]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/io_uring.c
Merge remote-tracking branch 'spi/for-5.8' into spi-next
[thirdparty/linux.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/mmu_context.h>
59 #include <linux/percpu.h>
60 #include <linux/slab.h>
61 #include <linux/kthread.h>
62 #include <linux/blkdev.h>
63 #include <linux/bvec.h>
64 #include <linux/net.h>
65 #include <net/sock.h>
66 #include <net/af_unix.h>
67 #include <net/scm.h>
68 #include <linux/anon_inodes.h>
69 #include <linux/sched/mm.h>
70 #include <linux/uaccess.h>
71 #include <linux/nospec.h>
72 #include <linux/sizes.h>
73 #include <linux/hugetlb.h>
74 #include <linux/highmem.h>
75 #include <linux/namei.h>
76 #include <linux/fsnotify.h>
77 #include <linux/fadvise.h>
78 #include <linux/eventpoll.h>
79 #include <linux/fs_struct.h>
80 #include <linux/splice.h>
81 #include <linux/task_work.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93
94 /*
95 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 */
97 #define IORING_FILE_TABLE_SHIFT 9
98 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
99 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
100 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101
102 struct io_uring {
103 u32 head ____cacheline_aligned_in_smp;
104 u32 tail ____cacheline_aligned_in_smp;
105 };
106
107 /*
108 * This data is shared with the application through the mmap at offsets
109 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
110 *
111 * The offsets to the member fields are published through struct
112 * io_sqring_offsets when calling io_uring_setup.
113 */
114 struct io_rings {
115 /*
116 * Head and tail offsets into the ring; the offsets need to be
117 * masked to get valid indices.
118 *
119 * The kernel controls head of the sq ring and the tail of the cq ring,
120 * and the application controls tail of the sq ring and the head of the
121 * cq ring.
122 */
123 struct io_uring sq, cq;
124 /*
125 * Bitmasks to apply to head and tail offsets (constant, equals
126 * ring_entries - 1)
127 */
128 u32 sq_ring_mask, cq_ring_mask;
129 /* Ring sizes (constant, power of 2) */
130 u32 sq_ring_entries, cq_ring_entries;
131 /*
132 * Number of invalid entries dropped by the kernel due to
133 * invalid index stored in array
134 *
135 * Written by the kernel, shouldn't be modified by the
136 * application (i.e. get number of "new events" by comparing to
137 * cached value).
138 *
139 * After a new SQ head value was read by the application this
140 * counter includes all submissions that were dropped reaching
141 * the new SQ head (and possibly more).
142 */
143 u32 sq_dropped;
144 /*
145 * Runtime flags
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application.
149 *
150 * The application needs a full memory barrier before checking
151 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
152 */
153 u32 sq_flags;
154 /*
155 * Number of completion events lost because the queue was full;
156 * this should be avoided by the application by making sure
157 * there are not more requests pending than there is space in
158 * the completion queue.
159 *
160 * Written by the kernel, shouldn't be modified by the
161 * application (i.e. get number of "new events" by comparing to
162 * cached value).
163 *
164 * As completion events come in out of order this counter is not
165 * ordered with any other data.
166 */
167 u32 cq_overflow;
168 /*
169 * Ring buffer of completion events.
170 *
171 * The kernel writes completion events fresh every time they are
172 * produced, so the application is allowed to modify pending
173 * entries.
174 */
175 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
176 };
177
178 struct io_mapped_ubuf {
179 u64 ubuf;
180 size_t len;
181 struct bio_vec *bvec;
182 unsigned int nr_bvecs;
183 };
184
185 struct fixed_file_table {
186 struct file **files;
187 };
188
189 struct fixed_file_ref_node {
190 struct percpu_ref refs;
191 struct list_head node;
192 struct list_head file_list;
193 struct fixed_file_data *file_data;
194 struct work_struct work;
195 };
196
197 struct fixed_file_data {
198 struct fixed_file_table *table;
199 struct io_ring_ctx *ctx;
200
201 struct percpu_ref *cur_refs;
202 struct percpu_ref refs;
203 struct completion done;
204 struct list_head ref_list;
205 spinlock_t lock;
206 };
207
208 struct io_buffer {
209 struct list_head list;
210 __u64 addr;
211 __s32 len;
212 __u16 bid;
213 };
214
215 struct io_ring_ctx {
216 struct {
217 struct percpu_ref refs;
218 } ____cacheline_aligned_in_smp;
219
220 struct {
221 unsigned int flags;
222 unsigned int compat: 1;
223 unsigned int account_mem: 1;
224 unsigned int cq_overflow_flushed: 1;
225 unsigned int drain_next: 1;
226 unsigned int eventfd_async: 1;
227
228 /*
229 * Ring buffer of indices into array of io_uring_sqe, which is
230 * mmapped by the application using the IORING_OFF_SQES offset.
231 *
232 * This indirection could e.g. be used to assign fixed
233 * io_uring_sqe entries to operations and only submit them to
234 * the queue when needed.
235 *
236 * The kernel modifies neither the indices array nor the entries
237 * array.
238 */
239 u32 *sq_array;
240 unsigned cached_sq_head;
241 unsigned sq_entries;
242 unsigned sq_mask;
243 unsigned sq_thread_idle;
244 unsigned cached_sq_dropped;
245 atomic_t cached_cq_overflow;
246 unsigned long sq_check_overflow;
247
248 struct list_head defer_list;
249 struct list_head timeout_list;
250 struct list_head cq_overflow_list;
251
252 wait_queue_head_t inflight_wait;
253 struct io_uring_sqe *sq_sqes;
254 } ____cacheline_aligned_in_smp;
255
256 struct io_rings *rings;
257
258 /* IO offload */
259 struct io_wq *io_wq;
260 struct task_struct *sqo_thread; /* if using sq thread polling */
261 struct mm_struct *sqo_mm;
262 wait_queue_head_t sqo_wait;
263
264 /*
265 * If used, fixed file set. Writers must ensure that ->refs is dead,
266 * readers must ensure that ->refs is alive as long as the file* is
267 * used. Only updated through io_uring_register(2).
268 */
269 struct fixed_file_data *file_data;
270 unsigned nr_user_files;
271 int ring_fd;
272 struct file *ring_file;
273
274 /* if used, fixed mapped user buffers */
275 unsigned nr_user_bufs;
276 struct io_mapped_ubuf *user_bufs;
277
278 struct user_struct *user;
279
280 const struct cred *creds;
281
282 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
283 struct completion *completions;
284
285 /* if all else fails... */
286 struct io_kiocb *fallback_req;
287
288 #if defined(CONFIG_UNIX)
289 struct socket *ring_sock;
290 #endif
291
292 struct idr io_buffer_idr;
293
294 struct idr personality_idr;
295
296 struct {
297 unsigned cached_cq_tail;
298 unsigned cq_entries;
299 unsigned cq_mask;
300 atomic_t cq_timeouts;
301 unsigned long cq_check_overflow;
302 struct wait_queue_head cq_wait;
303 struct fasync_struct *cq_fasync;
304 struct eventfd_ctx *cq_ev_fd;
305 } ____cacheline_aligned_in_smp;
306
307 struct {
308 struct mutex uring_lock;
309 wait_queue_head_t wait;
310 } ____cacheline_aligned_in_smp;
311
312 struct {
313 spinlock_t completion_lock;
314
315 /*
316 * ->poll_list is protected by the ctx->uring_lock for
317 * io_uring instances that don't use IORING_SETUP_SQPOLL.
318 * For SQPOLL, only the single threaded io_sq_thread() will
319 * manipulate the list, hence no extra locking is needed there.
320 */
321 struct list_head poll_list;
322 struct hlist_head *cancel_hash;
323 unsigned cancel_hash_bits;
324 bool poll_multi_file;
325
326 spinlock_t inflight_lock;
327 struct list_head inflight_list;
328 } ____cacheline_aligned_in_smp;
329
330 struct work_struct exit_work;
331 };
332
333 /*
334 * First field must be the file pointer in all the
335 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
336 */
337 struct io_poll_iocb {
338 struct file *file;
339 union {
340 struct wait_queue_head *head;
341 u64 addr;
342 };
343 __poll_t events;
344 bool done;
345 bool canceled;
346 struct wait_queue_entry wait;
347 };
348
349 struct io_close {
350 struct file *file;
351 struct file *put_file;
352 int fd;
353 };
354
355 struct io_timeout_data {
356 struct io_kiocb *req;
357 struct hrtimer timer;
358 struct timespec64 ts;
359 enum hrtimer_mode mode;
360 };
361
362 struct io_accept {
363 struct file *file;
364 struct sockaddr __user *addr;
365 int __user *addr_len;
366 int flags;
367 unsigned long nofile;
368 };
369
370 struct io_sync {
371 struct file *file;
372 loff_t len;
373 loff_t off;
374 int flags;
375 int mode;
376 };
377
378 struct io_cancel {
379 struct file *file;
380 u64 addr;
381 };
382
383 struct io_timeout {
384 struct file *file;
385 u64 addr;
386 int flags;
387 u32 count;
388 };
389
390 struct io_rw {
391 /* NOTE: kiocb has the file as the first member, so don't do it here */
392 struct kiocb kiocb;
393 u64 addr;
394 u64 len;
395 };
396
397 struct io_connect {
398 struct file *file;
399 struct sockaddr __user *addr;
400 int addr_len;
401 };
402
403 struct io_sr_msg {
404 struct file *file;
405 union {
406 struct user_msghdr __user *msg;
407 void __user *buf;
408 };
409 int msg_flags;
410 int bgid;
411 size_t len;
412 struct io_buffer *kbuf;
413 };
414
415 struct io_open {
416 struct file *file;
417 int dfd;
418 union {
419 unsigned mask;
420 };
421 struct filename *filename;
422 struct statx __user *buffer;
423 struct open_how how;
424 unsigned long nofile;
425 };
426
427 struct io_files_update {
428 struct file *file;
429 u64 arg;
430 u32 nr_args;
431 u32 offset;
432 };
433
434 struct io_fadvise {
435 struct file *file;
436 u64 offset;
437 u32 len;
438 u32 advice;
439 };
440
441 struct io_madvise {
442 struct file *file;
443 u64 addr;
444 u32 len;
445 u32 advice;
446 };
447
448 struct io_epoll {
449 struct file *file;
450 int epfd;
451 int op;
452 int fd;
453 struct epoll_event event;
454 };
455
456 struct io_splice {
457 struct file *file_out;
458 struct file *file_in;
459 loff_t off_out;
460 loff_t off_in;
461 u64 len;
462 unsigned int flags;
463 };
464
465 struct io_provide_buf {
466 struct file *file;
467 __u64 addr;
468 __s32 len;
469 __u32 bgid;
470 __u16 nbufs;
471 __u16 bid;
472 };
473
474 struct io_async_connect {
475 struct sockaddr_storage address;
476 };
477
478 struct io_async_msghdr {
479 struct iovec fast_iov[UIO_FASTIOV];
480 struct iovec *iov;
481 struct sockaddr __user *uaddr;
482 struct msghdr msg;
483 struct sockaddr_storage addr;
484 };
485
486 struct io_async_rw {
487 struct iovec fast_iov[UIO_FASTIOV];
488 struct iovec *iov;
489 ssize_t nr_segs;
490 ssize_t size;
491 };
492
493 struct io_async_ctx {
494 union {
495 struct io_async_rw rw;
496 struct io_async_msghdr msg;
497 struct io_async_connect connect;
498 struct io_timeout_data timeout;
499 };
500 };
501
502 enum {
503 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
504 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
505 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
506 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
507 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
508 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
509
510 REQ_F_LINK_HEAD_BIT,
511 REQ_F_LINK_NEXT_BIT,
512 REQ_F_FAIL_LINK_BIT,
513 REQ_F_INFLIGHT_BIT,
514 REQ_F_CUR_POS_BIT,
515 REQ_F_NOWAIT_BIT,
516 REQ_F_IOPOLL_COMPLETED_BIT,
517 REQ_F_LINK_TIMEOUT_BIT,
518 REQ_F_TIMEOUT_BIT,
519 REQ_F_ISREG_BIT,
520 REQ_F_MUST_PUNT_BIT,
521 REQ_F_TIMEOUT_NOSEQ_BIT,
522 REQ_F_COMP_LOCKED_BIT,
523 REQ_F_NEED_CLEANUP_BIT,
524 REQ_F_OVERFLOW_BIT,
525 REQ_F_POLLED_BIT,
526 REQ_F_BUFFER_SELECTED_BIT,
527 REQ_F_NO_FILE_TABLE_BIT,
528
529 /* not a real bit, just to check we're not overflowing the space */
530 __REQ_F_LAST_BIT,
531 };
532
533 enum {
534 /* ctx owns file */
535 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
536 /* drain existing IO first */
537 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
538 /* linked sqes */
539 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
540 /* doesn't sever on completion < 0 */
541 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
542 /* IOSQE_ASYNC */
543 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
544 /* IOSQE_BUFFER_SELECT */
545 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
546
547 /* head of a link */
548 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
549 /* already grabbed next link */
550 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
551 /* fail rest of links */
552 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
553 /* on inflight list */
554 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
555 /* read/write uses file position */
556 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
557 /* must not punt to workers */
558 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
559 /* polled IO has completed */
560 REQ_F_IOPOLL_COMPLETED = BIT(REQ_F_IOPOLL_COMPLETED_BIT),
561 /* has linked timeout */
562 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
563 /* timeout request */
564 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
565 /* regular file */
566 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
567 /* must be punted even for NONBLOCK */
568 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
569 /* no timeout sequence */
570 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
571 /* completion under lock */
572 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
573 /* needs cleanup */
574 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
575 /* in overflow list */
576 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
577 /* already went through poll handler */
578 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
579 /* buffer already selected */
580 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
581 /* doesn't need file table for this request */
582 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
583 };
584
585 struct async_poll {
586 struct io_poll_iocb poll;
587 struct io_wq_work work;
588 };
589
590 /*
591 * NOTE! Each of the iocb union members has the file pointer
592 * as the first entry in their struct definition. So you can
593 * access the file pointer through any of the sub-structs,
594 * or directly as just 'ki_filp' in this struct.
595 */
596 struct io_kiocb {
597 union {
598 struct file *file;
599 struct io_rw rw;
600 struct io_poll_iocb poll;
601 struct io_accept accept;
602 struct io_sync sync;
603 struct io_cancel cancel;
604 struct io_timeout timeout;
605 struct io_connect connect;
606 struct io_sr_msg sr_msg;
607 struct io_open open;
608 struct io_close close;
609 struct io_files_update files_update;
610 struct io_fadvise fadvise;
611 struct io_madvise madvise;
612 struct io_epoll epoll;
613 struct io_splice splice;
614 struct io_provide_buf pbuf;
615 };
616
617 struct io_async_ctx *io;
618 int cflags;
619 bool needs_fixed_file;
620 u8 opcode;
621
622 u16 buf_index;
623
624 struct io_ring_ctx *ctx;
625 struct list_head list;
626 unsigned int flags;
627 refcount_t refs;
628 struct task_struct *task;
629 unsigned long fsize;
630 u64 user_data;
631 u32 result;
632 u32 sequence;
633
634 struct list_head link_list;
635
636 struct list_head inflight_entry;
637
638 struct percpu_ref *fixed_file_refs;
639
640 union {
641 /*
642 * Only commands that never go async can use the below fields,
643 * obviously. Right now only IORING_OP_POLL_ADD uses them, and
644 * async armed poll handlers for regular commands. The latter
645 * restore the work, if needed.
646 */
647 struct {
648 struct callback_head task_work;
649 struct hlist_node hash_node;
650 struct async_poll *apoll;
651 };
652 struct io_wq_work work;
653 };
654 };
655
656 #define IO_PLUG_THRESHOLD 2
657 #define IO_IOPOLL_BATCH 8
658
659 struct io_submit_state {
660 struct blk_plug plug;
661
662 /*
663 * io_kiocb alloc cache
664 */
665 void *reqs[IO_IOPOLL_BATCH];
666 unsigned int free_reqs;
667
668 /*
669 * File reference cache
670 */
671 struct file *file;
672 unsigned int fd;
673 unsigned int has_refs;
674 unsigned int used_refs;
675 unsigned int ios_left;
676 };
677
678 struct io_op_def {
679 /* needs req->io allocated for deferral/async */
680 unsigned async_ctx : 1;
681 /* needs current->mm setup, does mm access */
682 unsigned needs_mm : 1;
683 /* needs req->file assigned */
684 unsigned needs_file : 1;
685 /* hash wq insertion if file is a regular file */
686 unsigned hash_reg_file : 1;
687 /* unbound wq insertion if file is a non-regular file */
688 unsigned unbound_nonreg_file : 1;
689 /* opcode is not supported by this kernel */
690 unsigned not_supported : 1;
691 /* needs file table */
692 unsigned file_table : 1;
693 /* needs ->fs */
694 unsigned needs_fs : 1;
695 /* set if opcode supports polled "wait" */
696 unsigned pollin : 1;
697 unsigned pollout : 1;
698 /* op supports buffer selection */
699 unsigned buffer_select : 1;
700 };
701
702 static const struct io_op_def io_op_defs[] = {
703 [IORING_OP_NOP] = {},
704 [IORING_OP_READV] = {
705 .async_ctx = 1,
706 .needs_mm = 1,
707 .needs_file = 1,
708 .unbound_nonreg_file = 1,
709 .pollin = 1,
710 .buffer_select = 1,
711 },
712 [IORING_OP_WRITEV] = {
713 .async_ctx = 1,
714 .needs_mm = 1,
715 .needs_file = 1,
716 .hash_reg_file = 1,
717 .unbound_nonreg_file = 1,
718 .pollout = 1,
719 },
720 [IORING_OP_FSYNC] = {
721 .needs_file = 1,
722 },
723 [IORING_OP_READ_FIXED] = {
724 .needs_file = 1,
725 .unbound_nonreg_file = 1,
726 .pollin = 1,
727 },
728 [IORING_OP_WRITE_FIXED] = {
729 .needs_file = 1,
730 .hash_reg_file = 1,
731 .unbound_nonreg_file = 1,
732 .pollout = 1,
733 },
734 [IORING_OP_POLL_ADD] = {
735 .needs_file = 1,
736 .unbound_nonreg_file = 1,
737 },
738 [IORING_OP_POLL_REMOVE] = {},
739 [IORING_OP_SYNC_FILE_RANGE] = {
740 .needs_file = 1,
741 },
742 [IORING_OP_SENDMSG] = {
743 .async_ctx = 1,
744 .needs_mm = 1,
745 .needs_file = 1,
746 .unbound_nonreg_file = 1,
747 .needs_fs = 1,
748 .pollout = 1,
749 },
750 [IORING_OP_RECVMSG] = {
751 .async_ctx = 1,
752 .needs_mm = 1,
753 .needs_file = 1,
754 .unbound_nonreg_file = 1,
755 .needs_fs = 1,
756 .pollin = 1,
757 .buffer_select = 1,
758 },
759 [IORING_OP_TIMEOUT] = {
760 .async_ctx = 1,
761 .needs_mm = 1,
762 },
763 [IORING_OP_TIMEOUT_REMOVE] = {},
764 [IORING_OP_ACCEPT] = {
765 .needs_mm = 1,
766 .needs_file = 1,
767 .unbound_nonreg_file = 1,
768 .file_table = 1,
769 .pollin = 1,
770 },
771 [IORING_OP_ASYNC_CANCEL] = {},
772 [IORING_OP_LINK_TIMEOUT] = {
773 .async_ctx = 1,
774 .needs_mm = 1,
775 },
776 [IORING_OP_CONNECT] = {
777 .async_ctx = 1,
778 .needs_mm = 1,
779 .needs_file = 1,
780 .unbound_nonreg_file = 1,
781 .pollout = 1,
782 },
783 [IORING_OP_FALLOCATE] = {
784 .needs_file = 1,
785 },
786 [IORING_OP_OPENAT] = {
787 .file_table = 1,
788 .needs_fs = 1,
789 },
790 [IORING_OP_CLOSE] = {
791 .needs_file = 1,
792 .file_table = 1,
793 },
794 [IORING_OP_FILES_UPDATE] = {
795 .needs_mm = 1,
796 .file_table = 1,
797 },
798 [IORING_OP_STATX] = {
799 .needs_mm = 1,
800 .needs_fs = 1,
801 .file_table = 1,
802 },
803 [IORING_OP_READ] = {
804 .needs_mm = 1,
805 .needs_file = 1,
806 .unbound_nonreg_file = 1,
807 .pollin = 1,
808 .buffer_select = 1,
809 },
810 [IORING_OP_WRITE] = {
811 .needs_mm = 1,
812 .needs_file = 1,
813 .unbound_nonreg_file = 1,
814 .pollout = 1,
815 },
816 [IORING_OP_FADVISE] = {
817 .needs_file = 1,
818 },
819 [IORING_OP_MADVISE] = {
820 .needs_mm = 1,
821 },
822 [IORING_OP_SEND] = {
823 .needs_mm = 1,
824 .needs_file = 1,
825 .unbound_nonreg_file = 1,
826 .pollout = 1,
827 },
828 [IORING_OP_RECV] = {
829 .needs_mm = 1,
830 .needs_file = 1,
831 .unbound_nonreg_file = 1,
832 .pollin = 1,
833 .buffer_select = 1,
834 },
835 [IORING_OP_OPENAT2] = {
836 .file_table = 1,
837 .needs_fs = 1,
838 },
839 [IORING_OP_EPOLL_CTL] = {
840 .unbound_nonreg_file = 1,
841 .file_table = 1,
842 },
843 [IORING_OP_SPLICE] = {
844 .needs_file = 1,
845 .hash_reg_file = 1,
846 .unbound_nonreg_file = 1,
847 },
848 [IORING_OP_PROVIDE_BUFFERS] = {},
849 [IORING_OP_REMOVE_BUFFERS] = {},
850 };
851
852 static void io_wq_submit_work(struct io_wq_work **workptr);
853 static void io_cqring_fill_event(struct io_kiocb *req, long res);
854 static void io_put_req(struct io_kiocb *req);
855 static void __io_double_put_req(struct io_kiocb *req);
856 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
857 static void io_queue_linked_timeout(struct io_kiocb *req);
858 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
859 struct io_uring_files_update *ip,
860 unsigned nr_args);
861 static int io_grab_files(struct io_kiocb *req);
862 static void io_cleanup_req(struct io_kiocb *req);
863 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
864 int fd, struct file **out_file, bool fixed);
865 static void __io_queue_sqe(struct io_kiocb *req,
866 const struct io_uring_sqe *sqe);
867
868 static struct kmem_cache *req_cachep;
869
870 static const struct file_operations io_uring_fops;
871
872 struct sock *io_uring_get_socket(struct file *file)
873 {
874 #if defined(CONFIG_UNIX)
875 if (file->f_op == &io_uring_fops) {
876 struct io_ring_ctx *ctx = file->private_data;
877
878 return ctx->ring_sock->sk;
879 }
880 #endif
881 return NULL;
882 }
883 EXPORT_SYMBOL(io_uring_get_socket);
884
885 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
886 {
887 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
888
889 complete(&ctx->completions[0]);
890 }
891
892 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
893 {
894 struct io_ring_ctx *ctx;
895 int hash_bits;
896
897 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
898 if (!ctx)
899 return NULL;
900
901 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
902 if (!ctx->fallback_req)
903 goto err;
904
905 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
906 if (!ctx->completions)
907 goto err;
908
909 /*
910 * Use 5 bits less than the max cq entries, that should give us around
911 * 32 entries per hash list if totally full and uniformly spread.
912 */
913 hash_bits = ilog2(p->cq_entries);
914 hash_bits -= 5;
915 if (hash_bits <= 0)
916 hash_bits = 1;
917 ctx->cancel_hash_bits = hash_bits;
918 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
919 GFP_KERNEL);
920 if (!ctx->cancel_hash)
921 goto err;
922 __hash_init(ctx->cancel_hash, 1U << hash_bits);
923
924 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
925 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
926 goto err;
927
928 ctx->flags = p->flags;
929 init_waitqueue_head(&ctx->sqo_wait);
930 init_waitqueue_head(&ctx->cq_wait);
931 INIT_LIST_HEAD(&ctx->cq_overflow_list);
932 init_completion(&ctx->completions[0]);
933 init_completion(&ctx->completions[1]);
934 idr_init(&ctx->io_buffer_idr);
935 idr_init(&ctx->personality_idr);
936 mutex_init(&ctx->uring_lock);
937 init_waitqueue_head(&ctx->wait);
938 spin_lock_init(&ctx->completion_lock);
939 INIT_LIST_HEAD(&ctx->poll_list);
940 INIT_LIST_HEAD(&ctx->defer_list);
941 INIT_LIST_HEAD(&ctx->timeout_list);
942 init_waitqueue_head(&ctx->inflight_wait);
943 spin_lock_init(&ctx->inflight_lock);
944 INIT_LIST_HEAD(&ctx->inflight_list);
945 return ctx;
946 err:
947 if (ctx->fallback_req)
948 kmem_cache_free(req_cachep, ctx->fallback_req);
949 kfree(ctx->completions);
950 kfree(ctx->cancel_hash);
951 kfree(ctx);
952 return NULL;
953 }
954
955 static inline bool __req_need_defer(struct io_kiocb *req)
956 {
957 struct io_ring_ctx *ctx = req->ctx;
958
959 return req->sequence != ctx->cached_cq_tail
960 + atomic_read(&ctx->cached_cq_overflow);
961 }
962
963 static inline bool req_need_defer(struct io_kiocb *req)
964 {
965 if (unlikely(req->flags & REQ_F_IO_DRAIN))
966 return __req_need_defer(req);
967
968 return false;
969 }
970
971 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
972 {
973 struct io_kiocb *req;
974
975 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
976 if (req && !req_need_defer(req)) {
977 list_del_init(&req->list);
978 return req;
979 }
980
981 return NULL;
982 }
983
984 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
985 {
986 struct io_kiocb *req;
987
988 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
989 if (req) {
990 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
991 return NULL;
992 if (!__req_need_defer(req)) {
993 list_del_init(&req->list);
994 return req;
995 }
996 }
997
998 return NULL;
999 }
1000
1001 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1002 {
1003 struct io_rings *rings = ctx->rings;
1004
1005 /* order cqe stores with ring update */
1006 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1007
1008 if (wq_has_sleeper(&ctx->cq_wait)) {
1009 wake_up_interruptible(&ctx->cq_wait);
1010 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1011 }
1012 }
1013
1014 static inline void io_req_work_grab_env(struct io_kiocb *req,
1015 const struct io_op_def *def)
1016 {
1017 if (!req->work.mm && def->needs_mm) {
1018 mmgrab(current->mm);
1019 req->work.mm = current->mm;
1020 }
1021 if (!req->work.creds)
1022 req->work.creds = get_current_cred();
1023 if (!req->work.fs && def->needs_fs) {
1024 spin_lock(&current->fs->lock);
1025 if (!current->fs->in_exec) {
1026 req->work.fs = current->fs;
1027 req->work.fs->users++;
1028 } else {
1029 req->work.flags |= IO_WQ_WORK_CANCEL;
1030 }
1031 spin_unlock(&current->fs->lock);
1032 }
1033 if (!req->work.task_pid)
1034 req->work.task_pid = task_pid_vnr(current);
1035 }
1036
1037 static inline void io_req_work_drop_env(struct io_kiocb *req)
1038 {
1039 if (req->work.mm) {
1040 mmdrop(req->work.mm);
1041 req->work.mm = NULL;
1042 }
1043 if (req->work.creds) {
1044 put_cred(req->work.creds);
1045 req->work.creds = NULL;
1046 }
1047 if (req->work.fs) {
1048 struct fs_struct *fs = req->work.fs;
1049
1050 spin_lock(&req->work.fs->lock);
1051 if (--fs->users)
1052 fs = NULL;
1053 spin_unlock(&req->work.fs->lock);
1054 if (fs)
1055 free_fs_struct(fs);
1056 }
1057 }
1058
1059 static inline void io_prep_async_work(struct io_kiocb *req,
1060 struct io_kiocb **link)
1061 {
1062 const struct io_op_def *def = &io_op_defs[req->opcode];
1063
1064 if (req->flags & REQ_F_ISREG) {
1065 if (def->hash_reg_file)
1066 io_wq_hash_work(&req->work, file_inode(req->file));
1067 } else {
1068 if (def->unbound_nonreg_file)
1069 req->work.flags |= IO_WQ_WORK_UNBOUND;
1070 }
1071
1072 io_req_work_grab_env(req, def);
1073
1074 *link = io_prep_linked_timeout(req);
1075 }
1076
1077 static inline void io_queue_async_work(struct io_kiocb *req)
1078 {
1079 struct io_ring_ctx *ctx = req->ctx;
1080 struct io_kiocb *link;
1081
1082 io_prep_async_work(req, &link);
1083
1084 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1085 &req->work, req->flags);
1086 io_wq_enqueue(ctx->io_wq, &req->work);
1087
1088 if (link)
1089 io_queue_linked_timeout(link);
1090 }
1091
1092 static void io_kill_timeout(struct io_kiocb *req)
1093 {
1094 int ret;
1095
1096 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1097 if (ret != -1) {
1098 atomic_inc(&req->ctx->cq_timeouts);
1099 list_del_init(&req->list);
1100 req->flags |= REQ_F_COMP_LOCKED;
1101 io_cqring_fill_event(req, 0);
1102 io_put_req(req);
1103 }
1104 }
1105
1106 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1107 {
1108 struct io_kiocb *req, *tmp;
1109
1110 spin_lock_irq(&ctx->completion_lock);
1111 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1112 io_kill_timeout(req);
1113 spin_unlock_irq(&ctx->completion_lock);
1114 }
1115
1116 static void io_commit_cqring(struct io_ring_ctx *ctx)
1117 {
1118 struct io_kiocb *req;
1119
1120 while ((req = io_get_timeout_req(ctx)) != NULL)
1121 io_kill_timeout(req);
1122
1123 __io_commit_cqring(ctx);
1124
1125 while ((req = io_get_deferred_req(ctx)) != NULL)
1126 io_queue_async_work(req);
1127 }
1128
1129 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1130 {
1131 struct io_rings *rings = ctx->rings;
1132 unsigned tail;
1133
1134 tail = ctx->cached_cq_tail;
1135 /*
1136 * writes to the cq entry need to come after reading head; the
1137 * control dependency is enough as we're using WRITE_ONCE to
1138 * fill the cq entry
1139 */
1140 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1141 return NULL;
1142
1143 ctx->cached_cq_tail++;
1144 return &rings->cqes[tail & ctx->cq_mask];
1145 }
1146
1147 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1148 {
1149 if (!ctx->cq_ev_fd)
1150 return false;
1151 if (!ctx->eventfd_async)
1152 return true;
1153 return io_wq_current_is_worker();
1154 }
1155
1156 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1157 {
1158 if (waitqueue_active(&ctx->wait))
1159 wake_up(&ctx->wait);
1160 if (waitqueue_active(&ctx->sqo_wait))
1161 wake_up(&ctx->sqo_wait);
1162 if (io_should_trigger_evfd(ctx))
1163 eventfd_signal(ctx->cq_ev_fd, 1);
1164 }
1165
1166 /* Returns true if there are no backlogged entries after the flush */
1167 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1168 {
1169 struct io_rings *rings = ctx->rings;
1170 struct io_uring_cqe *cqe;
1171 struct io_kiocb *req;
1172 unsigned long flags;
1173 LIST_HEAD(list);
1174
1175 if (!force) {
1176 if (list_empty_careful(&ctx->cq_overflow_list))
1177 return true;
1178 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1179 rings->cq_ring_entries))
1180 return false;
1181 }
1182
1183 spin_lock_irqsave(&ctx->completion_lock, flags);
1184
1185 /* if force is set, the ring is going away. always drop after that */
1186 if (force)
1187 ctx->cq_overflow_flushed = 1;
1188
1189 cqe = NULL;
1190 while (!list_empty(&ctx->cq_overflow_list)) {
1191 cqe = io_get_cqring(ctx);
1192 if (!cqe && !force)
1193 break;
1194
1195 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1196 list);
1197 list_move(&req->list, &list);
1198 req->flags &= ~REQ_F_OVERFLOW;
1199 if (cqe) {
1200 WRITE_ONCE(cqe->user_data, req->user_data);
1201 WRITE_ONCE(cqe->res, req->result);
1202 WRITE_ONCE(cqe->flags, req->cflags);
1203 } else {
1204 WRITE_ONCE(ctx->rings->cq_overflow,
1205 atomic_inc_return(&ctx->cached_cq_overflow));
1206 }
1207 }
1208
1209 io_commit_cqring(ctx);
1210 if (cqe) {
1211 clear_bit(0, &ctx->sq_check_overflow);
1212 clear_bit(0, &ctx->cq_check_overflow);
1213 }
1214 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1215 io_cqring_ev_posted(ctx);
1216
1217 while (!list_empty(&list)) {
1218 req = list_first_entry(&list, struct io_kiocb, list);
1219 list_del(&req->list);
1220 io_put_req(req);
1221 }
1222
1223 return cqe != NULL;
1224 }
1225
1226 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1227 {
1228 struct io_ring_ctx *ctx = req->ctx;
1229 struct io_uring_cqe *cqe;
1230
1231 trace_io_uring_complete(ctx, req->user_data, res);
1232
1233 /*
1234 * If we can't get a cq entry, userspace overflowed the
1235 * submission (by quite a lot). Increment the overflow count in
1236 * the ring.
1237 */
1238 cqe = io_get_cqring(ctx);
1239 if (likely(cqe)) {
1240 WRITE_ONCE(cqe->user_data, req->user_data);
1241 WRITE_ONCE(cqe->res, res);
1242 WRITE_ONCE(cqe->flags, cflags);
1243 } else if (ctx->cq_overflow_flushed) {
1244 WRITE_ONCE(ctx->rings->cq_overflow,
1245 atomic_inc_return(&ctx->cached_cq_overflow));
1246 } else {
1247 if (list_empty(&ctx->cq_overflow_list)) {
1248 set_bit(0, &ctx->sq_check_overflow);
1249 set_bit(0, &ctx->cq_check_overflow);
1250 }
1251 req->flags |= REQ_F_OVERFLOW;
1252 refcount_inc(&req->refs);
1253 req->result = res;
1254 req->cflags = cflags;
1255 list_add_tail(&req->list, &ctx->cq_overflow_list);
1256 }
1257 }
1258
1259 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1260 {
1261 __io_cqring_fill_event(req, res, 0);
1262 }
1263
1264 static void __io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1265 {
1266 struct io_ring_ctx *ctx = req->ctx;
1267 unsigned long flags;
1268
1269 spin_lock_irqsave(&ctx->completion_lock, flags);
1270 __io_cqring_fill_event(req, res, cflags);
1271 io_commit_cqring(ctx);
1272 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1273
1274 io_cqring_ev_posted(ctx);
1275 }
1276
1277 static void io_cqring_add_event(struct io_kiocb *req, long res)
1278 {
1279 __io_cqring_add_event(req, res, 0);
1280 }
1281
1282 static inline bool io_is_fallback_req(struct io_kiocb *req)
1283 {
1284 return req == (struct io_kiocb *)
1285 ((unsigned long) req->ctx->fallback_req & ~1UL);
1286 }
1287
1288 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1289 {
1290 struct io_kiocb *req;
1291
1292 req = ctx->fallback_req;
1293 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1294 return req;
1295
1296 return NULL;
1297 }
1298
1299 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1300 struct io_submit_state *state)
1301 {
1302 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1303 struct io_kiocb *req;
1304
1305 if (!state) {
1306 req = kmem_cache_alloc(req_cachep, gfp);
1307 if (unlikely(!req))
1308 goto fallback;
1309 } else if (!state->free_reqs) {
1310 size_t sz;
1311 int ret;
1312
1313 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1314 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1315
1316 /*
1317 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1318 * retry single alloc to be on the safe side.
1319 */
1320 if (unlikely(ret <= 0)) {
1321 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1322 if (!state->reqs[0])
1323 goto fallback;
1324 ret = 1;
1325 }
1326 state->free_reqs = ret - 1;
1327 req = state->reqs[ret - 1];
1328 } else {
1329 state->free_reqs--;
1330 req = state->reqs[state->free_reqs];
1331 }
1332
1333 return req;
1334 fallback:
1335 return io_get_fallback_req(ctx);
1336 }
1337
1338 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1339 bool fixed)
1340 {
1341 if (fixed)
1342 percpu_ref_put(req->fixed_file_refs);
1343 else
1344 fput(file);
1345 }
1346
1347 static void __io_req_aux_free(struct io_kiocb *req)
1348 {
1349 if (req->flags & REQ_F_NEED_CLEANUP)
1350 io_cleanup_req(req);
1351
1352 kfree(req->io);
1353 if (req->file)
1354 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1355 if (req->task)
1356 put_task_struct(req->task);
1357
1358 io_req_work_drop_env(req);
1359 }
1360
1361 static void __io_free_req(struct io_kiocb *req)
1362 {
1363 __io_req_aux_free(req);
1364
1365 if (req->flags & REQ_F_INFLIGHT) {
1366 struct io_ring_ctx *ctx = req->ctx;
1367 unsigned long flags;
1368
1369 spin_lock_irqsave(&ctx->inflight_lock, flags);
1370 list_del(&req->inflight_entry);
1371 if (waitqueue_active(&ctx->inflight_wait))
1372 wake_up(&ctx->inflight_wait);
1373 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1374 }
1375
1376 percpu_ref_put(&req->ctx->refs);
1377 if (likely(!io_is_fallback_req(req)))
1378 kmem_cache_free(req_cachep, req);
1379 else
1380 clear_bit_unlock(0, (unsigned long *) &req->ctx->fallback_req);
1381 }
1382
1383 struct req_batch {
1384 void *reqs[IO_IOPOLL_BATCH];
1385 int to_free;
1386 int need_iter;
1387 };
1388
1389 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1390 {
1391 if (!rb->to_free)
1392 return;
1393 if (rb->need_iter) {
1394 int i, inflight = 0;
1395 unsigned long flags;
1396
1397 for (i = 0; i < rb->to_free; i++) {
1398 struct io_kiocb *req = rb->reqs[i];
1399
1400 if (req->flags & REQ_F_INFLIGHT)
1401 inflight++;
1402 __io_req_aux_free(req);
1403 }
1404 if (!inflight)
1405 goto do_free;
1406
1407 spin_lock_irqsave(&ctx->inflight_lock, flags);
1408 for (i = 0; i < rb->to_free; i++) {
1409 struct io_kiocb *req = rb->reqs[i];
1410
1411 if (req->flags & REQ_F_INFLIGHT) {
1412 list_del(&req->inflight_entry);
1413 if (!--inflight)
1414 break;
1415 }
1416 }
1417 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1418
1419 if (waitqueue_active(&ctx->inflight_wait))
1420 wake_up(&ctx->inflight_wait);
1421 }
1422 do_free:
1423 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1424 percpu_ref_put_many(&ctx->refs, rb->to_free);
1425 rb->to_free = rb->need_iter = 0;
1426 }
1427
1428 static bool io_link_cancel_timeout(struct io_kiocb *req)
1429 {
1430 struct io_ring_ctx *ctx = req->ctx;
1431 int ret;
1432
1433 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1434 if (ret != -1) {
1435 io_cqring_fill_event(req, -ECANCELED);
1436 io_commit_cqring(ctx);
1437 req->flags &= ~REQ_F_LINK_HEAD;
1438 io_put_req(req);
1439 return true;
1440 }
1441
1442 return false;
1443 }
1444
1445 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1446 {
1447 struct io_ring_ctx *ctx = req->ctx;
1448 bool wake_ev = false;
1449
1450 /* Already got next link */
1451 if (req->flags & REQ_F_LINK_NEXT)
1452 return;
1453
1454 /*
1455 * The list should never be empty when we are called here. But could
1456 * potentially happen if the chain is messed up, check to be on the
1457 * safe side.
1458 */
1459 while (!list_empty(&req->link_list)) {
1460 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1461 struct io_kiocb, link_list);
1462
1463 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1464 (nxt->flags & REQ_F_TIMEOUT))) {
1465 list_del_init(&nxt->link_list);
1466 wake_ev |= io_link_cancel_timeout(nxt);
1467 req->flags &= ~REQ_F_LINK_TIMEOUT;
1468 continue;
1469 }
1470
1471 list_del_init(&req->link_list);
1472 if (!list_empty(&nxt->link_list))
1473 nxt->flags |= REQ_F_LINK_HEAD;
1474 *nxtptr = nxt;
1475 break;
1476 }
1477
1478 req->flags |= REQ_F_LINK_NEXT;
1479 if (wake_ev)
1480 io_cqring_ev_posted(ctx);
1481 }
1482
1483 /*
1484 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1485 */
1486 static void io_fail_links(struct io_kiocb *req)
1487 {
1488 struct io_ring_ctx *ctx = req->ctx;
1489 unsigned long flags;
1490
1491 spin_lock_irqsave(&ctx->completion_lock, flags);
1492
1493 while (!list_empty(&req->link_list)) {
1494 struct io_kiocb *link = list_first_entry(&req->link_list,
1495 struct io_kiocb, link_list);
1496
1497 list_del_init(&link->link_list);
1498 trace_io_uring_fail_link(req, link);
1499
1500 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1501 link->opcode == IORING_OP_LINK_TIMEOUT) {
1502 io_link_cancel_timeout(link);
1503 } else {
1504 io_cqring_fill_event(link, -ECANCELED);
1505 __io_double_put_req(link);
1506 }
1507 req->flags &= ~REQ_F_LINK_TIMEOUT;
1508 }
1509
1510 io_commit_cqring(ctx);
1511 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1512 io_cqring_ev_posted(ctx);
1513 }
1514
1515 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1516 {
1517 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1518 return;
1519
1520 /*
1521 * If LINK is set, we have dependent requests in this chain. If we
1522 * didn't fail this request, queue the first one up, moving any other
1523 * dependencies to the next request. In case of failure, fail the rest
1524 * of the chain.
1525 */
1526 if (req->flags & REQ_F_FAIL_LINK) {
1527 io_fail_links(req);
1528 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1529 REQ_F_LINK_TIMEOUT) {
1530 struct io_ring_ctx *ctx = req->ctx;
1531 unsigned long flags;
1532
1533 /*
1534 * If this is a timeout link, we could be racing with the
1535 * timeout timer. Grab the completion lock for this case to
1536 * protect against that.
1537 */
1538 spin_lock_irqsave(&ctx->completion_lock, flags);
1539 io_req_link_next(req, nxt);
1540 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1541 } else {
1542 io_req_link_next(req, nxt);
1543 }
1544 }
1545
1546 static void io_free_req(struct io_kiocb *req)
1547 {
1548 struct io_kiocb *nxt = NULL;
1549
1550 io_req_find_next(req, &nxt);
1551 __io_free_req(req);
1552
1553 if (nxt)
1554 io_queue_async_work(nxt);
1555 }
1556
1557 static void io_link_work_cb(struct io_wq_work **workptr)
1558 {
1559 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
1560 struct io_kiocb *link;
1561
1562 link = list_first_entry(&req->link_list, struct io_kiocb, link_list);
1563 io_queue_linked_timeout(link);
1564 io_wq_submit_work(workptr);
1565 }
1566
1567 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
1568 {
1569 struct io_kiocb *link;
1570 const struct io_op_def *def = &io_op_defs[nxt->opcode];
1571
1572 if ((nxt->flags & REQ_F_ISREG) && def->hash_reg_file)
1573 io_wq_hash_work(&nxt->work, file_inode(nxt->file));
1574
1575 *workptr = &nxt->work;
1576 link = io_prep_linked_timeout(nxt);
1577 if (link)
1578 nxt->work.func = io_link_work_cb;
1579 }
1580
1581 /*
1582 * Drop reference to request, return next in chain (if there is one) if this
1583 * was the last reference to this request.
1584 */
1585 __attribute__((nonnull))
1586 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1587 {
1588 if (refcount_dec_and_test(&req->refs)) {
1589 io_req_find_next(req, nxtptr);
1590 __io_free_req(req);
1591 }
1592 }
1593
1594 static void io_put_req(struct io_kiocb *req)
1595 {
1596 if (refcount_dec_and_test(&req->refs))
1597 io_free_req(req);
1598 }
1599
1600 static void io_steal_work(struct io_kiocb *req,
1601 struct io_wq_work **workptr)
1602 {
1603 /*
1604 * It's in an io-wq worker, so there always should be at least
1605 * one reference, which will be dropped in io_put_work() just
1606 * after the current handler returns.
1607 *
1608 * It also means, that if the counter dropped to 1, then there is
1609 * no asynchronous users left, so it's safe to steal the next work.
1610 */
1611 if (refcount_read(&req->refs) == 1) {
1612 struct io_kiocb *nxt = NULL;
1613
1614 io_req_find_next(req, &nxt);
1615 if (nxt)
1616 io_wq_assign_next(workptr, nxt);
1617 }
1618 }
1619
1620 /*
1621 * Must only be used if we don't need to care about links, usually from
1622 * within the completion handling itself.
1623 */
1624 static void __io_double_put_req(struct io_kiocb *req)
1625 {
1626 /* drop both submit and complete references */
1627 if (refcount_sub_and_test(2, &req->refs))
1628 __io_free_req(req);
1629 }
1630
1631 static void io_double_put_req(struct io_kiocb *req)
1632 {
1633 /* drop both submit and complete references */
1634 if (refcount_sub_and_test(2, &req->refs))
1635 io_free_req(req);
1636 }
1637
1638 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1639 {
1640 struct io_rings *rings = ctx->rings;
1641
1642 if (test_bit(0, &ctx->cq_check_overflow)) {
1643 /*
1644 * noflush == true is from the waitqueue handler, just ensure
1645 * we wake up the task, and the next invocation will flush the
1646 * entries. We cannot safely to it from here.
1647 */
1648 if (noflush && !list_empty(&ctx->cq_overflow_list))
1649 return -1U;
1650
1651 io_cqring_overflow_flush(ctx, false);
1652 }
1653
1654 /* See comment at the top of this file */
1655 smp_rmb();
1656 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1657 }
1658
1659 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1660 {
1661 struct io_rings *rings = ctx->rings;
1662
1663 /* make sure SQ entry isn't read before tail */
1664 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1665 }
1666
1667 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1668 {
1669 if ((req->flags & REQ_F_LINK_HEAD) || io_is_fallback_req(req))
1670 return false;
1671
1672 if (req->file || req->io)
1673 rb->need_iter++;
1674
1675 rb->reqs[rb->to_free++] = req;
1676 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1677 io_free_req_many(req->ctx, rb);
1678 return true;
1679 }
1680
1681 static int io_put_kbuf(struct io_kiocb *req)
1682 {
1683 struct io_buffer *kbuf;
1684 int cflags;
1685
1686 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
1687 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
1688 cflags |= IORING_CQE_F_BUFFER;
1689 req->rw.addr = 0;
1690 kfree(kbuf);
1691 return cflags;
1692 }
1693
1694 /*
1695 * Find and free completed poll iocbs
1696 */
1697 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1698 struct list_head *done)
1699 {
1700 struct req_batch rb;
1701 struct io_kiocb *req;
1702
1703 rb.to_free = rb.need_iter = 0;
1704 while (!list_empty(done)) {
1705 int cflags = 0;
1706
1707 req = list_first_entry(done, struct io_kiocb, list);
1708 list_del(&req->list);
1709
1710 if (req->flags & REQ_F_BUFFER_SELECTED)
1711 cflags = io_put_kbuf(req);
1712
1713 __io_cqring_fill_event(req, req->result, cflags);
1714 (*nr_events)++;
1715
1716 if (refcount_dec_and_test(&req->refs) &&
1717 !io_req_multi_free(&rb, req))
1718 io_free_req(req);
1719 }
1720
1721 io_commit_cqring(ctx);
1722 if (ctx->flags & IORING_SETUP_SQPOLL)
1723 io_cqring_ev_posted(ctx);
1724 io_free_req_many(ctx, &rb);
1725 }
1726
1727 static void io_iopoll_queue(struct list_head *again)
1728 {
1729 struct io_kiocb *req;
1730
1731 do {
1732 req = list_first_entry(again, struct io_kiocb, list);
1733 list_del(&req->list);
1734 refcount_inc(&req->refs);
1735 io_queue_async_work(req);
1736 } while (!list_empty(again));
1737 }
1738
1739 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1740 long min)
1741 {
1742 struct io_kiocb *req, *tmp;
1743 LIST_HEAD(done);
1744 LIST_HEAD(again);
1745 bool spin;
1746 int ret;
1747
1748 /*
1749 * Only spin for completions if we don't have multiple devices hanging
1750 * off our complete list, and we're under the requested amount.
1751 */
1752 spin = !ctx->poll_multi_file && *nr_events < min;
1753
1754 ret = 0;
1755 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1756 struct kiocb *kiocb = &req->rw.kiocb;
1757
1758 /*
1759 * Move completed and retryable entries to our local lists.
1760 * If we find a request that requires polling, break out
1761 * and complete those lists first, if we have entries there.
1762 */
1763 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1764 list_move_tail(&req->list, &done);
1765 continue;
1766 }
1767 if (!list_empty(&done))
1768 break;
1769
1770 if (req->result == -EAGAIN) {
1771 list_move_tail(&req->list, &again);
1772 continue;
1773 }
1774 if (!list_empty(&again))
1775 break;
1776
1777 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1778 if (ret < 0)
1779 break;
1780
1781 if (ret && spin)
1782 spin = false;
1783 ret = 0;
1784 }
1785
1786 if (!list_empty(&done))
1787 io_iopoll_complete(ctx, nr_events, &done);
1788
1789 if (!list_empty(&again))
1790 io_iopoll_queue(&again);
1791
1792 return ret;
1793 }
1794
1795 /*
1796 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1797 * non-spinning poll check - we'll still enter the driver poll loop, but only
1798 * as a non-spinning completion check.
1799 */
1800 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1801 long min)
1802 {
1803 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1804 int ret;
1805
1806 ret = io_do_iopoll(ctx, nr_events, min);
1807 if (ret < 0)
1808 return ret;
1809 if (!min || *nr_events >= min)
1810 return 0;
1811 }
1812
1813 return 1;
1814 }
1815
1816 /*
1817 * We can't just wait for polled events to come to us, we have to actively
1818 * find and complete them.
1819 */
1820 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1821 {
1822 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1823 return;
1824
1825 mutex_lock(&ctx->uring_lock);
1826 while (!list_empty(&ctx->poll_list)) {
1827 unsigned int nr_events = 0;
1828
1829 io_iopoll_getevents(ctx, &nr_events, 1);
1830
1831 /*
1832 * Ensure we allow local-to-the-cpu processing to take place,
1833 * in this case we need to ensure that we reap all events.
1834 */
1835 cond_resched();
1836 }
1837 mutex_unlock(&ctx->uring_lock);
1838 }
1839
1840 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1841 long min)
1842 {
1843 int iters = 0, ret = 0;
1844
1845 /*
1846 * We disallow the app entering submit/complete with polling, but we
1847 * still need to lock the ring to prevent racing with polled issue
1848 * that got punted to a workqueue.
1849 */
1850 mutex_lock(&ctx->uring_lock);
1851 do {
1852 int tmin = 0;
1853
1854 /*
1855 * Don't enter poll loop if we already have events pending.
1856 * If we do, we can potentially be spinning for commands that
1857 * already triggered a CQE (eg in error).
1858 */
1859 if (io_cqring_events(ctx, false))
1860 break;
1861
1862 /*
1863 * If a submit got punted to a workqueue, we can have the
1864 * application entering polling for a command before it gets
1865 * issued. That app will hold the uring_lock for the duration
1866 * of the poll right here, so we need to take a breather every
1867 * now and then to ensure that the issue has a chance to add
1868 * the poll to the issued list. Otherwise we can spin here
1869 * forever, while the workqueue is stuck trying to acquire the
1870 * very same mutex.
1871 */
1872 if (!(++iters & 7)) {
1873 mutex_unlock(&ctx->uring_lock);
1874 mutex_lock(&ctx->uring_lock);
1875 }
1876
1877 if (*nr_events < min)
1878 tmin = min - *nr_events;
1879
1880 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1881 if (ret <= 0)
1882 break;
1883 ret = 0;
1884 } while (min && !*nr_events && !need_resched());
1885
1886 mutex_unlock(&ctx->uring_lock);
1887 return ret;
1888 }
1889
1890 static void kiocb_end_write(struct io_kiocb *req)
1891 {
1892 /*
1893 * Tell lockdep we inherited freeze protection from submission
1894 * thread.
1895 */
1896 if (req->flags & REQ_F_ISREG) {
1897 struct inode *inode = file_inode(req->file);
1898
1899 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1900 }
1901 file_end_write(req->file);
1902 }
1903
1904 static inline void req_set_fail_links(struct io_kiocb *req)
1905 {
1906 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1907 req->flags |= REQ_F_FAIL_LINK;
1908 }
1909
1910 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1911 {
1912 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1913 int cflags = 0;
1914
1915 if (kiocb->ki_flags & IOCB_WRITE)
1916 kiocb_end_write(req);
1917
1918 if (res != req->result)
1919 req_set_fail_links(req);
1920 if (req->flags & REQ_F_BUFFER_SELECTED)
1921 cflags = io_put_kbuf(req);
1922 __io_cqring_add_event(req, res, cflags);
1923 }
1924
1925 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1926 {
1927 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1928
1929 io_complete_rw_common(kiocb, res);
1930 io_put_req(req);
1931 }
1932
1933 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1934 {
1935 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1936
1937 if (kiocb->ki_flags & IOCB_WRITE)
1938 kiocb_end_write(req);
1939
1940 if (res != req->result)
1941 req_set_fail_links(req);
1942 req->result = res;
1943 if (res != -EAGAIN)
1944 req->flags |= REQ_F_IOPOLL_COMPLETED;
1945 }
1946
1947 /*
1948 * After the iocb has been issued, it's safe to be found on the poll list.
1949 * Adding the kiocb to the list AFTER submission ensures that we don't
1950 * find it from a io_iopoll_getevents() thread before the issuer is done
1951 * accessing the kiocb cookie.
1952 */
1953 static void io_iopoll_req_issued(struct io_kiocb *req)
1954 {
1955 struct io_ring_ctx *ctx = req->ctx;
1956
1957 /*
1958 * Track whether we have multiple files in our lists. This will impact
1959 * how we do polling eventually, not spinning if we're on potentially
1960 * different devices.
1961 */
1962 if (list_empty(&ctx->poll_list)) {
1963 ctx->poll_multi_file = false;
1964 } else if (!ctx->poll_multi_file) {
1965 struct io_kiocb *list_req;
1966
1967 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1968 list);
1969 if (list_req->file != req->file)
1970 ctx->poll_multi_file = true;
1971 }
1972
1973 /*
1974 * For fast devices, IO may have already completed. If it has, add
1975 * it to the front so we find it first.
1976 */
1977 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1978 list_add(&req->list, &ctx->poll_list);
1979 else
1980 list_add_tail(&req->list, &ctx->poll_list);
1981
1982 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1983 wq_has_sleeper(&ctx->sqo_wait))
1984 wake_up(&ctx->sqo_wait);
1985 }
1986
1987 static void io_file_put(struct io_submit_state *state)
1988 {
1989 if (state->file) {
1990 int diff = state->has_refs - state->used_refs;
1991
1992 if (diff)
1993 fput_many(state->file, diff);
1994 state->file = NULL;
1995 }
1996 }
1997
1998 /*
1999 * Get as many references to a file as we have IOs left in this submission,
2000 * assuming most submissions are for one file, or at least that each file
2001 * has more than one submission.
2002 */
2003 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2004 {
2005 if (!state)
2006 return fget(fd);
2007
2008 if (state->file) {
2009 if (state->fd == fd) {
2010 state->used_refs++;
2011 state->ios_left--;
2012 return state->file;
2013 }
2014 io_file_put(state);
2015 }
2016 state->file = fget_many(fd, state->ios_left);
2017 if (!state->file)
2018 return NULL;
2019
2020 state->fd = fd;
2021 state->has_refs = state->ios_left;
2022 state->used_refs = 1;
2023 state->ios_left--;
2024 return state->file;
2025 }
2026
2027 /*
2028 * If we tracked the file through the SCM inflight mechanism, we could support
2029 * any file. For now, just ensure that anything potentially problematic is done
2030 * inline.
2031 */
2032 static bool io_file_supports_async(struct file *file, int rw)
2033 {
2034 umode_t mode = file_inode(file)->i_mode;
2035
2036 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
2037 return true;
2038 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
2039 return true;
2040
2041 if (!(file->f_mode & FMODE_NOWAIT))
2042 return false;
2043
2044 if (rw == READ)
2045 return file->f_op->read_iter != NULL;
2046
2047 return file->f_op->write_iter != NULL;
2048 }
2049
2050 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2051 bool force_nonblock)
2052 {
2053 struct io_ring_ctx *ctx = req->ctx;
2054 struct kiocb *kiocb = &req->rw.kiocb;
2055 unsigned ioprio;
2056 int ret;
2057
2058 if (S_ISREG(file_inode(req->file)->i_mode))
2059 req->flags |= REQ_F_ISREG;
2060
2061 kiocb->ki_pos = READ_ONCE(sqe->off);
2062 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2063 req->flags |= REQ_F_CUR_POS;
2064 kiocb->ki_pos = req->file->f_pos;
2065 }
2066 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2067 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2068 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2069 if (unlikely(ret))
2070 return ret;
2071
2072 ioprio = READ_ONCE(sqe->ioprio);
2073 if (ioprio) {
2074 ret = ioprio_check_cap(ioprio);
2075 if (ret)
2076 return ret;
2077
2078 kiocb->ki_ioprio = ioprio;
2079 } else
2080 kiocb->ki_ioprio = get_current_ioprio();
2081
2082 /* don't allow async punt if RWF_NOWAIT was requested */
2083 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2084 (req->file->f_flags & O_NONBLOCK))
2085 req->flags |= REQ_F_NOWAIT;
2086
2087 if (force_nonblock)
2088 kiocb->ki_flags |= IOCB_NOWAIT;
2089
2090 if (ctx->flags & IORING_SETUP_IOPOLL) {
2091 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2092 !kiocb->ki_filp->f_op->iopoll)
2093 return -EOPNOTSUPP;
2094
2095 kiocb->ki_flags |= IOCB_HIPRI;
2096 kiocb->ki_complete = io_complete_rw_iopoll;
2097 req->result = 0;
2098 } else {
2099 if (kiocb->ki_flags & IOCB_HIPRI)
2100 return -EINVAL;
2101 kiocb->ki_complete = io_complete_rw;
2102 }
2103
2104 req->rw.addr = READ_ONCE(sqe->addr);
2105 req->rw.len = READ_ONCE(sqe->len);
2106 req->buf_index = READ_ONCE(sqe->buf_index);
2107 return 0;
2108 }
2109
2110 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2111 {
2112 switch (ret) {
2113 case -EIOCBQUEUED:
2114 break;
2115 case -ERESTARTSYS:
2116 case -ERESTARTNOINTR:
2117 case -ERESTARTNOHAND:
2118 case -ERESTART_RESTARTBLOCK:
2119 /*
2120 * We can't just restart the syscall, since previously
2121 * submitted sqes may already be in progress. Just fail this
2122 * IO with EINTR.
2123 */
2124 ret = -EINTR;
2125 /* fall through */
2126 default:
2127 kiocb->ki_complete(kiocb, ret, 0);
2128 }
2129 }
2130
2131 static void kiocb_done(struct kiocb *kiocb, ssize_t ret)
2132 {
2133 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2134
2135 if (req->flags & REQ_F_CUR_POS)
2136 req->file->f_pos = kiocb->ki_pos;
2137 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2138 io_complete_rw(kiocb, ret, 0);
2139 else
2140 io_rw_done(kiocb, ret);
2141 }
2142
2143 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2144 struct iov_iter *iter)
2145 {
2146 struct io_ring_ctx *ctx = req->ctx;
2147 size_t len = req->rw.len;
2148 struct io_mapped_ubuf *imu;
2149 u16 index, buf_index;
2150 size_t offset;
2151 u64 buf_addr;
2152
2153 /* attempt to use fixed buffers without having provided iovecs */
2154 if (unlikely(!ctx->user_bufs))
2155 return -EFAULT;
2156
2157 buf_index = req->buf_index;
2158 if (unlikely(buf_index >= ctx->nr_user_bufs))
2159 return -EFAULT;
2160
2161 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2162 imu = &ctx->user_bufs[index];
2163 buf_addr = req->rw.addr;
2164
2165 /* overflow */
2166 if (buf_addr + len < buf_addr)
2167 return -EFAULT;
2168 /* not inside the mapped region */
2169 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2170 return -EFAULT;
2171
2172 /*
2173 * May not be a start of buffer, set size appropriately
2174 * and advance us to the beginning.
2175 */
2176 offset = buf_addr - imu->ubuf;
2177 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2178
2179 if (offset) {
2180 /*
2181 * Don't use iov_iter_advance() here, as it's really slow for
2182 * using the latter parts of a big fixed buffer - it iterates
2183 * over each segment manually. We can cheat a bit here, because
2184 * we know that:
2185 *
2186 * 1) it's a BVEC iter, we set it up
2187 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2188 * first and last bvec
2189 *
2190 * So just find our index, and adjust the iterator afterwards.
2191 * If the offset is within the first bvec (or the whole first
2192 * bvec, just use iov_iter_advance(). This makes it easier
2193 * since we can just skip the first segment, which may not
2194 * be PAGE_SIZE aligned.
2195 */
2196 const struct bio_vec *bvec = imu->bvec;
2197
2198 if (offset <= bvec->bv_len) {
2199 iov_iter_advance(iter, offset);
2200 } else {
2201 unsigned long seg_skip;
2202
2203 /* skip first vec */
2204 offset -= bvec->bv_len;
2205 seg_skip = 1 + (offset >> PAGE_SHIFT);
2206
2207 iter->bvec = bvec + seg_skip;
2208 iter->nr_segs -= seg_skip;
2209 iter->count -= bvec->bv_len + offset;
2210 iter->iov_offset = offset & ~PAGE_MASK;
2211 }
2212 }
2213
2214 return len;
2215 }
2216
2217 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2218 {
2219 if (needs_lock)
2220 mutex_unlock(&ctx->uring_lock);
2221 }
2222
2223 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2224 {
2225 /*
2226 * "Normal" inline submissions always hold the uring_lock, since we
2227 * grab it from the system call. Same is true for the SQPOLL offload.
2228 * The only exception is when we've detached the request and issue it
2229 * from an async worker thread, grab the lock for that case.
2230 */
2231 if (needs_lock)
2232 mutex_lock(&ctx->uring_lock);
2233 }
2234
2235 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2236 int bgid, struct io_buffer *kbuf,
2237 bool needs_lock)
2238 {
2239 struct io_buffer *head;
2240
2241 if (req->flags & REQ_F_BUFFER_SELECTED)
2242 return kbuf;
2243
2244 io_ring_submit_lock(req->ctx, needs_lock);
2245
2246 lockdep_assert_held(&req->ctx->uring_lock);
2247
2248 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2249 if (head) {
2250 if (!list_empty(&head->list)) {
2251 kbuf = list_last_entry(&head->list, struct io_buffer,
2252 list);
2253 list_del(&kbuf->list);
2254 } else {
2255 kbuf = head;
2256 idr_remove(&req->ctx->io_buffer_idr, bgid);
2257 }
2258 if (*len > kbuf->len)
2259 *len = kbuf->len;
2260 } else {
2261 kbuf = ERR_PTR(-ENOBUFS);
2262 }
2263
2264 io_ring_submit_unlock(req->ctx, needs_lock);
2265
2266 return kbuf;
2267 }
2268
2269 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2270 bool needs_lock)
2271 {
2272 struct io_buffer *kbuf;
2273 u16 bgid;
2274
2275 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2276 bgid = req->buf_index;
2277 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2278 if (IS_ERR(kbuf))
2279 return kbuf;
2280 req->rw.addr = (u64) (unsigned long) kbuf;
2281 req->flags |= REQ_F_BUFFER_SELECTED;
2282 return u64_to_user_ptr(kbuf->addr);
2283 }
2284
2285 #ifdef CONFIG_COMPAT
2286 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2287 bool needs_lock)
2288 {
2289 struct compat_iovec __user *uiov;
2290 compat_ssize_t clen;
2291 void __user *buf;
2292 ssize_t len;
2293
2294 uiov = u64_to_user_ptr(req->rw.addr);
2295 if (!access_ok(uiov, sizeof(*uiov)))
2296 return -EFAULT;
2297 if (__get_user(clen, &uiov->iov_len))
2298 return -EFAULT;
2299 if (clen < 0)
2300 return -EINVAL;
2301
2302 len = clen;
2303 buf = io_rw_buffer_select(req, &len, needs_lock);
2304 if (IS_ERR(buf))
2305 return PTR_ERR(buf);
2306 iov[0].iov_base = buf;
2307 iov[0].iov_len = (compat_size_t) len;
2308 return 0;
2309 }
2310 #endif
2311
2312 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2313 bool needs_lock)
2314 {
2315 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2316 void __user *buf;
2317 ssize_t len;
2318
2319 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2320 return -EFAULT;
2321
2322 len = iov[0].iov_len;
2323 if (len < 0)
2324 return -EINVAL;
2325 buf = io_rw_buffer_select(req, &len, needs_lock);
2326 if (IS_ERR(buf))
2327 return PTR_ERR(buf);
2328 iov[0].iov_base = buf;
2329 iov[0].iov_len = len;
2330 return 0;
2331 }
2332
2333 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2334 bool needs_lock)
2335 {
2336 if (req->flags & REQ_F_BUFFER_SELECTED)
2337 return 0;
2338 if (!req->rw.len)
2339 return 0;
2340 else if (req->rw.len > 1)
2341 return -EINVAL;
2342
2343 #ifdef CONFIG_COMPAT
2344 if (req->ctx->compat)
2345 return io_compat_import(req, iov, needs_lock);
2346 #endif
2347
2348 return __io_iov_buffer_select(req, iov, needs_lock);
2349 }
2350
2351 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2352 struct iovec **iovec, struct iov_iter *iter,
2353 bool needs_lock)
2354 {
2355 void __user *buf = u64_to_user_ptr(req->rw.addr);
2356 size_t sqe_len = req->rw.len;
2357 ssize_t ret;
2358 u8 opcode;
2359
2360 opcode = req->opcode;
2361 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2362 *iovec = NULL;
2363 return io_import_fixed(req, rw, iter);
2364 }
2365
2366 /* buffer index only valid with fixed read/write, or buffer select */
2367 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2368 return -EINVAL;
2369
2370 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2371 if (req->flags & REQ_F_BUFFER_SELECT) {
2372 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2373 if (IS_ERR(buf)) {
2374 *iovec = NULL;
2375 return PTR_ERR(buf);
2376 }
2377 req->rw.len = sqe_len;
2378 }
2379
2380 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2381 *iovec = NULL;
2382 return ret < 0 ? ret : sqe_len;
2383 }
2384
2385 if (req->io) {
2386 struct io_async_rw *iorw = &req->io->rw;
2387
2388 *iovec = iorw->iov;
2389 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2390 if (iorw->iov == iorw->fast_iov)
2391 *iovec = NULL;
2392 return iorw->size;
2393 }
2394
2395 if (req->flags & REQ_F_BUFFER_SELECT) {
2396 ret = io_iov_buffer_select(req, *iovec, needs_lock);
2397 if (!ret) {
2398 ret = (*iovec)->iov_len;
2399 iov_iter_init(iter, rw, *iovec, 1, ret);
2400 }
2401 *iovec = NULL;
2402 return ret;
2403 }
2404
2405 #ifdef CONFIG_COMPAT
2406 if (req->ctx->compat)
2407 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2408 iovec, iter);
2409 #endif
2410
2411 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2412 }
2413
2414 /*
2415 * For files that don't have ->read_iter() and ->write_iter(), handle them
2416 * by looping over ->read() or ->write() manually.
2417 */
2418 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2419 struct iov_iter *iter)
2420 {
2421 ssize_t ret = 0;
2422
2423 /*
2424 * Don't support polled IO through this interface, and we can't
2425 * support non-blocking either. For the latter, this just causes
2426 * the kiocb to be handled from an async context.
2427 */
2428 if (kiocb->ki_flags & IOCB_HIPRI)
2429 return -EOPNOTSUPP;
2430 if (kiocb->ki_flags & IOCB_NOWAIT)
2431 return -EAGAIN;
2432
2433 while (iov_iter_count(iter)) {
2434 struct iovec iovec;
2435 ssize_t nr;
2436
2437 if (!iov_iter_is_bvec(iter)) {
2438 iovec = iov_iter_iovec(iter);
2439 } else {
2440 /* fixed buffers import bvec */
2441 iovec.iov_base = kmap(iter->bvec->bv_page)
2442 + iter->iov_offset;
2443 iovec.iov_len = min(iter->count,
2444 iter->bvec->bv_len - iter->iov_offset);
2445 }
2446
2447 if (rw == READ) {
2448 nr = file->f_op->read(file, iovec.iov_base,
2449 iovec.iov_len, &kiocb->ki_pos);
2450 } else {
2451 nr = file->f_op->write(file, iovec.iov_base,
2452 iovec.iov_len, &kiocb->ki_pos);
2453 }
2454
2455 if (iov_iter_is_bvec(iter))
2456 kunmap(iter->bvec->bv_page);
2457
2458 if (nr < 0) {
2459 if (!ret)
2460 ret = nr;
2461 break;
2462 }
2463 ret += nr;
2464 if (nr != iovec.iov_len)
2465 break;
2466 iov_iter_advance(iter, nr);
2467 }
2468
2469 return ret;
2470 }
2471
2472 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2473 struct iovec *iovec, struct iovec *fast_iov,
2474 struct iov_iter *iter)
2475 {
2476 req->io->rw.nr_segs = iter->nr_segs;
2477 req->io->rw.size = io_size;
2478 req->io->rw.iov = iovec;
2479 if (!req->io->rw.iov) {
2480 req->io->rw.iov = req->io->rw.fast_iov;
2481 if (req->io->rw.iov != fast_iov)
2482 memcpy(req->io->rw.iov, fast_iov,
2483 sizeof(struct iovec) * iter->nr_segs);
2484 } else {
2485 req->flags |= REQ_F_NEED_CLEANUP;
2486 }
2487 }
2488
2489 static inline int __io_alloc_async_ctx(struct io_kiocb *req)
2490 {
2491 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2492 return req->io == NULL;
2493 }
2494
2495 static int io_alloc_async_ctx(struct io_kiocb *req)
2496 {
2497 if (!io_op_defs[req->opcode].async_ctx)
2498 return 0;
2499
2500 return __io_alloc_async_ctx(req);
2501 }
2502
2503 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2504 struct iovec *iovec, struct iovec *fast_iov,
2505 struct iov_iter *iter)
2506 {
2507 if (!io_op_defs[req->opcode].async_ctx)
2508 return 0;
2509 if (!req->io) {
2510 if (__io_alloc_async_ctx(req))
2511 return -ENOMEM;
2512
2513 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2514 }
2515 return 0;
2516 }
2517
2518 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2519 bool force_nonblock)
2520 {
2521 struct io_async_ctx *io;
2522 struct iov_iter iter;
2523 ssize_t ret;
2524
2525 ret = io_prep_rw(req, sqe, force_nonblock);
2526 if (ret)
2527 return ret;
2528
2529 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2530 return -EBADF;
2531
2532 /* either don't need iovec imported or already have it */
2533 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2534 return 0;
2535
2536 io = req->io;
2537 io->rw.iov = io->rw.fast_iov;
2538 req->io = NULL;
2539 ret = io_import_iovec(READ, req, &io->rw.iov, &iter, !force_nonblock);
2540 req->io = io;
2541 if (ret < 0)
2542 return ret;
2543
2544 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2545 return 0;
2546 }
2547
2548 static int io_read(struct io_kiocb *req, bool force_nonblock)
2549 {
2550 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2551 struct kiocb *kiocb = &req->rw.kiocb;
2552 struct iov_iter iter;
2553 size_t iov_count;
2554 ssize_t io_size, ret;
2555
2556 ret = io_import_iovec(READ, req, &iovec, &iter, !force_nonblock);
2557 if (ret < 0)
2558 return ret;
2559
2560 /* Ensure we clear previously set non-block flag */
2561 if (!force_nonblock)
2562 kiocb->ki_flags &= ~IOCB_NOWAIT;
2563
2564 req->result = 0;
2565 io_size = ret;
2566 if (req->flags & REQ_F_LINK_HEAD)
2567 req->result = io_size;
2568
2569 /*
2570 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2571 * we know to async punt it even if it was opened O_NONBLOCK
2572 */
2573 if (force_nonblock && !io_file_supports_async(req->file, READ))
2574 goto copy_iov;
2575
2576 iov_count = iov_iter_count(&iter);
2577 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2578 if (!ret) {
2579 ssize_t ret2;
2580
2581 if (req->file->f_op->read_iter)
2582 ret2 = call_read_iter(req->file, kiocb, &iter);
2583 else
2584 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2585
2586 /* Catch -EAGAIN return for forced non-blocking submission */
2587 if (!force_nonblock || ret2 != -EAGAIN) {
2588 kiocb_done(kiocb, ret2);
2589 } else {
2590 copy_iov:
2591 ret = io_setup_async_rw(req, io_size, iovec,
2592 inline_vecs, &iter);
2593 if (ret)
2594 goto out_free;
2595 /* any defer here is final, must blocking retry */
2596 if (!(req->flags & REQ_F_NOWAIT) &&
2597 !file_can_poll(req->file))
2598 req->flags |= REQ_F_MUST_PUNT;
2599 return -EAGAIN;
2600 }
2601 }
2602 out_free:
2603 kfree(iovec);
2604 req->flags &= ~REQ_F_NEED_CLEANUP;
2605 return ret;
2606 }
2607
2608 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2609 bool force_nonblock)
2610 {
2611 struct io_async_ctx *io;
2612 struct iov_iter iter;
2613 ssize_t ret;
2614
2615 ret = io_prep_rw(req, sqe, force_nonblock);
2616 if (ret)
2617 return ret;
2618
2619 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2620 return -EBADF;
2621
2622 req->fsize = rlimit(RLIMIT_FSIZE);
2623
2624 /* either don't need iovec imported or already have it */
2625 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2626 return 0;
2627
2628 io = req->io;
2629 io->rw.iov = io->rw.fast_iov;
2630 req->io = NULL;
2631 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter, !force_nonblock);
2632 req->io = io;
2633 if (ret < 0)
2634 return ret;
2635
2636 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2637 return 0;
2638 }
2639
2640 static int io_write(struct io_kiocb *req, bool force_nonblock)
2641 {
2642 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2643 struct kiocb *kiocb = &req->rw.kiocb;
2644 struct iov_iter iter;
2645 size_t iov_count;
2646 ssize_t ret, io_size;
2647
2648 ret = io_import_iovec(WRITE, req, &iovec, &iter, !force_nonblock);
2649 if (ret < 0)
2650 return ret;
2651
2652 /* Ensure we clear previously set non-block flag */
2653 if (!force_nonblock)
2654 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2655
2656 req->result = 0;
2657 io_size = ret;
2658 if (req->flags & REQ_F_LINK_HEAD)
2659 req->result = io_size;
2660
2661 /*
2662 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2663 * we know to async punt it even if it was opened O_NONBLOCK
2664 */
2665 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
2666 goto copy_iov;
2667
2668 /* file path doesn't support NOWAIT for non-direct_IO */
2669 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2670 (req->flags & REQ_F_ISREG))
2671 goto copy_iov;
2672
2673 iov_count = iov_iter_count(&iter);
2674 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2675 if (!ret) {
2676 ssize_t ret2;
2677
2678 /*
2679 * Open-code file_start_write here to grab freeze protection,
2680 * which will be released by another thread in
2681 * io_complete_rw(). Fool lockdep by telling it the lock got
2682 * released so that it doesn't complain about the held lock when
2683 * we return to userspace.
2684 */
2685 if (req->flags & REQ_F_ISREG) {
2686 __sb_start_write(file_inode(req->file)->i_sb,
2687 SB_FREEZE_WRITE, true);
2688 __sb_writers_release(file_inode(req->file)->i_sb,
2689 SB_FREEZE_WRITE);
2690 }
2691 kiocb->ki_flags |= IOCB_WRITE;
2692
2693 if (!force_nonblock)
2694 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2695
2696 if (req->file->f_op->write_iter)
2697 ret2 = call_write_iter(req->file, kiocb, &iter);
2698 else
2699 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2700
2701 if (!force_nonblock)
2702 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2703
2704 /*
2705 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
2706 * retry them without IOCB_NOWAIT.
2707 */
2708 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
2709 ret2 = -EAGAIN;
2710 if (!force_nonblock || ret2 != -EAGAIN) {
2711 kiocb_done(kiocb, ret2);
2712 } else {
2713 copy_iov:
2714 ret = io_setup_async_rw(req, io_size, iovec,
2715 inline_vecs, &iter);
2716 if (ret)
2717 goto out_free;
2718 /* any defer here is final, must blocking retry */
2719 if (!file_can_poll(req->file))
2720 req->flags |= REQ_F_MUST_PUNT;
2721 return -EAGAIN;
2722 }
2723 }
2724 out_free:
2725 req->flags &= ~REQ_F_NEED_CLEANUP;
2726 kfree(iovec);
2727 return ret;
2728 }
2729
2730 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2731 {
2732 struct io_splice* sp = &req->splice;
2733 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
2734 int ret;
2735
2736 if (req->flags & REQ_F_NEED_CLEANUP)
2737 return 0;
2738
2739 sp->file_in = NULL;
2740 sp->off_in = READ_ONCE(sqe->splice_off_in);
2741 sp->off_out = READ_ONCE(sqe->off);
2742 sp->len = READ_ONCE(sqe->len);
2743 sp->flags = READ_ONCE(sqe->splice_flags);
2744
2745 if (unlikely(sp->flags & ~valid_flags))
2746 return -EINVAL;
2747
2748 ret = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in), &sp->file_in,
2749 (sp->flags & SPLICE_F_FD_IN_FIXED));
2750 if (ret)
2751 return ret;
2752 req->flags |= REQ_F_NEED_CLEANUP;
2753
2754 if (!S_ISREG(file_inode(sp->file_in)->i_mode))
2755 req->work.flags |= IO_WQ_WORK_UNBOUND;
2756
2757 return 0;
2758 }
2759
2760 static int io_splice(struct io_kiocb *req, bool force_nonblock)
2761 {
2762 struct io_splice *sp = &req->splice;
2763 struct file *in = sp->file_in;
2764 struct file *out = sp->file_out;
2765 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
2766 loff_t *poff_in, *poff_out;
2767 long ret = 0;
2768
2769 if (force_nonblock)
2770 return -EAGAIN;
2771
2772 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
2773 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
2774
2775 if (sp->len)
2776 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
2777
2778 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
2779 req->flags &= ~REQ_F_NEED_CLEANUP;
2780
2781 io_cqring_add_event(req, ret);
2782 if (ret != sp->len)
2783 req_set_fail_links(req);
2784 io_put_req(req);
2785 return 0;
2786 }
2787
2788 /*
2789 * IORING_OP_NOP just posts a completion event, nothing else.
2790 */
2791 static int io_nop(struct io_kiocb *req)
2792 {
2793 struct io_ring_ctx *ctx = req->ctx;
2794
2795 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2796 return -EINVAL;
2797
2798 io_cqring_add_event(req, 0);
2799 io_put_req(req);
2800 return 0;
2801 }
2802
2803 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2804 {
2805 struct io_ring_ctx *ctx = req->ctx;
2806
2807 if (!req->file)
2808 return -EBADF;
2809
2810 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2811 return -EINVAL;
2812 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2813 return -EINVAL;
2814
2815 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2816 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2817 return -EINVAL;
2818
2819 req->sync.off = READ_ONCE(sqe->off);
2820 req->sync.len = READ_ONCE(sqe->len);
2821 return 0;
2822 }
2823
2824 static bool io_req_cancelled(struct io_kiocb *req)
2825 {
2826 if (req->work.flags & IO_WQ_WORK_CANCEL) {
2827 req_set_fail_links(req);
2828 io_cqring_add_event(req, -ECANCELED);
2829 io_put_req(req);
2830 return true;
2831 }
2832
2833 return false;
2834 }
2835
2836 static void __io_fsync(struct io_kiocb *req)
2837 {
2838 loff_t end = req->sync.off + req->sync.len;
2839 int ret;
2840
2841 ret = vfs_fsync_range(req->file, req->sync.off,
2842 end > 0 ? end : LLONG_MAX,
2843 req->sync.flags & IORING_FSYNC_DATASYNC);
2844 if (ret < 0)
2845 req_set_fail_links(req);
2846 io_cqring_add_event(req, ret);
2847 io_put_req(req);
2848 }
2849
2850 static void io_fsync_finish(struct io_wq_work **workptr)
2851 {
2852 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2853
2854 if (io_req_cancelled(req))
2855 return;
2856 __io_fsync(req);
2857 io_steal_work(req, workptr);
2858 }
2859
2860 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
2861 {
2862 /* fsync always requires a blocking context */
2863 if (force_nonblock) {
2864 req->work.func = io_fsync_finish;
2865 return -EAGAIN;
2866 }
2867 __io_fsync(req);
2868 return 0;
2869 }
2870
2871 static void __io_fallocate(struct io_kiocb *req)
2872 {
2873 int ret;
2874
2875 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2876 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2877 req->sync.len);
2878 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2879 if (ret < 0)
2880 req_set_fail_links(req);
2881 io_cqring_add_event(req, ret);
2882 io_put_req(req);
2883 }
2884
2885 static void io_fallocate_finish(struct io_wq_work **workptr)
2886 {
2887 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2888
2889 if (io_req_cancelled(req))
2890 return;
2891 __io_fallocate(req);
2892 io_steal_work(req, workptr);
2893 }
2894
2895 static int io_fallocate_prep(struct io_kiocb *req,
2896 const struct io_uring_sqe *sqe)
2897 {
2898 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2899 return -EINVAL;
2900
2901 req->sync.off = READ_ONCE(sqe->off);
2902 req->sync.len = READ_ONCE(sqe->addr);
2903 req->sync.mode = READ_ONCE(sqe->len);
2904 req->fsize = rlimit(RLIMIT_FSIZE);
2905 return 0;
2906 }
2907
2908 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
2909 {
2910 /* fallocate always requiring blocking context */
2911 if (force_nonblock) {
2912 req->work.func = io_fallocate_finish;
2913 return -EAGAIN;
2914 }
2915
2916 __io_fallocate(req);
2917 return 0;
2918 }
2919
2920 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2921 {
2922 const char __user *fname;
2923 int ret;
2924
2925 if (sqe->ioprio || sqe->buf_index)
2926 return -EINVAL;
2927 if (req->flags & REQ_F_FIXED_FILE)
2928 return -EBADF;
2929 if (req->flags & REQ_F_NEED_CLEANUP)
2930 return 0;
2931
2932 req->open.dfd = READ_ONCE(sqe->fd);
2933 req->open.how.mode = READ_ONCE(sqe->len);
2934 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2935 req->open.how.flags = READ_ONCE(sqe->open_flags);
2936 if (force_o_largefile())
2937 req->open.how.flags |= O_LARGEFILE;
2938
2939 req->open.filename = getname(fname);
2940 if (IS_ERR(req->open.filename)) {
2941 ret = PTR_ERR(req->open.filename);
2942 req->open.filename = NULL;
2943 return ret;
2944 }
2945
2946 req->open.nofile = rlimit(RLIMIT_NOFILE);
2947 req->flags |= REQ_F_NEED_CLEANUP;
2948 return 0;
2949 }
2950
2951 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2952 {
2953 struct open_how __user *how;
2954 const char __user *fname;
2955 size_t len;
2956 int ret;
2957
2958 if (sqe->ioprio || sqe->buf_index)
2959 return -EINVAL;
2960 if (req->flags & REQ_F_FIXED_FILE)
2961 return -EBADF;
2962 if (req->flags & REQ_F_NEED_CLEANUP)
2963 return 0;
2964
2965 req->open.dfd = READ_ONCE(sqe->fd);
2966 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2967 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2968 len = READ_ONCE(sqe->len);
2969
2970 if (len < OPEN_HOW_SIZE_VER0)
2971 return -EINVAL;
2972
2973 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
2974 len);
2975 if (ret)
2976 return ret;
2977
2978 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
2979 req->open.how.flags |= O_LARGEFILE;
2980
2981 req->open.filename = getname(fname);
2982 if (IS_ERR(req->open.filename)) {
2983 ret = PTR_ERR(req->open.filename);
2984 req->open.filename = NULL;
2985 return ret;
2986 }
2987
2988 req->open.nofile = rlimit(RLIMIT_NOFILE);
2989 req->flags |= REQ_F_NEED_CLEANUP;
2990 return 0;
2991 }
2992
2993 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
2994 {
2995 struct open_flags op;
2996 struct file *file;
2997 int ret;
2998
2999 if (force_nonblock)
3000 return -EAGAIN;
3001
3002 ret = build_open_flags(&req->open.how, &op);
3003 if (ret)
3004 goto err;
3005
3006 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3007 if (ret < 0)
3008 goto err;
3009
3010 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3011 if (IS_ERR(file)) {
3012 put_unused_fd(ret);
3013 ret = PTR_ERR(file);
3014 } else {
3015 fsnotify_open(file);
3016 fd_install(ret, file);
3017 }
3018 err:
3019 putname(req->open.filename);
3020 req->flags &= ~REQ_F_NEED_CLEANUP;
3021 if (ret < 0)
3022 req_set_fail_links(req);
3023 io_cqring_add_event(req, ret);
3024 io_put_req(req);
3025 return 0;
3026 }
3027
3028 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3029 {
3030 req->open.how = build_open_how(req->open.how.flags, req->open.how.mode);
3031 return io_openat2(req, force_nonblock);
3032 }
3033
3034 static int io_remove_buffers_prep(struct io_kiocb *req,
3035 const struct io_uring_sqe *sqe)
3036 {
3037 struct io_provide_buf *p = &req->pbuf;
3038 u64 tmp;
3039
3040 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3041 return -EINVAL;
3042
3043 tmp = READ_ONCE(sqe->fd);
3044 if (!tmp || tmp > USHRT_MAX)
3045 return -EINVAL;
3046
3047 memset(p, 0, sizeof(*p));
3048 p->nbufs = tmp;
3049 p->bgid = READ_ONCE(sqe->buf_group);
3050 return 0;
3051 }
3052
3053 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3054 int bgid, unsigned nbufs)
3055 {
3056 unsigned i = 0;
3057
3058 /* shouldn't happen */
3059 if (!nbufs)
3060 return 0;
3061
3062 /* the head kbuf is the list itself */
3063 while (!list_empty(&buf->list)) {
3064 struct io_buffer *nxt;
3065
3066 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3067 list_del(&nxt->list);
3068 kfree(nxt);
3069 if (++i == nbufs)
3070 return i;
3071 }
3072 i++;
3073 kfree(buf);
3074 idr_remove(&ctx->io_buffer_idr, bgid);
3075
3076 return i;
3077 }
3078
3079 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock)
3080 {
3081 struct io_provide_buf *p = &req->pbuf;
3082 struct io_ring_ctx *ctx = req->ctx;
3083 struct io_buffer *head;
3084 int ret = 0;
3085
3086 io_ring_submit_lock(ctx, !force_nonblock);
3087
3088 lockdep_assert_held(&ctx->uring_lock);
3089
3090 ret = -ENOENT;
3091 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3092 if (head)
3093 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3094
3095 io_ring_submit_lock(ctx, !force_nonblock);
3096 if (ret < 0)
3097 req_set_fail_links(req);
3098 io_cqring_add_event(req, ret);
3099 io_put_req(req);
3100 return 0;
3101 }
3102
3103 static int io_provide_buffers_prep(struct io_kiocb *req,
3104 const struct io_uring_sqe *sqe)
3105 {
3106 struct io_provide_buf *p = &req->pbuf;
3107 u64 tmp;
3108
3109 if (sqe->ioprio || sqe->rw_flags)
3110 return -EINVAL;
3111
3112 tmp = READ_ONCE(sqe->fd);
3113 if (!tmp || tmp > USHRT_MAX)
3114 return -E2BIG;
3115 p->nbufs = tmp;
3116 p->addr = READ_ONCE(sqe->addr);
3117 p->len = READ_ONCE(sqe->len);
3118
3119 if (!access_ok(u64_to_user_ptr(p->addr), p->len))
3120 return -EFAULT;
3121
3122 p->bgid = READ_ONCE(sqe->buf_group);
3123 tmp = READ_ONCE(sqe->off);
3124 if (tmp > USHRT_MAX)
3125 return -E2BIG;
3126 p->bid = tmp;
3127 return 0;
3128 }
3129
3130 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3131 {
3132 struct io_buffer *buf;
3133 u64 addr = pbuf->addr;
3134 int i, bid = pbuf->bid;
3135
3136 for (i = 0; i < pbuf->nbufs; i++) {
3137 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3138 if (!buf)
3139 break;
3140
3141 buf->addr = addr;
3142 buf->len = pbuf->len;
3143 buf->bid = bid;
3144 addr += pbuf->len;
3145 bid++;
3146 if (!*head) {
3147 INIT_LIST_HEAD(&buf->list);
3148 *head = buf;
3149 } else {
3150 list_add_tail(&buf->list, &(*head)->list);
3151 }
3152 }
3153
3154 return i ? i : -ENOMEM;
3155 }
3156
3157 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock)
3158 {
3159 struct io_provide_buf *p = &req->pbuf;
3160 struct io_ring_ctx *ctx = req->ctx;
3161 struct io_buffer *head, *list;
3162 int ret = 0;
3163
3164 io_ring_submit_lock(ctx, !force_nonblock);
3165
3166 lockdep_assert_held(&ctx->uring_lock);
3167
3168 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3169
3170 ret = io_add_buffers(p, &head);
3171 if (ret < 0)
3172 goto out;
3173
3174 if (!list) {
3175 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
3176 GFP_KERNEL);
3177 if (ret < 0) {
3178 __io_remove_buffers(ctx, head, p->bgid, -1U);
3179 goto out;
3180 }
3181 }
3182 out:
3183 io_ring_submit_unlock(ctx, !force_nonblock);
3184 if (ret < 0)
3185 req_set_fail_links(req);
3186 io_cqring_add_event(req, ret);
3187 io_put_req(req);
3188 return 0;
3189 }
3190
3191 static int io_epoll_ctl_prep(struct io_kiocb *req,
3192 const struct io_uring_sqe *sqe)
3193 {
3194 #if defined(CONFIG_EPOLL)
3195 if (sqe->ioprio || sqe->buf_index)
3196 return -EINVAL;
3197
3198 req->epoll.epfd = READ_ONCE(sqe->fd);
3199 req->epoll.op = READ_ONCE(sqe->len);
3200 req->epoll.fd = READ_ONCE(sqe->off);
3201
3202 if (ep_op_has_event(req->epoll.op)) {
3203 struct epoll_event __user *ev;
3204
3205 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
3206 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
3207 return -EFAULT;
3208 }
3209
3210 return 0;
3211 #else
3212 return -EOPNOTSUPP;
3213 #endif
3214 }
3215
3216 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock)
3217 {
3218 #if defined(CONFIG_EPOLL)
3219 struct io_epoll *ie = &req->epoll;
3220 int ret;
3221
3222 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
3223 if (force_nonblock && ret == -EAGAIN)
3224 return -EAGAIN;
3225
3226 if (ret < 0)
3227 req_set_fail_links(req);
3228 io_cqring_add_event(req, ret);
3229 io_put_req(req);
3230 return 0;
3231 #else
3232 return -EOPNOTSUPP;
3233 #endif
3234 }
3235
3236 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3237 {
3238 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3239 if (sqe->ioprio || sqe->buf_index || sqe->off)
3240 return -EINVAL;
3241
3242 req->madvise.addr = READ_ONCE(sqe->addr);
3243 req->madvise.len = READ_ONCE(sqe->len);
3244 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
3245 return 0;
3246 #else
3247 return -EOPNOTSUPP;
3248 #endif
3249 }
3250
3251 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
3252 {
3253 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3254 struct io_madvise *ma = &req->madvise;
3255 int ret;
3256
3257 if (force_nonblock)
3258 return -EAGAIN;
3259
3260 ret = do_madvise(ma->addr, ma->len, ma->advice);
3261 if (ret < 0)
3262 req_set_fail_links(req);
3263 io_cqring_add_event(req, ret);
3264 io_put_req(req);
3265 return 0;
3266 #else
3267 return -EOPNOTSUPP;
3268 #endif
3269 }
3270
3271 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3272 {
3273 if (sqe->ioprio || sqe->buf_index || sqe->addr)
3274 return -EINVAL;
3275
3276 req->fadvise.offset = READ_ONCE(sqe->off);
3277 req->fadvise.len = READ_ONCE(sqe->len);
3278 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
3279 return 0;
3280 }
3281
3282 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
3283 {
3284 struct io_fadvise *fa = &req->fadvise;
3285 int ret;
3286
3287 if (force_nonblock) {
3288 switch (fa->advice) {
3289 case POSIX_FADV_NORMAL:
3290 case POSIX_FADV_RANDOM:
3291 case POSIX_FADV_SEQUENTIAL:
3292 break;
3293 default:
3294 return -EAGAIN;
3295 }
3296 }
3297
3298 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
3299 if (ret < 0)
3300 req_set_fail_links(req);
3301 io_cqring_add_event(req, ret);
3302 io_put_req(req);
3303 return 0;
3304 }
3305
3306 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3307 {
3308 const char __user *fname;
3309 unsigned lookup_flags;
3310 int ret;
3311
3312 if (sqe->ioprio || sqe->buf_index)
3313 return -EINVAL;
3314 if (req->flags & REQ_F_FIXED_FILE)
3315 return -EBADF;
3316 if (req->flags & REQ_F_NEED_CLEANUP)
3317 return 0;
3318
3319 req->open.dfd = READ_ONCE(sqe->fd);
3320 req->open.mask = READ_ONCE(sqe->len);
3321 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3322 req->open.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3323 req->open.how.flags = READ_ONCE(sqe->statx_flags);
3324
3325 if (vfs_stat_set_lookup_flags(&lookup_flags, req->open.how.flags))
3326 return -EINVAL;
3327
3328 req->open.filename = getname_flags(fname, lookup_flags, NULL);
3329 if (IS_ERR(req->open.filename)) {
3330 ret = PTR_ERR(req->open.filename);
3331 req->open.filename = NULL;
3332 return ret;
3333 }
3334
3335 req->flags |= REQ_F_NEED_CLEANUP;
3336 return 0;
3337 }
3338
3339 static int io_statx(struct io_kiocb *req, bool force_nonblock)
3340 {
3341 struct io_open *ctx = &req->open;
3342 unsigned lookup_flags;
3343 struct path path;
3344 struct kstat stat;
3345 int ret;
3346
3347 if (force_nonblock) {
3348 /* only need file table for an actual valid fd */
3349 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
3350 req->flags |= REQ_F_NO_FILE_TABLE;
3351 return -EAGAIN;
3352 }
3353
3354 if (vfs_stat_set_lookup_flags(&lookup_flags, ctx->how.flags))
3355 return -EINVAL;
3356
3357 retry:
3358 /* filename_lookup() drops it, keep a reference */
3359 ctx->filename->refcnt++;
3360
3361 ret = filename_lookup(ctx->dfd, ctx->filename, lookup_flags, &path,
3362 NULL);
3363 if (ret)
3364 goto err;
3365
3366 ret = vfs_getattr(&path, &stat, ctx->mask, ctx->how.flags);
3367 path_put(&path);
3368 if (retry_estale(ret, lookup_flags)) {
3369 lookup_flags |= LOOKUP_REVAL;
3370 goto retry;
3371 }
3372 if (!ret)
3373 ret = cp_statx(&stat, ctx->buffer);
3374 err:
3375 putname(ctx->filename);
3376 req->flags &= ~REQ_F_NEED_CLEANUP;
3377 if (ret < 0)
3378 req_set_fail_links(req);
3379 io_cqring_add_event(req, ret);
3380 io_put_req(req);
3381 return 0;
3382 }
3383
3384 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3385 {
3386 /*
3387 * If we queue this for async, it must not be cancellable. That would
3388 * leave the 'file' in an undeterminate state.
3389 */
3390 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
3391
3392 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
3393 sqe->rw_flags || sqe->buf_index)
3394 return -EINVAL;
3395 if (req->flags & REQ_F_FIXED_FILE)
3396 return -EBADF;
3397
3398 req->close.fd = READ_ONCE(sqe->fd);
3399 if (req->file->f_op == &io_uring_fops ||
3400 req->close.fd == req->ctx->ring_fd)
3401 return -EBADF;
3402
3403 return 0;
3404 }
3405
3406 /* only called when __close_fd_get_file() is done */
3407 static void __io_close_finish(struct io_kiocb *req)
3408 {
3409 int ret;
3410
3411 ret = filp_close(req->close.put_file, req->work.files);
3412 if (ret < 0)
3413 req_set_fail_links(req);
3414 io_cqring_add_event(req, ret);
3415 fput(req->close.put_file);
3416 io_put_req(req);
3417 }
3418
3419 static void io_close_finish(struct io_wq_work **workptr)
3420 {
3421 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3422
3423 /* not cancellable, don't do io_req_cancelled() */
3424 __io_close_finish(req);
3425 io_steal_work(req, workptr);
3426 }
3427
3428 static int io_close(struct io_kiocb *req, bool force_nonblock)
3429 {
3430 int ret;
3431
3432 req->close.put_file = NULL;
3433 ret = __close_fd_get_file(req->close.fd, &req->close.put_file);
3434 if (ret < 0)
3435 return ret;
3436
3437 /* if the file has a flush method, be safe and punt to async */
3438 if (req->close.put_file->f_op->flush && force_nonblock) {
3439 /* submission ref will be dropped, take it for async */
3440 refcount_inc(&req->refs);
3441
3442 req->work.func = io_close_finish;
3443 /*
3444 * Do manual async queue here to avoid grabbing files - we don't
3445 * need the files, and it'll cause io_close_finish() to close
3446 * the file again and cause a double CQE entry for this request
3447 */
3448 io_queue_async_work(req);
3449 return 0;
3450 }
3451
3452 /*
3453 * No ->flush(), safely close from here and just punt the
3454 * fput() to async context.
3455 */
3456 __io_close_finish(req);
3457 return 0;
3458 }
3459
3460 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3461 {
3462 struct io_ring_ctx *ctx = req->ctx;
3463
3464 if (!req->file)
3465 return -EBADF;
3466
3467 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3468 return -EINVAL;
3469 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3470 return -EINVAL;
3471
3472 req->sync.off = READ_ONCE(sqe->off);
3473 req->sync.len = READ_ONCE(sqe->len);
3474 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
3475 return 0;
3476 }
3477
3478 static void __io_sync_file_range(struct io_kiocb *req)
3479 {
3480 int ret;
3481
3482 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
3483 req->sync.flags);
3484 if (ret < 0)
3485 req_set_fail_links(req);
3486 io_cqring_add_event(req, ret);
3487 io_put_req(req);
3488 }
3489
3490
3491 static void io_sync_file_range_finish(struct io_wq_work **workptr)
3492 {
3493 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3494
3495 if (io_req_cancelled(req))
3496 return;
3497 __io_sync_file_range(req);
3498 io_steal_work(req, workptr);
3499 }
3500
3501 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
3502 {
3503 /* sync_file_range always requires a blocking context */
3504 if (force_nonblock) {
3505 req->work.func = io_sync_file_range_finish;
3506 return -EAGAIN;
3507 }
3508
3509 __io_sync_file_range(req);
3510 return 0;
3511 }
3512
3513 #if defined(CONFIG_NET)
3514 static int io_setup_async_msg(struct io_kiocb *req,
3515 struct io_async_msghdr *kmsg)
3516 {
3517 if (req->io)
3518 return -EAGAIN;
3519 if (io_alloc_async_ctx(req)) {
3520 if (kmsg->iov != kmsg->fast_iov)
3521 kfree(kmsg->iov);
3522 return -ENOMEM;
3523 }
3524 req->flags |= REQ_F_NEED_CLEANUP;
3525 memcpy(&req->io->msg, kmsg, sizeof(*kmsg));
3526 return -EAGAIN;
3527 }
3528
3529 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3530 {
3531 struct io_sr_msg *sr = &req->sr_msg;
3532 struct io_async_ctx *io = req->io;
3533 int ret;
3534
3535 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3536 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3537 sr->len = READ_ONCE(sqe->len);
3538
3539 #ifdef CONFIG_COMPAT
3540 if (req->ctx->compat)
3541 sr->msg_flags |= MSG_CMSG_COMPAT;
3542 #endif
3543
3544 if (!io || req->opcode == IORING_OP_SEND)
3545 return 0;
3546 /* iovec is already imported */
3547 if (req->flags & REQ_F_NEED_CLEANUP)
3548 return 0;
3549
3550 io->msg.iov = io->msg.fast_iov;
3551 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3552 &io->msg.iov);
3553 if (!ret)
3554 req->flags |= REQ_F_NEED_CLEANUP;
3555 return ret;
3556 }
3557
3558 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
3559 {
3560 struct io_async_msghdr *kmsg = NULL;
3561 struct socket *sock;
3562 int ret;
3563
3564 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3565 return -EINVAL;
3566
3567 sock = sock_from_file(req->file, &ret);
3568 if (sock) {
3569 struct io_async_ctx io;
3570 unsigned flags;
3571
3572 if (req->io) {
3573 kmsg = &req->io->msg;
3574 kmsg->msg.msg_name = &req->io->msg.addr;
3575 /* if iov is set, it's allocated already */
3576 if (!kmsg->iov)
3577 kmsg->iov = kmsg->fast_iov;
3578 kmsg->msg.msg_iter.iov = kmsg->iov;
3579 } else {
3580 struct io_sr_msg *sr = &req->sr_msg;
3581
3582 kmsg = &io.msg;
3583 kmsg->msg.msg_name = &io.msg.addr;
3584
3585 io.msg.iov = io.msg.fast_iov;
3586 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3587 sr->msg_flags, &io.msg.iov);
3588 if (ret)
3589 return ret;
3590 }
3591
3592 flags = req->sr_msg.msg_flags;
3593 if (flags & MSG_DONTWAIT)
3594 req->flags |= REQ_F_NOWAIT;
3595 else if (force_nonblock)
3596 flags |= MSG_DONTWAIT;
3597
3598 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3599 if (force_nonblock && ret == -EAGAIN)
3600 return io_setup_async_msg(req, kmsg);
3601 if (ret == -ERESTARTSYS)
3602 ret = -EINTR;
3603 }
3604
3605 if (kmsg && kmsg->iov != kmsg->fast_iov)
3606 kfree(kmsg->iov);
3607 req->flags &= ~REQ_F_NEED_CLEANUP;
3608 io_cqring_add_event(req, ret);
3609 if (ret < 0)
3610 req_set_fail_links(req);
3611 io_put_req(req);
3612 return 0;
3613 }
3614
3615 static int io_send(struct io_kiocb *req, bool force_nonblock)
3616 {
3617 struct socket *sock;
3618 int ret;
3619
3620 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3621 return -EINVAL;
3622
3623 sock = sock_from_file(req->file, &ret);
3624 if (sock) {
3625 struct io_sr_msg *sr = &req->sr_msg;
3626 struct msghdr msg;
3627 struct iovec iov;
3628 unsigned flags;
3629
3630 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3631 &msg.msg_iter);
3632 if (ret)
3633 return ret;
3634
3635 msg.msg_name = NULL;
3636 msg.msg_control = NULL;
3637 msg.msg_controllen = 0;
3638 msg.msg_namelen = 0;
3639
3640 flags = req->sr_msg.msg_flags;
3641 if (flags & MSG_DONTWAIT)
3642 req->flags |= REQ_F_NOWAIT;
3643 else if (force_nonblock)
3644 flags |= MSG_DONTWAIT;
3645
3646 msg.msg_flags = flags;
3647 ret = sock_sendmsg(sock, &msg);
3648 if (force_nonblock && ret == -EAGAIN)
3649 return -EAGAIN;
3650 if (ret == -ERESTARTSYS)
3651 ret = -EINTR;
3652 }
3653
3654 io_cqring_add_event(req, ret);
3655 if (ret < 0)
3656 req_set_fail_links(req);
3657 io_put_req(req);
3658 return 0;
3659 }
3660
3661 static int __io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3662 {
3663 struct io_sr_msg *sr = &req->sr_msg;
3664 struct iovec __user *uiov;
3665 size_t iov_len;
3666 int ret;
3667
3668 ret = __copy_msghdr_from_user(&io->msg.msg, sr->msg, &io->msg.uaddr,
3669 &uiov, &iov_len);
3670 if (ret)
3671 return ret;
3672
3673 if (req->flags & REQ_F_BUFFER_SELECT) {
3674 if (iov_len > 1)
3675 return -EINVAL;
3676 if (copy_from_user(io->msg.iov, uiov, sizeof(*uiov)))
3677 return -EFAULT;
3678 sr->len = io->msg.iov[0].iov_len;
3679 iov_iter_init(&io->msg.msg.msg_iter, READ, io->msg.iov, 1,
3680 sr->len);
3681 io->msg.iov = NULL;
3682 } else {
3683 ret = import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
3684 &io->msg.iov, &io->msg.msg.msg_iter);
3685 if (ret > 0)
3686 ret = 0;
3687 }
3688
3689 return ret;
3690 }
3691
3692 #ifdef CONFIG_COMPAT
3693 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
3694 struct io_async_ctx *io)
3695 {
3696 struct compat_msghdr __user *msg_compat;
3697 struct io_sr_msg *sr = &req->sr_msg;
3698 struct compat_iovec __user *uiov;
3699 compat_uptr_t ptr;
3700 compat_size_t len;
3701 int ret;
3702
3703 msg_compat = (struct compat_msghdr __user *) sr->msg;
3704 ret = __get_compat_msghdr(&io->msg.msg, msg_compat, &io->msg.uaddr,
3705 &ptr, &len);
3706 if (ret)
3707 return ret;
3708
3709 uiov = compat_ptr(ptr);
3710 if (req->flags & REQ_F_BUFFER_SELECT) {
3711 compat_ssize_t clen;
3712
3713 if (len > 1)
3714 return -EINVAL;
3715 if (!access_ok(uiov, sizeof(*uiov)))
3716 return -EFAULT;
3717 if (__get_user(clen, &uiov->iov_len))
3718 return -EFAULT;
3719 if (clen < 0)
3720 return -EINVAL;
3721 sr->len = io->msg.iov[0].iov_len;
3722 io->msg.iov = NULL;
3723 } else {
3724 ret = compat_import_iovec(READ, uiov, len, UIO_FASTIOV,
3725 &io->msg.iov,
3726 &io->msg.msg.msg_iter);
3727 if (ret < 0)
3728 return ret;
3729 }
3730
3731 return 0;
3732 }
3733 #endif
3734
3735 static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3736 {
3737 io->msg.iov = io->msg.fast_iov;
3738
3739 #ifdef CONFIG_COMPAT
3740 if (req->ctx->compat)
3741 return __io_compat_recvmsg_copy_hdr(req, io);
3742 #endif
3743
3744 return __io_recvmsg_copy_hdr(req, io);
3745 }
3746
3747 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
3748 int *cflags, bool needs_lock)
3749 {
3750 struct io_sr_msg *sr = &req->sr_msg;
3751 struct io_buffer *kbuf;
3752
3753 if (!(req->flags & REQ_F_BUFFER_SELECT))
3754 return NULL;
3755
3756 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
3757 if (IS_ERR(kbuf))
3758 return kbuf;
3759
3760 sr->kbuf = kbuf;
3761 req->flags |= REQ_F_BUFFER_SELECTED;
3762
3763 *cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
3764 *cflags |= IORING_CQE_F_BUFFER;
3765 return kbuf;
3766 }
3767
3768 static int io_recvmsg_prep(struct io_kiocb *req,
3769 const struct io_uring_sqe *sqe)
3770 {
3771 struct io_sr_msg *sr = &req->sr_msg;
3772 struct io_async_ctx *io = req->io;
3773 int ret;
3774
3775 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3776 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3777 sr->len = READ_ONCE(sqe->len);
3778 sr->bgid = READ_ONCE(sqe->buf_group);
3779
3780 #ifdef CONFIG_COMPAT
3781 if (req->ctx->compat)
3782 sr->msg_flags |= MSG_CMSG_COMPAT;
3783 #endif
3784
3785 if (!io || req->opcode == IORING_OP_RECV)
3786 return 0;
3787 /* iovec is already imported */
3788 if (req->flags & REQ_F_NEED_CLEANUP)
3789 return 0;
3790
3791 ret = io_recvmsg_copy_hdr(req, io);
3792 if (!ret)
3793 req->flags |= REQ_F_NEED_CLEANUP;
3794 return ret;
3795 }
3796
3797 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
3798 {
3799 struct io_async_msghdr *kmsg = NULL;
3800 struct socket *sock;
3801 int ret, cflags = 0;
3802
3803 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3804 return -EINVAL;
3805
3806 sock = sock_from_file(req->file, &ret);
3807 if (sock) {
3808 struct io_buffer *kbuf;
3809 struct io_async_ctx io;
3810 unsigned flags;
3811
3812 if (req->io) {
3813 kmsg = &req->io->msg;
3814 kmsg->msg.msg_name = &req->io->msg.addr;
3815 /* if iov is set, it's allocated already */
3816 if (!kmsg->iov)
3817 kmsg->iov = kmsg->fast_iov;
3818 kmsg->msg.msg_iter.iov = kmsg->iov;
3819 } else {
3820 kmsg = &io.msg;
3821 kmsg->msg.msg_name = &io.msg.addr;
3822
3823 ret = io_recvmsg_copy_hdr(req, &io);
3824 if (ret)
3825 return ret;
3826 }
3827
3828 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3829 if (IS_ERR(kbuf)) {
3830 return PTR_ERR(kbuf);
3831 } else if (kbuf) {
3832 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3833 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
3834 1, req->sr_msg.len);
3835 }
3836
3837 flags = req->sr_msg.msg_flags;
3838 if (flags & MSG_DONTWAIT)
3839 req->flags |= REQ_F_NOWAIT;
3840 else if (force_nonblock)
3841 flags |= MSG_DONTWAIT;
3842
3843 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3844 kmsg->uaddr, flags);
3845 if (force_nonblock && ret == -EAGAIN)
3846 return io_setup_async_msg(req, kmsg);
3847 if (ret == -ERESTARTSYS)
3848 ret = -EINTR;
3849 }
3850
3851 if (kmsg && kmsg->iov != kmsg->fast_iov)
3852 kfree(kmsg->iov);
3853 req->flags &= ~REQ_F_NEED_CLEANUP;
3854 __io_cqring_add_event(req, ret, cflags);
3855 if (ret < 0)
3856 req_set_fail_links(req);
3857 io_put_req(req);
3858 return 0;
3859 }
3860
3861 static int io_recv(struct io_kiocb *req, bool force_nonblock)
3862 {
3863 struct io_buffer *kbuf = NULL;
3864 struct socket *sock;
3865 int ret, cflags = 0;
3866
3867 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3868 return -EINVAL;
3869
3870 sock = sock_from_file(req->file, &ret);
3871 if (sock) {
3872 struct io_sr_msg *sr = &req->sr_msg;
3873 void __user *buf = sr->buf;
3874 struct msghdr msg;
3875 struct iovec iov;
3876 unsigned flags;
3877
3878 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3879 if (IS_ERR(kbuf))
3880 return PTR_ERR(kbuf);
3881 else if (kbuf)
3882 buf = u64_to_user_ptr(kbuf->addr);
3883
3884 ret = import_single_range(READ, buf, sr->len, &iov,
3885 &msg.msg_iter);
3886 if (ret) {
3887 kfree(kbuf);
3888 return ret;
3889 }
3890
3891 req->flags |= REQ_F_NEED_CLEANUP;
3892 msg.msg_name = NULL;
3893 msg.msg_control = NULL;
3894 msg.msg_controllen = 0;
3895 msg.msg_namelen = 0;
3896 msg.msg_iocb = NULL;
3897 msg.msg_flags = 0;
3898
3899 flags = req->sr_msg.msg_flags;
3900 if (flags & MSG_DONTWAIT)
3901 req->flags |= REQ_F_NOWAIT;
3902 else if (force_nonblock)
3903 flags |= MSG_DONTWAIT;
3904
3905 ret = sock_recvmsg(sock, &msg, flags);
3906 if (force_nonblock && ret == -EAGAIN)
3907 return -EAGAIN;
3908 if (ret == -ERESTARTSYS)
3909 ret = -EINTR;
3910 }
3911
3912 kfree(kbuf);
3913 req->flags &= ~REQ_F_NEED_CLEANUP;
3914 __io_cqring_add_event(req, ret, cflags);
3915 if (ret < 0)
3916 req_set_fail_links(req);
3917 io_put_req(req);
3918 return 0;
3919 }
3920
3921 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3922 {
3923 struct io_accept *accept = &req->accept;
3924
3925 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3926 return -EINVAL;
3927 if (sqe->ioprio || sqe->len || sqe->buf_index)
3928 return -EINVAL;
3929
3930 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3931 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3932 accept->flags = READ_ONCE(sqe->accept_flags);
3933 accept->nofile = rlimit(RLIMIT_NOFILE);
3934 return 0;
3935 }
3936
3937 static int __io_accept(struct io_kiocb *req, bool force_nonblock)
3938 {
3939 struct io_accept *accept = &req->accept;
3940 unsigned file_flags;
3941 int ret;
3942
3943 file_flags = force_nonblock ? O_NONBLOCK : 0;
3944 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3945 accept->addr_len, accept->flags,
3946 accept->nofile);
3947 if (ret == -EAGAIN && force_nonblock)
3948 return -EAGAIN;
3949 if (ret == -ERESTARTSYS)
3950 ret = -EINTR;
3951 if (ret < 0)
3952 req_set_fail_links(req);
3953 io_cqring_add_event(req, ret);
3954 io_put_req(req);
3955 return 0;
3956 }
3957
3958 static void io_accept_finish(struct io_wq_work **workptr)
3959 {
3960 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3961
3962 if (io_req_cancelled(req))
3963 return;
3964 __io_accept(req, false);
3965 io_steal_work(req, workptr);
3966 }
3967
3968 static int io_accept(struct io_kiocb *req, bool force_nonblock)
3969 {
3970 int ret;
3971
3972 ret = __io_accept(req, force_nonblock);
3973 if (ret == -EAGAIN && force_nonblock) {
3974 req->work.func = io_accept_finish;
3975 return -EAGAIN;
3976 }
3977 return 0;
3978 }
3979
3980 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3981 {
3982 struct io_connect *conn = &req->connect;
3983 struct io_async_ctx *io = req->io;
3984
3985 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3986 return -EINVAL;
3987 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3988 return -EINVAL;
3989
3990 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3991 conn->addr_len = READ_ONCE(sqe->addr2);
3992
3993 if (!io)
3994 return 0;
3995
3996 return move_addr_to_kernel(conn->addr, conn->addr_len,
3997 &io->connect.address);
3998 }
3999
4000 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4001 {
4002 struct io_async_ctx __io, *io;
4003 unsigned file_flags;
4004 int ret;
4005
4006 if (req->io) {
4007 io = req->io;
4008 } else {
4009 ret = move_addr_to_kernel(req->connect.addr,
4010 req->connect.addr_len,
4011 &__io.connect.address);
4012 if (ret)
4013 goto out;
4014 io = &__io;
4015 }
4016
4017 file_flags = force_nonblock ? O_NONBLOCK : 0;
4018
4019 ret = __sys_connect_file(req->file, &io->connect.address,
4020 req->connect.addr_len, file_flags);
4021 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4022 if (req->io)
4023 return -EAGAIN;
4024 if (io_alloc_async_ctx(req)) {
4025 ret = -ENOMEM;
4026 goto out;
4027 }
4028 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
4029 return -EAGAIN;
4030 }
4031 if (ret == -ERESTARTSYS)
4032 ret = -EINTR;
4033 out:
4034 if (ret < 0)
4035 req_set_fail_links(req);
4036 io_cqring_add_event(req, ret);
4037 io_put_req(req);
4038 return 0;
4039 }
4040 #else /* !CONFIG_NET */
4041 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4042 {
4043 return -EOPNOTSUPP;
4044 }
4045
4046 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
4047 {
4048 return -EOPNOTSUPP;
4049 }
4050
4051 static int io_send(struct io_kiocb *req, bool force_nonblock)
4052 {
4053 return -EOPNOTSUPP;
4054 }
4055
4056 static int io_recvmsg_prep(struct io_kiocb *req,
4057 const struct io_uring_sqe *sqe)
4058 {
4059 return -EOPNOTSUPP;
4060 }
4061
4062 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
4063 {
4064 return -EOPNOTSUPP;
4065 }
4066
4067 static int io_recv(struct io_kiocb *req, bool force_nonblock)
4068 {
4069 return -EOPNOTSUPP;
4070 }
4071
4072 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4073 {
4074 return -EOPNOTSUPP;
4075 }
4076
4077 static int io_accept(struct io_kiocb *req, bool force_nonblock)
4078 {
4079 return -EOPNOTSUPP;
4080 }
4081
4082 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4083 {
4084 return -EOPNOTSUPP;
4085 }
4086
4087 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4088 {
4089 return -EOPNOTSUPP;
4090 }
4091 #endif /* CONFIG_NET */
4092
4093 struct io_poll_table {
4094 struct poll_table_struct pt;
4095 struct io_kiocb *req;
4096 int error;
4097 };
4098
4099 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4100 struct wait_queue_head *head)
4101 {
4102 if (unlikely(poll->head)) {
4103 pt->error = -EINVAL;
4104 return;
4105 }
4106
4107 pt->error = 0;
4108 poll->head = head;
4109 add_wait_queue(head, &poll->wait);
4110 }
4111
4112 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
4113 struct poll_table_struct *p)
4114 {
4115 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4116
4117 __io_queue_proc(&pt->req->apoll->poll, pt, head);
4118 }
4119
4120 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4121 __poll_t mask, task_work_func_t func)
4122 {
4123 struct task_struct *tsk;
4124 int ret;
4125
4126 /* for instances that support it check for an event match first: */
4127 if (mask && !(mask & poll->events))
4128 return 0;
4129
4130 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4131
4132 list_del_init(&poll->wait.entry);
4133
4134 tsk = req->task;
4135 req->result = mask;
4136 init_task_work(&req->task_work, func);
4137 /*
4138 * If this fails, then the task is exiting. When a task exits, the
4139 * work gets canceled, so just cancel this request as well instead
4140 * of executing it. We can't safely execute it anyway, as we may not
4141 * have the needed state needed for it anyway.
4142 */
4143 ret = task_work_add(tsk, &req->task_work, true);
4144 if (unlikely(ret)) {
4145 WRITE_ONCE(poll->canceled, true);
4146 tsk = io_wq_get_task(req->ctx->io_wq);
4147 task_work_add(tsk, &req->task_work, true);
4148 }
4149 wake_up_process(tsk);
4150 return 1;
4151 }
4152
4153 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4154 __acquires(&req->ctx->completion_lock)
4155 {
4156 struct io_ring_ctx *ctx = req->ctx;
4157
4158 if (!req->result && !READ_ONCE(poll->canceled)) {
4159 struct poll_table_struct pt = { ._key = poll->events };
4160
4161 req->result = vfs_poll(req->file, &pt) & poll->events;
4162 }
4163
4164 spin_lock_irq(&ctx->completion_lock);
4165 if (!req->result && !READ_ONCE(poll->canceled)) {
4166 add_wait_queue(poll->head, &poll->wait);
4167 return true;
4168 }
4169
4170 return false;
4171 }
4172
4173 static void io_async_task_func(struct callback_head *cb)
4174 {
4175 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4176 struct async_poll *apoll = req->apoll;
4177 struct io_ring_ctx *ctx = req->ctx;
4178 bool canceled;
4179
4180 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
4181
4182 if (io_poll_rewait(req, &apoll->poll)) {
4183 spin_unlock_irq(&ctx->completion_lock);
4184 return;
4185 }
4186
4187 if (hash_hashed(&req->hash_node))
4188 hash_del(&req->hash_node);
4189
4190 canceled = READ_ONCE(apoll->poll.canceled);
4191 if (canceled) {
4192 io_cqring_fill_event(req, -ECANCELED);
4193 io_commit_cqring(ctx);
4194 }
4195
4196 spin_unlock_irq(&ctx->completion_lock);
4197
4198 /* restore ->work in case we need to retry again */
4199 memcpy(&req->work, &apoll->work, sizeof(req->work));
4200
4201 if (canceled) {
4202 kfree(apoll);
4203 io_cqring_ev_posted(ctx);
4204 req_set_fail_links(req);
4205 io_double_put_req(req);
4206 return;
4207 }
4208
4209 __set_current_state(TASK_RUNNING);
4210 mutex_lock(&ctx->uring_lock);
4211 __io_queue_sqe(req, NULL);
4212 mutex_unlock(&ctx->uring_lock);
4213
4214 kfree(apoll);
4215 }
4216
4217 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4218 void *key)
4219 {
4220 struct io_kiocb *req = wait->private;
4221 struct io_poll_iocb *poll = &req->apoll->poll;
4222
4223 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
4224 key_to_poll(key));
4225
4226 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
4227 }
4228
4229 static void io_poll_req_insert(struct io_kiocb *req)
4230 {
4231 struct io_ring_ctx *ctx = req->ctx;
4232 struct hlist_head *list;
4233
4234 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
4235 hlist_add_head(&req->hash_node, list);
4236 }
4237
4238 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
4239 struct io_poll_iocb *poll,
4240 struct io_poll_table *ipt, __poll_t mask,
4241 wait_queue_func_t wake_func)
4242 __acquires(&ctx->completion_lock)
4243 {
4244 struct io_ring_ctx *ctx = req->ctx;
4245 bool cancel = false;
4246
4247 poll->file = req->file;
4248 poll->head = NULL;
4249 poll->done = poll->canceled = false;
4250 poll->events = mask;
4251
4252 ipt->pt._key = mask;
4253 ipt->req = req;
4254 ipt->error = -EINVAL;
4255
4256 INIT_LIST_HEAD(&poll->wait.entry);
4257 init_waitqueue_func_entry(&poll->wait, wake_func);
4258 poll->wait.private = req;
4259
4260 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
4261
4262 spin_lock_irq(&ctx->completion_lock);
4263 if (likely(poll->head)) {
4264 spin_lock(&poll->head->lock);
4265 if (unlikely(list_empty(&poll->wait.entry))) {
4266 if (ipt->error)
4267 cancel = true;
4268 ipt->error = 0;
4269 mask = 0;
4270 }
4271 if (mask || ipt->error)
4272 list_del_init(&poll->wait.entry);
4273 else if (cancel)
4274 WRITE_ONCE(poll->canceled, true);
4275 else if (!poll->done) /* actually waiting for an event */
4276 io_poll_req_insert(req);
4277 spin_unlock(&poll->head->lock);
4278 }
4279
4280 return mask;
4281 }
4282
4283 static bool io_arm_poll_handler(struct io_kiocb *req)
4284 {
4285 const struct io_op_def *def = &io_op_defs[req->opcode];
4286 struct io_ring_ctx *ctx = req->ctx;
4287 struct async_poll *apoll;
4288 struct io_poll_table ipt;
4289 __poll_t mask, ret;
4290
4291 if (!req->file || !file_can_poll(req->file))
4292 return false;
4293 if (req->flags & (REQ_F_MUST_PUNT | REQ_F_POLLED))
4294 return false;
4295 if (!def->pollin && !def->pollout)
4296 return false;
4297
4298 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
4299 if (unlikely(!apoll))
4300 return false;
4301
4302 req->flags |= REQ_F_POLLED;
4303 memcpy(&apoll->work, &req->work, sizeof(req->work));
4304
4305 get_task_struct(current);
4306 req->task = current;
4307 req->apoll = apoll;
4308 INIT_HLIST_NODE(&req->hash_node);
4309
4310 mask = 0;
4311 if (def->pollin)
4312 mask |= POLLIN | POLLRDNORM;
4313 if (def->pollout)
4314 mask |= POLLOUT | POLLWRNORM;
4315 mask |= POLLERR | POLLPRI;
4316
4317 ipt.pt._qproc = io_async_queue_proc;
4318
4319 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
4320 io_async_wake);
4321 if (ret) {
4322 ipt.error = 0;
4323 apoll->poll.done = true;
4324 spin_unlock_irq(&ctx->completion_lock);
4325 memcpy(&req->work, &apoll->work, sizeof(req->work));
4326 kfree(apoll);
4327 return false;
4328 }
4329 spin_unlock_irq(&ctx->completion_lock);
4330 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
4331 apoll->poll.events);
4332 return true;
4333 }
4334
4335 static bool __io_poll_remove_one(struct io_kiocb *req,
4336 struct io_poll_iocb *poll)
4337 {
4338 bool do_complete = false;
4339
4340 spin_lock(&poll->head->lock);
4341 WRITE_ONCE(poll->canceled, true);
4342 if (!list_empty(&poll->wait.entry)) {
4343 list_del_init(&poll->wait.entry);
4344 do_complete = true;
4345 }
4346 spin_unlock(&poll->head->lock);
4347 return do_complete;
4348 }
4349
4350 static bool io_poll_remove_one(struct io_kiocb *req)
4351 {
4352 struct async_poll *apoll = NULL;
4353 bool do_complete;
4354
4355 if (req->opcode == IORING_OP_POLL_ADD) {
4356 do_complete = __io_poll_remove_one(req, &req->poll);
4357 } else {
4358 apoll = req->apoll;
4359 /* non-poll requests have submit ref still */
4360 do_complete = __io_poll_remove_one(req, &req->apoll->poll);
4361 if (do_complete)
4362 io_put_req(req);
4363 }
4364
4365 hash_del(&req->hash_node);
4366
4367 if (do_complete && apoll) {
4368 /*
4369 * restore ->work because we need to call io_req_work_drop_env.
4370 */
4371 memcpy(&req->work, &apoll->work, sizeof(req->work));
4372 kfree(apoll);
4373 }
4374
4375 if (do_complete) {
4376 io_cqring_fill_event(req, -ECANCELED);
4377 io_commit_cqring(req->ctx);
4378 req->flags |= REQ_F_COMP_LOCKED;
4379 io_put_req(req);
4380 }
4381
4382 return do_complete;
4383 }
4384
4385 static void io_poll_remove_all(struct io_ring_ctx *ctx)
4386 {
4387 struct hlist_node *tmp;
4388 struct io_kiocb *req;
4389 int posted = 0, i;
4390
4391 spin_lock_irq(&ctx->completion_lock);
4392 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
4393 struct hlist_head *list;
4394
4395 list = &ctx->cancel_hash[i];
4396 hlist_for_each_entry_safe(req, tmp, list, hash_node)
4397 posted += io_poll_remove_one(req);
4398 }
4399 spin_unlock_irq(&ctx->completion_lock);
4400
4401 if (posted)
4402 io_cqring_ev_posted(ctx);
4403 }
4404
4405 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
4406 {
4407 struct hlist_head *list;
4408 struct io_kiocb *req;
4409
4410 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
4411 hlist_for_each_entry(req, list, hash_node) {
4412 if (sqe_addr != req->user_data)
4413 continue;
4414 if (io_poll_remove_one(req))
4415 return 0;
4416 return -EALREADY;
4417 }
4418
4419 return -ENOENT;
4420 }
4421
4422 static int io_poll_remove_prep(struct io_kiocb *req,
4423 const struct io_uring_sqe *sqe)
4424 {
4425 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4426 return -EINVAL;
4427 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
4428 sqe->poll_events)
4429 return -EINVAL;
4430
4431 req->poll.addr = READ_ONCE(sqe->addr);
4432 return 0;
4433 }
4434
4435 /*
4436 * Find a running poll command that matches one specified in sqe->addr,
4437 * and remove it if found.
4438 */
4439 static int io_poll_remove(struct io_kiocb *req)
4440 {
4441 struct io_ring_ctx *ctx = req->ctx;
4442 u64 addr;
4443 int ret;
4444
4445 addr = req->poll.addr;
4446 spin_lock_irq(&ctx->completion_lock);
4447 ret = io_poll_cancel(ctx, addr);
4448 spin_unlock_irq(&ctx->completion_lock);
4449
4450 io_cqring_add_event(req, ret);
4451 if (ret < 0)
4452 req_set_fail_links(req);
4453 io_put_req(req);
4454 return 0;
4455 }
4456
4457 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4458 {
4459 struct io_ring_ctx *ctx = req->ctx;
4460
4461 req->poll.done = true;
4462 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4463 io_commit_cqring(ctx);
4464 }
4465
4466 static void io_poll_task_handler(struct io_kiocb *req, struct io_kiocb **nxt)
4467 {
4468 struct io_ring_ctx *ctx = req->ctx;
4469 struct io_poll_iocb *poll = &req->poll;
4470
4471 if (io_poll_rewait(req, poll)) {
4472 spin_unlock_irq(&ctx->completion_lock);
4473 return;
4474 }
4475
4476 hash_del(&req->hash_node);
4477 io_poll_complete(req, req->result, 0);
4478 req->flags |= REQ_F_COMP_LOCKED;
4479 io_put_req_find_next(req, nxt);
4480 spin_unlock_irq(&ctx->completion_lock);
4481
4482 io_cqring_ev_posted(ctx);
4483 }
4484
4485 static void io_poll_task_func(struct callback_head *cb)
4486 {
4487 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4488 struct io_kiocb *nxt = NULL;
4489
4490 io_poll_task_handler(req, &nxt);
4491 if (nxt) {
4492 struct io_ring_ctx *ctx = nxt->ctx;
4493
4494 mutex_lock(&ctx->uring_lock);
4495 __io_queue_sqe(nxt, NULL);
4496 mutex_unlock(&ctx->uring_lock);
4497 }
4498 }
4499
4500 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4501 void *key)
4502 {
4503 struct io_kiocb *req = wait->private;
4504 struct io_poll_iocb *poll = &req->poll;
4505
4506 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
4507 }
4508
4509 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
4510 struct poll_table_struct *p)
4511 {
4512 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4513
4514 __io_queue_proc(&pt->req->poll, pt, head);
4515 }
4516
4517 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4518 {
4519 struct io_poll_iocb *poll = &req->poll;
4520 u16 events;
4521
4522 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4523 return -EINVAL;
4524 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
4525 return -EINVAL;
4526 if (!poll->file)
4527 return -EBADF;
4528
4529 events = READ_ONCE(sqe->poll_events);
4530 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
4531
4532 get_task_struct(current);
4533 req->task = current;
4534 return 0;
4535 }
4536
4537 static int io_poll_add(struct io_kiocb *req)
4538 {
4539 struct io_poll_iocb *poll = &req->poll;
4540 struct io_ring_ctx *ctx = req->ctx;
4541 struct io_poll_table ipt;
4542 __poll_t mask;
4543
4544 INIT_HLIST_NODE(&req->hash_node);
4545 INIT_LIST_HEAD(&req->list);
4546 ipt.pt._qproc = io_poll_queue_proc;
4547
4548 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
4549 io_poll_wake);
4550
4551 if (mask) { /* no async, we'd stolen it */
4552 ipt.error = 0;
4553 io_poll_complete(req, mask, 0);
4554 }
4555 spin_unlock_irq(&ctx->completion_lock);
4556
4557 if (mask) {
4558 io_cqring_ev_posted(ctx);
4559 io_put_req(req);
4560 }
4561 return ipt.error;
4562 }
4563
4564 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
4565 {
4566 struct io_timeout_data *data = container_of(timer,
4567 struct io_timeout_data, timer);
4568 struct io_kiocb *req = data->req;
4569 struct io_ring_ctx *ctx = req->ctx;
4570 unsigned long flags;
4571
4572 atomic_inc(&ctx->cq_timeouts);
4573
4574 spin_lock_irqsave(&ctx->completion_lock, flags);
4575 /*
4576 * We could be racing with timeout deletion. If the list is empty,
4577 * then timeout lookup already found it and will be handling it.
4578 */
4579 if (!list_empty(&req->list)) {
4580 struct io_kiocb *prev;
4581
4582 /*
4583 * Adjust the reqs sequence before the current one because it
4584 * will consume a slot in the cq_ring and the cq_tail
4585 * pointer will be increased, otherwise other timeout reqs may
4586 * return in advance without waiting for enough wait_nr.
4587 */
4588 prev = req;
4589 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
4590 prev->sequence++;
4591 list_del_init(&req->list);
4592 }
4593
4594 io_cqring_fill_event(req, -ETIME);
4595 io_commit_cqring(ctx);
4596 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4597
4598 io_cqring_ev_posted(ctx);
4599 req_set_fail_links(req);
4600 io_put_req(req);
4601 return HRTIMER_NORESTART;
4602 }
4603
4604 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
4605 {
4606 struct io_kiocb *req;
4607 int ret = -ENOENT;
4608
4609 list_for_each_entry(req, &ctx->timeout_list, list) {
4610 if (user_data == req->user_data) {
4611 list_del_init(&req->list);
4612 ret = 0;
4613 break;
4614 }
4615 }
4616
4617 if (ret == -ENOENT)
4618 return ret;
4619
4620 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
4621 if (ret == -1)
4622 return -EALREADY;
4623
4624 req_set_fail_links(req);
4625 io_cqring_fill_event(req, -ECANCELED);
4626 io_put_req(req);
4627 return 0;
4628 }
4629
4630 static int io_timeout_remove_prep(struct io_kiocb *req,
4631 const struct io_uring_sqe *sqe)
4632 {
4633 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4634 return -EINVAL;
4635 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
4636 return -EINVAL;
4637
4638 req->timeout.addr = READ_ONCE(sqe->addr);
4639 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
4640 if (req->timeout.flags)
4641 return -EINVAL;
4642
4643 return 0;
4644 }
4645
4646 /*
4647 * Remove or update an existing timeout command
4648 */
4649 static int io_timeout_remove(struct io_kiocb *req)
4650 {
4651 struct io_ring_ctx *ctx = req->ctx;
4652 int ret;
4653
4654 spin_lock_irq(&ctx->completion_lock);
4655 ret = io_timeout_cancel(ctx, req->timeout.addr);
4656
4657 io_cqring_fill_event(req, ret);
4658 io_commit_cqring(ctx);
4659 spin_unlock_irq(&ctx->completion_lock);
4660 io_cqring_ev_posted(ctx);
4661 if (ret < 0)
4662 req_set_fail_links(req);
4663 io_put_req(req);
4664 return 0;
4665 }
4666
4667 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4668 bool is_timeout_link)
4669 {
4670 struct io_timeout_data *data;
4671 unsigned flags;
4672
4673 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4674 return -EINVAL;
4675 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
4676 return -EINVAL;
4677 if (sqe->off && is_timeout_link)
4678 return -EINVAL;
4679 flags = READ_ONCE(sqe->timeout_flags);
4680 if (flags & ~IORING_TIMEOUT_ABS)
4681 return -EINVAL;
4682
4683 req->timeout.count = READ_ONCE(sqe->off);
4684
4685 if (!req->io && io_alloc_async_ctx(req))
4686 return -ENOMEM;
4687
4688 data = &req->io->timeout;
4689 data->req = req;
4690 req->flags |= REQ_F_TIMEOUT;
4691
4692 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
4693 return -EFAULT;
4694
4695 if (flags & IORING_TIMEOUT_ABS)
4696 data->mode = HRTIMER_MODE_ABS;
4697 else
4698 data->mode = HRTIMER_MODE_REL;
4699
4700 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
4701 return 0;
4702 }
4703
4704 static int io_timeout(struct io_kiocb *req)
4705 {
4706 struct io_ring_ctx *ctx = req->ctx;
4707 struct io_timeout_data *data;
4708 struct list_head *entry;
4709 unsigned span = 0;
4710 u32 count = req->timeout.count;
4711 u32 seq = req->sequence;
4712
4713 data = &req->io->timeout;
4714
4715 /*
4716 * sqe->off holds how many events that need to occur for this
4717 * timeout event to be satisfied. If it isn't set, then this is
4718 * a pure timeout request, sequence isn't used.
4719 */
4720 if (!count) {
4721 req->flags |= REQ_F_TIMEOUT_NOSEQ;
4722 spin_lock_irq(&ctx->completion_lock);
4723 entry = ctx->timeout_list.prev;
4724 goto add;
4725 }
4726
4727 req->sequence = seq + count;
4728
4729 /*
4730 * Insertion sort, ensuring the first entry in the list is always
4731 * the one we need first.
4732 */
4733 spin_lock_irq(&ctx->completion_lock);
4734 list_for_each_prev(entry, &ctx->timeout_list) {
4735 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
4736 unsigned nxt_seq;
4737 long long tmp, tmp_nxt;
4738 u32 nxt_offset = nxt->timeout.count;
4739
4740 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
4741 continue;
4742
4743 /*
4744 * Since seq + count can overflow, use type long
4745 * long to store it.
4746 */
4747 tmp = (long long)seq + count;
4748 nxt_seq = nxt->sequence - nxt_offset;
4749 tmp_nxt = (long long)nxt_seq + nxt_offset;
4750
4751 /*
4752 * cached_sq_head may overflow, and it will never overflow twice
4753 * once there is some timeout req still be valid.
4754 */
4755 if (seq < nxt_seq)
4756 tmp += UINT_MAX;
4757
4758 if (tmp > tmp_nxt)
4759 break;
4760
4761 /*
4762 * Sequence of reqs after the insert one and itself should
4763 * be adjusted because each timeout req consumes a slot.
4764 */
4765 span++;
4766 nxt->sequence++;
4767 }
4768 req->sequence -= span;
4769 add:
4770 list_add(&req->list, entry);
4771 data->timer.function = io_timeout_fn;
4772 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
4773 spin_unlock_irq(&ctx->completion_lock);
4774 return 0;
4775 }
4776
4777 static bool io_cancel_cb(struct io_wq_work *work, void *data)
4778 {
4779 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4780
4781 return req->user_data == (unsigned long) data;
4782 }
4783
4784 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
4785 {
4786 enum io_wq_cancel cancel_ret;
4787 int ret = 0;
4788
4789 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
4790 switch (cancel_ret) {
4791 case IO_WQ_CANCEL_OK:
4792 ret = 0;
4793 break;
4794 case IO_WQ_CANCEL_RUNNING:
4795 ret = -EALREADY;
4796 break;
4797 case IO_WQ_CANCEL_NOTFOUND:
4798 ret = -ENOENT;
4799 break;
4800 }
4801
4802 return ret;
4803 }
4804
4805 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
4806 struct io_kiocb *req, __u64 sqe_addr,
4807 int success_ret)
4808 {
4809 unsigned long flags;
4810 int ret;
4811
4812 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4813 if (ret != -ENOENT) {
4814 spin_lock_irqsave(&ctx->completion_lock, flags);
4815 goto done;
4816 }
4817
4818 spin_lock_irqsave(&ctx->completion_lock, flags);
4819 ret = io_timeout_cancel(ctx, sqe_addr);
4820 if (ret != -ENOENT)
4821 goto done;
4822 ret = io_poll_cancel(ctx, sqe_addr);
4823 done:
4824 if (!ret)
4825 ret = success_ret;
4826 io_cqring_fill_event(req, ret);
4827 io_commit_cqring(ctx);
4828 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4829 io_cqring_ev_posted(ctx);
4830
4831 if (ret < 0)
4832 req_set_fail_links(req);
4833 io_put_req(req);
4834 }
4835
4836 static int io_async_cancel_prep(struct io_kiocb *req,
4837 const struct io_uring_sqe *sqe)
4838 {
4839 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4840 return -EINVAL;
4841 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4842 sqe->cancel_flags)
4843 return -EINVAL;
4844
4845 req->cancel.addr = READ_ONCE(sqe->addr);
4846 return 0;
4847 }
4848
4849 static int io_async_cancel(struct io_kiocb *req)
4850 {
4851 struct io_ring_ctx *ctx = req->ctx;
4852
4853 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
4854 return 0;
4855 }
4856
4857 static int io_files_update_prep(struct io_kiocb *req,
4858 const struct io_uring_sqe *sqe)
4859 {
4860 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4861 return -EINVAL;
4862
4863 req->files_update.offset = READ_ONCE(sqe->off);
4864 req->files_update.nr_args = READ_ONCE(sqe->len);
4865 if (!req->files_update.nr_args)
4866 return -EINVAL;
4867 req->files_update.arg = READ_ONCE(sqe->addr);
4868 return 0;
4869 }
4870
4871 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4872 {
4873 struct io_ring_ctx *ctx = req->ctx;
4874 struct io_uring_files_update up;
4875 int ret;
4876
4877 if (force_nonblock)
4878 return -EAGAIN;
4879
4880 up.offset = req->files_update.offset;
4881 up.fds = req->files_update.arg;
4882
4883 mutex_lock(&ctx->uring_lock);
4884 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4885 mutex_unlock(&ctx->uring_lock);
4886
4887 if (ret < 0)
4888 req_set_fail_links(req);
4889 io_cqring_add_event(req, ret);
4890 io_put_req(req);
4891 return 0;
4892 }
4893
4894 static int io_req_defer_prep(struct io_kiocb *req,
4895 const struct io_uring_sqe *sqe)
4896 {
4897 ssize_t ret = 0;
4898
4899 if (!sqe)
4900 return 0;
4901
4902 if (io_op_defs[req->opcode].file_table) {
4903 ret = io_grab_files(req);
4904 if (unlikely(ret))
4905 return ret;
4906 }
4907
4908 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4909
4910 switch (req->opcode) {
4911 case IORING_OP_NOP:
4912 break;
4913 case IORING_OP_READV:
4914 case IORING_OP_READ_FIXED:
4915 case IORING_OP_READ:
4916 ret = io_read_prep(req, sqe, true);
4917 break;
4918 case IORING_OP_WRITEV:
4919 case IORING_OP_WRITE_FIXED:
4920 case IORING_OP_WRITE:
4921 ret = io_write_prep(req, sqe, true);
4922 break;
4923 case IORING_OP_POLL_ADD:
4924 ret = io_poll_add_prep(req, sqe);
4925 break;
4926 case IORING_OP_POLL_REMOVE:
4927 ret = io_poll_remove_prep(req, sqe);
4928 break;
4929 case IORING_OP_FSYNC:
4930 ret = io_prep_fsync(req, sqe);
4931 break;
4932 case IORING_OP_SYNC_FILE_RANGE:
4933 ret = io_prep_sfr(req, sqe);
4934 break;
4935 case IORING_OP_SENDMSG:
4936 case IORING_OP_SEND:
4937 ret = io_sendmsg_prep(req, sqe);
4938 break;
4939 case IORING_OP_RECVMSG:
4940 case IORING_OP_RECV:
4941 ret = io_recvmsg_prep(req, sqe);
4942 break;
4943 case IORING_OP_CONNECT:
4944 ret = io_connect_prep(req, sqe);
4945 break;
4946 case IORING_OP_TIMEOUT:
4947 ret = io_timeout_prep(req, sqe, false);
4948 break;
4949 case IORING_OP_TIMEOUT_REMOVE:
4950 ret = io_timeout_remove_prep(req, sqe);
4951 break;
4952 case IORING_OP_ASYNC_CANCEL:
4953 ret = io_async_cancel_prep(req, sqe);
4954 break;
4955 case IORING_OP_LINK_TIMEOUT:
4956 ret = io_timeout_prep(req, sqe, true);
4957 break;
4958 case IORING_OP_ACCEPT:
4959 ret = io_accept_prep(req, sqe);
4960 break;
4961 case IORING_OP_FALLOCATE:
4962 ret = io_fallocate_prep(req, sqe);
4963 break;
4964 case IORING_OP_OPENAT:
4965 ret = io_openat_prep(req, sqe);
4966 break;
4967 case IORING_OP_CLOSE:
4968 ret = io_close_prep(req, sqe);
4969 break;
4970 case IORING_OP_FILES_UPDATE:
4971 ret = io_files_update_prep(req, sqe);
4972 break;
4973 case IORING_OP_STATX:
4974 ret = io_statx_prep(req, sqe);
4975 break;
4976 case IORING_OP_FADVISE:
4977 ret = io_fadvise_prep(req, sqe);
4978 break;
4979 case IORING_OP_MADVISE:
4980 ret = io_madvise_prep(req, sqe);
4981 break;
4982 case IORING_OP_OPENAT2:
4983 ret = io_openat2_prep(req, sqe);
4984 break;
4985 case IORING_OP_EPOLL_CTL:
4986 ret = io_epoll_ctl_prep(req, sqe);
4987 break;
4988 case IORING_OP_SPLICE:
4989 ret = io_splice_prep(req, sqe);
4990 break;
4991 case IORING_OP_PROVIDE_BUFFERS:
4992 ret = io_provide_buffers_prep(req, sqe);
4993 break;
4994 case IORING_OP_REMOVE_BUFFERS:
4995 ret = io_remove_buffers_prep(req, sqe);
4996 break;
4997 default:
4998 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
4999 req->opcode);
5000 ret = -EINVAL;
5001 break;
5002 }
5003
5004 return ret;
5005 }
5006
5007 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5008 {
5009 struct io_ring_ctx *ctx = req->ctx;
5010 int ret;
5011
5012 /* Still need defer if there is pending req in defer list. */
5013 if (!req_need_defer(req) && list_empty_careful(&ctx->defer_list))
5014 return 0;
5015
5016 if (!req->io) {
5017 if (io_alloc_async_ctx(req))
5018 return -EAGAIN;
5019 ret = io_req_defer_prep(req, sqe);
5020 if (ret < 0)
5021 return ret;
5022 }
5023
5024 spin_lock_irq(&ctx->completion_lock);
5025 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
5026 spin_unlock_irq(&ctx->completion_lock);
5027 return 0;
5028 }
5029
5030 trace_io_uring_defer(ctx, req, req->user_data);
5031 list_add_tail(&req->list, &ctx->defer_list);
5032 spin_unlock_irq(&ctx->completion_lock);
5033 return -EIOCBQUEUED;
5034 }
5035
5036 static void io_cleanup_req(struct io_kiocb *req)
5037 {
5038 struct io_async_ctx *io = req->io;
5039
5040 switch (req->opcode) {
5041 case IORING_OP_READV:
5042 case IORING_OP_READ_FIXED:
5043 case IORING_OP_READ:
5044 if (req->flags & REQ_F_BUFFER_SELECTED)
5045 kfree((void *)(unsigned long)req->rw.addr);
5046 /* fallthrough */
5047 case IORING_OP_WRITEV:
5048 case IORING_OP_WRITE_FIXED:
5049 case IORING_OP_WRITE:
5050 if (io->rw.iov != io->rw.fast_iov)
5051 kfree(io->rw.iov);
5052 break;
5053 case IORING_OP_RECVMSG:
5054 if (req->flags & REQ_F_BUFFER_SELECTED)
5055 kfree(req->sr_msg.kbuf);
5056 /* fallthrough */
5057 case IORING_OP_SENDMSG:
5058 if (io->msg.iov != io->msg.fast_iov)
5059 kfree(io->msg.iov);
5060 break;
5061 case IORING_OP_RECV:
5062 if (req->flags & REQ_F_BUFFER_SELECTED)
5063 kfree(req->sr_msg.kbuf);
5064 break;
5065 case IORING_OP_OPENAT:
5066 case IORING_OP_OPENAT2:
5067 case IORING_OP_STATX:
5068 putname(req->open.filename);
5069 break;
5070 case IORING_OP_SPLICE:
5071 io_put_file(req, req->splice.file_in,
5072 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5073 break;
5074 }
5075
5076 req->flags &= ~REQ_F_NEED_CLEANUP;
5077 }
5078
5079 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5080 bool force_nonblock)
5081 {
5082 struct io_ring_ctx *ctx = req->ctx;
5083 int ret;
5084
5085 switch (req->opcode) {
5086 case IORING_OP_NOP:
5087 ret = io_nop(req);
5088 break;
5089 case IORING_OP_READV:
5090 case IORING_OP_READ_FIXED:
5091 case IORING_OP_READ:
5092 if (sqe) {
5093 ret = io_read_prep(req, sqe, force_nonblock);
5094 if (ret < 0)
5095 break;
5096 }
5097 ret = io_read(req, force_nonblock);
5098 break;
5099 case IORING_OP_WRITEV:
5100 case IORING_OP_WRITE_FIXED:
5101 case IORING_OP_WRITE:
5102 if (sqe) {
5103 ret = io_write_prep(req, sqe, force_nonblock);
5104 if (ret < 0)
5105 break;
5106 }
5107 ret = io_write(req, force_nonblock);
5108 break;
5109 case IORING_OP_FSYNC:
5110 if (sqe) {
5111 ret = io_prep_fsync(req, sqe);
5112 if (ret < 0)
5113 break;
5114 }
5115 ret = io_fsync(req, force_nonblock);
5116 break;
5117 case IORING_OP_POLL_ADD:
5118 if (sqe) {
5119 ret = io_poll_add_prep(req, sqe);
5120 if (ret)
5121 break;
5122 }
5123 ret = io_poll_add(req);
5124 break;
5125 case IORING_OP_POLL_REMOVE:
5126 if (sqe) {
5127 ret = io_poll_remove_prep(req, sqe);
5128 if (ret < 0)
5129 break;
5130 }
5131 ret = io_poll_remove(req);
5132 break;
5133 case IORING_OP_SYNC_FILE_RANGE:
5134 if (sqe) {
5135 ret = io_prep_sfr(req, sqe);
5136 if (ret < 0)
5137 break;
5138 }
5139 ret = io_sync_file_range(req, force_nonblock);
5140 break;
5141 case IORING_OP_SENDMSG:
5142 case IORING_OP_SEND:
5143 if (sqe) {
5144 ret = io_sendmsg_prep(req, sqe);
5145 if (ret < 0)
5146 break;
5147 }
5148 if (req->opcode == IORING_OP_SENDMSG)
5149 ret = io_sendmsg(req, force_nonblock);
5150 else
5151 ret = io_send(req, force_nonblock);
5152 break;
5153 case IORING_OP_RECVMSG:
5154 case IORING_OP_RECV:
5155 if (sqe) {
5156 ret = io_recvmsg_prep(req, sqe);
5157 if (ret)
5158 break;
5159 }
5160 if (req->opcode == IORING_OP_RECVMSG)
5161 ret = io_recvmsg(req, force_nonblock);
5162 else
5163 ret = io_recv(req, force_nonblock);
5164 break;
5165 case IORING_OP_TIMEOUT:
5166 if (sqe) {
5167 ret = io_timeout_prep(req, sqe, false);
5168 if (ret)
5169 break;
5170 }
5171 ret = io_timeout(req);
5172 break;
5173 case IORING_OP_TIMEOUT_REMOVE:
5174 if (sqe) {
5175 ret = io_timeout_remove_prep(req, sqe);
5176 if (ret)
5177 break;
5178 }
5179 ret = io_timeout_remove(req);
5180 break;
5181 case IORING_OP_ACCEPT:
5182 if (sqe) {
5183 ret = io_accept_prep(req, sqe);
5184 if (ret)
5185 break;
5186 }
5187 ret = io_accept(req, force_nonblock);
5188 break;
5189 case IORING_OP_CONNECT:
5190 if (sqe) {
5191 ret = io_connect_prep(req, sqe);
5192 if (ret)
5193 break;
5194 }
5195 ret = io_connect(req, force_nonblock);
5196 break;
5197 case IORING_OP_ASYNC_CANCEL:
5198 if (sqe) {
5199 ret = io_async_cancel_prep(req, sqe);
5200 if (ret)
5201 break;
5202 }
5203 ret = io_async_cancel(req);
5204 break;
5205 case IORING_OP_FALLOCATE:
5206 if (sqe) {
5207 ret = io_fallocate_prep(req, sqe);
5208 if (ret)
5209 break;
5210 }
5211 ret = io_fallocate(req, force_nonblock);
5212 break;
5213 case IORING_OP_OPENAT:
5214 if (sqe) {
5215 ret = io_openat_prep(req, sqe);
5216 if (ret)
5217 break;
5218 }
5219 ret = io_openat(req, force_nonblock);
5220 break;
5221 case IORING_OP_CLOSE:
5222 if (sqe) {
5223 ret = io_close_prep(req, sqe);
5224 if (ret)
5225 break;
5226 }
5227 ret = io_close(req, force_nonblock);
5228 break;
5229 case IORING_OP_FILES_UPDATE:
5230 if (sqe) {
5231 ret = io_files_update_prep(req, sqe);
5232 if (ret)
5233 break;
5234 }
5235 ret = io_files_update(req, force_nonblock);
5236 break;
5237 case IORING_OP_STATX:
5238 if (sqe) {
5239 ret = io_statx_prep(req, sqe);
5240 if (ret)
5241 break;
5242 }
5243 ret = io_statx(req, force_nonblock);
5244 break;
5245 case IORING_OP_FADVISE:
5246 if (sqe) {
5247 ret = io_fadvise_prep(req, sqe);
5248 if (ret)
5249 break;
5250 }
5251 ret = io_fadvise(req, force_nonblock);
5252 break;
5253 case IORING_OP_MADVISE:
5254 if (sqe) {
5255 ret = io_madvise_prep(req, sqe);
5256 if (ret)
5257 break;
5258 }
5259 ret = io_madvise(req, force_nonblock);
5260 break;
5261 case IORING_OP_OPENAT2:
5262 if (sqe) {
5263 ret = io_openat2_prep(req, sqe);
5264 if (ret)
5265 break;
5266 }
5267 ret = io_openat2(req, force_nonblock);
5268 break;
5269 case IORING_OP_EPOLL_CTL:
5270 if (sqe) {
5271 ret = io_epoll_ctl_prep(req, sqe);
5272 if (ret)
5273 break;
5274 }
5275 ret = io_epoll_ctl(req, force_nonblock);
5276 break;
5277 case IORING_OP_SPLICE:
5278 if (sqe) {
5279 ret = io_splice_prep(req, sqe);
5280 if (ret < 0)
5281 break;
5282 }
5283 ret = io_splice(req, force_nonblock);
5284 break;
5285 case IORING_OP_PROVIDE_BUFFERS:
5286 if (sqe) {
5287 ret = io_provide_buffers_prep(req, sqe);
5288 if (ret)
5289 break;
5290 }
5291 ret = io_provide_buffers(req, force_nonblock);
5292 break;
5293 case IORING_OP_REMOVE_BUFFERS:
5294 if (sqe) {
5295 ret = io_remove_buffers_prep(req, sqe);
5296 if (ret)
5297 break;
5298 }
5299 ret = io_remove_buffers(req, force_nonblock);
5300 break;
5301 default:
5302 ret = -EINVAL;
5303 break;
5304 }
5305
5306 if (ret)
5307 return ret;
5308
5309 /* If the op doesn't have a file, we're not polling for it */
5310 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
5311 const bool in_async = io_wq_current_is_worker();
5312
5313 if (req->result == -EAGAIN)
5314 return -EAGAIN;
5315
5316 /* workqueue context doesn't hold uring_lock, grab it now */
5317 if (in_async)
5318 mutex_lock(&ctx->uring_lock);
5319
5320 io_iopoll_req_issued(req);
5321
5322 if (in_async)
5323 mutex_unlock(&ctx->uring_lock);
5324 }
5325
5326 return 0;
5327 }
5328
5329 static void io_wq_submit_work(struct io_wq_work **workptr)
5330 {
5331 struct io_wq_work *work = *workptr;
5332 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5333 int ret = 0;
5334
5335 /* if NO_CANCEL is set, we must still run the work */
5336 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
5337 IO_WQ_WORK_CANCEL) {
5338 ret = -ECANCELED;
5339 }
5340
5341 if (!ret) {
5342 do {
5343 ret = io_issue_sqe(req, NULL, false);
5344 /*
5345 * We can get EAGAIN for polled IO even though we're
5346 * forcing a sync submission from here, since we can't
5347 * wait for request slots on the block side.
5348 */
5349 if (ret != -EAGAIN)
5350 break;
5351 cond_resched();
5352 } while (1);
5353 }
5354
5355 if (ret) {
5356 req_set_fail_links(req);
5357 io_cqring_add_event(req, ret);
5358 io_put_req(req);
5359 }
5360
5361 io_steal_work(req, workptr);
5362 }
5363
5364 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
5365 int index)
5366 {
5367 struct fixed_file_table *table;
5368
5369 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
5370 return table->files[index & IORING_FILE_TABLE_MASK];;
5371 }
5372
5373 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
5374 int fd, struct file **out_file, bool fixed)
5375 {
5376 struct io_ring_ctx *ctx = req->ctx;
5377 struct file *file;
5378
5379 if (fixed) {
5380 if (unlikely(!ctx->file_data ||
5381 (unsigned) fd >= ctx->nr_user_files))
5382 return -EBADF;
5383 fd = array_index_nospec(fd, ctx->nr_user_files);
5384 file = io_file_from_index(ctx, fd);
5385 if (!file)
5386 return -EBADF;
5387 req->fixed_file_refs = ctx->file_data->cur_refs;
5388 percpu_ref_get(req->fixed_file_refs);
5389 } else {
5390 trace_io_uring_file_get(ctx, fd);
5391 file = __io_file_get(state, fd);
5392 if (unlikely(!file))
5393 return -EBADF;
5394 }
5395
5396 *out_file = file;
5397 return 0;
5398 }
5399
5400 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
5401 int fd)
5402 {
5403 bool fixed;
5404
5405 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
5406 if (unlikely(!fixed && req->needs_fixed_file))
5407 return -EBADF;
5408
5409 return io_file_get(state, req, fd, &req->file, fixed);
5410 }
5411
5412 static int io_grab_files(struct io_kiocb *req)
5413 {
5414 int ret = -EBADF;
5415 struct io_ring_ctx *ctx = req->ctx;
5416
5417 if (req->work.files || (req->flags & REQ_F_NO_FILE_TABLE))
5418 return 0;
5419 if (!ctx->ring_file)
5420 return -EBADF;
5421
5422 rcu_read_lock();
5423 spin_lock_irq(&ctx->inflight_lock);
5424 /*
5425 * We use the f_ops->flush() handler to ensure that we can flush
5426 * out work accessing these files if the fd is closed. Check if
5427 * the fd has changed since we started down this path, and disallow
5428 * this operation if it has.
5429 */
5430 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
5431 list_add(&req->inflight_entry, &ctx->inflight_list);
5432 req->flags |= REQ_F_INFLIGHT;
5433 req->work.files = current->files;
5434 ret = 0;
5435 }
5436 spin_unlock_irq(&ctx->inflight_lock);
5437 rcu_read_unlock();
5438
5439 return ret;
5440 }
5441
5442 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
5443 {
5444 struct io_timeout_data *data = container_of(timer,
5445 struct io_timeout_data, timer);
5446 struct io_kiocb *req = data->req;
5447 struct io_ring_ctx *ctx = req->ctx;
5448 struct io_kiocb *prev = NULL;
5449 unsigned long flags;
5450
5451 spin_lock_irqsave(&ctx->completion_lock, flags);
5452
5453 /*
5454 * We don't expect the list to be empty, that will only happen if we
5455 * race with the completion of the linked work.
5456 */
5457 if (!list_empty(&req->link_list)) {
5458 prev = list_entry(req->link_list.prev, struct io_kiocb,
5459 link_list);
5460 if (refcount_inc_not_zero(&prev->refs)) {
5461 list_del_init(&req->link_list);
5462 prev->flags &= ~REQ_F_LINK_TIMEOUT;
5463 } else
5464 prev = NULL;
5465 }
5466
5467 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5468
5469 if (prev) {
5470 req_set_fail_links(prev);
5471 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
5472 io_put_req(prev);
5473 } else {
5474 io_cqring_add_event(req, -ETIME);
5475 io_put_req(req);
5476 }
5477 return HRTIMER_NORESTART;
5478 }
5479
5480 static void io_queue_linked_timeout(struct io_kiocb *req)
5481 {
5482 struct io_ring_ctx *ctx = req->ctx;
5483
5484 /*
5485 * If the list is now empty, then our linked request finished before
5486 * we got a chance to setup the timer
5487 */
5488 spin_lock_irq(&ctx->completion_lock);
5489 if (!list_empty(&req->link_list)) {
5490 struct io_timeout_data *data = &req->io->timeout;
5491
5492 data->timer.function = io_link_timeout_fn;
5493 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
5494 data->mode);
5495 }
5496 spin_unlock_irq(&ctx->completion_lock);
5497
5498 /* drop submission reference */
5499 io_put_req(req);
5500 }
5501
5502 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
5503 {
5504 struct io_kiocb *nxt;
5505
5506 if (!(req->flags & REQ_F_LINK_HEAD))
5507 return NULL;
5508 /* for polled retry, if flag is set, we already went through here */
5509 if (req->flags & REQ_F_POLLED)
5510 return NULL;
5511
5512 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
5513 link_list);
5514 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
5515 return NULL;
5516
5517 req->flags |= REQ_F_LINK_TIMEOUT;
5518 return nxt;
5519 }
5520
5521 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5522 {
5523 struct io_kiocb *linked_timeout;
5524 struct io_kiocb *nxt;
5525 const struct cred *old_creds = NULL;
5526 int ret;
5527
5528 again:
5529 linked_timeout = io_prep_linked_timeout(req);
5530
5531 if (req->work.creds && req->work.creds != current_cred()) {
5532 if (old_creds)
5533 revert_creds(old_creds);
5534 if (old_creds == req->work.creds)
5535 old_creds = NULL; /* restored original creds */
5536 else
5537 old_creds = override_creds(req->work.creds);
5538 }
5539
5540 ret = io_issue_sqe(req, sqe, true);
5541
5542 /*
5543 * We async punt it if the file wasn't marked NOWAIT, or if the file
5544 * doesn't support non-blocking read/write attempts
5545 */
5546 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
5547 (req->flags & REQ_F_MUST_PUNT))) {
5548 if (io_arm_poll_handler(req)) {
5549 if (linked_timeout)
5550 io_queue_linked_timeout(linked_timeout);
5551 goto exit;
5552 }
5553 punt:
5554 if (io_op_defs[req->opcode].file_table) {
5555 ret = io_grab_files(req);
5556 if (ret)
5557 goto err;
5558 }
5559
5560 /*
5561 * Queued up for async execution, worker will release
5562 * submit reference when the iocb is actually submitted.
5563 */
5564 io_queue_async_work(req);
5565 goto exit;
5566 }
5567
5568 err:
5569 nxt = NULL;
5570 /* drop submission reference */
5571 io_put_req_find_next(req, &nxt);
5572
5573 if (linked_timeout) {
5574 if (!ret)
5575 io_queue_linked_timeout(linked_timeout);
5576 else
5577 io_put_req(linked_timeout);
5578 }
5579
5580 /* and drop final reference, if we failed */
5581 if (ret) {
5582 io_cqring_add_event(req, ret);
5583 req_set_fail_links(req);
5584 io_put_req(req);
5585 }
5586 if (nxt) {
5587 req = nxt;
5588
5589 if (req->flags & REQ_F_FORCE_ASYNC)
5590 goto punt;
5591 goto again;
5592 }
5593 exit:
5594 if (old_creds)
5595 revert_creds(old_creds);
5596 }
5597
5598 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5599 {
5600 int ret;
5601
5602 ret = io_req_defer(req, sqe);
5603 if (ret) {
5604 if (ret != -EIOCBQUEUED) {
5605 fail_req:
5606 io_cqring_add_event(req, ret);
5607 req_set_fail_links(req);
5608 io_double_put_req(req);
5609 }
5610 } else if (req->flags & REQ_F_FORCE_ASYNC) {
5611 if (!req->io) {
5612 ret = -EAGAIN;
5613 if (io_alloc_async_ctx(req))
5614 goto fail_req;
5615 ret = io_req_defer_prep(req, sqe);
5616 if (unlikely(ret < 0))
5617 goto fail_req;
5618 }
5619
5620 /*
5621 * Never try inline submit of IOSQE_ASYNC is set, go straight
5622 * to async execution.
5623 */
5624 req->work.flags |= IO_WQ_WORK_CONCURRENT;
5625 io_queue_async_work(req);
5626 } else {
5627 __io_queue_sqe(req, sqe);
5628 }
5629 }
5630
5631 static inline void io_queue_link_head(struct io_kiocb *req)
5632 {
5633 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
5634 io_cqring_add_event(req, -ECANCELED);
5635 io_double_put_req(req);
5636 } else
5637 io_queue_sqe(req, NULL);
5638 }
5639
5640 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5641 struct io_submit_state *state, struct io_kiocb **link)
5642 {
5643 struct io_ring_ctx *ctx = req->ctx;
5644 int ret;
5645
5646 /*
5647 * If we already have a head request, queue this one for async
5648 * submittal once the head completes. If we don't have a head but
5649 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
5650 * submitted sync once the chain is complete. If none of those
5651 * conditions are true (normal request), then just queue it.
5652 */
5653 if (*link) {
5654 struct io_kiocb *head = *link;
5655
5656 /*
5657 * Taking sequential execution of a link, draining both sides
5658 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
5659 * requests in the link. So, it drains the head and the
5660 * next after the link request. The last one is done via
5661 * drain_next flag to persist the effect across calls.
5662 */
5663 if (req->flags & REQ_F_IO_DRAIN) {
5664 head->flags |= REQ_F_IO_DRAIN;
5665 ctx->drain_next = 1;
5666 }
5667 if (io_alloc_async_ctx(req))
5668 return -EAGAIN;
5669
5670 ret = io_req_defer_prep(req, sqe);
5671 if (ret) {
5672 /* fail even hard links since we don't submit */
5673 head->flags |= REQ_F_FAIL_LINK;
5674 return ret;
5675 }
5676 trace_io_uring_link(ctx, req, head);
5677 list_add_tail(&req->link_list, &head->link_list);
5678
5679 /* last request of a link, enqueue the link */
5680 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
5681 io_queue_link_head(head);
5682 *link = NULL;
5683 }
5684 } else {
5685 if (unlikely(ctx->drain_next)) {
5686 req->flags |= REQ_F_IO_DRAIN;
5687 ctx->drain_next = 0;
5688 }
5689 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
5690 req->flags |= REQ_F_LINK_HEAD;
5691 INIT_LIST_HEAD(&req->link_list);
5692
5693 if (io_alloc_async_ctx(req))
5694 return -EAGAIN;
5695
5696 ret = io_req_defer_prep(req, sqe);
5697 if (ret)
5698 req->flags |= REQ_F_FAIL_LINK;
5699 *link = req;
5700 } else {
5701 io_queue_sqe(req, sqe);
5702 }
5703 }
5704
5705 return 0;
5706 }
5707
5708 /*
5709 * Batched submission is done, ensure local IO is flushed out.
5710 */
5711 static void io_submit_state_end(struct io_submit_state *state)
5712 {
5713 blk_finish_plug(&state->plug);
5714 io_file_put(state);
5715 if (state->free_reqs)
5716 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
5717 }
5718
5719 /*
5720 * Start submission side cache.
5721 */
5722 static void io_submit_state_start(struct io_submit_state *state,
5723 unsigned int max_ios)
5724 {
5725 blk_start_plug(&state->plug);
5726 state->free_reqs = 0;
5727 state->file = NULL;
5728 state->ios_left = max_ios;
5729 }
5730
5731 static void io_commit_sqring(struct io_ring_ctx *ctx)
5732 {
5733 struct io_rings *rings = ctx->rings;
5734
5735 /*
5736 * Ensure any loads from the SQEs are done at this point,
5737 * since once we write the new head, the application could
5738 * write new data to them.
5739 */
5740 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
5741 }
5742
5743 /*
5744 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
5745 * that is mapped by userspace. This means that care needs to be taken to
5746 * ensure that reads are stable, as we cannot rely on userspace always
5747 * being a good citizen. If members of the sqe are validated and then later
5748 * used, it's important that those reads are done through READ_ONCE() to
5749 * prevent a re-load down the line.
5750 */
5751 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
5752 {
5753 u32 *sq_array = ctx->sq_array;
5754 unsigned head;
5755
5756 /*
5757 * The cached sq head (or cq tail) serves two purposes:
5758 *
5759 * 1) allows us to batch the cost of updating the user visible
5760 * head updates.
5761 * 2) allows the kernel side to track the head on its own, even
5762 * though the application is the one updating it.
5763 */
5764 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
5765 if (likely(head < ctx->sq_entries))
5766 return &ctx->sq_sqes[head];
5767
5768 /* drop invalid entries */
5769 ctx->cached_sq_dropped++;
5770 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
5771 return NULL;
5772 }
5773
5774 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
5775 {
5776 ctx->cached_sq_head++;
5777 }
5778
5779 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
5780 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
5781 IOSQE_BUFFER_SELECT)
5782
5783 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
5784 const struct io_uring_sqe *sqe,
5785 struct io_submit_state *state, bool async)
5786 {
5787 unsigned int sqe_flags;
5788 int id;
5789
5790 /*
5791 * All io need record the previous position, if LINK vs DARIN,
5792 * it can be used to mark the position of the first IO in the
5793 * link list.
5794 */
5795 req->sequence = ctx->cached_sq_head - ctx->cached_sq_dropped;
5796 req->opcode = READ_ONCE(sqe->opcode);
5797 req->user_data = READ_ONCE(sqe->user_data);
5798 req->io = NULL;
5799 req->file = NULL;
5800 req->ctx = ctx;
5801 req->flags = 0;
5802 /* one is dropped after submission, the other at completion */
5803 refcount_set(&req->refs, 2);
5804 req->task = NULL;
5805 req->result = 0;
5806 req->needs_fixed_file = async;
5807 INIT_IO_WORK(&req->work, io_wq_submit_work);
5808
5809 if (unlikely(req->opcode >= IORING_OP_LAST))
5810 return -EINVAL;
5811
5812 if (io_op_defs[req->opcode].needs_mm && !current->mm) {
5813 if (unlikely(!mmget_not_zero(ctx->sqo_mm)))
5814 return -EFAULT;
5815 use_mm(ctx->sqo_mm);
5816 }
5817
5818 sqe_flags = READ_ONCE(sqe->flags);
5819 /* enforce forwards compatibility on users */
5820 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
5821 return -EINVAL;
5822
5823 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
5824 !io_op_defs[req->opcode].buffer_select)
5825 return -EOPNOTSUPP;
5826
5827 id = READ_ONCE(sqe->personality);
5828 if (id) {
5829 req->work.creds = idr_find(&ctx->personality_idr, id);
5830 if (unlikely(!req->work.creds))
5831 return -EINVAL;
5832 get_cred(req->work.creds);
5833 }
5834
5835 /* same numerical values with corresponding REQ_F_*, safe to copy */
5836 req->flags |= sqe_flags & (IOSQE_IO_DRAIN | IOSQE_IO_HARDLINK |
5837 IOSQE_ASYNC | IOSQE_FIXED_FILE |
5838 IOSQE_BUFFER_SELECT | IOSQE_IO_LINK);
5839
5840 if (!io_op_defs[req->opcode].needs_file)
5841 return 0;
5842
5843 return io_req_set_file(state, req, READ_ONCE(sqe->fd));
5844 }
5845
5846 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
5847 struct file *ring_file, int ring_fd, bool async)
5848 {
5849 struct io_submit_state state, *statep = NULL;
5850 struct io_kiocb *link = NULL;
5851 int i, submitted = 0;
5852
5853 /* if we have a backlog and couldn't flush it all, return BUSY */
5854 if (test_bit(0, &ctx->sq_check_overflow)) {
5855 if (!list_empty(&ctx->cq_overflow_list) &&
5856 !io_cqring_overflow_flush(ctx, false))
5857 return -EBUSY;
5858 }
5859
5860 /* make sure SQ entry isn't read before tail */
5861 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
5862
5863 if (!percpu_ref_tryget_many(&ctx->refs, nr))
5864 return -EAGAIN;
5865
5866 if (nr > IO_PLUG_THRESHOLD) {
5867 io_submit_state_start(&state, nr);
5868 statep = &state;
5869 }
5870
5871 ctx->ring_fd = ring_fd;
5872 ctx->ring_file = ring_file;
5873
5874 for (i = 0; i < nr; i++) {
5875 const struct io_uring_sqe *sqe;
5876 struct io_kiocb *req;
5877 int err;
5878
5879 sqe = io_get_sqe(ctx);
5880 if (unlikely(!sqe)) {
5881 io_consume_sqe(ctx);
5882 break;
5883 }
5884 req = io_alloc_req(ctx, statep);
5885 if (unlikely(!req)) {
5886 if (!submitted)
5887 submitted = -EAGAIN;
5888 break;
5889 }
5890
5891 err = io_init_req(ctx, req, sqe, statep, async);
5892 io_consume_sqe(ctx);
5893 /* will complete beyond this point, count as submitted */
5894 submitted++;
5895
5896 if (unlikely(err)) {
5897 fail_req:
5898 io_cqring_add_event(req, err);
5899 io_double_put_req(req);
5900 break;
5901 }
5902
5903 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
5904 true, async);
5905 err = io_submit_sqe(req, sqe, statep, &link);
5906 if (err)
5907 goto fail_req;
5908 }
5909
5910 if (unlikely(submitted != nr)) {
5911 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
5912
5913 percpu_ref_put_many(&ctx->refs, nr - ref_used);
5914 }
5915 if (link)
5916 io_queue_link_head(link);
5917 if (statep)
5918 io_submit_state_end(&state);
5919
5920 /* Commit SQ ring head once we've consumed and submitted all SQEs */
5921 io_commit_sqring(ctx);
5922
5923 return submitted;
5924 }
5925
5926 static inline void io_sq_thread_drop_mm(struct io_ring_ctx *ctx)
5927 {
5928 struct mm_struct *mm = current->mm;
5929
5930 if (mm) {
5931 unuse_mm(mm);
5932 mmput(mm);
5933 }
5934 }
5935
5936 static int io_sq_thread(void *data)
5937 {
5938 struct io_ring_ctx *ctx = data;
5939 const struct cred *old_cred;
5940 mm_segment_t old_fs;
5941 DEFINE_WAIT(wait);
5942 unsigned long timeout;
5943 int ret = 0;
5944
5945 complete(&ctx->completions[1]);
5946
5947 old_fs = get_fs();
5948 set_fs(USER_DS);
5949 old_cred = override_creds(ctx->creds);
5950
5951 timeout = jiffies + ctx->sq_thread_idle;
5952 while (!kthread_should_park()) {
5953 unsigned int to_submit;
5954
5955 if (!list_empty(&ctx->poll_list)) {
5956 unsigned nr_events = 0;
5957
5958 mutex_lock(&ctx->uring_lock);
5959 if (!list_empty(&ctx->poll_list))
5960 io_iopoll_getevents(ctx, &nr_events, 0);
5961 else
5962 timeout = jiffies + ctx->sq_thread_idle;
5963 mutex_unlock(&ctx->uring_lock);
5964 }
5965
5966 to_submit = io_sqring_entries(ctx);
5967
5968 /*
5969 * If submit got -EBUSY, flag us as needing the application
5970 * to enter the kernel to reap and flush events.
5971 */
5972 if (!to_submit || ret == -EBUSY) {
5973 /*
5974 * Drop cur_mm before scheduling, we can't hold it for
5975 * long periods (or over schedule()). Do this before
5976 * adding ourselves to the waitqueue, as the unuse/drop
5977 * may sleep.
5978 */
5979 io_sq_thread_drop_mm(ctx);
5980
5981 /*
5982 * We're polling. If we're within the defined idle
5983 * period, then let us spin without work before going
5984 * to sleep. The exception is if we got EBUSY doing
5985 * more IO, we should wait for the application to
5986 * reap events and wake us up.
5987 */
5988 if (!list_empty(&ctx->poll_list) ||
5989 (!time_after(jiffies, timeout) && ret != -EBUSY &&
5990 !percpu_ref_is_dying(&ctx->refs))) {
5991 if (current->task_works)
5992 task_work_run();
5993 cond_resched();
5994 continue;
5995 }
5996
5997 prepare_to_wait(&ctx->sqo_wait, &wait,
5998 TASK_INTERRUPTIBLE);
5999
6000 /*
6001 * While doing polled IO, before going to sleep, we need
6002 * to check if there are new reqs added to poll_list, it
6003 * is because reqs may have been punted to io worker and
6004 * will be added to poll_list later, hence check the
6005 * poll_list again.
6006 */
6007 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6008 !list_empty_careful(&ctx->poll_list)) {
6009 finish_wait(&ctx->sqo_wait, &wait);
6010 continue;
6011 }
6012
6013 /* Tell userspace we may need a wakeup call */
6014 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6015 /* make sure to read SQ tail after writing flags */
6016 smp_mb();
6017
6018 to_submit = io_sqring_entries(ctx);
6019 if (!to_submit || ret == -EBUSY) {
6020 if (kthread_should_park()) {
6021 finish_wait(&ctx->sqo_wait, &wait);
6022 break;
6023 }
6024 if (current->task_works) {
6025 task_work_run();
6026 finish_wait(&ctx->sqo_wait, &wait);
6027 continue;
6028 }
6029 if (signal_pending(current))
6030 flush_signals(current);
6031 schedule();
6032 finish_wait(&ctx->sqo_wait, &wait);
6033
6034 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6035 ret = 0;
6036 continue;
6037 }
6038 finish_wait(&ctx->sqo_wait, &wait);
6039
6040 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6041 }
6042
6043 mutex_lock(&ctx->uring_lock);
6044 ret = io_submit_sqes(ctx, to_submit, NULL, -1, true);
6045 mutex_unlock(&ctx->uring_lock);
6046 timeout = jiffies + ctx->sq_thread_idle;
6047 }
6048
6049 if (current->task_works)
6050 task_work_run();
6051
6052 set_fs(old_fs);
6053 io_sq_thread_drop_mm(ctx);
6054 revert_creds(old_cred);
6055
6056 kthread_parkme();
6057
6058 return 0;
6059 }
6060
6061 struct io_wait_queue {
6062 struct wait_queue_entry wq;
6063 struct io_ring_ctx *ctx;
6064 unsigned to_wait;
6065 unsigned nr_timeouts;
6066 };
6067
6068 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6069 {
6070 struct io_ring_ctx *ctx = iowq->ctx;
6071
6072 /*
6073 * Wake up if we have enough events, or if a timeout occurred since we
6074 * started waiting. For timeouts, we always want to return to userspace,
6075 * regardless of event count.
6076 */
6077 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6078 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6079 }
6080
6081 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6082 int wake_flags, void *key)
6083 {
6084 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6085 wq);
6086
6087 /* use noflush == true, as we can't safely rely on locking context */
6088 if (!io_should_wake(iowq, true))
6089 return -1;
6090
6091 return autoremove_wake_function(curr, mode, wake_flags, key);
6092 }
6093
6094 /*
6095 * Wait until events become available, if we don't already have some. The
6096 * application must reap them itself, as they reside on the shared cq ring.
6097 */
6098 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6099 const sigset_t __user *sig, size_t sigsz)
6100 {
6101 struct io_wait_queue iowq = {
6102 .wq = {
6103 .private = current,
6104 .func = io_wake_function,
6105 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6106 },
6107 .ctx = ctx,
6108 .to_wait = min_events,
6109 };
6110 struct io_rings *rings = ctx->rings;
6111 int ret = 0;
6112
6113 do {
6114 if (io_cqring_events(ctx, false) >= min_events)
6115 return 0;
6116 if (!current->task_works)
6117 break;
6118 task_work_run();
6119 } while (1);
6120
6121 if (sig) {
6122 #ifdef CONFIG_COMPAT
6123 if (in_compat_syscall())
6124 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6125 sigsz);
6126 else
6127 #endif
6128 ret = set_user_sigmask(sig, sigsz);
6129
6130 if (ret)
6131 return ret;
6132 }
6133
6134 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6135 trace_io_uring_cqring_wait(ctx, min_events);
6136 do {
6137 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6138 TASK_INTERRUPTIBLE);
6139 if (current->task_works)
6140 task_work_run();
6141 if (io_should_wake(&iowq, false))
6142 break;
6143 schedule();
6144 if (signal_pending(current)) {
6145 ret = -EINTR;
6146 break;
6147 }
6148 } while (1);
6149 finish_wait(&ctx->wait, &iowq.wq);
6150
6151 restore_saved_sigmask_unless(ret == -EINTR);
6152
6153 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6154 }
6155
6156 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6157 {
6158 #if defined(CONFIG_UNIX)
6159 if (ctx->ring_sock) {
6160 struct sock *sock = ctx->ring_sock->sk;
6161 struct sk_buff *skb;
6162
6163 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6164 kfree_skb(skb);
6165 }
6166 #else
6167 int i;
6168
6169 for (i = 0; i < ctx->nr_user_files; i++) {
6170 struct file *file;
6171
6172 file = io_file_from_index(ctx, i);
6173 if (file)
6174 fput(file);
6175 }
6176 #endif
6177 }
6178
6179 static void io_file_ref_kill(struct percpu_ref *ref)
6180 {
6181 struct fixed_file_data *data;
6182
6183 data = container_of(ref, struct fixed_file_data, refs);
6184 complete(&data->done);
6185 }
6186
6187 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6188 {
6189 struct fixed_file_data *data = ctx->file_data;
6190 struct fixed_file_ref_node *ref_node = NULL;
6191 unsigned nr_tables, i;
6192 unsigned long flags;
6193
6194 if (!data)
6195 return -ENXIO;
6196
6197 spin_lock_irqsave(&data->lock, flags);
6198 if (!list_empty(&data->ref_list))
6199 ref_node = list_first_entry(&data->ref_list,
6200 struct fixed_file_ref_node, node);
6201 spin_unlock_irqrestore(&data->lock, flags);
6202 if (ref_node)
6203 percpu_ref_kill(&ref_node->refs);
6204
6205 percpu_ref_kill(&data->refs);
6206
6207 /* wait for all refs nodes to complete */
6208 wait_for_completion(&data->done);
6209
6210 __io_sqe_files_unregister(ctx);
6211 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6212 for (i = 0; i < nr_tables; i++)
6213 kfree(data->table[i].files);
6214 kfree(data->table);
6215 percpu_ref_exit(&data->refs);
6216 kfree(data);
6217 ctx->file_data = NULL;
6218 ctx->nr_user_files = 0;
6219 return 0;
6220 }
6221
6222 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
6223 {
6224 if (ctx->sqo_thread) {
6225 wait_for_completion(&ctx->completions[1]);
6226 /*
6227 * The park is a bit of a work-around, without it we get
6228 * warning spews on shutdown with SQPOLL set and affinity
6229 * set to a single CPU.
6230 */
6231 kthread_park(ctx->sqo_thread);
6232 kthread_stop(ctx->sqo_thread);
6233 ctx->sqo_thread = NULL;
6234 }
6235 }
6236
6237 static void io_finish_async(struct io_ring_ctx *ctx)
6238 {
6239 io_sq_thread_stop(ctx);
6240
6241 if (ctx->io_wq) {
6242 io_wq_destroy(ctx->io_wq);
6243 ctx->io_wq = NULL;
6244 }
6245 }
6246
6247 #if defined(CONFIG_UNIX)
6248 /*
6249 * Ensure the UNIX gc is aware of our file set, so we are certain that
6250 * the io_uring can be safely unregistered on process exit, even if we have
6251 * loops in the file referencing.
6252 */
6253 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
6254 {
6255 struct sock *sk = ctx->ring_sock->sk;
6256 struct scm_fp_list *fpl;
6257 struct sk_buff *skb;
6258 int i, nr_files;
6259
6260 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
6261 if (!fpl)
6262 return -ENOMEM;
6263
6264 skb = alloc_skb(0, GFP_KERNEL);
6265 if (!skb) {
6266 kfree(fpl);
6267 return -ENOMEM;
6268 }
6269
6270 skb->sk = sk;
6271
6272 nr_files = 0;
6273 fpl->user = get_uid(ctx->user);
6274 for (i = 0; i < nr; i++) {
6275 struct file *file = io_file_from_index(ctx, i + offset);
6276
6277 if (!file)
6278 continue;
6279 fpl->fp[nr_files] = get_file(file);
6280 unix_inflight(fpl->user, fpl->fp[nr_files]);
6281 nr_files++;
6282 }
6283
6284 if (nr_files) {
6285 fpl->max = SCM_MAX_FD;
6286 fpl->count = nr_files;
6287 UNIXCB(skb).fp = fpl;
6288 skb->destructor = unix_destruct_scm;
6289 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
6290 skb_queue_head(&sk->sk_receive_queue, skb);
6291
6292 for (i = 0; i < nr_files; i++)
6293 fput(fpl->fp[i]);
6294 } else {
6295 kfree_skb(skb);
6296 kfree(fpl);
6297 }
6298
6299 return 0;
6300 }
6301
6302 /*
6303 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
6304 * causes regular reference counting to break down. We rely on the UNIX
6305 * garbage collection to take care of this problem for us.
6306 */
6307 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6308 {
6309 unsigned left, total;
6310 int ret = 0;
6311
6312 total = 0;
6313 left = ctx->nr_user_files;
6314 while (left) {
6315 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
6316
6317 ret = __io_sqe_files_scm(ctx, this_files, total);
6318 if (ret)
6319 break;
6320 left -= this_files;
6321 total += this_files;
6322 }
6323
6324 if (!ret)
6325 return 0;
6326
6327 while (total < ctx->nr_user_files) {
6328 struct file *file = io_file_from_index(ctx, total);
6329
6330 if (file)
6331 fput(file);
6332 total++;
6333 }
6334
6335 return ret;
6336 }
6337 #else
6338 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6339 {
6340 return 0;
6341 }
6342 #endif
6343
6344 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
6345 unsigned nr_files)
6346 {
6347 int i;
6348
6349 for (i = 0; i < nr_tables; i++) {
6350 struct fixed_file_table *table = &ctx->file_data->table[i];
6351 unsigned this_files;
6352
6353 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
6354 table->files = kcalloc(this_files, sizeof(struct file *),
6355 GFP_KERNEL);
6356 if (!table->files)
6357 break;
6358 nr_files -= this_files;
6359 }
6360
6361 if (i == nr_tables)
6362 return 0;
6363
6364 for (i = 0; i < nr_tables; i++) {
6365 struct fixed_file_table *table = &ctx->file_data->table[i];
6366 kfree(table->files);
6367 }
6368 return 1;
6369 }
6370
6371 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
6372 {
6373 #if defined(CONFIG_UNIX)
6374 struct sock *sock = ctx->ring_sock->sk;
6375 struct sk_buff_head list, *head = &sock->sk_receive_queue;
6376 struct sk_buff *skb;
6377 int i;
6378
6379 __skb_queue_head_init(&list);
6380
6381 /*
6382 * Find the skb that holds this file in its SCM_RIGHTS. When found,
6383 * remove this entry and rearrange the file array.
6384 */
6385 skb = skb_dequeue(head);
6386 while (skb) {
6387 struct scm_fp_list *fp;
6388
6389 fp = UNIXCB(skb).fp;
6390 for (i = 0; i < fp->count; i++) {
6391 int left;
6392
6393 if (fp->fp[i] != file)
6394 continue;
6395
6396 unix_notinflight(fp->user, fp->fp[i]);
6397 left = fp->count - 1 - i;
6398 if (left) {
6399 memmove(&fp->fp[i], &fp->fp[i + 1],
6400 left * sizeof(struct file *));
6401 }
6402 fp->count--;
6403 if (!fp->count) {
6404 kfree_skb(skb);
6405 skb = NULL;
6406 } else {
6407 __skb_queue_tail(&list, skb);
6408 }
6409 fput(file);
6410 file = NULL;
6411 break;
6412 }
6413
6414 if (!file)
6415 break;
6416
6417 __skb_queue_tail(&list, skb);
6418
6419 skb = skb_dequeue(head);
6420 }
6421
6422 if (skb_peek(&list)) {
6423 spin_lock_irq(&head->lock);
6424 while ((skb = __skb_dequeue(&list)) != NULL)
6425 __skb_queue_tail(head, skb);
6426 spin_unlock_irq(&head->lock);
6427 }
6428 #else
6429 fput(file);
6430 #endif
6431 }
6432
6433 struct io_file_put {
6434 struct list_head list;
6435 struct file *file;
6436 };
6437
6438 static void io_file_put_work(struct work_struct *work)
6439 {
6440 struct fixed_file_ref_node *ref_node;
6441 struct fixed_file_data *file_data;
6442 struct io_ring_ctx *ctx;
6443 struct io_file_put *pfile, *tmp;
6444 unsigned long flags;
6445
6446 ref_node = container_of(work, struct fixed_file_ref_node, work);
6447 file_data = ref_node->file_data;
6448 ctx = file_data->ctx;
6449
6450 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
6451 list_del_init(&pfile->list);
6452 io_ring_file_put(ctx, pfile->file);
6453 kfree(pfile);
6454 }
6455
6456 spin_lock_irqsave(&file_data->lock, flags);
6457 list_del_init(&ref_node->node);
6458 spin_unlock_irqrestore(&file_data->lock, flags);
6459
6460 percpu_ref_exit(&ref_node->refs);
6461 kfree(ref_node);
6462 percpu_ref_put(&file_data->refs);
6463 }
6464
6465 static void io_file_data_ref_zero(struct percpu_ref *ref)
6466 {
6467 struct fixed_file_ref_node *ref_node;
6468
6469 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
6470
6471 queue_work(system_wq, &ref_node->work);
6472 }
6473
6474 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
6475 struct io_ring_ctx *ctx)
6476 {
6477 struct fixed_file_ref_node *ref_node;
6478
6479 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
6480 if (!ref_node)
6481 return ERR_PTR(-ENOMEM);
6482
6483 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
6484 0, GFP_KERNEL)) {
6485 kfree(ref_node);
6486 return ERR_PTR(-ENOMEM);
6487 }
6488 INIT_LIST_HEAD(&ref_node->node);
6489 INIT_LIST_HEAD(&ref_node->file_list);
6490 INIT_WORK(&ref_node->work, io_file_put_work);
6491 ref_node->file_data = ctx->file_data;
6492 return ref_node;
6493
6494 }
6495
6496 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
6497 {
6498 percpu_ref_exit(&ref_node->refs);
6499 kfree(ref_node);
6500 }
6501
6502 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
6503 unsigned nr_args)
6504 {
6505 __s32 __user *fds = (__s32 __user *) arg;
6506 unsigned nr_tables;
6507 struct file *file;
6508 int fd, ret = 0;
6509 unsigned i;
6510 struct fixed_file_ref_node *ref_node;
6511 unsigned long flags;
6512
6513 if (ctx->file_data)
6514 return -EBUSY;
6515 if (!nr_args)
6516 return -EINVAL;
6517 if (nr_args > IORING_MAX_FIXED_FILES)
6518 return -EMFILE;
6519
6520 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
6521 if (!ctx->file_data)
6522 return -ENOMEM;
6523 ctx->file_data->ctx = ctx;
6524 init_completion(&ctx->file_data->done);
6525 INIT_LIST_HEAD(&ctx->file_data->ref_list);
6526 spin_lock_init(&ctx->file_data->lock);
6527
6528 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
6529 ctx->file_data->table = kcalloc(nr_tables,
6530 sizeof(struct fixed_file_table),
6531 GFP_KERNEL);
6532 if (!ctx->file_data->table) {
6533 kfree(ctx->file_data);
6534 ctx->file_data = NULL;
6535 return -ENOMEM;
6536 }
6537
6538 if (percpu_ref_init(&ctx->file_data->refs, io_file_ref_kill,
6539 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
6540 kfree(ctx->file_data->table);
6541 kfree(ctx->file_data);
6542 ctx->file_data = NULL;
6543 return -ENOMEM;
6544 }
6545
6546 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
6547 percpu_ref_exit(&ctx->file_data->refs);
6548 kfree(ctx->file_data->table);
6549 kfree(ctx->file_data);
6550 ctx->file_data = NULL;
6551 return -ENOMEM;
6552 }
6553
6554 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
6555 struct fixed_file_table *table;
6556 unsigned index;
6557
6558 ret = -EFAULT;
6559 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
6560 break;
6561 /* allow sparse sets */
6562 if (fd == -1) {
6563 ret = 0;
6564 continue;
6565 }
6566
6567 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6568 index = i & IORING_FILE_TABLE_MASK;
6569 file = fget(fd);
6570
6571 ret = -EBADF;
6572 if (!file)
6573 break;
6574
6575 /*
6576 * Don't allow io_uring instances to be registered. If UNIX
6577 * isn't enabled, then this causes a reference cycle and this
6578 * instance can never get freed. If UNIX is enabled we'll
6579 * handle it just fine, but there's still no point in allowing
6580 * a ring fd as it doesn't support regular read/write anyway.
6581 */
6582 if (file->f_op == &io_uring_fops) {
6583 fput(file);
6584 break;
6585 }
6586 ret = 0;
6587 table->files[index] = file;
6588 }
6589
6590 if (ret) {
6591 for (i = 0; i < ctx->nr_user_files; i++) {
6592 file = io_file_from_index(ctx, i);
6593 if (file)
6594 fput(file);
6595 }
6596 for (i = 0; i < nr_tables; i++)
6597 kfree(ctx->file_data->table[i].files);
6598
6599 kfree(ctx->file_data->table);
6600 kfree(ctx->file_data);
6601 ctx->file_data = NULL;
6602 ctx->nr_user_files = 0;
6603 return ret;
6604 }
6605
6606 ret = io_sqe_files_scm(ctx);
6607 if (ret) {
6608 io_sqe_files_unregister(ctx);
6609 return ret;
6610 }
6611
6612 ref_node = alloc_fixed_file_ref_node(ctx);
6613 if (IS_ERR(ref_node)) {
6614 io_sqe_files_unregister(ctx);
6615 return PTR_ERR(ref_node);
6616 }
6617
6618 ctx->file_data->cur_refs = &ref_node->refs;
6619 spin_lock_irqsave(&ctx->file_data->lock, flags);
6620 list_add(&ref_node->node, &ctx->file_data->ref_list);
6621 spin_unlock_irqrestore(&ctx->file_data->lock, flags);
6622 percpu_ref_get(&ctx->file_data->refs);
6623 return ret;
6624 }
6625
6626 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
6627 int index)
6628 {
6629 #if defined(CONFIG_UNIX)
6630 struct sock *sock = ctx->ring_sock->sk;
6631 struct sk_buff_head *head = &sock->sk_receive_queue;
6632 struct sk_buff *skb;
6633
6634 /*
6635 * See if we can merge this file into an existing skb SCM_RIGHTS
6636 * file set. If there's no room, fall back to allocating a new skb
6637 * and filling it in.
6638 */
6639 spin_lock_irq(&head->lock);
6640 skb = skb_peek(head);
6641 if (skb) {
6642 struct scm_fp_list *fpl = UNIXCB(skb).fp;
6643
6644 if (fpl->count < SCM_MAX_FD) {
6645 __skb_unlink(skb, head);
6646 spin_unlock_irq(&head->lock);
6647 fpl->fp[fpl->count] = get_file(file);
6648 unix_inflight(fpl->user, fpl->fp[fpl->count]);
6649 fpl->count++;
6650 spin_lock_irq(&head->lock);
6651 __skb_queue_head(head, skb);
6652 } else {
6653 skb = NULL;
6654 }
6655 }
6656 spin_unlock_irq(&head->lock);
6657
6658 if (skb) {
6659 fput(file);
6660 return 0;
6661 }
6662
6663 return __io_sqe_files_scm(ctx, 1, index);
6664 #else
6665 return 0;
6666 #endif
6667 }
6668
6669 static int io_queue_file_removal(struct fixed_file_data *data,
6670 struct file *file)
6671 {
6672 struct io_file_put *pfile;
6673 struct percpu_ref *refs = data->cur_refs;
6674 struct fixed_file_ref_node *ref_node;
6675
6676 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
6677 if (!pfile)
6678 return -ENOMEM;
6679
6680 ref_node = container_of(refs, struct fixed_file_ref_node, refs);
6681 pfile->file = file;
6682 list_add(&pfile->list, &ref_node->file_list);
6683
6684 return 0;
6685 }
6686
6687 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
6688 struct io_uring_files_update *up,
6689 unsigned nr_args)
6690 {
6691 struct fixed_file_data *data = ctx->file_data;
6692 struct fixed_file_ref_node *ref_node;
6693 struct file *file;
6694 __s32 __user *fds;
6695 int fd, i, err;
6696 __u32 done;
6697 unsigned long flags;
6698 bool needs_switch = false;
6699
6700 if (check_add_overflow(up->offset, nr_args, &done))
6701 return -EOVERFLOW;
6702 if (done > ctx->nr_user_files)
6703 return -EINVAL;
6704
6705 ref_node = alloc_fixed_file_ref_node(ctx);
6706 if (IS_ERR(ref_node))
6707 return PTR_ERR(ref_node);
6708
6709 done = 0;
6710 fds = u64_to_user_ptr(up->fds);
6711 while (nr_args) {
6712 struct fixed_file_table *table;
6713 unsigned index;
6714
6715 err = 0;
6716 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
6717 err = -EFAULT;
6718 break;
6719 }
6720 i = array_index_nospec(up->offset, ctx->nr_user_files);
6721 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6722 index = i & IORING_FILE_TABLE_MASK;
6723 if (table->files[index]) {
6724 file = io_file_from_index(ctx, index);
6725 err = io_queue_file_removal(data, file);
6726 if (err)
6727 break;
6728 table->files[index] = NULL;
6729 needs_switch = true;
6730 }
6731 if (fd != -1) {
6732 file = fget(fd);
6733 if (!file) {
6734 err = -EBADF;
6735 break;
6736 }
6737 /*
6738 * Don't allow io_uring instances to be registered. If
6739 * UNIX isn't enabled, then this causes a reference
6740 * cycle and this instance can never get freed. If UNIX
6741 * is enabled we'll handle it just fine, but there's
6742 * still no point in allowing a ring fd as it doesn't
6743 * support regular read/write anyway.
6744 */
6745 if (file->f_op == &io_uring_fops) {
6746 fput(file);
6747 err = -EBADF;
6748 break;
6749 }
6750 table->files[index] = file;
6751 err = io_sqe_file_register(ctx, file, i);
6752 if (err)
6753 break;
6754 }
6755 nr_args--;
6756 done++;
6757 up->offset++;
6758 }
6759
6760 if (needs_switch) {
6761 percpu_ref_kill(data->cur_refs);
6762 spin_lock_irqsave(&data->lock, flags);
6763 list_add(&ref_node->node, &data->ref_list);
6764 data->cur_refs = &ref_node->refs;
6765 spin_unlock_irqrestore(&data->lock, flags);
6766 percpu_ref_get(&ctx->file_data->refs);
6767 } else
6768 destroy_fixed_file_ref_node(ref_node);
6769
6770 return done ? done : err;
6771 }
6772
6773 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
6774 unsigned nr_args)
6775 {
6776 struct io_uring_files_update up;
6777
6778 if (!ctx->file_data)
6779 return -ENXIO;
6780 if (!nr_args)
6781 return -EINVAL;
6782 if (copy_from_user(&up, arg, sizeof(up)))
6783 return -EFAULT;
6784 if (up.resv)
6785 return -EINVAL;
6786
6787 return __io_sqe_files_update(ctx, &up, nr_args);
6788 }
6789
6790 static void io_free_work(struct io_wq_work *work)
6791 {
6792 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6793
6794 /* Consider that io_steal_work() relies on this ref */
6795 io_put_req(req);
6796 }
6797
6798 static int io_init_wq_offload(struct io_ring_ctx *ctx,
6799 struct io_uring_params *p)
6800 {
6801 struct io_wq_data data;
6802 struct fd f;
6803 struct io_ring_ctx *ctx_attach;
6804 unsigned int concurrency;
6805 int ret = 0;
6806
6807 data.user = ctx->user;
6808 data.free_work = io_free_work;
6809
6810 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
6811 /* Do QD, or 4 * CPUS, whatever is smallest */
6812 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
6813
6814 ctx->io_wq = io_wq_create(concurrency, &data);
6815 if (IS_ERR(ctx->io_wq)) {
6816 ret = PTR_ERR(ctx->io_wq);
6817 ctx->io_wq = NULL;
6818 }
6819 return ret;
6820 }
6821
6822 f = fdget(p->wq_fd);
6823 if (!f.file)
6824 return -EBADF;
6825
6826 if (f.file->f_op != &io_uring_fops) {
6827 ret = -EINVAL;
6828 goto out_fput;
6829 }
6830
6831 ctx_attach = f.file->private_data;
6832 /* @io_wq is protected by holding the fd */
6833 if (!io_wq_get(ctx_attach->io_wq, &data)) {
6834 ret = -EINVAL;
6835 goto out_fput;
6836 }
6837
6838 ctx->io_wq = ctx_attach->io_wq;
6839 out_fput:
6840 fdput(f);
6841 return ret;
6842 }
6843
6844 static int io_sq_offload_start(struct io_ring_ctx *ctx,
6845 struct io_uring_params *p)
6846 {
6847 int ret;
6848
6849 mmgrab(current->mm);
6850 ctx->sqo_mm = current->mm;
6851
6852 if (ctx->flags & IORING_SETUP_SQPOLL) {
6853 ret = -EPERM;
6854 if (!capable(CAP_SYS_ADMIN))
6855 goto err;
6856
6857 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
6858 if (!ctx->sq_thread_idle)
6859 ctx->sq_thread_idle = HZ;
6860
6861 if (p->flags & IORING_SETUP_SQ_AFF) {
6862 int cpu = p->sq_thread_cpu;
6863
6864 ret = -EINVAL;
6865 if (cpu >= nr_cpu_ids)
6866 goto err;
6867 if (!cpu_online(cpu))
6868 goto err;
6869
6870 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
6871 ctx, cpu,
6872 "io_uring-sq");
6873 } else {
6874 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
6875 "io_uring-sq");
6876 }
6877 if (IS_ERR(ctx->sqo_thread)) {
6878 ret = PTR_ERR(ctx->sqo_thread);
6879 ctx->sqo_thread = NULL;
6880 goto err;
6881 }
6882 wake_up_process(ctx->sqo_thread);
6883 } else if (p->flags & IORING_SETUP_SQ_AFF) {
6884 /* Can't have SQ_AFF without SQPOLL */
6885 ret = -EINVAL;
6886 goto err;
6887 }
6888
6889 ret = io_init_wq_offload(ctx, p);
6890 if (ret)
6891 goto err;
6892
6893 return 0;
6894 err:
6895 io_finish_async(ctx);
6896 mmdrop(ctx->sqo_mm);
6897 ctx->sqo_mm = NULL;
6898 return ret;
6899 }
6900
6901 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
6902 {
6903 atomic_long_sub(nr_pages, &user->locked_vm);
6904 }
6905
6906 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
6907 {
6908 unsigned long page_limit, cur_pages, new_pages;
6909
6910 /* Don't allow more pages than we can safely lock */
6911 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
6912
6913 do {
6914 cur_pages = atomic_long_read(&user->locked_vm);
6915 new_pages = cur_pages + nr_pages;
6916 if (new_pages > page_limit)
6917 return -ENOMEM;
6918 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
6919 new_pages) != cur_pages);
6920
6921 return 0;
6922 }
6923
6924 static void io_mem_free(void *ptr)
6925 {
6926 struct page *page;
6927
6928 if (!ptr)
6929 return;
6930
6931 page = virt_to_head_page(ptr);
6932 if (put_page_testzero(page))
6933 free_compound_page(page);
6934 }
6935
6936 static void *io_mem_alloc(size_t size)
6937 {
6938 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
6939 __GFP_NORETRY;
6940
6941 return (void *) __get_free_pages(gfp_flags, get_order(size));
6942 }
6943
6944 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
6945 size_t *sq_offset)
6946 {
6947 struct io_rings *rings;
6948 size_t off, sq_array_size;
6949
6950 off = struct_size(rings, cqes, cq_entries);
6951 if (off == SIZE_MAX)
6952 return SIZE_MAX;
6953
6954 #ifdef CONFIG_SMP
6955 off = ALIGN(off, SMP_CACHE_BYTES);
6956 if (off == 0)
6957 return SIZE_MAX;
6958 #endif
6959
6960 sq_array_size = array_size(sizeof(u32), sq_entries);
6961 if (sq_array_size == SIZE_MAX)
6962 return SIZE_MAX;
6963
6964 if (check_add_overflow(off, sq_array_size, &off))
6965 return SIZE_MAX;
6966
6967 if (sq_offset)
6968 *sq_offset = off;
6969
6970 return off;
6971 }
6972
6973 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
6974 {
6975 size_t pages;
6976
6977 pages = (size_t)1 << get_order(
6978 rings_size(sq_entries, cq_entries, NULL));
6979 pages += (size_t)1 << get_order(
6980 array_size(sizeof(struct io_uring_sqe), sq_entries));
6981
6982 return pages;
6983 }
6984
6985 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
6986 {
6987 int i, j;
6988
6989 if (!ctx->user_bufs)
6990 return -ENXIO;
6991
6992 for (i = 0; i < ctx->nr_user_bufs; i++) {
6993 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6994
6995 for (j = 0; j < imu->nr_bvecs; j++)
6996 unpin_user_page(imu->bvec[j].bv_page);
6997
6998 if (ctx->account_mem)
6999 io_unaccount_mem(ctx->user, imu->nr_bvecs);
7000 kvfree(imu->bvec);
7001 imu->nr_bvecs = 0;
7002 }
7003
7004 kfree(ctx->user_bufs);
7005 ctx->user_bufs = NULL;
7006 ctx->nr_user_bufs = 0;
7007 return 0;
7008 }
7009
7010 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7011 void __user *arg, unsigned index)
7012 {
7013 struct iovec __user *src;
7014
7015 #ifdef CONFIG_COMPAT
7016 if (ctx->compat) {
7017 struct compat_iovec __user *ciovs;
7018 struct compat_iovec ciov;
7019
7020 ciovs = (struct compat_iovec __user *) arg;
7021 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7022 return -EFAULT;
7023
7024 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7025 dst->iov_len = ciov.iov_len;
7026 return 0;
7027 }
7028 #endif
7029 src = (struct iovec __user *) arg;
7030 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7031 return -EFAULT;
7032 return 0;
7033 }
7034
7035 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
7036 unsigned nr_args)
7037 {
7038 struct vm_area_struct **vmas = NULL;
7039 struct page **pages = NULL;
7040 int i, j, got_pages = 0;
7041 int ret = -EINVAL;
7042
7043 if (ctx->user_bufs)
7044 return -EBUSY;
7045 if (!nr_args || nr_args > UIO_MAXIOV)
7046 return -EINVAL;
7047
7048 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
7049 GFP_KERNEL);
7050 if (!ctx->user_bufs)
7051 return -ENOMEM;
7052
7053 for (i = 0; i < nr_args; i++) {
7054 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7055 unsigned long off, start, end, ubuf;
7056 int pret, nr_pages;
7057 struct iovec iov;
7058 size_t size;
7059
7060 ret = io_copy_iov(ctx, &iov, arg, i);
7061 if (ret)
7062 goto err;
7063
7064 /*
7065 * Don't impose further limits on the size and buffer
7066 * constraints here, we'll -EINVAL later when IO is
7067 * submitted if they are wrong.
7068 */
7069 ret = -EFAULT;
7070 if (!iov.iov_base || !iov.iov_len)
7071 goto err;
7072
7073 /* arbitrary limit, but we need something */
7074 if (iov.iov_len > SZ_1G)
7075 goto err;
7076
7077 ubuf = (unsigned long) iov.iov_base;
7078 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
7079 start = ubuf >> PAGE_SHIFT;
7080 nr_pages = end - start;
7081
7082 if (ctx->account_mem) {
7083 ret = io_account_mem(ctx->user, nr_pages);
7084 if (ret)
7085 goto err;
7086 }
7087
7088 ret = 0;
7089 if (!pages || nr_pages > got_pages) {
7090 kfree(vmas);
7091 kfree(pages);
7092 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
7093 GFP_KERNEL);
7094 vmas = kvmalloc_array(nr_pages,
7095 sizeof(struct vm_area_struct *),
7096 GFP_KERNEL);
7097 if (!pages || !vmas) {
7098 ret = -ENOMEM;
7099 if (ctx->account_mem)
7100 io_unaccount_mem(ctx->user, nr_pages);
7101 goto err;
7102 }
7103 got_pages = nr_pages;
7104 }
7105
7106 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
7107 GFP_KERNEL);
7108 ret = -ENOMEM;
7109 if (!imu->bvec) {
7110 if (ctx->account_mem)
7111 io_unaccount_mem(ctx->user, nr_pages);
7112 goto err;
7113 }
7114
7115 ret = 0;
7116 down_read(&current->mm->mmap_sem);
7117 pret = pin_user_pages(ubuf, nr_pages,
7118 FOLL_WRITE | FOLL_LONGTERM,
7119 pages, vmas);
7120 if (pret == nr_pages) {
7121 /* don't support file backed memory */
7122 for (j = 0; j < nr_pages; j++) {
7123 struct vm_area_struct *vma = vmas[j];
7124
7125 if (vma->vm_file &&
7126 !is_file_hugepages(vma->vm_file)) {
7127 ret = -EOPNOTSUPP;
7128 break;
7129 }
7130 }
7131 } else {
7132 ret = pret < 0 ? pret : -EFAULT;
7133 }
7134 up_read(&current->mm->mmap_sem);
7135 if (ret) {
7136 /*
7137 * if we did partial map, or found file backed vmas,
7138 * release any pages we did get
7139 */
7140 if (pret > 0)
7141 unpin_user_pages(pages, pret);
7142 if (ctx->account_mem)
7143 io_unaccount_mem(ctx->user, nr_pages);
7144 kvfree(imu->bvec);
7145 goto err;
7146 }
7147
7148 off = ubuf & ~PAGE_MASK;
7149 size = iov.iov_len;
7150 for (j = 0; j < nr_pages; j++) {
7151 size_t vec_len;
7152
7153 vec_len = min_t(size_t, size, PAGE_SIZE - off);
7154 imu->bvec[j].bv_page = pages[j];
7155 imu->bvec[j].bv_len = vec_len;
7156 imu->bvec[j].bv_offset = off;
7157 off = 0;
7158 size -= vec_len;
7159 }
7160 /* store original address for later verification */
7161 imu->ubuf = ubuf;
7162 imu->len = iov.iov_len;
7163 imu->nr_bvecs = nr_pages;
7164
7165 ctx->nr_user_bufs++;
7166 }
7167 kvfree(pages);
7168 kvfree(vmas);
7169 return 0;
7170 err:
7171 kvfree(pages);
7172 kvfree(vmas);
7173 io_sqe_buffer_unregister(ctx);
7174 return ret;
7175 }
7176
7177 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
7178 {
7179 __s32 __user *fds = arg;
7180 int fd;
7181
7182 if (ctx->cq_ev_fd)
7183 return -EBUSY;
7184
7185 if (copy_from_user(&fd, fds, sizeof(*fds)))
7186 return -EFAULT;
7187
7188 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
7189 if (IS_ERR(ctx->cq_ev_fd)) {
7190 int ret = PTR_ERR(ctx->cq_ev_fd);
7191 ctx->cq_ev_fd = NULL;
7192 return ret;
7193 }
7194
7195 return 0;
7196 }
7197
7198 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
7199 {
7200 if (ctx->cq_ev_fd) {
7201 eventfd_ctx_put(ctx->cq_ev_fd);
7202 ctx->cq_ev_fd = NULL;
7203 return 0;
7204 }
7205
7206 return -ENXIO;
7207 }
7208
7209 static int __io_destroy_buffers(int id, void *p, void *data)
7210 {
7211 struct io_ring_ctx *ctx = data;
7212 struct io_buffer *buf = p;
7213
7214 __io_remove_buffers(ctx, buf, id, -1U);
7215 return 0;
7216 }
7217
7218 static void io_destroy_buffers(struct io_ring_ctx *ctx)
7219 {
7220 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
7221 idr_destroy(&ctx->io_buffer_idr);
7222 }
7223
7224 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
7225 {
7226 io_finish_async(ctx);
7227 if (ctx->sqo_mm)
7228 mmdrop(ctx->sqo_mm);
7229
7230 io_iopoll_reap_events(ctx);
7231 io_sqe_buffer_unregister(ctx);
7232 io_sqe_files_unregister(ctx);
7233 io_eventfd_unregister(ctx);
7234 io_destroy_buffers(ctx);
7235 idr_destroy(&ctx->personality_idr);
7236
7237 #if defined(CONFIG_UNIX)
7238 if (ctx->ring_sock) {
7239 ctx->ring_sock->file = NULL; /* so that iput() is called */
7240 sock_release(ctx->ring_sock);
7241 }
7242 #endif
7243
7244 io_mem_free(ctx->rings);
7245 io_mem_free(ctx->sq_sqes);
7246
7247 percpu_ref_exit(&ctx->refs);
7248 if (ctx->account_mem)
7249 io_unaccount_mem(ctx->user,
7250 ring_pages(ctx->sq_entries, ctx->cq_entries));
7251 free_uid(ctx->user);
7252 put_cred(ctx->creds);
7253 kfree(ctx->completions);
7254 kfree(ctx->cancel_hash);
7255 kmem_cache_free(req_cachep, ctx->fallback_req);
7256 kfree(ctx);
7257 }
7258
7259 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
7260 {
7261 struct io_ring_ctx *ctx = file->private_data;
7262 __poll_t mask = 0;
7263
7264 poll_wait(file, &ctx->cq_wait, wait);
7265 /*
7266 * synchronizes with barrier from wq_has_sleeper call in
7267 * io_commit_cqring
7268 */
7269 smp_rmb();
7270 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
7271 ctx->rings->sq_ring_entries)
7272 mask |= EPOLLOUT | EPOLLWRNORM;
7273 if (io_cqring_events(ctx, false))
7274 mask |= EPOLLIN | EPOLLRDNORM;
7275
7276 return mask;
7277 }
7278
7279 static int io_uring_fasync(int fd, struct file *file, int on)
7280 {
7281 struct io_ring_ctx *ctx = file->private_data;
7282
7283 return fasync_helper(fd, file, on, &ctx->cq_fasync);
7284 }
7285
7286 static int io_remove_personalities(int id, void *p, void *data)
7287 {
7288 struct io_ring_ctx *ctx = data;
7289 const struct cred *cred;
7290
7291 cred = idr_remove(&ctx->personality_idr, id);
7292 if (cred)
7293 put_cred(cred);
7294 return 0;
7295 }
7296
7297 static void io_ring_exit_work(struct work_struct *work)
7298 {
7299 struct io_ring_ctx *ctx;
7300
7301 ctx = container_of(work, struct io_ring_ctx, exit_work);
7302 if (ctx->rings)
7303 io_cqring_overflow_flush(ctx, true);
7304
7305 wait_for_completion(&ctx->completions[0]);
7306 io_ring_ctx_free(ctx);
7307 }
7308
7309 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
7310 {
7311 mutex_lock(&ctx->uring_lock);
7312 percpu_ref_kill(&ctx->refs);
7313 mutex_unlock(&ctx->uring_lock);
7314
7315 /*
7316 * Wait for sq thread to idle, if we have one. It won't spin on new
7317 * work after we've killed the ctx ref above. This is important to do
7318 * before we cancel existing commands, as the thread could otherwise
7319 * be queueing new work post that. If that's work we need to cancel,
7320 * it could cause shutdown to hang.
7321 */
7322 while (ctx->sqo_thread && !wq_has_sleeper(&ctx->sqo_wait))
7323 cond_resched();
7324
7325 io_kill_timeouts(ctx);
7326 io_poll_remove_all(ctx);
7327
7328 if (ctx->io_wq)
7329 io_wq_cancel_all(ctx->io_wq);
7330
7331 io_iopoll_reap_events(ctx);
7332 /* if we failed setting up the ctx, we might not have any rings */
7333 if (ctx->rings)
7334 io_cqring_overflow_flush(ctx, true);
7335 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
7336 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
7337 queue_work(system_wq, &ctx->exit_work);
7338 }
7339
7340 static int io_uring_release(struct inode *inode, struct file *file)
7341 {
7342 struct io_ring_ctx *ctx = file->private_data;
7343
7344 file->private_data = NULL;
7345 io_ring_ctx_wait_and_kill(ctx);
7346 return 0;
7347 }
7348
7349 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
7350 struct files_struct *files)
7351 {
7352 while (!list_empty_careful(&ctx->inflight_list)) {
7353 struct io_kiocb *cancel_req = NULL, *req;
7354 DEFINE_WAIT(wait);
7355
7356 spin_lock_irq(&ctx->inflight_lock);
7357 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
7358 if (req->work.files != files)
7359 continue;
7360 /* req is being completed, ignore */
7361 if (!refcount_inc_not_zero(&req->refs))
7362 continue;
7363 cancel_req = req;
7364 break;
7365 }
7366 if (cancel_req)
7367 prepare_to_wait(&ctx->inflight_wait, &wait,
7368 TASK_UNINTERRUPTIBLE);
7369 spin_unlock_irq(&ctx->inflight_lock);
7370
7371 /* We need to keep going until we don't find a matching req */
7372 if (!cancel_req)
7373 break;
7374
7375 if (cancel_req->flags & REQ_F_OVERFLOW) {
7376 spin_lock_irq(&ctx->completion_lock);
7377 list_del(&cancel_req->list);
7378 cancel_req->flags &= ~REQ_F_OVERFLOW;
7379 if (list_empty(&ctx->cq_overflow_list)) {
7380 clear_bit(0, &ctx->sq_check_overflow);
7381 clear_bit(0, &ctx->cq_check_overflow);
7382 }
7383 spin_unlock_irq(&ctx->completion_lock);
7384
7385 WRITE_ONCE(ctx->rings->cq_overflow,
7386 atomic_inc_return(&ctx->cached_cq_overflow));
7387
7388 /*
7389 * Put inflight ref and overflow ref. If that's
7390 * all we had, then we're done with this request.
7391 */
7392 if (refcount_sub_and_test(2, &cancel_req->refs)) {
7393 io_put_req(cancel_req);
7394 finish_wait(&ctx->inflight_wait, &wait);
7395 continue;
7396 }
7397 }
7398
7399 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
7400 io_put_req(cancel_req);
7401 schedule();
7402 finish_wait(&ctx->inflight_wait, &wait);
7403 }
7404 }
7405
7406 static int io_uring_flush(struct file *file, void *data)
7407 {
7408 struct io_ring_ctx *ctx = file->private_data;
7409
7410 io_uring_cancel_files(ctx, data);
7411
7412 /*
7413 * If the task is going away, cancel work it may have pending
7414 */
7415 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
7416 io_wq_cancel_pid(ctx->io_wq, task_pid_vnr(current));
7417
7418 return 0;
7419 }
7420
7421 static void *io_uring_validate_mmap_request(struct file *file,
7422 loff_t pgoff, size_t sz)
7423 {
7424 struct io_ring_ctx *ctx = file->private_data;
7425 loff_t offset = pgoff << PAGE_SHIFT;
7426 struct page *page;
7427 void *ptr;
7428
7429 switch (offset) {
7430 case IORING_OFF_SQ_RING:
7431 case IORING_OFF_CQ_RING:
7432 ptr = ctx->rings;
7433 break;
7434 case IORING_OFF_SQES:
7435 ptr = ctx->sq_sqes;
7436 break;
7437 default:
7438 return ERR_PTR(-EINVAL);
7439 }
7440
7441 page = virt_to_head_page(ptr);
7442 if (sz > page_size(page))
7443 return ERR_PTR(-EINVAL);
7444
7445 return ptr;
7446 }
7447
7448 #ifdef CONFIG_MMU
7449
7450 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7451 {
7452 size_t sz = vma->vm_end - vma->vm_start;
7453 unsigned long pfn;
7454 void *ptr;
7455
7456 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
7457 if (IS_ERR(ptr))
7458 return PTR_ERR(ptr);
7459
7460 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
7461 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
7462 }
7463
7464 #else /* !CONFIG_MMU */
7465
7466 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7467 {
7468 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
7469 }
7470
7471 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
7472 {
7473 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
7474 }
7475
7476 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
7477 unsigned long addr, unsigned long len,
7478 unsigned long pgoff, unsigned long flags)
7479 {
7480 void *ptr;
7481
7482 ptr = io_uring_validate_mmap_request(file, pgoff, len);
7483 if (IS_ERR(ptr))
7484 return PTR_ERR(ptr);
7485
7486 return (unsigned long) ptr;
7487 }
7488
7489 #endif /* !CONFIG_MMU */
7490
7491 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
7492 u32, min_complete, u32, flags, const sigset_t __user *, sig,
7493 size_t, sigsz)
7494 {
7495 struct io_ring_ctx *ctx;
7496 long ret = -EBADF;
7497 int submitted = 0;
7498 struct fd f;
7499
7500 if (current->task_works)
7501 task_work_run();
7502
7503 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
7504 return -EINVAL;
7505
7506 f = fdget(fd);
7507 if (!f.file)
7508 return -EBADF;
7509
7510 ret = -EOPNOTSUPP;
7511 if (f.file->f_op != &io_uring_fops)
7512 goto out_fput;
7513
7514 ret = -ENXIO;
7515 ctx = f.file->private_data;
7516 if (!percpu_ref_tryget(&ctx->refs))
7517 goto out_fput;
7518
7519 /*
7520 * For SQ polling, the thread will do all submissions and completions.
7521 * Just return the requested submit count, and wake the thread if
7522 * we were asked to.
7523 */
7524 ret = 0;
7525 if (ctx->flags & IORING_SETUP_SQPOLL) {
7526 if (!list_empty_careful(&ctx->cq_overflow_list))
7527 io_cqring_overflow_flush(ctx, false);
7528 if (flags & IORING_ENTER_SQ_WAKEUP)
7529 wake_up(&ctx->sqo_wait);
7530 submitted = to_submit;
7531 } else if (to_submit) {
7532 mutex_lock(&ctx->uring_lock);
7533 submitted = io_submit_sqes(ctx, to_submit, f.file, fd, false);
7534 mutex_unlock(&ctx->uring_lock);
7535
7536 if (submitted != to_submit)
7537 goto out;
7538 }
7539 if (flags & IORING_ENTER_GETEVENTS) {
7540 unsigned nr_events = 0;
7541
7542 min_complete = min(min_complete, ctx->cq_entries);
7543
7544 /*
7545 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
7546 * space applications don't need to do io completion events
7547 * polling again, they can rely on io_sq_thread to do polling
7548 * work, which can reduce cpu usage and uring_lock contention.
7549 */
7550 if (ctx->flags & IORING_SETUP_IOPOLL &&
7551 !(ctx->flags & IORING_SETUP_SQPOLL)) {
7552 ret = io_iopoll_check(ctx, &nr_events, min_complete);
7553 } else {
7554 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
7555 }
7556 }
7557
7558 out:
7559 percpu_ref_put(&ctx->refs);
7560 out_fput:
7561 fdput(f);
7562 return submitted ? submitted : ret;
7563 }
7564
7565 #ifdef CONFIG_PROC_FS
7566 static int io_uring_show_cred(int id, void *p, void *data)
7567 {
7568 const struct cred *cred = p;
7569 struct seq_file *m = data;
7570 struct user_namespace *uns = seq_user_ns(m);
7571 struct group_info *gi;
7572 kernel_cap_t cap;
7573 unsigned __capi;
7574 int g;
7575
7576 seq_printf(m, "%5d\n", id);
7577 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
7578 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
7579 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
7580 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
7581 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
7582 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
7583 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
7584 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
7585 seq_puts(m, "\n\tGroups:\t");
7586 gi = cred->group_info;
7587 for (g = 0; g < gi->ngroups; g++) {
7588 seq_put_decimal_ull(m, g ? " " : "",
7589 from_kgid_munged(uns, gi->gid[g]));
7590 }
7591 seq_puts(m, "\n\tCapEff:\t");
7592 cap = cred->cap_effective;
7593 CAP_FOR_EACH_U32(__capi)
7594 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
7595 seq_putc(m, '\n');
7596 return 0;
7597 }
7598
7599 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
7600 {
7601 int i;
7602
7603 mutex_lock(&ctx->uring_lock);
7604 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
7605 for (i = 0; i < ctx->nr_user_files; i++) {
7606 struct fixed_file_table *table;
7607 struct file *f;
7608
7609 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7610 f = table->files[i & IORING_FILE_TABLE_MASK];
7611 if (f)
7612 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
7613 else
7614 seq_printf(m, "%5u: <none>\n", i);
7615 }
7616 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
7617 for (i = 0; i < ctx->nr_user_bufs; i++) {
7618 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
7619
7620 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
7621 (unsigned int) buf->len);
7622 }
7623 if (!idr_is_empty(&ctx->personality_idr)) {
7624 seq_printf(m, "Personalities:\n");
7625 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
7626 }
7627 seq_printf(m, "PollList:\n");
7628 spin_lock_irq(&ctx->completion_lock);
7629 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7630 struct hlist_head *list = &ctx->cancel_hash[i];
7631 struct io_kiocb *req;
7632
7633 hlist_for_each_entry(req, list, hash_node)
7634 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
7635 req->task->task_works != NULL);
7636 }
7637 spin_unlock_irq(&ctx->completion_lock);
7638 mutex_unlock(&ctx->uring_lock);
7639 }
7640
7641 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
7642 {
7643 struct io_ring_ctx *ctx = f->private_data;
7644
7645 if (percpu_ref_tryget(&ctx->refs)) {
7646 __io_uring_show_fdinfo(ctx, m);
7647 percpu_ref_put(&ctx->refs);
7648 }
7649 }
7650 #endif
7651
7652 static const struct file_operations io_uring_fops = {
7653 .release = io_uring_release,
7654 .flush = io_uring_flush,
7655 .mmap = io_uring_mmap,
7656 #ifndef CONFIG_MMU
7657 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
7658 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
7659 #endif
7660 .poll = io_uring_poll,
7661 .fasync = io_uring_fasync,
7662 #ifdef CONFIG_PROC_FS
7663 .show_fdinfo = io_uring_show_fdinfo,
7664 #endif
7665 };
7666
7667 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
7668 struct io_uring_params *p)
7669 {
7670 struct io_rings *rings;
7671 size_t size, sq_array_offset;
7672
7673 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
7674 if (size == SIZE_MAX)
7675 return -EOVERFLOW;
7676
7677 rings = io_mem_alloc(size);
7678 if (!rings)
7679 return -ENOMEM;
7680
7681 ctx->rings = rings;
7682 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
7683 rings->sq_ring_mask = p->sq_entries - 1;
7684 rings->cq_ring_mask = p->cq_entries - 1;
7685 rings->sq_ring_entries = p->sq_entries;
7686 rings->cq_ring_entries = p->cq_entries;
7687 ctx->sq_mask = rings->sq_ring_mask;
7688 ctx->cq_mask = rings->cq_ring_mask;
7689 ctx->sq_entries = rings->sq_ring_entries;
7690 ctx->cq_entries = rings->cq_ring_entries;
7691
7692 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
7693 if (size == SIZE_MAX) {
7694 io_mem_free(ctx->rings);
7695 ctx->rings = NULL;
7696 return -EOVERFLOW;
7697 }
7698
7699 ctx->sq_sqes = io_mem_alloc(size);
7700 if (!ctx->sq_sqes) {
7701 io_mem_free(ctx->rings);
7702 ctx->rings = NULL;
7703 return -ENOMEM;
7704 }
7705
7706 return 0;
7707 }
7708
7709 /*
7710 * Allocate an anonymous fd, this is what constitutes the application
7711 * visible backing of an io_uring instance. The application mmaps this
7712 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
7713 * we have to tie this fd to a socket for file garbage collection purposes.
7714 */
7715 static int io_uring_get_fd(struct io_ring_ctx *ctx)
7716 {
7717 struct file *file;
7718 int ret;
7719
7720 #if defined(CONFIG_UNIX)
7721 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
7722 &ctx->ring_sock);
7723 if (ret)
7724 return ret;
7725 #endif
7726
7727 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
7728 if (ret < 0)
7729 goto err;
7730
7731 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
7732 O_RDWR | O_CLOEXEC);
7733 if (IS_ERR(file)) {
7734 put_unused_fd(ret);
7735 ret = PTR_ERR(file);
7736 goto err;
7737 }
7738
7739 #if defined(CONFIG_UNIX)
7740 ctx->ring_sock->file = file;
7741 #endif
7742 fd_install(ret, file);
7743 return ret;
7744 err:
7745 #if defined(CONFIG_UNIX)
7746 sock_release(ctx->ring_sock);
7747 ctx->ring_sock = NULL;
7748 #endif
7749 return ret;
7750 }
7751
7752 static int io_uring_create(unsigned entries, struct io_uring_params *p,
7753 struct io_uring_params __user *params)
7754 {
7755 struct user_struct *user = NULL;
7756 struct io_ring_ctx *ctx;
7757 bool account_mem;
7758 int ret;
7759
7760 if (!entries)
7761 return -EINVAL;
7762 if (entries > IORING_MAX_ENTRIES) {
7763 if (!(p->flags & IORING_SETUP_CLAMP))
7764 return -EINVAL;
7765 entries = IORING_MAX_ENTRIES;
7766 }
7767
7768 /*
7769 * Use twice as many entries for the CQ ring. It's possible for the
7770 * application to drive a higher depth than the size of the SQ ring,
7771 * since the sqes are only used at submission time. This allows for
7772 * some flexibility in overcommitting a bit. If the application has
7773 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
7774 * of CQ ring entries manually.
7775 */
7776 p->sq_entries = roundup_pow_of_two(entries);
7777 if (p->flags & IORING_SETUP_CQSIZE) {
7778 /*
7779 * If IORING_SETUP_CQSIZE is set, we do the same roundup
7780 * to a power-of-two, if it isn't already. We do NOT impose
7781 * any cq vs sq ring sizing.
7782 */
7783 if (p->cq_entries < p->sq_entries)
7784 return -EINVAL;
7785 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
7786 if (!(p->flags & IORING_SETUP_CLAMP))
7787 return -EINVAL;
7788 p->cq_entries = IORING_MAX_CQ_ENTRIES;
7789 }
7790 p->cq_entries = roundup_pow_of_two(p->cq_entries);
7791 } else {
7792 p->cq_entries = 2 * p->sq_entries;
7793 }
7794
7795 user = get_uid(current_user());
7796 account_mem = !capable(CAP_IPC_LOCK);
7797
7798 if (account_mem) {
7799 ret = io_account_mem(user,
7800 ring_pages(p->sq_entries, p->cq_entries));
7801 if (ret) {
7802 free_uid(user);
7803 return ret;
7804 }
7805 }
7806
7807 ctx = io_ring_ctx_alloc(p);
7808 if (!ctx) {
7809 if (account_mem)
7810 io_unaccount_mem(user, ring_pages(p->sq_entries,
7811 p->cq_entries));
7812 free_uid(user);
7813 return -ENOMEM;
7814 }
7815 ctx->compat = in_compat_syscall();
7816 ctx->account_mem = account_mem;
7817 ctx->user = user;
7818 ctx->creds = get_current_cred();
7819
7820 ret = io_allocate_scq_urings(ctx, p);
7821 if (ret)
7822 goto err;
7823
7824 ret = io_sq_offload_start(ctx, p);
7825 if (ret)
7826 goto err;
7827
7828 memset(&p->sq_off, 0, sizeof(p->sq_off));
7829 p->sq_off.head = offsetof(struct io_rings, sq.head);
7830 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
7831 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
7832 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
7833 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
7834 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
7835 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
7836
7837 memset(&p->cq_off, 0, sizeof(p->cq_off));
7838 p->cq_off.head = offsetof(struct io_rings, cq.head);
7839 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
7840 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
7841 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
7842 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
7843 p->cq_off.cqes = offsetof(struct io_rings, cqes);
7844
7845 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
7846 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
7847 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL;
7848
7849 if (copy_to_user(params, p, sizeof(*p))) {
7850 ret = -EFAULT;
7851 goto err;
7852 }
7853 /*
7854 * Install ring fd as the very last thing, so we don't risk someone
7855 * having closed it before we finish setup
7856 */
7857 ret = io_uring_get_fd(ctx);
7858 if (ret < 0)
7859 goto err;
7860
7861 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
7862 return ret;
7863 err:
7864 io_ring_ctx_wait_and_kill(ctx);
7865 return ret;
7866 }
7867
7868 /*
7869 * Sets up an aio uring context, and returns the fd. Applications asks for a
7870 * ring size, we return the actual sq/cq ring sizes (among other things) in the
7871 * params structure passed in.
7872 */
7873 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
7874 {
7875 struct io_uring_params p;
7876 int i;
7877
7878 if (copy_from_user(&p, params, sizeof(p)))
7879 return -EFAULT;
7880 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
7881 if (p.resv[i])
7882 return -EINVAL;
7883 }
7884
7885 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
7886 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
7887 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
7888 return -EINVAL;
7889
7890 return io_uring_create(entries, &p, params);
7891 }
7892
7893 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
7894 struct io_uring_params __user *, params)
7895 {
7896 return io_uring_setup(entries, params);
7897 }
7898
7899 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
7900 {
7901 struct io_uring_probe *p;
7902 size_t size;
7903 int i, ret;
7904
7905 size = struct_size(p, ops, nr_args);
7906 if (size == SIZE_MAX)
7907 return -EOVERFLOW;
7908 p = kzalloc(size, GFP_KERNEL);
7909 if (!p)
7910 return -ENOMEM;
7911
7912 ret = -EFAULT;
7913 if (copy_from_user(p, arg, size))
7914 goto out;
7915 ret = -EINVAL;
7916 if (memchr_inv(p, 0, size))
7917 goto out;
7918
7919 p->last_op = IORING_OP_LAST - 1;
7920 if (nr_args > IORING_OP_LAST)
7921 nr_args = IORING_OP_LAST;
7922
7923 for (i = 0; i < nr_args; i++) {
7924 p->ops[i].op = i;
7925 if (!io_op_defs[i].not_supported)
7926 p->ops[i].flags = IO_URING_OP_SUPPORTED;
7927 }
7928 p->ops_len = i;
7929
7930 ret = 0;
7931 if (copy_to_user(arg, p, size))
7932 ret = -EFAULT;
7933 out:
7934 kfree(p);
7935 return ret;
7936 }
7937
7938 static int io_register_personality(struct io_ring_ctx *ctx)
7939 {
7940 const struct cred *creds = get_current_cred();
7941 int id;
7942
7943 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
7944 USHRT_MAX, GFP_KERNEL);
7945 if (id < 0)
7946 put_cred(creds);
7947 return id;
7948 }
7949
7950 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
7951 {
7952 const struct cred *old_creds;
7953
7954 old_creds = idr_remove(&ctx->personality_idr, id);
7955 if (old_creds) {
7956 put_cred(old_creds);
7957 return 0;
7958 }
7959
7960 return -EINVAL;
7961 }
7962
7963 static bool io_register_op_must_quiesce(int op)
7964 {
7965 switch (op) {
7966 case IORING_UNREGISTER_FILES:
7967 case IORING_REGISTER_FILES_UPDATE:
7968 case IORING_REGISTER_PROBE:
7969 case IORING_REGISTER_PERSONALITY:
7970 case IORING_UNREGISTER_PERSONALITY:
7971 return false;
7972 default:
7973 return true;
7974 }
7975 }
7976
7977 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
7978 void __user *arg, unsigned nr_args)
7979 __releases(ctx->uring_lock)
7980 __acquires(ctx->uring_lock)
7981 {
7982 int ret;
7983
7984 /*
7985 * We're inside the ring mutex, if the ref is already dying, then
7986 * someone else killed the ctx or is already going through
7987 * io_uring_register().
7988 */
7989 if (percpu_ref_is_dying(&ctx->refs))
7990 return -ENXIO;
7991
7992 if (io_register_op_must_quiesce(opcode)) {
7993 percpu_ref_kill(&ctx->refs);
7994
7995 /*
7996 * Drop uring mutex before waiting for references to exit. If
7997 * another thread is currently inside io_uring_enter() it might
7998 * need to grab the uring_lock to make progress. If we hold it
7999 * here across the drain wait, then we can deadlock. It's safe
8000 * to drop the mutex here, since no new references will come in
8001 * after we've killed the percpu ref.
8002 */
8003 mutex_unlock(&ctx->uring_lock);
8004 ret = wait_for_completion_interruptible(&ctx->completions[0]);
8005 mutex_lock(&ctx->uring_lock);
8006 if (ret) {
8007 percpu_ref_resurrect(&ctx->refs);
8008 ret = -EINTR;
8009 goto out;
8010 }
8011 }
8012
8013 switch (opcode) {
8014 case IORING_REGISTER_BUFFERS:
8015 ret = io_sqe_buffer_register(ctx, arg, nr_args);
8016 break;
8017 case IORING_UNREGISTER_BUFFERS:
8018 ret = -EINVAL;
8019 if (arg || nr_args)
8020 break;
8021 ret = io_sqe_buffer_unregister(ctx);
8022 break;
8023 case IORING_REGISTER_FILES:
8024 ret = io_sqe_files_register(ctx, arg, nr_args);
8025 break;
8026 case IORING_UNREGISTER_FILES:
8027 ret = -EINVAL;
8028 if (arg || nr_args)
8029 break;
8030 ret = io_sqe_files_unregister(ctx);
8031 break;
8032 case IORING_REGISTER_FILES_UPDATE:
8033 ret = io_sqe_files_update(ctx, arg, nr_args);
8034 break;
8035 case IORING_REGISTER_EVENTFD:
8036 case IORING_REGISTER_EVENTFD_ASYNC:
8037 ret = -EINVAL;
8038 if (nr_args != 1)
8039 break;
8040 ret = io_eventfd_register(ctx, arg);
8041 if (ret)
8042 break;
8043 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
8044 ctx->eventfd_async = 1;
8045 else
8046 ctx->eventfd_async = 0;
8047 break;
8048 case IORING_UNREGISTER_EVENTFD:
8049 ret = -EINVAL;
8050 if (arg || nr_args)
8051 break;
8052 ret = io_eventfd_unregister(ctx);
8053 break;
8054 case IORING_REGISTER_PROBE:
8055 ret = -EINVAL;
8056 if (!arg || nr_args > 256)
8057 break;
8058 ret = io_probe(ctx, arg, nr_args);
8059 break;
8060 case IORING_REGISTER_PERSONALITY:
8061 ret = -EINVAL;
8062 if (arg || nr_args)
8063 break;
8064 ret = io_register_personality(ctx);
8065 break;
8066 case IORING_UNREGISTER_PERSONALITY:
8067 ret = -EINVAL;
8068 if (arg)
8069 break;
8070 ret = io_unregister_personality(ctx, nr_args);
8071 break;
8072 default:
8073 ret = -EINVAL;
8074 break;
8075 }
8076
8077 if (io_register_op_must_quiesce(opcode)) {
8078 /* bring the ctx back to life */
8079 percpu_ref_reinit(&ctx->refs);
8080 out:
8081 reinit_completion(&ctx->completions[0]);
8082 }
8083 return ret;
8084 }
8085
8086 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
8087 void __user *, arg, unsigned int, nr_args)
8088 {
8089 struct io_ring_ctx *ctx;
8090 long ret = -EBADF;
8091 struct fd f;
8092
8093 f = fdget(fd);
8094 if (!f.file)
8095 return -EBADF;
8096
8097 ret = -EOPNOTSUPP;
8098 if (f.file->f_op != &io_uring_fops)
8099 goto out_fput;
8100
8101 ctx = f.file->private_data;
8102
8103 mutex_lock(&ctx->uring_lock);
8104 ret = __io_uring_register(ctx, opcode, arg, nr_args);
8105 mutex_unlock(&ctx->uring_lock);
8106 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
8107 ctx->cq_ev_fd != NULL, ret);
8108 out_fput:
8109 fdput(f);
8110 return ret;
8111 }
8112
8113 static int __init io_uring_init(void)
8114 {
8115 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
8116 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
8117 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
8118 } while (0)
8119
8120 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
8121 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
8122 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
8123 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
8124 BUILD_BUG_SQE_ELEM(1, __u8, flags);
8125 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
8126 BUILD_BUG_SQE_ELEM(4, __s32, fd);
8127 BUILD_BUG_SQE_ELEM(8, __u64, off);
8128 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
8129 BUILD_BUG_SQE_ELEM(16, __u64, addr);
8130 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
8131 BUILD_BUG_SQE_ELEM(24, __u32, len);
8132 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
8133 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
8134 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
8135 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
8136 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
8137 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
8138 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
8139 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
8140 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
8141 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
8142 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
8143 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
8144 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
8145 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
8146 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
8147 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
8148 BUILD_BUG_SQE_ELEM(42, __u16, personality);
8149 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
8150
8151 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
8152 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
8153 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
8154 return 0;
8155 };
8156 __initcall(io_uring_init);