]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/iomap/buffered-io.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / fs / iomap / buffered-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 #define IOEND_BATCH_SIZE 4096
25
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28 * Structure allocated for each folio to track per-block uptodate, dirty state
29 * and I/O completions.
30 */
31 struct iomap_folio_state {
32 atomic_t read_bytes_pending;
33 atomic_t write_bytes_pending;
34 spinlock_t state_lock;
35
36 /*
37 * Each block has two bits in this bitmap:
38 * Bits [0..blocks_per_folio) has the uptodate status.
39 * Bits [b_p_f...(2*b_p_f)) has the dirty status.
40 */
41 unsigned long state[];
42 };
43
44 static struct bio_set iomap_ioend_bioset;
45
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 struct iomap_folio_state *ifs)
48 {
49 struct inode *inode = folio->mapping->host;
50
51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 unsigned int block)
56 {
57 return test_bit(block, ifs->state);
58 }
59
60 static void ifs_set_range_uptodate(struct folio *folio,
61 struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 struct inode *inode = folio->mapping->host;
64 unsigned int first_blk = off >> inode->i_blkbits;
65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 unsigned int nr_blks = last_blk - first_blk + 1;
67 unsigned long flags;
68
69 spin_lock_irqsave(&ifs->state_lock, flags);
70 bitmap_set(ifs->state, first_blk, nr_blks);
71 if (ifs_is_fully_uptodate(folio, ifs))
72 folio_mark_uptodate(folio);
73 spin_unlock_irqrestore(&ifs->state_lock, flags);
74 }
75
76 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
77 size_t len)
78 {
79 struct iomap_folio_state *ifs = folio->private;
80
81 if (ifs)
82 ifs_set_range_uptodate(folio, ifs, off, len);
83 else
84 folio_mark_uptodate(folio);
85 }
86
87 static inline bool ifs_block_is_dirty(struct folio *folio,
88 struct iomap_folio_state *ifs, int block)
89 {
90 struct inode *inode = folio->mapping->host;
91 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
92
93 return test_bit(block + blks_per_folio, ifs->state);
94 }
95
96 static void ifs_clear_range_dirty(struct folio *folio,
97 struct iomap_folio_state *ifs, size_t off, size_t len)
98 {
99 struct inode *inode = folio->mapping->host;
100 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
101 unsigned int first_blk = (off >> inode->i_blkbits);
102 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
103 unsigned int nr_blks = last_blk - first_blk + 1;
104 unsigned long flags;
105
106 spin_lock_irqsave(&ifs->state_lock, flags);
107 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
108 spin_unlock_irqrestore(&ifs->state_lock, flags);
109 }
110
111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
112 {
113 struct iomap_folio_state *ifs = folio->private;
114
115 if (ifs)
116 ifs_clear_range_dirty(folio, ifs, off, len);
117 }
118
119 static void ifs_set_range_dirty(struct folio *folio,
120 struct iomap_folio_state *ifs, size_t off, size_t len)
121 {
122 struct inode *inode = folio->mapping->host;
123 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
124 unsigned int first_blk = (off >> inode->i_blkbits);
125 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
126 unsigned int nr_blks = last_blk - first_blk + 1;
127 unsigned long flags;
128
129 spin_lock_irqsave(&ifs->state_lock, flags);
130 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
131 spin_unlock_irqrestore(&ifs->state_lock, flags);
132 }
133
134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
135 {
136 struct iomap_folio_state *ifs = folio->private;
137
138 if (ifs)
139 ifs_set_range_dirty(folio, ifs, off, len);
140 }
141
142 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
143 struct folio *folio, unsigned int flags)
144 {
145 struct iomap_folio_state *ifs = folio->private;
146 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
147 gfp_t gfp;
148
149 if (ifs || nr_blocks <= 1)
150 return ifs;
151
152 if (flags & IOMAP_NOWAIT)
153 gfp = GFP_NOWAIT;
154 else
155 gfp = GFP_NOFS | __GFP_NOFAIL;
156
157 /*
158 * ifs->state tracks two sets of state flags when the
159 * filesystem block size is smaller than the folio size.
160 * The first state tracks per-block uptodate and the
161 * second tracks per-block dirty state.
162 */
163 ifs = kzalloc(struct_size(ifs, state,
164 BITS_TO_LONGS(2 * nr_blocks)), gfp);
165 if (!ifs)
166 return ifs;
167
168 spin_lock_init(&ifs->state_lock);
169 if (folio_test_uptodate(folio))
170 bitmap_set(ifs->state, 0, nr_blocks);
171 if (folio_test_dirty(folio))
172 bitmap_set(ifs->state, nr_blocks, nr_blocks);
173 folio_attach_private(folio, ifs);
174
175 return ifs;
176 }
177
178 static void ifs_free(struct folio *folio)
179 {
180 struct iomap_folio_state *ifs = folio_detach_private(folio);
181
182 if (!ifs)
183 return;
184 WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
185 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
186 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
187 folio_test_uptodate(folio));
188 kfree(ifs);
189 }
190
191 /*
192 * Calculate the range inside the folio that we actually need to read.
193 */
194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
195 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
196 {
197 struct iomap_folio_state *ifs = folio->private;
198 loff_t orig_pos = *pos;
199 loff_t isize = i_size_read(inode);
200 unsigned block_bits = inode->i_blkbits;
201 unsigned block_size = (1 << block_bits);
202 size_t poff = offset_in_folio(folio, *pos);
203 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
204 unsigned first = poff >> block_bits;
205 unsigned last = (poff + plen - 1) >> block_bits;
206
207 /*
208 * If the block size is smaller than the page size, we need to check the
209 * per-block uptodate status and adjust the offset and length if needed
210 * to avoid reading in already uptodate ranges.
211 */
212 if (ifs) {
213 unsigned int i;
214
215 /* move forward for each leading block marked uptodate */
216 for (i = first; i <= last; i++) {
217 if (!ifs_block_is_uptodate(ifs, i))
218 break;
219 *pos += block_size;
220 poff += block_size;
221 plen -= block_size;
222 first++;
223 }
224
225 /* truncate len if we find any trailing uptodate block(s) */
226 for ( ; i <= last; i++) {
227 if (ifs_block_is_uptodate(ifs, i)) {
228 plen -= (last - i + 1) * block_size;
229 last = i - 1;
230 break;
231 }
232 }
233 }
234
235 /*
236 * If the extent spans the block that contains the i_size, we need to
237 * handle both halves separately so that we properly zero data in the
238 * page cache for blocks that are entirely outside of i_size.
239 */
240 if (orig_pos <= isize && orig_pos + length > isize) {
241 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
242
243 if (first <= end && last > end)
244 plen -= (last - end) * block_size;
245 }
246
247 *offp = poff;
248 *lenp = plen;
249 }
250
251 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
252 size_t len, int error)
253 {
254 struct iomap_folio_state *ifs = folio->private;
255
256 if (unlikely(error)) {
257 folio_clear_uptodate(folio);
258 folio_set_error(folio);
259 } else {
260 iomap_set_range_uptodate(folio, offset, len);
261 }
262
263 if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
264 folio_unlock(folio);
265 }
266
267 static void iomap_read_end_io(struct bio *bio)
268 {
269 int error = blk_status_to_errno(bio->bi_status);
270 struct folio_iter fi;
271
272 bio_for_each_folio_all(fi, bio)
273 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
274 bio_put(bio);
275 }
276
277 struct iomap_readpage_ctx {
278 struct folio *cur_folio;
279 bool cur_folio_in_bio;
280 struct bio *bio;
281 struct readahead_control *rac;
282 };
283
284 /**
285 * iomap_read_inline_data - copy inline data into the page cache
286 * @iter: iteration structure
287 * @folio: folio to copy to
288 *
289 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
290 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
291 * Returns zero for success to complete the read, or the usual negative errno.
292 */
293 static int iomap_read_inline_data(const struct iomap_iter *iter,
294 struct folio *folio)
295 {
296 const struct iomap *iomap = iomap_iter_srcmap(iter);
297 size_t size = i_size_read(iter->inode) - iomap->offset;
298 size_t poff = offset_in_page(iomap->offset);
299 size_t offset = offset_in_folio(folio, iomap->offset);
300 void *addr;
301
302 if (folio_test_uptodate(folio))
303 return 0;
304
305 if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
306 return -EIO;
307 if (WARN_ON_ONCE(size > PAGE_SIZE -
308 offset_in_page(iomap->inline_data)))
309 return -EIO;
310 if (WARN_ON_ONCE(size > iomap->length))
311 return -EIO;
312 if (offset > 0)
313 ifs_alloc(iter->inode, folio, iter->flags);
314
315 addr = kmap_local_folio(folio, offset);
316 memcpy(addr, iomap->inline_data, size);
317 memset(addr + size, 0, PAGE_SIZE - poff - size);
318 kunmap_local(addr);
319 iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
320 return 0;
321 }
322
323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
324 loff_t pos)
325 {
326 const struct iomap *srcmap = iomap_iter_srcmap(iter);
327
328 return srcmap->type != IOMAP_MAPPED ||
329 (srcmap->flags & IOMAP_F_NEW) ||
330 pos >= i_size_read(iter->inode);
331 }
332
333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
334 struct iomap_readpage_ctx *ctx, loff_t offset)
335 {
336 const struct iomap *iomap = &iter->iomap;
337 loff_t pos = iter->pos + offset;
338 loff_t length = iomap_length(iter) - offset;
339 struct folio *folio = ctx->cur_folio;
340 struct iomap_folio_state *ifs;
341 loff_t orig_pos = pos;
342 size_t poff, plen;
343 sector_t sector;
344
345 if (iomap->type == IOMAP_INLINE)
346 return iomap_read_inline_data(iter, folio);
347
348 /* zero post-eof blocks as the page may be mapped */
349 ifs = ifs_alloc(iter->inode, folio, iter->flags);
350 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
351 if (plen == 0)
352 goto done;
353
354 if (iomap_block_needs_zeroing(iter, pos)) {
355 folio_zero_range(folio, poff, plen);
356 iomap_set_range_uptodate(folio, poff, plen);
357 goto done;
358 }
359
360 ctx->cur_folio_in_bio = true;
361 if (ifs)
362 atomic_add(plen, &ifs->read_bytes_pending);
363
364 sector = iomap_sector(iomap, pos);
365 if (!ctx->bio ||
366 bio_end_sector(ctx->bio) != sector ||
367 !bio_add_folio(ctx->bio, folio, plen, poff)) {
368 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
369 gfp_t orig_gfp = gfp;
370 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
371
372 if (ctx->bio)
373 submit_bio(ctx->bio);
374
375 if (ctx->rac) /* same as readahead_gfp_mask */
376 gfp |= __GFP_NORETRY | __GFP_NOWARN;
377 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
378 REQ_OP_READ, gfp);
379 /*
380 * If the bio_alloc fails, try it again for a single page to
381 * avoid having to deal with partial page reads. This emulates
382 * what do_mpage_read_folio does.
383 */
384 if (!ctx->bio) {
385 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
386 orig_gfp);
387 }
388 if (ctx->rac)
389 ctx->bio->bi_opf |= REQ_RAHEAD;
390 ctx->bio->bi_iter.bi_sector = sector;
391 ctx->bio->bi_end_io = iomap_read_end_io;
392 bio_add_folio_nofail(ctx->bio, folio, plen, poff);
393 }
394
395 done:
396 /*
397 * Move the caller beyond our range so that it keeps making progress.
398 * For that, we have to include any leading non-uptodate ranges, but
399 * we can skip trailing ones as they will be handled in the next
400 * iteration.
401 */
402 return pos - orig_pos + plen;
403 }
404
405 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
406 {
407 struct iomap_iter iter = {
408 .inode = folio->mapping->host,
409 .pos = folio_pos(folio),
410 .len = folio_size(folio),
411 };
412 struct iomap_readpage_ctx ctx = {
413 .cur_folio = folio,
414 };
415 int ret;
416
417 trace_iomap_readpage(iter.inode, 1);
418
419 while ((ret = iomap_iter(&iter, ops)) > 0)
420 iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
421
422 if (ret < 0)
423 folio_set_error(folio);
424
425 if (ctx.bio) {
426 submit_bio(ctx.bio);
427 WARN_ON_ONCE(!ctx.cur_folio_in_bio);
428 } else {
429 WARN_ON_ONCE(ctx.cur_folio_in_bio);
430 folio_unlock(folio);
431 }
432
433 /*
434 * Just like mpage_readahead and block_read_full_folio, we always
435 * return 0 and just set the folio error flag on errors. This
436 * should be cleaned up throughout the stack eventually.
437 */
438 return 0;
439 }
440 EXPORT_SYMBOL_GPL(iomap_read_folio);
441
442 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
443 struct iomap_readpage_ctx *ctx)
444 {
445 loff_t length = iomap_length(iter);
446 loff_t done, ret;
447
448 for (done = 0; done < length; done += ret) {
449 if (ctx->cur_folio &&
450 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
451 if (!ctx->cur_folio_in_bio)
452 folio_unlock(ctx->cur_folio);
453 ctx->cur_folio = NULL;
454 }
455 if (!ctx->cur_folio) {
456 ctx->cur_folio = readahead_folio(ctx->rac);
457 ctx->cur_folio_in_bio = false;
458 }
459 ret = iomap_readpage_iter(iter, ctx, done);
460 if (ret <= 0)
461 return ret;
462 }
463
464 return done;
465 }
466
467 /**
468 * iomap_readahead - Attempt to read pages from a file.
469 * @rac: Describes the pages to be read.
470 * @ops: The operations vector for the filesystem.
471 *
472 * This function is for filesystems to call to implement their readahead
473 * address_space operation.
474 *
475 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
476 * blocks from disc), and may wait for it. The caller may be trying to
477 * access a different page, and so sleeping excessively should be avoided.
478 * It may allocate memory, but should avoid costly allocations. This
479 * function is called with memalloc_nofs set, so allocations will not cause
480 * the filesystem to be reentered.
481 */
482 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
483 {
484 struct iomap_iter iter = {
485 .inode = rac->mapping->host,
486 .pos = readahead_pos(rac),
487 .len = readahead_length(rac),
488 };
489 struct iomap_readpage_ctx ctx = {
490 .rac = rac,
491 };
492
493 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
494
495 while (iomap_iter(&iter, ops) > 0)
496 iter.processed = iomap_readahead_iter(&iter, &ctx);
497
498 if (ctx.bio)
499 submit_bio(ctx.bio);
500 if (ctx.cur_folio) {
501 if (!ctx.cur_folio_in_bio)
502 folio_unlock(ctx.cur_folio);
503 }
504 }
505 EXPORT_SYMBOL_GPL(iomap_readahead);
506
507 /*
508 * iomap_is_partially_uptodate checks whether blocks within a folio are
509 * uptodate or not.
510 *
511 * Returns true if all blocks which correspond to the specified part
512 * of the folio are uptodate.
513 */
514 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
515 {
516 struct iomap_folio_state *ifs = folio->private;
517 struct inode *inode = folio->mapping->host;
518 unsigned first, last, i;
519
520 if (!ifs)
521 return false;
522
523 /* Caller's range may extend past the end of this folio */
524 count = min(folio_size(folio) - from, count);
525
526 /* First and last blocks in range within folio */
527 first = from >> inode->i_blkbits;
528 last = (from + count - 1) >> inode->i_blkbits;
529
530 for (i = first; i <= last; i++)
531 if (!ifs_block_is_uptodate(ifs, i))
532 return false;
533 return true;
534 }
535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
536
537 /**
538 * iomap_get_folio - get a folio reference for writing
539 * @iter: iteration structure
540 * @pos: start offset of write
541 * @len: Suggested size of folio to create.
542 *
543 * Returns a locked reference to the folio at @pos, or an error pointer if the
544 * folio could not be obtained.
545 */
546 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
547 {
548 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
549
550 if (iter->flags & IOMAP_NOWAIT)
551 fgp |= FGP_NOWAIT;
552 fgp |= fgf_set_order(len);
553
554 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
555 fgp, mapping_gfp_mask(iter->inode->i_mapping));
556 }
557 EXPORT_SYMBOL_GPL(iomap_get_folio);
558
559 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
560 {
561 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
562 folio_size(folio));
563
564 /*
565 * If the folio is dirty, we refuse to release our metadata because
566 * it may be partially dirty. Once we track per-block dirty state,
567 * we can release the metadata if every block is dirty.
568 */
569 if (folio_test_dirty(folio))
570 return false;
571 ifs_free(folio);
572 return true;
573 }
574 EXPORT_SYMBOL_GPL(iomap_release_folio);
575
576 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
577 {
578 trace_iomap_invalidate_folio(folio->mapping->host,
579 folio_pos(folio) + offset, len);
580
581 /*
582 * If we're invalidating the entire folio, clear the dirty state
583 * from it and release it to avoid unnecessary buildup of the LRU.
584 */
585 if (offset == 0 && len == folio_size(folio)) {
586 WARN_ON_ONCE(folio_test_writeback(folio));
587 folio_cancel_dirty(folio);
588 ifs_free(folio);
589 }
590 }
591 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
592
593 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
594 {
595 struct inode *inode = mapping->host;
596 size_t len = folio_size(folio);
597
598 ifs_alloc(inode, folio, 0);
599 iomap_set_range_dirty(folio, 0, len);
600 return filemap_dirty_folio(mapping, folio);
601 }
602 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
603
604 static void
605 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
606 {
607 loff_t i_size = i_size_read(inode);
608
609 /*
610 * Only truncate newly allocated pages beyoned EOF, even if the
611 * write started inside the existing inode size.
612 */
613 if (pos + len > i_size)
614 truncate_pagecache_range(inode, max(pos, i_size),
615 pos + len - 1);
616 }
617
618 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
619 size_t poff, size_t plen, const struct iomap *iomap)
620 {
621 struct bio_vec bvec;
622 struct bio bio;
623
624 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
625 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
626 bio_add_folio_nofail(&bio, folio, plen, poff);
627 return submit_bio_wait(&bio);
628 }
629
630 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
631 size_t len, struct folio *folio)
632 {
633 const struct iomap *srcmap = iomap_iter_srcmap(iter);
634 struct iomap_folio_state *ifs;
635 loff_t block_size = i_blocksize(iter->inode);
636 loff_t block_start = round_down(pos, block_size);
637 loff_t block_end = round_up(pos + len, block_size);
638 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
639 size_t from = offset_in_folio(folio, pos), to = from + len;
640 size_t poff, plen;
641
642 /*
643 * If the write completely overlaps the current folio, then
644 * entire folio will be dirtied so there is no need for
645 * per-block state tracking structures to be attached to this folio.
646 */
647 if (pos <= folio_pos(folio) &&
648 pos + len >= folio_pos(folio) + folio_size(folio))
649 return 0;
650
651 ifs = ifs_alloc(iter->inode, folio, iter->flags);
652 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
653 return -EAGAIN;
654
655 if (folio_test_uptodate(folio))
656 return 0;
657 folio_clear_error(folio);
658
659 do {
660 iomap_adjust_read_range(iter->inode, folio, &block_start,
661 block_end - block_start, &poff, &plen);
662 if (plen == 0)
663 break;
664
665 if (!(iter->flags & IOMAP_UNSHARE) &&
666 (from <= poff || from >= poff + plen) &&
667 (to <= poff || to >= poff + plen))
668 continue;
669
670 if (iomap_block_needs_zeroing(iter, block_start)) {
671 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
672 return -EIO;
673 folio_zero_segments(folio, poff, from, to, poff + plen);
674 } else {
675 int status;
676
677 if (iter->flags & IOMAP_NOWAIT)
678 return -EAGAIN;
679
680 status = iomap_read_folio_sync(block_start, folio,
681 poff, plen, srcmap);
682 if (status)
683 return status;
684 }
685 iomap_set_range_uptodate(folio, poff, plen);
686 } while ((block_start += plen) < block_end);
687
688 return 0;
689 }
690
691 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
692 size_t len)
693 {
694 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
695
696 if (folio_ops && folio_ops->get_folio)
697 return folio_ops->get_folio(iter, pos, len);
698 else
699 return iomap_get_folio(iter, pos, len);
700 }
701
702 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
703 struct folio *folio)
704 {
705 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
706
707 if (folio_ops && folio_ops->put_folio) {
708 folio_ops->put_folio(iter->inode, pos, ret, folio);
709 } else {
710 folio_unlock(folio);
711 folio_put(folio);
712 }
713 }
714
715 static int iomap_write_begin_inline(const struct iomap_iter *iter,
716 struct folio *folio)
717 {
718 /* needs more work for the tailpacking case; disable for now */
719 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
720 return -EIO;
721 return iomap_read_inline_data(iter, folio);
722 }
723
724 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
725 size_t len, struct folio **foliop)
726 {
727 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
728 const struct iomap *srcmap = iomap_iter_srcmap(iter);
729 struct folio *folio;
730 int status = 0;
731
732 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
733 if (srcmap != &iter->iomap)
734 BUG_ON(pos + len > srcmap->offset + srcmap->length);
735
736 if (fatal_signal_pending(current))
737 return -EINTR;
738
739 if (!mapping_large_folio_support(iter->inode->i_mapping))
740 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
741
742 folio = __iomap_get_folio(iter, pos, len);
743 if (IS_ERR(folio))
744 return PTR_ERR(folio);
745
746 /*
747 * Now we have a locked folio, before we do anything with it we need to
748 * check that the iomap we have cached is not stale. The inode extent
749 * mapping can change due to concurrent IO in flight (e.g.
750 * IOMAP_UNWRITTEN state can change and memory reclaim could have
751 * reclaimed a previously partially written page at this index after IO
752 * completion before this write reaches this file offset) and hence we
753 * could do the wrong thing here (zero a page range incorrectly or fail
754 * to zero) and corrupt data.
755 */
756 if (folio_ops && folio_ops->iomap_valid) {
757 bool iomap_valid = folio_ops->iomap_valid(iter->inode,
758 &iter->iomap);
759 if (!iomap_valid) {
760 iter->iomap.flags |= IOMAP_F_STALE;
761 status = 0;
762 goto out_unlock;
763 }
764 }
765
766 if (pos + len > folio_pos(folio) + folio_size(folio))
767 len = folio_pos(folio) + folio_size(folio) - pos;
768
769 if (srcmap->type == IOMAP_INLINE)
770 status = iomap_write_begin_inline(iter, folio);
771 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
772 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
773 else
774 status = __iomap_write_begin(iter, pos, len, folio);
775
776 if (unlikely(status))
777 goto out_unlock;
778
779 *foliop = folio;
780 return 0;
781
782 out_unlock:
783 __iomap_put_folio(iter, pos, 0, folio);
784 iomap_write_failed(iter->inode, pos, len);
785
786 return status;
787 }
788
789 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
790 size_t copied, struct folio *folio)
791 {
792 flush_dcache_folio(folio);
793
794 /*
795 * The blocks that were entirely written will now be uptodate, so we
796 * don't have to worry about a read_folio reading them and overwriting a
797 * partial write. However, if we've encountered a short write and only
798 * partially written into a block, it will not be marked uptodate, so a
799 * read_folio might come in and destroy our partial write.
800 *
801 * Do the simplest thing and just treat any short write to a
802 * non-uptodate page as a zero-length write, and force the caller to
803 * redo the whole thing.
804 */
805 if (unlikely(copied < len && !folio_test_uptodate(folio)))
806 return 0;
807 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
808 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
809 filemap_dirty_folio(inode->i_mapping, folio);
810 return copied;
811 }
812
813 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
814 struct folio *folio, loff_t pos, size_t copied)
815 {
816 const struct iomap *iomap = &iter->iomap;
817 void *addr;
818
819 WARN_ON_ONCE(!folio_test_uptodate(folio));
820 BUG_ON(!iomap_inline_data_valid(iomap));
821
822 flush_dcache_folio(folio);
823 addr = kmap_local_folio(folio, pos);
824 memcpy(iomap_inline_data(iomap, pos), addr, copied);
825 kunmap_local(addr);
826
827 mark_inode_dirty(iter->inode);
828 return copied;
829 }
830
831 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
832 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
833 size_t copied, struct folio *folio)
834 {
835 const struct iomap *srcmap = iomap_iter_srcmap(iter);
836 loff_t old_size = iter->inode->i_size;
837 size_t ret;
838
839 if (srcmap->type == IOMAP_INLINE) {
840 ret = iomap_write_end_inline(iter, folio, pos, copied);
841 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
842 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
843 copied, &folio->page, NULL);
844 } else {
845 ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
846 }
847
848 /*
849 * Update the in-memory inode size after copying the data into the page
850 * cache. It's up to the file system to write the updated size to disk,
851 * preferably after I/O completion so that no stale data is exposed.
852 */
853 if (pos + ret > old_size) {
854 i_size_write(iter->inode, pos + ret);
855 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
856 }
857 __iomap_put_folio(iter, pos, ret, folio);
858
859 if (old_size < pos)
860 pagecache_isize_extended(iter->inode, old_size, pos);
861 if (ret < len)
862 iomap_write_failed(iter->inode, pos + ret, len - ret);
863 return ret;
864 }
865
866 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
867 {
868 loff_t length = iomap_length(iter);
869 size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
870 loff_t pos = iter->pos;
871 ssize_t written = 0;
872 long status = 0;
873 struct address_space *mapping = iter->inode->i_mapping;
874 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
875
876 do {
877 struct folio *folio;
878 size_t offset; /* Offset into folio */
879 size_t bytes; /* Bytes to write to folio */
880 size_t copied; /* Bytes copied from user */
881
882 offset = pos & (chunk - 1);
883 bytes = min(chunk - offset, iov_iter_count(i));
884 status = balance_dirty_pages_ratelimited_flags(mapping,
885 bdp_flags);
886 if (unlikely(status))
887 break;
888
889 if (bytes > length)
890 bytes = length;
891
892 /*
893 * Bring in the user page that we'll copy from _first_.
894 * Otherwise there's a nasty deadlock on copying from the
895 * same page as we're writing to, without it being marked
896 * up-to-date.
897 *
898 * For async buffered writes the assumption is that the user
899 * page has already been faulted in. This can be optimized by
900 * faulting the user page.
901 */
902 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
903 status = -EFAULT;
904 break;
905 }
906
907 status = iomap_write_begin(iter, pos, bytes, &folio);
908 if (unlikely(status))
909 break;
910 if (iter->iomap.flags & IOMAP_F_STALE)
911 break;
912
913 offset = offset_in_folio(folio, pos);
914 if (bytes > folio_size(folio) - offset)
915 bytes = folio_size(folio) - offset;
916
917 if (mapping_writably_mapped(mapping))
918 flush_dcache_folio(folio);
919
920 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
921 status = iomap_write_end(iter, pos, bytes, copied, folio);
922
923 if (unlikely(copied != status))
924 iov_iter_revert(i, copied - status);
925
926 cond_resched();
927 if (unlikely(status == 0)) {
928 /*
929 * A short copy made iomap_write_end() reject the
930 * thing entirely. Might be memory poisoning
931 * halfway through, might be a race with munmap,
932 * might be severe memory pressure.
933 */
934 if (copied)
935 bytes = copied;
936 if (chunk > PAGE_SIZE)
937 chunk /= 2;
938 } else {
939 pos += status;
940 written += status;
941 length -= status;
942 }
943 } while (iov_iter_count(i) && length);
944
945 if (status == -EAGAIN) {
946 iov_iter_revert(i, written);
947 return -EAGAIN;
948 }
949 return written ? written : status;
950 }
951
952 ssize_t
953 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
954 const struct iomap_ops *ops)
955 {
956 struct iomap_iter iter = {
957 .inode = iocb->ki_filp->f_mapping->host,
958 .pos = iocb->ki_pos,
959 .len = iov_iter_count(i),
960 .flags = IOMAP_WRITE,
961 };
962 ssize_t ret;
963
964 if (iocb->ki_flags & IOCB_NOWAIT)
965 iter.flags |= IOMAP_NOWAIT;
966
967 while ((ret = iomap_iter(&iter, ops)) > 0)
968 iter.processed = iomap_write_iter(&iter, i);
969
970 if (unlikely(iter.pos == iocb->ki_pos))
971 return ret;
972 ret = iter.pos - iocb->ki_pos;
973 iocb->ki_pos = iter.pos;
974 return ret;
975 }
976 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
977
978 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
979 struct folio *folio, loff_t start_byte, loff_t end_byte,
980 iomap_punch_t punch)
981 {
982 unsigned int first_blk, last_blk, i;
983 loff_t last_byte;
984 u8 blkbits = inode->i_blkbits;
985 struct iomap_folio_state *ifs;
986 int ret = 0;
987
988 /*
989 * When we have per-block dirty tracking, there can be
990 * blocks within a folio which are marked uptodate
991 * but not dirty. In that case it is necessary to punch
992 * out such blocks to avoid leaking any delalloc blocks.
993 */
994 ifs = folio->private;
995 if (!ifs)
996 return ret;
997
998 last_byte = min_t(loff_t, end_byte - 1,
999 folio_pos(folio) + folio_size(folio) - 1);
1000 first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1001 last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1002 for (i = first_blk; i <= last_blk; i++) {
1003 if (!ifs_block_is_dirty(folio, ifs, i)) {
1004 ret = punch(inode, folio_pos(folio) + (i << blkbits),
1005 1 << blkbits);
1006 if (ret)
1007 return ret;
1008 }
1009 }
1010
1011 return ret;
1012 }
1013
1014
1015 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1016 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1017 iomap_punch_t punch)
1018 {
1019 int ret = 0;
1020
1021 if (!folio_test_dirty(folio))
1022 return ret;
1023
1024 /* if dirty, punch up to offset */
1025 if (start_byte > *punch_start_byte) {
1026 ret = punch(inode, *punch_start_byte,
1027 start_byte - *punch_start_byte);
1028 if (ret)
1029 return ret;
1030 }
1031
1032 /* Punch non-dirty blocks within folio */
1033 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1034 end_byte, punch);
1035 if (ret)
1036 return ret;
1037
1038 /*
1039 * Make sure the next punch start is correctly bound to
1040 * the end of this data range, not the end of the folio.
1041 */
1042 *punch_start_byte = min_t(loff_t, end_byte,
1043 folio_pos(folio) + folio_size(folio));
1044
1045 return ret;
1046 }
1047
1048 /*
1049 * Scan the data range passed to us for dirty page cache folios. If we find a
1050 * dirty folio, punch out the preceeding range and update the offset from which
1051 * the next punch will start from.
1052 *
1053 * We can punch out storage reservations under clean pages because they either
1054 * contain data that has been written back - in which case the delalloc punch
1055 * over that range is a no-op - or they have been read faults in which case they
1056 * contain zeroes and we can remove the delalloc backing range and any new
1057 * writes to those pages will do the normal hole filling operation...
1058 *
1059 * This makes the logic simple: we only need to keep the delalloc extents only
1060 * over the dirty ranges of the page cache.
1061 *
1062 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1063 * simplify range iterations.
1064 */
1065 static int iomap_write_delalloc_scan(struct inode *inode,
1066 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1067 iomap_punch_t punch)
1068 {
1069 while (start_byte < end_byte) {
1070 struct folio *folio;
1071 int ret;
1072
1073 /* grab locked page */
1074 folio = filemap_lock_folio(inode->i_mapping,
1075 start_byte >> PAGE_SHIFT);
1076 if (IS_ERR(folio)) {
1077 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1078 PAGE_SIZE;
1079 continue;
1080 }
1081
1082 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1083 start_byte, end_byte, punch);
1084 if (ret) {
1085 folio_unlock(folio);
1086 folio_put(folio);
1087 return ret;
1088 }
1089
1090 /* move offset to start of next folio in range */
1091 start_byte = folio_next_index(folio) << PAGE_SHIFT;
1092 folio_unlock(folio);
1093 folio_put(folio);
1094 }
1095 return 0;
1096 }
1097
1098 /*
1099 * Punch out all the delalloc blocks in the range given except for those that
1100 * have dirty data still pending in the page cache - those are going to be
1101 * written and so must still retain the delalloc backing for writeback.
1102 *
1103 * As we are scanning the page cache for data, we don't need to reimplement the
1104 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1105 * start and end of data ranges correctly even for sub-folio block sizes. This
1106 * byte range based iteration is especially convenient because it means we
1107 * don't have to care about variable size folios, nor where the start or end of
1108 * the data range lies within a folio, if they lie within the same folio or even
1109 * if there are multiple discontiguous data ranges within the folio.
1110 *
1111 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1112 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1113 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1114 * date. A write page fault can then mark it dirty. If we then fail a write()
1115 * beyond EOF into that up to date cached range, we allocate a delalloc block
1116 * beyond EOF and then have to punch it out. Because the range is up to date,
1117 * mapping_seek_hole_data() will return it, and we will skip the punch because
1118 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1119 * beyond EOF in this case as writeback will never write back and covert that
1120 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1121 * resulting in always punching out the range from the EOF to the end of the
1122 * range the iomap spans.
1123 *
1124 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1125 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1126 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1127 * returns the end of the data range (data_end). Using closed intervals would
1128 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1129 * the code to subtle off-by-one bugs....
1130 */
1131 static int iomap_write_delalloc_release(struct inode *inode,
1132 loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1133 {
1134 loff_t punch_start_byte = start_byte;
1135 loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1136 int error = 0;
1137
1138 /*
1139 * Lock the mapping to avoid races with page faults re-instantiating
1140 * folios and dirtying them via ->page_mkwrite whilst we walk the
1141 * cache and perform delalloc extent removal. Failing to do this can
1142 * leave dirty pages with no space reservation in the cache.
1143 */
1144 filemap_invalidate_lock(inode->i_mapping);
1145 while (start_byte < scan_end_byte) {
1146 loff_t data_end;
1147
1148 start_byte = mapping_seek_hole_data(inode->i_mapping,
1149 start_byte, scan_end_byte, SEEK_DATA);
1150 /*
1151 * If there is no more data to scan, all that is left is to
1152 * punch out the remaining range.
1153 */
1154 if (start_byte == -ENXIO || start_byte == scan_end_byte)
1155 break;
1156 if (start_byte < 0) {
1157 error = start_byte;
1158 goto out_unlock;
1159 }
1160 WARN_ON_ONCE(start_byte < punch_start_byte);
1161 WARN_ON_ONCE(start_byte > scan_end_byte);
1162
1163 /*
1164 * We find the end of this contiguous cached data range by
1165 * seeking from start_byte to the beginning of the next hole.
1166 */
1167 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1168 scan_end_byte, SEEK_HOLE);
1169 if (data_end < 0) {
1170 error = data_end;
1171 goto out_unlock;
1172 }
1173 WARN_ON_ONCE(data_end <= start_byte);
1174 WARN_ON_ONCE(data_end > scan_end_byte);
1175
1176 error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1177 start_byte, data_end, punch);
1178 if (error)
1179 goto out_unlock;
1180
1181 /* The next data search starts at the end of this one. */
1182 start_byte = data_end;
1183 }
1184
1185 if (punch_start_byte < end_byte)
1186 error = punch(inode, punch_start_byte,
1187 end_byte - punch_start_byte);
1188 out_unlock:
1189 filemap_invalidate_unlock(inode->i_mapping);
1190 return error;
1191 }
1192
1193 /*
1194 * When a short write occurs, the filesystem may need to remove reserved space
1195 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1196 * filesystems that use delayed allocation, we need to punch out delalloc
1197 * extents from the range that are not dirty in the page cache. As the write can
1198 * race with page faults, there can be dirty pages over the delalloc extent
1199 * outside the range of a short write but still within the delalloc extent
1200 * allocated for this iomap.
1201 *
1202 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1203 * simplify range iterations.
1204 *
1205 * The punch() callback *must* only punch delalloc extents in the range passed
1206 * to it. It must skip over all other types of extents in the range and leave
1207 * them completely unchanged. It must do this punch atomically with respect to
1208 * other extent modifications.
1209 *
1210 * The punch() callback may be called with a folio locked to prevent writeback
1211 * extent allocation racing at the edge of the range we are currently punching.
1212 * The locked folio may or may not cover the range being punched, so it is not
1213 * safe for the punch() callback to lock folios itself.
1214 *
1215 * Lock order is:
1216 *
1217 * inode->i_rwsem (shared or exclusive)
1218 * inode->i_mapping->invalidate_lock (exclusive)
1219 * folio_lock()
1220 * ->punch
1221 * internal filesystem allocation lock
1222 */
1223 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1224 struct iomap *iomap, loff_t pos, loff_t length,
1225 ssize_t written, iomap_punch_t punch)
1226 {
1227 loff_t start_byte;
1228 loff_t end_byte;
1229 unsigned int blocksize = i_blocksize(inode);
1230
1231 if (iomap->type != IOMAP_DELALLOC)
1232 return 0;
1233
1234 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1235 if (!(iomap->flags & IOMAP_F_NEW))
1236 return 0;
1237
1238 /*
1239 * start_byte refers to the first unused block after a short write. If
1240 * nothing was written, round offset down to point at the first block in
1241 * the range.
1242 */
1243 if (unlikely(!written))
1244 start_byte = round_down(pos, blocksize);
1245 else
1246 start_byte = round_up(pos + written, blocksize);
1247 end_byte = round_up(pos + length, blocksize);
1248
1249 /* Nothing to do if we've written the entire delalloc extent */
1250 if (start_byte >= end_byte)
1251 return 0;
1252
1253 return iomap_write_delalloc_release(inode, start_byte, end_byte,
1254 punch);
1255 }
1256 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1257
1258 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1259 {
1260 struct iomap *iomap = &iter->iomap;
1261 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1262 loff_t pos = iter->pos;
1263 loff_t length = iomap_length(iter);
1264 long status = 0;
1265 loff_t written = 0;
1266
1267 /* don't bother with blocks that are not shared to start with */
1268 if (!(iomap->flags & IOMAP_F_SHARED))
1269 return length;
1270 /* don't bother with holes or unwritten extents */
1271 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1272 return length;
1273
1274 do {
1275 unsigned long offset = offset_in_page(pos);
1276 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
1277 struct folio *folio;
1278
1279 status = iomap_write_begin(iter, pos, bytes, &folio);
1280 if (unlikely(status))
1281 return status;
1282 if (iter->iomap.flags & IOMAP_F_STALE)
1283 break;
1284
1285 status = iomap_write_end(iter, pos, bytes, bytes, folio);
1286 if (WARN_ON_ONCE(status == 0))
1287 return -EIO;
1288
1289 cond_resched();
1290
1291 pos += status;
1292 written += status;
1293 length -= status;
1294
1295 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1296 } while (length);
1297
1298 return written;
1299 }
1300
1301 int
1302 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1303 const struct iomap_ops *ops)
1304 {
1305 struct iomap_iter iter = {
1306 .inode = inode,
1307 .pos = pos,
1308 .len = len,
1309 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
1310 };
1311 int ret;
1312
1313 while ((ret = iomap_iter(&iter, ops)) > 0)
1314 iter.processed = iomap_unshare_iter(&iter);
1315 return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1318
1319 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1320 {
1321 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1322 loff_t pos = iter->pos;
1323 loff_t length = iomap_length(iter);
1324 loff_t written = 0;
1325
1326 /* already zeroed? we're done. */
1327 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1328 return length;
1329
1330 do {
1331 struct folio *folio;
1332 int status;
1333 size_t offset;
1334 size_t bytes = min_t(u64, SIZE_MAX, length);
1335
1336 status = iomap_write_begin(iter, pos, bytes, &folio);
1337 if (status)
1338 return status;
1339 if (iter->iomap.flags & IOMAP_F_STALE)
1340 break;
1341
1342 offset = offset_in_folio(folio, pos);
1343 if (bytes > folio_size(folio) - offset)
1344 bytes = folio_size(folio) - offset;
1345
1346 folio_zero_range(folio, offset, bytes);
1347 folio_mark_accessed(folio);
1348
1349 bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1350 if (WARN_ON_ONCE(bytes == 0))
1351 return -EIO;
1352
1353 pos += bytes;
1354 length -= bytes;
1355 written += bytes;
1356 } while (length > 0);
1357
1358 if (did_zero)
1359 *did_zero = true;
1360 return written;
1361 }
1362
1363 int
1364 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1365 const struct iomap_ops *ops)
1366 {
1367 struct iomap_iter iter = {
1368 .inode = inode,
1369 .pos = pos,
1370 .len = len,
1371 .flags = IOMAP_ZERO,
1372 };
1373 int ret;
1374
1375 while ((ret = iomap_iter(&iter, ops)) > 0)
1376 iter.processed = iomap_zero_iter(&iter, did_zero);
1377 return ret;
1378 }
1379 EXPORT_SYMBOL_GPL(iomap_zero_range);
1380
1381 int
1382 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1383 const struct iomap_ops *ops)
1384 {
1385 unsigned int blocksize = i_blocksize(inode);
1386 unsigned int off = pos & (blocksize - 1);
1387
1388 /* Block boundary? Nothing to do */
1389 if (!off)
1390 return 0;
1391 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1392 }
1393 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1394
1395 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1396 struct folio *folio)
1397 {
1398 loff_t length = iomap_length(iter);
1399 int ret;
1400
1401 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1402 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1403 &iter->iomap);
1404 if (ret)
1405 return ret;
1406 block_commit_write(&folio->page, 0, length);
1407 } else {
1408 WARN_ON_ONCE(!folio_test_uptodate(folio));
1409 folio_mark_dirty(folio);
1410 }
1411
1412 return length;
1413 }
1414
1415 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1416 {
1417 struct iomap_iter iter = {
1418 .inode = file_inode(vmf->vma->vm_file),
1419 .flags = IOMAP_WRITE | IOMAP_FAULT,
1420 };
1421 struct folio *folio = page_folio(vmf->page);
1422 ssize_t ret;
1423
1424 folio_lock(folio);
1425 ret = folio_mkwrite_check_truncate(folio, iter.inode);
1426 if (ret < 0)
1427 goto out_unlock;
1428 iter.pos = folio_pos(folio);
1429 iter.len = ret;
1430 while ((ret = iomap_iter(&iter, ops)) > 0)
1431 iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1432
1433 if (ret < 0)
1434 goto out_unlock;
1435 folio_wait_stable(folio);
1436 return VM_FAULT_LOCKED;
1437 out_unlock:
1438 folio_unlock(folio);
1439 return vmf_fs_error(ret);
1440 }
1441 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1442
1443 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1444 size_t len, int error)
1445 {
1446 struct iomap_folio_state *ifs = folio->private;
1447
1448 if (error) {
1449 folio_set_error(folio);
1450 mapping_set_error(inode->i_mapping, error);
1451 }
1452
1453 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1454 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1455
1456 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1457 folio_end_writeback(folio);
1458 }
1459
1460 /*
1461 * We're now finished for good with this ioend structure. Update the page
1462 * state, release holds on bios, and finally free up memory. Do not use the
1463 * ioend after this.
1464 */
1465 static u32
1466 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1467 {
1468 struct inode *inode = ioend->io_inode;
1469 struct bio *bio = &ioend->io_inline_bio;
1470 struct bio *last = ioend->io_bio, *next;
1471 u64 start = bio->bi_iter.bi_sector;
1472 loff_t offset = ioend->io_offset;
1473 bool quiet = bio_flagged(bio, BIO_QUIET);
1474 u32 folio_count = 0;
1475
1476 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1477 struct folio_iter fi;
1478
1479 /*
1480 * For the last bio, bi_private points to the ioend, so we
1481 * need to explicitly end the iteration here.
1482 */
1483 if (bio == last)
1484 next = NULL;
1485 else
1486 next = bio->bi_private;
1487
1488 /* walk all folios in bio, ending page IO on them */
1489 bio_for_each_folio_all(fi, bio) {
1490 iomap_finish_folio_write(inode, fi.folio, fi.length,
1491 error);
1492 folio_count++;
1493 }
1494 bio_put(bio);
1495 }
1496 /* The ioend has been freed by bio_put() */
1497
1498 if (unlikely(error && !quiet)) {
1499 printk_ratelimited(KERN_ERR
1500 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1501 inode->i_sb->s_id, inode->i_ino, offset, start);
1502 }
1503 return folio_count;
1504 }
1505
1506 /*
1507 * Ioend completion routine for merged bios. This can only be called from task
1508 * contexts as merged ioends can be of unbound length. Hence we have to break up
1509 * the writeback completions into manageable chunks to avoid long scheduler
1510 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1511 * good batch processing throughput without creating adverse scheduler latency
1512 * conditions.
1513 */
1514 void
1515 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1516 {
1517 struct list_head tmp;
1518 u32 completions;
1519
1520 might_sleep();
1521
1522 list_replace_init(&ioend->io_list, &tmp);
1523 completions = iomap_finish_ioend(ioend, error);
1524
1525 while (!list_empty(&tmp)) {
1526 if (completions > IOEND_BATCH_SIZE * 8) {
1527 cond_resched();
1528 completions = 0;
1529 }
1530 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1531 list_del_init(&ioend->io_list);
1532 completions += iomap_finish_ioend(ioend, error);
1533 }
1534 }
1535 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1536
1537 /*
1538 * We can merge two adjacent ioends if they have the same set of work to do.
1539 */
1540 static bool
1541 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1542 {
1543 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1544 return false;
1545 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1546 (next->io_flags & IOMAP_F_SHARED))
1547 return false;
1548 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1549 (next->io_type == IOMAP_UNWRITTEN))
1550 return false;
1551 if (ioend->io_offset + ioend->io_size != next->io_offset)
1552 return false;
1553 /*
1554 * Do not merge physically discontiguous ioends. The filesystem
1555 * completion functions will have to iterate the physical
1556 * discontiguities even if we merge the ioends at a logical level, so
1557 * we don't gain anything by merging physical discontiguities here.
1558 *
1559 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1560 * submission so does not point to the start sector of the bio at
1561 * completion.
1562 */
1563 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1564 return false;
1565 return true;
1566 }
1567
1568 void
1569 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1570 {
1571 struct iomap_ioend *next;
1572
1573 INIT_LIST_HEAD(&ioend->io_list);
1574
1575 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1576 io_list))) {
1577 if (!iomap_ioend_can_merge(ioend, next))
1578 break;
1579 list_move_tail(&next->io_list, &ioend->io_list);
1580 ioend->io_size += next->io_size;
1581 }
1582 }
1583 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1584
1585 static int
1586 iomap_ioend_compare(void *priv, const struct list_head *a,
1587 const struct list_head *b)
1588 {
1589 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1590 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1591
1592 if (ia->io_offset < ib->io_offset)
1593 return -1;
1594 if (ia->io_offset > ib->io_offset)
1595 return 1;
1596 return 0;
1597 }
1598
1599 void
1600 iomap_sort_ioends(struct list_head *ioend_list)
1601 {
1602 list_sort(NULL, ioend_list, iomap_ioend_compare);
1603 }
1604 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1605
1606 static void iomap_writepage_end_bio(struct bio *bio)
1607 {
1608 struct iomap_ioend *ioend = bio->bi_private;
1609
1610 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1611 }
1612
1613 /*
1614 * Submit the final bio for an ioend.
1615 *
1616 * If @error is non-zero, it means that we have a situation where some part of
1617 * the submission process has failed after we've marked pages for writeback
1618 * and unlocked them. In this situation, we need to fail the bio instead of
1619 * submitting it. This typically only happens on a filesystem shutdown.
1620 */
1621 static int
1622 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1623 int error)
1624 {
1625 ioend->io_bio->bi_private = ioend;
1626 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1627
1628 if (wpc->ops->prepare_ioend)
1629 error = wpc->ops->prepare_ioend(ioend, error);
1630 if (error) {
1631 /*
1632 * If we're failing the IO now, just mark the ioend with an
1633 * error and finish it. This will run IO completion immediately
1634 * as there is only one reference to the ioend at this point in
1635 * time.
1636 */
1637 ioend->io_bio->bi_status = errno_to_blk_status(error);
1638 bio_endio(ioend->io_bio);
1639 return error;
1640 }
1641
1642 submit_bio(ioend->io_bio);
1643 return 0;
1644 }
1645
1646 static struct iomap_ioend *
1647 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1648 loff_t offset, sector_t sector, struct writeback_control *wbc)
1649 {
1650 struct iomap_ioend *ioend;
1651 struct bio *bio;
1652
1653 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1654 REQ_OP_WRITE | wbc_to_write_flags(wbc),
1655 GFP_NOFS, &iomap_ioend_bioset);
1656 bio->bi_iter.bi_sector = sector;
1657 wbc_init_bio(wbc, bio);
1658
1659 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1660 INIT_LIST_HEAD(&ioend->io_list);
1661 ioend->io_type = wpc->iomap.type;
1662 ioend->io_flags = wpc->iomap.flags;
1663 ioend->io_inode = inode;
1664 ioend->io_size = 0;
1665 ioend->io_folios = 0;
1666 ioend->io_offset = offset;
1667 ioend->io_bio = bio;
1668 ioend->io_sector = sector;
1669 return ioend;
1670 }
1671
1672 /*
1673 * Allocate a new bio, and chain the old bio to the new one.
1674 *
1675 * Note that we have to perform the chaining in this unintuitive order
1676 * so that the bi_private linkage is set up in the right direction for the
1677 * traversal in iomap_finish_ioend().
1678 */
1679 static struct bio *
1680 iomap_chain_bio(struct bio *prev)
1681 {
1682 struct bio *new;
1683
1684 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1685 bio_clone_blkg_association(new, prev);
1686 new->bi_iter.bi_sector = bio_end_sector(prev);
1687
1688 bio_chain(prev, new);
1689 bio_get(prev); /* for iomap_finish_ioend */
1690 submit_bio(prev);
1691 return new;
1692 }
1693
1694 static bool
1695 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1696 sector_t sector)
1697 {
1698 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1699 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1700 return false;
1701 if (wpc->iomap.type != wpc->ioend->io_type)
1702 return false;
1703 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1704 return false;
1705 if (sector != bio_end_sector(wpc->ioend->io_bio))
1706 return false;
1707 /*
1708 * Limit ioend bio chain lengths to minimise IO completion latency. This
1709 * also prevents long tight loops ending page writeback on all the
1710 * folios in the ioend.
1711 */
1712 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1713 return false;
1714 return true;
1715 }
1716
1717 /*
1718 * Test to see if we have an existing ioend structure that we could append to
1719 * first; otherwise finish off the current ioend and start another.
1720 */
1721 static void
1722 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1723 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1724 struct writeback_control *wbc, struct list_head *iolist)
1725 {
1726 sector_t sector = iomap_sector(&wpc->iomap, pos);
1727 unsigned len = i_blocksize(inode);
1728 size_t poff = offset_in_folio(folio, pos);
1729
1730 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1731 if (wpc->ioend)
1732 list_add(&wpc->ioend->io_list, iolist);
1733 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1734 }
1735
1736 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1737 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1738 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1739 }
1740
1741 if (ifs)
1742 atomic_add(len, &ifs->write_bytes_pending);
1743 wpc->ioend->io_size += len;
1744 wbc_account_cgroup_owner(wbc, &folio->page, len);
1745 }
1746
1747 /*
1748 * We implement an immediate ioend submission policy here to avoid needing to
1749 * chain multiple ioends and hence nest mempool allocations which can violate
1750 * the forward progress guarantees we need to provide. The current ioend we're
1751 * adding blocks to is cached in the writepage context, and if the new block
1752 * doesn't append to the cached ioend, it will create a new ioend and cache that
1753 * instead.
1754 *
1755 * If a new ioend is created and cached, the old ioend is returned and queued
1756 * locally for submission once the entire page is processed or an error has been
1757 * detected. While ioends are submitted immediately after they are completed,
1758 * batching optimisations are provided by higher level block plugging.
1759 *
1760 * At the end of a writeback pass, there will be a cached ioend remaining on the
1761 * writepage context that the caller will need to submit.
1762 */
1763 static int
1764 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1765 struct writeback_control *wbc, struct inode *inode,
1766 struct folio *folio, u64 end_pos)
1767 {
1768 struct iomap_folio_state *ifs = folio->private;
1769 struct iomap_ioend *ioend, *next;
1770 unsigned len = i_blocksize(inode);
1771 unsigned nblocks = i_blocks_per_folio(inode, folio);
1772 u64 pos = folio_pos(folio);
1773 int error = 0, count = 0, i;
1774 LIST_HEAD(submit_list);
1775
1776 WARN_ON_ONCE(end_pos <= pos);
1777
1778 if (!ifs && nblocks > 1) {
1779 ifs = ifs_alloc(inode, folio, 0);
1780 iomap_set_range_dirty(folio, 0, end_pos - pos);
1781 }
1782
1783 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1784
1785 /*
1786 * Walk through the folio to find areas to write back. If we
1787 * run off the end of the current map or find the current map
1788 * invalid, grab a new one.
1789 */
1790 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1791 if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1792 continue;
1793
1794 error = wpc->ops->map_blocks(wpc, inode, pos);
1795 if (error)
1796 break;
1797 trace_iomap_writepage_map(inode, &wpc->iomap);
1798 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1799 continue;
1800 if (wpc->iomap.type == IOMAP_HOLE)
1801 continue;
1802 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1803 &submit_list);
1804 count++;
1805 }
1806 if (count)
1807 wpc->ioend->io_folios++;
1808
1809 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1810 WARN_ON_ONCE(!folio_test_locked(folio));
1811 WARN_ON_ONCE(folio_test_writeback(folio));
1812 WARN_ON_ONCE(folio_test_dirty(folio));
1813
1814 /*
1815 * We cannot cancel the ioend directly here on error. We may have
1816 * already set other pages under writeback and hence we have to run I/O
1817 * completion to mark the error state of the pages under writeback
1818 * appropriately.
1819 */
1820 if (unlikely(error)) {
1821 /*
1822 * Let the filesystem know what portion of the current page
1823 * failed to map. If the page hasn't been added to ioend, it
1824 * won't be affected by I/O completion and we must unlock it
1825 * now.
1826 */
1827 if (wpc->ops->discard_folio)
1828 wpc->ops->discard_folio(folio, pos);
1829 if (!count) {
1830 folio_unlock(folio);
1831 goto done;
1832 }
1833 }
1834
1835 /*
1836 * We can have dirty bits set past end of file in page_mkwrite path
1837 * while mapping the last partial folio. Hence it's better to clear
1838 * all the dirty bits in the folio here.
1839 */
1840 iomap_clear_range_dirty(folio, 0, folio_size(folio));
1841 folio_start_writeback(folio);
1842 folio_unlock(folio);
1843
1844 /*
1845 * Preserve the original error if there was one; catch
1846 * submission errors here and propagate into subsequent ioend
1847 * submissions.
1848 */
1849 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1850 int error2;
1851
1852 list_del_init(&ioend->io_list);
1853 error2 = iomap_submit_ioend(wpc, ioend, error);
1854 if (error2 && !error)
1855 error = error2;
1856 }
1857
1858 /*
1859 * We can end up here with no error and nothing to write only if we race
1860 * with a partial page truncate on a sub-page block sized filesystem.
1861 */
1862 if (!count)
1863 folio_end_writeback(folio);
1864 done:
1865 mapping_set_error(inode->i_mapping, error);
1866 return error;
1867 }
1868
1869 /*
1870 * Write out a dirty page.
1871 *
1872 * For delalloc space on the page, we need to allocate space and flush it.
1873 * For unwritten space on the page, we need to start the conversion to
1874 * regular allocated space.
1875 */
1876 static int iomap_do_writepage(struct folio *folio,
1877 struct writeback_control *wbc, void *data)
1878 {
1879 struct iomap_writepage_ctx *wpc = data;
1880 struct inode *inode = folio->mapping->host;
1881 u64 end_pos, isize;
1882
1883 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1884
1885 /*
1886 * Refuse to write the folio out if we're called from reclaim context.
1887 *
1888 * This avoids stack overflows when called from deeply used stacks in
1889 * random callers for direct reclaim or memcg reclaim. We explicitly
1890 * allow reclaim from kswapd as the stack usage there is relatively low.
1891 *
1892 * This should never happen except in the case of a VM regression so
1893 * warn about it.
1894 */
1895 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1896 PF_MEMALLOC))
1897 goto redirty;
1898
1899 /*
1900 * Is this folio beyond the end of the file?
1901 *
1902 * The folio index is less than the end_index, adjust the end_pos
1903 * to the highest offset that this folio should represent.
1904 * -----------------------------------------------------
1905 * | file mapping | <EOF> |
1906 * -----------------------------------------------------
1907 * | Page ... | Page N-2 | Page N-1 | Page N | |
1908 * ^--------------------------------^----------|--------
1909 * | desired writeback range | see else |
1910 * ---------------------------------^------------------|
1911 */
1912 isize = i_size_read(inode);
1913 end_pos = folio_pos(folio) + folio_size(folio);
1914 if (end_pos > isize) {
1915 /*
1916 * Check whether the page to write out is beyond or straddles
1917 * i_size or not.
1918 * -------------------------------------------------------
1919 * | file mapping | <EOF> |
1920 * -------------------------------------------------------
1921 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1922 * ^--------------------------------^-----------|---------
1923 * | | Straddles |
1924 * ---------------------------------^-----------|--------|
1925 */
1926 size_t poff = offset_in_folio(folio, isize);
1927 pgoff_t end_index = isize >> PAGE_SHIFT;
1928
1929 /*
1930 * Skip the page if it's fully outside i_size, e.g.
1931 * due to a truncate operation that's in progress. We've
1932 * cleaned this page and truncate will finish things off for
1933 * us.
1934 *
1935 * Note that the end_index is unsigned long. If the given
1936 * offset is greater than 16TB on a 32-bit system then if we
1937 * checked if the page is fully outside i_size with
1938 * "if (page->index >= end_index + 1)", "end_index + 1" would
1939 * overflow and evaluate to 0. Hence this page would be
1940 * redirtied and written out repeatedly, which would result in
1941 * an infinite loop; the user program performing this operation
1942 * would hang. Instead, we can detect this situation by
1943 * checking if the page is totally beyond i_size or if its
1944 * offset is just equal to the EOF.
1945 */
1946 if (folio->index > end_index ||
1947 (folio->index == end_index && poff == 0))
1948 goto unlock;
1949
1950 /*
1951 * The page straddles i_size. It must be zeroed out on each
1952 * and every writepage invocation because it may be mmapped.
1953 * "A file is mapped in multiples of the page size. For a file
1954 * that is not a multiple of the page size, the remaining
1955 * memory is zeroed when mapped, and writes to that region are
1956 * not written out to the file."
1957 */
1958 folio_zero_segment(folio, poff, folio_size(folio));
1959 end_pos = isize;
1960 }
1961
1962 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1963
1964 redirty:
1965 folio_redirty_for_writepage(wbc, folio);
1966 unlock:
1967 folio_unlock(folio);
1968 return 0;
1969 }
1970
1971 int
1972 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1973 struct iomap_writepage_ctx *wpc,
1974 const struct iomap_writeback_ops *ops)
1975 {
1976 int ret;
1977
1978 wpc->ops = ops;
1979 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1980 if (!wpc->ioend)
1981 return ret;
1982 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1983 }
1984 EXPORT_SYMBOL_GPL(iomap_writepages);
1985
1986 static int __init iomap_init(void)
1987 {
1988 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1989 offsetof(struct iomap_ioend, io_inline_bio),
1990 BIOSET_NEED_BVECS);
1991 }
1992 fs_initcall(iomap_init);