]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/io_uring.c
Merge tag 'for-linus-5.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[thirdparty/linux.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/mmu_context.h>
59 #include <linux/percpu.h>
60 #include <linux/slab.h>
61 #include <linux/kthread.h>
62 #include <linux/blkdev.h>
63 #include <linux/bvec.h>
64 #include <linux/net.h>
65 #include <net/sock.h>
66 #include <net/af_unix.h>
67 #include <net/scm.h>
68 #include <linux/anon_inodes.h>
69 #include <linux/sched/mm.h>
70 #include <linux/uaccess.h>
71 #include <linux/nospec.h>
72 #include <linux/sizes.h>
73 #include <linux/hugetlb.h>
74 #include <linux/highmem.h>
75 #include <linux/namei.h>
76 #include <linux/fsnotify.h>
77 #include <linux/fadvise.h>
78 #include <linux/eventpoll.h>
79 #include <linux/fs_struct.h>
80 #include <linux/splice.h>
81 #include <linux/task_work.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93
94 /*
95 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 */
97 #define IORING_FILE_TABLE_SHIFT 9
98 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
99 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
100 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101
102 struct io_uring {
103 u32 head ____cacheline_aligned_in_smp;
104 u32 tail ____cacheline_aligned_in_smp;
105 };
106
107 /*
108 * This data is shared with the application through the mmap at offsets
109 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
110 *
111 * The offsets to the member fields are published through struct
112 * io_sqring_offsets when calling io_uring_setup.
113 */
114 struct io_rings {
115 /*
116 * Head and tail offsets into the ring; the offsets need to be
117 * masked to get valid indices.
118 *
119 * The kernel controls head of the sq ring and the tail of the cq ring,
120 * and the application controls tail of the sq ring and the head of the
121 * cq ring.
122 */
123 struct io_uring sq, cq;
124 /*
125 * Bitmasks to apply to head and tail offsets (constant, equals
126 * ring_entries - 1)
127 */
128 u32 sq_ring_mask, cq_ring_mask;
129 /* Ring sizes (constant, power of 2) */
130 u32 sq_ring_entries, cq_ring_entries;
131 /*
132 * Number of invalid entries dropped by the kernel due to
133 * invalid index stored in array
134 *
135 * Written by the kernel, shouldn't be modified by the
136 * application (i.e. get number of "new events" by comparing to
137 * cached value).
138 *
139 * After a new SQ head value was read by the application this
140 * counter includes all submissions that were dropped reaching
141 * the new SQ head (and possibly more).
142 */
143 u32 sq_dropped;
144 /*
145 * Runtime flags
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application.
149 *
150 * The application needs a full memory barrier before checking
151 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
152 */
153 u32 sq_flags;
154 /*
155 * Number of completion events lost because the queue was full;
156 * this should be avoided by the application by making sure
157 * there are not more requests pending than there is space in
158 * the completion queue.
159 *
160 * Written by the kernel, shouldn't be modified by the
161 * application (i.e. get number of "new events" by comparing to
162 * cached value).
163 *
164 * As completion events come in out of order this counter is not
165 * ordered with any other data.
166 */
167 u32 cq_overflow;
168 /*
169 * Ring buffer of completion events.
170 *
171 * The kernel writes completion events fresh every time they are
172 * produced, so the application is allowed to modify pending
173 * entries.
174 */
175 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
176 };
177
178 struct io_mapped_ubuf {
179 u64 ubuf;
180 size_t len;
181 struct bio_vec *bvec;
182 unsigned int nr_bvecs;
183 };
184
185 struct fixed_file_table {
186 struct file **files;
187 };
188
189 struct fixed_file_ref_node {
190 struct percpu_ref refs;
191 struct list_head node;
192 struct list_head file_list;
193 struct fixed_file_data *file_data;
194 struct work_struct work;
195 };
196
197 struct fixed_file_data {
198 struct fixed_file_table *table;
199 struct io_ring_ctx *ctx;
200
201 struct percpu_ref *cur_refs;
202 struct percpu_ref refs;
203 struct completion done;
204 struct list_head ref_list;
205 spinlock_t lock;
206 };
207
208 struct io_buffer {
209 struct list_head list;
210 __u64 addr;
211 __s32 len;
212 __u16 bid;
213 };
214
215 struct io_ring_ctx {
216 struct {
217 struct percpu_ref refs;
218 } ____cacheline_aligned_in_smp;
219
220 struct {
221 unsigned int flags;
222 unsigned int compat: 1;
223 unsigned int account_mem: 1;
224 unsigned int cq_overflow_flushed: 1;
225 unsigned int drain_next: 1;
226 unsigned int eventfd_async: 1;
227
228 /*
229 * Ring buffer of indices into array of io_uring_sqe, which is
230 * mmapped by the application using the IORING_OFF_SQES offset.
231 *
232 * This indirection could e.g. be used to assign fixed
233 * io_uring_sqe entries to operations and only submit them to
234 * the queue when needed.
235 *
236 * The kernel modifies neither the indices array nor the entries
237 * array.
238 */
239 u32 *sq_array;
240 unsigned cached_sq_head;
241 unsigned sq_entries;
242 unsigned sq_mask;
243 unsigned sq_thread_idle;
244 unsigned cached_sq_dropped;
245 atomic_t cached_cq_overflow;
246 unsigned long sq_check_overflow;
247
248 struct list_head defer_list;
249 struct list_head timeout_list;
250 struct list_head cq_overflow_list;
251
252 wait_queue_head_t inflight_wait;
253 struct io_uring_sqe *sq_sqes;
254 } ____cacheline_aligned_in_smp;
255
256 struct io_rings *rings;
257
258 /* IO offload */
259 struct io_wq *io_wq;
260 struct task_struct *sqo_thread; /* if using sq thread polling */
261 struct mm_struct *sqo_mm;
262 wait_queue_head_t sqo_wait;
263
264 /*
265 * If used, fixed file set. Writers must ensure that ->refs is dead,
266 * readers must ensure that ->refs is alive as long as the file* is
267 * used. Only updated through io_uring_register(2).
268 */
269 struct fixed_file_data *file_data;
270 unsigned nr_user_files;
271 int ring_fd;
272 struct file *ring_file;
273
274 /* if used, fixed mapped user buffers */
275 unsigned nr_user_bufs;
276 struct io_mapped_ubuf *user_bufs;
277
278 struct user_struct *user;
279
280 const struct cred *creds;
281
282 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
283 struct completion *completions;
284
285 /* if all else fails... */
286 struct io_kiocb *fallback_req;
287
288 #if defined(CONFIG_UNIX)
289 struct socket *ring_sock;
290 #endif
291
292 struct idr io_buffer_idr;
293
294 struct idr personality_idr;
295
296 struct {
297 unsigned cached_cq_tail;
298 unsigned cq_entries;
299 unsigned cq_mask;
300 atomic_t cq_timeouts;
301 unsigned long cq_check_overflow;
302 struct wait_queue_head cq_wait;
303 struct fasync_struct *cq_fasync;
304 struct eventfd_ctx *cq_ev_fd;
305 } ____cacheline_aligned_in_smp;
306
307 struct {
308 struct mutex uring_lock;
309 wait_queue_head_t wait;
310 } ____cacheline_aligned_in_smp;
311
312 struct {
313 spinlock_t completion_lock;
314
315 /*
316 * ->poll_list is protected by the ctx->uring_lock for
317 * io_uring instances that don't use IORING_SETUP_SQPOLL.
318 * For SQPOLL, only the single threaded io_sq_thread() will
319 * manipulate the list, hence no extra locking is needed there.
320 */
321 struct list_head poll_list;
322 struct hlist_head *cancel_hash;
323 unsigned cancel_hash_bits;
324 bool poll_multi_file;
325
326 spinlock_t inflight_lock;
327 struct list_head inflight_list;
328 } ____cacheline_aligned_in_smp;
329
330 struct work_struct exit_work;
331 };
332
333 /*
334 * First field must be the file pointer in all the
335 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
336 */
337 struct io_poll_iocb {
338 struct file *file;
339 union {
340 struct wait_queue_head *head;
341 u64 addr;
342 };
343 __poll_t events;
344 bool done;
345 bool canceled;
346 struct wait_queue_entry wait;
347 };
348
349 struct io_close {
350 struct file *file;
351 struct file *put_file;
352 int fd;
353 };
354
355 struct io_timeout_data {
356 struct io_kiocb *req;
357 struct hrtimer timer;
358 struct timespec64 ts;
359 enum hrtimer_mode mode;
360 };
361
362 struct io_accept {
363 struct file *file;
364 struct sockaddr __user *addr;
365 int __user *addr_len;
366 int flags;
367 unsigned long nofile;
368 };
369
370 struct io_sync {
371 struct file *file;
372 loff_t len;
373 loff_t off;
374 int flags;
375 int mode;
376 };
377
378 struct io_cancel {
379 struct file *file;
380 u64 addr;
381 };
382
383 struct io_timeout {
384 struct file *file;
385 u64 addr;
386 int flags;
387 u32 count;
388 };
389
390 struct io_rw {
391 /* NOTE: kiocb has the file as the first member, so don't do it here */
392 struct kiocb kiocb;
393 u64 addr;
394 u64 len;
395 };
396
397 struct io_connect {
398 struct file *file;
399 struct sockaddr __user *addr;
400 int addr_len;
401 };
402
403 struct io_sr_msg {
404 struct file *file;
405 union {
406 struct user_msghdr __user *msg;
407 void __user *buf;
408 };
409 int msg_flags;
410 int bgid;
411 size_t len;
412 struct io_buffer *kbuf;
413 };
414
415 struct io_open {
416 struct file *file;
417 int dfd;
418 union {
419 unsigned mask;
420 };
421 struct filename *filename;
422 struct statx __user *buffer;
423 struct open_how how;
424 unsigned long nofile;
425 };
426
427 struct io_files_update {
428 struct file *file;
429 u64 arg;
430 u32 nr_args;
431 u32 offset;
432 };
433
434 struct io_fadvise {
435 struct file *file;
436 u64 offset;
437 u32 len;
438 u32 advice;
439 };
440
441 struct io_madvise {
442 struct file *file;
443 u64 addr;
444 u32 len;
445 u32 advice;
446 };
447
448 struct io_epoll {
449 struct file *file;
450 int epfd;
451 int op;
452 int fd;
453 struct epoll_event event;
454 };
455
456 struct io_splice {
457 struct file *file_out;
458 struct file *file_in;
459 loff_t off_out;
460 loff_t off_in;
461 u64 len;
462 unsigned int flags;
463 };
464
465 struct io_provide_buf {
466 struct file *file;
467 __u64 addr;
468 __s32 len;
469 __u32 bgid;
470 __u16 nbufs;
471 __u16 bid;
472 };
473
474 struct io_async_connect {
475 struct sockaddr_storage address;
476 };
477
478 struct io_async_msghdr {
479 struct iovec fast_iov[UIO_FASTIOV];
480 struct iovec *iov;
481 struct sockaddr __user *uaddr;
482 struct msghdr msg;
483 struct sockaddr_storage addr;
484 };
485
486 struct io_async_rw {
487 struct iovec fast_iov[UIO_FASTIOV];
488 struct iovec *iov;
489 ssize_t nr_segs;
490 ssize_t size;
491 };
492
493 struct io_async_ctx {
494 union {
495 struct io_async_rw rw;
496 struct io_async_msghdr msg;
497 struct io_async_connect connect;
498 struct io_timeout_data timeout;
499 };
500 };
501
502 enum {
503 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
504 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
505 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
506 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
507 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
508 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
509
510 REQ_F_LINK_HEAD_BIT,
511 REQ_F_LINK_NEXT_BIT,
512 REQ_F_FAIL_LINK_BIT,
513 REQ_F_INFLIGHT_BIT,
514 REQ_F_CUR_POS_BIT,
515 REQ_F_NOWAIT_BIT,
516 REQ_F_IOPOLL_COMPLETED_BIT,
517 REQ_F_LINK_TIMEOUT_BIT,
518 REQ_F_TIMEOUT_BIT,
519 REQ_F_ISREG_BIT,
520 REQ_F_MUST_PUNT_BIT,
521 REQ_F_TIMEOUT_NOSEQ_BIT,
522 REQ_F_COMP_LOCKED_BIT,
523 REQ_F_NEED_CLEANUP_BIT,
524 REQ_F_OVERFLOW_BIT,
525 REQ_F_POLLED_BIT,
526 REQ_F_BUFFER_SELECTED_BIT,
527 REQ_F_NO_FILE_TABLE_BIT,
528
529 /* not a real bit, just to check we're not overflowing the space */
530 __REQ_F_LAST_BIT,
531 };
532
533 enum {
534 /* ctx owns file */
535 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
536 /* drain existing IO first */
537 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
538 /* linked sqes */
539 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
540 /* doesn't sever on completion < 0 */
541 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
542 /* IOSQE_ASYNC */
543 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
544 /* IOSQE_BUFFER_SELECT */
545 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
546
547 /* head of a link */
548 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
549 /* already grabbed next link */
550 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
551 /* fail rest of links */
552 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
553 /* on inflight list */
554 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
555 /* read/write uses file position */
556 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
557 /* must not punt to workers */
558 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
559 /* polled IO has completed */
560 REQ_F_IOPOLL_COMPLETED = BIT(REQ_F_IOPOLL_COMPLETED_BIT),
561 /* has linked timeout */
562 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
563 /* timeout request */
564 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
565 /* regular file */
566 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
567 /* must be punted even for NONBLOCK */
568 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
569 /* no timeout sequence */
570 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
571 /* completion under lock */
572 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
573 /* needs cleanup */
574 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
575 /* in overflow list */
576 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
577 /* already went through poll handler */
578 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
579 /* buffer already selected */
580 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
581 /* doesn't need file table for this request */
582 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
583 };
584
585 struct async_poll {
586 struct io_poll_iocb poll;
587 struct io_wq_work work;
588 };
589
590 /*
591 * NOTE! Each of the iocb union members has the file pointer
592 * as the first entry in their struct definition. So you can
593 * access the file pointer through any of the sub-structs,
594 * or directly as just 'ki_filp' in this struct.
595 */
596 struct io_kiocb {
597 union {
598 struct file *file;
599 struct io_rw rw;
600 struct io_poll_iocb poll;
601 struct io_accept accept;
602 struct io_sync sync;
603 struct io_cancel cancel;
604 struct io_timeout timeout;
605 struct io_connect connect;
606 struct io_sr_msg sr_msg;
607 struct io_open open;
608 struct io_close close;
609 struct io_files_update files_update;
610 struct io_fadvise fadvise;
611 struct io_madvise madvise;
612 struct io_epoll epoll;
613 struct io_splice splice;
614 struct io_provide_buf pbuf;
615 };
616
617 struct io_async_ctx *io;
618 int cflags;
619 bool needs_fixed_file;
620 u8 opcode;
621
622 struct io_ring_ctx *ctx;
623 struct list_head list;
624 unsigned int flags;
625 refcount_t refs;
626 struct task_struct *task;
627 unsigned long fsize;
628 u64 user_data;
629 u32 result;
630 u32 sequence;
631
632 struct list_head link_list;
633
634 struct list_head inflight_entry;
635
636 struct percpu_ref *fixed_file_refs;
637
638 union {
639 /*
640 * Only commands that never go async can use the below fields,
641 * obviously. Right now only IORING_OP_POLL_ADD uses them, and
642 * async armed poll handlers for regular commands. The latter
643 * restore the work, if needed.
644 */
645 struct {
646 struct callback_head task_work;
647 struct hlist_node hash_node;
648 struct async_poll *apoll;
649 };
650 struct io_wq_work work;
651 };
652 };
653
654 #define IO_PLUG_THRESHOLD 2
655 #define IO_IOPOLL_BATCH 8
656
657 struct io_submit_state {
658 struct blk_plug plug;
659
660 /*
661 * io_kiocb alloc cache
662 */
663 void *reqs[IO_IOPOLL_BATCH];
664 unsigned int free_reqs;
665
666 /*
667 * File reference cache
668 */
669 struct file *file;
670 unsigned int fd;
671 unsigned int has_refs;
672 unsigned int used_refs;
673 unsigned int ios_left;
674 };
675
676 struct io_op_def {
677 /* needs req->io allocated for deferral/async */
678 unsigned async_ctx : 1;
679 /* needs current->mm setup, does mm access */
680 unsigned needs_mm : 1;
681 /* needs req->file assigned */
682 unsigned needs_file : 1;
683 /* hash wq insertion if file is a regular file */
684 unsigned hash_reg_file : 1;
685 /* unbound wq insertion if file is a non-regular file */
686 unsigned unbound_nonreg_file : 1;
687 /* opcode is not supported by this kernel */
688 unsigned not_supported : 1;
689 /* needs file table */
690 unsigned file_table : 1;
691 /* needs ->fs */
692 unsigned needs_fs : 1;
693 /* set if opcode supports polled "wait" */
694 unsigned pollin : 1;
695 unsigned pollout : 1;
696 /* op supports buffer selection */
697 unsigned buffer_select : 1;
698 };
699
700 static const struct io_op_def io_op_defs[] = {
701 [IORING_OP_NOP] = {},
702 [IORING_OP_READV] = {
703 .async_ctx = 1,
704 .needs_mm = 1,
705 .needs_file = 1,
706 .unbound_nonreg_file = 1,
707 .pollin = 1,
708 .buffer_select = 1,
709 },
710 [IORING_OP_WRITEV] = {
711 .async_ctx = 1,
712 .needs_mm = 1,
713 .needs_file = 1,
714 .hash_reg_file = 1,
715 .unbound_nonreg_file = 1,
716 .pollout = 1,
717 },
718 [IORING_OP_FSYNC] = {
719 .needs_file = 1,
720 },
721 [IORING_OP_READ_FIXED] = {
722 .needs_file = 1,
723 .unbound_nonreg_file = 1,
724 .pollin = 1,
725 },
726 [IORING_OP_WRITE_FIXED] = {
727 .needs_file = 1,
728 .hash_reg_file = 1,
729 .unbound_nonreg_file = 1,
730 .pollout = 1,
731 },
732 [IORING_OP_POLL_ADD] = {
733 .needs_file = 1,
734 .unbound_nonreg_file = 1,
735 },
736 [IORING_OP_POLL_REMOVE] = {},
737 [IORING_OP_SYNC_FILE_RANGE] = {
738 .needs_file = 1,
739 },
740 [IORING_OP_SENDMSG] = {
741 .async_ctx = 1,
742 .needs_mm = 1,
743 .needs_file = 1,
744 .unbound_nonreg_file = 1,
745 .needs_fs = 1,
746 .pollout = 1,
747 },
748 [IORING_OP_RECVMSG] = {
749 .async_ctx = 1,
750 .needs_mm = 1,
751 .needs_file = 1,
752 .unbound_nonreg_file = 1,
753 .needs_fs = 1,
754 .pollin = 1,
755 .buffer_select = 1,
756 },
757 [IORING_OP_TIMEOUT] = {
758 .async_ctx = 1,
759 .needs_mm = 1,
760 },
761 [IORING_OP_TIMEOUT_REMOVE] = {},
762 [IORING_OP_ACCEPT] = {
763 .needs_mm = 1,
764 .needs_file = 1,
765 .unbound_nonreg_file = 1,
766 .file_table = 1,
767 .pollin = 1,
768 },
769 [IORING_OP_ASYNC_CANCEL] = {},
770 [IORING_OP_LINK_TIMEOUT] = {
771 .async_ctx = 1,
772 .needs_mm = 1,
773 },
774 [IORING_OP_CONNECT] = {
775 .async_ctx = 1,
776 .needs_mm = 1,
777 .needs_file = 1,
778 .unbound_nonreg_file = 1,
779 .pollout = 1,
780 },
781 [IORING_OP_FALLOCATE] = {
782 .needs_file = 1,
783 },
784 [IORING_OP_OPENAT] = {
785 .file_table = 1,
786 .needs_fs = 1,
787 },
788 [IORING_OP_CLOSE] = {
789 .needs_file = 1,
790 .file_table = 1,
791 },
792 [IORING_OP_FILES_UPDATE] = {
793 .needs_mm = 1,
794 .file_table = 1,
795 },
796 [IORING_OP_STATX] = {
797 .needs_mm = 1,
798 .needs_fs = 1,
799 .file_table = 1,
800 },
801 [IORING_OP_READ] = {
802 .needs_mm = 1,
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollin = 1,
806 .buffer_select = 1,
807 },
808 [IORING_OP_WRITE] = {
809 .needs_mm = 1,
810 .needs_file = 1,
811 .unbound_nonreg_file = 1,
812 .pollout = 1,
813 },
814 [IORING_OP_FADVISE] = {
815 .needs_file = 1,
816 },
817 [IORING_OP_MADVISE] = {
818 .needs_mm = 1,
819 },
820 [IORING_OP_SEND] = {
821 .needs_mm = 1,
822 .needs_file = 1,
823 .unbound_nonreg_file = 1,
824 .pollout = 1,
825 },
826 [IORING_OP_RECV] = {
827 .needs_mm = 1,
828 .needs_file = 1,
829 .unbound_nonreg_file = 1,
830 .pollin = 1,
831 .buffer_select = 1,
832 },
833 [IORING_OP_OPENAT2] = {
834 .file_table = 1,
835 .needs_fs = 1,
836 },
837 [IORING_OP_EPOLL_CTL] = {
838 .unbound_nonreg_file = 1,
839 .file_table = 1,
840 },
841 [IORING_OP_SPLICE] = {
842 .needs_file = 1,
843 .hash_reg_file = 1,
844 .unbound_nonreg_file = 1,
845 },
846 [IORING_OP_PROVIDE_BUFFERS] = {},
847 [IORING_OP_REMOVE_BUFFERS] = {},
848 };
849
850 static void io_wq_submit_work(struct io_wq_work **workptr);
851 static void io_cqring_fill_event(struct io_kiocb *req, long res);
852 static void io_put_req(struct io_kiocb *req);
853 static void __io_double_put_req(struct io_kiocb *req);
854 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
855 static void io_queue_linked_timeout(struct io_kiocb *req);
856 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
857 struct io_uring_files_update *ip,
858 unsigned nr_args);
859 static int io_grab_files(struct io_kiocb *req);
860 static void io_cleanup_req(struct io_kiocb *req);
861 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
862 int fd, struct file **out_file, bool fixed);
863 static void __io_queue_sqe(struct io_kiocb *req,
864 const struct io_uring_sqe *sqe);
865
866 static struct kmem_cache *req_cachep;
867
868 static const struct file_operations io_uring_fops;
869
870 struct sock *io_uring_get_socket(struct file *file)
871 {
872 #if defined(CONFIG_UNIX)
873 if (file->f_op == &io_uring_fops) {
874 struct io_ring_ctx *ctx = file->private_data;
875
876 return ctx->ring_sock->sk;
877 }
878 #endif
879 return NULL;
880 }
881 EXPORT_SYMBOL(io_uring_get_socket);
882
883 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
884 {
885 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
886
887 complete(&ctx->completions[0]);
888 }
889
890 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
891 {
892 struct io_ring_ctx *ctx;
893 int hash_bits;
894
895 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
896 if (!ctx)
897 return NULL;
898
899 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
900 if (!ctx->fallback_req)
901 goto err;
902
903 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
904 if (!ctx->completions)
905 goto err;
906
907 /*
908 * Use 5 bits less than the max cq entries, that should give us around
909 * 32 entries per hash list if totally full and uniformly spread.
910 */
911 hash_bits = ilog2(p->cq_entries);
912 hash_bits -= 5;
913 if (hash_bits <= 0)
914 hash_bits = 1;
915 ctx->cancel_hash_bits = hash_bits;
916 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
917 GFP_KERNEL);
918 if (!ctx->cancel_hash)
919 goto err;
920 __hash_init(ctx->cancel_hash, 1U << hash_bits);
921
922 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
923 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
924 goto err;
925
926 ctx->flags = p->flags;
927 init_waitqueue_head(&ctx->cq_wait);
928 INIT_LIST_HEAD(&ctx->cq_overflow_list);
929 init_completion(&ctx->completions[0]);
930 init_completion(&ctx->completions[1]);
931 idr_init(&ctx->io_buffer_idr);
932 idr_init(&ctx->personality_idr);
933 mutex_init(&ctx->uring_lock);
934 init_waitqueue_head(&ctx->wait);
935 spin_lock_init(&ctx->completion_lock);
936 INIT_LIST_HEAD(&ctx->poll_list);
937 INIT_LIST_HEAD(&ctx->defer_list);
938 INIT_LIST_HEAD(&ctx->timeout_list);
939 init_waitqueue_head(&ctx->inflight_wait);
940 spin_lock_init(&ctx->inflight_lock);
941 INIT_LIST_HEAD(&ctx->inflight_list);
942 return ctx;
943 err:
944 if (ctx->fallback_req)
945 kmem_cache_free(req_cachep, ctx->fallback_req);
946 kfree(ctx->completions);
947 kfree(ctx->cancel_hash);
948 kfree(ctx);
949 return NULL;
950 }
951
952 static inline bool __req_need_defer(struct io_kiocb *req)
953 {
954 struct io_ring_ctx *ctx = req->ctx;
955
956 return req->sequence != ctx->cached_cq_tail
957 + atomic_read(&ctx->cached_cq_overflow);
958 }
959
960 static inline bool req_need_defer(struct io_kiocb *req)
961 {
962 if (unlikely(req->flags & REQ_F_IO_DRAIN))
963 return __req_need_defer(req);
964
965 return false;
966 }
967
968 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
969 {
970 struct io_kiocb *req;
971
972 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
973 if (req && !req_need_defer(req)) {
974 list_del_init(&req->list);
975 return req;
976 }
977
978 return NULL;
979 }
980
981 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
982 {
983 struct io_kiocb *req;
984
985 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
986 if (req) {
987 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
988 return NULL;
989 if (!__req_need_defer(req)) {
990 list_del_init(&req->list);
991 return req;
992 }
993 }
994
995 return NULL;
996 }
997
998 static void __io_commit_cqring(struct io_ring_ctx *ctx)
999 {
1000 struct io_rings *rings = ctx->rings;
1001
1002 /* order cqe stores with ring update */
1003 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1004
1005 if (wq_has_sleeper(&ctx->cq_wait)) {
1006 wake_up_interruptible(&ctx->cq_wait);
1007 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1008 }
1009 }
1010
1011 static inline void io_req_work_grab_env(struct io_kiocb *req,
1012 const struct io_op_def *def)
1013 {
1014 if (!req->work.mm && def->needs_mm) {
1015 mmgrab(current->mm);
1016 req->work.mm = current->mm;
1017 }
1018 if (!req->work.creds)
1019 req->work.creds = get_current_cred();
1020 if (!req->work.fs && def->needs_fs) {
1021 spin_lock(&current->fs->lock);
1022 if (!current->fs->in_exec) {
1023 req->work.fs = current->fs;
1024 req->work.fs->users++;
1025 } else {
1026 req->work.flags |= IO_WQ_WORK_CANCEL;
1027 }
1028 spin_unlock(&current->fs->lock);
1029 }
1030 if (!req->work.task_pid)
1031 req->work.task_pid = task_pid_vnr(current);
1032 }
1033
1034 static inline void io_req_work_drop_env(struct io_kiocb *req)
1035 {
1036 if (req->work.mm) {
1037 mmdrop(req->work.mm);
1038 req->work.mm = NULL;
1039 }
1040 if (req->work.creds) {
1041 put_cred(req->work.creds);
1042 req->work.creds = NULL;
1043 }
1044 if (req->work.fs) {
1045 struct fs_struct *fs = req->work.fs;
1046
1047 spin_lock(&req->work.fs->lock);
1048 if (--fs->users)
1049 fs = NULL;
1050 spin_unlock(&req->work.fs->lock);
1051 if (fs)
1052 free_fs_struct(fs);
1053 }
1054 }
1055
1056 static inline void io_prep_async_work(struct io_kiocb *req,
1057 struct io_kiocb **link)
1058 {
1059 const struct io_op_def *def = &io_op_defs[req->opcode];
1060
1061 if (req->flags & REQ_F_ISREG) {
1062 if (def->hash_reg_file)
1063 io_wq_hash_work(&req->work, file_inode(req->file));
1064 } else {
1065 if (def->unbound_nonreg_file)
1066 req->work.flags |= IO_WQ_WORK_UNBOUND;
1067 }
1068
1069 io_req_work_grab_env(req, def);
1070
1071 *link = io_prep_linked_timeout(req);
1072 }
1073
1074 static inline void io_queue_async_work(struct io_kiocb *req)
1075 {
1076 struct io_ring_ctx *ctx = req->ctx;
1077 struct io_kiocb *link;
1078
1079 io_prep_async_work(req, &link);
1080
1081 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1082 &req->work, req->flags);
1083 io_wq_enqueue(ctx->io_wq, &req->work);
1084
1085 if (link)
1086 io_queue_linked_timeout(link);
1087 }
1088
1089 static void io_kill_timeout(struct io_kiocb *req)
1090 {
1091 int ret;
1092
1093 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1094 if (ret != -1) {
1095 atomic_inc(&req->ctx->cq_timeouts);
1096 list_del_init(&req->list);
1097 req->flags |= REQ_F_COMP_LOCKED;
1098 io_cqring_fill_event(req, 0);
1099 io_put_req(req);
1100 }
1101 }
1102
1103 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1104 {
1105 struct io_kiocb *req, *tmp;
1106
1107 spin_lock_irq(&ctx->completion_lock);
1108 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1109 io_kill_timeout(req);
1110 spin_unlock_irq(&ctx->completion_lock);
1111 }
1112
1113 static void io_commit_cqring(struct io_ring_ctx *ctx)
1114 {
1115 struct io_kiocb *req;
1116
1117 while ((req = io_get_timeout_req(ctx)) != NULL)
1118 io_kill_timeout(req);
1119
1120 __io_commit_cqring(ctx);
1121
1122 while ((req = io_get_deferred_req(ctx)) != NULL)
1123 io_queue_async_work(req);
1124 }
1125
1126 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1127 {
1128 struct io_rings *rings = ctx->rings;
1129 unsigned tail;
1130
1131 tail = ctx->cached_cq_tail;
1132 /*
1133 * writes to the cq entry need to come after reading head; the
1134 * control dependency is enough as we're using WRITE_ONCE to
1135 * fill the cq entry
1136 */
1137 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1138 return NULL;
1139
1140 ctx->cached_cq_tail++;
1141 return &rings->cqes[tail & ctx->cq_mask];
1142 }
1143
1144 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1145 {
1146 if (!ctx->cq_ev_fd)
1147 return false;
1148 if (!ctx->eventfd_async)
1149 return true;
1150 return io_wq_current_is_worker();
1151 }
1152
1153 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1154 {
1155 if (waitqueue_active(&ctx->wait))
1156 wake_up(&ctx->wait);
1157 if (waitqueue_active(&ctx->sqo_wait))
1158 wake_up(&ctx->sqo_wait);
1159 if (io_should_trigger_evfd(ctx))
1160 eventfd_signal(ctx->cq_ev_fd, 1);
1161 }
1162
1163 /* Returns true if there are no backlogged entries after the flush */
1164 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1165 {
1166 struct io_rings *rings = ctx->rings;
1167 struct io_uring_cqe *cqe;
1168 struct io_kiocb *req;
1169 unsigned long flags;
1170 LIST_HEAD(list);
1171
1172 if (!force) {
1173 if (list_empty_careful(&ctx->cq_overflow_list))
1174 return true;
1175 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1176 rings->cq_ring_entries))
1177 return false;
1178 }
1179
1180 spin_lock_irqsave(&ctx->completion_lock, flags);
1181
1182 /* if force is set, the ring is going away. always drop after that */
1183 if (force)
1184 ctx->cq_overflow_flushed = 1;
1185
1186 cqe = NULL;
1187 while (!list_empty(&ctx->cq_overflow_list)) {
1188 cqe = io_get_cqring(ctx);
1189 if (!cqe && !force)
1190 break;
1191
1192 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1193 list);
1194 list_move(&req->list, &list);
1195 req->flags &= ~REQ_F_OVERFLOW;
1196 if (cqe) {
1197 WRITE_ONCE(cqe->user_data, req->user_data);
1198 WRITE_ONCE(cqe->res, req->result);
1199 WRITE_ONCE(cqe->flags, req->cflags);
1200 } else {
1201 WRITE_ONCE(ctx->rings->cq_overflow,
1202 atomic_inc_return(&ctx->cached_cq_overflow));
1203 }
1204 }
1205
1206 io_commit_cqring(ctx);
1207 if (cqe) {
1208 clear_bit(0, &ctx->sq_check_overflow);
1209 clear_bit(0, &ctx->cq_check_overflow);
1210 }
1211 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1212 io_cqring_ev_posted(ctx);
1213
1214 while (!list_empty(&list)) {
1215 req = list_first_entry(&list, struct io_kiocb, list);
1216 list_del(&req->list);
1217 io_put_req(req);
1218 }
1219
1220 return cqe != NULL;
1221 }
1222
1223 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1224 {
1225 struct io_ring_ctx *ctx = req->ctx;
1226 struct io_uring_cqe *cqe;
1227
1228 trace_io_uring_complete(ctx, req->user_data, res);
1229
1230 /*
1231 * If we can't get a cq entry, userspace overflowed the
1232 * submission (by quite a lot). Increment the overflow count in
1233 * the ring.
1234 */
1235 cqe = io_get_cqring(ctx);
1236 if (likely(cqe)) {
1237 WRITE_ONCE(cqe->user_data, req->user_data);
1238 WRITE_ONCE(cqe->res, res);
1239 WRITE_ONCE(cqe->flags, cflags);
1240 } else if (ctx->cq_overflow_flushed) {
1241 WRITE_ONCE(ctx->rings->cq_overflow,
1242 atomic_inc_return(&ctx->cached_cq_overflow));
1243 } else {
1244 if (list_empty(&ctx->cq_overflow_list)) {
1245 set_bit(0, &ctx->sq_check_overflow);
1246 set_bit(0, &ctx->cq_check_overflow);
1247 }
1248 req->flags |= REQ_F_OVERFLOW;
1249 refcount_inc(&req->refs);
1250 req->result = res;
1251 req->cflags = cflags;
1252 list_add_tail(&req->list, &ctx->cq_overflow_list);
1253 }
1254 }
1255
1256 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1257 {
1258 __io_cqring_fill_event(req, res, 0);
1259 }
1260
1261 static void __io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1262 {
1263 struct io_ring_ctx *ctx = req->ctx;
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&ctx->completion_lock, flags);
1267 __io_cqring_fill_event(req, res, cflags);
1268 io_commit_cqring(ctx);
1269 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1270
1271 io_cqring_ev_posted(ctx);
1272 }
1273
1274 static void io_cqring_add_event(struct io_kiocb *req, long res)
1275 {
1276 __io_cqring_add_event(req, res, 0);
1277 }
1278
1279 static inline bool io_is_fallback_req(struct io_kiocb *req)
1280 {
1281 return req == (struct io_kiocb *)
1282 ((unsigned long) req->ctx->fallback_req & ~1UL);
1283 }
1284
1285 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1286 {
1287 struct io_kiocb *req;
1288
1289 req = ctx->fallback_req;
1290 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1291 return req;
1292
1293 return NULL;
1294 }
1295
1296 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1297 struct io_submit_state *state)
1298 {
1299 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1300 struct io_kiocb *req;
1301
1302 if (!state) {
1303 req = kmem_cache_alloc(req_cachep, gfp);
1304 if (unlikely(!req))
1305 goto fallback;
1306 } else if (!state->free_reqs) {
1307 size_t sz;
1308 int ret;
1309
1310 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1311 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1312
1313 /*
1314 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1315 * retry single alloc to be on the safe side.
1316 */
1317 if (unlikely(ret <= 0)) {
1318 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1319 if (!state->reqs[0])
1320 goto fallback;
1321 ret = 1;
1322 }
1323 state->free_reqs = ret - 1;
1324 req = state->reqs[ret - 1];
1325 } else {
1326 state->free_reqs--;
1327 req = state->reqs[state->free_reqs];
1328 }
1329
1330 return req;
1331 fallback:
1332 return io_get_fallback_req(ctx);
1333 }
1334
1335 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1336 bool fixed)
1337 {
1338 if (fixed)
1339 percpu_ref_put(req->fixed_file_refs);
1340 else
1341 fput(file);
1342 }
1343
1344 static void __io_req_aux_free(struct io_kiocb *req)
1345 {
1346 if (req->flags & REQ_F_NEED_CLEANUP)
1347 io_cleanup_req(req);
1348
1349 kfree(req->io);
1350 if (req->file)
1351 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1352 if (req->task)
1353 put_task_struct(req->task);
1354
1355 io_req_work_drop_env(req);
1356 }
1357
1358 static void __io_free_req(struct io_kiocb *req)
1359 {
1360 __io_req_aux_free(req);
1361
1362 if (req->flags & REQ_F_INFLIGHT) {
1363 struct io_ring_ctx *ctx = req->ctx;
1364 unsigned long flags;
1365
1366 spin_lock_irqsave(&ctx->inflight_lock, flags);
1367 list_del(&req->inflight_entry);
1368 if (waitqueue_active(&ctx->inflight_wait))
1369 wake_up(&ctx->inflight_wait);
1370 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1371 }
1372
1373 percpu_ref_put(&req->ctx->refs);
1374 if (likely(!io_is_fallback_req(req)))
1375 kmem_cache_free(req_cachep, req);
1376 else
1377 clear_bit_unlock(0, (unsigned long *) &req->ctx->fallback_req);
1378 }
1379
1380 struct req_batch {
1381 void *reqs[IO_IOPOLL_BATCH];
1382 int to_free;
1383 int need_iter;
1384 };
1385
1386 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1387 {
1388 if (!rb->to_free)
1389 return;
1390 if (rb->need_iter) {
1391 int i, inflight = 0;
1392 unsigned long flags;
1393
1394 for (i = 0; i < rb->to_free; i++) {
1395 struct io_kiocb *req = rb->reqs[i];
1396
1397 if (req->flags & REQ_F_INFLIGHT)
1398 inflight++;
1399 __io_req_aux_free(req);
1400 }
1401 if (!inflight)
1402 goto do_free;
1403
1404 spin_lock_irqsave(&ctx->inflight_lock, flags);
1405 for (i = 0; i < rb->to_free; i++) {
1406 struct io_kiocb *req = rb->reqs[i];
1407
1408 if (req->flags & REQ_F_INFLIGHT) {
1409 list_del(&req->inflight_entry);
1410 if (!--inflight)
1411 break;
1412 }
1413 }
1414 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1415
1416 if (waitqueue_active(&ctx->inflight_wait))
1417 wake_up(&ctx->inflight_wait);
1418 }
1419 do_free:
1420 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1421 percpu_ref_put_many(&ctx->refs, rb->to_free);
1422 rb->to_free = rb->need_iter = 0;
1423 }
1424
1425 static bool io_link_cancel_timeout(struct io_kiocb *req)
1426 {
1427 struct io_ring_ctx *ctx = req->ctx;
1428 int ret;
1429
1430 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1431 if (ret != -1) {
1432 io_cqring_fill_event(req, -ECANCELED);
1433 io_commit_cqring(ctx);
1434 req->flags &= ~REQ_F_LINK_HEAD;
1435 io_put_req(req);
1436 return true;
1437 }
1438
1439 return false;
1440 }
1441
1442 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1443 {
1444 struct io_ring_ctx *ctx = req->ctx;
1445 bool wake_ev = false;
1446
1447 /* Already got next link */
1448 if (req->flags & REQ_F_LINK_NEXT)
1449 return;
1450
1451 /*
1452 * The list should never be empty when we are called here. But could
1453 * potentially happen if the chain is messed up, check to be on the
1454 * safe side.
1455 */
1456 while (!list_empty(&req->link_list)) {
1457 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1458 struct io_kiocb, link_list);
1459
1460 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1461 (nxt->flags & REQ_F_TIMEOUT))) {
1462 list_del_init(&nxt->link_list);
1463 wake_ev |= io_link_cancel_timeout(nxt);
1464 req->flags &= ~REQ_F_LINK_TIMEOUT;
1465 continue;
1466 }
1467
1468 list_del_init(&req->link_list);
1469 if (!list_empty(&nxt->link_list))
1470 nxt->flags |= REQ_F_LINK_HEAD;
1471 *nxtptr = nxt;
1472 break;
1473 }
1474
1475 req->flags |= REQ_F_LINK_NEXT;
1476 if (wake_ev)
1477 io_cqring_ev_posted(ctx);
1478 }
1479
1480 /*
1481 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1482 */
1483 static void io_fail_links(struct io_kiocb *req)
1484 {
1485 struct io_ring_ctx *ctx = req->ctx;
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&ctx->completion_lock, flags);
1489
1490 while (!list_empty(&req->link_list)) {
1491 struct io_kiocb *link = list_first_entry(&req->link_list,
1492 struct io_kiocb, link_list);
1493
1494 list_del_init(&link->link_list);
1495 trace_io_uring_fail_link(req, link);
1496
1497 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1498 link->opcode == IORING_OP_LINK_TIMEOUT) {
1499 io_link_cancel_timeout(link);
1500 } else {
1501 io_cqring_fill_event(link, -ECANCELED);
1502 __io_double_put_req(link);
1503 }
1504 req->flags &= ~REQ_F_LINK_TIMEOUT;
1505 }
1506
1507 io_commit_cqring(ctx);
1508 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1509 io_cqring_ev_posted(ctx);
1510 }
1511
1512 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1513 {
1514 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1515 return;
1516
1517 /*
1518 * If LINK is set, we have dependent requests in this chain. If we
1519 * didn't fail this request, queue the first one up, moving any other
1520 * dependencies to the next request. In case of failure, fail the rest
1521 * of the chain.
1522 */
1523 if (req->flags & REQ_F_FAIL_LINK) {
1524 io_fail_links(req);
1525 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1526 REQ_F_LINK_TIMEOUT) {
1527 struct io_ring_ctx *ctx = req->ctx;
1528 unsigned long flags;
1529
1530 /*
1531 * If this is a timeout link, we could be racing with the
1532 * timeout timer. Grab the completion lock for this case to
1533 * protect against that.
1534 */
1535 spin_lock_irqsave(&ctx->completion_lock, flags);
1536 io_req_link_next(req, nxt);
1537 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1538 } else {
1539 io_req_link_next(req, nxt);
1540 }
1541 }
1542
1543 static void io_free_req(struct io_kiocb *req)
1544 {
1545 struct io_kiocb *nxt = NULL;
1546
1547 io_req_find_next(req, &nxt);
1548 __io_free_req(req);
1549
1550 if (nxt)
1551 io_queue_async_work(nxt);
1552 }
1553
1554 static void io_link_work_cb(struct io_wq_work **workptr)
1555 {
1556 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
1557 struct io_kiocb *link;
1558
1559 link = list_first_entry(&req->link_list, struct io_kiocb, link_list);
1560 io_queue_linked_timeout(link);
1561 io_wq_submit_work(workptr);
1562 }
1563
1564 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
1565 {
1566 struct io_kiocb *link;
1567 const struct io_op_def *def = &io_op_defs[nxt->opcode];
1568
1569 if ((nxt->flags & REQ_F_ISREG) && def->hash_reg_file)
1570 io_wq_hash_work(&nxt->work, file_inode(nxt->file));
1571
1572 *workptr = &nxt->work;
1573 link = io_prep_linked_timeout(nxt);
1574 if (link)
1575 nxt->work.func = io_link_work_cb;
1576 }
1577
1578 /*
1579 * Drop reference to request, return next in chain (if there is one) if this
1580 * was the last reference to this request.
1581 */
1582 __attribute__((nonnull))
1583 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1584 {
1585 if (refcount_dec_and_test(&req->refs)) {
1586 io_req_find_next(req, nxtptr);
1587 __io_free_req(req);
1588 }
1589 }
1590
1591 static void io_put_req(struct io_kiocb *req)
1592 {
1593 if (refcount_dec_and_test(&req->refs))
1594 io_free_req(req);
1595 }
1596
1597 static void io_steal_work(struct io_kiocb *req,
1598 struct io_wq_work **workptr)
1599 {
1600 /*
1601 * It's in an io-wq worker, so there always should be at least
1602 * one reference, which will be dropped in io_put_work() just
1603 * after the current handler returns.
1604 *
1605 * It also means, that if the counter dropped to 1, then there is
1606 * no asynchronous users left, so it's safe to steal the next work.
1607 */
1608 if (refcount_read(&req->refs) == 1) {
1609 struct io_kiocb *nxt = NULL;
1610
1611 io_req_find_next(req, &nxt);
1612 if (nxt)
1613 io_wq_assign_next(workptr, nxt);
1614 }
1615 }
1616
1617 /*
1618 * Must only be used if we don't need to care about links, usually from
1619 * within the completion handling itself.
1620 */
1621 static void __io_double_put_req(struct io_kiocb *req)
1622 {
1623 /* drop both submit and complete references */
1624 if (refcount_sub_and_test(2, &req->refs))
1625 __io_free_req(req);
1626 }
1627
1628 static void io_double_put_req(struct io_kiocb *req)
1629 {
1630 /* drop both submit and complete references */
1631 if (refcount_sub_and_test(2, &req->refs))
1632 io_free_req(req);
1633 }
1634
1635 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1636 {
1637 struct io_rings *rings = ctx->rings;
1638
1639 if (test_bit(0, &ctx->cq_check_overflow)) {
1640 /*
1641 * noflush == true is from the waitqueue handler, just ensure
1642 * we wake up the task, and the next invocation will flush the
1643 * entries. We cannot safely to it from here.
1644 */
1645 if (noflush && !list_empty(&ctx->cq_overflow_list))
1646 return -1U;
1647
1648 io_cqring_overflow_flush(ctx, false);
1649 }
1650
1651 /* See comment at the top of this file */
1652 smp_rmb();
1653 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1654 }
1655
1656 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1657 {
1658 struct io_rings *rings = ctx->rings;
1659
1660 /* make sure SQ entry isn't read before tail */
1661 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1662 }
1663
1664 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1665 {
1666 if ((req->flags & REQ_F_LINK_HEAD) || io_is_fallback_req(req))
1667 return false;
1668
1669 if (req->file || req->io)
1670 rb->need_iter++;
1671
1672 rb->reqs[rb->to_free++] = req;
1673 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1674 io_free_req_many(req->ctx, rb);
1675 return true;
1676 }
1677
1678 static int io_put_kbuf(struct io_kiocb *req)
1679 {
1680 struct io_buffer *kbuf;
1681 int cflags;
1682
1683 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
1684 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
1685 cflags |= IORING_CQE_F_BUFFER;
1686 req->rw.addr = 0;
1687 kfree(kbuf);
1688 return cflags;
1689 }
1690
1691 /*
1692 * Find and free completed poll iocbs
1693 */
1694 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1695 struct list_head *done)
1696 {
1697 struct req_batch rb;
1698 struct io_kiocb *req;
1699
1700 rb.to_free = rb.need_iter = 0;
1701 while (!list_empty(done)) {
1702 int cflags = 0;
1703
1704 req = list_first_entry(done, struct io_kiocb, list);
1705 list_del(&req->list);
1706
1707 if (req->flags & REQ_F_BUFFER_SELECTED)
1708 cflags = io_put_kbuf(req);
1709
1710 __io_cqring_fill_event(req, req->result, cflags);
1711 (*nr_events)++;
1712
1713 if (refcount_dec_and_test(&req->refs) &&
1714 !io_req_multi_free(&rb, req))
1715 io_free_req(req);
1716 }
1717
1718 io_commit_cqring(ctx);
1719 if (ctx->flags & IORING_SETUP_SQPOLL)
1720 io_cqring_ev_posted(ctx);
1721 io_free_req_many(ctx, &rb);
1722 }
1723
1724 static void io_iopoll_queue(struct list_head *again)
1725 {
1726 struct io_kiocb *req;
1727
1728 do {
1729 req = list_first_entry(again, struct io_kiocb, list);
1730 list_del(&req->list);
1731 refcount_inc(&req->refs);
1732 io_queue_async_work(req);
1733 } while (!list_empty(again));
1734 }
1735
1736 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1737 long min)
1738 {
1739 struct io_kiocb *req, *tmp;
1740 LIST_HEAD(done);
1741 LIST_HEAD(again);
1742 bool spin;
1743 int ret;
1744
1745 /*
1746 * Only spin for completions if we don't have multiple devices hanging
1747 * off our complete list, and we're under the requested amount.
1748 */
1749 spin = !ctx->poll_multi_file && *nr_events < min;
1750
1751 ret = 0;
1752 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1753 struct kiocb *kiocb = &req->rw.kiocb;
1754
1755 /*
1756 * Move completed and retryable entries to our local lists.
1757 * If we find a request that requires polling, break out
1758 * and complete those lists first, if we have entries there.
1759 */
1760 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1761 list_move_tail(&req->list, &done);
1762 continue;
1763 }
1764 if (!list_empty(&done))
1765 break;
1766
1767 if (req->result == -EAGAIN) {
1768 list_move_tail(&req->list, &again);
1769 continue;
1770 }
1771 if (!list_empty(&again))
1772 break;
1773
1774 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1775 if (ret < 0)
1776 break;
1777
1778 if (ret && spin)
1779 spin = false;
1780 ret = 0;
1781 }
1782
1783 if (!list_empty(&done))
1784 io_iopoll_complete(ctx, nr_events, &done);
1785
1786 if (!list_empty(&again))
1787 io_iopoll_queue(&again);
1788
1789 return ret;
1790 }
1791
1792 /*
1793 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1794 * non-spinning poll check - we'll still enter the driver poll loop, but only
1795 * as a non-spinning completion check.
1796 */
1797 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1798 long min)
1799 {
1800 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1801 int ret;
1802
1803 ret = io_do_iopoll(ctx, nr_events, min);
1804 if (ret < 0)
1805 return ret;
1806 if (!min || *nr_events >= min)
1807 return 0;
1808 }
1809
1810 return 1;
1811 }
1812
1813 /*
1814 * We can't just wait for polled events to come to us, we have to actively
1815 * find and complete them.
1816 */
1817 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1818 {
1819 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1820 return;
1821
1822 mutex_lock(&ctx->uring_lock);
1823 while (!list_empty(&ctx->poll_list)) {
1824 unsigned int nr_events = 0;
1825
1826 io_iopoll_getevents(ctx, &nr_events, 1);
1827
1828 /*
1829 * Ensure we allow local-to-the-cpu processing to take place,
1830 * in this case we need to ensure that we reap all events.
1831 */
1832 cond_resched();
1833 }
1834 mutex_unlock(&ctx->uring_lock);
1835 }
1836
1837 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1838 long min)
1839 {
1840 int iters = 0, ret = 0;
1841
1842 /*
1843 * We disallow the app entering submit/complete with polling, but we
1844 * still need to lock the ring to prevent racing with polled issue
1845 * that got punted to a workqueue.
1846 */
1847 mutex_lock(&ctx->uring_lock);
1848 do {
1849 int tmin = 0;
1850
1851 /*
1852 * Don't enter poll loop if we already have events pending.
1853 * If we do, we can potentially be spinning for commands that
1854 * already triggered a CQE (eg in error).
1855 */
1856 if (io_cqring_events(ctx, false))
1857 break;
1858
1859 /*
1860 * If a submit got punted to a workqueue, we can have the
1861 * application entering polling for a command before it gets
1862 * issued. That app will hold the uring_lock for the duration
1863 * of the poll right here, so we need to take a breather every
1864 * now and then to ensure that the issue has a chance to add
1865 * the poll to the issued list. Otherwise we can spin here
1866 * forever, while the workqueue is stuck trying to acquire the
1867 * very same mutex.
1868 */
1869 if (!(++iters & 7)) {
1870 mutex_unlock(&ctx->uring_lock);
1871 mutex_lock(&ctx->uring_lock);
1872 }
1873
1874 if (*nr_events < min)
1875 tmin = min - *nr_events;
1876
1877 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1878 if (ret <= 0)
1879 break;
1880 ret = 0;
1881 } while (min && !*nr_events && !need_resched());
1882
1883 mutex_unlock(&ctx->uring_lock);
1884 return ret;
1885 }
1886
1887 static void kiocb_end_write(struct io_kiocb *req)
1888 {
1889 /*
1890 * Tell lockdep we inherited freeze protection from submission
1891 * thread.
1892 */
1893 if (req->flags & REQ_F_ISREG) {
1894 struct inode *inode = file_inode(req->file);
1895
1896 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1897 }
1898 file_end_write(req->file);
1899 }
1900
1901 static inline void req_set_fail_links(struct io_kiocb *req)
1902 {
1903 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1904 req->flags |= REQ_F_FAIL_LINK;
1905 }
1906
1907 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1908 {
1909 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1910 int cflags = 0;
1911
1912 if (kiocb->ki_flags & IOCB_WRITE)
1913 kiocb_end_write(req);
1914
1915 if (res != req->result)
1916 req_set_fail_links(req);
1917 if (req->flags & REQ_F_BUFFER_SELECTED)
1918 cflags = io_put_kbuf(req);
1919 __io_cqring_add_event(req, res, cflags);
1920 }
1921
1922 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1923 {
1924 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1925
1926 io_complete_rw_common(kiocb, res);
1927 io_put_req(req);
1928 }
1929
1930 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1931 {
1932 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1933
1934 if (kiocb->ki_flags & IOCB_WRITE)
1935 kiocb_end_write(req);
1936
1937 if (res != req->result)
1938 req_set_fail_links(req);
1939 req->result = res;
1940 if (res != -EAGAIN)
1941 req->flags |= REQ_F_IOPOLL_COMPLETED;
1942 }
1943
1944 /*
1945 * After the iocb has been issued, it's safe to be found on the poll list.
1946 * Adding the kiocb to the list AFTER submission ensures that we don't
1947 * find it from a io_iopoll_getevents() thread before the issuer is done
1948 * accessing the kiocb cookie.
1949 */
1950 static void io_iopoll_req_issued(struct io_kiocb *req)
1951 {
1952 struct io_ring_ctx *ctx = req->ctx;
1953
1954 /*
1955 * Track whether we have multiple files in our lists. This will impact
1956 * how we do polling eventually, not spinning if we're on potentially
1957 * different devices.
1958 */
1959 if (list_empty(&ctx->poll_list)) {
1960 ctx->poll_multi_file = false;
1961 } else if (!ctx->poll_multi_file) {
1962 struct io_kiocb *list_req;
1963
1964 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1965 list);
1966 if (list_req->file != req->file)
1967 ctx->poll_multi_file = true;
1968 }
1969
1970 /*
1971 * For fast devices, IO may have already completed. If it has, add
1972 * it to the front so we find it first.
1973 */
1974 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1975 list_add(&req->list, &ctx->poll_list);
1976 else
1977 list_add_tail(&req->list, &ctx->poll_list);
1978
1979 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1980 wq_has_sleeper(&ctx->sqo_wait))
1981 wake_up(&ctx->sqo_wait);
1982 }
1983
1984 static void io_file_put(struct io_submit_state *state)
1985 {
1986 if (state->file) {
1987 int diff = state->has_refs - state->used_refs;
1988
1989 if (diff)
1990 fput_many(state->file, diff);
1991 state->file = NULL;
1992 }
1993 }
1994
1995 /*
1996 * Get as many references to a file as we have IOs left in this submission,
1997 * assuming most submissions are for one file, or at least that each file
1998 * has more than one submission.
1999 */
2000 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2001 {
2002 if (!state)
2003 return fget(fd);
2004
2005 if (state->file) {
2006 if (state->fd == fd) {
2007 state->used_refs++;
2008 state->ios_left--;
2009 return state->file;
2010 }
2011 io_file_put(state);
2012 }
2013 state->file = fget_many(fd, state->ios_left);
2014 if (!state->file)
2015 return NULL;
2016
2017 state->fd = fd;
2018 state->has_refs = state->ios_left;
2019 state->used_refs = 1;
2020 state->ios_left--;
2021 return state->file;
2022 }
2023
2024 /*
2025 * If we tracked the file through the SCM inflight mechanism, we could support
2026 * any file. For now, just ensure that anything potentially problematic is done
2027 * inline.
2028 */
2029 static bool io_file_supports_async(struct file *file, int rw)
2030 {
2031 umode_t mode = file_inode(file)->i_mode;
2032
2033 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
2034 return true;
2035 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
2036 return true;
2037
2038 if (!(file->f_mode & FMODE_NOWAIT))
2039 return false;
2040
2041 if (rw == READ)
2042 return file->f_op->read_iter != NULL;
2043
2044 return file->f_op->write_iter != NULL;
2045 }
2046
2047 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2048 bool force_nonblock)
2049 {
2050 struct io_ring_ctx *ctx = req->ctx;
2051 struct kiocb *kiocb = &req->rw.kiocb;
2052 unsigned ioprio;
2053 int ret;
2054
2055 if (S_ISREG(file_inode(req->file)->i_mode))
2056 req->flags |= REQ_F_ISREG;
2057
2058 kiocb->ki_pos = READ_ONCE(sqe->off);
2059 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2060 req->flags |= REQ_F_CUR_POS;
2061 kiocb->ki_pos = req->file->f_pos;
2062 }
2063 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2064 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2065 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2066 if (unlikely(ret))
2067 return ret;
2068
2069 ioprio = READ_ONCE(sqe->ioprio);
2070 if (ioprio) {
2071 ret = ioprio_check_cap(ioprio);
2072 if (ret)
2073 return ret;
2074
2075 kiocb->ki_ioprio = ioprio;
2076 } else
2077 kiocb->ki_ioprio = get_current_ioprio();
2078
2079 /* don't allow async punt if RWF_NOWAIT was requested */
2080 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2081 (req->file->f_flags & O_NONBLOCK))
2082 req->flags |= REQ_F_NOWAIT;
2083
2084 if (force_nonblock)
2085 kiocb->ki_flags |= IOCB_NOWAIT;
2086
2087 if (ctx->flags & IORING_SETUP_IOPOLL) {
2088 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2089 !kiocb->ki_filp->f_op->iopoll)
2090 return -EOPNOTSUPP;
2091
2092 kiocb->ki_flags |= IOCB_HIPRI;
2093 kiocb->ki_complete = io_complete_rw_iopoll;
2094 req->result = 0;
2095 } else {
2096 if (kiocb->ki_flags & IOCB_HIPRI)
2097 return -EINVAL;
2098 kiocb->ki_complete = io_complete_rw;
2099 }
2100
2101 req->rw.addr = READ_ONCE(sqe->addr);
2102 req->rw.len = READ_ONCE(sqe->len);
2103 /* we own ->private, reuse it for the buffer index / buffer ID */
2104 req->rw.kiocb.private = (void *) (unsigned long)
2105 READ_ONCE(sqe->buf_index);
2106 return 0;
2107 }
2108
2109 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2110 {
2111 switch (ret) {
2112 case -EIOCBQUEUED:
2113 break;
2114 case -ERESTARTSYS:
2115 case -ERESTARTNOINTR:
2116 case -ERESTARTNOHAND:
2117 case -ERESTART_RESTARTBLOCK:
2118 /*
2119 * We can't just restart the syscall, since previously
2120 * submitted sqes may already be in progress. Just fail this
2121 * IO with EINTR.
2122 */
2123 ret = -EINTR;
2124 /* fall through */
2125 default:
2126 kiocb->ki_complete(kiocb, ret, 0);
2127 }
2128 }
2129
2130 static void kiocb_done(struct kiocb *kiocb, ssize_t ret)
2131 {
2132 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2133
2134 if (req->flags & REQ_F_CUR_POS)
2135 req->file->f_pos = kiocb->ki_pos;
2136 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2137 io_complete_rw(kiocb, ret, 0);
2138 else
2139 io_rw_done(kiocb, ret);
2140 }
2141
2142 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2143 struct iov_iter *iter)
2144 {
2145 struct io_ring_ctx *ctx = req->ctx;
2146 size_t len = req->rw.len;
2147 struct io_mapped_ubuf *imu;
2148 unsigned index, buf_index;
2149 size_t offset;
2150 u64 buf_addr;
2151
2152 /* attempt to use fixed buffers without having provided iovecs */
2153 if (unlikely(!ctx->user_bufs))
2154 return -EFAULT;
2155
2156 buf_index = (unsigned long) req->rw.kiocb.private;
2157 if (unlikely(buf_index >= ctx->nr_user_bufs))
2158 return -EFAULT;
2159
2160 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2161 imu = &ctx->user_bufs[index];
2162 buf_addr = req->rw.addr;
2163
2164 /* overflow */
2165 if (buf_addr + len < buf_addr)
2166 return -EFAULT;
2167 /* not inside the mapped region */
2168 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2169 return -EFAULT;
2170
2171 /*
2172 * May not be a start of buffer, set size appropriately
2173 * and advance us to the beginning.
2174 */
2175 offset = buf_addr - imu->ubuf;
2176 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2177
2178 if (offset) {
2179 /*
2180 * Don't use iov_iter_advance() here, as it's really slow for
2181 * using the latter parts of a big fixed buffer - it iterates
2182 * over each segment manually. We can cheat a bit here, because
2183 * we know that:
2184 *
2185 * 1) it's a BVEC iter, we set it up
2186 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2187 * first and last bvec
2188 *
2189 * So just find our index, and adjust the iterator afterwards.
2190 * If the offset is within the first bvec (or the whole first
2191 * bvec, just use iov_iter_advance(). This makes it easier
2192 * since we can just skip the first segment, which may not
2193 * be PAGE_SIZE aligned.
2194 */
2195 const struct bio_vec *bvec = imu->bvec;
2196
2197 if (offset <= bvec->bv_len) {
2198 iov_iter_advance(iter, offset);
2199 } else {
2200 unsigned long seg_skip;
2201
2202 /* skip first vec */
2203 offset -= bvec->bv_len;
2204 seg_skip = 1 + (offset >> PAGE_SHIFT);
2205
2206 iter->bvec = bvec + seg_skip;
2207 iter->nr_segs -= seg_skip;
2208 iter->count -= bvec->bv_len + offset;
2209 iter->iov_offset = offset & ~PAGE_MASK;
2210 }
2211 }
2212
2213 return len;
2214 }
2215
2216 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2217 {
2218 if (needs_lock)
2219 mutex_unlock(&ctx->uring_lock);
2220 }
2221
2222 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2223 {
2224 /*
2225 * "Normal" inline submissions always hold the uring_lock, since we
2226 * grab it from the system call. Same is true for the SQPOLL offload.
2227 * The only exception is when we've detached the request and issue it
2228 * from an async worker thread, grab the lock for that case.
2229 */
2230 if (needs_lock)
2231 mutex_lock(&ctx->uring_lock);
2232 }
2233
2234 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2235 int bgid, struct io_buffer *kbuf,
2236 bool needs_lock)
2237 {
2238 struct io_buffer *head;
2239
2240 if (req->flags & REQ_F_BUFFER_SELECTED)
2241 return kbuf;
2242
2243 io_ring_submit_lock(req->ctx, needs_lock);
2244
2245 lockdep_assert_held(&req->ctx->uring_lock);
2246
2247 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2248 if (head) {
2249 if (!list_empty(&head->list)) {
2250 kbuf = list_last_entry(&head->list, struct io_buffer,
2251 list);
2252 list_del(&kbuf->list);
2253 } else {
2254 kbuf = head;
2255 idr_remove(&req->ctx->io_buffer_idr, bgid);
2256 }
2257 if (*len > kbuf->len)
2258 *len = kbuf->len;
2259 } else {
2260 kbuf = ERR_PTR(-ENOBUFS);
2261 }
2262
2263 io_ring_submit_unlock(req->ctx, needs_lock);
2264
2265 return kbuf;
2266 }
2267
2268 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2269 bool needs_lock)
2270 {
2271 struct io_buffer *kbuf;
2272 int bgid;
2273
2274 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2275 bgid = (int) (unsigned long) req->rw.kiocb.private;
2276 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2277 if (IS_ERR(kbuf))
2278 return kbuf;
2279 req->rw.addr = (u64) (unsigned long) kbuf;
2280 req->flags |= REQ_F_BUFFER_SELECTED;
2281 return u64_to_user_ptr(kbuf->addr);
2282 }
2283
2284 #ifdef CONFIG_COMPAT
2285 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2286 bool needs_lock)
2287 {
2288 struct compat_iovec __user *uiov;
2289 compat_ssize_t clen;
2290 void __user *buf;
2291 ssize_t len;
2292
2293 uiov = u64_to_user_ptr(req->rw.addr);
2294 if (!access_ok(uiov, sizeof(*uiov)))
2295 return -EFAULT;
2296 if (__get_user(clen, &uiov->iov_len))
2297 return -EFAULT;
2298 if (clen < 0)
2299 return -EINVAL;
2300
2301 len = clen;
2302 buf = io_rw_buffer_select(req, &len, needs_lock);
2303 if (IS_ERR(buf))
2304 return PTR_ERR(buf);
2305 iov[0].iov_base = buf;
2306 iov[0].iov_len = (compat_size_t) len;
2307 return 0;
2308 }
2309 #endif
2310
2311 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2312 bool needs_lock)
2313 {
2314 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2315 void __user *buf;
2316 ssize_t len;
2317
2318 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2319 return -EFAULT;
2320
2321 len = iov[0].iov_len;
2322 if (len < 0)
2323 return -EINVAL;
2324 buf = io_rw_buffer_select(req, &len, needs_lock);
2325 if (IS_ERR(buf))
2326 return PTR_ERR(buf);
2327 iov[0].iov_base = buf;
2328 iov[0].iov_len = len;
2329 return 0;
2330 }
2331
2332 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2333 bool needs_lock)
2334 {
2335 if (req->flags & REQ_F_BUFFER_SELECTED)
2336 return 0;
2337 if (!req->rw.len)
2338 return 0;
2339 else if (req->rw.len > 1)
2340 return -EINVAL;
2341
2342 #ifdef CONFIG_COMPAT
2343 if (req->ctx->compat)
2344 return io_compat_import(req, iov, needs_lock);
2345 #endif
2346
2347 return __io_iov_buffer_select(req, iov, needs_lock);
2348 }
2349
2350 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2351 struct iovec **iovec, struct iov_iter *iter,
2352 bool needs_lock)
2353 {
2354 void __user *buf = u64_to_user_ptr(req->rw.addr);
2355 size_t sqe_len = req->rw.len;
2356 ssize_t ret;
2357 u8 opcode;
2358
2359 opcode = req->opcode;
2360 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2361 *iovec = NULL;
2362 return io_import_fixed(req, rw, iter);
2363 }
2364
2365 /* buffer index only valid with fixed read/write, or buffer select */
2366 if (req->rw.kiocb.private && !(req->flags & REQ_F_BUFFER_SELECT))
2367 return -EINVAL;
2368
2369 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2370 if (req->flags & REQ_F_BUFFER_SELECT) {
2371 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2372 if (IS_ERR(buf)) {
2373 *iovec = NULL;
2374 return PTR_ERR(buf);
2375 }
2376 req->rw.len = sqe_len;
2377 }
2378
2379 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2380 *iovec = NULL;
2381 return ret < 0 ? ret : sqe_len;
2382 }
2383
2384 if (req->io) {
2385 struct io_async_rw *iorw = &req->io->rw;
2386
2387 *iovec = iorw->iov;
2388 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2389 if (iorw->iov == iorw->fast_iov)
2390 *iovec = NULL;
2391 return iorw->size;
2392 }
2393
2394 if (req->flags & REQ_F_BUFFER_SELECT) {
2395 ret = io_iov_buffer_select(req, *iovec, needs_lock);
2396 if (!ret) {
2397 ret = (*iovec)->iov_len;
2398 iov_iter_init(iter, rw, *iovec, 1, ret);
2399 }
2400 *iovec = NULL;
2401 return ret;
2402 }
2403
2404 #ifdef CONFIG_COMPAT
2405 if (req->ctx->compat)
2406 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2407 iovec, iter);
2408 #endif
2409
2410 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2411 }
2412
2413 /*
2414 * For files that don't have ->read_iter() and ->write_iter(), handle them
2415 * by looping over ->read() or ->write() manually.
2416 */
2417 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2418 struct iov_iter *iter)
2419 {
2420 ssize_t ret = 0;
2421
2422 /*
2423 * Don't support polled IO through this interface, and we can't
2424 * support non-blocking either. For the latter, this just causes
2425 * the kiocb to be handled from an async context.
2426 */
2427 if (kiocb->ki_flags & IOCB_HIPRI)
2428 return -EOPNOTSUPP;
2429 if (kiocb->ki_flags & IOCB_NOWAIT)
2430 return -EAGAIN;
2431
2432 while (iov_iter_count(iter)) {
2433 struct iovec iovec;
2434 ssize_t nr;
2435
2436 if (!iov_iter_is_bvec(iter)) {
2437 iovec = iov_iter_iovec(iter);
2438 } else {
2439 /* fixed buffers import bvec */
2440 iovec.iov_base = kmap(iter->bvec->bv_page)
2441 + iter->iov_offset;
2442 iovec.iov_len = min(iter->count,
2443 iter->bvec->bv_len - iter->iov_offset);
2444 }
2445
2446 if (rw == READ) {
2447 nr = file->f_op->read(file, iovec.iov_base,
2448 iovec.iov_len, &kiocb->ki_pos);
2449 } else {
2450 nr = file->f_op->write(file, iovec.iov_base,
2451 iovec.iov_len, &kiocb->ki_pos);
2452 }
2453
2454 if (iov_iter_is_bvec(iter))
2455 kunmap(iter->bvec->bv_page);
2456
2457 if (nr < 0) {
2458 if (!ret)
2459 ret = nr;
2460 break;
2461 }
2462 ret += nr;
2463 if (nr != iovec.iov_len)
2464 break;
2465 iov_iter_advance(iter, nr);
2466 }
2467
2468 return ret;
2469 }
2470
2471 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2472 struct iovec *iovec, struct iovec *fast_iov,
2473 struct iov_iter *iter)
2474 {
2475 req->io->rw.nr_segs = iter->nr_segs;
2476 req->io->rw.size = io_size;
2477 req->io->rw.iov = iovec;
2478 if (!req->io->rw.iov) {
2479 req->io->rw.iov = req->io->rw.fast_iov;
2480 if (req->io->rw.iov != fast_iov)
2481 memcpy(req->io->rw.iov, fast_iov,
2482 sizeof(struct iovec) * iter->nr_segs);
2483 } else {
2484 req->flags |= REQ_F_NEED_CLEANUP;
2485 }
2486 }
2487
2488 static inline int __io_alloc_async_ctx(struct io_kiocb *req)
2489 {
2490 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2491 return req->io == NULL;
2492 }
2493
2494 static int io_alloc_async_ctx(struct io_kiocb *req)
2495 {
2496 if (!io_op_defs[req->opcode].async_ctx)
2497 return 0;
2498
2499 return __io_alloc_async_ctx(req);
2500 }
2501
2502 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2503 struct iovec *iovec, struct iovec *fast_iov,
2504 struct iov_iter *iter)
2505 {
2506 if (!io_op_defs[req->opcode].async_ctx)
2507 return 0;
2508 if (!req->io) {
2509 if (__io_alloc_async_ctx(req))
2510 return -ENOMEM;
2511
2512 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2513 }
2514 return 0;
2515 }
2516
2517 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2518 bool force_nonblock)
2519 {
2520 struct io_async_ctx *io;
2521 struct iov_iter iter;
2522 ssize_t ret;
2523
2524 ret = io_prep_rw(req, sqe, force_nonblock);
2525 if (ret)
2526 return ret;
2527
2528 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2529 return -EBADF;
2530
2531 /* either don't need iovec imported or already have it */
2532 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2533 return 0;
2534
2535 io = req->io;
2536 io->rw.iov = io->rw.fast_iov;
2537 req->io = NULL;
2538 ret = io_import_iovec(READ, req, &io->rw.iov, &iter, !force_nonblock);
2539 req->io = io;
2540 if (ret < 0)
2541 return ret;
2542
2543 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2544 return 0;
2545 }
2546
2547 static int io_read(struct io_kiocb *req, bool force_nonblock)
2548 {
2549 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2550 struct kiocb *kiocb = &req->rw.kiocb;
2551 struct iov_iter iter;
2552 size_t iov_count;
2553 ssize_t io_size, ret;
2554
2555 ret = io_import_iovec(READ, req, &iovec, &iter, !force_nonblock);
2556 if (ret < 0)
2557 return ret;
2558
2559 /* Ensure we clear previously set non-block flag */
2560 if (!force_nonblock)
2561 kiocb->ki_flags &= ~IOCB_NOWAIT;
2562
2563 req->result = 0;
2564 io_size = ret;
2565 if (req->flags & REQ_F_LINK_HEAD)
2566 req->result = io_size;
2567
2568 /*
2569 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2570 * we know to async punt it even if it was opened O_NONBLOCK
2571 */
2572 if (force_nonblock && !io_file_supports_async(req->file, READ))
2573 goto copy_iov;
2574
2575 iov_count = iov_iter_count(&iter);
2576 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2577 if (!ret) {
2578 ssize_t ret2;
2579
2580 if (req->file->f_op->read_iter)
2581 ret2 = call_read_iter(req->file, kiocb, &iter);
2582 else
2583 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2584
2585 /* Catch -EAGAIN return for forced non-blocking submission */
2586 if (!force_nonblock || ret2 != -EAGAIN) {
2587 kiocb_done(kiocb, ret2);
2588 } else {
2589 copy_iov:
2590 ret = io_setup_async_rw(req, io_size, iovec,
2591 inline_vecs, &iter);
2592 if (ret)
2593 goto out_free;
2594 /* any defer here is final, must blocking retry */
2595 if (!(req->flags & REQ_F_NOWAIT) &&
2596 !file_can_poll(req->file))
2597 req->flags |= REQ_F_MUST_PUNT;
2598 return -EAGAIN;
2599 }
2600 }
2601 out_free:
2602 kfree(iovec);
2603 req->flags &= ~REQ_F_NEED_CLEANUP;
2604 return ret;
2605 }
2606
2607 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2608 bool force_nonblock)
2609 {
2610 struct io_async_ctx *io;
2611 struct iov_iter iter;
2612 ssize_t ret;
2613
2614 ret = io_prep_rw(req, sqe, force_nonblock);
2615 if (ret)
2616 return ret;
2617
2618 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2619 return -EBADF;
2620
2621 req->fsize = rlimit(RLIMIT_FSIZE);
2622
2623 /* either don't need iovec imported or already have it */
2624 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2625 return 0;
2626
2627 io = req->io;
2628 io->rw.iov = io->rw.fast_iov;
2629 req->io = NULL;
2630 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter, !force_nonblock);
2631 req->io = io;
2632 if (ret < 0)
2633 return ret;
2634
2635 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2636 return 0;
2637 }
2638
2639 static int io_write(struct io_kiocb *req, bool force_nonblock)
2640 {
2641 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2642 struct kiocb *kiocb = &req->rw.kiocb;
2643 struct iov_iter iter;
2644 size_t iov_count;
2645 ssize_t ret, io_size;
2646
2647 ret = io_import_iovec(WRITE, req, &iovec, &iter, !force_nonblock);
2648 if (ret < 0)
2649 return ret;
2650
2651 /* Ensure we clear previously set non-block flag */
2652 if (!force_nonblock)
2653 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2654
2655 req->result = 0;
2656 io_size = ret;
2657 if (req->flags & REQ_F_LINK_HEAD)
2658 req->result = io_size;
2659
2660 /*
2661 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2662 * we know to async punt it even if it was opened O_NONBLOCK
2663 */
2664 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
2665 goto copy_iov;
2666
2667 /* file path doesn't support NOWAIT for non-direct_IO */
2668 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2669 (req->flags & REQ_F_ISREG))
2670 goto copy_iov;
2671
2672 iov_count = iov_iter_count(&iter);
2673 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2674 if (!ret) {
2675 ssize_t ret2;
2676
2677 /*
2678 * Open-code file_start_write here to grab freeze protection,
2679 * which will be released by another thread in
2680 * io_complete_rw(). Fool lockdep by telling it the lock got
2681 * released so that it doesn't complain about the held lock when
2682 * we return to userspace.
2683 */
2684 if (req->flags & REQ_F_ISREG) {
2685 __sb_start_write(file_inode(req->file)->i_sb,
2686 SB_FREEZE_WRITE, true);
2687 __sb_writers_release(file_inode(req->file)->i_sb,
2688 SB_FREEZE_WRITE);
2689 }
2690 kiocb->ki_flags |= IOCB_WRITE;
2691
2692 if (!force_nonblock)
2693 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2694
2695 if (req->file->f_op->write_iter)
2696 ret2 = call_write_iter(req->file, kiocb, &iter);
2697 else
2698 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2699
2700 if (!force_nonblock)
2701 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2702
2703 /*
2704 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
2705 * retry them without IOCB_NOWAIT.
2706 */
2707 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
2708 ret2 = -EAGAIN;
2709 if (!force_nonblock || ret2 != -EAGAIN) {
2710 kiocb_done(kiocb, ret2);
2711 } else {
2712 copy_iov:
2713 ret = io_setup_async_rw(req, io_size, iovec,
2714 inline_vecs, &iter);
2715 if (ret)
2716 goto out_free;
2717 /* any defer here is final, must blocking retry */
2718 if (!file_can_poll(req->file))
2719 req->flags |= REQ_F_MUST_PUNT;
2720 return -EAGAIN;
2721 }
2722 }
2723 out_free:
2724 req->flags &= ~REQ_F_NEED_CLEANUP;
2725 kfree(iovec);
2726 return ret;
2727 }
2728
2729 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2730 {
2731 struct io_splice* sp = &req->splice;
2732 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
2733 int ret;
2734
2735 if (req->flags & REQ_F_NEED_CLEANUP)
2736 return 0;
2737
2738 sp->file_in = NULL;
2739 sp->off_in = READ_ONCE(sqe->splice_off_in);
2740 sp->off_out = READ_ONCE(sqe->off);
2741 sp->len = READ_ONCE(sqe->len);
2742 sp->flags = READ_ONCE(sqe->splice_flags);
2743
2744 if (unlikely(sp->flags & ~valid_flags))
2745 return -EINVAL;
2746
2747 ret = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in), &sp->file_in,
2748 (sp->flags & SPLICE_F_FD_IN_FIXED));
2749 if (ret)
2750 return ret;
2751 req->flags |= REQ_F_NEED_CLEANUP;
2752
2753 if (!S_ISREG(file_inode(sp->file_in)->i_mode))
2754 req->work.flags |= IO_WQ_WORK_UNBOUND;
2755
2756 return 0;
2757 }
2758
2759 static int io_splice(struct io_kiocb *req, bool force_nonblock)
2760 {
2761 struct io_splice *sp = &req->splice;
2762 struct file *in = sp->file_in;
2763 struct file *out = sp->file_out;
2764 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
2765 loff_t *poff_in, *poff_out;
2766 long ret = 0;
2767
2768 if (force_nonblock)
2769 return -EAGAIN;
2770
2771 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
2772 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
2773
2774 if (sp->len) {
2775 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
2776 if (force_nonblock && ret == -EAGAIN)
2777 return -EAGAIN;
2778 }
2779
2780 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
2781 req->flags &= ~REQ_F_NEED_CLEANUP;
2782
2783 io_cqring_add_event(req, ret);
2784 if (ret != sp->len)
2785 req_set_fail_links(req);
2786 io_put_req(req);
2787 return 0;
2788 }
2789
2790 /*
2791 * IORING_OP_NOP just posts a completion event, nothing else.
2792 */
2793 static int io_nop(struct io_kiocb *req)
2794 {
2795 struct io_ring_ctx *ctx = req->ctx;
2796
2797 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2798 return -EINVAL;
2799
2800 io_cqring_add_event(req, 0);
2801 io_put_req(req);
2802 return 0;
2803 }
2804
2805 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2806 {
2807 struct io_ring_ctx *ctx = req->ctx;
2808
2809 if (!req->file)
2810 return -EBADF;
2811
2812 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2813 return -EINVAL;
2814 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2815 return -EINVAL;
2816
2817 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2818 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2819 return -EINVAL;
2820
2821 req->sync.off = READ_ONCE(sqe->off);
2822 req->sync.len = READ_ONCE(sqe->len);
2823 return 0;
2824 }
2825
2826 static bool io_req_cancelled(struct io_kiocb *req)
2827 {
2828 if (req->work.flags & IO_WQ_WORK_CANCEL) {
2829 req_set_fail_links(req);
2830 io_cqring_add_event(req, -ECANCELED);
2831 io_put_req(req);
2832 return true;
2833 }
2834
2835 return false;
2836 }
2837
2838 static void __io_fsync(struct io_kiocb *req)
2839 {
2840 loff_t end = req->sync.off + req->sync.len;
2841 int ret;
2842
2843 ret = vfs_fsync_range(req->file, req->sync.off,
2844 end > 0 ? end : LLONG_MAX,
2845 req->sync.flags & IORING_FSYNC_DATASYNC);
2846 if (ret < 0)
2847 req_set_fail_links(req);
2848 io_cqring_add_event(req, ret);
2849 io_put_req(req);
2850 }
2851
2852 static void io_fsync_finish(struct io_wq_work **workptr)
2853 {
2854 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2855
2856 if (io_req_cancelled(req))
2857 return;
2858 __io_fsync(req);
2859 io_steal_work(req, workptr);
2860 }
2861
2862 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
2863 {
2864 /* fsync always requires a blocking context */
2865 if (force_nonblock) {
2866 req->work.func = io_fsync_finish;
2867 return -EAGAIN;
2868 }
2869 __io_fsync(req);
2870 return 0;
2871 }
2872
2873 static void __io_fallocate(struct io_kiocb *req)
2874 {
2875 int ret;
2876
2877 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2878 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2879 req->sync.len);
2880 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2881 if (ret < 0)
2882 req_set_fail_links(req);
2883 io_cqring_add_event(req, ret);
2884 io_put_req(req);
2885 }
2886
2887 static void io_fallocate_finish(struct io_wq_work **workptr)
2888 {
2889 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2890
2891 if (io_req_cancelled(req))
2892 return;
2893 __io_fallocate(req);
2894 io_steal_work(req, workptr);
2895 }
2896
2897 static int io_fallocate_prep(struct io_kiocb *req,
2898 const struct io_uring_sqe *sqe)
2899 {
2900 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2901 return -EINVAL;
2902
2903 req->sync.off = READ_ONCE(sqe->off);
2904 req->sync.len = READ_ONCE(sqe->addr);
2905 req->sync.mode = READ_ONCE(sqe->len);
2906 req->fsize = rlimit(RLIMIT_FSIZE);
2907 return 0;
2908 }
2909
2910 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
2911 {
2912 /* fallocate always requiring blocking context */
2913 if (force_nonblock) {
2914 req->work.func = io_fallocate_finish;
2915 return -EAGAIN;
2916 }
2917
2918 __io_fallocate(req);
2919 return 0;
2920 }
2921
2922 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2923 {
2924 const char __user *fname;
2925 int ret;
2926
2927 if (sqe->ioprio || sqe->buf_index)
2928 return -EINVAL;
2929 if (req->flags & REQ_F_FIXED_FILE)
2930 return -EBADF;
2931 if (req->flags & REQ_F_NEED_CLEANUP)
2932 return 0;
2933
2934 req->open.dfd = READ_ONCE(sqe->fd);
2935 req->open.how.mode = READ_ONCE(sqe->len);
2936 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2937 req->open.how.flags = READ_ONCE(sqe->open_flags);
2938 if (force_o_largefile())
2939 req->open.how.flags |= O_LARGEFILE;
2940
2941 req->open.filename = getname(fname);
2942 if (IS_ERR(req->open.filename)) {
2943 ret = PTR_ERR(req->open.filename);
2944 req->open.filename = NULL;
2945 return ret;
2946 }
2947
2948 req->open.nofile = rlimit(RLIMIT_NOFILE);
2949 req->flags |= REQ_F_NEED_CLEANUP;
2950 return 0;
2951 }
2952
2953 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2954 {
2955 struct open_how __user *how;
2956 const char __user *fname;
2957 size_t len;
2958 int ret;
2959
2960 if (sqe->ioprio || sqe->buf_index)
2961 return -EINVAL;
2962 if (req->flags & REQ_F_FIXED_FILE)
2963 return -EBADF;
2964 if (req->flags & REQ_F_NEED_CLEANUP)
2965 return 0;
2966
2967 req->open.dfd = READ_ONCE(sqe->fd);
2968 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2969 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2970 len = READ_ONCE(sqe->len);
2971
2972 if (len < OPEN_HOW_SIZE_VER0)
2973 return -EINVAL;
2974
2975 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
2976 len);
2977 if (ret)
2978 return ret;
2979
2980 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
2981 req->open.how.flags |= O_LARGEFILE;
2982
2983 req->open.filename = getname(fname);
2984 if (IS_ERR(req->open.filename)) {
2985 ret = PTR_ERR(req->open.filename);
2986 req->open.filename = NULL;
2987 return ret;
2988 }
2989
2990 req->open.nofile = rlimit(RLIMIT_NOFILE);
2991 req->flags |= REQ_F_NEED_CLEANUP;
2992 return 0;
2993 }
2994
2995 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
2996 {
2997 struct open_flags op;
2998 struct file *file;
2999 int ret;
3000
3001 if (force_nonblock)
3002 return -EAGAIN;
3003
3004 ret = build_open_flags(&req->open.how, &op);
3005 if (ret)
3006 goto err;
3007
3008 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3009 if (ret < 0)
3010 goto err;
3011
3012 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3013 if (IS_ERR(file)) {
3014 put_unused_fd(ret);
3015 ret = PTR_ERR(file);
3016 } else {
3017 fsnotify_open(file);
3018 fd_install(ret, file);
3019 }
3020 err:
3021 putname(req->open.filename);
3022 req->flags &= ~REQ_F_NEED_CLEANUP;
3023 if (ret < 0)
3024 req_set_fail_links(req);
3025 io_cqring_add_event(req, ret);
3026 io_put_req(req);
3027 return 0;
3028 }
3029
3030 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3031 {
3032 req->open.how = build_open_how(req->open.how.flags, req->open.how.mode);
3033 return io_openat2(req, force_nonblock);
3034 }
3035
3036 static int io_remove_buffers_prep(struct io_kiocb *req,
3037 const struct io_uring_sqe *sqe)
3038 {
3039 struct io_provide_buf *p = &req->pbuf;
3040 u64 tmp;
3041
3042 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3043 return -EINVAL;
3044
3045 tmp = READ_ONCE(sqe->fd);
3046 if (!tmp || tmp > USHRT_MAX)
3047 return -EINVAL;
3048
3049 memset(p, 0, sizeof(*p));
3050 p->nbufs = tmp;
3051 p->bgid = READ_ONCE(sqe->buf_group);
3052 return 0;
3053 }
3054
3055 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3056 int bgid, unsigned nbufs)
3057 {
3058 unsigned i = 0;
3059
3060 /* shouldn't happen */
3061 if (!nbufs)
3062 return 0;
3063
3064 /* the head kbuf is the list itself */
3065 while (!list_empty(&buf->list)) {
3066 struct io_buffer *nxt;
3067
3068 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3069 list_del(&nxt->list);
3070 kfree(nxt);
3071 if (++i == nbufs)
3072 return i;
3073 }
3074 i++;
3075 kfree(buf);
3076 idr_remove(&ctx->io_buffer_idr, bgid);
3077
3078 return i;
3079 }
3080
3081 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock)
3082 {
3083 struct io_provide_buf *p = &req->pbuf;
3084 struct io_ring_ctx *ctx = req->ctx;
3085 struct io_buffer *head;
3086 int ret = 0;
3087
3088 io_ring_submit_lock(ctx, !force_nonblock);
3089
3090 lockdep_assert_held(&ctx->uring_lock);
3091
3092 ret = -ENOENT;
3093 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3094 if (head)
3095 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3096
3097 io_ring_submit_lock(ctx, !force_nonblock);
3098 if (ret < 0)
3099 req_set_fail_links(req);
3100 io_cqring_add_event(req, ret);
3101 io_put_req(req);
3102 return 0;
3103 }
3104
3105 static int io_provide_buffers_prep(struct io_kiocb *req,
3106 const struct io_uring_sqe *sqe)
3107 {
3108 struct io_provide_buf *p = &req->pbuf;
3109 u64 tmp;
3110
3111 if (sqe->ioprio || sqe->rw_flags)
3112 return -EINVAL;
3113
3114 tmp = READ_ONCE(sqe->fd);
3115 if (!tmp || tmp > USHRT_MAX)
3116 return -E2BIG;
3117 p->nbufs = tmp;
3118 p->addr = READ_ONCE(sqe->addr);
3119 p->len = READ_ONCE(sqe->len);
3120
3121 if (!access_ok(u64_to_user_ptr(p->addr), p->len))
3122 return -EFAULT;
3123
3124 p->bgid = READ_ONCE(sqe->buf_group);
3125 tmp = READ_ONCE(sqe->off);
3126 if (tmp > USHRT_MAX)
3127 return -E2BIG;
3128 p->bid = tmp;
3129 return 0;
3130 }
3131
3132 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3133 {
3134 struct io_buffer *buf;
3135 u64 addr = pbuf->addr;
3136 int i, bid = pbuf->bid;
3137
3138 for (i = 0; i < pbuf->nbufs; i++) {
3139 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3140 if (!buf)
3141 break;
3142
3143 buf->addr = addr;
3144 buf->len = pbuf->len;
3145 buf->bid = bid;
3146 addr += pbuf->len;
3147 bid++;
3148 if (!*head) {
3149 INIT_LIST_HEAD(&buf->list);
3150 *head = buf;
3151 } else {
3152 list_add_tail(&buf->list, &(*head)->list);
3153 }
3154 }
3155
3156 return i ? i : -ENOMEM;
3157 }
3158
3159 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock)
3160 {
3161 struct io_provide_buf *p = &req->pbuf;
3162 struct io_ring_ctx *ctx = req->ctx;
3163 struct io_buffer *head, *list;
3164 int ret = 0;
3165
3166 io_ring_submit_lock(ctx, !force_nonblock);
3167
3168 lockdep_assert_held(&ctx->uring_lock);
3169
3170 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3171
3172 ret = io_add_buffers(p, &head);
3173 if (ret < 0)
3174 goto out;
3175
3176 if (!list) {
3177 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
3178 GFP_KERNEL);
3179 if (ret < 0) {
3180 __io_remove_buffers(ctx, head, p->bgid, -1U);
3181 goto out;
3182 }
3183 }
3184 out:
3185 io_ring_submit_unlock(ctx, !force_nonblock);
3186 if (ret < 0)
3187 req_set_fail_links(req);
3188 io_cqring_add_event(req, ret);
3189 io_put_req(req);
3190 return 0;
3191 }
3192
3193 static int io_epoll_ctl_prep(struct io_kiocb *req,
3194 const struct io_uring_sqe *sqe)
3195 {
3196 #if defined(CONFIG_EPOLL)
3197 if (sqe->ioprio || sqe->buf_index)
3198 return -EINVAL;
3199
3200 req->epoll.epfd = READ_ONCE(sqe->fd);
3201 req->epoll.op = READ_ONCE(sqe->len);
3202 req->epoll.fd = READ_ONCE(sqe->off);
3203
3204 if (ep_op_has_event(req->epoll.op)) {
3205 struct epoll_event __user *ev;
3206
3207 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
3208 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
3209 return -EFAULT;
3210 }
3211
3212 return 0;
3213 #else
3214 return -EOPNOTSUPP;
3215 #endif
3216 }
3217
3218 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock)
3219 {
3220 #if defined(CONFIG_EPOLL)
3221 struct io_epoll *ie = &req->epoll;
3222 int ret;
3223
3224 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
3225 if (force_nonblock && ret == -EAGAIN)
3226 return -EAGAIN;
3227
3228 if (ret < 0)
3229 req_set_fail_links(req);
3230 io_cqring_add_event(req, ret);
3231 io_put_req(req);
3232 return 0;
3233 #else
3234 return -EOPNOTSUPP;
3235 #endif
3236 }
3237
3238 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3239 {
3240 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3241 if (sqe->ioprio || sqe->buf_index || sqe->off)
3242 return -EINVAL;
3243
3244 req->madvise.addr = READ_ONCE(sqe->addr);
3245 req->madvise.len = READ_ONCE(sqe->len);
3246 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
3247 return 0;
3248 #else
3249 return -EOPNOTSUPP;
3250 #endif
3251 }
3252
3253 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
3254 {
3255 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3256 struct io_madvise *ma = &req->madvise;
3257 int ret;
3258
3259 if (force_nonblock)
3260 return -EAGAIN;
3261
3262 ret = do_madvise(ma->addr, ma->len, ma->advice);
3263 if (ret < 0)
3264 req_set_fail_links(req);
3265 io_cqring_add_event(req, ret);
3266 io_put_req(req);
3267 return 0;
3268 #else
3269 return -EOPNOTSUPP;
3270 #endif
3271 }
3272
3273 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3274 {
3275 if (sqe->ioprio || sqe->buf_index || sqe->addr)
3276 return -EINVAL;
3277
3278 req->fadvise.offset = READ_ONCE(sqe->off);
3279 req->fadvise.len = READ_ONCE(sqe->len);
3280 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
3281 return 0;
3282 }
3283
3284 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
3285 {
3286 struct io_fadvise *fa = &req->fadvise;
3287 int ret;
3288
3289 if (force_nonblock) {
3290 switch (fa->advice) {
3291 case POSIX_FADV_NORMAL:
3292 case POSIX_FADV_RANDOM:
3293 case POSIX_FADV_SEQUENTIAL:
3294 break;
3295 default:
3296 return -EAGAIN;
3297 }
3298 }
3299
3300 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
3301 if (ret < 0)
3302 req_set_fail_links(req);
3303 io_cqring_add_event(req, ret);
3304 io_put_req(req);
3305 return 0;
3306 }
3307
3308 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3309 {
3310 const char __user *fname;
3311 unsigned lookup_flags;
3312 int ret;
3313
3314 if (sqe->ioprio || sqe->buf_index)
3315 return -EINVAL;
3316 if (req->flags & REQ_F_FIXED_FILE)
3317 return -EBADF;
3318 if (req->flags & REQ_F_NEED_CLEANUP)
3319 return 0;
3320
3321 req->open.dfd = READ_ONCE(sqe->fd);
3322 req->open.mask = READ_ONCE(sqe->len);
3323 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3324 req->open.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3325 req->open.how.flags = READ_ONCE(sqe->statx_flags);
3326
3327 if (vfs_stat_set_lookup_flags(&lookup_flags, req->open.how.flags))
3328 return -EINVAL;
3329
3330 req->open.filename = getname_flags(fname, lookup_flags, NULL);
3331 if (IS_ERR(req->open.filename)) {
3332 ret = PTR_ERR(req->open.filename);
3333 req->open.filename = NULL;
3334 return ret;
3335 }
3336
3337 req->flags |= REQ_F_NEED_CLEANUP;
3338 return 0;
3339 }
3340
3341 static int io_statx(struct io_kiocb *req, bool force_nonblock)
3342 {
3343 struct io_open *ctx = &req->open;
3344 unsigned lookup_flags;
3345 struct path path;
3346 struct kstat stat;
3347 int ret;
3348
3349 if (force_nonblock) {
3350 /* only need file table for an actual valid fd */
3351 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
3352 req->flags |= REQ_F_NO_FILE_TABLE;
3353 return -EAGAIN;
3354 }
3355
3356 if (vfs_stat_set_lookup_flags(&lookup_flags, ctx->how.flags))
3357 return -EINVAL;
3358
3359 retry:
3360 /* filename_lookup() drops it, keep a reference */
3361 ctx->filename->refcnt++;
3362
3363 ret = filename_lookup(ctx->dfd, ctx->filename, lookup_flags, &path,
3364 NULL);
3365 if (ret)
3366 goto err;
3367
3368 ret = vfs_getattr(&path, &stat, ctx->mask, ctx->how.flags);
3369 path_put(&path);
3370 if (retry_estale(ret, lookup_flags)) {
3371 lookup_flags |= LOOKUP_REVAL;
3372 goto retry;
3373 }
3374 if (!ret)
3375 ret = cp_statx(&stat, ctx->buffer);
3376 err:
3377 putname(ctx->filename);
3378 req->flags &= ~REQ_F_NEED_CLEANUP;
3379 if (ret < 0)
3380 req_set_fail_links(req);
3381 io_cqring_add_event(req, ret);
3382 io_put_req(req);
3383 return 0;
3384 }
3385
3386 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3387 {
3388 /*
3389 * If we queue this for async, it must not be cancellable. That would
3390 * leave the 'file' in an undeterminate state.
3391 */
3392 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
3393
3394 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
3395 sqe->rw_flags || sqe->buf_index)
3396 return -EINVAL;
3397 if (req->flags & REQ_F_FIXED_FILE)
3398 return -EBADF;
3399
3400 req->close.fd = READ_ONCE(sqe->fd);
3401 if (req->file->f_op == &io_uring_fops ||
3402 req->close.fd == req->ctx->ring_fd)
3403 return -EBADF;
3404
3405 return 0;
3406 }
3407
3408 /* only called when __close_fd_get_file() is done */
3409 static void __io_close_finish(struct io_kiocb *req)
3410 {
3411 int ret;
3412
3413 ret = filp_close(req->close.put_file, req->work.files);
3414 if (ret < 0)
3415 req_set_fail_links(req);
3416 io_cqring_add_event(req, ret);
3417 fput(req->close.put_file);
3418 io_put_req(req);
3419 }
3420
3421 static void io_close_finish(struct io_wq_work **workptr)
3422 {
3423 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3424
3425 /* not cancellable, don't do io_req_cancelled() */
3426 __io_close_finish(req);
3427 io_steal_work(req, workptr);
3428 }
3429
3430 static int io_close(struct io_kiocb *req, bool force_nonblock)
3431 {
3432 int ret;
3433
3434 req->close.put_file = NULL;
3435 ret = __close_fd_get_file(req->close.fd, &req->close.put_file);
3436 if (ret < 0)
3437 return ret;
3438
3439 /* if the file has a flush method, be safe and punt to async */
3440 if (req->close.put_file->f_op->flush && force_nonblock) {
3441 /* submission ref will be dropped, take it for async */
3442 refcount_inc(&req->refs);
3443
3444 req->work.func = io_close_finish;
3445 /*
3446 * Do manual async queue here to avoid grabbing files - we don't
3447 * need the files, and it'll cause io_close_finish() to close
3448 * the file again and cause a double CQE entry for this request
3449 */
3450 io_queue_async_work(req);
3451 return 0;
3452 }
3453
3454 /*
3455 * No ->flush(), safely close from here and just punt the
3456 * fput() to async context.
3457 */
3458 __io_close_finish(req);
3459 return 0;
3460 }
3461
3462 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3463 {
3464 struct io_ring_ctx *ctx = req->ctx;
3465
3466 if (!req->file)
3467 return -EBADF;
3468
3469 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3470 return -EINVAL;
3471 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3472 return -EINVAL;
3473
3474 req->sync.off = READ_ONCE(sqe->off);
3475 req->sync.len = READ_ONCE(sqe->len);
3476 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
3477 return 0;
3478 }
3479
3480 static void __io_sync_file_range(struct io_kiocb *req)
3481 {
3482 int ret;
3483
3484 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
3485 req->sync.flags);
3486 if (ret < 0)
3487 req_set_fail_links(req);
3488 io_cqring_add_event(req, ret);
3489 io_put_req(req);
3490 }
3491
3492
3493 static void io_sync_file_range_finish(struct io_wq_work **workptr)
3494 {
3495 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3496
3497 if (io_req_cancelled(req))
3498 return;
3499 __io_sync_file_range(req);
3500 io_steal_work(req, workptr);
3501 }
3502
3503 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
3504 {
3505 /* sync_file_range always requires a blocking context */
3506 if (force_nonblock) {
3507 req->work.func = io_sync_file_range_finish;
3508 return -EAGAIN;
3509 }
3510
3511 __io_sync_file_range(req);
3512 return 0;
3513 }
3514
3515 #if defined(CONFIG_NET)
3516 static int io_setup_async_msg(struct io_kiocb *req,
3517 struct io_async_msghdr *kmsg)
3518 {
3519 if (req->io)
3520 return -EAGAIN;
3521 if (io_alloc_async_ctx(req)) {
3522 if (kmsg->iov != kmsg->fast_iov)
3523 kfree(kmsg->iov);
3524 return -ENOMEM;
3525 }
3526 req->flags |= REQ_F_NEED_CLEANUP;
3527 memcpy(&req->io->msg, kmsg, sizeof(*kmsg));
3528 return -EAGAIN;
3529 }
3530
3531 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3532 {
3533 struct io_sr_msg *sr = &req->sr_msg;
3534 struct io_async_ctx *io = req->io;
3535 int ret;
3536
3537 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3538 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3539 sr->len = READ_ONCE(sqe->len);
3540
3541 #ifdef CONFIG_COMPAT
3542 if (req->ctx->compat)
3543 sr->msg_flags |= MSG_CMSG_COMPAT;
3544 #endif
3545
3546 if (!io || req->opcode == IORING_OP_SEND)
3547 return 0;
3548 /* iovec is already imported */
3549 if (req->flags & REQ_F_NEED_CLEANUP)
3550 return 0;
3551
3552 io->msg.iov = io->msg.fast_iov;
3553 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3554 &io->msg.iov);
3555 if (!ret)
3556 req->flags |= REQ_F_NEED_CLEANUP;
3557 return ret;
3558 }
3559
3560 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
3561 {
3562 struct io_async_msghdr *kmsg = NULL;
3563 struct socket *sock;
3564 int ret;
3565
3566 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3567 return -EINVAL;
3568
3569 sock = sock_from_file(req->file, &ret);
3570 if (sock) {
3571 struct io_async_ctx io;
3572 unsigned flags;
3573
3574 if (req->io) {
3575 kmsg = &req->io->msg;
3576 kmsg->msg.msg_name = &req->io->msg.addr;
3577 /* if iov is set, it's allocated already */
3578 if (!kmsg->iov)
3579 kmsg->iov = kmsg->fast_iov;
3580 kmsg->msg.msg_iter.iov = kmsg->iov;
3581 } else {
3582 struct io_sr_msg *sr = &req->sr_msg;
3583
3584 kmsg = &io.msg;
3585 kmsg->msg.msg_name = &io.msg.addr;
3586
3587 io.msg.iov = io.msg.fast_iov;
3588 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3589 sr->msg_flags, &io.msg.iov);
3590 if (ret)
3591 return ret;
3592 }
3593
3594 flags = req->sr_msg.msg_flags;
3595 if (flags & MSG_DONTWAIT)
3596 req->flags |= REQ_F_NOWAIT;
3597 else if (force_nonblock)
3598 flags |= MSG_DONTWAIT;
3599
3600 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3601 if (force_nonblock && ret == -EAGAIN)
3602 return io_setup_async_msg(req, kmsg);
3603 if (ret == -ERESTARTSYS)
3604 ret = -EINTR;
3605 }
3606
3607 if (kmsg && kmsg->iov != kmsg->fast_iov)
3608 kfree(kmsg->iov);
3609 req->flags &= ~REQ_F_NEED_CLEANUP;
3610 io_cqring_add_event(req, ret);
3611 if (ret < 0)
3612 req_set_fail_links(req);
3613 io_put_req(req);
3614 return 0;
3615 }
3616
3617 static int io_send(struct io_kiocb *req, bool force_nonblock)
3618 {
3619 struct socket *sock;
3620 int ret;
3621
3622 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3623 return -EINVAL;
3624
3625 sock = sock_from_file(req->file, &ret);
3626 if (sock) {
3627 struct io_sr_msg *sr = &req->sr_msg;
3628 struct msghdr msg;
3629 struct iovec iov;
3630 unsigned flags;
3631
3632 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3633 &msg.msg_iter);
3634 if (ret)
3635 return ret;
3636
3637 msg.msg_name = NULL;
3638 msg.msg_control = NULL;
3639 msg.msg_controllen = 0;
3640 msg.msg_namelen = 0;
3641
3642 flags = req->sr_msg.msg_flags;
3643 if (flags & MSG_DONTWAIT)
3644 req->flags |= REQ_F_NOWAIT;
3645 else if (force_nonblock)
3646 flags |= MSG_DONTWAIT;
3647
3648 msg.msg_flags = flags;
3649 ret = sock_sendmsg(sock, &msg);
3650 if (force_nonblock && ret == -EAGAIN)
3651 return -EAGAIN;
3652 if (ret == -ERESTARTSYS)
3653 ret = -EINTR;
3654 }
3655
3656 io_cqring_add_event(req, ret);
3657 if (ret < 0)
3658 req_set_fail_links(req);
3659 io_put_req(req);
3660 return 0;
3661 }
3662
3663 static int __io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3664 {
3665 struct io_sr_msg *sr = &req->sr_msg;
3666 struct iovec __user *uiov;
3667 size_t iov_len;
3668 int ret;
3669
3670 ret = __copy_msghdr_from_user(&io->msg.msg, sr->msg, &io->msg.uaddr,
3671 &uiov, &iov_len);
3672 if (ret)
3673 return ret;
3674
3675 if (req->flags & REQ_F_BUFFER_SELECT) {
3676 if (iov_len > 1)
3677 return -EINVAL;
3678 if (copy_from_user(io->msg.iov, uiov, sizeof(*uiov)))
3679 return -EFAULT;
3680 sr->len = io->msg.iov[0].iov_len;
3681 iov_iter_init(&io->msg.msg.msg_iter, READ, io->msg.iov, 1,
3682 sr->len);
3683 io->msg.iov = NULL;
3684 } else {
3685 ret = import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
3686 &io->msg.iov, &io->msg.msg.msg_iter);
3687 if (ret > 0)
3688 ret = 0;
3689 }
3690
3691 return ret;
3692 }
3693
3694 #ifdef CONFIG_COMPAT
3695 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
3696 struct io_async_ctx *io)
3697 {
3698 struct compat_msghdr __user *msg_compat;
3699 struct io_sr_msg *sr = &req->sr_msg;
3700 struct compat_iovec __user *uiov;
3701 compat_uptr_t ptr;
3702 compat_size_t len;
3703 int ret;
3704
3705 msg_compat = (struct compat_msghdr __user *) sr->msg;
3706 ret = __get_compat_msghdr(&io->msg.msg, msg_compat, &io->msg.uaddr,
3707 &ptr, &len);
3708 if (ret)
3709 return ret;
3710
3711 uiov = compat_ptr(ptr);
3712 if (req->flags & REQ_F_BUFFER_SELECT) {
3713 compat_ssize_t clen;
3714
3715 if (len > 1)
3716 return -EINVAL;
3717 if (!access_ok(uiov, sizeof(*uiov)))
3718 return -EFAULT;
3719 if (__get_user(clen, &uiov->iov_len))
3720 return -EFAULT;
3721 if (clen < 0)
3722 return -EINVAL;
3723 sr->len = io->msg.iov[0].iov_len;
3724 io->msg.iov = NULL;
3725 } else {
3726 ret = compat_import_iovec(READ, uiov, len, UIO_FASTIOV,
3727 &io->msg.iov,
3728 &io->msg.msg.msg_iter);
3729 if (ret < 0)
3730 return ret;
3731 }
3732
3733 return 0;
3734 }
3735 #endif
3736
3737 static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3738 {
3739 io->msg.iov = io->msg.fast_iov;
3740
3741 #ifdef CONFIG_COMPAT
3742 if (req->ctx->compat)
3743 return __io_compat_recvmsg_copy_hdr(req, io);
3744 #endif
3745
3746 return __io_recvmsg_copy_hdr(req, io);
3747 }
3748
3749 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
3750 int *cflags, bool needs_lock)
3751 {
3752 struct io_sr_msg *sr = &req->sr_msg;
3753 struct io_buffer *kbuf;
3754
3755 if (!(req->flags & REQ_F_BUFFER_SELECT))
3756 return NULL;
3757
3758 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
3759 if (IS_ERR(kbuf))
3760 return kbuf;
3761
3762 sr->kbuf = kbuf;
3763 req->flags |= REQ_F_BUFFER_SELECTED;
3764
3765 *cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
3766 *cflags |= IORING_CQE_F_BUFFER;
3767 return kbuf;
3768 }
3769
3770 static int io_recvmsg_prep(struct io_kiocb *req,
3771 const struct io_uring_sqe *sqe)
3772 {
3773 struct io_sr_msg *sr = &req->sr_msg;
3774 struct io_async_ctx *io = req->io;
3775 int ret;
3776
3777 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3778 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3779 sr->len = READ_ONCE(sqe->len);
3780 sr->bgid = READ_ONCE(sqe->buf_group);
3781
3782 #ifdef CONFIG_COMPAT
3783 if (req->ctx->compat)
3784 sr->msg_flags |= MSG_CMSG_COMPAT;
3785 #endif
3786
3787 if (!io || req->opcode == IORING_OP_RECV)
3788 return 0;
3789 /* iovec is already imported */
3790 if (req->flags & REQ_F_NEED_CLEANUP)
3791 return 0;
3792
3793 ret = io_recvmsg_copy_hdr(req, io);
3794 if (!ret)
3795 req->flags |= REQ_F_NEED_CLEANUP;
3796 return ret;
3797 }
3798
3799 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
3800 {
3801 struct io_async_msghdr *kmsg = NULL;
3802 struct socket *sock;
3803 int ret, cflags = 0;
3804
3805 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3806 return -EINVAL;
3807
3808 sock = sock_from_file(req->file, &ret);
3809 if (sock) {
3810 struct io_buffer *kbuf;
3811 struct io_async_ctx io;
3812 unsigned flags;
3813
3814 if (req->io) {
3815 kmsg = &req->io->msg;
3816 kmsg->msg.msg_name = &req->io->msg.addr;
3817 /* if iov is set, it's allocated already */
3818 if (!kmsg->iov)
3819 kmsg->iov = kmsg->fast_iov;
3820 kmsg->msg.msg_iter.iov = kmsg->iov;
3821 } else {
3822 kmsg = &io.msg;
3823 kmsg->msg.msg_name = &io.msg.addr;
3824
3825 ret = io_recvmsg_copy_hdr(req, &io);
3826 if (ret)
3827 return ret;
3828 }
3829
3830 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3831 if (IS_ERR(kbuf)) {
3832 return PTR_ERR(kbuf);
3833 } else if (kbuf) {
3834 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3835 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
3836 1, req->sr_msg.len);
3837 }
3838
3839 flags = req->sr_msg.msg_flags;
3840 if (flags & MSG_DONTWAIT)
3841 req->flags |= REQ_F_NOWAIT;
3842 else if (force_nonblock)
3843 flags |= MSG_DONTWAIT;
3844
3845 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3846 kmsg->uaddr, flags);
3847 if (force_nonblock && ret == -EAGAIN)
3848 return io_setup_async_msg(req, kmsg);
3849 if (ret == -ERESTARTSYS)
3850 ret = -EINTR;
3851 }
3852
3853 if (kmsg && kmsg->iov != kmsg->fast_iov)
3854 kfree(kmsg->iov);
3855 req->flags &= ~REQ_F_NEED_CLEANUP;
3856 __io_cqring_add_event(req, ret, cflags);
3857 if (ret < 0)
3858 req_set_fail_links(req);
3859 io_put_req(req);
3860 return 0;
3861 }
3862
3863 static int io_recv(struct io_kiocb *req, bool force_nonblock)
3864 {
3865 struct io_buffer *kbuf = NULL;
3866 struct socket *sock;
3867 int ret, cflags = 0;
3868
3869 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3870 return -EINVAL;
3871
3872 sock = sock_from_file(req->file, &ret);
3873 if (sock) {
3874 struct io_sr_msg *sr = &req->sr_msg;
3875 void __user *buf = sr->buf;
3876 struct msghdr msg;
3877 struct iovec iov;
3878 unsigned flags;
3879
3880 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3881 if (IS_ERR(kbuf))
3882 return PTR_ERR(kbuf);
3883 else if (kbuf)
3884 buf = u64_to_user_ptr(kbuf->addr);
3885
3886 ret = import_single_range(READ, buf, sr->len, &iov,
3887 &msg.msg_iter);
3888 if (ret) {
3889 kfree(kbuf);
3890 return ret;
3891 }
3892
3893 req->flags |= REQ_F_NEED_CLEANUP;
3894 msg.msg_name = NULL;
3895 msg.msg_control = NULL;
3896 msg.msg_controllen = 0;
3897 msg.msg_namelen = 0;
3898 msg.msg_iocb = NULL;
3899 msg.msg_flags = 0;
3900
3901 flags = req->sr_msg.msg_flags;
3902 if (flags & MSG_DONTWAIT)
3903 req->flags |= REQ_F_NOWAIT;
3904 else if (force_nonblock)
3905 flags |= MSG_DONTWAIT;
3906
3907 ret = sock_recvmsg(sock, &msg, flags);
3908 if (force_nonblock && ret == -EAGAIN)
3909 return -EAGAIN;
3910 if (ret == -ERESTARTSYS)
3911 ret = -EINTR;
3912 }
3913
3914 kfree(kbuf);
3915 req->flags &= ~REQ_F_NEED_CLEANUP;
3916 __io_cqring_add_event(req, ret, cflags);
3917 if (ret < 0)
3918 req_set_fail_links(req);
3919 io_put_req(req);
3920 return 0;
3921 }
3922
3923 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3924 {
3925 struct io_accept *accept = &req->accept;
3926
3927 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3928 return -EINVAL;
3929 if (sqe->ioprio || sqe->len || sqe->buf_index)
3930 return -EINVAL;
3931
3932 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3933 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3934 accept->flags = READ_ONCE(sqe->accept_flags);
3935 accept->nofile = rlimit(RLIMIT_NOFILE);
3936 return 0;
3937 }
3938
3939 static int __io_accept(struct io_kiocb *req, bool force_nonblock)
3940 {
3941 struct io_accept *accept = &req->accept;
3942 unsigned file_flags;
3943 int ret;
3944
3945 file_flags = force_nonblock ? O_NONBLOCK : 0;
3946 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3947 accept->addr_len, accept->flags,
3948 accept->nofile);
3949 if (ret == -EAGAIN && force_nonblock)
3950 return -EAGAIN;
3951 if (ret == -ERESTARTSYS)
3952 ret = -EINTR;
3953 if (ret < 0)
3954 req_set_fail_links(req);
3955 io_cqring_add_event(req, ret);
3956 io_put_req(req);
3957 return 0;
3958 }
3959
3960 static void io_accept_finish(struct io_wq_work **workptr)
3961 {
3962 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3963
3964 if (io_req_cancelled(req))
3965 return;
3966 __io_accept(req, false);
3967 io_steal_work(req, workptr);
3968 }
3969
3970 static int io_accept(struct io_kiocb *req, bool force_nonblock)
3971 {
3972 int ret;
3973
3974 ret = __io_accept(req, force_nonblock);
3975 if (ret == -EAGAIN && force_nonblock) {
3976 req->work.func = io_accept_finish;
3977 return -EAGAIN;
3978 }
3979 return 0;
3980 }
3981
3982 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3983 {
3984 struct io_connect *conn = &req->connect;
3985 struct io_async_ctx *io = req->io;
3986
3987 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3988 return -EINVAL;
3989 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3990 return -EINVAL;
3991
3992 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3993 conn->addr_len = READ_ONCE(sqe->addr2);
3994
3995 if (!io)
3996 return 0;
3997
3998 return move_addr_to_kernel(conn->addr, conn->addr_len,
3999 &io->connect.address);
4000 }
4001
4002 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4003 {
4004 struct io_async_ctx __io, *io;
4005 unsigned file_flags;
4006 int ret;
4007
4008 if (req->io) {
4009 io = req->io;
4010 } else {
4011 ret = move_addr_to_kernel(req->connect.addr,
4012 req->connect.addr_len,
4013 &__io.connect.address);
4014 if (ret)
4015 goto out;
4016 io = &__io;
4017 }
4018
4019 file_flags = force_nonblock ? O_NONBLOCK : 0;
4020
4021 ret = __sys_connect_file(req->file, &io->connect.address,
4022 req->connect.addr_len, file_flags);
4023 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4024 if (req->io)
4025 return -EAGAIN;
4026 if (io_alloc_async_ctx(req)) {
4027 ret = -ENOMEM;
4028 goto out;
4029 }
4030 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
4031 return -EAGAIN;
4032 }
4033 if (ret == -ERESTARTSYS)
4034 ret = -EINTR;
4035 out:
4036 if (ret < 0)
4037 req_set_fail_links(req);
4038 io_cqring_add_event(req, ret);
4039 io_put_req(req);
4040 return 0;
4041 }
4042 #else /* !CONFIG_NET */
4043 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4044 {
4045 return -EOPNOTSUPP;
4046 }
4047
4048 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
4049 {
4050 return -EOPNOTSUPP;
4051 }
4052
4053 static int io_send(struct io_kiocb *req, bool force_nonblock)
4054 {
4055 return -EOPNOTSUPP;
4056 }
4057
4058 static int io_recvmsg_prep(struct io_kiocb *req,
4059 const struct io_uring_sqe *sqe)
4060 {
4061 return -EOPNOTSUPP;
4062 }
4063
4064 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
4065 {
4066 return -EOPNOTSUPP;
4067 }
4068
4069 static int io_recv(struct io_kiocb *req, bool force_nonblock)
4070 {
4071 return -EOPNOTSUPP;
4072 }
4073
4074 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4075 {
4076 return -EOPNOTSUPP;
4077 }
4078
4079 static int io_accept(struct io_kiocb *req, bool force_nonblock)
4080 {
4081 return -EOPNOTSUPP;
4082 }
4083
4084 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4085 {
4086 return -EOPNOTSUPP;
4087 }
4088
4089 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4090 {
4091 return -EOPNOTSUPP;
4092 }
4093 #endif /* CONFIG_NET */
4094
4095 struct io_poll_table {
4096 struct poll_table_struct pt;
4097 struct io_kiocb *req;
4098 int error;
4099 };
4100
4101 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4102 struct wait_queue_head *head)
4103 {
4104 if (unlikely(poll->head)) {
4105 pt->error = -EINVAL;
4106 return;
4107 }
4108
4109 pt->error = 0;
4110 poll->head = head;
4111 add_wait_queue(head, &poll->wait);
4112 }
4113
4114 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
4115 struct poll_table_struct *p)
4116 {
4117 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4118
4119 __io_queue_proc(&pt->req->apoll->poll, pt, head);
4120 }
4121
4122 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4123 __poll_t mask, task_work_func_t func)
4124 {
4125 struct task_struct *tsk;
4126 int ret;
4127
4128 /* for instances that support it check for an event match first: */
4129 if (mask && !(mask & poll->events))
4130 return 0;
4131
4132 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4133
4134 list_del_init(&poll->wait.entry);
4135
4136 tsk = req->task;
4137 req->result = mask;
4138 init_task_work(&req->task_work, func);
4139 /*
4140 * If this fails, then the task is exiting. Punt to one of the io-wq
4141 * threads to ensure the work gets run, we can't always rely on exit
4142 * cancelation taking care of this.
4143 */
4144 ret = task_work_add(tsk, &req->task_work, true);
4145 if (unlikely(ret)) {
4146 tsk = io_wq_get_task(req->ctx->io_wq);
4147 task_work_add(tsk, &req->task_work, true);
4148 }
4149 wake_up_process(tsk);
4150 return 1;
4151 }
4152
4153 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4154 __acquires(&req->ctx->completion_lock)
4155 {
4156 struct io_ring_ctx *ctx = req->ctx;
4157
4158 if (!req->result && !READ_ONCE(poll->canceled)) {
4159 struct poll_table_struct pt = { ._key = poll->events };
4160
4161 req->result = vfs_poll(req->file, &pt) & poll->events;
4162 }
4163
4164 spin_lock_irq(&ctx->completion_lock);
4165 if (!req->result && !READ_ONCE(poll->canceled)) {
4166 add_wait_queue(poll->head, &poll->wait);
4167 return true;
4168 }
4169
4170 return false;
4171 }
4172
4173 static void io_async_task_func(struct callback_head *cb)
4174 {
4175 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4176 struct async_poll *apoll = req->apoll;
4177 struct io_ring_ctx *ctx = req->ctx;
4178 bool canceled;
4179
4180 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
4181
4182 if (io_poll_rewait(req, &apoll->poll)) {
4183 spin_unlock_irq(&ctx->completion_lock);
4184 return;
4185 }
4186
4187 if (hash_hashed(&req->hash_node))
4188 hash_del(&req->hash_node);
4189
4190 canceled = READ_ONCE(apoll->poll.canceled);
4191 if (canceled) {
4192 io_cqring_fill_event(req, -ECANCELED);
4193 io_commit_cqring(ctx);
4194 }
4195
4196 spin_unlock_irq(&ctx->completion_lock);
4197
4198 /* restore ->work in case we need to retry again */
4199 memcpy(&req->work, &apoll->work, sizeof(req->work));
4200
4201 if (canceled) {
4202 kfree(apoll);
4203 io_cqring_ev_posted(ctx);
4204 req_set_fail_links(req);
4205 io_double_put_req(req);
4206 return;
4207 }
4208
4209 __set_current_state(TASK_RUNNING);
4210 mutex_lock(&ctx->uring_lock);
4211 __io_queue_sqe(req, NULL);
4212 mutex_unlock(&ctx->uring_lock);
4213
4214 kfree(apoll);
4215 }
4216
4217 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4218 void *key)
4219 {
4220 struct io_kiocb *req = wait->private;
4221 struct io_poll_iocb *poll = &req->apoll->poll;
4222
4223 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
4224 key_to_poll(key));
4225
4226 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
4227 }
4228
4229 static void io_poll_req_insert(struct io_kiocb *req)
4230 {
4231 struct io_ring_ctx *ctx = req->ctx;
4232 struct hlist_head *list;
4233
4234 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
4235 hlist_add_head(&req->hash_node, list);
4236 }
4237
4238 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
4239 struct io_poll_iocb *poll,
4240 struct io_poll_table *ipt, __poll_t mask,
4241 wait_queue_func_t wake_func)
4242 __acquires(&ctx->completion_lock)
4243 {
4244 struct io_ring_ctx *ctx = req->ctx;
4245 bool cancel = false;
4246
4247 poll->file = req->file;
4248 poll->head = NULL;
4249 poll->done = poll->canceled = false;
4250 poll->events = mask;
4251
4252 ipt->pt._key = mask;
4253 ipt->req = req;
4254 ipt->error = -EINVAL;
4255
4256 INIT_LIST_HEAD(&poll->wait.entry);
4257 init_waitqueue_func_entry(&poll->wait, wake_func);
4258 poll->wait.private = req;
4259
4260 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
4261
4262 spin_lock_irq(&ctx->completion_lock);
4263 if (likely(poll->head)) {
4264 spin_lock(&poll->head->lock);
4265 if (unlikely(list_empty(&poll->wait.entry))) {
4266 if (ipt->error)
4267 cancel = true;
4268 ipt->error = 0;
4269 mask = 0;
4270 }
4271 if (mask || ipt->error)
4272 list_del_init(&poll->wait.entry);
4273 else if (cancel)
4274 WRITE_ONCE(poll->canceled, true);
4275 else if (!poll->done) /* actually waiting for an event */
4276 io_poll_req_insert(req);
4277 spin_unlock(&poll->head->lock);
4278 }
4279
4280 return mask;
4281 }
4282
4283 static bool io_arm_poll_handler(struct io_kiocb *req)
4284 {
4285 const struct io_op_def *def = &io_op_defs[req->opcode];
4286 struct io_ring_ctx *ctx = req->ctx;
4287 struct async_poll *apoll;
4288 struct io_poll_table ipt;
4289 __poll_t mask, ret;
4290
4291 if (!req->file || !file_can_poll(req->file))
4292 return false;
4293 if (req->flags & (REQ_F_MUST_PUNT | REQ_F_POLLED))
4294 return false;
4295 if (!def->pollin && !def->pollout)
4296 return false;
4297
4298 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
4299 if (unlikely(!apoll))
4300 return false;
4301
4302 req->flags |= REQ_F_POLLED;
4303 memcpy(&apoll->work, &req->work, sizeof(req->work));
4304
4305 get_task_struct(current);
4306 req->task = current;
4307 req->apoll = apoll;
4308 INIT_HLIST_NODE(&req->hash_node);
4309
4310 mask = 0;
4311 if (def->pollin)
4312 mask |= POLLIN | POLLRDNORM;
4313 if (def->pollout)
4314 mask |= POLLOUT | POLLWRNORM;
4315 mask |= POLLERR | POLLPRI;
4316
4317 ipt.pt._qproc = io_async_queue_proc;
4318
4319 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
4320 io_async_wake);
4321 if (ret) {
4322 ipt.error = 0;
4323 apoll->poll.done = true;
4324 spin_unlock_irq(&ctx->completion_lock);
4325 memcpy(&req->work, &apoll->work, sizeof(req->work));
4326 kfree(apoll);
4327 return false;
4328 }
4329 spin_unlock_irq(&ctx->completion_lock);
4330 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
4331 apoll->poll.events);
4332 return true;
4333 }
4334
4335 static bool __io_poll_remove_one(struct io_kiocb *req,
4336 struct io_poll_iocb *poll)
4337 {
4338 bool do_complete = false;
4339
4340 spin_lock(&poll->head->lock);
4341 WRITE_ONCE(poll->canceled, true);
4342 if (!list_empty(&poll->wait.entry)) {
4343 list_del_init(&poll->wait.entry);
4344 do_complete = true;
4345 }
4346 spin_unlock(&poll->head->lock);
4347 return do_complete;
4348 }
4349
4350 static bool io_poll_remove_one(struct io_kiocb *req)
4351 {
4352 struct async_poll *apoll = NULL;
4353 bool do_complete;
4354
4355 if (req->opcode == IORING_OP_POLL_ADD) {
4356 do_complete = __io_poll_remove_one(req, &req->poll);
4357 } else {
4358 apoll = req->apoll;
4359 /* non-poll requests have submit ref still */
4360 do_complete = __io_poll_remove_one(req, &req->apoll->poll);
4361 if (do_complete)
4362 io_put_req(req);
4363 }
4364
4365 hash_del(&req->hash_node);
4366
4367 if (do_complete && apoll) {
4368 /*
4369 * restore ->work because we need to call io_req_work_drop_env.
4370 */
4371 memcpy(&req->work, &apoll->work, sizeof(req->work));
4372 kfree(apoll);
4373 }
4374
4375 if (do_complete) {
4376 io_cqring_fill_event(req, -ECANCELED);
4377 io_commit_cqring(req->ctx);
4378 req->flags |= REQ_F_COMP_LOCKED;
4379 io_put_req(req);
4380 }
4381
4382 return do_complete;
4383 }
4384
4385 static void io_poll_remove_all(struct io_ring_ctx *ctx)
4386 {
4387 struct hlist_node *tmp;
4388 struct io_kiocb *req;
4389 int posted = 0, i;
4390
4391 spin_lock_irq(&ctx->completion_lock);
4392 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
4393 struct hlist_head *list;
4394
4395 list = &ctx->cancel_hash[i];
4396 hlist_for_each_entry_safe(req, tmp, list, hash_node)
4397 posted += io_poll_remove_one(req);
4398 }
4399 spin_unlock_irq(&ctx->completion_lock);
4400
4401 if (posted)
4402 io_cqring_ev_posted(ctx);
4403 }
4404
4405 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
4406 {
4407 struct hlist_head *list;
4408 struct io_kiocb *req;
4409
4410 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
4411 hlist_for_each_entry(req, list, hash_node) {
4412 if (sqe_addr != req->user_data)
4413 continue;
4414 if (io_poll_remove_one(req))
4415 return 0;
4416 return -EALREADY;
4417 }
4418
4419 return -ENOENT;
4420 }
4421
4422 static int io_poll_remove_prep(struct io_kiocb *req,
4423 const struct io_uring_sqe *sqe)
4424 {
4425 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4426 return -EINVAL;
4427 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
4428 sqe->poll_events)
4429 return -EINVAL;
4430
4431 req->poll.addr = READ_ONCE(sqe->addr);
4432 return 0;
4433 }
4434
4435 /*
4436 * Find a running poll command that matches one specified in sqe->addr,
4437 * and remove it if found.
4438 */
4439 static int io_poll_remove(struct io_kiocb *req)
4440 {
4441 struct io_ring_ctx *ctx = req->ctx;
4442 u64 addr;
4443 int ret;
4444
4445 addr = req->poll.addr;
4446 spin_lock_irq(&ctx->completion_lock);
4447 ret = io_poll_cancel(ctx, addr);
4448 spin_unlock_irq(&ctx->completion_lock);
4449
4450 io_cqring_add_event(req, ret);
4451 if (ret < 0)
4452 req_set_fail_links(req);
4453 io_put_req(req);
4454 return 0;
4455 }
4456
4457 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4458 {
4459 struct io_ring_ctx *ctx = req->ctx;
4460
4461 req->poll.done = true;
4462 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4463 io_commit_cqring(ctx);
4464 }
4465
4466 static void io_poll_task_handler(struct io_kiocb *req, struct io_kiocb **nxt)
4467 {
4468 struct io_ring_ctx *ctx = req->ctx;
4469 struct io_poll_iocb *poll = &req->poll;
4470
4471 if (io_poll_rewait(req, poll)) {
4472 spin_unlock_irq(&ctx->completion_lock);
4473 return;
4474 }
4475
4476 hash_del(&req->hash_node);
4477 io_poll_complete(req, req->result, 0);
4478 req->flags |= REQ_F_COMP_LOCKED;
4479 io_put_req_find_next(req, nxt);
4480 spin_unlock_irq(&ctx->completion_lock);
4481
4482 io_cqring_ev_posted(ctx);
4483 }
4484
4485 static void io_poll_task_func(struct callback_head *cb)
4486 {
4487 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4488 struct io_kiocb *nxt = NULL;
4489
4490 io_poll_task_handler(req, &nxt);
4491 if (nxt) {
4492 struct io_ring_ctx *ctx = nxt->ctx;
4493
4494 mutex_lock(&ctx->uring_lock);
4495 __io_queue_sqe(nxt, NULL);
4496 mutex_unlock(&ctx->uring_lock);
4497 }
4498 }
4499
4500 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4501 void *key)
4502 {
4503 struct io_kiocb *req = wait->private;
4504 struct io_poll_iocb *poll = &req->poll;
4505
4506 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
4507 }
4508
4509 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
4510 struct poll_table_struct *p)
4511 {
4512 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4513
4514 __io_queue_proc(&pt->req->poll, pt, head);
4515 }
4516
4517 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4518 {
4519 struct io_poll_iocb *poll = &req->poll;
4520 u16 events;
4521
4522 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4523 return -EINVAL;
4524 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
4525 return -EINVAL;
4526 if (!poll->file)
4527 return -EBADF;
4528
4529 events = READ_ONCE(sqe->poll_events);
4530 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
4531
4532 get_task_struct(current);
4533 req->task = current;
4534 return 0;
4535 }
4536
4537 static int io_poll_add(struct io_kiocb *req)
4538 {
4539 struct io_poll_iocb *poll = &req->poll;
4540 struct io_ring_ctx *ctx = req->ctx;
4541 struct io_poll_table ipt;
4542 __poll_t mask;
4543
4544 INIT_HLIST_NODE(&req->hash_node);
4545 INIT_LIST_HEAD(&req->list);
4546 ipt.pt._qproc = io_poll_queue_proc;
4547
4548 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
4549 io_poll_wake);
4550
4551 if (mask) { /* no async, we'd stolen it */
4552 ipt.error = 0;
4553 io_poll_complete(req, mask, 0);
4554 }
4555 spin_unlock_irq(&ctx->completion_lock);
4556
4557 if (mask) {
4558 io_cqring_ev_posted(ctx);
4559 io_put_req(req);
4560 }
4561 return ipt.error;
4562 }
4563
4564 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
4565 {
4566 struct io_timeout_data *data = container_of(timer,
4567 struct io_timeout_data, timer);
4568 struct io_kiocb *req = data->req;
4569 struct io_ring_ctx *ctx = req->ctx;
4570 unsigned long flags;
4571
4572 atomic_inc(&ctx->cq_timeouts);
4573
4574 spin_lock_irqsave(&ctx->completion_lock, flags);
4575 /*
4576 * We could be racing with timeout deletion. If the list is empty,
4577 * then timeout lookup already found it and will be handling it.
4578 */
4579 if (!list_empty(&req->list)) {
4580 struct io_kiocb *prev;
4581
4582 /*
4583 * Adjust the reqs sequence before the current one because it
4584 * will consume a slot in the cq_ring and the cq_tail
4585 * pointer will be increased, otherwise other timeout reqs may
4586 * return in advance without waiting for enough wait_nr.
4587 */
4588 prev = req;
4589 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
4590 prev->sequence++;
4591 list_del_init(&req->list);
4592 }
4593
4594 io_cqring_fill_event(req, -ETIME);
4595 io_commit_cqring(ctx);
4596 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4597
4598 io_cqring_ev_posted(ctx);
4599 req_set_fail_links(req);
4600 io_put_req(req);
4601 return HRTIMER_NORESTART;
4602 }
4603
4604 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
4605 {
4606 struct io_kiocb *req;
4607 int ret = -ENOENT;
4608
4609 list_for_each_entry(req, &ctx->timeout_list, list) {
4610 if (user_data == req->user_data) {
4611 list_del_init(&req->list);
4612 ret = 0;
4613 break;
4614 }
4615 }
4616
4617 if (ret == -ENOENT)
4618 return ret;
4619
4620 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
4621 if (ret == -1)
4622 return -EALREADY;
4623
4624 req_set_fail_links(req);
4625 io_cqring_fill_event(req, -ECANCELED);
4626 io_put_req(req);
4627 return 0;
4628 }
4629
4630 static int io_timeout_remove_prep(struct io_kiocb *req,
4631 const struct io_uring_sqe *sqe)
4632 {
4633 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4634 return -EINVAL;
4635 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
4636 return -EINVAL;
4637
4638 req->timeout.addr = READ_ONCE(sqe->addr);
4639 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
4640 if (req->timeout.flags)
4641 return -EINVAL;
4642
4643 return 0;
4644 }
4645
4646 /*
4647 * Remove or update an existing timeout command
4648 */
4649 static int io_timeout_remove(struct io_kiocb *req)
4650 {
4651 struct io_ring_ctx *ctx = req->ctx;
4652 int ret;
4653
4654 spin_lock_irq(&ctx->completion_lock);
4655 ret = io_timeout_cancel(ctx, req->timeout.addr);
4656
4657 io_cqring_fill_event(req, ret);
4658 io_commit_cqring(ctx);
4659 spin_unlock_irq(&ctx->completion_lock);
4660 io_cqring_ev_posted(ctx);
4661 if (ret < 0)
4662 req_set_fail_links(req);
4663 io_put_req(req);
4664 return 0;
4665 }
4666
4667 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4668 bool is_timeout_link)
4669 {
4670 struct io_timeout_data *data;
4671 unsigned flags;
4672
4673 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4674 return -EINVAL;
4675 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
4676 return -EINVAL;
4677 if (sqe->off && is_timeout_link)
4678 return -EINVAL;
4679 flags = READ_ONCE(sqe->timeout_flags);
4680 if (flags & ~IORING_TIMEOUT_ABS)
4681 return -EINVAL;
4682
4683 req->timeout.count = READ_ONCE(sqe->off);
4684
4685 if (!req->io && io_alloc_async_ctx(req))
4686 return -ENOMEM;
4687
4688 data = &req->io->timeout;
4689 data->req = req;
4690 req->flags |= REQ_F_TIMEOUT;
4691
4692 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
4693 return -EFAULT;
4694
4695 if (flags & IORING_TIMEOUT_ABS)
4696 data->mode = HRTIMER_MODE_ABS;
4697 else
4698 data->mode = HRTIMER_MODE_REL;
4699
4700 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
4701 return 0;
4702 }
4703
4704 static int io_timeout(struct io_kiocb *req)
4705 {
4706 struct io_ring_ctx *ctx = req->ctx;
4707 struct io_timeout_data *data;
4708 struct list_head *entry;
4709 unsigned span = 0;
4710 u32 count = req->timeout.count;
4711 u32 seq = req->sequence;
4712
4713 data = &req->io->timeout;
4714
4715 /*
4716 * sqe->off holds how many events that need to occur for this
4717 * timeout event to be satisfied. If it isn't set, then this is
4718 * a pure timeout request, sequence isn't used.
4719 */
4720 if (!count) {
4721 req->flags |= REQ_F_TIMEOUT_NOSEQ;
4722 spin_lock_irq(&ctx->completion_lock);
4723 entry = ctx->timeout_list.prev;
4724 goto add;
4725 }
4726
4727 req->sequence = seq + count;
4728
4729 /*
4730 * Insertion sort, ensuring the first entry in the list is always
4731 * the one we need first.
4732 */
4733 spin_lock_irq(&ctx->completion_lock);
4734 list_for_each_prev(entry, &ctx->timeout_list) {
4735 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
4736 unsigned nxt_seq;
4737 long long tmp, tmp_nxt;
4738 u32 nxt_offset = nxt->timeout.count;
4739
4740 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
4741 continue;
4742
4743 /*
4744 * Since seq + count can overflow, use type long
4745 * long to store it.
4746 */
4747 tmp = (long long)seq + count;
4748 nxt_seq = nxt->sequence - nxt_offset;
4749 tmp_nxt = (long long)nxt_seq + nxt_offset;
4750
4751 /*
4752 * cached_sq_head may overflow, and it will never overflow twice
4753 * once there is some timeout req still be valid.
4754 */
4755 if (seq < nxt_seq)
4756 tmp += UINT_MAX;
4757
4758 if (tmp > tmp_nxt)
4759 break;
4760
4761 /*
4762 * Sequence of reqs after the insert one and itself should
4763 * be adjusted because each timeout req consumes a slot.
4764 */
4765 span++;
4766 nxt->sequence++;
4767 }
4768 req->sequence -= span;
4769 add:
4770 list_add(&req->list, entry);
4771 data->timer.function = io_timeout_fn;
4772 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
4773 spin_unlock_irq(&ctx->completion_lock);
4774 return 0;
4775 }
4776
4777 static bool io_cancel_cb(struct io_wq_work *work, void *data)
4778 {
4779 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4780
4781 return req->user_data == (unsigned long) data;
4782 }
4783
4784 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
4785 {
4786 enum io_wq_cancel cancel_ret;
4787 int ret = 0;
4788
4789 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
4790 switch (cancel_ret) {
4791 case IO_WQ_CANCEL_OK:
4792 ret = 0;
4793 break;
4794 case IO_WQ_CANCEL_RUNNING:
4795 ret = -EALREADY;
4796 break;
4797 case IO_WQ_CANCEL_NOTFOUND:
4798 ret = -ENOENT;
4799 break;
4800 }
4801
4802 return ret;
4803 }
4804
4805 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
4806 struct io_kiocb *req, __u64 sqe_addr,
4807 int success_ret)
4808 {
4809 unsigned long flags;
4810 int ret;
4811
4812 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4813 if (ret != -ENOENT) {
4814 spin_lock_irqsave(&ctx->completion_lock, flags);
4815 goto done;
4816 }
4817
4818 spin_lock_irqsave(&ctx->completion_lock, flags);
4819 ret = io_timeout_cancel(ctx, sqe_addr);
4820 if (ret != -ENOENT)
4821 goto done;
4822 ret = io_poll_cancel(ctx, sqe_addr);
4823 done:
4824 if (!ret)
4825 ret = success_ret;
4826 io_cqring_fill_event(req, ret);
4827 io_commit_cqring(ctx);
4828 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4829 io_cqring_ev_posted(ctx);
4830
4831 if (ret < 0)
4832 req_set_fail_links(req);
4833 io_put_req(req);
4834 }
4835
4836 static int io_async_cancel_prep(struct io_kiocb *req,
4837 const struct io_uring_sqe *sqe)
4838 {
4839 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4840 return -EINVAL;
4841 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4842 sqe->cancel_flags)
4843 return -EINVAL;
4844
4845 req->cancel.addr = READ_ONCE(sqe->addr);
4846 return 0;
4847 }
4848
4849 static int io_async_cancel(struct io_kiocb *req)
4850 {
4851 struct io_ring_ctx *ctx = req->ctx;
4852
4853 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
4854 return 0;
4855 }
4856
4857 static int io_files_update_prep(struct io_kiocb *req,
4858 const struct io_uring_sqe *sqe)
4859 {
4860 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4861 return -EINVAL;
4862
4863 req->files_update.offset = READ_ONCE(sqe->off);
4864 req->files_update.nr_args = READ_ONCE(sqe->len);
4865 if (!req->files_update.nr_args)
4866 return -EINVAL;
4867 req->files_update.arg = READ_ONCE(sqe->addr);
4868 return 0;
4869 }
4870
4871 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4872 {
4873 struct io_ring_ctx *ctx = req->ctx;
4874 struct io_uring_files_update up;
4875 int ret;
4876
4877 if (force_nonblock)
4878 return -EAGAIN;
4879
4880 up.offset = req->files_update.offset;
4881 up.fds = req->files_update.arg;
4882
4883 mutex_lock(&ctx->uring_lock);
4884 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4885 mutex_unlock(&ctx->uring_lock);
4886
4887 if (ret < 0)
4888 req_set_fail_links(req);
4889 io_cqring_add_event(req, ret);
4890 io_put_req(req);
4891 return 0;
4892 }
4893
4894 static int io_req_defer_prep(struct io_kiocb *req,
4895 const struct io_uring_sqe *sqe)
4896 {
4897 ssize_t ret = 0;
4898
4899 if (!sqe)
4900 return 0;
4901
4902 if (io_op_defs[req->opcode].file_table) {
4903 ret = io_grab_files(req);
4904 if (unlikely(ret))
4905 return ret;
4906 }
4907
4908 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4909
4910 switch (req->opcode) {
4911 case IORING_OP_NOP:
4912 break;
4913 case IORING_OP_READV:
4914 case IORING_OP_READ_FIXED:
4915 case IORING_OP_READ:
4916 ret = io_read_prep(req, sqe, true);
4917 break;
4918 case IORING_OP_WRITEV:
4919 case IORING_OP_WRITE_FIXED:
4920 case IORING_OP_WRITE:
4921 ret = io_write_prep(req, sqe, true);
4922 break;
4923 case IORING_OP_POLL_ADD:
4924 ret = io_poll_add_prep(req, sqe);
4925 break;
4926 case IORING_OP_POLL_REMOVE:
4927 ret = io_poll_remove_prep(req, sqe);
4928 break;
4929 case IORING_OP_FSYNC:
4930 ret = io_prep_fsync(req, sqe);
4931 break;
4932 case IORING_OP_SYNC_FILE_RANGE:
4933 ret = io_prep_sfr(req, sqe);
4934 break;
4935 case IORING_OP_SENDMSG:
4936 case IORING_OP_SEND:
4937 ret = io_sendmsg_prep(req, sqe);
4938 break;
4939 case IORING_OP_RECVMSG:
4940 case IORING_OP_RECV:
4941 ret = io_recvmsg_prep(req, sqe);
4942 break;
4943 case IORING_OP_CONNECT:
4944 ret = io_connect_prep(req, sqe);
4945 break;
4946 case IORING_OP_TIMEOUT:
4947 ret = io_timeout_prep(req, sqe, false);
4948 break;
4949 case IORING_OP_TIMEOUT_REMOVE:
4950 ret = io_timeout_remove_prep(req, sqe);
4951 break;
4952 case IORING_OP_ASYNC_CANCEL:
4953 ret = io_async_cancel_prep(req, sqe);
4954 break;
4955 case IORING_OP_LINK_TIMEOUT:
4956 ret = io_timeout_prep(req, sqe, true);
4957 break;
4958 case IORING_OP_ACCEPT:
4959 ret = io_accept_prep(req, sqe);
4960 break;
4961 case IORING_OP_FALLOCATE:
4962 ret = io_fallocate_prep(req, sqe);
4963 break;
4964 case IORING_OP_OPENAT:
4965 ret = io_openat_prep(req, sqe);
4966 break;
4967 case IORING_OP_CLOSE:
4968 ret = io_close_prep(req, sqe);
4969 break;
4970 case IORING_OP_FILES_UPDATE:
4971 ret = io_files_update_prep(req, sqe);
4972 break;
4973 case IORING_OP_STATX:
4974 ret = io_statx_prep(req, sqe);
4975 break;
4976 case IORING_OP_FADVISE:
4977 ret = io_fadvise_prep(req, sqe);
4978 break;
4979 case IORING_OP_MADVISE:
4980 ret = io_madvise_prep(req, sqe);
4981 break;
4982 case IORING_OP_OPENAT2:
4983 ret = io_openat2_prep(req, sqe);
4984 break;
4985 case IORING_OP_EPOLL_CTL:
4986 ret = io_epoll_ctl_prep(req, sqe);
4987 break;
4988 case IORING_OP_SPLICE:
4989 ret = io_splice_prep(req, sqe);
4990 break;
4991 case IORING_OP_PROVIDE_BUFFERS:
4992 ret = io_provide_buffers_prep(req, sqe);
4993 break;
4994 case IORING_OP_REMOVE_BUFFERS:
4995 ret = io_remove_buffers_prep(req, sqe);
4996 break;
4997 default:
4998 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
4999 req->opcode);
5000 ret = -EINVAL;
5001 break;
5002 }
5003
5004 return ret;
5005 }
5006
5007 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5008 {
5009 struct io_ring_ctx *ctx = req->ctx;
5010 int ret;
5011
5012 /* Still need defer if there is pending req in defer list. */
5013 if (!req_need_defer(req) && list_empty_careful(&ctx->defer_list))
5014 return 0;
5015
5016 if (!req->io && io_alloc_async_ctx(req))
5017 return -EAGAIN;
5018
5019 ret = io_req_defer_prep(req, sqe);
5020 if (ret < 0)
5021 return ret;
5022
5023 spin_lock_irq(&ctx->completion_lock);
5024 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
5025 spin_unlock_irq(&ctx->completion_lock);
5026 return 0;
5027 }
5028
5029 trace_io_uring_defer(ctx, req, req->user_data);
5030 list_add_tail(&req->list, &ctx->defer_list);
5031 spin_unlock_irq(&ctx->completion_lock);
5032 return -EIOCBQUEUED;
5033 }
5034
5035 static void io_cleanup_req(struct io_kiocb *req)
5036 {
5037 struct io_async_ctx *io = req->io;
5038
5039 switch (req->opcode) {
5040 case IORING_OP_READV:
5041 case IORING_OP_READ_FIXED:
5042 case IORING_OP_READ:
5043 if (req->flags & REQ_F_BUFFER_SELECTED)
5044 kfree((void *)(unsigned long)req->rw.addr);
5045 /* fallthrough */
5046 case IORING_OP_WRITEV:
5047 case IORING_OP_WRITE_FIXED:
5048 case IORING_OP_WRITE:
5049 if (io->rw.iov != io->rw.fast_iov)
5050 kfree(io->rw.iov);
5051 break;
5052 case IORING_OP_RECVMSG:
5053 if (req->flags & REQ_F_BUFFER_SELECTED)
5054 kfree(req->sr_msg.kbuf);
5055 /* fallthrough */
5056 case IORING_OP_SENDMSG:
5057 if (io->msg.iov != io->msg.fast_iov)
5058 kfree(io->msg.iov);
5059 break;
5060 case IORING_OP_RECV:
5061 if (req->flags & REQ_F_BUFFER_SELECTED)
5062 kfree(req->sr_msg.kbuf);
5063 break;
5064 case IORING_OP_OPENAT:
5065 case IORING_OP_OPENAT2:
5066 case IORING_OP_STATX:
5067 putname(req->open.filename);
5068 break;
5069 case IORING_OP_SPLICE:
5070 io_put_file(req, req->splice.file_in,
5071 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5072 break;
5073 }
5074
5075 req->flags &= ~REQ_F_NEED_CLEANUP;
5076 }
5077
5078 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5079 bool force_nonblock)
5080 {
5081 struct io_ring_ctx *ctx = req->ctx;
5082 int ret;
5083
5084 switch (req->opcode) {
5085 case IORING_OP_NOP:
5086 ret = io_nop(req);
5087 break;
5088 case IORING_OP_READV:
5089 case IORING_OP_READ_FIXED:
5090 case IORING_OP_READ:
5091 if (sqe) {
5092 ret = io_read_prep(req, sqe, force_nonblock);
5093 if (ret < 0)
5094 break;
5095 }
5096 ret = io_read(req, force_nonblock);
5097 break;
5098 case IORING_OP_WRITEV:
5099 case IORING_OP_WRITE_FIXED:
5100 case IORING_OP_WRITE:
5101 if (sqe) {
5102 ret = io_write_prep(req, sqe, force_nonblock);
5103 if (ret < 0)
5104 break;
5105 }
5106 ret = io_write(req, force_nonblock);
5107 break;
5108 case IORING_OP_FSYNC:
5109 if (sqe) {
5110 ret = io_prep_fsync(req, sqe);
5111 if (ret < 0)
5112 break;
5113 }
5114 ret = io_fsync(req, force_nonblock);
5115 break;
5116 case IORING_OP_POLL_ADD:
5117 if (sqe) {
5118 ret = io_poll_add_prep(req, sqe);
5119 if (ret)
5120 break;
5121 }
5122 ret = io_poll_add(req);
5123 break;
5124 case IORING_OP_POLL_REMOVE:
5125 if (sqe) {
5126 ret = io_poll_remove_prep(req, sqe);
5127 if (ret < 0)
5128 break;
5129 }
5130 ret = io_poll_remove(req);
5131 break;
5132 case IORING_OP_SYNC_FILE_RANGE:
5133 if (sqe) {
5134 ret = io_prep_sfr(req, sqe);
5135 if (ret < 0)
5136 break;
5137 }
5138 ret = io_sync_file_range(req, force_nonblock);
5139 break;
5140 case IORING_OP_SENDMSG:
5141 case IORING_OP_SEND:
5142 if (sqe) {
5143 ret = io_sendmsg_prep(req, sqe);
5144 if (ret < 0)
5145 break;
5146 }
5147 if (req->opcode == IORING_OP_SENDMSG)
5148 ret = io_sendmsg(req, force_nonblock);
5149 else
5150 ret = io_send(req, force_nonblock);
5151 break;
5152 case IORING_OP_RECVMSG:
5153 case IORING_OP_RECV:
5154 if (sqe) {
5155 ret = io_recvmsg_prep(req, sqe);
5156 if (ret)
5157 break;
5158 }
5159 if (req->opcode == IORING_OP_RECVMSG)
5160 ret = io_recvmsg(req, force_nonblock);
5161 else
5162 ret = io_recv(req, force_nonblock);
5163 break;
5164 case IORING_OP_TIMEOUT:
5165 if (sqe) {
5166 ret = io_timeout_prep(req, sqe, false);
5167 if (ret)
5168 break;
5169 }
5170 ret = io_timeout(req);
5171 break;
5172 case IORING_OP_TIMEOUT_REMOVE:
5173 if (sqe) {
5174 ret = io_timeout_remove_prep(req, sqe);
5175 if (ret)
5176 break;
5177 }
5178 ret = io_timeout_remove(req);
5179 break;
5180 case IORING_OP_ACCEPT:
5181 if (sqe) {
5182 ret = io_accept_prep(req, sqe);
5183 if (ret)
5184 break;
5185 }
5186 ret = io_accept(req, force_nonblock);
5187 break;
5188 case IORING_OP_CONNECT:
5189 if (sqe) {
5190 ret = io_connect_prep(req, sqe);
5191 if (ret)
5192 break;
5193 }
5194 ret = io_connect(req, force_nonblock);
5195 break;
5196 case IORING_OP_ASYNC_CANCEL:
5197 if (sqe) {
5198 ret = io_async_cancel_prep(req, sqe);
5199 if (ret)
5200 break;
5201 }
5202 ret = io_async_cancel(req);
5203 break;
5204 case IORING_OP_FALLOCATE:
5205 if (sqe) {
5206 ret = io_fallocate_prep(req, sqe);
5207 if (ret)
5208 break;
5209 }
5210 ret = io_fallocate(req, force_nonblock);
5211 break;
5212 case IORING_OP_OPENAT:
5213 if (sqe) {
5214 ret = io_openat_prep(req, sqe);
5215 if (ret)
5216 break;
5217 }
5218 ret = io_openat(req, force_nonblock);
5219 break;
5220 case IORING_OP_CLOSE:
5221 if (sqe) {
5222 ret = io_close_prep(req, sqe);
5223 if (ret)
5224 break;
5225 }
5226 ret = io_close(req, force_nonblock);
5227 break;
5228 case IORING_OP_FILES_UPDATE:
5229 if (sqe) {
5230 ret = io_files_update_prep(req, sqe);
5231 if (ret)
5232 break;
5233 }
5234 ret = io_files_update(req, force_nonblock);
5235 break;
5236 case IORING_OP_STATX:
5237 if (sqe) {
5238 ret = io_statx_prep(req, sqe);
5239 if (ret)
5240 break;
5241 }
5242 ret = io_statx(req, force_nonblock);
5243 break;
5244 case IORING_OP_FADVISE:
5245 if (sqe) {
5246 ret = io_fadvise_prep(req, sqe);
5247 if (ret)
5248 break;
5249 }
5250 ret = io_fadvise(req, force_nonblock);
5251 break;
5252 case IORING_OP_MADVISE:
5253 if (sqe) {
5254 ret = io_madvise_prep(req, sqe);
5255 if (ret)
5256 break;
5257 }
5258 ret = io_madvise(req, force_nonblock);
5259 break;
5260 case IORING_OP_OPENAT2:
5261 if (sqe) {
5262 ret = io_openat2_prep(req, sqe);
5263 if (ret)
5264 break;
5265 }
5266 ret = io_openat2(req, force_nonblock);
5267 break;
5268 case IORING_OP_EPOLL_CTL:
5269 if (sqe) {
5270 ret = io_epoll_ctl_prep(req, sqe);
5271 if (ret)
5272 break;
5273 }
5274 ret = io_epoll_ctl(req, force_nonblock);
5275 break;
5276 case IORING_OP_SPLICE:
5277 if (sqe) {
5278 ret = io_splice_prep(req, sqe);
5279 if (ret < 0)
5280 break;
5281 }
5282 ret = io_splice(req, force_nonblock);
5283 break;
5284 case IORING_OP_PROVIDE_BUFFERS:
5285 if (sqe) {
5286 ret = io_provide_buffers_prep(req, sqe);
5287 if (ret)
5288 break;
5289 }
5290 ret = io_provide_buffers(req, force_nonblock);
5291 break;
5292 case IORING_OP_REMOVE_BUFFERS:
5293 if (sqe) {
5294 ret = io_remove_buffers_prep(req, sqe);
5295 if (ret)
5296 break;
5297 }
5298 ret = io_remove_buffers(req, force_nonblock);
5299 break;
5300 default:
5301 ret = -EINVAL;
5302 break;
5303 }
5304
5305 if (ret)
5306 return ret;
5307
5308 if (ctx->flags & IORING_SETUP_IOPOLL) {
5309 const bool in_async = io_wq_current_is_worker();
5310
5311 if (req->result == -EAGAIN)
5312 return -EAGAIN;
5313
5314 /* workqueue context doesn't hold uring_lock, grab it now */
5315 if (in_async)
5316 mutex_lock(&ctx->uring_lock);
5317
5318 io_iopoll_req_issued(req);
5319
5320 if (in_async)
5321 mutex_unlock(&ctx->uring_lock);
5322 }
5323
5324 return 0;
5325 }
5326
5327 static void io_wq_submit_work(struct io_wq_work **workptr)
5328 {
5329 struct io_wq_work *work = *workptr;
5330 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5331 int ret = 0;
5332
5333 /* if NO_CANCEL is set, we must still run the work */
5334 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
5335 IO_WQ_WORK_CANCEL) {
5336 ret = -ECANCELED;
5337 }
5338
5339 if (!ret) {
5340 do {
5341 ret = io_issue_sqe(req, NULL, false);
5342 /*
5343 * We can get EAGAIN for polled IO even though we're
5344 * forcing a sync submission from here, since we can't
5345 * wait for request slots on the block side.
5346 */
5347 if (ret != -EAGAIN)
5348 break;
5349 cond_resched();
5350 } while (1);
5351 }
5352
5353 if (ret) {
5354 req_set_fail_links(req);
5355 io_cqring_add_event(req, ret);
5356 io_put_req(req);
5357 }
5358
5359 io_steal_work(req, workptr);
5360 }
5361
5362 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
5363 int index)
5364 {
5365 struct fixed_file_table *table;
5366
5367 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
5368 return table->files[index & IORING_FILE_TABLE_MASK];;
5369 }
5370
5371 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
5372 int fd, struct file **out_file, bool fixed)
5373 {
5374 struct io_ring_ctx *ctx = req->ctx;
5375 struct file *file;
5376
5377 if (fixed) {
5378 if (unlikely(!ctx->file_data ||
5379 (unsigned) fd >= ctx->nr_user_files))
5380 return -EBADF;
5381 fd = array_index_nospec(fd, ctx->nr_user_files);
5382 file = io_file_from_index(ctx, fd);
5383 if (!file)
5384 return -EBADF;
5385 req->fixed_file_refs = ctx->file_data->cur_refs;
5386 percpu_ref_get(req->fixed_file_refs);
5387 } else {
5388 trace_io_uring_file_get(ctx, fd);
5389 file = __io_file_get(state, fd);
5390 if (unlikely(!file))
5391 return -EBADF;
5392 }
5393
5394 *out_file = file;
5395 return 0;
5396 }
5397
5398 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
5399 int fd)
5400 {
5401 bool fixed;
5402
5403 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
5404 if (unlikely(!fixed && req->needs_fixed_file))
5405 return -EBADF;
5406
5407 return io_file_get(state, req, fd, &req->file, fixed);
5408 }
5409
5410 static int io_grab_files(struct io_kiocb *req)
5411 {
5412 int ret = -EBADF;
5413 struct io_ring_ctx *ctx = req->ctx;
5414
5415 if (req->work.files || (req->flags & REQ_F_NO_FILE_TABLE))
5416 return 0;
5417 if (!ctx->ring_file)
5418 return -EBADF;
5419
5420 rcu_read_lock();
5421 spin_lock_irq(&ctx->inflight_lock);
5422 /*
5423 * We use the f_ops->flush() handler to ensure that we can flush
5424 * out work accessing these files if the fd is closed. Check if
5425 * the fd has changed since we started down this path, and disallow
5426 * this operation if it has.
5427 */
5428 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
5429 list_add(&req->inflight_entry, &ctx->inflight_list);
5430 req->flags |= REQ_F_INFLIGHT;
5431 req->work.files = current->files;
5432 ret = 0;
5433 }
5434 spin_unlock_irq(&ctx->inflight_lock);
5435 rcu_read_unlock();
5436
5437 return ret;
5438 }
5439
5440 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
5441 {
5442 struct io_timeout_data *data = container_of(timer,
5443 struct io_timeout_data, timer);
5444 struct io_kiocb *req = data->req;
5445 struct io_ring_ctx *ctx = req->ctx;
5446 struct io_kiocb *prev = NULL;
5447 unsigned long flags;
5448
5449 spin_lock_irqsave(&ctx->completion_lock, flags);
5450
5451 /*
5452 * We don't expect the list to be empty, that will only happen if we
5453 * race with the completion of the linked work.
5454 */
5455 if (!list_empty(&req->link_list)) {
5456 prev = list_entry(req->link_list.prev, struct io_kiocb,
5457 link_list);
5458 if (refcount_inc_not_zero(&prev->refs)) {
5459 list_del_init(&req->link_list);
5460 prev->flags &= ~REQ_F_LINK_TIMEOUT;
5461 } else
5462 prev = NULL;
5463 }
5464
5465 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5466
5467 if (prev) {
5468 req_set_fail_links(prev);
5469 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
5470 io_put_req(prev);
5471 } else {
5472 io_cqring_add_event(req, -ETIME);
5473 io_put_req(req);
5474 }
5475 return HRTIMER_NORESTART;
5476 }
5477
5478 static void io_queue_linked_timeout(struct io_kiocb *req)
5479 {
5480 struct io_ring_ctx *ctx = req->ctx;
5481
5482 /*
5483 * If the list is now empty, then our linked request finished before
5484 * we got a chance to setup the timer
5485 */
5486 spin_lock_irq(&ctx->completion_lock);
5487 if (!list_empty(&req->link_list)) {
5488 struct io_timeout_data *data = &req->io->timeout;
5489
5490 data->timer.function = io_link_timeout_fn;
5491 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
5492 data->mode);
5493 }
5494 spin_unlock_irq(&ctx->completion_lock);
5495
5496 /* drop submission reference */
5497 io_put_req(req);
5498 }
5499
5500 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
5501 {
5502 struct io_kiocb *nxt;
5503
5504 if (!(req->flags & REQ_F_LINK_HEAD))
5505 return NULL;
5506 /* for polled retry, if flag is set, we already went through here */
5507 if (req->flags & REQ_F_POLLED)
5508 return NULL;
5509
5510 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
5511 link_list);
5512 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
5513 return NULL;
5514
5515 req->flags |= REQ_F_LINK_TIMEOUT;
5516 return nxt;
5517 }
5518
5519 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5520 {
5521 struct io_kiocb *linked_timeout;
5522 struct io_kiocb *nxt;
5523 const struct cred *old_creds = NULL;
5524 int ret;
5525
5526 again:
5527 linked_timeout = io_prep_linked_timeout(req);
5528
5529 if (req->work.creds && req->work.creds != current_cred()) {
5530 if (old_creds)
5531 revert_creds(old_creds);
5532 if (old_creds == req->work.creds)
5533 old_creds = NULL; /* restored original creds */
5534 else
5535 old_creds = override_creds(req->work.creds);
5536 }
5537
5538 ret = io_issue_sqe(req, sqe, true);
5539
5540 /*
5541 * We async punt it if the file wasn't marked NOWAIT, or if the file
5542 * doesn't support non-blocking read/write attempts
5543 */
5544 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
5545 (req->flags & REQ_F_MUST_PUNT))) {
5546 if (io_arm_poll_handler(req)) {
5547 if (linked_timeout)
5548 io_queue_linked_timeout(linked_timeout);
5549 goto exit;
5550 }
5551 punt:
5552 if (io_op_defs[req->opcode].file_table) {
5553 ret = io_grab_files(req);
5554 if (ret)
5555 goto err;
5556 }
5557
5558 /*
5559 * Queued up for async execution, worker will release
5560 * submit reference when the iocb is actually submitted.
5561 */
5562 io_queue_async_work(req);
5563 goto exit;
5564 }
5565
5566 err:
5567 nxt = NULL;
5568 /* drop submission reference */
5569 io_put_req_find_next(req, &nxt);
5570
5571 if (linked_timeout) {
5572 if (!ret)
5573 io_queue_linked_timeout(linked_timeout);
5574 else
5575 io_put_req(linked_timeout);
5576 }
5577
5578 /* and drop final reference, if we failed */
5579 if (ret) {
5580 io_cqring_add_event(req, ret);
5581 req_set_fail_links(req);
5582 io_put_req(req);
5583 }
5584 if (nxt) {
5585 req = nxt;
5586
5587 if (req->flags & REQ_F_FORCE_ASYNC)
5588 goto punt;
5589 goto again;
5590 }
5591 exit:
5592 if (old_creds)
5593 revert_creds(old_creds);
5594 }
5595
5596 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5597 {
5598 int ret;
5599
5600 ret = io_req_defer(req, sqe);
5601 if (ret) {
5602 if (ret != -EIOCBQUEUED) {
5603 fail_req:
5604 io_cqring_add_event(req, ret);
5605 req_set_fail_links(req);
5606 io_double_put_req(req);
5607 }
5608 } else if (req->flags & REQ_F_FORCE_ASYNC) {
5609 ret = io_req_defer_prep(req, sqe);
5610 if (unlikely(ret < 0))
5611 goto fail_req;
5612 /*
5613 * Never try inline submit of IOSQE_ASYNC is set, go straight
5614 * to async execution.
5615 */
5616 req->work.flags |= IO_WQ_WORK_CONCURRENT;
5617 io_queue_async_work(req);
5618 } else {
5619 __io_queue_sqe(req, sqe);
5620 }
5621 }
5622
5623 static inline void io_queue_link_head(struct io_kiocb *req)
5624 {
5625 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
5626 io_cqring_add_event(req, -ECANCELED);
5627 io_double_put_req(req);
5628 } else
5629 io_queue_sqe(req, NULL);
5630 }
5631
5632 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5633 struct io_submit_state *state, struct io_kiocb **link)
5634 {
5635 struct io_ring_ctx *ctx = req->ctx;
5636 int ret;
5637
5638 /*
5639 * If we already have a head request, queue this one for async
5640 * submittal once the head completes. If we don't have a head but
5641 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
5642 * submitted sync once the chain is complete. If none of those
5643 * conditions are true (normal request), then just queue it.
5644 */
5645 if (*link) {
5646 struct io_kiocb *head = *link;
5647
5648 /*
5649 * Taking sequential execution of a link, draining both sides
5650 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
5651 * requests in the link. So, it drains the head and the
5652 * next after the link request. The last one is done via
5653 * drain_next flag to persist the effect across calls.
5654 */
5655 if (req->flags & REQ_F_IO_DRAIN) {
5656 head->flags |= REQ_F_IO_DRAIN;
5657 ctx->drain_next = 1;
5658 }
5659 if (io_alloc_async_ctx(req))
5660 return -EAGAIN;
5661
5662 ret = io_req_defer_prep(req, sqe);
5663 if (ret) {
5664 /* fail even hard links since we don't submit */
5665 head->flags |= REQ_F_FAIL_LINK;
5666 return ret;
5667 }
5668 trace_io_uring_link(ctx, req, head);
5669 list_add_tail(&req->link_list, &head->link_list);
5670
5671 /* last request of a link, enqueue the link */
5672 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
5673 io_queue_link_head(head);
5674 *link = NULL;
5675 }
5676 } else {
5677 if (unlikely(ctx->drain_next)) {
5678 req->flags |= REQ_F_IO_DRAIN;
5679 ctx->drain_next = 0;
5680 }
5681 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
5682 req->flags |= REQ_F_LINK_HEAD;
5683 INIT_LIST_HEAD(&req->link_list);
5684
5685 if (io_alloc_async_ctx(req))
5686 return -EAGAIN;
5687
5688 ret = io_req_defer_prep(req, sqe);
5689 if (ret)
5690 req->flags |= REQ_F_FAIL_LINK;
5691 *link = req;
5692 } else {
5693 io_queue_sqe(req, sqe);
5694 }
5695 }
5696
5697 return 0;
5698 }
5699
5700 /*
5701 * Batched submission is done, ensure local IO is flushed out.
5702 */
5703 static void io_submit_state_end(struct io_submit_state *state)
5704 {
5705 blk_finish_plug(&state->plug);
5706 io_file_put(state);
5707 if (state->free_reqs)
5708 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
5709 }
5710
5711 /*
5712 * Start submission side cache.
5713 */
5714 static void io_submit_state_start(struct io_submit_state *state,
5715 unsigned int max_ios)
5716 {
5717 blk_start_plug(&state->plug);
5718 state->free_reqs = 0;
5719 state->file = NULL;
5720 state->ios_left = max_ios;
5721 }
5722
5723 static void io_commit_sqring(struct io_ring_ctx *ctx)
5724 {
5725 struct io_rings *rings = ctx->rings;
5726
5727 /*
5728 * Ensure any loads from the SQEs are done at this point,
5729 * since once we write the new head, the application could
5730 * write new data to them.
5731 */
5732 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
5733 }
5734
5735 /*
5736 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
5737 * that is mapped by userspace. This means that care needs to be taken to
5738 * ensure that reads are stable, as we cannot rely on userspace always
5739 * being a good citizen. If members of the sqe are validated and then later
5740 * used, it's important that those reads are done through READ_ONCE() to
5741 * prevent a re-load down the line.
5742 */
5743 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
5744 {
5745 u32 *sq_array = ctx->sq_array;
5746 unsigned head;
5747
5748 /*
5749 * The cached sq head (or cq tail) serves two purposes:
5750 *
5751 * 1) allows us to batch the cost of updating the user visible
5752 * head updates.
5753 * 2) allows the kernel side to track the head on its own, even
5754 * though the application is the one updating it.
5755 */
5756 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
5757 if (likely(head < ctx->sq_entries))
5758 return &ctx->sq_sqes[head];
5759
5760 /* drop invalid entries */
5761 ctx->cached_sq_dropped++;
5762 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
5763 return NULL;
5764 }
5765
5766 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
5767 {
5768 ctx->cached_sq_head++;
5769 }
5770
5771 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
5772 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
5773 IOSQE_BUFFER_SELECT)
5774
5775 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
5776 const struct io_uring_sqe *sqe,
5777 struct io_submit_state *state, bool async)
5778 {
5779 unsigned int sqe_flags;
5780 int id;
5781
5782 /*
5783 * All io need record the previous position, if LINK vs DARIN,
5784 * it can be used to mark the position of the first IO in the
5785 * link list.
5786 */
5787 req->sequence = ctx->cached_sq_head - ctx->cached_sq_dropped;
5788 req->opcode = READ_ONCE(sqe->opcode);
5789 req->user_data = READ_ONCE(sqe->user_data);
5790 req->io = NULL;
5791 req->file = NULL;
5792 req->ctx = ctx;
5793 req->flags = 0;
5794 /* one is dropped after submission, the other at completion */
5795 refcount_set(&req->refs, 2);
5796 req->task = NULL;
5797 req->result = 0;
5798 req->needs_fixed_file = async;
5799 INIT_IO_WORK(&req->work, io_wq_submit_work);
5800
5801 if (unlikely(req->opcode >= IORING_OP_LAST))
5802 return -EINVAL;
5803
5804 if (io_op_defs[req->opcode].needs_mm && !current->mm) {
5805 if (unlikely(!mmget_not_zero(ctx->sqo_mm)))
5806 return -EFAULT;
5807 use_mm(ctx->sqo_mm);
5808 }
5809
5810 sqe_flags = READ_ONCE(sqe->flags);
5811 /* enforce forwards compatibility on users */
5812 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
5813 return -EINVAL;
5814
5815 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
5816 !io_op_defs[req->opcode].buffer_select)
5817 return -EOPNOTSUPP;
5818
5819 id = READ_ONCE(sqe->personality);
5820 if (id) {
5821 req->work.creds = idr_find(&ctx->personality_idr, id);
5822 if (unlikely(!req->work.creds))
5823 return -EINVAL;
5824 get_cred(req->work.creds);
5825 }
5826
5827 /* same numerical values with corresponding REQ_F_*, safe to copy */
5828 req->flags |= sqe_flags & (IOSQE_IO_DRAIN | IOSQE_IO_HARDLINK |
5829 IOSQE_ASYNC | IOSQE_FIXED_FILE |
5830 IOSQE_BUFFER_SELECT | IOSQE_IO_LINK);
5831
5832 if (!io_op_defs[req->opcode].needs_file)
5833 return 0;
5834
5835 return io_req_set_file(state, req, READ_ONCE(sqe->fd));
5836 }
5837
5838 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
5839 struct file *ring_file, int ring_fd, bool async)
5840 {
5841 struct io_submit_state state, *statep = NULL;
5842 struct io_kiocb *link = NULL;
5843 int i, submitted = 0;
5844
5845 /* if we have a backlog and couldn't flush it all, return BUSY */
5846 if (test_bit(0, &ctx->sq_check_overflow)) {
5847 if (!list_empty(&ctx->cq_overflow_list) &&
5848 !io_cqring_overflow_flush(ctx, false))
5849 return -EBUSY;
5850 }
5851
5852 /* make sure SQ entry isn't read before tail */
5853 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
5854
5855 if (!percpu_ref_tryget_many(&ctx->refs, nr))
5856 return -EAGAIN;
5857
5858 if (nr > IO_PLUG_THRESHOLD) {
5859 io_submit_state_start(&state, nr);
5860 statep = &state;
5861 }
5862
5863 ctx->ring_fd = ring_fd;
5864 ctx->ring_file = ring_file;
5865
5866 for (i = 0; i < nr; i++) {
5867 const struct io_uring_sqe *sqe;
5868 struct io_kiocb *req;
5869 int err;
5870
5871 sqe = io_get_sqe(ctx);
5872 if (unlikely(!sqe)) {
5873 io_consume_sqe(ctx);
5874 break;
5875 }
5876 req = io_alloc_req(ctx, statep);
5877 if (unlikely(!req)) {
5878 if (!submitted)
5879 submitted = -EAGAIN;
5880 break;
5881 }
5882
5883 err = io_init_req(ctx, req, sqe, statep, async);
5884 io_consume_sqe(ctx);
5885 /* will complete beyond this point, count as submitted */
5886 submitted++;
5887
5888 if (unlikely(err)) {
5889 fail_req:
5890 io_cqring_add_event(req, err);
5891 io_double_put_req(req);
5892 break;
5893 }
5894
5895 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
5896 true, async);
5897 err = io_submit_sqe(req, sqe, statep, &link);
5898 if (err)
5899 goto fail_req;
5900 }
5901
5902 if (unlikely(submitted != nr)) {
5903 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
5904
5905 percpu_ref_put_many(&ctx->refs, nr - ref_used);
5906 }
5907 if (link)
5908 io_queue_link_head(link);
5909 if (statep)
5910 io_submit_state_end(&state);
5911
5912 /* Commit SQ ring head once we've consumed and submitted all SQEs */
5913 io_commit_sqring(ctx);
5914
5915 return submitted;
5916 }
5917
5918 static inline void io_sq_thread_drop_mm(struct io_ring_ctx *ctx)
5919 {
5920 struct mm_struct *mm = current->mm;
5921
5922 if (mm) {
5923 unuse_mm(mm);
5924 mmput(mm);
5925 }
5926 }
5927
5928 static int io_sq_thread(void *data)
5929 {
5930 struct io_ring_ctx *ctx = data;
5931 const struct cred *old_cred;
5932 mm_segment_t old_fs;
5933 DEFINE_WAIT(wait);
5934 unsigned long timeout;
5935 int ret = 0;
5936
5937 complete(&ctx->completions[1]);
5938
5939 old_fs = get_fs();
5940 set_fs(USER_DS);
5941 old_cred = override_creds(ctx->creds);
5942
5943 timeout = jiffies + ctx->sq_thread_idle;
5944 while (!kthread_should_park()) {
5945 unsigned int to_submit;
5946
5947 if (!list_empty(&ctx->poll_list)) {
5948 unsigned nr_events = 0;
5949
5950 mutex_lock(&ctx->uring_lock);
5951 if (!list_empty(&ctx->poll_list))
5952 io_iopoll_getevents(ctx, &nr_events, 0);
5953 else
5954 timeout = jiffies + ctx->sq_thread_idle;
5955 mutex_unlock(&ctx->uring_lock);
5956 }
5957
5958 to_submit = io_sqring_entries(ctx);
5959
5960 /*
5961 * If submit got -EBUSY, flag us as needing the application
5962 * to enter the kernel to reap and flush events.
5963 */
5964 if (!to_submit || ret == -EBUSY) {
5965 /*
5966 * Drop cur_mm before scheduling, we can't hold it for
5967 * long periods (or over schedule()). Do this before
5968 * adding ourselves to the waitqueue, as the unuse/drop
5969 * may sleep.
5970 */
5971 io_sq_thread_drop_mm(ctx);
5972
5973 /*
5974 * We're polling. If we're within the defined idle
5975 * period, then let us spin without work before going
5976 * to sleep. The exception is if we got EBUSY doing
5977 * more IO, we should wait for the application to
5978 * reap events and wake us up.
5979 */
5980 if (!list_empty(&ctx->poll_list) ||
5981 (!time_after(jiffies, timeout) && ret != -EBUSY &&
5982 !percpu_ref_is_dying(&ctx->refs))) {
5983 if (current->task_works)
5984 task_work_run();
5985 cond_resched();
5986 continue;
5987 }
5988
5989 prepare_to_wait(&ctx->sqo_wait, &wait,
5990 TASK_INTERRUPTIBLE);
5991
5992 /*
5993 * While doing polled IO, before going to sleep, we need
5994 * to check if there are new reqs added to poll_list, it
5995 * is because reqs may have been punted to io worker and
5996 * will be added to poll_list later, hence check the
5997 * poll_list again.
5998 */
5999 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6000 !list_empty_careful(&ctx->poll_list)) {
6001 finish_wait(&ctx->sqo_wait, &wait);
6002 continue;
6003 }
6004
6005 /* Tell userspace we may need a wakeup call */
6006 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6007 /* make sure to read SQ tail after writing flags */
6008 smp_mb();
6009
6010 to_submit = io_sqring_entries(ctx);
6011 if (!to_submit || ret == -EBUSY) {
6012 if (kthread_should_park()) {
6013 finish_wait(&ctx->sqo_wait, &wait);
6014 break;
6015 }
6016 if (current->task_works) {
6017 task_work_run();
6018 finish_wait(&ctx->sqo_wait, &wait);
6019 continue;
6020 }
6021 if (signal_pending(current))
6022 flush_signals(current);
6023 schedule();
6024 finish_wait(&ctx->sqo_wait, &wait);
6025
6026 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6027 continue;
6028 }
6029 finish_wait(&ctx->sqo_wait, &wait);
6030
6031 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6032 }
6033
6034 mutex_lock(&ctx->uring_lock);
6035 ret = io_submit_sqes(ctx, to_submit, NULL, -1, true);
6036 mutex_unlock(&ctx->uring_lock);
6037 timeout = jiffies + ctx->sq_thread_idle;
6038 }
6039
6040 if (current->task_works)
6041 task_work_run();
6042
6043 set_fs(old_fs);
6044 io_sq_thread_drop_mm(ctx);
6045 revert_creds(old_cred);
6046
6047 kthread_parkme();
6048
6049 return 0;
6050 }
6051
6052 struct io_wait_queue {
6053 struct wait_queue_entry wq;
6054 struct io_ring_ctx *ctx;
6055 unsigned to_wait;
6056 unsigned nr_timeouts;
6057 };
6058
6059 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6060 {
6061 struct io_ring_ctx *ctx = iowq->ctx;
6062
6063 /*
6064 * Wake up if we have enough events, or if a timeout occurred since we
6065 * started waiting. For timeouts, we always want to return to userspace,
6066 * regardless of event count.
6067 */
6068 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6069 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6070 }
6071
6072 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6073 int wake_flags, void *key)
6074 {
6075 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6076 wq);
6077
6078 /* use noflush == true, as we can't safely rely on locking context */
6079 if (!io_should_wake(iowq, true))
6080 return -1;
6081
6082 return autoremove_wake_function(curr, mode, wake_flags, key);
6083 }
6084
6085 /*
6086 * Wait until events become available, if we don't already have some. The
6087 * application must reap them itself, as they reside on the shared cq ring.
6088 */
6089 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6090 const sigset_t __user *sig, size_t sigsz)
6091 {
6092 struct io_wait_queue iowq = {
6093 .wq = {
6094 .private = current,
6095 .func = io_wake_function,
6096 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6097 },
6098 .ctx = ctx,
6099 .to_wait = min_events,
6100 };
6101 struct io_rings *rings = ctx->rings;
6102 int ret = 0;
6103
6104 do {
6105 if (io_cqring_events(ctx, false) >= min_events)
6106 return 0;
6107 if (!current->task_works)
6108 break;
6109 task_work_run();
6110 } while (1);
6111
6112 if (sig) {
6113 #ifdef CONFIG_COMPAT
6114 if (in_compat_syscall())
6115 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6116 sigsz);
6117 else
6118 #endif
6119 ret = set_user_sigmask(sig, sigsz);
6120
6121 if (ret)
6122 return ret;
6123 }
6124
6125 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6126 trace_io_uring_cqring_wait(ctx, min_events);
6127 do {
6128 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6129 TASK_INTERRUPTIBLE);
6130 if (current->task_works)
6131 task_work_run();
6132 if (io_should_wake(&iowq, false))
6133 break;
6134 schedule();
6135 if (signal_pending(current)) {
6136 ret = -EINTR;
6137 break;
6138 }
6139 } while (1);
6140 finish_wait(&ctx->wait, &iowq.wq);
6141
6142 restore_saved_sigmask_unless(ret == -EINTR);
6143
6144 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6145 }
6146
6147 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6148 {
6149 #if defined(CONFIG_UNIX)
6150 if (ctx->ring_sock) {
6151 struct sock *sock = ctx->ring_sock->sk;
6152 struct sk_buff *skb;
6153
6154 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6155 kfree_skb(skb);
6156 }
6157 #else
6158 int i;
6159
6160 for (i = 0; i < ctx->nr_user_files; i++) {
6161 struct file *file;
6162
6163 file = io_file_from_index(ctx, i);
6164 if (file)
6165 fput(file);
6166 }
6167 #endif
6168 }
6169
6170 static void io_file_ref_kill(struct percpu_ref *ref)
6171 {
6172 struct fixed_file_data *data;
6173
6174 data = container_of(ref, struct fixed_file_data, refs);
6175 complete(&data->done);
6176 }
6177
6178 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6179 {
6180 struct fixed_file_data *data = ctx->file_data;
6181 struct fixed_file_ref_node *ref_node = NULL;
6182 unsigned nr_tables, i;
6183 unsigned long flags;
6184
6185 if (!data)
6186 return -ENXIO;
6187
6188 spin_lock_irqsave(&data->lock, flags);
6189 if (!list_empty(&data->ref_list))
6190 ref_node = list_first_entry(&data->ref_list,
6191 struct fixed_file_ref_node, node);
6192 spin_unlock_irqrestore(&data->lock, flags);
6193 if (ref_node)
6194 percpu_ref_kill(&ref_node->refs);
6195
6196 percpu_ref_kill(&data->refs);
6197
6198 /* wait for all refs nodes to complete */
6199 wait_for_completion(&data->done);
6200
6201 __io_sqe_files_unregister(ctx);
6202 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6203 for (i = 0; i < nr_tables; i++)
6204 kfree(data->table[i].files);
6205 kfree(data->table);
6206 percpu_ref_exit(&data->refs);
6207 kfree(data);
6208 ctx->file_data = NULL;
6209 ctx->nr_user_files = 0;
6210 return 0;
6211 }
6212
6213 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
6214 {
6215 if (ctx->sqo_thread) {
6216 wait_for_completion(&ctx->completions[1]);
6217 /*
6218 * The park is a bit of a work-around, without it we get
6219 * warning spews on shutdown with SQPOLL set and affinity
6220 * set to a single CPU.
6221 */
6222 kthread_park(ctx->sqo_thread);
6223 kthread_stop(ctx->sqo_thread);
6224 ctx->sqo_thread = NULL;
6225 }
6226 }
6227
6228 static void io_finish_async(struct io_ring_ctx *ctx)
6229 {
6230 io_sq_thread_stop(ctx);
6231
6232 if (ctx->io_wq) {
6233 io_wq_destroy(ctx->io_wq);
6234 ctx->io_wq = NULL;
6235 }
6236 }
6237
6238 #if defined(CONFIG_UNIX)
6239 /*
6240 * Ensure the UNIX gc is aware of our file set, so we are certain that
6241 * the io_uring can be safely unregistered on process exit, even if we have
6242 * loops in the file referencing.
6243 */
6244 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
6245 {
6246 struct sock *sk = ctx->ring_sock->sk;
6247 struct scm_fp_list *fpl;
6248 struct sk_buff *skb;
6249 int i, nr_files;
6250
6251 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
6252 if (!fpl)
6253 return -ENOMEM;
6254
6255 skb = alloc_skb(0, GFP_KERNEL);
6256 if (!skb) {
6257 kfree(fpl);
6258 return -ENOMEM;
6259 }
6260
6261 skb->sk = sk;
6262
6263 nr_files = 0;
6264 fpl->user = get_uid(ctx->user);
6265 for (i = 0; i < nr; i++) {
6266 struct file *file = io_file_from_index(ctx, i + offset);
6267
6268 if (!file)
6269 continue;
6270 fpl->fp[nr_files] = get_file(file);
6271 unix_inflight(fpl->user, fpl->fp[nr_files]);
6272 nr_files++;
6273 }
6274
6275 if (nr_files) {
6276 fpl->max = SCM_MAX_FD;
6277 fpl->count = nr_files;
6278 UNIXCB(skb).fp = fpl;
6279 skb->destructor = unix_destruct_scm;
6280 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
6281 skb_queue_head(&sk->sk_receive_queue, skb);
6282
6283 for (i = 0; i < nr_files; i++)
6284 fput(fpl->fp[i]);
6285 } else {
6286 kfree_skb(skb);
6287 kfree(fpl);
6288 }
6289
6290 return 0;
6291 }
6292
6293 /*
6294 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
6295 * causes regular reference counting to break down. We rely on the UNIX
6296 * garbage collection to take care of this problem for us.
6297 */
6298 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6299 {
6300 unsigned left, total;
6301 int ret = 0;
6302
6303 total = 0;
6304 left = ctx->nr_user_files;
6305 while (left) {
6306 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
6307
6308 ret = __io_sqe_files_scm(ctx, this_files, total);
6309 if (ret)
6310 break;
6311 left -= this_files;
6312 total += this_files;
6313 }
6314
6315 if (!ret)
6316 return 0;
6317
6318 while (total < ctx->nr_user_files) {
6319 struct file *file = io_file_from_index(ctx, total);
6320
6321 if (file)
6322 fput(file);
6323 total++;
6324 }
6325
6326 return ret;
6327 }
6328 #else
6329 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6330 {
6331 return 0;
6332 }
6333 #endif
6334
6335 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
6336 unsigned nr_files)
6337 {
6338 int i;
6339
6340 for (i = 0; i < nr_tables; i++) {
6341 struct fixed_file_table *table = &ctx->file_data->table[i];
6342 unsigned this_files;
6343
6344 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
6345 table->files = kcalloc(this_files, sizeof(struct file *),
6346 GFP_KERNEL);
6347 if (!table->files)
6348 break;
6349 nr_files -= this_files;
6350 }
6351
6352 if (i == nr_tables)
6353 return 0;
6354
6355 for (i = 0; i < nr_tables; i++) {
6356 struct fixed_file_table *table = &ctx->file_data->table[i];
6357 kfree(table->files);
6358 }
6359 return 1;
6360 }
6361
6362 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
6363 {
6364 #if defined(CONFIG_UNIX)
6365 struct sock *sock = ctx->ring_sock->sk;
6366 struct sk_buff_head list, *head = &sock->sk_receive_queue;
6367 struct sk_buff *skb;
6368 int i;
6369
6370 __skb_queue_head_init(&list);
6371
6372 /*
6373 * Find the skb that holds this file in its SCM_RIGHTS. When found,
6374 * remove this entry and rearrange the file array.
6375 */
6376 skb = skb_dequeue(head);
6377 while (skb) {
6378 struct scm_fp_list *fp;
6379
6380 fp = UNIXCB(skb).fp;
6381 for (i = 0; i < fp->count; i++) {
6382 int left;
6383
6384 if (fp->fp[i] != file)
6385 continue;
6386
6387 unix_notinflight(fp->user, fp->fp[i]);
6388 left = fp->count - 1 - i;
6389 if (left) {
6390 memmove(&fp->fp[i], &fp->fp[i + 1],
6391 left * sizeof(struct file *));
6392 }
6393 fp->count--;
6394 if (!fp->count) {
6395 kfree_skb(skb);
6396 skb = NULL;
6397 } else {
6398 __skb_queue_tail(&list, skb);
6399 }
6400 fput(file);
6401 file = NULL;
6402 break;
6403 }
6404
6405 if (!file)
6406 break;
6407
6408 __skb_queue_tail(&list, skb);
6409
6410 skb = skb_dequeue(head);
6411 }
6412
6413 if (skb_peek(&list)) {
6414 spin_lock_irq(&head->lock);
6415 while ((skb = __skb_dequeue(&list)) != NULL)
6416 __skb_queue_tail(head, skb);
6417 spin_unlock_irq(&head->lock);
6418 }
6419 #else
6420 fput(file);
6421 #endif
6422 }
6423
6424 struct io_file_put {
6425 struct list_head list;
6426 struct file *file;
6427 };
6428
6429 static void io_file_put_work(struct work_struct *work)
6430 {
6431 struct fixed_file_ref_node *ref_node;
6432 struct fixed_file_data *file_data;
6433 struct io_ring_ctx *ctx;
6434 struct io_file_put *pfile, *tmp;
6435 unsigned long flags;
6436
6437 ref_node = container_of(work, struct fixed_file_ref_node, work);
6438 file_data = ref_node->file_data;
6439 ctx = file_data->ctx;
6440
6441 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
6442 list_del_init(&pfile->list);
6443 io_ring_file_put(ctx, pfile->file);
6444 kfree(pfile);
6445 }
6446
6447 spin_lock_irqsave(&file_data->lock, flags);
6448 list_del_init(&ref_node->node);
6449 spin_unlock_irqrestore(&file_data->lock, flags);
6450
6451 percpu_ref_exit(&ref_node->refs);
6452 kfree(ref_node);
6453 percpu_ref_put(&file_data->refs);
6454 }
6455
6456 static void io_file_data_ref_zero(struct percpu_ref *ref)
6457 {
6458 struct fixed_file_ref_node *ref_node;
6459
6460 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
6461
6462 queue_work(system_wq, &ref_node->work);
6463 }
6464
6465 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
6466 struct io_ring_ctx *ctx)
6467 {
6468 struct fixed_file_ref_node *ref_node;
6469
6470 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
6471 if (!ref_node)
6472 return ERR_PTR(-ENOMEM);
6473
6474 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
6475 0, GFP_KERNEL)) {
6476 kfree(ref_node);
6477 return ERR_PTR(-ENOMEM);
6478 }
6479 INIT_LIST_HEAD(&ref_node->node);
6480 INIT_LIST_HEAD(&ref_node->file_list);
6481 INIT_WORK(&ref_node->work, io_file_put_work);
6482 ref_node->file_data = ctx->file_data;
6483 return ref_node;
6484
6485 }
6486
6487 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
6488 {
6489 percpu_ref_exit(&ref_node->refs);
6490 kfree(ref_node);
6491 }
6492
6493 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
6494 unsigned nr_args)
6495 {
6496 __s32 __user *fds = (__s32 __user *) arg;
6497 unsigned nr_tables;
6498 struct file *file;
6499 int fd, ret = 0;
6500 unsigned i;
6501 struct fixed_file_ref_node *ref_node;
6502 unsigned long flags;
6503
6504 if (ctx->file_data)
6505 return -EBUSY;
6506 if (!nr_args)
6507 return -EINVAL;
6508 if (nr_args > IORING_MAX_FIXED_FILES)
6509 return -EMFILE;
6510
6511 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
6512 if (!ctx->file_data)
6513 return -ENOMEM;
6514 ctx->file_data->ctx = ctx;
6515 init_completion(&ctx->file_data->done);
6516 INIT_LIST_HEAD(&ctx->file_data->ref_list);
6517 spin_lock_init(&ctx->file_data->lock);
6518
6519 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
6520 ctx->file_data->table = kcalloc(nr_tables,
6521 sizeof(struct fixed_file_table),
6522 GFP_KERNEL);
6523 if (!ctx->file_data->table) {
6524 kfree(ctx->file_data);
6525 ctx->file_data = NULL;
6526 return -ENOMEM;
6527 }
6528
6529 if (percpu_ref_init(&ctx->file_data->refs, io_file_ref_kill,
6530 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
6531 kfree(ctx->file_data->table);
6532 kfree(ctx->file_data);
6533 ctx->file_data = NULL;
6534 return -ENOMEM;
6535 }
6536
6537 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
6538 percpu_ref_exit(&ctx->file_data->refs);
6539 kfree(ctx->file_data->table);
6540 kfree(ctx->file_data);
6541 ctx->file_data = NULL;
6542 return -ENOMEM;
6543 }
6544
6545 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
6546 struct fixed_file_table *table;
6547 unsigned index;
6548
6549 ret = -EFAULT;
6550 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
6551 break;
6552 /* allow sparse sets */
6553 if (fd == -1) {
6554 ret = 0;
6555 continue;
6556 }
6557
6558 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6559 index = i & IORING_FILE_TABLE_MASK;
6560 file = fget(fd);
6561
6562 ret = -EBADF;
6563 if (!file)
6564 break;
6565
6566 /*
6567 * Don't allow io_uring instances to be registered. If UNIX
6568 * isn't enabled, then this causes a reference cycle and this
6569 * instance can never get freed. If UNIX is enabled we'll
6570 * handle it just fine, but there's still no point in allowing
6571 * a ring fd as it doesn't support regular read/write anyway.
6572 */
6573 if (file->f_op == &io_uring_fops) {
6574 fput(file);
6575 break;
6576 }
6577 ret = 0;
6578 table->files[index] = file;
6579 }
6580
6581 if (ret) {
6582 for (i = 0; i < ctx->nr_user_files; i++) {
6583 file = io_file_from_index(ctx, i);
6584 if (file)
6585 fput(file);
6586 }
6587 for (i = 0; i < nr_tables; i++)
6588 kfree(ctx->file_data->table[i].files);
6589
6590 kfree(ctx->file_data->table);
6591 kfree(ctx->file_data);
6592 ctx->file_data = NULL;
6593 ctx->nr_user_files = 0;
6594 return ret;
6595 }
6596
6597 ret = io_sqe_files_scm(ctx);
6598 if (ret) {
6599 io_sqe_files_unregister(ctx);
6600 return ret;
6601 }
6602
6603 ref_node = alloc_fixed_file_ref_node(ctx);
6604 if (IS_ERR(ref_node)) {
6605 io_sqe_files_unregister(ctx);
6606 return PTR_ERR(ref_node);
6607 }
6608
6609 ctx->file_data->cur_refs = &ref_node->refs;
6610 spin_lock_irqsave(&ctx->file_data->lock, flags);
6611 list_add(&ref_node->node, &ctx->file_data->ref_list);
6612 spin_unlock_irqrestore(&ctx->file_data->lock, flags);
6613 percpu_ref_get(&ctx->file_data->refs);
6614 return ret;
6615 }
6616
6617 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
6618 int index)
6619 {
6620 #if defined(CONFIG_UNIX)
6621 struct sock *sock = ctx->ring_sock->sk;
6622 struct sk_buff_head *head = &sock->sk_receive_queue;
6623 struct sk_buff *skb;
6624
6625 /*
6626 * See if we can merge this file into an existing skb SCM_RIGHTS
6627 * file set. If there's no room, fall back to allocating a new skb
6628 * and filling it in.
6629 */
6630 spin_lock_irq(&head->lock);
6631 skb = skb_peek(head);
6632 if (skb) {
6633 struct scm_fp_list *fpl = UNIXCB(skb).fp;
6634
6635 if (fpl->count < SCM_MAX_FD) {
6636 __skb_unlink(skb, head);
6637 spin_unlock_irq(&head->lock);
6638 fpl->fp[fpl->count] = get_file(file);
6639 unix_inflight(fpl->user, fpl->fp[fpl->count]);
6640 fpl->count++;
6641 spin_lock_irq(&head->lock);
6642 __skb_queue_head(head, skb);
6643 } else {
6644 skb = NULL;
6645 }
6646 }
6647 spin_unlock_irq(&head->lock);
6648
6649 if (skb) {
6650 fput(file);
6651 return 0;
6652 }
6653
6654 return __io_sqe_files_scm(ctx, 1, index);
6655 #else
6656 return 0;
6657 #endif
6658 }
6659
6660 static int io_queue_file_removal(struct fixed_file_data *data,
6661 struct file *file)
6662 {
6663 struct io_file_put *pfile;
6664 struct percpu_ref *refs = data->cur_refs;
6665 struct fixed_file_ref_node *ref_node;
6666
6667 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
6668 if (!pfile)
6669 return -ENOMEM;
6670
6671 ref_node = container_of(refs, struct fixed_file_ref_node, refs);
6672 pfile->file = file;
6673 list_add(&pfile->list, &ref_node->file_list);
6674
6675 return 0;
6676 }
6677
6678 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
6679 struct io_uring_files_update *up,
6680 unsigned nr_args)
6681 {
6682 struct fixed_file_data *data = ctx->file_data;
6683 struct fixed_file_ref_node *ref_node;
6684 struct file *file;
6685 __s32 __user *fds;
6686 int fd, i, err;
6687 __u32 done;
6688 unsigned long flags;
6689 bool needs_switch = false;
6690
6691 if (check_add_overflow(up->offset, nr_args, &done))
6692 return -EOVERFLOW;
6693 if (done > ctx->nr_user_files)
6694 return -EINVAL;
6695
6696 ref_node = alloc_fixed_file_ref_node(ctx);
6697 if (IS_ERR(ref_node))
6698 return PTR_ERR(ref_node);
6699
6700 done = 0;
6701 fds = u64_to_user_ptr(up->fds);
6702 while (nr_args) {
6703 struct fixed_file_table *table;
6704 unsigned index;
6705
6706 err = 0;
6707 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
6708 err = -EFAULT;
6709 break;
6710 }
6711 i = array_index_nospec(up->offset, ctx->nr_user_files);
6712 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6713 index = i & IORING_FILE_TABLE_MASK;
6714 if (table->files[index]) {
6715 file = io_file_from_index(ctx, index);
6716 err = io_queue_file_removal(data, file);
6717 if (err)
6718 break;
6719 table->files[index] = NULL;
6720 needs_switch = true;
6721 }
6722 if (fd != -1) {
6723 file = fget(fd);
6724 if (!file) {
6725 err = -EBADF;
6726 break;
6727 }
6728 /*
6729 * Don't allow io_uring instances to be registered. If
6730 * UNIX isn't enabled, then this causes a reference
6731 * cycle and this instance can never get freed. If UNIX
6732 * is enabled we'll handle it just fine, but there's
6733 * still no point in allowing a ring fd as it doesn't
6734 * support regular read/write anyway.
6735 */
6736 if (file->f_op == &io_uring_fops) {
6737 fput(file);
6738 err = -EBADF;
6739 break;
6740 }
6741 table->files[index] = file;
6742 err = io_sqe_file_register(ctx, file, i);
6743 if (err)
6744 break;
6745 }
6746 nr_args--;
6747 done++;
6748 up->offset++;
6749 }
6750
6751 if (needs_switch) {
6752 percpu_ref_kill(data->cur_refs);
6753 spin_lock_irqsave(&data->lock, flags);
6754 list_add(&ref_node->node, &data->ref_list);
6755 data->cur_refs = &ref_node->refs;
6756 spin_unlock_irqrestore(&data->lock, flags);
6757 percpu_ref_get(&ctx->file_data->refs);
6758 } else
6759 destroy_fixed_file_ref_node(ref_node);
6760
6761 return done ? done : err;
6762 }
6763
6764 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
6765 unsigned nr_args)
6766 {
6767 struct io_uring_files_update up;
6768
6769 if (!ctx->file_data)
6770 return -ENXIO;
6771 if (!nr_args)
6772 return -EINVAL;
6773 if (copy_from_user(&up, arg, sizeof(up)))
6774 return -EFAULT;
6775 if (up.resv)
6776 return -EINVAL;
6777
6778 return __io_sqe_files_update(ctx, &up, nr_args);
6779 }
6780
6781 static void io_free_work(struct io_wq_work *work)
6782 {
6783 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6784
6785 /* Consider that io_steal_work() relies on this ref */
6786 io_put_req(req);
6787 }
6788
6789 static int io_init_wq_offload(struct io_ring_ctx *ctx,
6790 struct io_uring_params *p)
6791 {
6792 struct io_wq_data data;
6793 struct fd f;
6794 struct io_ring_ctx *ctx_attach;
6795 unsigned int concurrency;
6796 int ret = 0;
6797
6798 data.user = ctx->user;
6799 data.free_work = io_free_work;
6800
6801 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
6802 /* Do QD, or 4 * CPUS, whatever is smallest */
6803 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
6804
6805 ctx->io_wq = io_wq_create(concurrency, &data);
6806 if (IS_ERR(ctx->io_wq)) {
6807 ret = PTR_ERR(ctx->io_wq);
6808 ctx->io_wq = NULL;
6809 }
6810 return ret;
6811 }
6812
6813 f = fdget(p->wq_fd);
6814 if (!f.file)
6815 return -EBADF;
6816
6817 if (f.file->f_op != &io_uring_fops) {
6818 ret = -EINVAL;
6819 goto out_fput;
6820 }
6821
6822 ctx_attach = f.file->private_data;
6823 /* @io_wq is protected by holding the fd */
6824 if (!io_wq_get(ctx_attach->io_wq, &data)) {
6825 ret = -EINVAL;
6826 goto out_fput;
6827 }
6828
6829 ctx->io_wq = ctx_attach->io_wq;
6830 out_fput:
6831 fdput(f);
6832 return ret;
6833 }
6834
6835 static int io_sq_offload_start(struct io_ring_ctx *ctx,
6836 struct io_uring_params *p)
6837 {
6838 int ret;
6839
6840 init_waitqueue_head(&ctx->sqo_wait);
6841 mmgrab(current->mm);
6842 ctx->sqo_mm = current->mm;
6843
6844 if (ctx->flags & IORING_SETUP_SQPOLL) {
6845 ret = -EPERM;
6846 if (!capable(CAP_SYS_ADMIN))
6847 goto err;
6848
6849 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
6850 if (!ctx->sq_thread_idle)
6851 ctx->sq_thread_idle = HZ;
6852
6853 if (p->flags & IORING_SETUP_SQ_AFF) {
6854 int cpu = p->sq_thread_cpu;
6855
6856 ret = -EINVAL;
6857 if (cpu >= nr_cpu_ids)
6858 goto err;
6859 if (!cpu_online(cpu))
6860 goto err;
6861
6862 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
6863 ctx, cpu,
6864 "io_uring-sq");
6865 } else {
6866 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
6867 "io_uring-sq");
6868 }
6869 if (IS_ERR(ctx->sqo_thread)) {
6870 ret = PTR_ERR(ctx->sqo_thread);
6871 ctx->sqo_thread = NULL;
6872 goto err;
6873 }
6874 wake_up_process(ctx->sqo_thread);
6875 } else if (p->flags & IORING_SETUP_SQ_AFF) {
6876 /* Can't have SQ_AFF without SQPOLL */
6877 ret = -EINVAL;
6878 goto err;
6879 }
6880
6881 ret = io_init_wq_offload(ctx, p);
6882 if (ret)
6883 goto err;
6884
6885 return 0;
6886 err:
6887 io_finish_async(ctx);
6888 mmdrop(ctx->sqo_mm);
6889 ctx->sqo_mm = NULL;
6890 return ret;
6891 }
6892
6893 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
6894 {
6895 atomic_long_sub(nr_pages, &user->locked_vm);
6896 }
6897
6898 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
6899 {
6900 unsigned long page_limit, cur_pages, new_pages;
6901
6902 /* Don't allow more pages than we can safely lock */
6903 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
6904
6905 do {
6906 cur_pages = atomic_long_read(&user->locked_vm);
6907 new_pages = cur_pages + nr_pages;
6908 if (new_pages > page_limit)
6909 return -ENOMEM;
6910 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
6911 new_pages) != cur_pages);
6912
6913 return 0;
6914 }
6915
6916 static void io_mem_free(void *ptr)
6917 {
6918 struct page *page;
6919
6920 if (!ptr)
6921 return;
6922
6923 page = virt_to_head_page(ptr);
6924 if (put_page_testzero(page))
6925 free_compound_page(page);
6926 }
6927
6928 static void *io_mem_alloc(size_t size)
6929 {
6930 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
6931 __GFP_NORETRY;
6932
6933 return (void *) __get_free_pages(gfp_flags, get_order(size));
6934 }
6935
6936 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
6937 size_t *sq_offset)
6938 {
6939 struct io_rings *rings;
6940 size_t off, sq_array_size;
6941
6942 off = struct_size(rings, cqes, cq_entries);
6943 if (off == SIZE_MAX)
6944 return SIZE_MAX;
6945
6946 #ifdef CONFIG_SMP
6947 off = ALIGN(off, SMP_CACHE_BYTES);
6948 if (off == 0)
6949 return SIZE_MAX;
6950 #endif
6951
6952 sq_array_size = array_size(sizeof(u32), sq_entries);
6953 if (sq_array_size == SIZE_MAX)
6954 return SIZE_MAX;
6955
6956 if (check_add_overflow(off, sq_array_size, &off))
6957 return SIZE_MAX;
6958
6959 if (sq_offset)
6960 *sq_offset = off;
6961
6962 return off;
6963 }
6964
6965 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
6966 {
6967 size_t pages;
6968
6969 pages = (size_t)1 << get_order(
6970 rings_size(sq_entries, cq_entries, NULL));
6971 pages += (size_t)1 << get_order(
6972 array_size(sizeof(struct io_uring_sqe), sq_entries));
6973
6974 return pages;
6975 }
6976
6977 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
6978 {
6979 int i, j;
6980
6981 if (!ctx->user_bufs)
6982 return -ENXIO;
6983
6984 for (i = 0; i < ctx->nr_user_bufs; i++) {
6985 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6986
6987 for (j = 0; j < imu->nr_bvecs; j++)
6988 unpin_user_page(imu->bvec[j].bv_page);
6989
6990 if (ctx->account_mem)
6991 io_unaccount_mem(ctx->user, imu->nr_bvecs);
6992 kvfree(imu->bvec);
6993 imu->nr_bvecs = 0;
6994 }
6995
6996 kfree(ctx->user_bufs);
6997 ctx->user_bufs = NULL;
6998 ctx->nr_user_bufs = 0;
6999 return 0;
7000 }
7001
7002 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7003 void __user *arg, unsigned index)
7004 {
7005 struct iovec __user *src;
7006
7007 #ifdef CONFIG_COMPAT
7008 if (ctx->compat) {
7009 struct compat_iovec __user *ciovs;
7010 struct compat_iovec ciov;
7011
7012 ciovs = (struct compat_iovec __user *) arg;
7013 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7014 return -EFAULT;
7015
7016 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7017 dst->iov_len = ciov.iov_len;
7018 return 0;
7019 }
7020 #endif
7021 src = (struct iovec __user *) arg;
7022 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7023 return -EFAULT;
7024 return 0;
7025 }
7026
7027 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
7028 unsigned nr_args)
7029 {
7030 struct vm_area_struct **vmas = NULL;
7031 struct page **pages = NULL;
7032 int i, j, got_pages = 0;
7033 int ret = -EINVAL;
7034
7035 if (ctx->user_bufs)
7036 return -EBUSY;
7037 if (!nr_args || nr_args > UIO_MAXIOV)
7038 return -EINVAL;
7039
7040 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
7041 GFP_KERNEL);
7042 if (!ctx->user_bufs)
7043 return -ENOMEM;
7044
7045 for (i = 0; i < nr_args; i++) {
7046 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7047 unsigned long off, start, end, ubuf;
7048 int pret, nr_pages;
7049 struct iovec iov;
7050 size_t size;
7051
7052 ret = io_copy_iov(ctx, &iov, arg, i);
7053 if (ret)
7054 goto err;
7055
7056 /*
7057 * Don't impose further limits on the size and buffer
7058 * constraints here, we'll -EINVAL later when IO is
7059 * submitted if they are wrong.
7060 */
7061 ret = -EFAULT;
7062 if (!iov.iov_base || !iov.iov_len)
7063 goto err;
7064
7065 /* arbitrary limit, but we need something */
7066 if (iov.iov_len > SZ_1G)
7067 goto err;
7068
7069 ubuf = (unsigned long) iov.iov_base;
7070 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
7071 start = ubuf >> PAGE_SHIFT;
7072 nr_pages = end - start;
7073
7074 if (ctx->account_mem) {
7075 ret = io_account_mem(ctx->user, nr_pages);
7076 if (ret)
7077 goto err;
7078 }
7079
7080 ret = 0;
7081 if (!pages || nr_pages > got_pages) {
7082 kfree(vmas);
7083 kfree(pages);
7084 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
7085 GFP_KERNEL);
7086 vmas = kvmalloc_array(nr_pages,
7087 sizeof(struct vm_area_struct *),
7088 GFP_KERNEL);
7089 if (!pages || !vmas) {
7090 ret = -ENOMEM;
7091 if (ctx->account_mem)
7092 io_unaccount_mem(ctx->user, nr_pages);
7093 goto err;
7094 }
7095 got_pages = nr_pages;
7096 }
7097
7098 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
7099 GFP_KERNEL);
7100 ret = -ENOMEM;
7101 if (!imu->bvec) {
7102 if (ctx->account_mem)
7103 io_unaccount_mem(ctx->user, nr_pages);
7104 goto err;
7105 }
7106
7107 ret = 0;
7108 down_read(&current->mm->mmap_sem);
7109 pret = pin_user_pages(ubuf, nr_pages,
7110 FOLL_WRITE | FOLL_LONGTERM,
7111 pages, vmas);
7112 if (pret == nr_pages) {
7113 /* don't support file backed memory */
7114 for (j = 0; j < nr_pages; j++) {
7115 struct vm_area_struct *vma = vmas[j];
7116
7117 if (vma->vm_file &&
7118 !is_file_hugepages(vma->vm_file)) {
7119 ret = -EOPNOTSUPP;
7120 break;
7121 }
7122 }
7123 } else {
7124 ret = pret < 0 ? pret : -EFAULT;
7125 }
7126 up_read(&current->mm->mmap_sem);
7127 if (ret) {
7128 /*
7129 * if we did partial map, or found file backed vmas,
7130 * release any pages we did get
7131 */
7132 if (pret > 0)
7133 unpin_user_pages(pages, pret);
7134 if (ctx->account_mem)
7135 io_unaccount_mem(ctx->user, nr_pages);
7136 kvfree(imu->bvec);
7137 goto err;
7138 }
7139
7140 off = ubuf & ~PAGE_MASK;
7141 size = iov.iov_len;
7142 for (j = 0; j < nr_pages; j++) {
7143 size_t vec_len;
7144
7145 vec_len = min_t(size_t, size, PAGE_SIZE - off);
7146 imu->bvec[j].bv_page = pages[j];
7147 imu->bvec[j].bv_len = vec_len;
7148 imu->bvec[j].bv_offset = off;
7149 off = 0;
7150 size -= vec_len;
7151 }
7152 /* store original address for later verification */
7153 imu->ubuf = ubuf;
7154 imu->len = iov.iov_len;
7155 imu->nr_bvecs = nr_pages;
7156
7157 ctx->nr_user_bufs++;
7158 }
7159 kvfree(pages);
7160 kvfree(vmas);
7161 return 0;
7162 err:
7163 kvfree(pages);
7164 kvfree(vmas);
7165 io_sqe_buffer_unregister(ctx);
7166 return ret;
7167 }
7168
7169 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
7170 {
7171 __s32 __user *fds = arg;
7172 int fd;
7173
7174 if (ctx->cq_ev_fd)
7175 return -EBUSY;
7176
7177 if (copy_from_user(&fd, fds, sizeof(*fds)))
7178 return -EFAULT;
7179
7180 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
7181 if (IS_ERR(ctx->cq_ev_fd)) {
7182 int ret = PTR_ERR(ctx->cq_ev_fd);
7183 ctx->cq_ev_fd = NULL;
7184 return ret;
7185 }
7186
7187 return 0;
7188 }
7189
7190 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
7191 {
7192 if (ctx->cq_ev_fd) {
7193 eventfd_ctx_put(ctx->cq_ev_fd);
7194 ctx->cq_ev_fd = NULL;
7195 return 0;
7196 }
7197
7198 return -ENXIO;
7199 }
7200
7201 static int __io_destroy_buffers(int id, void *p, void *data)
7202 {
7203 struct io_ring_ctx *ctx = data;
7204 struct io_buffer *buf = p;
7205
7206 __io_remove_buffers(ctx, buf, id, -1U);
7207 return 0;
7208 }
7209
7210 static void io_destroy_buffers(struct io_ring_ctx *ctx)
7211 {
7212 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
7213 idr_destroy(&ctx->io_buffer_idr);
7214 }
7215
7216 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
7217 {
7218 io_finish_async(ctx);
7219 if (ctx->sqo_mm)
7220 mmdrop(ctx->sqo_mm);
7221
7222 io_iopoll_reap_events(ctx);
7223 io_sqe_buffer_unregister(ctx);
7224 io_sqe_files_unregister(ctx);
7225 io_eventfd_unregister(ctx);
7226 io_destroy_buffers(ctx);
7227 idr_destroy(&ctx->personality_idr);
7228
7229 #if defined(CONFIG_UNIX)
7230 if (ctx->ring_sock) {
7231 ctx->ring_sock->file = NULL; /* so that iput() is called */
7232 sock_release(ctx->ring_sock);
7233 }
7234 #endif
7235
7236 io_mem_free(ctx->rings);
7237 io_mem_free(ctx->sq_sqes);
7238
7239 percpu_ref_exit(&ctx->refs);
7240 if (ctx->account_mem)
7241 io_unaccount_mem(ctx->user,
7242 ring_pages(ctx->sq_entries, ctx->cq_entries));
7243 free_uid(ctx->user);
7244 put_cred(ctx->creds);
7245 kfree(ctx->completions);
7246 kfree(ctx->cancel_hash);
7247 kmem_cache_free(req_cachep, ctx->fallback_req);
7248 kfree(ctx);
7249 }
7250
7251 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
7252 {
7253 struct io_ring_ctx *ctx = file->private_data;
7254 __poll_t mask = 0;
7255
7256 poll_wait(file, &ctx->cq_wait, wait);
7257 /*
7258 * synchronizes with barrier from wq_has_sleeper call in
7259 * io_commit_cqring
7260 */
7261 smp_rmb();
7262 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
7263 ctx->rings->sq_ring_entries)
7264 mask |= EPOLLOUT | EPOLLWRNORM;
7265 if (io_cqring_events(ctx, false))
7266 mask |= EPOLLIN | EPOLLRDNORM;
7267
7268 return mask;
7269 }
7270
7271 static int io_uring_fasync(int fd, struct file *file, int on)
7272 {
7273 struct io_ring_ctx *ctx = file->private_data;
7274
7275 return fasync_helper(fd, file, on, &ctx->cq_fasync);
7276 }
7277
7278 static int io_remove_personalities(int id, void *p, void *data)
7279 {
7280 struct io_ring_ctx *ctx = data;
7281 const struct cred *cred;
7282
7283 cred = idr_remove(&ctx->personality_idr, id);
7284 if (cred)
7285 put_cred(cred);
7286 return 0;
7287 }
7288
7289 static void io_ring_exit_work(struct work_struct *work)
7290 {
7291 struct io_ring_ctx *ctx;
7292
7293 ctx = container_of(work, struct io_ring_ctx, exit_work);
7294 if (ctx->rings)
7295 io_cqring_overflow_flush(ctx, true);
7296
7297 wait_for_completion(&ctx->completions[0]);
7298 io_ring_ctx_free(ctx);
7299 }
7300
7301 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
7302 {
7303 mutex_lock(&ctx->uring_lock);
7304 percpu_ref_kill(&ctx->refs);
7305 mutex_unlock(&ctx->uring_lock);
7306
7307 /*
7308 * Wait for sq thread to idle, if we have one. It won't spin on new
7309 * work after we've killed the ctx ref above. This is important to do
7310 * before we cancel existing commands, as the thread could otherwise
7311 * be queueing new work post that. If that's work we need to cancel,
7312 * it could cause shutdown to hang.
7313 */
7314 while (ctx->sqo_thread && !wq_has_sleeper(&ctx->sqo_wait))
7315 cond_resched();
7316
7317 io_kill_timeouts(ctx);
7318 io_poll_remove_all(ctx);
7319
7320 if (ctx->io_wq)
7321 io_wq_cancel_all(ctx->io_wq);
7322
7323 io_iopoll_reap_events(ctx);
7324 /* if we failed setting up the ctx, we might not have any rings */
7325 if (ctx->rings)
7326 io_cqring_overflow_flush(ctx, true);
7327 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
7328 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
7329 queue_work(system_wq, &ctx->exit_work);
7330 }
7331
7332 static int io_uring_release(struct inode *inode, struct file *file)
7333 {
7334 struct io_ring_ctx *ctx = file->private_data;
7335
7336 file->private_data = NULL;
7337 io_ring_ctx_wait_and_kill(ctx);
7338 return 0;
7339 }
7340
7341 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
7342 struct files_struct *files)
7343 {
7344 while (!list_empty_careful(&ctx->inflight_list)) {
7345 struct io_kiocb *cancel_req = NULL, *req;
7346 DEFINE_WAIT(wait);
7347
7348 spin_lock_irq(&ctx->inflight_lock);
7349 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
7350 if (req->work.files != files)
7351 continue;
7352 /* req is being completed, ignore */
7353 if (!refcount_inc_not_zero(&req->refs))
7354 continue;
7355 cancel_req = req;
7356 break;
7357 }
7358 if (cancel_req)
7359 prepare_to_wait(&ctx->inflight_wait, &wait,
7360 TASK_UNINTERRUPTIBLE);
7361 spin_unlock_irq(&ctx->inflight_lock);
7362
7363 /* We need to keep going until we don't find a matching req */
7364 if (!cancel_req)
7365 break;
7366
7367 if (cancel_req->flags & REQ_F_OVERFLOW) {
7368 spin_lock_irq(&ctx->completion_lock);
7369 list_del(&cancel_req->list);
7370 cancel_req->flags &= ~REQ_F_OVERFLOW;
7371 if (list_empty(&ctx->cq_overflow_list)) {
7372 clear_bit(0, &ctx->sq_check_overflow);
7373 clear_bit(0, &ctx->cq_check_overflow);
7374 }
7375 spin_unlock_irq(&ctx->completion_lock);
7376
7377 WRITE_ONCE(ctx->rings->cq_overflow,
7378 atomic_inc_return(&ctx->cached_cq_overflow));
7379
7380 /*
7381 * Put inflight ref and overflow ref. If that's
7382 * all we had, then we're done with this request.
7383 */
7384 if (refcount_sub_and_test(2, &cancel_req->refs)) {
7385 io_put_req(cancel_req);
7386 finish_wait(&ctx->inflight_wait, &wait);
7387 continue;
7388 }
7389 }
7390
7391 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
7392 io_put_req(cancel_req);
7393 schedule();
7394 finish_wait(&ctx->inflight_wait, &wait);
7395 }
7396 }
7397
7398 static int io_uring_flush(struct file *file, void *data)
7399 {
7400 struct io_ring_ctx *ctx = file->private_data;
7401
7402 io_uring_cancel_files(ctx, data);
7403
7404 /*
7405 * If the task is going away, cancel work it may have pending
7406 */
7407 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
7408 io_wq_cancel_pid(ctx->io_wq, task_pid_vnr(current));
7409
7410 return 0;
7411 }
7412
7413 static void *io_uring_validate_mmap_request(struct file *file,
7414 loff_t pgoff, size_t sz)
7415 {
7416 struct io_ring_ctx *ctx = file->private_data;
7417 loff_t offset = pgoff << PAGE_SHIFT;
7418 struct page *page;
7419 void *ptr;
7420
7421 switch (offset) {
7422 case IORING_OFF_SQ_RING:
7423 case IORING_OFF_CQ_RING:
7424 ptr = ctx->rings;
7425 break;
7426 case IORING_OFF_SQES:
7427 ptr = ctx->sq_sqes;
7428 break;
7429 default:
7430 return ERR_PTR(-EINVAL);
7431 }
7432
7433 page = virt_to_head_page(ptr);
7434 if (sz > page_size(page))
7435 return ERR_PTR(-EINVAL);
7436
7437 return ptr;
7438 }
7439
7440 #ifdef CONFIG_MMU
7441
7442 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7443 {
7444 size_t sz = vma->vm_end - vma->vm_start;
7445 unsigned long pfn;
7446 void *ptr;
7447
7448 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
7449 if (IS_ERR(ptr))
7450 return PTR_ERR(ptr);
7451
7452 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
7453 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
7454 }
7455
7456 #else /* !CONFIG_MMU */
7457
7458 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7459 {
7460 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
7461 }
7462
7463 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
7464 {
7465 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
7466 }
7467
7468 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
7469 unsigned long addr, unsigned long len,
7470 unsigned long pgoff, unsigned long flags)
7471 {
7472 void *ptr;
7473
7474 ptr = io_uring_validate_mmap_request(file, pgoff, len);
7475 if (IS_ERR(ptr))
7476 return PTR_ERR(ptr);
7477
7478 return (unsigned long) ptr;
7479 }
7480
7481 #endif /* !CONFIG_MMU */
7482
7483 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
7484 u32, min_complete, u32, flags, const sigset_t __user *, sig,
7485 size_t, sigsz)
7486 {
7487 struct io_ring_ctx *ctx;
7488 long ret = -EBADF;
7489 int submitted = 0;
7490 struct fd f;
7491
7492 if (current->task_works)
7493 task_work_run();
7494
7495 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
7496 return -EINVAL;
7497
7498 f = fdget(fd);
7499 if (!f.file)
7500 return -EBADF;
7501
7502 ret = -EOPNOTSUPP;
7503 if (f.file->f_op != &io_uring_fops)
7504 goto out_fput;
7505
7506 ret = -ENXIO;
7507 ctx = f.file->private_data;
7508 if (!percpu_ref_tryget(&ctx->refs))
7509 goto out_fput;
7510
7511 /*
7512 * For SQ polling, the thread will do all submissions and completions.
7513 * Just return the requested submit count, and wake the thread if
7514 * we were asked to.
7515 */
7516 ret = 0;
7517 if (ctx->flags & IORING_SETUP_SQPOLL) {
7518 if (!list_empty_careful(&ctx->cq_overflow_list))
7519 io_cqring_overflow_flush(ctx, false);
7520 if (flags & IORING_ENTER_SQ_WAKEUP)
7521 wake_up(&ctx->sqo_wait);
7522 submitted = to_submit;
7523 } else if (to_submit) {
7524 mutex_lock(&ctx->uring_lock);
7525 submitted = io_submit_sqes(ctx, to_submit, f.file, fd, false);
7526 mutex_unlock(&ctx->uring_lock);
7527
7528 if (submitted != to_submit)
7529 goto out;
7530 }
7531 if (flags & IORING_ENTER_GETEVENTS) {
7532 unsigned nr_events = 0;
7533
7534 min_complete = min(min_complete, ctx->cq_entries);
7535
7536 /*
7537 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
7538 * space applications don't need to do io completion events
7539 * polling again, they can rely on io_sq_thread to do polling
7540 * work, which can reduce cpu usage and uring_lock contention.
7541 */
7542 if (ctx->flags & IORING_SETUP_IOPOLL &&
7543 !(ctx->flags & IORING_SETUP_SQPOLL)) {
7544 ret = io_iopoll_check(ctx, &nr_events, min_complete);
7545 } else {
7546 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
7547 }
7548 }
7549
7550 out:
7551 percpu_ref_put(&ctx->refs);
7552 out_fput:
7553 fdput(f);
7554 return submitted ? submitted : ret;
7555 }
7556
7557 #ifdef CONFIG_PROC_FS
7558 static int io_uring_show_cred(int id, void *p, void *data)
7559 {
7560 const struct cred *cred = p;
7561 struct seq_file *m = data;
7562 struct user_namespace *uns = seq_user_ns(m);
7563 struct group_info *gi;
7564 kernel_cap_t cap;
7565 unsigned __capi;
7566 int g;
7567
7568 seq_printf(m, "%5d\n", id);
7569 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
7570 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
7571 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
7572 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
7573 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
7574 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
7575 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
7576 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
7577 seq_puts(m, "\n\tGroups:\t");
7578 gi = cred->group_info;
7579 for (g = 0; g < gi->ngroups; g++) {
7580 seq_put_decimal_ull(m, g ? " " : "",
7581 from_kgid_munged(uns, gi->gid[g]));
7582 }
7583 seq_puts(m, "\n\tCapEff:\t");
7584 cap = cred->cap_effective;
7585 CAP_FOR_EACH_U32(__capi)
7586 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
7587 seq_putc(m, '\n');
7588 return 0;
7589 }
7590
7591 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
7592 {
7593 int i;
7594
7595 mutex_lock(&ctx->uring_lock);
7596 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
7597 for (i = 0; i < ctx->nr_user_files; i++) {
7598 struct fixed_file_table *table;
7599 struct file *f;
7600
7601 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7602 f = table->files[i & IORING_FILE_TABLE_MASK];
7603 if (f)
7604 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
7605 else
7606 seq_printf(m, "%5u: <none>\n", i);
7607 }
7608 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
7609 for (i = 0; i < ctx->nr_user_bufs; i++) {
7610 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
7611
7612 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
7613 (unsigned int) buf->len);
7614 }
7615 if (!idr_is_empty(&ctx->personality_idr)) {
7616 seq_printf(m, "Personalities:\n");
7617 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
7618 }
7619 seq_printf(m, "PollList:\n");
7620 spin_lock_irq(&ctx->completion_lock);
7621 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7622 struct hlist_head *list = &ctx->cancel_hash[i];
7623 struct io_kiocb *req;
7624
7625 hlist_for_each_entry(req, list, hash_node)
7626 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
7627 req->task->task_works != NULL);
7628 }
7629 spin_unlock_irq(&ctx->completion_lock);
7630 mutex_unlock(&ctx->uring_lock);
7631 }
7632
7633 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
7634 {
7635 struct io_ring_ctx *ctx = f->private_data;
7636
7637 if (percpu_ref_tryget(&ctx->refs)) {
7638 __io_uring_show_fdinfo(ctx, m);
7639 percpu_ref_put(&ctx->refs);
7640 }
7641 }
7642 #endif
7643
7644 static const struct file_operations io_uring_fops = {
7645 .release = io_uring_release,
7646 .flush = io_uring_flush,
7647 .mmap = io_uring_mmap,
7648 #ifndef CONFIG_MMU
7649 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
7650 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
7651 #endif
7652 .poll = io_uring_poll,
7653 .fasync = io_uring_fasync,
7654 #ifdef CONFIG_PROC_FS
7655 .show_fdinfo = io_uring_show_fdinfo,
7656 #endif
7657 };
7658
7659 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
7660 struct io_uring_params *p)
7661 {
7662 struct io_rings *rings;
7663 size_t size, sq_array_offset;
7664
7665 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
7666 if (size == SIZE_MAX)
7667 return -EOVERFLOW;
7668
7669 rings = io_mem_alloc(size);
7670 if (!rings)
7671 return -ENOMEM;
7672
7673 ctx->rings = rings;
7674 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
7675 rings->sq_ring_mask = p->sq_entries - 1;
7676 rings->cq_ring_mask = p->cq_entries - 1;
7677 rings->sq_ring_entries = p->sq_entries;
7678 rings->cq_ring_entries = p->cq_entries;
7679 ctx->sq_mask = rings->sq_ring_mask;
7680 ctx->cq_mask = rings->cq_ring_mask;
7681 ctx->sq_entries = rings->sq_ring_entries;
7682 ctx->cq_entries = rings->cq_ring_entries;
7683
7684 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
7685 if (size == SIZE_MAX) {
7686 io_mem_free(ctx->rings);
7687 ctx->rings = NULL;
7688 return -EOVERFLOW;
7689 }
7690
7691 ctx->sq_sqes = io_mem_alloc(size);
7692 if (!ctx->sq_sqes) {
7693 io_mem_free(ctx->rings);
7694 ctx->rings = NULL;
7695 return -ENOMEM;
7696 }
7697
7698 return 0;
7699 }
7700
7701 /*
7702 * Allocate an anonymous fd, this is what constitutes the application
7703 * visible backing of an io_uring instance. The application mmaps this
7704 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
7705 * we have to tie this fd to a socket for file garbage collection purposes.
7706 */
7707 static int io_uring_get_fd(struct io_ring_ctx *ctx)
7708 {
7709 struct file *file;
7710 int ret;
7711
7712 #if defined(CONFIG_UNIX)
7713 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
7714 &ctx->ring_sock);
7715 if (ret)
7716 return ret;
7717 #endif
7718
7719 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
7720 if (ret < 0)
7721 goto err;
7722
7723 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
7724 O_RDWR | O_CLOEXEC);
7725 if (IS_ERR(file)) {
7726 put_unused_fd(ret);
7727 ret = PTR_ERR(file);
7728 goto err;
7729 }
7730
7731 #if defined(CONFIG_UNIX)
7732 ctx->ring_sock->file = file;
7733 #endif
7734 fd_install(ret, file);
7735 return ret;
7736 err:
7737 #if defined(CONFIG_UNIX)
7738 sock_release(ctx->ring_sock);
7739 ctx->ring_sock = NULL;
7740 #endif
7741 return ret;
7742 }
7743
7744 static int io_uring_create(unsigned entries, struct io_uring_params *p,
7745 struct io_uring_params __user *params)
7746 {
7747 struct user_struct *user = NULL;
7748 struct io_ring_ctx *ctx;
7749 bool account_mem;
7750 int ret;
7751
7752 if (!entries)
7753 return -EINVAL;
7754 if (entries > IORING_MAX_ENTRIES) {
7755 if (!(p->flags & IORING_SETUP_CLAMP))
7756 return -EINVAL;
7757 entries = IORING_MAX_ENTRIES;
7758 }
7759
7760 /*
7761 * Use twice as many entries for the CQ ring. It's possible for the
7762 * application to drive a higher depth than the size of the SQ ring,
7763 * since the sqes are only used at submission time. This allows for
7764 * some flexibility in overcommitting a bit. If the application has
7765 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
7766 * of CQ ring entries manually.
7767 */
7768 p->sq_entries = roundup_pow_of_two(entries);
7769 if (p->flags & IORING_SETUP_CQSIZE) {
7770 /*
7771 * If IORING_SETUP_CQSIZE is set, we do the same roundup
7772 * to a power-of-two, if it isn't already. We do NOT impose
7773 * any cq vs sq ring sizing.
7774 */
7775 if (p->cq_entries < p->sq_entries)
7776 return -EINVAL;
7777 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
7778 if (!(p->flags & IORING_SETUP_CLAMP))
7779 return -EINVAL;
7780 p->cq_entries = IORING_MAX_CQ_ENTRIES;
7781 }
7782 p->cq_entries = roundup_pow_of_two(p->cq_entries);
7783 } else {
7784 p->cq_entries = 2 * p->sq_entries;
7785 }
7786
7787 user = get_uid(current_user());
7788 account_mem = !capable(CAP_IPC_LOCK);
7789
7790 if (account_mem) {
7791 ret = io_account_mem(user,
7792 ring_pages(p->sq_entries, p->cq_entries));
7793 if (ret) {
7794 free_uid(user);
7795 return ret;
7796 }
7797 }
7798
7799 ctx = io_ring_ctx_alloc(p);
7800 if (!ctx) {
7801 if (account_mem)
7802 io_unaccount_mem(user, ring_pages(p->sq_entries,
7803 p->cq_entries));
7804 free_uid(user);
7805 return -ENOMEM;
7806 }
7807 ctx->compat = in_compat_syscall();
7808 ctx->account_mem = account_mem;
7809 ctx->user = user;
7810 ctx->creds = get_current_cred();
7811
7812 ret = io_allocate_scq_urings(ctx, p);
7813 if (ret)
7814 goto err;
7815
7816 ret = io_sq_offload_start(ctx, p);
7817 if (ret)
7818 goto err;
7819
7820 memset(&p->sq_off, 0, sizeof(p->sq_off));
7821 p->sq_off.head = offsetof(struct io_rings, sq.head);
7822 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
7823 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
7824 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
7825 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
7826 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
7827 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
7828
7829 memset(&p->cq_off, 0, sizeof(p->cq_off));
7830 p->cq_off.head = offsetof(struct io_rings, cq.head);
7831 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
7832 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
7833 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
7834 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
7835 p->cq_off.cqes = offsetof(struct io_rings, cqes);
7836
7837 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
7838 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
7839 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL;
7840
7841 if (copy_to_user(params, p, sizeof(*p))) {
7842 ret = -EFAULT;
7843 goto err;
7844 }
7845 /*
7846 * Install ring fd as the very last thing, so we don't risk someone
7847 * having closed it before we finish setup
7848 */
7849 ret = io_uring_get_fd(ctx);
7850 if (ret < 0)
7851 goto err;
7852
7853 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
7854 return ret;
7855 err:
7856 io_ring_ctx_wait_and_kill(ctx);
7857 return ret;
7858 }
7859
7860 /*
7861 * Sets up an aio uring context, and returns the fd. Applications asks for a
7862 * ring size, we return the actual sq/cq ring sizes (among other things) in the
7863 * params structure passed in.
7864 */
7865 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
7866 {
7867 struct io_uring_params p;
7868 int i;
7869
7870 if (copy_from_user(&p, params, sizeof(p)))
7871 return -EFAULT;
7872 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
7873 if (p.resv[i])
7874 return -EINVAL;
7875 }
7876
7877 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
7878 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
7879 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
7880 return -EINVAL;
7881
7882 return io_uring_create(entries, &p, params);
7883 }
7884
7885 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
7886 struct io_uring_params __user *, params)
7887 {
7888 return io_uring_setup(entries, params);
7889 }
7890
7891 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
7892 {
7893 struct io_uring_probe *p;
7894 size_t size;
7895 int i, ret;
7896
7897 size = struct_size(p, ops, nr_args);
7898 if (size == SIZE_MAX)
7899 return -EOVERFLOW;
7900 p = kzalloc(size, GFP_KERNEL);
7901 if (!p)
7902 return -ENOMEM;
7903
7904 ret = -EFAULT;
7905 if (copy_from_user(p, arg, size))
7906 goto out;
7907 ret = -EINVAL;
7908 if (memchr_inv(p, 0, size))
7909 goto out;
7910
7911 p->last_op = IORING_OP_LAST - 1;
7912 if (nr_args > IORING_OP_LAST)
7913 nr_args = IORING_OP_LAST;
7914
7915 for (i = 0; i < nr_args; i++) {
7916 p->ops[i].op = i;
7917 if (!io_op_defs[i].not_supported)
7918 p->ops[i].flags = IO_URING_OP_SUPPORTED;
7919 }
7920 p->ops_len = i;
7921
7922 ret = 0;
7923 if (copy_to_user(arg, p, size))
7924 ret = -EFAULT;
7925 out:
7926 kfree(p);
7927 return ret;
7928 }
7929
7930 static int io_register_personality(struct io_ring_ctx *ctx)
7931 {
7932 const struct cred *creds = get_current_cred();
7933 int id;
7934
7935 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
7936 USHRT_MAX, GFP_KERNEL);
7937 if (id < 0)
7938 put_cred(creds);
7939 return id;
7940 }
7941
7942 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
7943 {
7944 const struct cred *old_creds;
7945
7946 old_creds = idr_remove(&ctx->personality_idr, id);
7947 if (old_creds) {
7948 put_cred(old_creds);
7949 return 0;
7950 }
7951
7952 return -EINVAL;
7953 }
7954
7955 static bool io_register_op_must_quiesce(int op)
7956 {
7957 switch (op) {
7958 case IORING_UNREGISTER_FILES:
7959 case IORING_REGISTER_FILES_UPDATE:
7960 case IORING_REGISTER_PROBE:
7961 case IORING_REGISTER_PERSONALITY:
7962 case IORING_UNREGISTER_PERSONALITY:
7963 return false;
7964 default:
7965 return true;
7966 }
7967 }
7968
7969 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
7970 void __user *arg, unsigned nr_args)
7971 __releases(ctx->uring_lock)
7972 __acquires(ctx->uring_lock)
7973 {
7974 int ret;
7975
7976 /*
7977 * We're inside the ring mutex, if the ref is already dying, then
7978 * someone else killed the ctx or is already going through
7979 * io_uring_register().
7980 */
7981 if (percpu_ref_is_dying(&ctx->refs))
7982 return -ENXIO;
7983
7984 if (io_register_op_must_quiesce(opcode)) {
7985 percpu_ref_kill(&ctx->refs);
7986
7987 /*
7988 * Drop uring mutex before waiting for references to exit. If
7989 * another thread is currently inside io_uring_enter() it might
7990 * need to grab the uring_lock to make progress. If we hold it
7991 * here across the drain wait, then we can deadlock. It's safe
7992 * to drop the mutex here, since no new references will come in
7993 * after we've killed the percpu ref.
7994 */
7995 mutex_unlock(&ctx->uring_lock);
7996 ret = wait_for_completion_interruptible(&ctx->completions[0]);
7997 mutex_lock(&ctx->uring_lock);
7998 if (ret) {
7999 percpu_ref_resurrect(&ctx->refs);
8000 ret = -EINTR;
8001 goto out;
8002 }
8003 }
8004
8005 switch (opcode) {
8006 case IORING_REGISTER_BUFFERS:
8007 ret = io_sqe_buffer_register(ctx, arg, nr_args);
8008 break;
8009 case IORING_UNREGISTER_BUFFERS:
8010 ret = -EINVAL;
8011 if (arg || nr_args)
8012 break;
8013 ret = io_sqe_buffer_unregister(ctx);
8014 break;
8015 case IORING_REGISTER_FILES:
8016 ret = io_sqe_files_register(ctx, arg, nr_args);
8017 break;
8018 case IORING_UNREGISTER_FILES:
8019 ret = -EINVAL;
8020 if (arg || nr_args)
8021 break;
8022 ret = io_sqe_files_unregister(ctx);
8023 break;
8024 case IORING_REGISTER_FILES_UPDATE:
8025 ret = io_sqe_files_update(ctx, arg, nr_args);
8026 break;
8027 case IORING_REGISTER_EVENTFD:
8028 case IORING_REGISTER_EVENTFD_ASYNC:
8029 ret = -EINVAL;
8030 if (nr_args != 1)
8031 break;
8032 ret = io_eventfd_register(ctx, arg);
8033 if (ret)
8034 break;
8035 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
8036 ctx->eventfd_async = 1;
8037 else
8038 ctx->eventfd_async = 0;
8039 break;
8040 case IORING_UNREGISTER_EVENTFD:
8041 ret = -EINVAL;
8042 if (arg || nr_args)
8043 break;
8044 ret = io_eventfd_unregister(ctx);
8045 break;
8046 case IORING_REGISTER_PROBE:
8047 ret = -EINVAL;
8048 if (!arg || nr_args > 256)
8049 break;
8050 ret = io_probe(ctx, arg, nr_args);
8051 break;
8052 case IORING_REGISTER_PERSONALITY:
8053 ret = -EINVAL;
8054 if (arg || nr_args)
8055 break;
8056 ret = io_register_personality(ctx);
8057 break;
8058 case IORING_UNREGISTER_PERSONALITY:
8059 ret = -EINVAL;
8060 if (arg)
8061 break;
8062 ret = io_unregister_personality(ctx, nr_args);
8063 break;
8064 default:
8065 ret = -EINVAL;
8066 break;
8067 }
8068
8069 if (io_register_op_must_quiesce(opcode)) {
8070 /* bring the ctx back to life */
8071 percpu_ref_reinit(&ctx->refs);
8072 out:
8073 reinit_completion(&ctx->completions[0]);
8074 }
8075 return ret;
8076 }
8077
8078 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
8079 void __user *, arg, unsigned int, nr_args)
8080 {
8081 struct io_ring_ctx *ctx;
8082 long ret = -EBADF;
8083 struct fd f;
8084
8085 f = fdget(fd);
8086 if (!f.file)
8087 return -EBADF;
8088
8089 ret = -EOPNOTSUPP;
8090 if (f.file->f_op != &io_uring_fops)
8091 goto out_fput;
8092
8093 ctx = f.file->private_data;
8094
8095 mutex_lock(&ctx->uring_lock);
8096 ret = __io_uring_register(ctx, opcode, arg, nr_args);
8097 mutex_unlock(&ctx->uring_lock);
8098 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
8099 ctx->cq_ev_fd != NULL, ret);
8100 out_fput:
8101 fdput(f);
8102 return ret;
8103 }
8104
8105 static int __init io_uring_init(void)
8106 {
8107 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
8108 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
8109 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
8110 } while (0)
8111
8112 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
8113 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
8114 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
8115 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
8116 BUILD_BUG_SQE_ELEM(1, __u8, flags);
8117 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
8118 BUILD_BUG_SQE_ELEM(4, __s32, fd);
8119 BUILD_BUG_SQE_ELEM(8, __u64, off);
8120 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
8121 BUILD_BUG_SQE_ELEM(16, __u64, addr);
8122 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
8123 BUILD_BUG_SQE_ELEM(24, __u32, len);
8124 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
8125 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
8126 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
8127 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
8128 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
8129 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
8130 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
8131 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
8132 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
8133 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
8134 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
8135 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
8136 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
8137 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
8138 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
8139 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
8140 BUILD_BUG_SQE_ELEM(42, __u16, personality);
8141 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
8142
8143 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
8144 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
8145 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
8146 return 0;
8147 };
8148 __initcall(io_uring_init);