(req, issue_flags, req->close.file_slot - 1);
10222 }
10223
10224 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
10225 struct io_uring_rsrc_update2 *up,
10226 unsigned nr_args)
10227 {
10228 u64 __user *tags = u64_to_user_ptr(up->tags);
10229 __s32 __user *fds = u64_to_user_ptr(up->data);
10230 struct io_rsrc_data *data = ctx->file_data;
10231 struct io_fixed_file *file_slot;
10232 struct file *file;
10233 int fd, i, err = 0;
10234 unsigned int done;
10235 bool needs_switch = false;
10236
10237 if (!ctx->file_data)
10238 return -ENXIO;
10239 if (up->offset + nr_args > ctx->nr_user_files)
10240 return -EINVAL;
10241
10242 for (done = 0; done < nr_args; done++) {
10243 u64 tag = 0;
10244
10245 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
10246 copy_from_user(&fd, &fds[done], sizeof(fd))) {
10247 err = -EFAULT;
10248 break;
10249 }
10250 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
10251 err = -EINVAL;
10252 break;
10253 }
10254 if (fd == IORING_REGISTER_FILES_SKIP)
10255 continue;
10256
10257 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
10258 file_slot = io_fixed_file_slot(&ctx->file_table, i);
10259
10260 if (file_slot->file_ptr) {
10261 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
10262 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
10263 if (err)
10264 break;
10265 file_slot->file_ptr = 0;
10266 io_file_bitmap_clear(&ctx->file_table, i);
10267 needs_switch = true;
10268 }
10269 if (fd != -1) {
10270 file = fget(fd);
10271 if (!file) {
10272 err = -EBADF;
10273 break;
10274 }
10275 /*
10276 * Don't allow io_uring instances to be registered. If
10277 * UNIX isn't enabled, then this causes a reference
10278 * cycle and this instance can never get freed. If UNIX
10279 * is enabled we'll handle it just fine, but there's
10280 * still no point in allowing a ring fd as it doesn't
10281 * support regular read/write anyway.
10282 */
10283 if (file->f_op == &io_uring_fops) {
10284 fput(file);
10285 err = -EBADF;
10286 break;
10287 }
10288 err = io_scm_file_account(ctx, file);
10289 if (err) {
10290 fput(file);
10291 break;
10292 }
10293 *io_get_tag_slot(data, i) = tag;
10294 io_fixed_file_set(file_slot, file);
10295 io_file_bitmap_set(&ctx->file_table, i);
10296 }
10297 }
10298
10299 if (needs_switch)
10300 io_rsrc_node_switch(ctx, data);
10301 return done ? done : err;
10302 }
10303
10304 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
10305 struct task_struct *task)
10306 {
10307 struct io_wq_hash *hash;
10308 struct io_wq_data data;
10309 unsigned int concurrency;
10310
10311 mutex_lock(&ctx->uring_lock);
10312 hash = ctx->hash_map;
10313 if (!hash) {
10314 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
10315 if (!hash) {
10316 mutex_unlock(&ctx->uring_lock);
10317 return ERR_PTR(-ENOMEM);
10318 }
10319 refcount_set(&hash->refs, 1);
10320 init_waitqueue_head(&hash->wait);
10321 ctx->hash_map = hash;
10322 }
10323 mutex_unlock(&ctx->uring_lock);
10324
10325 data.hash = hash;
10326 data.task = task;
10327 data.free_work = io_wq_free_work;
10328 data.do_work = io_wq_submit_work;
10329
10330 /* Do QD, or 4 * CPUS, whatever is smallest */
10331 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
10332
10333 return io_wq_create(concurrency, &data);
10334 }
10335
10336 static __cold int io_uring_alloc_task_context(struct task_struct *task,
10337 struct io_ring_ctx *ctx)
10338 {
10339 struct io_uring_task *tctx;
10340 int ret;
10341
10342 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
10343 if (unlikely(!tctx))
10344 return -ENOMEM;
10345
10346 tctx->registered_rings = kcalloc(IO_RINGFD_REG_MAX,
10347 sizeof(struct file *), GFP_KERNEL);
10348 if (unlikely(!tctx->registered_rings)) {
10349 kfree(tctx);
10350 return -ENOMEM;
10351 }
10352
10353 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
10354 if (unlikely(ret)) {
10355 kfree(tctx->registered_rings);
10356 kfree(tctx);
10357 return ret;
10358 }
10359
10360 tctx->io_wq = io_init_wq_offload(ctx, task);
10361 if (IS_ERR(tctx->io_wq)) {
10362 ret = PTR_ERR(tctx->io_wq);
10363 percpu_counter_destroy(&tctx->inflight);
10364 kfree(tctx->registered_rings);
10365 kfree(tctx);
10366 return ret;
10367 }
10368
10369 xa_init(&tctx->xa);
10370 init_waitqueue_head(&tctx->wait);
10371 atomic_set(&tctx->in_idle, 0);
10372 atomic_set(&tctx->inflight_tracked, 0);
10373 task->io_uring = tctx;
10374 spin_lock_init(&tctx->task_lock);
10375 INIT_WQ_LIST(&tctx->task_list);
10376 INIT_WQ_LIST(&tctx->prio_task_list);
10377 init_task_work(&tctx->task_work, tctx_task_work);
10378 return 0;
10379 }
10380
10381 void __io_uring_free(struct task_struct *tsk)
10382 {
10383 struct io_uring_task *tctx = tsk->io_uring;
10384
10385 WARN_ON_ONCE(!xa_empty(&tctx->xa));
10386 WARN_ON_ONCE(tctx->io_wq);
10387 WARN_ON_ONCE(tctx->cached_refs);
10388
10389 kfree(tctx->registered_rings);
10390 percpu_counter_destroy(&tctx->inflight);
10391 kfree(tctx);
10392 tsk->io_uring = NULL;
10393 }
10394
10395 static __cold int io_sq_offload_create(struct io_ring_ctx *ctx,
10396 struct io_uring_params *p)
10397 {
10398 int ret;
10399
10400 /* Retain compatibility with failing for an invalid attach attempt */
10401 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
10402 IORING_SETUP_ATTACH_WQ) {
10403 struct fd f;
10404
10405 f = fdget(p->wq_fd);
10406 if (!f.file)
10407 return -ENXIO;
10408 if (f.file->f_op != &io_uring_fops) {
10409 fdput(f);
10410 return -EINVAL;
10411 }
10412 fdput(f);
10413 }
10414 if (ctx->flags & IORING_SETUP_SQPOLL) {
10415 struct task_struct *tsk;
10416 struct io_sq_data *sqd;
10417 bool attached;
10418
10419 ret = security_uring_sqpoll();
10420 if (ret)
10421 return ret;
10422
10423 sqd = io_get_sq_data(p, &attached);
10424 if (IS_ERR(sqd)) {
10425 ret = PTR_ERR(sqd);
10426 goto err;
10427 }
10428
10429 ctx->sq_creds = get_current_cred();
10430 ctx->sq_data = sqd;
10431 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
10432 if (!ctx->sq_thread_idle)
10433 ctx->sq_thread_idle = HZ;
10434
10435 io_sq_thread_park(sqd);
10436 list_add(&ctx->sqd_list, &sqd->ctx_list);
10437 io_sqd_update_thread_idle(sqd);
10438 /* don't attach to a dying SQPOLL thread, would be racy */
10439 ret = (attached && !sqd->thread) ? -ENXIO : 0;
10440 io_sq_thread_unpark(sqd);
10441
10442 if (ret < 0)
10443 goto err;
10444 if (attached)
10445 return 0;
10446
10447 if (p->flags & IORING_SETUP_SQ_AFF) {
10448 int cpu = p->sq_thread_cpu;
10449
10450 ret = -EINVAL;
10451 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
10452 goto err_sqpoll;
10453 sqd->sq_cpu = cpu;
10454 } else {
10455 sqd->sq_cpu = -1;
10456 }
10457
10458 sqd->task_pid = current->pid;
10459 sqd->task_tgid = current->tgid;
10460 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
10461 if (IS_ERR(tsk)) {
10462 ret = PTR_ERR(tsk);
10463 goto err_sqpoll;
10464 }
10465
10466 sqd->thread = tsk;
10467 ret = io_uring_alloc_task_context(tsk, ctx);
10468 wake_up_new_task(tsk);
10469 if (ret)
10470 goto err;
10471 } else if (p->flags & IORING_SETUP_SQ_AFF) {
10472 /* Can't have SQ_AFF without SQPOLL */
10473 ret = -EINVAL;
10474 goto err;
10475 }
10476
10477 return 0;
10478 err_sqpoll:
10479 complete(&ctx->sq_data->exited);
10480 err:
10481 io_sq_thread_finish(ctx);
10482 return ret;
10483 }
10484
10485 static inline void __io_unaccount_mem(struct user_struct *user,
10486 unsigned long nr_pages)
10487 {
10488 atomic_long_sub(nr_pages, &user->locked_vm);
10489 }
10490
10491 static inline int __io_account_mem(struct user_struct *user,
10492 unsigned long nr_pages)
10493 {
10494 unsigned long page_limit, cur_pages, new_pages;
10495
10496 /* Don't allow more pages than we can safely lock */
10497 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
10498
10499 do {
10500 cur_pages = atomic_long_read(&user->locked_vm);
10501 new_pages = cur_pages + nr_pages;
10502 if (new_pages > page_limit)
10503 return -ENOMEM;
10504 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
10505 new_pages) != cur_pages);
10506
10507 return 0;
10508 }
10509
10510 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
10511 {
10512 if (ctx->user)
10513 __io_unaccount_mem(ctx->user, nr_pages);
10514
10515 if (ctx->mm_account)
10516 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
10517 }
10518
10519 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
10520 {
10521 int ret;
10522
10523 if (ctx->user) {
10524 ret = __io_account_mem(ctx->user, nr_pages);
10525 if (ret)
10526 return ret;
10527 }
10528
10529 if (ctx->mm_account)
10530 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
10531
10532 return 0;
10533 }
10534
10535 static void io_mem_free(void *ptr)
10536 {
10537 struct page *page;
10538
10539 if (!ptr)
10540 return;
10541
10542 page = virt_to_head_page(ptr);
10543 if (put_page_testzero(page))
10544 free_compound_page(page);
10545 }
10546
10547 static void *io_mem_alloc(size_t size)
10548 {
10549 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
10550
10551 return (void *) __get_free_pages(gfp, get_order(size));
10552 }
10553
10554 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
10555 unsigned int cq_entries, size_t *sq_offset)
10556 {
10557 struct io_rings *rings;
10558 size_t off, sq_array_size;
10559
10560 off = struct_size(rings, cqes, cq_entries);
10561 if (off == SIZE_MAX)
10562 return SIZE_MAX;
10563 if (ctx->flags & IORING_SETUP_CQE32) {
10564 if (check_shl_overflow(off, 1, &off))
10565 return SIZE_MAX;
10566 }
10567
10568 #ifdef CONFIG_SMP
10569 off = ALIGN(off, SMP_CACHE_BYTES);
10570 if (off == 0)
10571 return SIZE_MAX;
10572 #endif
10573
10574 if (sq_offset)
10575 *sq_offset = off;
10576
10577 sq_array_size = array_size(sizeof(u32), sq_entries);
10578 if (sq_array_size == SIZE_MAX)
10579 return SIZE_MAX;
10580
10581 if (check_add_overflow(off, sq_array_size, &off))
10582 return SIZE_MAX;
10583
10584 return off;
10585 }
10586
10587 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
10588 {
10589 struct io_mapped_ubuf *imu = *slot;
10590 unsigned int i;
10591
10592 if (imu != ctx->dummy_ubuf) {
10593 for (i = 0; i < imu->nr_bvecs; i++)
10594 unpin_user_page(imu->bvec[i].bv_page);
10595 if (imu->acct_pages)
10596 io_unaccount_mem(ctx, imu->acct_pages);
10597 kvfree(imu);
10598 }
10599 *slot = NULL;
10600 }
10601
10602 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
10603 {
10604 io_buffer_unmap(ctx, &prsrc->buf);
10605 prsrc->buf = NULL;
10606 }
10607
10608 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
10609 {
10610 unsigned int i;
10611
10612 for (i = 0; i < ctx->nr_user_bufs; i++)
10613 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
10614 kfree(ctx->user_bufs);
10615 io_rsrc_data_free(ctx->buf_data);
10616 ctx->user_bufs = NULL;
10617 ctx->buf_data = NULL;
10618 ctx->nr_user_bufs = 0;
10619 }
10620
10621 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
10622 {
10623 unsigned nr = ctx->nr_user_bufs;
10624 int ret;
10625
10626 if (!ctx->buf_data)
10627 return -ENXIO;
10628
10629 /*
10630 * Quiesce may unlock ->uring_lock, and while it's not held
10631 * prevent new requests using the table.
10632 */
10633 ctx->nr_user_bufs = 0;
10634 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
10635 ctx->nr_user_bufs = nr;
10636 if (!ret)
10637 __io_sqe_buffers_unregister(ctx);
10638 return ret;
10639 }
10640
10641 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
10642 void __user *arg, unsigned index)
10643 {
10644 struct iovec __user *src;
10645
10646 #ifdef CONFIG_COMPAT
10647 if (ctx->compat) {
10648 struct compat_iovec __user *ciovs;
10649 struct compat_iovec ciov;
10650
10651 ciovs = (struct compat_iovec __user *) arg;
10652 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
10653 return -EFAULT;
10654
10655 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
10656 dst->iov_len = ciov.iov_len;
10657 return 0;
10658 }
10659 #endif
10660 src = (struct iovec __user *) arg;
10661 if (copy_from_user(dst, &src[index], sizeof(*dst)))
10662 return -EFAULT;
10663 return 0;
10664 }
10665
10666 /*
10667 * Not super efficient, but this is just a registration time. And we do cache
10668 * the last compound head, so generally we'll only do a full search if we don't
10669 * match that one.
10670 *
10671 * We check if the given compound head page has already been accounted, to
10672 * avoid double accounting it. This allows us to account the full size of the
10673 * page, not just the constituent pages of a huge page.
10674 */
10675 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
10676 int nr_pages, struct page *hpage)
10677 {
10678 int i, j;
10679
10680 /* check current page array */
10681 for (i = 0; i < nr_pages; i++) {
10682 if (!PageCompound(pages[i]))
10683 continue;
10684 if (compound_head(pages[i]) == hpage)
10685 return true;
10686 }
10687
10688 /* check previously registered pages */
10689 for (i = 0; i < ctx->nr_user_bufs; i++) {
10690 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
10691
10692 for (j = 0; j < imu->nr_bvecs; j++) {
10693 if (!PageCompound(imu->bvec[j].bv_page))
10694 continue;
10695 if (compound_head(imu->bvec[j].bv_page) == hpage)
10696 return true;
10697 }
10698 }
10699
10700 return false;
10701 }
10702
10703 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
10704 int nr_pages, struct io_mapped_ubuf *imu,
10705 struct page **last_hpage)
10706 {
10707 int i, ret;
10708
10709 imu->acct_pages = 0;
10710 for (i = 0; i < nr_pages; i++) {
10711 if (!PageCompound(pages[i])) {
10712 imu->acct_pages++;
10713 } else {
10714 struct page *hpage;
10715
10716 hpage = compound_head(pages[i]);
10717 if (hpage == *last_hpage)
10718 continue;
10719 *last_hpage = hpage;
10720 if (headpage_already_acct(ctx, pages, i, hpage))
10721 continue;
10722 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
10723 }
10724 }
10725
10726 if (!imu->acct_pages)
10727 return 0;
10728
10729 ret = io_account_mem(ctx, imu->acct_pages);
10730 if (ret)
10731 imu->acct_pages = 0;
10732 return ret;
10733 }
10734
10735 static struct page **io_pin_pages(unsigned long ubuf, unsigned long len,
10736 int *npages)
10737 {
10738 unsigned long start, end, nr_pages;
10739 struct vm_area_struct **vmas = NULL;
10740 struct page **pages = NULL;
10741 int i, pret, ret = -ENOMEM;
10742
10743 end = (ubuf + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
10744 start = ubuf >> PAGE_SHIFT;
10745 nr_pages = end - start;
10746
10747 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
10748 if (!pages)
10749 goto done;
10750
10751 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
10752 GFP_KERNEL);
10753 if (!vmas)
10754 goto done;
10755
10756 ret = 0;
10757 mmap_read_lock(current->mm);
10758 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
10759 pages, vmas);
10760 if (pret == nr_pages) {
10761 /* don't support file backed memory */
10762 for (i = 0; i < nr_pages; i++) {
10763 struct vm_area_struct *vma = vmas[i];
10764
10765 if (vma_is_shmem(vma))
10766 continue;
10767 if (vma->vm_file &&
10768 !is_file_hugepages(vma->vm_file)) {
10769 ret = -EOPNOTSUPP;
10770 break;
10771 }
10772 }
10773 *npages = nr_pages;
10774 } else {
10775 ret = pret < 0 ? pret : -EFAULT;
10776 }
10777 mmap_read_unlock(current->mm);
10778 if (ret) {
10779 /*
10780 * if we did partial map, or found file backed vmas,
10781 * release any pages we did get
10782 */
10783 if (pret > 0)
10784 unpin_user_pages(pages, pret);
10785 goto done;
10786 }
10787 ret = 0;
10788 done:
10789 kvfree(vmas);
10790 if (ret < 0) {
10791 kvfree(pages);
10792 pages = ERR_PTR(ret);
10793 }
10794 return pages;
10795 }
10796
10797 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
10798 struct io_mapped_ubuf **pimu,
10799 struct page **last_hpage)
10800 {
10801 struct io_mapped_ubuf *imu = NULL;
10802 struct page **pages = NULL;
10803 unsigned long off;
10804 size_t size;
10805 int ret, nr_pages, i;
10806
10807 if (!iov->iov_base) {
10808 *pimu = ctx->dummy_ubuf;
10809 return 0;
10810 }
10811
10812 *pimu = NULL;
10813 ret = -ENOMEM;
10814
10815 pages = io_pin_pages((unsigned long) iov->iov_base, iov->iov_len,
10816 &nr_pages);
10817 if (IS_ERR(pages)) {
10818 ret = PTR_ERR(pages);
10819 pages = NULL;
10820 goto done;
10821 }
10822
10823 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
10824 if (!imu)
10825 goto done;
10826
10827 ret = io_buffer_account_pin(ctx, pages, nr_pages, imu, last_hpage);
10828 if (ret) {
10829 unpin_user_pages(pages, nr_pages);
10830 goto done;
10831 }
10832
10833 off = (unsigned long) iov->iov_base & ~PAGE_MASK;
10834 size = iov->iov_len;
10835 for (i = 0; i < nr_pages; i++) {
10836 size_t vec_len;
10837
10838 vec_len = min_t(size_t, size, PAGE_SIZE - off);
10839 imu->bvec[i].bv_page = pages[i];
10840 imu->bvec[i].bv_len = vec_len;
10841 imu->bvec[i].bv_offset = off;
10842 off = 0;
10843 size -= vec_len;
10844 }
10845 /* store original address for later verification */
10846 imu->ubuf = (unsigned long) iov->iov_base;
10847 imu->ubuf_end = imu->ubuf + iov->iov_len;
10848 imu->nr_bvecs = nr_pages;
10849 *pimu = imu;
10850 ret = 0;
10851 done:
10852 if (ret)
10853 kvfree(imu);
10854 kvfree(pages);
10855 return ret;
10856 }
10857
10858 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
10859 {
10860 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
10861 return ctx->user_bufs ? 0 : -ENOMEM;
10862 }
10863
10864 static int io_buffer_validate(struct iovec *iov)
10865 {
10866 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
10867
10868 /*
10869 * Don't impose further limits on the size and buffer
10870 * constraints here, we'll -EINVAL later when IO is
10871 * submitted if they are wrong.
10872 */
10873 if (!iov->iov_base)
10874 return iov->iov_len ? -EFAULT : 0;
10875 if (!iov->iov_len)
10876 return -EFAULT;
10877
10878 /* arbitrary limit, but we need something */
10879 if (iov->iov_len > SZ_1G)
10880 return -EFAULT;
10881
10882 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
10883 return -EOVERFLOW;
10884
10885 return 0;
10886 }
10887
10888 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
10889 unsigned int nr_args, u64 __user *tags)
10890 {
10891 struct page *last_hpage = NULL;
10892 struct io_rsrc_data *data;
10893 int i, ret;
10894 struct iovec iov;
10895
10896 if (ctx->user_bufs)
10897 return -EBUSY;
10898 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
10899 return -EINVAL;
10900 ret = io_rsrc_node_switch_start(ctx);
10901 if (ret)
10902 return ret;
10903 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
10904 if (ret)
10905 return ret;
10906 ret = io_buffers_map_alloc(ctx, nr_args);
10907 if (ret) {
10908 io_rsrc_data_free(data);
10909 return ret;
10910 }
10911
10912 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
10913 if (arg) {
10914 ret = io_copy_iov(ctx, &iov, arg, i);
10915 if (ret)
10916 break;
10917 ret = io_buffer_validate(&iov);
10918 if (ret)
10919 break;
10920 } else {
10921 memset(&iov, 0, sizeof(iov));
10922 }
10923
10924 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
10925 ret = -EINVAL;
10926 break;
10927 }
10928
10929 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
10930 &last_hpage);
10931 if (ret)
10932 break;
10933 }
10934
10935 WARN_ON_ONCE(ctx->buf_data);
10936
10937 ctx->buf_data = data;
10938 if (ret)
10939 __io_sqe_buffers_unregister(ctx);
10940 else
10941 io_rsrc_node_switch(ctx, NULL);
10942 return ret;
10943 }
10944
10945 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
10946 struct io_uring_rsrc_update2 *up,
10947 unsigned int nr_args)
10948 {
10949 u64 __user *tags = u64_to_user_ptr(up->tags);
10950 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
10951 struct page *last_hpage = NULL;
10952 bool needs_switch = false;
10953 __u32 done;
10954 int i, err;
10955
10956 if (!ctx->buf_data)
10957 return -ENXIO;
10958 if (up->offset + nr_args > ctx->nr_user_bufs)
10959 return -EINVAL;
10960
10961 for (done = 0; done < nr_args; done++) {
10962 struct io_mapped_ubuf *imu;
10963 int offset = up->offset + done;
10964 u64 tag = 0;
10965
10966 err = io_copy_iov(ctx, &iov, iovs, done);
10967 if (err)
10968 break;
10969 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
10970 err = -EFAULT;
10971 break;
10972 }
10973 err = io_buffer_validate(&iov);
10974 if (err)
10975 break;
10976 if (!iov.iov_base && tag) {
10977 err = -EINVAL;
10978 break;
10979 }
10980 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
10981 if (err)
10982 break;
10983
10984 i = array_index_nospec(offset, ctx->nr_user_bufs);
10985 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
10986 err = io_queue_rsrc_removal(ctx->buf_data, i,
10987 ctx->rsrc_node, ctx->user_bufs[i]);
10988 if (unlikely(err)) {
10989 io_buffer_unmap(ctx, &imu);
10990 break;
10991 }
10992 ctx->user_bufs[i] = NULL;
10993 needs_switch = true;
10994 }
10995
10996 ctx->user_bufs[i] = imu;
10997 *io_get_tag_slot(ctx->buf_data, offset) = tag;
10998 }
10999
11000 if (needs_switch)
11001 io_rsrc_node_switch(ctx, ctx->buf_data);
11002 return done ? done : err;
11003 }
11004
11005 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
11006 unsigned int eventfd_async)
11007 {
11008 struct io_ev_fd *ev_fd;
11009 __s32 __user *fds = arg;
11010 int fd;
11011
11012 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
11013 lockdep_is_held(&ctx->uring_lock));
11014 if (ev_fd)
11015 return -EBUSY;
11016
11017 if (copy_from_user(&fd, fds, sizeof(*fds)))
11018 return -EFAULT;
11019
11020 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
11021 if (!ev_fd)
11022 return -ENOMEM;
11023
11024 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
11025 if (IS_ERR(ev_fd->cq_ev_fd)) {
11026 int ret = PTR_ERR(ev_fd->cq_ev_fd);
11027 kfree(ev_fd);
11028 return ret;
11029 }
11030 ev_fd->eventfd_async = eventfd_async;
11031 ctx->has_evfd = true;
11032 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
11033 return 0;
11034 }
11035
11036 static void io_eventfd_put(struct rcu_head *rcu)
11037 {
11038 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
11039
11040 eventfd_ctx_put(ev_fd->cq_ev_fd);
11041 kfree(ev_fd);
11042 }
11043
11044 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
11045 {
11046 struct io_ev_fd *ev_fd;
11047
11048 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
11049 lockdep_is_held(&ctx->uring_lock));
11050 if (ev_fd) {
11051 ctx->has_evfd = false;
11052 rcu_assign_pointer(ctx->io_ev_fd, NULL);
11053 call_rcu(&ev_fd->rcu, io_eventfd_put);
11054 return 0;
11055 }
11056
11057 return -ENXIO;
11058 }
11059
11060 static void io_destroy_buffers(struct io_ring_ctx *ctx)
11061 {
11062 struct io_buffer_list *bl;
11063 unsigned long index;
11064 int i;
11065
11066 for (i = 0; i < BGID_ARRAY; i++) {
11067 if (!ctx->io_bl)
11068 break;
11069 __io_remove_buffers(ctx, &ctx->io_bl[i], -1U);
11070 }
11071
11072 xa_for_each(&ctx->io_bl_xa, index, bl) {
11073 xa_erase(&ctx->io_bl_xa, bl->bgid);
11074 __io_remove_buffers(ctx, bl, -1U);
11075 kfree(bl);
11076 }
11077
11078 while (!list_empty(&ctx->io_buffers_pages)) {
11079 struct page *page;
11080
11081 page = list_first_entry(&ctx->io_buffers_pages, struct page, lru);
11082 list_del_init(&page->lru);
11083 __free_page(page);
11084 }
11085 }
11086
11087 static void io_req_caches_free(struct io_ring_ctx *ctx)
11088 {
11089 struct io_submit_state *state = &ctx->submit_state;
11090 int nr = 0;
11091
11092 mutex_lock(&ctx->uring_lock);
11093 io_flush_cached_locked_reqs(ctx, state);
11094
11095 while (!io_req_cache_empty(ctx)) {
11096 struct io_wq_work_node *node;
11097 struct io_kiocb *req;
11098
11099 node = wq_stack_extract(&state->free_list);
11100 req = container_of(node, struct io_kiocb, comp_list);
11101 kmem_cache_free(req_cachep, req);
11102 nr++;
11103 }
11104 if (nr)
11105 percpu_ref_put_many(&ctx->refs, nr);
11106 mutex_unlock(&ctx->uring_lock);
11107 }
11108
11109 static void io_wait_rsrc_data(struct io_rsrc_data *data)
11110 {
11111 if (data && !atomic_dec_and_test(&data->refs))
11112 wait_for_completion(&data->done);
11113 }
11114
11115 static void io_flush_apoll_cache(struct io_ring_ctx *ctx)
11116 {
11117 struct async_poll *apoll;
11118
11119 while (!list_empty(&ctx->apoll_cache)) {
11120 apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
11121 poll.wait.entry);
11122 list_del(&apoll->poll.wait.entry);
11123 kfree(apoll);
11124 }
11125 }
11126
11127 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
11128 {
11129 io_sq_thread_finish(ctx);
11130
11131 if (ctx->mm_account) {
11132 mmdrop(ctx->mm_account);
11133 ctx->mm_account = NULL;
11134 }
11135
11136 io_rsrc_refs_drop(ctx);
11137 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
11138 io_wait_rsrc_data(ctx->buf_data);
11139 io_wait_rsrc_data(ctx->file_data);
11140
11141 mutex_lock(&ctx->uring_lock);
11142 if (ctx->buf_data)
11143 __io_sqe_buffers_unregister(ctx);
11144 if (ctx->file_data)
11145 __io_sqe_files_unregister(ctx);
11146 if (ctx->rings)
11147 __io_cqring_overflow_flush(ctx, true);
11148 io_eventfd_unregister(ctx);
11149 io_flush_apoll_cache(ctx);
11150 mutex_unlock(&ctx->uring_lock);
11151 io_destroy_buffers(ctx);
11152 if (ctx->sq_creds)
11153 put_cred(ctx->sq_creds);
11154
11155 /* there are no registered resources left, nobody uses it */
11156 if (ctx->rsrc_node)
11157 io_rsrc_node_destroy(ctx->rsrc_node);
11158 if (ctx->rsrc_backup_node)
11159 io_rsrc_node_destroy(ctx->rsrc_backup_node);
11160 flush_delayed_work(&ctx->rsrc_put_work);
11161 flush_delayed_work(&ctx->fallback_work);
11162
11163 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
11164 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
11165
11166 #if defined(CONFIG_UNIX)
11167 if (ctx->ring_sock) {
11168 ctx->ring_sock->file = NULL; /* so that iput() is called */
11169 sock_release(ctx->ring_sock);
11170 }
11171 #endif
11172 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
11173
11174 io_mem_free(ctx->rings);
11175 io_mem_free(ctx->sq_sqes);
11176
11177 percpu_ref_exit(&ctx->refs);
11178 free_uid(ctx->user);
11179 io_req_caches_free(ctx);
11180 if (ctx->hash_map)
11181 io_wq_put_hash(ctx->hash_map);
11182 kfree(ctx->cancel_hash);
11183 kfree(ctx->dummy_ubuf);
11184 kfree(ctx->io_bl);
11185 xa_destroy(&ctx->io_bl_xa);
11186 kfree(ctx);
11187 }
11188
11189 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
11190 {
11191 struct io_ring_ctx *ctx = file->private_data;
11192 __poll_t mask = 0;
11193
11194 poll_wait(file, &ctx->cq_wait, wait);
11195 /*
11196 * synchronizes with barrier from wq_has_sleeper call in
11197 * io_commit_cqring
11198 */
11199 smp_rmb();
11200 if (!io_sqring_full(ctx))
11201 mask |= EPOLLOUT | EPOLLWRNORM;
11202
11203 /*
11204 * Don't flush cqring overflow list here, just do a simple check.
11205 * Otherwise there could possible be ABBA deadlock:
11206 * CPU0 CPU1
11207 * ---- ----
11208 * lock(&ctx->uring_lock);
11209 * lock(&ep->mtx);
11210 * lock(&ctx->uring_lock);
11211 * lock(&ep->mtx);
11212 *
11213 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
11214 * pushs them to do the flush.
11215 */
11216 if (io_cqring_events(ctx) ||
11217 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
11218 mask |= EPOLLIN | EPOLLRDNORM;
11219
11220 return mask;
11221 }
11222
11223 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
11224 {
11225 const struct cred *creds;
11226
11227 creds = xa_erase(&ctx->personalities, id);
11228 if (creds) {
11229 put_cred(creds);
11230 return 0;
11231 }
11232
11233 return -EINVAL;
11234 }
11235
11236 struct io_tctx_exit {
11237 struct callback_head task_work;
11238 struct completion completion;
11239 struct io_ring_ctx *ctx;
11240 };
11241
11242 static __cold void io_tctx_exit_cb(struct callback_head *cb)
11243 {
11244 struct io_uring_task *tctx = current->io_uring;
11245 struct io_tctx_exit *work;
11246
11247 work = container_of(cb, struct io_tctx_exit, task_work);
11248 /*
11249 * When @in_idle, we're in cancellation and it's racy to remove the
11250 * node. It'll be removed by the end of cancellation, just ignore it.
11251 */
11252 if (!atomic_read(&tctx->in_idle))
11253 io_uring_del_tctx_node((unsigned long)work->ctx);
11254 complete(&work->completion);
11255 }
11256
11257 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
11258 {
11259 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
11260
11261 return req->ctx == data;
11262 }
11263
11264 static __cold void io_ring_exit_work(struct work_struct *work)
11265 {
11266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
11267 unsigned long timeout = jiffies + HZ * 60 * 5;
11268 unsigned long interval = HZ / 20;
11269 struct io_tctx_exit exit;
11270 struct io_tctx_node *node;
11271 int ret;
11272
11273 /*
11274 * If we're doing polled IO and end up having requests being
11275 * submitted async (out-of-line), then completions can come in while
11276 * we're waiting for refs to drop. We need to reap these manually,
11277 * as nobody else will be looking for them.
11278 */
11279 do {
11280 io_uring_try_cancel_requests(ctx, NULL, true);
11281 if (ctx->sq_data) {
11282 struct io_sq_data *sqd = ctx->sq_data;
11283 struct task_struct *tsk;
11284
11285 io_sq_thread_park(sqd);
11286 tsk = sqd->thread;
11287 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
11288 io_wq_cancel_cb(tsk->io_uring->io_wq,
11289 io_cancel_ctx_cb, ctx, true);
11290 io_sq_thread_unpark(sqd);
11291 }
11292
11293 io_req_caches_free(ctx);
11294
11295 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
11296 /* there is little hope left, don't run it too often */
11297 interval = HZ * 60;
11298 }
11299 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
11300
11301 init_completion(&exit.completion);
11302 init_task_work(&exit.task_work, io_tctx_exit_cb);
11303 exit.ctx = ctx;
11304 /*
11305 * Some may use context even when all refs and requests have been put,
11306 * and they are free to do so while still holding uring_lock or
11307 * completion_lock, see io_req_task_submit(). Apart from other work,
11308 * this lock/unlock section also waits them to finish.
11309 */
11310 mutex_lock(&ctx->uring_lock);
11311 while (!list_empty(&ctx->tctx_list)) {
11312 WARN_ON_ONCE(time_after(jiffies, timeout));
11313
11314 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
11315 ctx_node);
11316 /* don't spin on a single task if cancellation failed */
11317 list_rotate_left(&ctx->tctx_list);
11318 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
11319 if (WARN_ON_ONCE(ret))
11320 continue;
11321
11322 mutex_unlock(&ctx->uring_lock);
11323 wait_for_completion(&exit.completion);
11324 mutex_lock(&ctx->uring_lock);
11325 }
11326 mutex_unlock(&ctx->uring_lock);
11327 spin_lock(&ctx->completion_lock);
11328 spin_unlock(&ctx->completion_lock);
11329
11330 io_ring_ctx_free(ctx);
11331 }
11332
11333 /* Returns true if we found and killed one or more timeouts */
11334 static __cold bool io_kill_timeouts(struct io_ring_ctx *ctx,
11335 struct task_struct *tsk, bool cancel_all)
11336 {
11337 struct io_kiocb *req, *tmp;
11338 int canceled = 0;
11339
11340 spin_lock(&ctx->completion_lock);
11341 spin_lock_irq(&ctx->timeout_lock);
11342 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
11343 if (io_match_task(req, tsk, cancel_all)) {
11344 io_kill_timeout(req, -ECANCELED);
11345 canceled++;
11346 }
11347 }
11348 spin_unlock_irq(&ctx->timeout_lock);
11349 io_commit_cqring(ctx);
11350 spin_unlock(&ctx->completion_lock);
11351 if (canceled != 0)
11352 io_cqring_ev_posted(ctx);
11353 return canceled != 0;
11354 }
11355
11356 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
11357 {
11358 unsigned long index;
11359 struct creds *creds;
11360
11361 mutex_lock(&ctx->uring_lock);
11362 percpu_ref_kill(&ctx->refs);
11363 if (ctx->rings)
11364 __io_cqring_overflow_flush(ctx, true);
11365 xa_for_each(&ctx->personalities, index, creds)
11366 io_unregister_personality(ctx, index);
11367 mutex_unlock(&ctx->uring_lock);
11368
11369 /* failed during ring init, it couldn't have issued any requests */
11370 if (ctx->rings) {
11371 io_kill_timeouts(ctx, NULL, true);
11372 io_poll_remove_all(ctx, NULL, true);
11373 /* if we failed setting up the ctx, we might not have any rings */
11374 io_iopoll_try_reap_events(ctx);
11375 }
11376
11377 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
11378 /*
11379 * Use system_unbound_wq to avoid spawning tons of event kworkers
11380 * if we're exiting a ton of rings at the same time. It just adds
11381 * noise and overhead, there's no discernable change in runtime
11382 * over using system_wq.
11383 */
11384 queue_work(system_unbound_wq, &ctx->exit_work);
11385 }
11386
11387 static int io_uring_release(struct inode *inode, struct file *file)
11388 {
11389 struct io_ring_ctx *ctx = file->private_data;
11390
11391 file->private_data = NULL;
11392 io_ring_ctx_wait_and_kill(ctx);
11393 return 0;
11394 }
11395
11396 struct io_task_cancel {
11397 struct task_struct *task;
11398 bool all;
11399 };
11400
11401 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
11402 {
11403 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
11404 struct io_task_cancel *cancel = data;
11405
11406 return io_match_task_safe(req, cancel->task, cancel->all);
11407 }
11408
11409 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
11410 struct task_struct *task,
11411 bool cancel_all)
11412 {
11413 struct io_defer_entry *de;
11414 LIST_HEAD(list);
11415
11416 spin_lock(&ctx->completion_lock);
11417 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
11418 if (io_match_task_safe(de->req, task, cancel_all)) {
11419 list_cut_position(&list, &ctx->defer_list, &de->list);
11420 break;
11421 }
11422 }
11423 spin_unlock(&ctx->completion_lock);
11424 if (list_empty(&list))
11425 return false;
11426
11427 while (!list_empty(&list)) {
11428 de = list_first_entry(&list, struct io_defer_entry, list);
11429 list_del_init(&de->list);
11430 io_req_complete_failed(de->req, -ECANCELED);
11431 kfree(de);
11432 }
11433 return true;
11434 }
11435
11436 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
11437 {
11438 struct io_tctx_node *node;
11439 enum io_wq_cancel cret;
11440 bool ret = false;
11441
11442 mutex_lock(&ctx->uring_lock);
11443 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
11444 struct io_uring_task *tctx = node->task->io_uring;
11445
11446 /*
11447 * io_wq will stay alive while we hold uring_lock, because it's
11448 * killed after ctx nodes, which requires to take the lock.
11449 */
11450 if (!tctx || !tctx->io_wq)
11451 continue;
11452 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
11453 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
11454 }
11455 mutex_unlock(&ctx->uring_lock);
11456
11457 return ret;
11458 }
11459
11460 static __cold void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
11461 struct task_struct *task,
11462 bool cancel_all)
11463 {
11464 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
11465 struct io_uring_task *tctx = task ? task->io_uring : NULL;
11466
11467 /* failed during ring init, it couldn't have issued any requests */
11468 if (!ctx->rings)
11469 return;
11470
11471 while (1) {
11472 enum io_wq_cancel cret;
11473 bool ret = false;
11474
11475 if (!task) {
11476 ret |= io_uring_try_cancel_iowq(ctx);
11477 } else if (tctx && tctx->io_wq) {
11478 /*
11479 * Cancels requests of all rings, not only @ctx, but
11480 * it's fine as the task is in exit/exec.
11481 */
11482 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
11483 &cancel, true);
11484 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
11485 }
11486
11487 /* SQPOLL thread does its own polling */
11488 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
11489 (ctx->sq_data && ctx->sq_data->thread == current)) {
11490 while (!wq_list_empty(&ctx->iopoll_list)) {
11491 io_iopoll_try_reap_events(ctx);
11492 ret = true;
11493 }
11494 }
11495
11496 ret |= io_cancel_defer_files(ctx, task, cancel_all);
11497 ret |= io_poll_remove_all(ctx, task, cancel_all);
11498 ret |= io_kill_timeouts(ctx, task, cancel_all);
11499 if (task)
11500 ret |= io_run_task_work();
11501 if (!ret)
11502 break;
11503 cond_resched();
11504 }
11505 }
11506
11507 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
11508 {
11509 struct io_uring_task *tctx = current->io_uring;
11510 struct io_tctx_node *node;
11511 int ret;
11512
11513 if (unlikely(!tctx)) {
11514 ret = io_uring_alloc_task_context(current, ctx);
11515 if (unlikely(ret))
11516 return ret;
11517
11518 tctx = current->io_uring;
11519 if (ctx->iowq_limits_set) {
11520 unsigned int limits[2] = { ctx->iowq_limits[0],
11521 ctx->iowq_limits[1], };
11522
11523 ret = io_wq_max_workers(tctx->io_wq, limits);
11524 if (ret)
11525 return ret;
11526 }
11527 }
11528 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
11529 node = kmalloc(sizeof(*node), GFP_KERNEL);
11530 if (!node)
11531 return -ENOMEM;
11532 node->ctx = ctx;
11533 node->task = current;
11534
11535 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
11536 node, GFP_KERNEL));
11537 if (ret) {
11538 kfree(node);
11539 return ret;
11540 }
11541
11542 mutex_lock(&ctx->uring_lock);
11543 list_add(&node->ctx_node, &ctx->tctx_list);
11544 mutex_unlock(&ctx->uring_lock);
11545 }
11546 tctx->last = ctx;
11547 return 0;
11548 }
11549
11550 /*
11551 * Note that this task has used io_uring. We use it for cancelation purposes.
11552 */
11553 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
11554 {
11555 struct io_uring_task *tctx = current->io_uring;
11556
11557 if (likely(tctx && tctx->last == ctx))
11558 return 0;
11559 return __io_uring_add_tctx_node(ctx);
11560 }
11561
11562 /*
11563 * Remove this io_uring_file -> task mapping.
11564 */
11565 static __cold void io_uring_del_tctx_node(unsigned long index)
11566 {
11567 struct io_uring_task *tctx = current->io_uring;
11568 struct io_tctx_node *node;
11569
11570 if (!tctx)
11571 return;
11572 node = xa_erase(&tctx->xa, index);
11573 if (!node)
11574 return;
11575
11576 WARN_ON_ONCE(current != node->task);
11577 WARN_ON_ONCE(list_empty(&node->ctx_node));
11578
11579 mutex_lock(&node->ctx->uring_lock);
11580 list_del(&node->ctx_node);
11581 mutex_unlock(&node->ctx->uring_lock);
11582
11583 if (tctx->last == node->ctx)
11584 tctx->last = NULL;
11585 kfree(node);
11586 }
11587
11588 static __cold void io_uring_clean_tctx(struct io_uring_task *tctx)
11589 {
11590 struct io_wq *wq = tctx->io_wq;
11591 struct io_tctx_node *node;
11592 unsigned long index;
11593
11594 xa_for_each(&tctx->xa, index, node) {
11595 io_uring_del_tctx_node(index);
11596 cond_resched();
11597 }
11598 if (wq) {
11599 /*
11600 * Must be after io_uring_del_tctx_node() (removes nodes under
11601 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
11602 */
11603 io_wq_put_and_exit(wq);
11604 tctx->io_wq = NULL;
11605 }
11606 }
11607
11608 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
11609 {
11610 if (tracked)
11611 return atomic_read(&tctx->inflight_tracked);
11612 return percpu_counter_sum(&tctx->inflight);
11613 }
11614
11615 /*
11616 * Find any io_uring ctx that this task has registered or done IO on, and cancel
11617 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
11618 */
11619 static __cold void io_uring_cancel_generic(bool cancel_all,
11620 struct io_sq_data *sqd)
11621 {
11622 struct io_uring_task *tctx = current->io_uring;
11623 struct io_ring_ctx *ctx;
11624 s64 inflight;
11625 DEFINE_WAIT(wait);
11626
11627 WARN_ON_ONCE(sqd && sqd->thread != current);
11628
11629 if (!current->io_uring)
11630 return;
11631 if (tctx->io_wq)
11632 io_wq_exit_start(tctx->io_wq);
11633
11634 atomic_inc(&tctx->in_idle);
11635 do {
11636 io_uring_drop_tctx_refs(current);
11637 /* read completions before cancelations */
11638 inflight = tctx_inflight(tctx, !cancel_all);
11639 if (!inflight)
11640 break;
11641
11642 if (!sqd) {
11643 struct io_tctx_node *node;
11644 unsigned long index;
11645
11646 xa_for_each(&tctx->xa, index, node) {
11647 /* sqpoll task will cancel all its requests */
11648 if (node->ctx->sq_data)
11649 continue;
11650 io_uring_try_cancel_requests(node->ctx, current,
11651 cancel_all);
11652 }
11653 } else {
11654 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
11655 io_uring_try_cancel_requests(ctx, current,
11656 cancel_all);
11657 }
11658
11659 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
11660 io_run_task_work();
11661 io_uring_drop_tctx_refs(current);
11662
11663 /*
11664 * If we've seen completions, retry without waiting. This
11665 * avoids a race where a completion comes in before we did
11666 * prepare_to_wait().
11667 */
11668 if (inflight == tctx_inflight(tctx, !cancel_all))
11669 schedule();
11670 finish_wait(&tctx->wait, &wait);
11671 } while (1);
11672
11673 io_uring_clean_tctx(tctx);
11674 if (cancel_all) {
11675 /*
11676 * We shouldn't run task_works after cancel, so just leave
11677 * ->in_idle set for normal exit.
11678 */
11679 atomic_dec(&tctx->in_idle);
11680 /* for exec all current's requests should be gone, kill tctx */
11681 __io_uring_free(current);
11682 }
11683 }
11684
11685 void __io_uring_cancel(bool cancel_all)
11686 {
11687 io_uring_cancel_generic(cancel_all, NULL);
11688 }
11689
11690 void io_uring_unreg_ringfd(void)
11691 {
11692 struct io_uring_task *tctx = current->io_uring;
11693 int i;
11694
11695 for (i = 0; i < IO_RINGFD_REG_MAX; i++) {
11696 if (tctx->registered_rings[i]) {
11697 fput(tctx->registered_rings[i]);
11698 tctx->registered_rings[i] = NULL;
11699 }
11700 }
11701 }
11702
11703 static int io_ring_add_registered_fd(struct io_uring_task *tctx, int fd,
11704 int start, int end)
11705 {
11706 struct file *file;
11707 int offset;
11708
11709 for (offset = start; offset < end; offset++) {
11710 offset = array_index_nospec(offset, IO_RINGFD_REG_MAX);
11711 if (tctx->registered_rings[offset])
11712 continue;
11713
11714 file = fget(fd);
11715 if (!file) {
11716 return -EBADF;
11717 } else if (file->f_op != &io_uring_fops) {
11718 fput(file);
11719 return -EOPNOTSUPP;
11720 }
11721 tctx->registered_rings[offset] = file;
11722 return offset;
11723 }
11724
11725 return -EBUSY;
11726 }
11727
11728 /*
11729 * Register a ring fd to avoid fdget/fdput for each io_uring_enter()
11730 * invocation. User passes in an array of struct io_uring_rsrc_update
11731 * with ->data set to the ring_fd, and ->offset given for the desired
11732 * index. If no index is desired, application may set ->offset == -1U
11733 * and we'll find an available index. Returns number of entries
11734 * successfully processed, or < 0 on error if none were processed.
11735 */
11736 static int io_ringfd_register(struct io_ring_ctx *ctx, void __user *__arg,
11737 unsigned nr_args)
11738 {
11739 struct io_uring_rsrc_update __user *arg = __arg;
11740 struct io_uring_rsrc_update reg;
11741 struct io_uring_task *tctx;
11742 int ret, i;
11743
11744 if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
11745 return -EINVAL;
11746
11747 mutex_unlock(&ctx->uring_lock);
11748 ret = io_uring_add_tctx_node(ctx);
11749 mutex_lock(&ctx->uring_lock);
11750 if (ret)
11751 return ret;
11752
11753 tctx = current->io_uring;
11754 for (i = 0; i < nr_args; i++) {
11755 int start, end;
11756
11757 if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
11758 ret = -EFAULT;
11759 break;
11760 }
11761
11762 if (reg.resv) {
11763 ret = -EINVAL;
11764 break;
11765 }
11766
11767 if (reg.offset == -1U) {
11768 start = 0;
11769 end = IO_RINGFD_REG_MAX;
11770 } else {
11771 if (reg.offset >= IO_RINGFD_REG_MAX) {
11772 ret = -EINVAL;
11773 break;
11774 }
11775 start = reg.offset;
11776 end = start + 1;
11777 }
11778
11779 ret = io_ring_add_registered_fd(tctx, reg.data, start, end);
11780 if (ret < 0)
11781 break;
11782
11783 reg.offset = ret;
11784 if (copy_to_user(&arg[i], &reg, sizeof(reg))) {
11785 fput(tctx->registered_rings[reg.offset]);
11786 tctx->registered_rings[reg.offset] = NULL;
11787 ret = -EFAULT;
11788 break;
11789 }
11790 }
11791
11792 return i ? i : ret;
11793 }
11794
11795 static int io_ringfd_unregister(struct io_ring_ctx *ctx, void __user *__arg,
11796 unsigned nr_args)
11797 {
11798 struct io_uring_rsrc_update __user *arg = __arg;
11799 struct io_uring_task *tctx = current->io_uring;
11800 struct io_uring_rsrc_update reg;
11801 int ret = 0, i;
11802
11803 if (!nr_args || nr_args > IO_RINGFD_REG_MAX)
11804 return -EINVAL;
11805 if (!tctx)
11806 return 0;
11807
11808 for (i = 0; i < nr_args; i++) {
11809 if (copy_from_user(&reg, &arg[i], sizeof(reg))) {
11810 ret = -EFAULT;
11811 break;
11812 }
11813 if (reg.resv || reg.data || reg.offset >= IO_RINGFD_REG_MAX) {
11814 ret = -EINVAL;
11815 break;
11816 }
11817
11818 reg.offset = array_index_nospec(reg.offset, IO_RINGFD_REG_MAX);
11819 if (tctx->registered_rings[reg.offset]) {
11820 fput(tctx->registered_rings[reg.offset]);
11821 tctx->registered_rings[reg.offset] = NULL;
11822 }
11823 }
11824
11825 return i ? i : ret;
11826 }
11827
11828 static void *io_uring_validate_mmap_request(struct file *file,
11829 loff_t pgoff, size_t sz)
11830 {
11831 struct io_ring_ctx *ctx = file->private_data;
11832 loff_t offset = pgoff << PAGE_SHIFT;
11833 struct page *page;
11834 void *ptr;
11835
11836 switch (offset) {
11837 case IORING_OFF_SQ_RING:
11838 case IORING_OFF_CQ_RING:
11839 ptr = ctx->rings;
11840 break;
11841 case IORING_OFF_SQES:
11842 ptr = ctx->sq_sqes;
11843 break;
11844 default:
11845 return ERR_PTR(-EINVAL);
11846 }
11847
11848 page = virt_to_head_page(ptr);
11849 if (sz > page_size(page))
11850 return ERR_PTR(-EINVAL);
11851
11852 return ptr;
11853 }
11854
11855 #ifdef CONFIG_MMU
11856
11857 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
11858 {
11859 size_t sz = vma->vm_end - vma->vm_start;
11860 unsigned long pfn;
11861 void *ptr;
11862
11863 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
11864 if (IS_ERR(ptr))
11865 return PTR_ERR(ptr);
11866
11867 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
11868 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
11869 }
11870
11871 #else /* !CONFIG_MMU */
11872
11873 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
11874 {
11875 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
11876 }
11877
11878 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
11879 {
11880 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
11881 }
11882
11883 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
11884 unsigned long addr, unsigned long len,
11885 unsigned long pgoff, unsigned long flags)
11886 {
11887 void *ptr;
11888
11889 ptr = io_uring_validate_mmap_request(file, pgoff, len);
11890 if (IS_ERR(ptr))
11891 return PTR_ERR(ptr);
11892
11893 return (unsigned long) ptr;
11894 }
11895
11896 #endif /* !CONFIG_MMU */
11897
11898 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
11899 {
11900 DEFINE_WAIT(wait);
11901
11902 do {
11903 if (!io_sqring_full(ctx))
11904 break;
11905 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
11906
11907 if (!io_sqring_full(ctx))
11908 break;
11909 schedule();
11910 } while (!signal_pending(current));
11911
11912 finish_wait(&ctx->sqo_sq_wait, &wait);
11913 return 0;
11914 }
11915
11916 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
11917 {
11918 if (flags & IORING_ENTER_EXT_ARG) {
11919 struct io_uring_getevents_arg arg;
11920
11921 if (argsz != sizeof(arg))
11922 return -EINVAL;
11923 if (copy_from_user(&arg, argp, sizeof(arg)))
11924 return -EFAULT;
11925 }
11926 return 0;
11927 }
11928
11929 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
11930 struct __kernel_timespec __user **ts,
11931 const sigset_t __user **sig)
11932 {
11933 struct io_uring_getevents_arg arg;
11934
11935 /*
11936 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
11937 * is just a pointer to the sigset_t.
11938 */
11939 if (!(flags & IORING_ENTER_EXT_ARG)) {
11940 *sig = (const sigset_t __user *) argp;
11941 *ts = NULL;
11942 return 0;
11943 }
11944
11945 /*
11946 * EXT_ARG is set - ensure we agree on the size of it and copy in our
11947 * timespec and sigset_t pointers if good.
11948 */
11949 if (*argsz != sizeof(arg))
11950 return -EINVAL;
11951 if (copy_from_user(&arg, argp, sizeof(arg)))
11952 return -EFAULT;
11953 if (arg.pad)
11954 return -EINVAL;
11955 *sig = u64_to_user_ptr(arg.sigmask);
11956 *argsz = arg.sigmask_sz;
11957 *ts = u64_to_user_ptr(arg.ts);
11958 return 0;
11959 }
11960
11961 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
11962 u32, min_complete, u32, flags, const void __user *, argp,
11963 size_t, argsz)
11964 {
11965 struct io_ring_ctx *ctx;
11966 struct fd f;
11967 long ret;
11968
11969 io_run_task_work();
11970
11971 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
11972 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
11973 IORING_ENTER_REGISTERED_RING)))
11974 return -EINVAL;
11975
11976 /*
11977 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
11978 * need only dereference our task private array to find it.
11979 */
11980 if (flags & IORING_ENTER_REGISTERED_RING) {
11981 struct io_uring_task *tctx = current->io_uring;
11982
11983 if (!tctx || fd >= IO_RINGFD_REG_MAX)
11984 return -EINVAL;
11985 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
11986 f.file = tctx->registered_rings[fd];
11987 f.flags = 0;
11988 } else {
11989 f = fdget(fd);
11990 }
11991
11992 if (unlikely(!f.file))
11993 return -EBADF;
11994
11995 ret = -EOPNOTSUPP;
11996 if (unlikely(f.file->f_op != &io_uring_fops))
11997 goto out_fput;
11998
11999 ret = -ENXIO;
12000 ctx = f.file->private_data;
12001 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
12002 goto out_fput;
12003
12004 ret = -EBADFD;
12005 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
12006 goto out;
12007
12008 /*
12009 * For SQ polling, the thread will do all submissions and completions.
12010 * Just return the requested submit count, and wake the thread if
12011 * we were asked to.
12012 */
12013 ret = 0;
12014 if (ctx->flags & IORING_SETUP_SQPOLL) {
12015 io_cqring_overflow_flush(ctx);
12016
12017 if (unlikely(ctx->sq_data->thread == NULL)) {
12018 ret = -EOWNERDEAD;
12019 goto out;
12020 }
12021 if (flags & IORING_ENTER_SQ_WAKEUP)
12022 wake_up(&ctx->sq_data->wait);
12023 if (flags & IORING_ENTER_SQ_WAIT) {
12024 ret = io_sqpoll_wait_sq(ctx);
12025 if (ret)
12026 goto out;
12027 }
12028 ret = to_submit;
12029 } else if (to_submit) {
12030 ret = io_uring_add_tctx_node(ctx);
12031 if (unlikely(ret))
12032 goto out;
12033
12034 mutex_lock(&ctx->uring_lock);
12035 ret = io_submit_sqes(ctx, to_submit);
12036 if (ret != to_submit) {
12037 mutex_unlock(&ctx->uring_lock);
12038 goto out;
12039 }
12040 if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
12041 goto iopoll_locked;
12042 mutex_unlock(&ctx->uring_lock);
12043 }
12044 if (flags & IORING_ENTER_GETEVENTS) {
12045 int ret2;
12046 if (ctx->syscall_iopoll) {
12047 /*
12048 * We disallow the app entering submit/complete with
12049 * polling, but we still need to lock the ring to
12050 * prevent racing with polled issue that got punted to
12051 * a workqueue.
12052 */
12053 mutex_lock(&ctx->uring_lock);
12054 iopoll_locked:
12055 ret2 = io_validate_ext_arg(flags, argp, argsz);
12056 if (likely(!ret2)) {
12057 min_complete = min(min_complete,
12058 ctx->cq_entries);
12059 ret2 = io_iopoll_check(ctx, min_complete);
12060 }
12061 mutex_unlock(&ctx->uring_lock);
12062 } else {
12063 const sigset_t __user *sig;
12064 struct __kernel_timespec __user *ts;
12065
12066 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
12067 if (likely(!ret2)) {
12068 min_complete = min(min_complete,
12069 ctx->cq_entries);
12070 ret2 = io_cqring_wait(ctx, min_complete, sig,
12071 argsz, ts);
12072 }
12073 }
12074
12075 if (!ret) {
12076 ret = ret2;
12077
12078 /*
12079 * EBADR indicates that one or more CQE were dropped.
12080 * Once the user has been informed we can clear the bit
12081 * as they are obviously ok with those drops.
12082 */
12083 if (unlikely(ret2 == -EBADR))
12084 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
12085 &ctx->check_cq);
12086 }
12087 }
12088
12089 out:
12090 percpu_ref_put(&ctx->refs);
12091 out_fput:
12092 fdput(f);
12093 return ret;
12094 }
12095
12096 #ifdef CONFIG_PROC_FS
12097 static __cold int io_uring_show_cred(struct seq_file *m, unsigned int id,
12098 const struct cred *cred)
12099 {
12100 struct user_namespace *uns = seq_user_ns(m);
12101 struct group_info *gi;
12102 kernel_cap_t cap;
12103 unsigned __capi;
12104 int g;
12105
12106 seq_printf(m, "%5d\n", id);
12107 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
12108 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
12109 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
12110 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
12111 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
12112 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
12113 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
12114 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
12115 seq_puts(m, "\n\tGroups:\t");
12116 gi = cred->group_info;
12117 for (g = 0; g < gi->ngroups; g++) {
12118 seq_put_decimal_ull(m, g ? " " : "",
12119 from_kgid_munged(uns, gi->gid[g]));
12120 }
12121 seq_puts(m, "\n\tCapEff:\t");
12122 cap = cred->cap_effective;
12123 CAP_FOR_EACH_U32(__capi)
12124 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
12125 seq_putc(m, '\n');
12126 return 0;
12127 }
12128
12129 static __cold void __io_uring_show_fdinfo(struct io_ring_ctx *ctx,
12130 struct seq_file *m)
12131 {
12132 struct io_sq_data *sq = NULL;
12133 struct io_overflow_cqe *ocqe;
12134 struct io_rings *r = ctx->rings;
12135 unsigned int sq_mask = ctx->sq_entries - 1, cq_mask = ctx->cq_entries - 1;
12136 unsigned int sq_head = READ_ONCE(r->sq.head);
12137 unsigned int sq_tail = READ_ONCE(r->sq.tail);
12138 unsigned int cq_head = READ_ONCE(r->cq.head);
12139 unsigned int cq_tail = READ_ONCE(r->cq.tail);
12140 unsigned int cq_shift = 0;
12141 unsigned int sq_entries, cq_entries;
12142 bool has_lock;
12143 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
12144 unsigned int i;
12145
12146 if (is_cqe32)
12147 cq_shift = 1;
12148
12149 /*
12150 * we may get imprecise sqe and cqe info if uring is actively running
12151 * since we get cached_sq_head and cached_cq_tail without uring_lock
12152 * and sq_tail and cq_head are changed by userspace. But it's ok since
12153 * we usually use these info when it is stuck.
12154 */
12155 seq_printf(m, "SqMask:\t0x%x\n", sq_mask);
12156 seq_printf(m, "SqHead:\t%u\n", sq_head);
12157 seq_printf(m, "SqTail:\t%u\n", sq_tail);
12158 seq_printf(m, "CachedSqHead:\t%u\n", ctx->cached_sq_head);
12159 seq_printf(m, "CqMask:\t0x%x\n", cq_mask);
12160 seq_printf(m, "CqHead:\t%u\n", cq_head);
12161 seq_printf(m, "CqTail:\t%u\n", cq_tail);
12162 seq_printf(m, "CachedCqTail:\t%u\n", ctx->cached_cq_tail);
12163 seq_printf(m, "SQEs:\t%u\n", sq_tail - ctx->cached_sq_head);
12164 sq_entries = min(sq_tail - sq_head, ctx->sq_entries);
12165 for (i = 0; i < sq_entries; i++) {
12166 unsigned int entry = i + sq_head;
12167 unsigned int sq_idx = READ_ONCE(ctx->sq_array[entry & sq_mask]);
12168 struct io_uring_sqe *sqe;
12169
12170 if (sq_idx > sq_mask)
12171 continue;
12172 sqe = &ctx->sq_sqes[sq_idx];
12173 seq_printf(m, "%5u: opcode:%d, fd:%d, flags:%x, user_data:%llu\n",
12174 sq_idx, sqe->opcode, sqe->fd, sqe->flags,
12175 sqe->user_data);
12176 }
12177 seq_printf(m, "CQEs:\t%u\n", cq_tail - cq_head);
12178 cq_entries = min(cq_tail - cq_head, ctx->cq_entries);
12179 for (i = 0; i < cq_entries; i++) {
12180 unsigned int entry = i + cq_head;
12181 struct io_uring_cqe *cqe = &r->cqes[(entry & cq_mask) << cq_shift];
12182
12183 if (!is_cqe32) {
12184 seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x\n",
12185 entry & cq_mask, cqe->user_data, cqe->res,
12186 cqe->flags);
12187 } else {
12188 seq_printf(m, "%5u: user_data:%llu, res:%d, flag:%x, "
12189 "extra1:%llu, extra2:%llu\n",
12190 entry & cq_mask, cqe->user_data, cqe->res,
12191 cqe->flags, cqe->big_cqe[0], cqe->big_cqe[1]);
12192 }
12193 }
12194
12195 /*
12196 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
12197 * since fdinfo case grabs it in the opposite direction of normal use
12198 * cases. If we fail to get the lock, we just don't iterate any
12199 * structures that could be going away outside the io_uring mutex.
12200 */
12201 has_lock = mutex_trylock(&ctx->uring_lock);
12202
12203 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
12204 sq = ctx->sq_data;
12205 if (!sq->thread)
12206 sq = NULL;
12207 }
12208
12209 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
12210 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
12211 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
12212 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
12213 struct file *f = io_file_from_index(ctx, i);
12214
12215 if (f)
12216 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
12217 else
12218 seq_printf(m, "%5u: <none>\n", i);
12219 }
12220 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
12221 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
12222 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
12223 unsigned int len = buf->ubuf_end - buf->ubuf;
12224
12225 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
12226 }
12227 if (has_lock && !xa_empty(&ctx->personalities)) {
12228 unsigned long index;
12229 const struct cred *cred;
12230
12231 seq_printf(m, "Personalities:\n");
12232 xa_for_each(&ctx->personalities, index, cred)
12233 io_uring_show_cred(m, index, cred);
12234 }
12235 if (has_lock)
12236 mutex_unlock(&ctx->uring_lock);
12237
12238 seq_puts(m, "PollList:\n");
12239 spin_lock(&ctx->completion_lock);
12240 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
12241 struct hlist_head *list = &ctx->cancel_hash[i];
12242 struct io_kiocb *req;
12243
12244 hlist_for_each_entry(req, list, hash_node)
12245 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
12246 task_work_pending(req->task));
12247 }
12248
12249 seq_puts(m, "CqOverflowList:\n");
12250 list_for_each_entry(ocqe, &ctx->cq_overflow_list, list) {
12251 struct io_uring_cqe *cqe = &ocqe->cqe;
12252
12253 seq_printf(m, " user_data=%llu, res=%d, flags=%x\n",
12254 cqe->user_data, cqe->res, cqe->flags);
12255
12256 }
12257
12258 spin_unlock(&ctx->completion_lock);
12259 }
12260
12261 static __cold void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
12262 {
12263 struct io_ring_ctx *ctx = f->private_data;
12264
12265 if (percpu_ref_tryget(&ctx->refs)) {
12266 __io_uring_show_fdinfo(ctx, m);
12267 percpu_ref_put(&ctx->refs);
12268 }
12269 }
12270 #endif
12271
12272 static const struct file_operations io_uring_fops = {
12273 .release = io_uring_release,
12274 .mmap = io_uring_mmap,
12275 #ifndef CONFIG_MMU
12276 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
12277 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
12278 #endif
12279 .poll = io_uring_poll,
12280 #ifdef CONFIG_PROC_FS
12281 .show_fdinfo = io_uring_show_fdinfo,
12282 #endif
12283 };
12284
12285 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
12286 struct io_uring_params *p)
12287 {
12288 struct io_rings *rings;
12289 size_t size, sq_array_offset;
12290
12291 /* make sure these are sane, as we already accounted them */
12292 ctx->sq_entries = p->sq_entries;
12293 ctx->cq_entries = p->cq_entries;
12294
12295 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
12296 if (size == SIZE_MAX)
12297 return -EOVERFLOW;
12298
12299 rings = io_mem_alloc(size);
12300 if (!rings)
12301 return -ENOMEM;
12302
12303 ctx->rings = rings;
12304 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
12305 rings->sq_ring_mask = p->sq_entries - 1;
12306 rings->cq_ring_mask = p->cq_entries - 1;
12307 rings->sq_ring_entries = p->sq_entries;
12308 rings->cq_ring_entries = p->cq_entries;
12309
12310 if (p->flags & IORING_SETUP_SQE128)
12311 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
12312 else
12313 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
12314 if (size == SIZE_MAX) {
12315 io_mem_free(ctx->rings);
12316 ctx->rings = NULL;
12317 return -EOVERFLOW;
12318 }
12319
12320 ctx->sq_sqes = io_mem_alloc(size);
12321 if (!ctx->sq_sqes) {
12322 io_mem_free(ctx->rings);
12323 ctx->rings = NULL;
12324 return -ENOMEM;
12325 }
12326
12327 return 0;
12328 }
12329
12330 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
12331 {
12332 int ret, fd;
12333
12334 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
12335 if (fd < 0)
12336 return fd;
12337
12338 ret = io_uring_add_tctx_node(ctx);
12339 if (ret) {
12340 put_unused_fd(fd);
12341 return ret;
12342 }
12343 fd_install(fd, file);
12344 return fd;
12345 }
12346
12347 /*
12348 * Allocate an anonymous fd, this is what constitutes the application
12349 * visible backing of an io_uring instance. The application mmaps this
12350 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
12351 * we have to tie this fd to a socket for file garbage collection purposes.
12352 */
12353 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
12354 {
12355 struct file *file;
12356 #if defined(CONFIG_UNIX)
12357 int ret;
12358
12359 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
12360 &ctx->ring_sock);
12361 if (ret)
12362 return ERR_PTR(ret);
12363 #endif
12364
12365 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
12366 O_RDWR | O_CLOEXEC, NULL);
12367 #if defined(CONFIG_UNIX)
12368 if (IS_ERR(file)) {
12369 sock_release(ctx->ring_sock);
12370 ctx->ring_sock = NULL;
12371 } else {
12372 ctx->ring_sock->file = file;
12373 }
12374 #endif
12375 return file;
12376 }
12377
12378 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
12379 struct io_uring_params __user *params)
12380 {
12381 struct io_ring_ctx *ctx;
12382 struct file *file;
12383 int ret;
12384
12385 if (!entries)
12386 return -EINVAL;
12387 if (entries > IORING_MAX_ENTRIES) {
12388 if (!(p->flags & IORING_SETUP_CLAMP))
12389 return -EINVAL;
12390 entries = IORING_MAX_ENTRIES;
12391 }
12392
12393 /*
12394 * Use twice as many entries for the CQ ring. It's possible for the
12395 * application to drive a higher depth than the size of the SQ ring,
12396 * since the sqes are only used at submission time. This allows for
12397 * some flexibility in overcommitting a bit. If the application has
12398 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
12399 * of CQ ring entries manually.
12400 */
12401 p->sq_entries = roundup_pow_of_two(entries);
12402 if (p->flags & IORING_SETUP_CQSIZE) {
12403 /*
12404 * If IORING_SETUP_CQSIZE is set, we do the same roundup
12405 * to a power-of-two, if it isn't already. We do NOT impose
12406 * any cq vs sq ring sizing.
12407 */
12408 if (!p->cq_entries)
12409 return -EINVAL;
12410 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
12411 if (!(p->flags & IORING_SETUP_CLAMP))
12412 return -EINVAL;
12413 p->cq_entries = IORING_MAX_CQ_ENTRIES;
12414 }
12415 p->cq_entries = roundup_pow_of_two(p->cq_entries);
12416 if (p->cq_entries < p->sq_entries)
12417 return -EINVAL;
12418 } else {
12419 p->cq_entries = 2 * p->sq_entries;
12420 }
12421
12422 ctx = io_ring_ctx_alloc(p);
12423 if (!ctx)
12424 return -ENOMEM;
12425
12426 /*
12427 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
12428 * space applications don't need to do io completion events
12429 * polling again, they can rely on io_sq_thread to do polling
12430 * work, which can reduce cpu usage and uring_lock contention.
12431 */
12432 if (ctx->flags & IORING_SETUP_IOPOLL &&
12433 !(ctx->flags & IORING_SETUP_SQPOLL))
12434 ctx->syscall_iopoll = 1;
12435
12436 ctx->compat = in_compat_syscall();
12437 if (!capable(CAP_IPC_LOCK))
12438 ctx->user = get_uid(current_user());
12439
12440 /*
12441 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
12442 * COOP_TASKRUN is set, then IPIs are never needed by the app.
12443 */
12444 ret = -EINVAL;
12445 if (ctx->flags & IORING_SETUP_SQPOLL) {
12446 /* IPI related flags don't make sense with SQPOLL */
12447 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
12448 IORING_SETUP_TASKRUN_FLAG))
12449 goto err;
12450 ctx->notify_method = TWA_SIGNAL_NO_IPI;
12451 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
12452 ctx->notify_method = TWA_SIGNAL_NO_IPI;
12453 } else {
12454 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
12455 goto err;
12456 ctx->notify_method = TWA_SIGNAL;
12457 }
12458
12459 /*
12460 * This is just grabbed for accounting purposes. When a process exits,
12461 * the mm is exited and dropped before the files, hence we need to hang
12462 * on to this mm purely for the purposes of being able to unaccount
12463 * memory (locked/pinned vm). It's not used for anything else.
12464 */
12465 mmgrab(current->mm);
12466 ctx->mm_account = current->mm;
12467
12468 ret = io_allocate_scq_urings(ctx, p);
12469 if (ret)
12470 goto err;
12471
12472 ret = io_sq_offload_create(ctx, p);
12473 if (ret)
12474 goto err;
12475 /* always set a rsrc node */
12476 ret = io_rsrc_node_switch_start(ctx);
12477 if (ret)
12478 goto err;
12479 io_rsrc_node_switch(ctx, NULL);
12480
12481 memset(&p->sq_off, 0, sizeof(p->sq_off));
12482 p->sq_off.head = offsetof(struct io_rings, sq.head);
12483 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
12484 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
12485 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
12486 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
12487 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
12488 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
12489
12490 memset(&p->cq_off, 0, sizeof(p->cq_off));
12491 p->cq_off.head = offsetof(struct io_rings, cq.head);
12492 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
12493 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
12494 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
12495 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
12496 p->cq_off.cqes = offsetof(struct io_rings, cqes);
12497 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
12498
12499 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
12500 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
12501 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
12502 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
12503 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
12504 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
12505 IORING_FEAT_LINKED_FILE;
12506
12507 if (copy_to_user(params, p, sizeof(*p))) {
12508 ret = -EFAULT;
12509 goto err;
12510 }
12511
12512 file = io_uring_get_file(ctx);
12513 if (IS_ERR(file)) {
12514 ret = PTR_ERR(file);
12515 goto err;
12516 }
12517
12518 /*
12519 * Install ring fd as the very last thing, so we don't risk someone
12520 * having closed it before we finish setup
12521 */
12522 ret = io_uring_install_fd(ctx, file);
12523 if (ret < 0) {
12524 /* fput will clean it up */
12525 fput(file);
12526 return ret;
12527 }
12528
12529 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
12530 return ret;
12531 err:
12532 io_ring_ctx_wait_and_kill(ctx);
12533 return ret;
12534 }
12535
12536 /*
12537 * Sets up an aio uring context, and returns the fd. Applications asks for a
12538 * ring size, we return the actual sq/cq ring sizes (among other things) in the
12539 * params structure passed in.
12540 */
12541 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
12542 {
12543 struct io_uring_params p;
12544 int i;
12545
12546 if (copy_from_user(&p, params, sizeof(p)))
12547 return -EFAULT;
12548 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
12549 if (p.resv[i])
12550 return -EINVAL;
12551 }
12552
12553 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
12554 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
12555 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
12556 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
12557 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
12558 IORING_SETUP_SQE128 | IORING_SETUP_CQE32))
12559 return -EINVAL;
12560
12561 return io_uring_create(entries, &p, params);
12562 }
12563
12564 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
12565 struct io_uring_params __user *, params)
12566 {
12567 return io_uring_setup(entries, params);
12568 }
12569
12570 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
12571 unsigned nr_args)
12572 {
12573 struct io_uring_probe *p;
12574 size_t size;
12575 int i, ret;
12576
12577 size = struct_size(p, ops, nr_args);
12578 if (size == SIZE_MAX)
12579 return -EOVERFLOW;
12580 p = kzalloc(size, GFP_KERNEL);
12581 if (!p)
12582 return -ENOMEM;
12583
12584 ret = -EFAULT;
12585 if (copy_from_user(p, arg, size))
12586 goto out;
12587 ret = -EINVAL;
12588 if (memchr_inv(p, 0, size))
12589 goto out;
12590
12591 p->last_op = IORING_OP_LAST - 1;
12592 if (nr_args > IORING_OP_LAST)
12593 nr_args = IORING_OP_LAST;
12594
12595 for (i = 0; i < nr_args; i++) {
12596 p->ops[i].op = i;
12597 if (!io_op_defs[i].not_supported)
12598 p->ops[i].flags = IO_URING_OP_SUPPORTED;
12599 }
12600 p->ops_len = i;
12601
12602 ret = 0;
12603 if (copy_to_user(arg, p, size))
12604 ret = -EFAULT;
12605 out:
12606 kfree(p);
12607 return ret;
12608 }
12609
12610 static int io_register_personality(struct io_ring_ctx *ctx)
12611 {
12612 const struct cred *creds;
12613 u32 id;
12614 int ret;
12615
12616 creds = get_current_cred();
12617
12618 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
12619 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
12620 if (ret < 0) {
12621 put_cred(creds);
12622 return ret;
12623 }
12624 return id;
12625 }
12626
12627 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
12628 void __user *arg, unsigned int nr_args)
12629 {
12630 struct io_uring_restriction *res;
12631 size_t size;
12632 int i, ret;
12633
12634 /* Restrictions allowed only if rings started disabled */
12635 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
12636 return -EBADFD;
12637
12638 /* We allow only a single restrictions registration */
12639 if (ctx->restrictions.registered)
12640 return -EBUSY;
12641
12642 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
12643 return -EINVAL;
12644
12645 size = array_size(nr_args, sizeof(*res));
12646 if (size == SIZE_MAX)
12647 return -EOVERFLOW;
12648
12649 res = memdup_user(arg, size);
12650 if (IS_ERR(res))
12651 return PTR_ERR(res);
12652
12653 ret = 0;
12654
12655 for (i = 0; i < nr_args; i++) {
12656 switch (res[i].opcode) {
12657 case IORING_RESTRICTION_REGISTER_OP:
12658 if (res[i].register_op >= IORING_REGISTER_LAST) {
12659 ret = -EINVAL;
12660 goto out;
12661 }
12662
12663 __set_bit(res[i].register_op,
12664 ctx->restrictions.register_op);
12665 break;
12666 case IORING_RESTRICTION_SQE_OP:
12667 if (res[i].sqe_op >= IORING_OP_LAST) {
12668 ret = -EINVAL;
12669 goto out;
12670 }
12671
12672 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
12673 break;
12674 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
12675 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
12676 break;
12677 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
12678 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
12679 break;
12680 default:
12681 ret = -EINVAL;
12682 goto out;
12683 }
12684 }
12685
12686 out:
12687 /* Reset all restrictions if an error happened */
12688 if (ret != 0)
12689 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
12690 else
12691 ctx->restrictions.registered = true;
12692
12693 kfree(res);
12694 return ret;
12695 }
12696
12697 static int io_register_enable_rings(struct io_ring_ctx *ctx)
12698 {
12699 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
12700 return -EBADFD;
12701
12702 if (ctx->restrictions.registered)
12703 ctx->restricted = 1;
12704
12705 ctx->flags &= ~IORING_SETUP_R_DISABLED;
12706 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
12707 wake_up(&ctx->sq_data->wait);
12708 return 0;
12709 }
12710
12711 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
12712 struct io_uring_rsrc_update2 *up,
12713 unsigned nr_args)
12714 {
12715 __u32 tmp;
12716 int err;
12717
12718 if (check_add_overflow(up->offset, nr_args, &tmp))
12719 return -EOVERFLOW;
12720 err = io_rsrc_node_switch_start(ctx);
12721 if (err)
12722 return err;
12723
12724 switch (type) {
12725 case IORING_RSRC_FILE:
12726 return __io_sqe_files_update(ctx, up, nr_args);
12727 case IORING_RSRC_BUFFER:
12728 return __io_sqe_buffers_update(ctx, up, nr_args);
12729 }
12730 return -EINVAL;
12731 }
12732
12733 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
12734 unsigned nr_args)
12735 {
12736 struct io_uring_rsrc_update2 up;
12737
12738 if (!nr_args)
12739 return -EINVAL;
12740 memset(&up, 0, sizeof(up));
12741 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
12742 return -EFAULT;
12743 if (up.resv || up.resv2)
12744 return -EINVAL;
12745 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
12746 }
12747
12748 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
12749 unsigned size, unsigned type)
12750 {
12751 struct io_uring_rsrc_update2 up;
12752
12753 if (size != sizeof(up))
12754 return -EINVAL;
12755 if (copy_from_user(&up, arg, sizeof(up)))
12756 return -EFAULT;
12757 if (!up.nr || up.resv || up.resv2)
12758 return -EINVAL;
12759 return __io_register_rsrc_update(ctx, type, &up, up.nr);
12760 }
12761
12762 static __cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
12763 unsigned int size, unsigned int type)
12764 {
12765 struct io_uring_rsrc_register rr;
12766
12767 /* keep it extendible */
12768 if (size != sizeof(rr))
12769 return -EINVAL;
12770
12771 memset(&rr, 0, sizeof(rr));
12772 if (copy_from_user(&rr, arg, size))
12773 return -EFAULT;
12774 if (!rr.nr || rr.resv2)
12775 return -EINVAL;
12776 if (rr.flags & ~IORING_RSRC_REGISTER_SPARSE)
12777 return -EINVAL;
12778
12779 switch (type) {
12780 case IORING_RSRC_FILE:
12781 if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
12782 break;
12783 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
12784 rr.nr, u64_to_user_ptr(rr.tags));
12785 case IORING_RSRC_BUFFER:
12786 if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
12787 break;
12788 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
12789 rr.nr, u64_to_user_ptr(rr.tags));
12790 }
12791 return -EINVAL;
12792 }
12793
12794 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
12795 void __user *arg, unsigned len)
12796 {
12797 struct io_uring_task *tctx = current->io_uring;
12798 cpumask_var_t new_mask;
12799 int ret;
12800
12801 if (!tctx || !tctx->io_wq)
12802 return -EINVAL;
12803
12804 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
12805 return -ENOMEM;
12806
12807 cpumask_clear(new_mask);
12808 if (len > cpumask_size())
12809 len = cpumask_size();
12810
12811 if (in_compat_syscall()) {
12812 ret = compat_get_bitmap(cpumask_bits(new_mask),
12813 (const compat_ulong_t __user *)arg,
12814 len * 8 /* CHAR_BIT */);
12815 } else {
12816 ret = copy_from_user(new_mask, arg, len);
12817 }
12818
12819 if (ret) {
12820 free_cpumask_var(new_mask);
12821 return -EFAULT;
12822 }
12823
12824 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
12825 free_cpumask_var(new_mask);
12826 return ret;
12827 }
12828
12829 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
12830 {
12831 struct io_uring_task *tctx = current->io_uring;
12832
12833 if (!tctx || !tctx->io_wq)
12834 return -EINVAL;
12835
12836 return io_wq_cpu_affinity(tctx->io_wq, NULL);
12837 }
12838
12839 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
12840 void __user *arg)
12841 __must_hold(&ctx->uring_lock)
12842 {
12843 struct io_tctx_node *node;
12844 struct io_uring_task *tctx = NULL;
12845 struct io_sq_data *sqd = NULL;
12846 __u32 new_count[2];
12847 int i, ret;
12848
12849 if (copy_from_user(new_count, arg, sizeof(new_count)))
12850 return -EFAULT;
12851 for (i = 0; i < ARRAY_SIZE(new_count); i++)
12852 if (new_count[i] > INT_MAX)
12853 return -EINVAL;
12854
12855 if (ctx->flags & IORING_SETUP_SQPOLL) {
12856 sqd = ctx->sq_data;
12857 if (sqd) {
12858 /*
12859 * Observe the correct sqd->lock -> ctx->uring_lock
12860 * ordering. Fine to drop uring_lock here, we hold
12861 * a ref to the ctx.
12862 */
12863 refcount_inc(&sqd->refs);
12864 mutex_unlock(&ctx->uring_lock);
12865 mutex_lock(&sqd->lock);
12866 mutex_lock(&ctx->uring_lock);
12867 if (sqd->thread)
12868 tctx = sqd->thread->io_uring;
12869 }
12870 } else {
12871 tctx = current->io_uring;
12872 }
12873
12874 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
12875
12876 for (i = 0; i < ARRAY_SIZE(new_count); i++)
12877 if (new_count[i])
12878 ctx->iowq_limits[i] = new_count[i];
12879 ctx->iowq_limits_set = true;
12880
12881 if (tctx && tctx->io_wq) {
12882 ret = io_wq_max_workers(tctx->io_wq, new_count);
12883 if (ret)
12884 goto err;
12885 } else {
12886 memset(new_count, 0, sizeof(new_count));
12887 }
12888
12889 if (sqd) {
12890 mutex_unlock(&sqd->lock);
12891 io_put_sq_data(sqd);
12892 }
12893
12894 if (copy_to_user(arg, new_count, sizeof(new_count)))
12895 return -EFAULT;
12896
12897 /* that's it for SQPOLL, only the SQPOLL task creates requests */
12898 if (sqd)
12899 return 0;
12900
12901 /* now propagate the restriction to all registered users */
12902 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
12903 struct io_uring_task *tctx = node->task->io_uring;
12904
12905 if (WARN_ON_ONCE(!tctx->io_wq))
12906 continue;
12907
12908 for (i = 0; i < ARRAY_SIZE(new_count); i++)
12909 new_count[i] = ctx->iowq_limits[i];
12910 /* ignore errors, it always returns zero anyway */
12911 (void)io_wq_max_workers(tctx->io_wq, new_count);
12912 }
12913 return 0;
12914 err:
12915 if (sqd) {
12916 mutex_unlock(&sqd->lock);
12917 io_put_sq_data(sqd);
12918 }
12919 return ret;
12920 }
12921
12922 static int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
12923 {
12924 struct io_uring_buf_ring *br;
12925 struct io_uring_buf_reg reg;
12926 struct io_buffer_list *bl;
12927 struct page **pages;
12928 int nr_pages;
12929
12930 if (copy_from_user(&reg, arg, sizeof(reg)))
12931 return -EFAULT;
12932
12933 if (reg.pad || reg.resv[0] || reg.resv[1] || reg.resv[2])
12934 return -EINVAL;
12935 if (!reg.ring_addr)
12936 return -EFAULT;
12937 if (reg.ring_addr & ~PAGE_MASK)
12938 return -EINVAL;
12939 if (!is_power_of_2(reg.ring_entries))
12940 return -EINVAL;
12941
12942 /* cannot disambiguate full vs empty due to head/tail size */
12943 if (reg.ring_entries >= 65536)
12944 return -EINVAL;
12945
12946 if (unlikely(reg.bgid < BGID_ARRAY && !ctx->io_bl)) {
12947 int ret = io_init_bl_list(ctx);
12948 if (ret)
12949 return ret;
12950 }
12951
12952 bl = io_buffer_get_list(ctx, reg.bgid);
12953 if (bl) {
12954 /* if mapped buffer ring OR classic exists, don't allow */
12955 if (bl->buf_nr_pages || !list_empty(&bl->buf_list))
12956 return -EEXIST;
12957 } else {
12958 bl = kzalloc(sizeof(*bl), GFP_KERNEL);
12959 if (!bl)
12960 return -ENOMEM;
12961 }
12962
12963 pages = io_pin_pages(reg.ring_addr,
12964 struct_size(br, bufs, reg.ring_entries),
12965 &nr_pages);
12966 if (IS_ERR(pages)) {
12967 kfree(bl);
12968 return PTR_ERR(pages);
12969 }
12970
12971 br = page_address(pages[0]);
12972 bl->buf_pages = pages;
12973 bl->buf_nr_pages = nr_pages;
12974 bl->nr_entries = reg.ring_entries;
12975 bl->buf_ring = br;
12976 bl->mask = reg.ring_entries - 1;
12977 io_buffer_add_list(ctx, bl, reg.bgid);
12978 return 0;
12979 }
12980
12981 static int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
12982 {
12983 struct io_uring_buf_reg reg;
12984 struct io_buffer_list *bl;
12985
12986 if (copy_from_user(&reg, arg, sizeof(reg)))
12987 return -EFAULT;
12988 if (reg.pad || reg.resv[0] || reg.resv[1] || reg.resv[2])
12989 return -EINVAL;
12990
12991 bl = io_buffer_get_list(ctx, reg.bgid);
12992 if (!bl)
12993 return -ENOENT;
12994 if (!bl->buf_nr_pages)
12995 return -EINVAL;
12996
12997 __io_remove_buffers(ctx, bl, -1U);
12998 if (bl->bgid >= BGID_ARRAY) {
12999 xa_erase(&ctx->io_bl_xa, bl->bgid);
13000 kfree(bl);
13001 }
13002 return 0;
13003 }
13004
13005 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
13006 void __user *arg, unsigned nr_args)
13007 __releases(ctx->uring_lock)
13008 __acquires(ctx->uring_lock)
13009 {
13010 int ret;
13011
13012 /*
13013 * We're inside the ring mutex, if the ref is already dying, then
13014 * someone else killed the ctx or is already going through
13015 * io_uring_register().
13016 */
13017 if (percpu_ref_is_dying(&ctx->refs))
13018 return -ENXIO;
13019
13020 if (ctx->restricted) {
13021 if (opcode >= IORING_REGISTER_LAST)
13022 return -EINVAL;
13023 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
13024 if (!test_bit(opcode, ctx->restrictions.register_op))
13025 return -EACCES;
13026 }
13027
13028 switch (opcode) {
13029 case IORING_REGISTER_BUFFERS:
13030 ret = -EFAULT;
13031 if (!arg)
13032 break;
13033 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
13034 break;
13035 case IORING_UNREGISTER_BUFFERS:
13036 ret = -EINVAL;
13037 if (arg || nr_args)
13038 break;
13039 ret = io_sqe_buffers_unregister(ctx);
13040 break;
13041 case IORING_REGISTER_FILES:
13042 ret = -EFAULT;
13043 if (!arg)
13044 break;
13045 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
13046 break;
13047 case IORING_UNREGISTER_FILES:
13048 ret = -EINVAL;
13049 if (arg || nr_args)
13050 break;
13051 ret = io_sqe_files_unregister(ctx);
13052 break;
13053 case IORING_REGISTER_FILES_UPDATE:
13054 ret = io_register_files_update(ctx, arg, nr_args);
13055 break;
13056 case IORING_REGISTER_EVENTFD:
13057 ret = -EINVAL;
13058 if (nr_args != 1)
13059 break;
13060 ret = io_eventfd_register(ctx, arg, 0);
13061 break;
13062 case IORING_REGISTER_EVENTFD_ASYNC:
13063 ret = -EINVAL;
13064 if (nr_args != 1)
13065 break;
13066 ret = io_eventfd_register(ctx, arg, 1);
13067 break;
13068 case IORING_UNREGISTER_EVENTFD:
13069 ret = -EINVAL;
13070 if (arg || nr_args)
13071 break;
13072 ret = io_eventfd_unregister(ctx);
13073 break;
13074 case IORING_REGISTER_PROBE:
13075 ret = -EINVAL;
13076 if (!arg || nr_args > 256)
13077 break;
13078 ret = io_probe(ctx, arg, nr_args);
13079 break;
13080 case IORING_REGISTER_PERSONALITY:
13081 ret = -EINVAL;
13082 if (arg || nr_args)
13083 break;
13084 ret = io_register_personality(ctx);
13085 break;
13086 case IORING_UNREGISTER_PERSONALITY:
13087 ret = -EINVAL;
13088 if (arg)
13089 break;
13090 ret = io_unregister_personality(ctx, nr_args);
13091 break;
13092 case IORING_REGISTER_ENABLE_RINGS:
13093 ret = -EINVAL;
13094 if (arg || nr_args)
13095 break;
13096 ret = io_register_enable_rings(ctx);
13097 break;
13098 case IORING_REGISTER_RESTRICTIONS:
13099 ret = io_register_restrictions(ctx, arg, nr_args);
13100 break;
13101 case IORING_REGISTER_FILES2:
13102 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
13103 break;
13104 case IORING_REGISTER_FILES_UPDATE2:
13105 ret = io_register_rsrc_update(ctx, arg, nr_args,
13106 IORING_RSRC_FILE);
13107 break;
13108 case IORING_REGISTER_BUFFERS2:
13109 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
13110 break;
13111 case IORING_REGISTER_BUFFERS_UPDATE:
13112 ret = io_register_rsrc_update(ctx, arg, nr_args,
13113 IORING_RSRC_BUFFER);
13114 break;
13115 case IORING_REGISTER_IOWQ_AFF:
13116 ret = -EINVAL;
13117 if (!arg || !nr_args)
13118 break;
13119 ret = io_register_iowq_aff(ctx, arg, nr_args);
13120 break;
13121 case IORING_UNREGISTER_IOWQ_AFF:
13122 ret = -EINVAL;
13123 if (arg || nr_args)
13124 break;
13125 ret = io_unregister_iowq_aff(ctx);
13126 break;
13127 case IORING_REGISTER_IOWQ_MAX_WORKERS:
13128 ret = -EINVAL;
13129 if (!arg || nr_args != 2)
13130 break;
13131 ret = io_register_iowq_max_workers(ctx, arg);
13132 break;
13133 case IORING_REGISTER_RING_FDS:
13134 ret = io_ringfd_register(ctx, arg, nr_args);
13135 break;
13136 case IORING_UNREGISTER_RING_FDS:
13137 ret = io_ringfd_unregister(ctx, arg, nr_args);
13138 break;
13139 case IORING_REGISTER_PBUF_RING:
13140 ret = -EINVAL;
13141 if (!arg || nr_args != 1)
13142 break;
13143 ret = io_register_pbuf_ring(ctx, arg);
13144 break;
13145 case IORING_UNREGISTER_PBUF_RING:
13146 ret = -EINVAL;
13147 if (!arg || nr_args != 1)
13148 break;
13149 ret = io_unregister_pbuf_ring(ctx, arg);
13150 break;
13151 default:
13152 ret = -EINVAL;
13153 break;
13154 }
13155
13156 return ret;
13157 }
13158
13159 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
13160 void __user *, arg, unsigned int, nr_args)
13161 {
13162 struct io_ring_ctx *ctx;
13163 long ret = -EBADF;
13164 struct fd f;
13165
13166 f = fdget(fd);
13167 if (!f.file)
13168 return -EBADF;
13169
13170 ret = -EOPNOTSUPP;
13171 if (f.file->f_op != &io_uring_fops)
13172 goto out_fput;
13173
13174 ctx = f.file->private_data;
13175
13176 io_run_task_work();
13177
13178 mutex_lock(&ctx->uring_lock);
13179 ret = __io_uring_register(ctx, opcode, arg, nr_args);
13180 mutex_unlock(&ctx->uring_lock);
13181 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
13182 out_fput:
13183 fdput(f);
13184 return ret;
13185 }
13186
13187 static int __init io_uring_init(void)
13188 {
13189 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
13190 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
13191 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
13192 } while (0)
13193
13194 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
13195 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
13196 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
13197 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
13198 BUILD_BUG_SQE_ELEM(1, __u8, flags);
13199 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
13200 BUILD_BUG_SQE_ELEM(4, __s32, fd);
13201 BUILD_BUG_SQE_ELEM(8, __u64, off);
13202 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
13203 BUILD_BUG_SQE_ELEM(16, __u64, addr);
13204 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
13205 BUILD_BUG_SQE_ELEM(24, __u32, len);
13206 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
13207 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
13208 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
13209 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
13210 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
13211 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
13212 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
13213 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
13214 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
13215 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
13216 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
13217 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
13218 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
13219 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
13220 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
13221 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
13222 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
13223 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
13224 BUILD_BUG_SQE_ELEM(42, __u16, personality);
13225 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
13226 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
13227 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
13228
13229 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
13230 sizeof(struct io_uring_rsrc_update));
13231 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
13232 sizeof(struct io_uring_rsrc_update2));
13233
13234 /* ->buf_index is u16 */
13235 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
13236 BUILD_BUG_ON(BGID_ARRAY * sizeof(struct io_buffer_list) > PAGE_SIZE);
13237 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
13238 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
13239 offsetof(struct io_uring_buf_ring, tail));
13240
13241 /* should fit into one byte */
13242 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
13243 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
13244 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
13245
13246 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
13247 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
13248
13249 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
13250
13251 BUILD_BUG_ON(sizeof(struct io_uring_cmd) > 64);
13252
13253 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
13254 SLAB_ACCOUNT);
13255 return 0;
13256 };
13257 __initcall(io_uring_init);