]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/io_uring.c
Merge tag 'drm/tegra/for-5.1-rc5' of git://anongit.freedesktop.org/tegra/linux into...
[thirdparty/kernel/stable.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side. When the application reads the CQ ring
8 * tail, it must use an appropriate smp_rmb() to order with the smp_wmb()
9 * the kernel uses after writing the tail. Failure to do so could cause a
10 * delay in when the application notices that completion events available.
11 * This isn't a fatal condition. Likewise, the application must use an
12 * appropriate smp_wmb() both before writing the SQ tail, and after writing
13 * the SQ tail. The first one orders the sqe writes with the tail write, and
14 * the latter is paired with the smp_rmb() the kernel will issue before
15 * reading the SQ tail on submission.
16 *
17 * Also see the examples in the liburing library:
18 *
19 * git://git.kernel.dk/liburing
20 *
21 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
22 * from data shared between the kernel and application. This is done both
23 * for ordering purposes, but also to ensure that once a value is loaded from
24 * data that the application could potentially modify, it remains stable.
25 *
26 * Copyright (C) 2018-2019 Jens Axboe
27 * Copyright (c) 2018-2019 Christoph Hellwig
28 */
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/errno.h>
32 #include <linux/syscalls.h>
33 #include <linux/compat.h>
34 #include <linux/refcount.h>
35 #include <linux/uio.h>
36
37 #include <linux/sched/signal.h>
38 #include <linux/fs.h>
39 #include <linux/file.h>
40 #include <linux/fdtable.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_context.h>
44 #include <linux/percpu.h>
45 #include <linux/slab.h>
46 #include <linux/workqueue.h>
47 #include <linux/kthread.h>
48 #include <linux/blkdev.h>
49 #include <linux/bvec.h>
50 #include <linux/net.h>
51 #include <net/sock.h>
52 #include <net/af_unix.h>
53 #include <net/scm.h>
54 #include <linux/anon_inodes.h>
55 #include <linux/sched/mm.h>
56 #include <linux/uaccess.h>
57 #include <linux/nospec.h>
58 #include <linux/sizes.h>
59 #include <linux/hugetlb.h>
60
61 #include <uapi/linux/io_uring.h>
62
63 #include "internal.h"
64
65 #define IORING_MAX_ENTRIES 4096
66 #define IORING_MAX_FIXED_FILES 1024
67
68 struct io_uring {
69 u32 head ____cacheline_aligned_in_smp;
70 u32 tail ____cacheline_aligned_in_smp;
71 };
72
73 struct io_sq_ring {
74 struct io_uring r;
75 u32 ring_mask;
76 u32 ring_entries;
77 u32 dropped;
78 u32 flags;
79 u32 array[];
80 };
81
82 struct io_cq_ring {
83 struct io_uring r;
84 u32 ring_mask;
85 u32 ring_entries;
86 u32 overflow;
87 struct io_uring_cqe cqes[];
88 };
89
90 struct io_mapped_ubuf {
91 u64 ubuf;
92 size_t len;
93 struct bio_vec *bvec;
94 unsigned int nr_bvecs;
95 };
96
97 struct async_list {
98 spinlock_t lock;
99 atomic_t cnt;
100 struct list_head list;
101
102 struct file *file;
103 off_t io_end;
104 size_t io_pages;
105 };
106
107 struct io_ring_ctx {
108 struct {
109 struct percpu_ref refs;
110 } ____cacheline_aligned_in_smp;
111
112 struct {
113 unsigned int flags;
114 bool compat;
115 bool account_mem;
116
117 /* SQ ring */
118 struct io_sq_ring *sq_ring;
119 unsigned cached_sq_head;
120 unsigned sq_entries;
121 unsigned sq_mask;
122 unsigned sq_thread_idle;
123 struct io_uring_sqe *sq_sqes;
124 } ____cacheline_aligned_in_smp;
125
126 /* IO offload */
127 struct workqueue_struct *sqo_wq;
128 struct task_struct *sqo_thread; /* if using sq thread polling */
129 struct mm_struct *sqo_mm;
130 wait_queue_head_t sqo_wait;
131 unsigned sqo_stop;
132
133 struct {
134 /* CQ ring */
135 struct io_cq_ring *cq_ring;
136 unsigned cached_cq_tail;
137 unsigned cq_entries;
138 unsigned cq_mask;
139 struct wait_queue_head cq_wait;
140 struct fasync_struct *cq_fasync;
141 } ____cacheline_aligned_in_smp;
142
143 /*
144 * If used, fixed file set. Writers must ensure that ->refs is dead,
145 * readers must ensure that ->refs is alive as long as the file* is
146 * used. Only updated through io_uring_register(2).
147 */
148 struct file **user_files;
149 unsigned nr_user_files;
150
151 /* if used, fixed mapped user buffers */
152 unsigned nr_user_bufs;
153 struct io_mapped_ubuf *user_bufs;
154
155 struct user_struct *user;
156
157 struct completion ctx_done;
158
159 struct {
160 struct mutex uring_lock;
161 wait_queue_head_t wait;
162 } ____cacheline_aligned_in_smp;
163
164 struct {
165 spinlock_t completion_lock;
166 bool poll_multi_file;
167 /*
168 * ->poll_list is protected by the ctx->uring_lock for
169 * io_uring instances that don't use IORING_SETUP_SQPOLL.
170 * For SQPOLL, only the single threaded io_sq_thread() will
171 * manipulate the list, hence no extra locking is needed there.
172 */
173 struct list_head poll_list;
174 struct list_head cancel_list;
175 } ____cacheline_aligned_in_smp;
176
177 struct async_list pending_async[2];
178
179 #if defined(CONFIG_UNIX)
180 struct socket *ring_sock;
181 #endif
182 };
183
184 struct sqe_submit {
185 const struct io_uring_sqe *sqe;
186 unsigned short index;
187 bool has_user;
188 bool needs_lock;
189 bool needs_fixed_file;
190 };
191
192 /*
193 * First field must be the file pointer in all the
194 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
195 */
196 struct io_poll_iocb {
197 struct file *file;
198 struct wait_queue_head *head;
199 __poll_t events;
200 bool done;
201 bool canceled;
202 struct wait_queue_entry wait;
203 };
204
205 /*
206 * NOTE! Each of the iocb union members has the file pointer
207 * as the first entry in their struct definition. So you can
208 * access the file pointer through any of the sub-structs,
209 * or directly as just 'ki_filp' in this struct.
210 */
211 struct io_kiocb {
212 union {
213 struct file *file;
214 struct kiocb rw;
215 struct io_poll_iocb poll;
216 };
217
218 struct sqe_submit submit;
219
220 struct io_ring_ctx *ctx;
221 struct list_head list;
222 unsigned int flags;
223 refcount_t refs;
224 #define REQ_F_FORCE_NONBLOCK 1 /* inline submission attempt */
225 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
226 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
227 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
228 #define REQ_F_PREPPED 16 /* prep already done */
229 u64 user_data;
230 u64 error;
231
232 struct work_struct work;
233 };
234
235 #define IO_PLUG_THRESHOLD 2
236 #define IO_IOPOLL_BATCH 8
237
238 struct io_submit_state {
239 struct blk_plug plug;
240
241 /*
242 * io_kiocb alloc cache
243 */
244 void *reqs[IO_IOPOLL_BATCH];
245 unsigned int free_reqs;
246 unsigned int cur_req;
247
248 /*
249 * File reference cache
250 */
251 struct file *file;
252 unsigned int fd;
253 unsigned int has_refs;
254 unsigned int used_refs;
255 unsigned int ios_left;
256 };
257
258 static struct kmem_cache *req_cachep;
259
260 static const struct file_operations io_uring_fops;
261
262 struct sock *io_uring_get_socket(struct file *file)
263 {
264 #if defined(CONFIG_UNIX)
265 if (file->f_op == &io_uring_fops) {
266 struct io_ring_ctx *ctx = file->private_data;
267
268 return ctx->ring_sock->sk;
269 }
270 #endif
271 return NULL;
272 }
273 EXPORT_SYMBOL(io_uring_get_socket);
274
275 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
276 {
277 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
278
279 complete(&ctx->ctx_done);
280 }
281
282 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
283 {
284 struct io_ring_ctx *ctx;
285 int i;
286
287 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
288 if (!ctx)
289 return NULL;
290
291 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
292 kfree(ctx);
293 return NULL;
294 }
295
296 ctx->flags = p->flags;
297 init_waitqueue_head(&ctx->cq_wait);
298 init_completion(&ctx->ctx_done);
299 mutex_init(&ctx->uring_lock);
300 init_waitqueue_head(&ctx->wait);
301 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
302 spin_lock_init(&ctx->pending_async[i].lock);
303 INIT_LIST_HEAD(&ctx->pending_async[i].list);
304 atomic_set(&ctx->pending_async[i].cnt, 0);
305 }
306 spin_lock_init(&ctx->completion_lock);
307 INIT_LIST_HEAD(&ctx->poll_list);
308 INIT_LIST_HEAD(&ctx->cancel_list);
309 return ctx;
310 }
311
312 static void io_commit_cqring(struct io_ring_ctx *ctx)
313 {
314 struct io_cq_ring *ring = ctx->cq_ring;
315
316 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
317 /* order cqe stores with ring update */
318 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
319
320 /*
321 * Write sider barrier of tail update, app has read side. See
322 * comment at the top of this file.
323 */
324 smp_wmb();
325
326 if (wq_has_sleeper(&ctx->cq_wait)) {
327 wake_up_interruptible(&ctx->cq_wait);
328 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
329 }
330 }
331 }
332
333 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
334 {
335 struct io_cq_ring *ring = ctx->cq_ring;
336 unsigned tail;
337
338 tail = ctx->cached_cq_tail;
339 /* See comment at the top of the file */
340 smp_rmb();
341 if (tail + 1 == READ_ONCE(ring->r.head))
342 return NULL;
343
344 ctx->cached_cq_tail++;
345 return &ring->cqes[tail & ctx->cq_mask];
346 }
347
348 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
349 long res, unsigned ev_flags)
350 {
351 struct io_uring_cqe *cqe;
352
353 /*
354 * If we can't get a cq entry, userspace overflowed the
355 * submission (by quite a lot). Increment the overflow count in
356 * the ring.
357 */
358 cqe = io_get_cqring(ctx);
359 if (cqe) {
360 WRITE_ONCE(cqe->user_data, ki_user_data);
361 WRITE_ONCE(cqe->res, res);
362 WRITE_ONCE(cqe->flags, ev_flags);
363 } else {
364 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
365
366 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
367 }
368 }
369
370 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
371 {
372 if (waitqueue_active(&ctx->wait))
373 wake_up(&ctx->wait);
374 if (waitqueue_active(&ctx->sqo_wait))
375 wake_up(&ctx->sqo_wait);
376 }
377
378 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
379 long res, unsigned ev_flags)
380 {
381 unsigned long flags;
382
383 spin_lock_irqsave(&ctx->completion_lock, flags);
384 io_cqring_fill_event(ctx, user_data, res, ev_flags);
385 io_commit_cqring(ctx);
386 spin_unlock_irqrestore(&ctx->completion_lock, flags);
387
388 io_cqring_ev_posted(ctx);
389 }
390
391 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
392 {
393 percpu_ref_put_many(&ctx->refs, refs);
394
395 if (waitqueue_active(&ctx->wait))
396 wake_up(&ctx->wait);
397 }
398
399 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
400 struct io_submit_state *state)
401 {
402 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
403 struct io_kiocb *req;
404
405 if (!percpu_ref_tryget(&ctx->refs))
406 return NULL;
407
408 if (!state) {
409 req = kmem_cache_alloc(req_cachep, gfp);
410 if (unlikely(!req))
411 goto out;
412 } else if (!state->free_reqs) {
413 size_t sz;
414 int ret;
415
416 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
417 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
418
419 /*
420 * Bulk alloc is all-or-nothing. If we fail to get a batch,
421 * retry single alloc to be on the safe side.
422 */
423 if (unlikely(ret <= 0)) {
424 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
425 if (!state->reqs[0])
426 goto out;
427 ret = 1;
428 }
429 state->free_reqs = ret - 1;
430 state->cur_req = 1;
431 req = state->reqs[0];
432 } else {
433 req = state->reqs[state->cur_req];
434 state->free_reqs--;
435 state->cur_req++;
436 }
437
438 req->ctx = ctx;
439 req->flags = 0;
440 /* one is dropped after submission, the other at completion */
441 refcount_set(&req->refs, 2);
442 return req;
443 out:
444 io_ring_drop_ctx_refs(ctx, 1);
445 return NULL;
446 }
447
448 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
449 {
450 if (*nr) {
451 kmem_cache_free_bulk(req_cachep, *nr, reqs);
452 io_ring_drop_ctx_refs(ctx, *nr);
453 *nr = 0;
454 }
455 }
456
457 static void io_free_req(struct io_kiocb *req)
458 {
459 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
460 fput(req->file);
461 io_ring_drop_ctx_refs(req->ctx, 1);
462 kmem_cache_free(req_cachep, req);
463 }
464
465 static void io_put_req(struct io_kiocb *req)
466 {
467 if (refcount_dec_and_test(&req->refs))
468 io_free_req(req);
469 }
470
471 /*
472 * Find and free completed poll iocbs
473 */
474 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
475 struct list_head *done)
476 {
477 void *reqs[IO_IOPOLL_BATCH];
478 struct io_kiocb *req;
479 int to_free;
480
481 to_free = 0;
482 while (!list_empty(done)) {
483 req = list_first_entry(done, struct io_kiocb, list);
484 list_del(&req->list);
485
486 io_cqring_fill_event(ctx, req->user_data, req->error, 0);
487 (*nr_events)++;
488
489 if (refcount_dec_and_test(&req->refs)) {
490 /* If we're not using fixed files, we have to pair the
491 * completion part with the file put. Use regular
492 * completions for those, only batch free for fixed
493 * file.
494 */
495 if (req->flags & REQ_F_FIXED_FILE) {
496 reqs[to_free++] = req;
497 if (to_free == ARRAY_SIZE(reqs))
498 io_free_req_many(ctx, reqs, &to_free);
499 } else {
500 io_free_req(req);
501 }
502 }
503 }
504
505 io_commit_cqring(ctx);
506 io_free_req_many(ctx, reqs, &to_free);
507 }
508
509 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
510 long min)
511 {
512 struct io_kiocb *req, *tmp;
513 LIST_HEAD(done);
514 bool spin;
515 int ret;
516
517 /*
518 * Only spin for completions if we don't have multiple devices hanging
519 * off our complete list, and we're under the requested amount.
520 */
521 spin = !ctx->poll_multi_file && *nr_events < min;
522
523 ret = 0;
524 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
525 struct kiocb *kiocb = &req->rw;
526
527 /*
528 * Move completed entries to our local list. If we find a
529 * request that requires polling, break out and complete
530 * the done list first, if we have entries there.
531 */
532 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
533 list_move_tail(&req->list, &done);
534 continue;
535 }
536 if (!list_empty(&done))
537 break;
538
539 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
540 if (ret < 0)
541 break;
542
543 if (ret && spin)
544 spin = false;
545 ret = 0;
546 }
547
548 if (!list_empty(&done))
549 io_iopoll_complete(ctx, nr_events, &done);
550
551 return ret;
552 }
553
554 /*
555 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
556 * non-spinning poll check - we'll still enter the driver poll loop, but only
557 * as a non-spinning completion check.
558 */
559 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
560 long min)
561 {
562 while (!list_empty(&ctx->poll_list)) {
563 int ret;
564
565 ret = io_do_iopoll(ctx, nr_events, min);
566 if (ret < 0)
567 return ret;
568 if (!min || *nr_events >= min)
569 return 0;
570 }
571
572 return 1;
573 }
574
575 /*
576 * We can't just wait for polled events to come to us, we have to actively
577 * find and complete them.
578 */
579 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
580 {
581 if (!(ctx->flags & IORING_SETUP_IOPOLL))
582 return;
583
584 mutex_lock(&ctx->uring_lock);
585 while (!list_empty(&ctx->poll_list)) {
586 unsigned int nr_events = 0;
587
588 io_iopoll_getevents(ctx, &nr_events, 1);
589 }
590 mutex_unlock(&ctx->uring_lock);
591 }
592
593 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
594 long min)
595 {
596 int ret = 0;
597
598 do {
599 int tmin = 0;
600
601 if (*nr_events < min)
602 tmin = min - *nr_events;
603
604 ret = io_iopoll_getevents(ctx, nr_events, tmin);
605 if (ret <= 0)
606 break;
607 ret = 0;
608 } while (min && !*nr_events && !need_resched());
609
610 return ret;
611 }
612
613 static void kiocb_end_write(struct kiocb *kiocb)
614 {
615 if (kiocb->ki_flags & IOCB_WRITE) {
616 struct inode *inode = file_inode(kiocb->ki_filp);
617
618 /*
619 * Tell lockdep we inherited freeze protection from submission
620 * thread.
621 */
622 if (S_ISREG(inode->i_mode))
623 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
624 file_end_write(kiocb->ki_filp);
625 }
626 }
627
628 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
629 {
630 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
631
632 kiocb_end_write(kiocb);
633
634 io_cqring_add_event(req->ctx, req->user_data, res, 0);
635 io_put_req(req);
636 }
637
638 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
639 {
640 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
641
642 kiocb_end_write(kiocb);
643
644 req->error = res;
645 if (res != -EAGAIN)
646 req->flags |= REQ_F_IOPOLL_COMPLETED;
647 }
648
649 /*
650 * After the iocb has been issued, it's safe to be found on the poll list.
651 * Adding the kiocb to the list AFTER submission ensures that we don't
652 * find it from a io_iopoll_getevents() thread before the issuer is done
653 * accessing the kiocb cookie.
654 */
655 static void io_iopoll_req_issued(struct io_kiocb *req)
656 {
657 struct io_ring_ctx *ctx = req->ctx;
658
659 /*
660 * Track whether we have multiple files in our lists. This will impact
661 * how we do polling eventually, not spinning if we're on potentially
662 * different devices.
663 */
664 if (list_empty(&ctx->poll_list)) {
665 ctx->poll_multi_file = false;
666 } else if (!ctx->poll_multi_file) {
667 struct io_kiocb *list_req;
668
669 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
670 list);
671 if (list_req->rw.ki_filp != req->rw.ki_filp)
672 ctx->poll_multi_file = true;
673 }
674
675 /*
676 * For fast devices, IO may have already completed. If it has, add
677 * it to the front so we find it first.
678 */
679 if (req->flags & REQ_F_IOPOLL_COMPLETED)
680 list_add(&req->list, &ctx->poll_list);
681 else
682 list_add_tail(&req->list, &ctx->poll_list);
683 }
684
685 static void io_file_put(struct io_submit_state *state, struct file *file)
686 {
687 if (!state) {
688 fput(file);
689 } else if (state->file) {
690 int diff = state->has_refs - state->used_refs;
691
692 if (diff)
693 fput_many(state->file, diff);
694 state->file = NULL;
695 }
696 }
697
698 /*
699 * Get as many references to a file as we have IOs left in this submission,
700 * assuming most submissions are for one file, or at least that each file
701 * has more than one submission.
702 */
703 static struct file *io_file_get(struct io_submit_state *state, int fd)
704 {
705 if (!state)
706 return fget(fd);
707
708 if (state->file) {
709 if (state->fd == fd) {
710 state->used_refs++;
711 state->ios_left--;
712 return state->file;
713 }
714 io_file_put(state, NULL);
715 }
716 state->file = fget_many(fd, state->ios_left);
717 if (!state->file)
718 return NULL;
719
720 state->fd = fd;
721 state->has_refs = state->ios_left;
722 state->used_refs = 1;
723 state->ios_left--;
724 return state->file;
725 }
726
727 /*
728 * If we tracked the file through the SCM inflight mechanism, we could support
729 * any file. For now, just ensure that anything potentially problematic is done
730 * inline.
731 */
732 static bool io_file_supports_async(struct file *file)
733 {
734 umode_t mode = file_inode(file)->i_mode;
735
736 if (S_ISBLK(mode) || S_ISCHR(mode))
737 return true;
738 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
739 return true;
740
741 return false;
742 }
743
744 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
745 bool force_nonblock, struct io_submit_state *state)
746 {
747 const struct io_uring_sqe *sqe = s->sqe;
748 struct io_ring_ctx *ctx = req->ctx;
749 struct kiocb *kiocb = &req->rw;
750 unsigned ioprio;
751 int ret;
752
753 if (!req->file)
754 return -EBADF;
755 /* For -EAGAIN retry, everything is already prepped */
756 if (req->flags & REQ_F_PREPPED)
757 return 0;
758
759 if (force_nonblock && !io_file_supports_async(req->file))
760 force_nonblock = false;
761
762 kiocb->ki_pos = READ_ONCE(sqe->off);
763 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
764 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
765
766 ioprio = READ_ONCE(sqe->ioprio);
767 if (ioprio) {
768 ret = ioprio_check_cap(ioprio);
769 if (ret)
770 return ret;
771
772 kiocb->ki_ioprio = ioprio;
773 } else
774 kiocb->ki_ioprio = get_current_ioprio();
775
776 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
777 if (unlikely(ret))
778 return ret;
779 if (force_nonblock) {
780 kiocb->ki_flags |= IOCB_NOWAIT;
781 req->flags |= REQ_F_FORCE_NONBLOCK;
782 }
783 if (ctx->flags & IORING_SETUP_IOPOLL) {
784 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
785 !kiocb->ki_filp->f_op->iopoll)
786 return -EOPNOTSUPP;
787
788 req->error = 0;
789 kiocb->ki_flags |= IOCB_HIPRI;
790 kiocb->ki_complete = io_complete_rw_iopoll;
791 } else {
792 if (kiocb->ki_flags & IOCB_HIPRI)
793 return -EINVAL;
794 kiocb->ki_complete = io_complete_rw;
795 }
796 req->flags |= REQ_F_PREPPED;
797 return 0;
798 }
799
800 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
801 {
802 switch (ret) {
803 case -EIOCBQUEUED:
804 break;
805 case -ERESTARTSYS:
806 case -ERESTARTNOINTR:
807 case -ERESTARTNOHAND:
808 case -ERESTART_RESTARTBLOCK:
809 /*
810 * We can't just restart the syscall, since previously
811 * submitted sqes may already be in progress. Just fail this
812 * IO with EINTR.
813 */
814 ret = -EINTR;
815 /* fall through */
816 default:
817 kiocb->ki_complete(kiocb, ret, 0);
818 }
819 }
820
821 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
822 const struct io_uring_sqe *sqe,
823 struct iov_iter *iter)
824 {
825 size_t len = READ_ONCE(sqe->len);
826 struct io_mapped_ubuf *imu;
827 unsigned index, buf_index;
828 size_t offset;
829 u64 buf_addr;
830
831 /* attempt to use fixed buffers without having provided iovecs */
832 if (unlikely(!ctx->user_bufs))
833 return -EFAULT;
834
835 buf_index = READ_ONCE(sqe->buf_index);
836 if (unlikely(buf_index >= ctx->nr_user_bufs))
837 return -EFAULT;
838
839 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
840 imu = &ctx->user_bufs[index];
841 buf_addr = READ_ONCE(sqe->addr);
842
843 /* overflow */
844 if (buf_addr + len < buf_addr)
845 return -EFAULT;
846 /* not inside the mapped region */
847 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
848 return -EFAULT;
849
850 /*
851 * May not be a start of buffer, set size appropriately
852 * and advance us to the beginning.
853 */
854 offset = buf_addr - imu->ubuf;
855 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
856 if (offset)
857 iov_iter_advance(iter, offset);
858
859 /* don't drop a reference to these pages */
860 iter->type |= ITER_BVEC_FLAG_NO_REF;
861 return 0;
862 }
863
864 static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
865 const struct sqe_submit *s, struct iovec **iovec,
866 struct iov_iter *iter)
867 {
868 const struct io_uring_sqe *sqe = s->sqe;
869 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
870 size_t sqe_len = READ_ONCE(sqe->len);
871 u8 opcode;
872
873 /*
874 * We're reading ->opcode for the second time, but the first read
875 * doesn't care whether it's _FIXED or not, so it doesn't matter
876 * whether ->opcode changes concurrently. The first read does care
877 * about whether it is a READ or a WRITE, so we don't trust this read
878 * for that purpose and instead let the caller pass in the read/write
879 * flag.
880 */
881 opcode = READ_ONCE(sqe->opcode);
882 if (opcode == IORING_OP_READ_FIXED ||
883 opcode == IORING_OP_WRITE_FIXED) {
884 int ret = io_import_fixed(ctx, rw, sqe, iter);
885 *iovec = NULL;
886 return ret;
887 }
888
889 if (!s->has_user)
890 return -EFAULT;
891
892 #ifdef CONFIG_COMPAT
893 if (ctx->compat)
894 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
895 iovec, iter);
896 #endif
897
898 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
899 }
900
901 /*
902 * Make a note of the last file/offset/direction we punted to async
903 * context. We'll use this information to see if we can piggy back a
904 * sequential request onto the previous one, if it's still hasn't been
905 * completed by the async worker.
906 */
907 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
908 {
909 struct async_list *async_list = &req->ctx->pending_async[rw];
910 struct kiocb *kiocb = &req->rw;
911 struct file *filp = kiocb->ki_filp;
912 off_t io_end = kiocb->ki_pos + len;
913
914 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
915 unsigned long max_pages;
916
917 /* Use 8x RA size as a decent limiter for both reads/writes */
918 max_pages = filp->f_ra.ra_pages;
919 if (!max_pages)
920 max_pages = VM_READAHEAD_PAGES;
921 max_pages *= 8;
922
923 /* If max pages are exceeded, reset the state */
924 len >>= PAGE_SHIFT;
925 if (async_list->io_pages + len <= max_pages) {
926 req->flags |= REQ_F_SEQ_PREV;
927 async_list->io_pages += len;
928 } else {
929 io_end = 0;
930 async_list->io_pages = 0;
931 }
932 }
933
934 /* New file? Reset state. */
935 if (async_list->file != filp) {
936 async_list->io_pages = 0;
937 async_list->file = filp;
938 }
939 async_list->io_end = io_end;
940 }
941
942 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
943 bool force_nonblock, struct io_submit_state *state)
944 {
945 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
946 struct kiocb *kiocb = &req->rw;
947 struct iov_iter iter;
948 struct file *file;
949 size_t iov_count;
950 int ret;
951
952 ret = io_prep_rw(req, s, force_nonblock, state);
953 if (ret)
954 return ret;
955 file = kiocb->ki_filp;
956
957 if (unlikely(!(file->f_mode & FMODE_READ)))
958 return -EBADF;
959 if (unlikely(!file->f_op->read_iter))
960 return -EINVAL;
961
962 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
963 if (ret)
964 return ret;
965
966 iov_count = iov_iter_count(&iter);
967 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
968 if (!ret) {
969 ssize_t ret2;
970
971 /* Catch -EAGAIN return for forced non-blocking submission */
972 ret2 = call_read_iter(file, kiocb, &iter);
973 if (!force_nonblock || ret2 != -EAGAIN) {
974 io_rw_done(kiocb, ret2);
975 } else {
976 /*
977 * If ->needs_lock is true, we're already in async
978 * context.
979 */
980 if (!s->needs_lock)
981 io_async_list_note(READ, req, iov_count);
982 ret = -EAGAIN;
983 }
984 }
985 kfree(iovec);
986 return ret;
987 }
988
989 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
990 bool force_nonblock, struct io_submit_state *state)
991 {
992 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
993 struct kiocb *kiocb = &req->rw;
994 struct iov_iter iter;
995 struct file *file;
996 size_t iov_count;
997 int ret;
998
999 ret = io_prep_rw(req, s, force_nonblock, state);
1000 if (ret)
1001 return ret;
1002
1003 file = kiocb->ki_filp;
1004 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1005 return -EBADF;
1006 if (unlikely(!file->f_op->write_iter))
1007 return -EINVAL;
1008
1009 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1010 if (ret)
1011 return ret;
1012
1013 iov_count = iov_iter_count(&iter);
1014
1015 ret = -EAGAIN;
1016 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1017 /* If ->needs_lock is true, we're already in async context. */
1018 if (!s->needs_lock)
1019 io_async_list_note(WRITE, req, iov_count);
1020 goto out_free;
1021 }
1022
1023 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1024 if (!ret) {
1025 ssize_t ret2;
1026
1027 /*
1028 * Open-code file_start_write here to grab freeze protection,
1029 * which will be released by another thread in
1030 * io_complete_rw(). Fool lockdep by telling it the lock got
1031 * released so that it doesn't complain about the held lock when
1032 * we return to userspace.
1033 */
1034 if (S_ISREG(file_inode(file)->i_mode)) {
1035 __sb_start_write(file_inode(file)->i_sb,
1036 SB_FREEZE_WRITE, true);
1037 __sb_writers_release(file_inode(file)->i_sb,
1038 SB_FREEZE_WRITE);
1039 }
1040 kiocb->ki_flags |= IOCB_WRITE;
1041
1042 ret2 = call_write_iter(file, kiocb, &iter);
1043 if (!force_nonblock || ret2 != -EAGAIN) {
1044 io_rw_done(kiocb, ret2);
1045 } else {
1046 /*
1047 * If ->needs_lock is true, we're already in async
1048 * context.
1049 */
1050 if (!s->needs_lock)
1051 io_async_list_note(WRITE, req, iov_count);
1052 ret = -EAGAIN;
1053 }
1054 }
1055 out_free:
1056 kfree(iovec);
1057 return ret;
1058 }
1059
1060 /*
1061 * IORING_OP_NOP just posts a completion event, nothing else.
1062 */
1063 static int io_nop(struct io_kiocb *req, u64 user_data)
1064 {
1065 struct io_ring_ctx *ctx = req->ctx;
1066 long err = 0;
1067
1068 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1069 return -EINVAL;
1070
1071 io_cqring_add_event(ctx, user_data, err, 0);
1072 io_put_req(req);
1073 return 0;
1074 }
1075
1076 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1077 {
1078 struct io_ring_ctx *ctx = req->ctx;
1079
1080 if (!req->file)
1081 return -EBADF;
1082 /* Prep already done (EAGAIN retry) */
1083 if (req->flags & REQ_F_PREPPED)
1084 return 0;
1085
1086 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1087 return -EINVAL;
1088 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1089 return -EINVAL;
1090
1091 req->flags |= REQ_F_PREPPED;
1092 return 0;
1093 }
1094
1095 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1096 bool force_nonblock)
1097 {
1098 loff_t sqe_off = READ_ONCE(sqe->off);
1099 loff_t sqe_len = READ_ONCE(sqe->len);
1100 loff_t end = sqe_off + sqe_len;
1101 unsigned fsync_flags;
1102 int ret;
1103
1104 fsync_flags = READ_ONCE(sqe->fsync_flags);
1105 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1106 return -EINVAL;
1107
1108 ret = io_prep_fsync(req, sqe);
1109 if (ret)
1110 return ret;
1111
1112 /* fsync always requires a blocking context */
1113 if (force_nonblock)
1114 return -EAGAIN;
1115
1116 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1117 end > 0 ? end : LLONG_MAX,
1118 fsync_flags & IORING_FSYNC_DATASYNC);
1119
1120 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1121 io_put_req(req);
1122 return 0;
1123 }
1124
1125 static void io_poll_remove_one(struct io_kiocb *req)
1126 {
1127 struct io_poll_iocb *poll = &req->poll;
1128
1129 spin_lock(&poll->head->lock);
1130 WRITE_ONCE(poll->canceled, true);
1131 if (!list_empty(&poll->wait.entry)) {
1132 list_del_init(&poll->wait.entry);
1133 queue_work(req->ctx->sqo_wq, &req->work);
1134 }
1135 spin_unlock(&poll->head->lock);
1136
1137 list_del_init(&req->list);
1138 }
1139
1140 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1141 {
1142 struct io_kiocb *req;
1143
1144 spin_lock_irq(&ctx->completion_lock);
1145 while (!list_empty(&ctx->cancel_list)) {
1146 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1147 io_poll_remove_one(req);
1148 }
1149 spin_unlock_irq(&ctx->completion_lock);
1150 }
1151
1152 /*
1153 * Find a running poll command that matches one specified in sqe->addr,
1154 * and remove it if found.
1155 */
1156 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1157 {
1158 struct io_ring_ctx *ctx = req->ctx;
1159 struct io_kiocb *poll_req, *next;
1160 int ret = -ENOENT;
1161
1162 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1163 return -EINVAL;
1164 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1165 sqe->poll_events)
1166 return -EINVAL;
1167
1168 spin_lock_irq(&ctx->completion_lock);
1169 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1170 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1171 io_poll_remove_one(poll_req);
1172 ret = 0;
1173 break;
1174 }
1175 }
1176 spin_unlock_irq(&ctx->completion_lock);
1177
1178 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1179 io_put_req(req);
1180 return 0;
1181 }
1182
1183 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1184 __poll_t mask)
1185 {
1186 req->poll.done = true;
1187 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask), 0);
1188 io_commit_cqring(ctx);
1189 }
1190
1191 static void io_poll_complete_work(struct work_struct *work)
1192 {
1193 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1194 struct io_poll_iocb *poll = &req->poll;
1195 struct poll_table_struct pt = { ._key = poll->events };
1196 struct io_ring_ctx *ctx = req->ctx;
1197 __poll_t mask = 0;
1198
1199 if (!READ_ONCE(poll->canceled))
1200 mask = vfs_poll(poll->file, &pt) & poll->events;
1201
1202 /*
1203 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1204 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1205 * synchronize with them. In the cancellation case the list_del_init
1206 * itself is not actually needed, but harmless so we keep it in to
1207 * avoid further branches in the fast path.
1208 */
1209 spin_lock_irq(&ctx->completion_lock);
1210 if (!mask && !READ_ONCE(poll->canceled)) {
1211 add_wait_queue(poll->head, &poll->wait);
1212 spin_unlock_irq(&ctx->completion_lock);
1213 return;
1214 }
1215 list_del_init(&req->list);
1216 io_poll_complete(ctx, req, mask);
1217 spin_unlock_irq(&ctx->completion_lock);
1218
1219 io_cqring_ev_posted(ctx);
1220 io_put_req(req);
1221 }
1222
1223 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1224 void *key)
1225 {
1226 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1227 wait);
1228 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1229 struct io_ring_ctx *ctx = req->ctx;
1230 __poll_t mask = key_to_poll(key);
1231 unsigned long flags;
1232
1233 /* for instances that support it check for an event match first: */
1234 if (mask && !(mask & poll->events))
1235 return 0;
1236
1237 list_del_init(&poll->wait.entry);
1238
1239 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1240 list_del(&req->list);
1241 io_poll_complete(ctx, req, mask);
1242 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1243
1244 io_cqring_ev_posted(ctx);
1245 io_put_req(req);
1246 } else {
1247 queue_work(ctx->sqo_wq, &req->work);
1248 }
1249
1250 return 1;
1251 }
1252
1253 struct io_poll_table {
1254 struct poll_table_struct pt;
1255 struct io_kiocb *req;
1256 int error;
1257 };
1258
1259 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1260 struct poll_table_struct *p)
1261 {
1262 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1263
1264 if (unlikely(pt->req->poll.head)) {
1265 pt->error = -EINVAL;
1266 return;
1267 }
1268
1269 pt->error = 0;
1270 pt->req->poll.head = head;
1271 add_wait_queue(head, &pt->req->poll.wait);
1272 }
1273
1274 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1275 {
1276 struct io_poll_iocb *poll = &req->poll;
1277 struct io_ring_ctx *ctx = req->ctx;
1278 struct io_poll_table ipt;
1279 bool cancel = false;
1280 __poll_t mask;
1281 u16 events;
1282
1283 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1284 return -EINVAL;
1285 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1286 return -EINVAL;
1287 if (!poll->file)
1288 return -EBADF;
1289
1290 INIT_WORK(&req->work, io_poll_complete_work);
1291 events = READ_ONCE(sqe->poll_events);
1292 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1293
1294 poll->head = NULL;
1295 poll->done = false;
1296 poll->canceled = false;
1297
1298 ipt.pt._qproc = io_poll_queue_proc;
1299 ipt.pt._key = poll->events;
1300 ipt.req = req;
1301 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1302
1303 /* initialized the list so that we can do list_empty checks */
1304 INIT_LIST_HEAD(&poll->wait.entry);
1305 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1306
1307 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1308
1309 spin_lock_irq(&ctx->completion_lock);
1310 if (likely(poll->head)) {
1311 spin_lock(&poll->head->lock);
1312 if (unlikely(list_empty(&poll->wait.entry))) {
1313 if (ipt.error)
1314 cancel = true;
1315 ipt.error = 0;
1316 mask = 0;
1317 }
1318 if (mask || ipt.error)
1319 list_del_init(&poll->wait.entry);
1320 else if (cancel)
1321 WRITE_ONCE(poll->canceled, true);
1322 else if (!poll->done) /* actually waiting for an event */
1323 list_add_tail(&req->list, &ctx->cancel_list);
1324 spin_unlock(&poll->head->lock);
1325 }
1326 if (mask) { /* no async, we'd stolen it */
1327 req->error = mangle_poll(mask);
1328 ipt.error = 0;
1329 io_poll_complete(ctx, req, mask);
1330 }
1331 spin_unlock_irq(&ctx->completion_lock);
1332
1333 if (mask) {
1334 io_cqring_ev_posted(ctx);
1335 io_put_req(req);
1336 }
1337 return ipt.error;
1338 }
1339
1340 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1341 const struct sqe_submit *s, bool force_nonblock,
1342 struct io_submit_state *state)
1343 {
1344 int ret, opcode;
1345
1346 if (unlikely(s->index >= ctx->sq_entries))
1347 return -EINVAL;
1348 req->user_data = READ_ONCE(s->sqe->user_data);
1349
1350 opcode = READ_ONCE(s->sqe->opcode);
1351 switch (opcode) {
1352 case IORING_OP_NOP:
1353 ret = io_nop(req, req->user_data);
1354 break;
1355 case IORING_OP_READV:
1356 if (unlikely(s->sqe->buf_index))
1357 return -EINVAL;
1358 ret = io_read(req, s, force_nonblock, state);
1359 break;
1360 case IORING_OP_WRITEV:
1361 if (unlikely(s->sqe->buf_index))
1362 return -EINVAL;
1363 ret = io_write(req, s, force_nonblock, state);
1364 break;
1365 case IORING_OP_READ_FIXED:
1366 ret = io_read(req, s, force_nonblock, state);
1367 break;
1368 case IORING_OP_WRITE_FIXED:
1369 ret = io_write(req, s, force_nonblock, state);
1370 break;
1371 case IORING_OP_FSYNC:
1372 ret = io_fsync(req, s->sqe, force_nonblock);
1373 break;
1374 case IORING_OP_POLL_ADD:
1375 ret = io_poll_add(req, s->sqe);
1376 break;
1377 case IORING_OP_POLL_REMOVE:
1378 ret = io_poll_remove(req, s->sqe);
1379 break;
1380 default:
1381 ret = -EINVAL;
1382 break;
1383 }
1384
1385 if (ret)
1386 return ret;
1387
1388 if (ctx->flags & IORING_SETUP_IOPOLL) {
1389 if (req->error == -EAGAIN)
1390 return -EAGAIN;
1391
1392 /* workqueue context doesn't hold uring_lock, grab it now */
1393 if (s->needs_lock)
1394 mutex_lock(&ctx->uring_lock);
1395 io_iopoll_req_issued(req);
1396 if (s->needs_lock)
1397 mutex_unlock(&ctx->uring_lock);
1398 }
1399
1400 return 0;
1401 }
1402
1403 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1404 const struct io_uring_sqe *sqe)
1405 {
1406 switch (sqe->opcode) {
1407 case IORING_OP_READV:
1408 case IORING_OP_READ_FIXED:
1409 return &ctx->pending_async[READ];
1410 case IORING_OP_WRITEV:
1411 case IORING_OP_WRITE_FIXED:
1412 return &ctx->pending_async[WRITE];
1413 default:
1414 return NULL;
1415 }
1416 }
1417
1418 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1419 {
1420 u8 opcode = READ_ONCE(sqe->opcode);
1421
1422 return !(opcode == IORING_OP_READ_FIXED ||
1423 opcode == IORING_OP_WRITE_FIXED);
1424 }
1425
1426 static void io_sq_wq_submit_work(struct work_struct *work)
1427 {
1428 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1429 struct io_ring_ctx *ctx = req->ctx;
1430 struct mm_struct *cur_mm = NULL;
1431 struct async_list *async_list;
1432 LIST_HEAD(req_list);
1433 mm_segment_t old_fs;
1434 int ret;
1435
1436 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1437 restart:
1438 do {
1439 struct sqe_submit *s = &req->submit;
1440 const struct io_uring_sqe *sqe = s->sqe;
1441
1442 /* Ensure we clear previously set forced non-block flag */
1443 req->flags &= ~REQ_F_FORCE_NONBLOCK;
1444 req->rw.ki_flags &= ~IOCB_NOWAIT;
1445
1446 ret = 0;
1447 if (io_sqe_needs_user(sqe) && !cur_mm) {
1448 if (!mmget_not_zero(ctx->sqo_mm)) {
1449 ret = -EFAULT;
1450 } else {
1451 cur_mm = ctx->sqo_mm;
1452 use_mm(cur_mm);
1453 old_fs = get_fs();
1454 set_fs(USER_DS);
1455 }
1456 }
1457
1458 if (!ret) {
1459 s->has_user = cur_mm != NULL;
1460 s->needs_lock = true;
1461 do {
1462 ret = __io_submit_sqe(ctx, req, s, false, NULL);
1463 /*
1464 * We can get EAGAIN for polled IO even though
1465 * we're forcing a sync submission from here,
1466 * since we can't wait for request slots on the
1467 * block side.
1468 */
1469 if (ret != -EAGAIN)
1470 break;
1471 cond_resched();
1472 } while (1);
1473
1474 /* drop submission reference */
1475 io_put_req(req);
1476 }
1477 if (ret) {
1478 io_cqring_add_event(ctx, sqe->user_data, ret, 0);
1479 io_put_req(req);
1480 }
1481
1482 /* async context always use a copy of the sqe */
1483 kfree(sqe);
1484
1485 if (!async_list)
1486 break;
1487 if (!list_empty(&req_list)) {
1488 req = list_first_entry(&req_list, struct io_kiocb,
1489 list);
1490 list_del(&req->list);
1491 continue;
1492 }
1493 if (list_empty(&async_list->list))
1494 break;
1495
1496 req = NULL;
1497 spin_lock(&async_list->lock);
1498 if (list_empty(&async_list->list)) {
1499 spin_unlock(&async_list->lock);
1500 break;
1501 }
1502 list_splice_init(&async_list->list, &req_list);
1503 spin_unlock(&async_list->lock);
1504
1505 req = list_first_entry(&req_list, struct io_kiocb, list);
1506 list_del(&req->list);
1507 } while (req);
1508
1509 /*
1510 * Rare case of racing with a submitter. If we find the count has
1511 * dropped to zero AND we have pending work items, then restart
1512 * the processing. This is a tiny race window.
1513 */
1514 if (async_list) {
1515 ret = atomic_dec_return(&async_list->cnt);
1516 while (!ret && !list_empty(&async_list->list)) {
1517 spin_lock(&async_list->lock);
1518 atomic_inc(&async_list->cnt);
1519 list_splice_init(&async_list->list, &req_list);
1520 spin_unlock(&async_list->lock);
1521
1522 if (!list_empty(&req_list)) {
1523 req = list_first_entry(&req_list,
1524 struct io_kiocb, list);
1525 list_del(&req->list);
1526 goto restart;
1527 }
1528 ret = atomic_dec_return(&async_list->cnt);
1529 }
1530 }
1531
1532 if (cur_mm) {
1533 set_fs(old_fs);
1534 unuse_mm(cur_mm);
1535 mmput(cur_mm);
1536 }
1537 }
1538
1539 /*
1540 * See if we can piggy back onto previously submitted work, that is still
1541 * running. We currently only allow this if the new request is sequential
1542 * to the previous one we punted.
1543 */
1544 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1545 {
1546 bool ret = false;
1547
1548 if (!list)
1549 return false;
1550 if (!(req->flags & REQ_F_SEQ_PREV))
1551 return false;
1552 if (!atomic_read(&list->cnt))
1553 return false;
1554
1555 ret = true;
1556 spin_lock(&list->lock);
1557 list_add_tail(&req->list, &list->list);
1558 if (!atomic_read(&list->cnt)) {
1559 list_del_init(&req->list);
1560 ret = false;
1561 }
1562 spin_unlock(&list->lock);
1563 return ret;
1564 }
1565
1566 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
1567 {
1568 int op = READ_ONCE(sqe->opcode);
1569
1570 switch (op) {
1571 case IORING_OP_NOP:
1572 case IORING_OP_POLL_REMOVE:
1573 return false;
1574 default:
1575 return true;
1576 }
1577 }
1578
1579 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
1580 struct io_submit_state *state, struct io_kiocb *req)
1581 {
1582 unsigned flags;
1583 int fd;
1584
1585 flags = READ_ONCE(s->sqe->flags);
1586 fd = READ_ONCE(s->sqe->fd);
1587
1588 if (!io_op_needs_file(s->sqe)) {
1589 req->file = NULL;
1590 return 0;
1591 }
1592
1593 if (flags & IOSQE_FIXED_FILE) {
1594 if (unlikely(!ctx->user_files ||
1595 (unsigned) fd >= ctx->nr_user_files))
1596 return -EBADF;
1597 req->file = ctx->user_files[fd];
1598 req->flags |= REQ_F_FIXED_FILE;
1599 } else {
1600 if (s->needs_fixed_file)
1601 return -EBADF;
1602 req->file = io_file_get(state, fd);
1603 if (unlikely(!req->file))
1604 return -EBADF;
1605 }
1606
1607 return 0;
1608 }
1609
1610 static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
1611 struct io_submit_state *state)
1612 {
1613 struct io_kiocb *req;
1614 int ret;
1615
1616 /* enforce forwards compatibility on users */
1617 if (unlikely(s->sqe->flags & ~IOSQE_FIXED_FILE))
1618 return -EINVAL;
1619
1620 req = io_get_req(ctx, state);
1621 if (unlikely(!req))
1622 return -EAGAIN;
1623
1624 ret = io_req_set_file(ctx, s, state, req);
1625 if (unlikely(ret))
1626 goto out;
1627
1628 ret = __io_submit_sqe(ctx, req, s, true, state);
1629 if (ret == -EAGAIN) {
1630 struct io_uring_sqe *sqe_copy;
1631
1632 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1633 if (sqe_copy) {
1634 struct async_list *list;
1635
1636 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
1637 s->sqe = sqe_copy;
1638
1639 memcpy(&req->submit, s, sizeof(*s));
1640 list = io_async_list_from_sqe(ctx, s->sqe);
1641 if (!io_add_to_prev_work(list, req)) {
1642 if (list)
1643 atomic_inc(&list->cnt);
1644 INIT_WORK(&req->work, io_sq_wq_submit_work);
1645 queue_work(ctx->sqo_wq, &req->work);
1646 }
1647
1648 /*
1649 * Queued up for async execution, worker will release
1650 * submit reference when the iocb is actually
1651 * submitted.
1652 */
1653 return 0;
1654 }
1655 }
1656
1657 out:
1658 /* drop submission reference */
1659 io_put_req(req);
1660
1661 /* and drop final reference, if we failed */
1662 if (ret)
1663 io_put_req(req);
1664
1665 return ret;
1666 }
1667
1668 /*
1669 * Batched submission is done, ensure local IO is flushed out.
1670 */
1671 static void io_submit_state_end(struct io_submit_state *state)
1672 {
1673 blk_finish_plug(&state->plug);
1674 io_file_put(state, NULL);
1675 if (state->free_reqs)
1676 kmem_cache_free_bulk(req_cachep, state->free_reqs,
1677 &state->reqs[state->cur_req]);
1678 }
1679
1680 /*
1681 * Start submission side cache.
1682 */
1683 static void io_submit_state_start(struct io_submit_state *state,
1684 struct io_ring_ctx *ctx, unsigned max_ios)
1685 {
1686 blk_start_plug(&state->plug);
1687 state->free_reqs = 0;
1688 state->file = NULL;
1689 state->ios_left = max_ios;
1690 }
1691
1692 static void io_commit_sqring(struct io_ring_ctx *ctx)
1693 {
1694 struct io_sq_ring *ring = ctx->sq_ring;
1695
1696 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
1697 /*
1698 * Ensure any loads from the SQEs are done at this point,
1699 * since once we write the new head, the application could
1700 * write new data to them.
1701 */
1702 smp_store_release(&ring->r.head, ctx->cached_sq_head);
1703
1704 /*
1705 * write side barrier of head update, app has read side. See
1706 * comment at the top of this file
1707 */
1708 smp_wmb();
1709 }
1710 }
1711
1712 /*
1713 * Undo last io_get_sqring()
1714 */
1715 static void io_drop_sqring(struct io_ring_ctx *ctx)
1716 {
1717 ctx->cached_sq_head--;
1718 }
1719
1720 /*
1721 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1722 * that is mapped by userspace. This means that care needs to be taken to
1723 * ensure that reads are stable, as we cannot rely on userspace always
1724 * being a good citizen. If members of the sqe are validated and then later
1725 * used, it's important that those reads are done through READ_ONCE() to
1726 * prevent a re-load down the line.
1727 */
1728 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
1729 {
1730 struct io_sq_ring *ring = ctx->sq_ring;
1731 unsigned head;
1732
1733 /*
1734 * The cached sq head (or cq tail) serves two purposes:
1735 *
1736 * 1) allows us to batch the cost of updating the user visible
1737 * head updates.
1738 * 2) allows the kernel side to track the head on its own, even
1739 * though the application is the one updating it.
1740 */
1741 head = ctx->cached_sq_head;
1742 /* See comment at the top of this file */
1743 smp_rmb();
1744 if (head == READ_ONCE(ring->r.tail))
1745 return false;
1746
1747 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
1748 if (head < ctx->sq_entries) {
1749 s->index = head;
1750 s->sqe = &ctx->sq_sqes[head];
1751 ctx->cached_sq_head++;
1752 return true;
1753 }
1754
1755 /* drop invalid entries */
1756 ctx->cached_sq_head++;
1757 ring->dropped++;
1758 /* See comment at the top of this file */
1759 smp_wmb();
1760 return false;
1761 }
1762
1763 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
1764 unsigned int nr, bool has_user, bool mm_fault)
1765 {
1766 struct io_submit_state state, *statep = NULL;
1767 int ret, i, submitted = 0;
1768
1769 if (nr > IO_PLUG_THRESHOLD) {
1770 io_submit_state_start(&state, ctx, nr);
1771 statep = &state;
1772 }
1773
1774 for (i = 0; i < nr; i++) {
1775 if (unlikely(mm_fault)) {
1776 ret = -EFAULT;
1777 } else {
1778 sqes[i].has_user = has_user;
1779 sqes[i].needs_lock = true;
1780 sqes[i].needs_fixed_file = true;
1781 ret = io_submit_sqe(ctx, &sqes[i], statep);
1782 }
1783 if (!ret) {
1784 submitted++;
1785 continue;
1786 }
1787
1788 io_cqring_add_event(ctx, sqes[i].sqe->user_data, ret, 0);
1789 }
1790
1791 if (statep)
1792 io_submit_state_end(&state);
1793
1794 return submitted;
1795 }
1796
1797 static int io_sq_thread(void *data)
1798 {
1799 struct sqe_submit sqes[IO_IOPOLL_BATCH];
1800 struct io_ring_ctx *ctx = data;
1801 struct mm_struct *cur_mm = NULL;
1802 mm_segment_t old_fs;
1803 DEFINE_WAIT(wait);
1804 unsigned inflight;
1805 unsigned long timeout;
1806
1807 old_fs = get_fs();
1808 set_fs(USER_DS);
1809
1810 timeout = inflight = 0;
1811 while (!kthread_should_stop() && !ctx->sqo_stop) {
1812 bool all_fixed, mm_fault = false;
1813 int i;
1814
1815 if (inflight) {
1816 unsigned nr_events = 0;
1817
1818 if (ctx->flags & IORING_SETUP_IOPOLL) {
1819 /*
1820 * We disallow the app entering submit/complete
1821 * with polling, but we still need to lock the
1822 * ring to prevent racing with polled issue
1823 * that got punted to a workqueue.
1824 */
1825 mutex_lock(&ctx->uring_lock);
1826 io_iopoll_check(ctx, &nr_events, 0);
1827 mutex_unlock(&ctx->uring_lock);
1828 } else {
1829 /*
1830 * Normal IO, just pretend everything completed.
1831 * We don't have to poll completions for that.
1832 */
1833 nr_events = inflight;
1834 }
1835
1836 inflight -= nr_events;
1837 if (!inflight)
1838 timeout = jiffies + ctx->sq_thread_idle;
1839 }
1840
1841 if (!io_get_sqring(ctx, &sqes[0])) {
1842 /*
1843 * We're polling. If we're within the defined idle
1844 * period, then let us spin without work before going
1845 * to sleep.
1846 */
1847 if (inflight || !time_after(jiffies, timeout)) {
1848 cpu_relax();
1849 continue;
1850 }
1851
1852 /*
1853 * Drop cur_mm before scheduling, we can't hold it for
1854 * long periods (or over schedule()). Do this before
1855 * adding ourselves to the waitqueue, as the unuse/drop
1856 * may sleep.
1857 */
1858 if (cur_mm) {
1859 unuse_mm(cur_mm);
1860 mmput(cur_mm);
1861 cur_mm = NULL;
1862 }
1863
1864 prepare_to_wait(&ctx->sqo_wait, &wait,
1865 TASK_INTERRUPTIBLE);
1866
1867 /* Tell userspace we may need a wakeup call */
1868 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
1869 smp_wmb();
1870
1871 if (!io_get_sqring(ctx, &sqes[0])) {
1872 if (kthread_should_stop()) {
1873 finish_wait(&ctx->sqo_wait, &wait);
1874 break;
1875 }
1876 if (signal_pending(current))
1877 flush_signals(current);
1878 schedule();
1879 finish_wait(&ctx->sqo_wait, &wait);
1880
1881 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1882 smp_wmb();
1883 continue;
1884 }
1885 finish_wait(&ctx->sqo_wait, &wait);
1886
1887 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1888 smp_wmb();
1889 }
1890
1891 i = 0;
1892 all_fixed = true;
1893 do {
1894 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
1895 all_fixed = false;
1896
1897 i++;
1898 if (i == ARRAY_SIZE(sqes))
1899 break;
1900 } while (io_get_sqring(ctx, &sqes[i]));
1901
1902 /* Unless all new commands are FIXED regions, grab mm */
1903 if (!all_fixed && !cur_mm) {
1904 mm_fault = !mmget_not_zero(ctx->sqo_mm);
1905 if (!mm_fault) {
1906 use_mm(ctx->sqo_mm);
1907 cur_mm = ctx->sqo_mm;
1908 }
1909 }
1910
1911 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
1912 mm_fault);
1913
1914 /* Commit SQ ring head once we've consumed all SQEs */
1915 io_commit_sqring(ctx);
1916 }
1917
1918 set_fs(old_fs);
1919 if (cur_mm) {
1920 unuse_mm(cur_mm);
1921 mmput(cur_mm);
1922 }
1923 return 0;
1924 }
1925
1926 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
1927 {
1928 struct io_submit_state state, *statep = NULL;
1929 int i, ret = 0, submit = 0;
1930
1931 if (to_submit > IO_PLUG_THRESHOLD) {
1932 io_submit_state_start(&state, ctx, to_submit);
1933 statep = &state;
1934 }
1935
1936 for (i = 0; i < to_submit; i++) {
1937 struct sqe_submit s;
1938
1939 if (!io_get_sqring(ctx, &s))
1940 break;
1941
1942 s.has_user = true;
1943 s.needs_lock = false;
1944 s.needs_fixed_file = false;
1945
1946 ret = io_submit_sqe(ctx, &s, statep);
1947 if (ret) {
1948 io_drop_sqring(ctx);
1949 break;
1950 }
1951
1952 submit++;
1953 }
1954 io_commit_sqring(ctx);
1955
1956 if (statep)
1957 io_submit_state_end(statep);
1958
1959 return submit ? submit : ret;
1960 }
1961
1962 static unsigned io_cqring_events(struct io_cq_ring *ring)
1963 {
1964 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
1965 }
1966
1967 /*
1968 * Wait until events become available, if we don't already have some. The
1969 * application must reap them itself, as they reside on the shared cq ring.
1970 */
1971 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
1972 const sigset_t __user *sig, size_t sigsz)
1973 {
1974 struct io_cq_ring *ring = ctx->cq_ring;
1975 sigset_t ksigmask, sigsaved;
1976 DEFINE_WAIT(wait);
1977 int ret;
1978
1979 /* See comment at the top of this file */
1980 smp_rmb();
1981 if (io_cqring_events(ring) >= min_events)
1982 return 0;
1983
1984 if (sig) {
1985 #ifdef CONFIG_COMPAT
1986 if (in_compat_syscall())
1987 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
1988 &ksigmask, &sigsaved, sigsz);
1989 else
1990 #endif
1991 ret = set_user_sigmask(sig, &ksigmask,
1992 &sigsaved, sigsz);
1993
1994 if (ret)
1995 return ret;
1996 }
1997
1998 do {
1999 prepare_to_wait(&ctx->wait, &wait, TASK_INTERRUPTIBLE);
2000
2001 ret = 0;
2002 /* See comment at the top of this file */
2003 smp_rmb();
2004 if (io_cqring_events(ring) >= min_events)
2005 break;
2006
2007 schedule();
2008
2009 ret = -EINTR;
2010 if (signal_pending(current))
2011 break;
2012 } while (1);
2013
2014 finish_wait(&ctx->wait, &wait);
2015
2016 if (sig)
2017 restore_user_sigmask(sig, &sigsaved);
2018
2019 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2020 }
2021
2022 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2023 {
2024 #if defined(CONFIG_UNIX)
2025 if (ctx->ring_sock) {
2026 struct sock *sock = ctx->ring_sock->sk;
2027 struct sk_buff *skb;
2028
2029 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2030 kfree_skb(skb);
2031 }
2032 #else
2033 int i;
2034
2035 for (i = 0; i < ctx->nr_user_files; i++)
2036 fput(ctx->user_files[i]);
2037 #endif
2038 }
2039
2040 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2041 {
2042 if (!ctx->user_files)
2043 return -ENXIO;
2044
2045 __io_sqe_files_unregister(ctx);
2046 kfree(ctx->user_files);
2047 ctx->user_files = NULL;
2048 ctx->nr_user_files = 0;
2049 return 0;
2050 }
2051
2052 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2053 {
2054 if (ctx->sqo_thread) {
2055 ctx->sqo_stop = 1;
2056 mb();
2057 kthread_stop(ctx->sqo_thread);
2058 ctx->sqo_thread = NULL;
2059 }
2060 }
2061
2062 static void io_finish_async(struct io_ring_ctx *ctx)
2063 {
2064 io_sq_thread_stop(ctx);
2065
2066 if (ctx->sqo_wq) {
2067 destroy_workqueue(ctx->sqo_wq);
2068 ctx->sqo_wq = NULL;
2069 }
2070 }
2071
2072 #if defined(CONFIG_UNIX)
2073 static void io_destruct_skb(struct sk_buff *skb)
2074 {
2075 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2076
2077 io_finish_async(ctx);
2078 unix_destruct_scm(skb);
2079 }
2080
2081 /*
2082 * Ensure the UNIX gc is aware of our file set, so we are certain that
2083 * the io_uring can be safely unregistered on process exit, even if we have
2084 * loops in the file referencing.
2085 */
2086 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2087 {
2088 struct sock *sk = ctx->ring_sock->sk;
2089 struct scm_fp_list *fpl;
2090 struct sk_buff *skb;
2091 int i;
2092
2093 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2094 unsigned long inflight = ctx->user->unix_inflight + nr;
2095
2096 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2097 return -EMFILE;
2098 }
2099
2100 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2101 if (!fpl)
2102 return -ENOMEM;
2103
2104 skb = alloc_skb(0, GFP_KERNEL);
2105 if (!skb) {
2106 kfree(fpl);
2107 return -ENOMEM;
2108 }
2109
2110 skb->sk = sk;
2111 skb->destructor = io_destruct_skb;
2112
2113 fpl->user = get_uid(ctx->user);
2114 for (i = 0; i < nr; i++) {
2115 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2116 unix_inflight(fpl->user, fpl->fp[i]);
2117 }
2118
2119 fpl->max = fpl->count = nr;
2120 UNIXCB(skb).fp = fpl;
2121 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2122 skb_queue_head(&sk->sk_receive_queue, skb);
2123
2124 for (i = 0; i < nr; i++)
2125 fput(fpl->fp[i]);
2126
2127 return 0;
2128 }
2129
2130 /*
2131 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2132 * causes regular reference counting to break down. We rely on the UNIX
2133 * garbage collection to take care of this problem for us.
2134 */
2135 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2136 {
2137 unsigned left, total;
2138 int ret = 0;
2139
2140 total = 0;
2141 left = ctx->nr_user_files;
2142 while (left) {
2143 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2144 int ret;
2145
2146 ret = __io_sqe_files_scm(ctx, this_files, total);
2147 if (ret)
2148 break;
2149 left -= this_files;
2150 total += this_files;
2151 }
2152
2153 if (!ret)
2154 return 0;
2155
2156 while (total < ctx->nr_user_files) {
2157 fput(ctx->user_files[total]);
2158 total++;
2159 }
2160
2161 return ret;
2162 }
2163 #else
2164 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2165 {
2166 return 0;
2167 }
2168 #endif
2169
2170 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2171 unsigned nr_args)
2172 {
2173 __s32 __user *fds = (__s32 __user *) arg;
2174 int fd, ret = 0;
2175 unsigned i;
2176
2177 if (ctx->user_files)
2178 return -EBUSY;
2179 if (!nr_args)
2180 return -EINVAL;
2181 if (nr_args > IORING_MAX_FIXED_FILES)
2182 return -EMFILE;
2183
2184 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2185 if (!ctx->user_files)
2186 return -ENOMEM;
2187
2188 for (i = 0; i < nr_args; i++) {
2189 ret = -EFAULT;
2190 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2191 break;
2192
2193 ctx->user_files[i] = fget(fd);
2194
2195 ret = -EBADF;
2196 if (!ctx->user_files[i])
2197 break;
2198 /*
2199 * Don't allow io_uring instances to be registered. If UNIX
2200 * isn't enabled, then this causes a reference cycle and this
2201 * instance can never get freed. If UNIX is enabled we'll
2202 * handle it just fine, but there's still no point in allowing
2203 * a ring fd as it doesn't support regular read/write anyway.
2204 */
2205 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2206 fput(ctx->user_files[i]);
2207 break;
2208 }
2209 ctx->nr_user_files++;
2210 ret = 0;
2211 }
2212
2213 if (ret) {
2214 for (i = 0; i < ctx->nr_user_files; i++)
2215 fput(ctx->user_files[i]);
2216
2217 kfree(ctx->user_files);
2218 ctx->user_files = NULL;
2219 ctx->nr_user_files = 0;
2220 return ret;
2221 }
2222
2223 ret = io_sqe_files_scm(ctx);
2224 if (ret)
2225 io_sqe_files_unregister(ctx);
2226
2227 return ret;
2228 }
2229
2230 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2231 struct io_uring_params *p)
2232 {
2233 int ret;
2234
2235 init_waitqueue_head(&ctx->sqo_wait);
2236 mmgrab(current->mm);
2237 ctx->sqo_mm = current->mm;
2238
2239 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2240 if (!ctx->sq_thread_idle)
2241 ctx->sq_thread_idle = HZ;
2242
2243 ret = -EINVAL;
2244 if (!cpu_possible(p->sq_thread_cpu))
2245 goto err;
2246
2247 if (ctx->flags & IORING_SETUP_SQPOLL) {
2248 if (p->flags & IORING_SETUP_SQ_AFF) {
2249 int cpu;
2250
2251 cpu = array_index_nospec(p->sq_thread_cpu, NR_CPUS);
2252 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2253 ctx, cpu,
2254 "io_uring-sq");
2255 } else {
2256 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2257 "io_uring-sq");
2258 }
2259 if (IS_ERR(ctx->sqo_thread)) {
2260 ret = PTR_ERR(ctx->sqo_thread);
2261 ctx->sqo_thread = NULL;
2262 goto err;
2263 }
2264 wake_up_process(ctx->sqo_thread);
2265 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2266 /* Can't have SQ_AFF without SQPOLL */
2267 ret = -EINVAL;
2268 goto err;
2269 }
2270
2271 /* Do QD, or 2 * CPUS, whatever is smallest */
2272 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2273 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2274 if (!ctx->sqo_wq) {
2275 ret = -ENOMEM;
2276 goto err;
2277 }
2278
2279 return 0;
2280 err:
2281 io_sq_thread_stop(ctx);
2282 mmdrop(ctx->sqo_mm);
2283 ctx->sqo_mm = NULL;
2284 return ret;
2285 }
2286
2287 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2288 {
2289 atomic_long_sub(nr_pages, &user->locked_vm);
2290 }
2291
2292 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2293 {
2294 unsigned long page_limit, cur_pages, new_pages;
2295
2296 /* Don't allow more pages than we can safely lock */
2297 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2298
2299 do {
2300 cur_pages = atomic_long_read(&user->locked_vm);
2301 new_pages = cur_pages + nr_pages;
2302 if (new_pages > page_limit)
2303 return -ENOMEM;
2304 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2305 new_pages) != cur_pages);
2306
2307 return 0;
2308 }
2309
2310 static void io_mem_free(void *ptr)
2311 {
2312 struct page *page = virt_to_head_page(ptr);
2313
2314 if (put_page_testzero(page))
2315 free_compound_page(page);
2316 }
2317
2318 static void *io_mem_alloc(size_t size)
2319 {
2320 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2321 __GFP_NORETRY;
2322
2323 return (void *) __get_free_pages(gfp_flags, get_order(size));
2324 }
2325
2326 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2327 {
2328 struct io_sq_ring *sq_ring;
2329 struct io_cq_ring *cq_ring;
2330 size_t bytes;
2331
2332 bytes = struct_size(sq_ring, array, sq_entries);
2333 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2334 bytes += struct_size(cq_ring, cqes, cq_entries);
2335
2336 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2337 }
2338
2339 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2340 {
2341 int i, j;
2342
2343 if (!ctx->user_bufs)
2344 return -ENXIO;
2345
2346 for (i = 0; i < ctx->nr_user_bufs; i++) {
2347 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2348
2349 for (j = 0; j < imu->nr_bvecs; j++)
2350 put_page(imu->bvec[j].bv_page);
2351
2352 if (ctx->account_mem)
2353 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2354 kfree(imu->bvec);
2355 imu->nr_bvecs = 0;
2356 }
2357
2358 kfree(ctx->user_bufs);
2359 ctx->user_bufs = NULL;
2360 ctx->nr_user_bufs = 0;
2361 return 0;
2362 }
2363
2364 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2365 void __user *arg, unsigned index)
2366 {
2367 struct iovec __user *src;
2368
2369 #ifdef CONFIG_COMPAT
2370 if (ctx->compat) {
2371 struct compat_iovec __user *ciovs;
2372 struct compat_iovec ciov;
2373
2374 ciovs = (struct compat_iovec __user *) arg;
2375 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2376 return -EFAULT;
2377
2378 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2379 dst->iov_len = ciov.iov_len;
2380 return 0;
2381 }
2382 #endif
2383 src = (struct iovec __user *) arg;
2384 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2385 return -EFAULT;
2386 return 0;
2387 }
2388
2389 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2390 unsigned nr_args)
2391 {
2392 struct vm_area_struct **vmas = NULL;
2393 struct page **pages = NULL;
2394 int i, j, got_pages = 0;
2395 int ret = -EINVAL;
2396
2397 if (ctx->user_bufs)
2398 return -EBUSY;
2399 if (!nr_args || nr_args > UIO_MAXIOV)
2400 return -EINVAL;
2401
2402 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2403 GFP_KERNEL);
2404 if (!ctx->user_bufs)
2405 return -ENOMEM;
2406
2407 for (i = 0; i < nr_args; i++) {
2408 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2409 unsigned long off, start, end, ubuf;
2410 int pret, nr_pages;
2411 struct iovec iov;
2412 size_t size;
2413
2414 ret = io_copy_iov(ctx, &iov, arg, i);
2415 if (ret)
2416 break;
2417
2418 /*
2419 * Don't impose further limits on the size and buffer
2420 * constraints here, we'll -EINVAL later when IO is
2421 * submitted if they are wrong.
2422 */
2423 ret = -EFAULT;
2424 if (!iov.iov_base || !iov.iov_len)
2425 goto err;
2426
2427 /* arbitrary limit, but we need something */
2428 if (iov.iov_len > SZ_1G)
2429 goto err;
2430
2431 ubuf = (unsigned long) iov.iov_base;
2432 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2433 start = ubuf >> PAGE_SHIFT;
2434 nr_pages = end - start;
2435
2436 if (ctx->account_mem) {
2437 ret = io_account_mem(ctx->user, nr_pages);
2438 if (ret)
2439 goto err;
2440 }
2441
2442 ret = 0;
2443 if (!pages || nr_pages > got_pages) {
2444 kfree(vmas);
2445 kfree(pages);
2446 pages = kmalloc_array(nr_pages, sizeof(struct page *),
2447 GFP_KERNEL);
2448 vmas = kmalloc_array(nr_pages,
2449 sizeof(struct vm_area_struct *),
2450 GFP_KERNEL);
2451 if (!pages || !vmas) {
2452 ret = -ENOMEM;
2453 if (ctx->account_mem)
2454 io_unaccount_mem(ctx->user, nr_pages);
2455 goto err;
2456 }
2457 got_pages = nr_pages;
2458 }
2459
2460 imu->bvec = kmalloc_array(nr_pages, sizeof(struct bio_vec),
2461 GFP_KERNEL);
2462 ret = -ENOMEM;
2463 if (!imu->bvec) {
2464 if (ctx->account_mem)
2465 io_unaccount_mem(ctx->user, nr_pages);
2466 goto err;
2467 }
2468
2469 ret = 0;
2470 down_read(&current->mm->mmap_sem);
2471 pret = get_user_pages_longterm(ubuf, nr_pages, FOLL_WRITE,
2472 pages, vmas);
2473 if (pret == nr_pages) {
2474 /* don't support file backed memory */
2475 for (j = 0; j < nr_pages; j++) {
2476 struct vm_area_struct *vma = vmas[j];
2477
2478 if (vma->vm_file &&
2479 !is_file_hugepages(vma->vm_file)) {
2480 ret = -EOPNOTSUPP;
2481 break;
2482 }
2483 }
2484 } else {
2485 ret = pret < 0 ? pret : -EFAULT;
2486 }
2487 up_read(&current->mm->mmap_sem);
2488 if (ret) {
2489 /*
2490 * if we did partial map, or found file backed vmas,
2491 * release any pages we did get
2492 */
2493 if (pret > 0) {
2494 for (j = 0; j < pret; j++)
2495 put_page(pages[j]);
2496 }
2497 if (ctx->account_mem)
2498 io_unaccount_mem(ctx->user, nr_pages);
2499 goto err;
2500 }
2501
2502 off = ubuf & ~PAGE_MASK;
2503 size = iov.iov_len;
2504 for (j = 0; j < nr_pages; j++) {
2505 size_t vec_len;
2506
2507 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2508 imu->bvec[j].bv_page = pages[j];
2509 imu->bvec[j].bv_len = vec_len;
2510 imu->bvec[j].bv_offset = off;
2511 off = 0;
2512 size -= vec_len;
2513 }
2514 /* store original address for later verification */
2515 imu->ubuf = ubuf;
2516 imu->len = iov.iov_len;
2517 imu->nr_bvecs = nr_pages;
2518
2519 ctx->nr_user_bufs++;
2520 }
2521 kfree(pages);
2522 kfree(vmas);
2523 return 0;
2524 err:
2525 kfree(pages);
2526 kfree(vmas);
2527 io_sqe_buffer_unregister(ctx);
2528 return ret;
2529 }
2530
2531 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
2532 {
2533 io_finish_async(ctx);
2534 if (ctx->sqo_mm)
2535 mmdrop(ctx->sqo_mm);
2536
2537 io_iopoll_reap_events(ctx);
2538 io_sqe_buffer_unregister(ctx);
2539 io_sqe_files_unregister(ctx);
2540
2541 #if defined(CONFIG_UNIX)
2542 if (ctx->ring_sock)
2543 sock_release(ctx->ring_sock);
2544 #endif
2545
2546 io_mem_free(ctx->sq_ring);
2547 io_mem_free(ctx->sq_sqes);
2548 io_mem_free(ctx->cq_ring);
2549
2550 percpu_ref_exit(&ctx->refs);
2551 if (ctx->account_mem)
2552 io_unaccount_mem(ctx->user,
2553 ring_pages(ctx->sq_entries, ctx->cq_entries));
2554 free_uid(ctx->user);
2555 kfree(ctx);
2556 }
2557
2558 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2559 {
2560 struct io_ring_ctx *ctx = file->private_data;
2561 __poll_t mask = 0;
2562
2563 poll_wait(file, &ctx->cq_wait, wait);
2564 /* See comment at the top of this file */
2565 smp_rmb();
2566 if (READ_ONCE(ctx->sq_ring->r.tail) + 1 != ctx->cached_sq_head)
2567 mask |= EPOLLOUT | EPOLLWRNORM;
2568 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
2569 mask |= EPOLLIN | EPOLLRDNORM;
2570
2571 return mask;
2572 }
2573
2574 static int io_uring_fasync(int fd, struct file *file, int on)
2575 {
2576 struct io_ring_ctx *ctx = file->private_data;
2577
2578 return fasync_helper(fd, file, on, &ctx->cq_fasync);
2579 }
2580
2581 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2582 {
2583 mutex_lock(&ctx->uring_lock);
2584 percpu_ref_kill(&ctx->refs);
2585 mutex_unlock(&ctx->uring_lock);
2586
2587 io_poll_remove_all(ctx);
2588 io_iopoll_reap_events(ctx);
2589 wait_for_completion(&ctx->ctx_done);
2590 io_ring_ctx_free(ctx);
2591 }
2592
2593 static int io_uring_release(struct inode *inode, struct file *file)
2594 {
2595 struct io_ring_ctx *ctx = file->private_data;
2596
2597 file->private_data = NULL;
2598 io_ring_ctx_wait_and_kill(ctx);
2599 return 0;
2600 }
2601
2602 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2603 {
2604 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
2605 unsigned long sz = vma->vm_end - vma->vm_start;
2606 struct io_ring_ctx *ctx = file->private_data;
2607 unsigned long pfn;
2608 struct page *page;
2609 void *ptr;
2610
2611 switch (offset) {
2612 case IORING_OFF_SQ_RING:
2613 ptr = ctx->sq_ring;
2614 break;
2615 case IORING_OFF_SQES:
2616 ptr = ctx->sq_sqes;
2617 break;
2618 case IORING_OFF_CQ_RING:
2619 ptr = ctx->cq_ring;
2620 break;
2621 default:
2622 return -EINVAL;
2623 }
2624
2625 page = virt_to_head_page(ptr);
2626 if (sz > (PAGE_SIZE << compound_order(page)))
2627 return -EINVAL;
2628
2629 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2630 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2631 }
2632
2633 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2634 u32, min_complete, u32, flags, const sigset_t __user *, sig,
2635 size_t, sigsz)
2636 {
2637 struct io_ring_ctx *ctx;
2638 long ret = -EBADF;
2639 int submitted = 0;
2640 struct fd f;
2641
2642 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
2643 return -EINVAL;
2644
2645 f = fdget(fd);
2646 if (!f.file)
2647 return -EBADF;
2648
2649 ret = -EOPNOTSUPP;
2650 if (f.file->f_op != &io_uring_fops)
2651 goto out_fput;
2652
2653 ret = -ENXIO;
2654 ctx = f.file->private_data;
2655 if (!percpu_ref_tryget(&ctx->refs))
2656 goto out_fput;
2657
2658 /*
2659 * For SQ polling, the thread will do all submissions and completions.
2660 * Just return the requested submit count, and wake the thread if
2661 * we were asked to.
2662 */
2663 if (ctx->flags & IORING_SETUP_SQPOLL) {
2664 if (flags & IORING_ENTER_SQ_WAKEUP)
2665 wake_up(&ctx->sqo_wait);
2666 submitted = to_submit;
2667 goto out_ctx;
2668 }
2669
2670 ret = 0;
2671 if (to_submit) {
2672 to_submit = min(to_submit, ctx->sq_entries);
2673
2674 mutex_lock(&ctx->uring_lock);
2675 submitted = io_ring_submit(ctx, to_submit);
2676 mutex_unlock(&ctx->uring_lock);
2677
2678 if (submitted < 0)
2679 goto out_ctx;
2680 }
2681 if (flags & IORING_ENTER_GETEVENTS) {
2682 unsigned nr_events = 0;
2683
2684 min_complete = min(min_complete, ctx->cq_entries);
2685
2686 /*
2687 * The application could have included the 'to_submit' count
2688 * in how many events it wanted to wait for. If we failed to
2689 * submit the desired count, we may need to adjust the number
2690 * of events to poll/wait for.
2691 */
2692 if (submitted < to_submit)
2693 min_complete = min_t(unsigned, submitted, min_complete);
2694
2695 if (ctx->flags & IORING_SETUP_IOPOLL) {
2696 mutex_lock(&ctx->uring_lock);
2697 ret = io_iopoll_check(ctx, &nr_events, min_complete);
2698 mutex_unlock(&ctx->uring_lock);
2699 } else {
2700 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
2701 }
2702 }
2703
2704 out_ctx:
2705 io_ring_drop_ctx_refs(ctx, 1);
2706 out_fput:
2707 fdput(f);
2708 return submitted ? submitted : ret;
2709 }
2710
2711 static const struct file_operations io_uring_fops = {
2712 .release = io_uring_release,
2713 .mmap = io_uring_mmap,
2714 .poll = io_uring_poll,
2715 .fasync = io_uring_fasync,
2716 };
2717
2718 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2719 struct io_uring_params *p)
2720 {
2721 struct io_sq_ring *sq_ring;
2722 struct io_cq_ring *cq_ring;
2723 size_t size;
2724
2725 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
2726 if (!sq_ring)
2727 return -ENOMEM;
2728
2729 ctx->sq_ring = sq_ring;
2730 sq_ring->ring_mask = p->sq_entries - 1;
2731 sq_ring->ring_entries = p->sq_entries;
2732 ctx->sq_mask = sq_ring->ring_mask;
2733 ctx->sq_entries = sq_ring->ring_entries;
2734
2735 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
2736 if (size == SIZE_MAX)
2737 return -EOVERFLOW;
2738
2739 ctx->sq_sqes = io_mem_alloc(size);
2740 if (!ctx->sq_sqes) {
2741 io_mem_free(ctx->sq_ring);
2742 return -ENOMEM;
2743 }
2744
2745 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
2746 if (!cq_ring) {
2747 io_mem_free(ctx->sq_ring);
2748 io_mem_free(ctx->sq_sqes);
2749 return -ENOMEM;
2750 }
2751
2752 ctx->cq_ring = cq_ring;
2753 cq_ring->ring_mask = p->cq_entries - 1;
2754 cq_ring->ring_entries = p->cq_entries;
2755 ctx->cq_mask = cq_ring->ring_mask;
2756 ctx->cq_entries = cq_ring->ring_entries;
2757 return 0;
2758 }
2759
2760 /*
2761 * Allocate an anonymous fd, this is what constitutes the application
2762 * visible backing of an io_uring instance. The application mmaps this
2763 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2764 * we have to tie this fd to a socket for file garbage collection purposes.
2765 */
2766 static int io_uring_get_fd(struct io_ring_ctx *ctx)
2767 {
2768 struct file *file;
2769 int ret;
2770
2771 #if defined(CONFIG_UNIX)
2772 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
2773 &ctx->ring_sock);
2774 if (ret)
2775 return ret;
2776 #endif
2777
2778 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2779 if (ret < 0)
2780 goto err;
2781
2782 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
2783 O_RDWR | O_CLOEXEC);
2784 if (IS_ERR(file)) {
2785 put_unused_fd(ret);
2786 ret = PTR_ERR(file);
2787 goto err;
2788 }
2789
2790 #if defined(CONFIG_UNIX)
2791 ctx->ring_sock->file = file;
2792 ctx->ring_sock->sk->sk_user_data = ctx;
2793 #endif
2794 fd_install(ret, file);
2795 return ret;
2796 err:
2797 #if defined(CONFIG_UNIX)
2798 sock_release(ctx->ring_sock);
2799 ctx->ring_sock = NULL;
2800 #endif
2801 return ret;
2802 }
2803
2804 static int io_uring_create(unsigned entries, struct io_uring_params *p)
2805 {
2806 struct user_struct *user = NULL;
2807 struct io_ring_ctx *ctx;
2808 bool account_mem;
2809 int ret;
2810
2811 if (!entries || entries > IORING_MAX_ENTRIES)
2812 return -EINVAL;
2813
2814 /*
2815 * Use twice as many entries for the CQ ring. It's possible for the
2816 * application to drive a higher depth than the size of the SQ ring,
2817 * since the sqes are only used at submission time. This allows for
2818 * some flexibility in overcommitting a bit.
2819 */
2820 p->sq_entries = roundup_pow_of_two(entries);
2821 p->cq_entries = 2 * p->sq_entries;
2822
2823 user = get_uid(current_user());
2824 account_mem = !capable(CAP_IPC_LOCK);
2825
2826 if (account_mem) {
2827 ret = io_account_mem(user,
2828 ring_pages(p->sq_entries, p->cq_entries));
2829 if (ret) {
2830 free_uid(user);
2831 return ret;
2832 }
2833 }
2834
2835 ctx = io_ring_ctx_alloc(p);
2836 if (!ctx) {
2837 if (account_mem)
2838 io_unaccount_mem(user, ring_pages(p->sq_entries,
2839 p->cq_entries));
2840 free_uid(user);
2841 return -ENOMEM;
2842 }
2843 ctx->compat = in_compat_syscall();
2844 ctx->account_mem = account_mem;
2845 ctx->user = user;
2846
2847 ret = io_allocate_scq_urings(ctx, p);
2848 if (ret)
2849 goto err;
2850
2851 ret = io_sq_offload_start(ctx, p);
2852 if (ret)
2853 goto err;
2854
2855 ret = io_uring_get_fd(ctx);
2856 if (ret < 0)
2857 goto err;
2858
2859 memset(&p->sq_off, 0, sizeof(p->sq_off));
2860 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
2861 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
2862 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
2863 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
2864 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
2865 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
2866 p->sq_off.array = offsetof(struct io_sq_ring, array);
2867
2868 memset(&p->cq_off, 0, sizeof(p->cq_off));
2869 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
2870 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
2871 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
2872 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
2873 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
2874 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
2875 return ret;
2876 err:
2877 io_ring_ctx_wait_and_kill(ctx);
2878 return ret;
2879 }
2880
2881 /*
2882 * Sets up an aio uring context, and returns the fd. Applications asks for a
2883 * ring size, we return the actual sq/cq ring sizes (among other things) in the
2884 * params structure passed in.
2885 */
2886 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
2887 {
2888 struct io_uring_params p;
2889 long ret;
2890 int i;
2891
2892 if (copy_from_user(&p, params, sizeof(p)))
2893 return -EFAULT;
2894 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
2895 if (p.resv[i])
2896 return -EINVAL;
2897 }
2898
2899 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
2900 IORING_SETUP_SQ_AFF))
2901 return -EINVAL;
2902
2903 ret = io_uring_create(entries, &p);
2904 if (ret < 0)
2905 return ret;
2906
2907 if (copy_to_user(params, &p, sizeof(p)))
2908 return -EFAULT;
2909
2910 return ret;
2911 }
2912
2913 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
2914 struct io_uring_params __user *, params)
2915 {
2916 return io_uring_setup(entries, params);
2917 }
2918
2919 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
2920 void __user *arg, unsigned nr_args)
2921 {
2922 int ret;
2923
2924 percpu_ref_kill(&ctx->refs);
2925 wait_for_completion(&ctx->ctx_done);
2926
2927 switch (opcode) {
2928 case IORING_REGISTER_BUFFERS:
2929 ret = io_sqe_buffer_register(ctx, arg, nr_args);
2930 break;
2931 case IORING_UNREGISTER_BUFFERS:
2932 ret = -EINVAL;
2933 if (arg || nr_args)
2934 break;
2935 ret = io_sqe_buffer_unregister(ctx);
2936 break;
2937 case IORING_REGISTER_FILES:
2938 ret = io_sqe_files_register(ctx, arg, nr_args);
2939 break;
2940 case IORING_UNREGISTER_FILES:
2941 ret = -EINVAL;
2942 if (arg || nr_args)
2943 break;
2944 ret = io_sqe_files_unregister(ctx);
2945 break;
2946 default:
2947 ret = -EINVAL;
2948 break;
2949 }
2950
2951 /* bring the ctx back to life */
2952 reinit_completion(&ctx->ctx_done);
2953 percpu_ref_reinit(&ctx->refs);
2954 return ret;
2955 }
2956
2957 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
2958 void __user *, arg, unsigned int, nr_args)
2959 {
2960 struct io_ring_ctx *ctx;
2961 long ret = -EBADF;
2962 struct fd f;
2963
2964 f = fdget(fd);
2965 if (!f.file)
2966 return -EBADF;
2967
2968 ret = -EOPNOTSUPP;
2969 if (f.file->f_op != &io_uring_fops)
2970 goto out_fput;
2971
2972 ctx = f.file->private_data;
2973
2974 mutex_lock(&ctx->uring_lock);
2975 ret = __io_uring_register(ctx, opcode, arg, nr_args);
2976 mutex_unlock(&ctx->uring_lock);
2977 out_fput:
2978 fdput(f);
2979 return ret;
2980 }
2981
2982 static int __init io_uring_init(void)
2983 {
2984 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
2985 return 0;
2986 };
2987 __initcall(io_uring_init);