]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/jbd2/journal.c
Merge branch 'parisc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[thirdparty/kernel/stable.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107 unsigned int line, const char *fmt, ...)
108 {
109 struct va_format vaf;
110 va_list args;
111
112 if (level > jbd2_journal_enable_debug)
113 return;
114 va_start(args, fmt);
115 vaf.fmt = fmt;
116 vaf.va = &args;
117 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
118 va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126 if (!jbd2_journal_has_csum_v2or3_feature(j))
127 return 1;
128
129 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134 __u32 csum;
135 __be32 old_csum;
136
137 old_csum = sb->s_checksum;
138 sb->s_checksum = 0;
139 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140 sb->s_checksum = old_csum;
141
142 return cpu_to_be32(csum);
143 }
144
145 /*
146 * Helper function used to manage commit timeouts
147 */
148
149 static void commit_timeout(struct timer_list *t)
150 {
151 journal_t *journal = from_timer(journal, t, j_commit_timer);
152
153 wake_up_process(journal->j_task);
154 }
155
156 /*
157 * kjournald2: The main thread function used to manage a logging device
158 * journal.
159 *
160 * This kernel thread is responsible for two things:
161 *
162 * 1) COMMIT: Every so often we need to commit the current state of the
163 * filesystem to disk. The journal thread is responsible for writing
164 * all of the metadata buffers to disk.
165 *
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 * of the data in that part of the log has been rewritten elsewhere on
168 * the disk. Flushing these old buffers to reclaim space in the log is
169 * known as checkpointing, and this thread is responsible for that job.
170 */
171
172 static int kjournald2(void *arg)
173 {
174 journal_t *journal = arg;
175 transaction_t *transaction;
176
177 /*
178 * Set up an interval timer which can be used to trigger a commit wakeup
179 * after the commit interval expires
180 */
181 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183 set_freezable();
184
185 /* Record that the journal thread is running */
186 journal->j_task = current;
187 wake_up(&journal->j_wait_done_commit);
188
189 /*
190 * Make sure that no allocations from this kernel thread will ever
191 * recurse to the fs layer because we are responsible for the
192 * transaction commit and any fs involvement might get stuck waiting for
193 * the trasn. commit.
194 */
195 memalloc_nofs_save();
196
197 /*
198 * And now, wait forever for commit wakeup events.
199 */
200 write_lock(&journal->j_state_lock);
201
202 loop:
203 if (journal->j_flags & JBD2_UNMOUNT)
204 goto end_loop;
205
206 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
207 journal->j_commit_sequence, journal->j_commit_request);
208
209 if (journal->j_commit_sequence != journal->j_commit_request) {
210 jbd_debug(1, "OK, requests differ\n");
211 write_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 jbd2_journal_commit_transaction(journal);
214 write_lock(&journal->j_state_lock);
215 goto loop;
216 }
217
218 wake_up(&journal->j_wait_done_commit);
219 if (freezing(current)) {
220 /*
221 * The simpler the better. Flushing journal isn't a
222 * good idea, because that depends on threads that may
223 * be already stopped.
224 */
225 jbd_debug(1, "Now suspending kjournald2\n");
226 write_unlock(&journal->j_state_lock);
227 try_to_freeze();
228 write_lock(&journal->j_state_lock);
229 } else {
230 /*
231 * We assume on resume that commits are already there,
232 * so we don't sleep
233 */
234 DEFINE_WAIT(wait);
235 int should_sleep = 1;
236
237 prepare_to_wait(&journal->j_wait_commit, &wait,
238 TASK_INTERRUPTIBLE);
239 if (journal->j_commit_sequence != journal->j_commit_request)
240 should_sleep = 0;
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies,
243 transaction->t_expires))
244 should_sleep = 0;
245 if (journal->j_flags & JBD2_UNMOUNT)
246 should_sleep = 0;
247 if (should_sleep) {
248 write_unlock(&journal->j_state_lock);
249 schedule();
250 write_lock(&journal->j_state_lock);
251 }
252 finish_wait(&journal->j_wait_commit, &wait);
253 }
254
255 jbd_debug(1, "kjournald2 wakes\n");
256
257 /*
258 * Were we woken up by a commit wakeup event?
259 */
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 journal->j_commit_request = transaction->t_tid;
263 jbd_debug(1, "woke because of timeout\n");
264 }
265 goto loop;
266
267 end_loop:
268 del_timer_sync(&journal->j_commit_timer);
269 journal->j_task = NULL;
270 wake_up(&journal->j_wait_done_commit);
271 jbd_debug(1, "Journal thread exiting.\n");
272 write_unlock(&journal->j_state_lock);
273 return 0;
274 }
275
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 struct task_struct *t;
279
280 t = kthread_run(kjournald2, journal, "jbd2/%s",
281 journal->j_devname);
282 if (IS_ERR(t))
283 return PTR_ERR(t);
284
285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 return 0;
287 }
288
289 static void journal_kill_thread(journal_t *journal)
290 {
291 write_lock(&journal->j_state_lock);
292 journal->j_flags |= JBD2_UNMOUNT;
293
294 while (journal->j_task) {
295 write_unlock(&journal->j_state_lock);
296 wake_up(&journal->j_wait_commit);
297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 write_lock(&journal->j_state_lock);
299 }
300 write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305 *
306 * Writes a metadata buffer to a given disk block. The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
309 *
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here. If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks. In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block. The missing word can then be restored when the block is read
318 * during recovery.
319 *
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
325 *
326 * The function returns a pointer to the buffer_head to be used for IO.
327 *
328 *
329 * Return value:
330 * <0: Error
331 * >=0: Finished OK
332 *
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336 */
337
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 struct journal_head *jh_in,
340 struct buffer_head **bh_out,
341 sector_t blocknr)
342 {
343 int need_copy_out = 0;
344 int done_copy_out = 0;
345 int do_escape = 0;
346 char *mapped_data;
347 struct buffer_head *new_bh;
348 struct page *new_page;
349 unsigned int new_offset;
350 struct buffer_head *bh_in = jh2bh(jh_in);
351 journal_t *journal = transaction->t_journal;
352
353 /*
354 * The buffer really shouldn't be locked: only the current committing
355 * transaction is allowed to write it, so nobody else is allowed
356 * to do any IO.
357 *
358 * akpm: except if we're journalling data, and write() output is
359 * also part of a shared mapping, and another thread has
360 * decided to launch a writepage() against this buffer.
361 */
362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366 /* keep subsequent assertions sane */
367 atomic_set(&new_bh->b_count, 1);
368
369 jbd_lock_bh_state(bh_in);
370 repeat:
371 /*
372 * If a new transaction has already done a buffer copy-out, then
373 * we use that version of the data for the commit.
374 */
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 }
383
384 mapped_data = kmap_atomic(new_page);
385 /*
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
390 */
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
394
395 /*
396 * Check for escaping
397 */
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
402 }
403 kunmap_atomic(mapped_data);
404
405 /*
406 * Do we need to do a data copy?
407 */
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
410
411 jbd_unlock_bh_state(bh_in);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 brelse(new_bh);
415 return -ENOMEM;
416 }
417 jbd_lock_bh_state(bh_in);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
421 }
422
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 kunmap_atomic(mapped_data);
427
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
431
432 /*
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
436 */
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 }
439
440 /*
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
443 */
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
448 }
449
450 set_bh_page(new_bh, new_page, new_offset);
451 new_bh->b_size = bh_in->b_size;
452 new_bh->b_bdev = journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 new_bh->b_private = bh_in;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
457
458 *bh_out = new_bh;
459
460 /*
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
464 */
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 set_buffer_shadow(bh_in);
470 jbd_unlock_bh_state(bh_in);
471
472 return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476 * Allocation code for the journal file. Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
478 */
479
480 /*
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
483 */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 /* Return if the txn has already requested to be committed */
487 if (journal->j_commit_request == target)
488 return 0;
489
490 /*
491 * The only transaction we can possibly wait upon is the
492 * currently running transaction (if it exists). Otherwise,
493 * the target tid must be an old one.
494 */
495 if (journal->j_running_transaction &&
496 journal->j_running_transaction->t_tid == target) {
497 /*
498 * We want a new commit: OK, mark the request and wakeup the
499 * commit thread. We do _not_ do the commit ourselves.
500 */
501
502 journal->j_commit_request = target;
503 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence);
506 journal->j_running_transaction->t_requested = jiffies;
507 wake_up(&journal->j_wait_commit);
508 return 1;
509 } else if (!tid_geq(journal->j_commit_request, target))
510 /* This should never happen, but if it does, preserve
511 the evidence before kjournald goes into a loop and
512 increments j_commit_sequence beyond all recognition. */
513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence,
516 target, journal->j_running_transaction ?
517 journal->j_running_transaction->t_tid : 0);
518 return 0;
519 }
520
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 int ret;
524
525 write_lock(&journal->j_state_lock);
526 ret = __jbd2_log_start_commit(journal, tid);
527 write_unlock(&journal->j_state_lock);
528 return ret;
529 }
530
531 /*
532 * Force and wait any uncommitted transactions. We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 * 0 if nothing to commit,
536 * 1 if transaction was successfully committed.
537 */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 transaction_t *transaction = NULL;
541 tid_t tid;
542 int need_to_start = 0, ret = 0;
543
544 read_lock(&journal->j_state_lock);
545 if (journal->j_running_transaction && !current->journal_info) {
546 transaction = journal->j_running_transaction;
547 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 need_to_start = 1;
549 } else if (journal->j_committing_transaction)
550 transaction = journal->j_committing_transaction;
551
552 if (!transaction) {
553 /* Nothing to commit */
554 read_unlock(&journal->j_state_lock);
555 return 0;
556 }
557 tid = transaction->t_tid;
558 read_unlock(&journal->j_state_lock);
559 if (need_to_start)
560 jbd2_log_start_commit(journal, tid);
561 ret = jbd2_log_wait_commit(journal, tid);
562 if (!ret)
563 ret = 1;
564
565 return ret;
566 }
567
568 /**
569 * Force and wait upon a commit if the calling process is not within
570 * transaction. This is used for forcing out undo-protected data which contains
571 * bitmaps, when the fs is running out of space.
572 *
573 * @journal: journal to force
574 * Returns true if progress was made.
575 */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 int ret;
579
580 ret = __jbd2_journal_force_commit(journal);
581 return ret > 0;
582 }
583
584 /**
585 * int journal_force_commit() - force any uncommitted transactions
586 * @journal: journal to force
587 *
588 * Caller want unconditional commit. We can only force the running transaction
589 * if we don't have an active handle, otherwise, we will deadlock.
590 */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593 int ret;
594
595 J_ASSERT(!current->journal_info);
596 ret = __jbd2_journal_force_commit(journal);
597 if (ret > 0)
598 ret = 0;
599 return ret;
600 }
601
602 /*
603 * Start a commit of the current running transaction (if any). Returns true
604 * if a transaction is going to be committed (or is currently already
605 * committing), and fills its tid in at *ptid
606 */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609 int ret = 0;
610
611 write_lock(&journal->j_state_lock);
612 if (journal->j_running_transaction) {
613 tid_t tid = journal->j_running_transaction->t_tid;
614
615 __jbd2_log_start_commit(journal, tid);
616 /* There's a running transaction and we've just made sure
617 * it's commit has been scheduled. */
618 if (ptid)
619 *ptid = tid;
620 ret = 1;
621 } else if (journal->j_committing_transaction) {
622 /*
623 * If commit has been started, then we have to wait for
624 * completion of that transaction.
625 */
626 if (ptid)
627 *ptid = journal->j_committing_transaction->t_tid;
628 ret = 1;
629 }
630 write_unlock(&journal->j_state_lock);
631 return ret;
632 }
633
634 /*
635 * Return 1 if a given transaction has not yet sent barrier request
636 * connected with a transaction commit. If 0 is returned, transaction
637 * may or may not have sent the barrier. Used to avoid sending barrier
638 * twice in common cases.
639 */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642 int ret = 0;
643 transaction_t *commit_trans;
644
645 if (!(journal->j_flags & JBD2_BARRIER))
646 return 0;
647 read_lock(&journal->j_state_lock);
648 /* Transaction already committed? */
649 if (tid_geq(journal->j_commit_sequence, tid))
650 goto out;
651 commit_trans = journal->j_committing_transaction;
652 if (!commit_trans || commit_trans->t_tid != tid) {
653 ret = 1;
654 goto out;
655 }
656 /*
657 * Transaction is being committed and we already proceeded to
658 * submitting a flush to fs partition?
659 */
660 if (journal->j_fs_dev != journal->j_dev) {
661 if (!commit_trans->t_need_data_flush ||
662 commit_trans->t_state >= T_COMMIT_DFLUSH)
663 goto out;
664 } else {
665 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666 goto out;
667 }
668 ret = 1;
669 out:
670 read_unlock(&journal->j_state_lock);
671 return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674
675 /*
676 * Wait for a specified commit to complete.
677 * The caller may not hold the journal lock.
678 */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681 int err = 0;
682
683 read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685 /*
686 * Some callers make sure transaction is already committing and in that
687 * case we cannot block on open handles anymore. So don't warn in that
688 * case.
689 */
690 if (tid_gt(tid, journal->j_commit_sequence) &&
691 (!journal->j_committing_transaction ||
692 journal->j_committing_transaction->t_tid != tid)) {
693 read_unlock(&journal->j_state_lock);
694 jbd2_might_wait_for_commit(journal);
695 read_lock(&journal->j_state_lock);
696 }
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699 if (!tid_geq(journal->j_commit_request, tid)) {
700 printk(KERN_ERR
701 "%s: error: j_commit_request=%d, tid=%d\n",
702 __func__, journal->j_commit_request, tid);
703 }
704 #endif
705 while (tid_gt(tid, journal->j_commit_sequence)) {
706 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
707 tid, journal->j_commit_sequence);
708 read_unlock(&journal->j_state_lock);
709 wake_up(&journal->j_wait_commit);
710 wait_event(journal->j_wait_done_commit,
711 !tid_gt(tid, journal->j_commit_sequence));
712 read_lock(&journal->j_state_lock);
713 }
714 read_unlock(&journal->j_state_lock);
715
716 if (unlikely(is_journal_aborted(journal)))
717 err = -EIO;
718 return err;
719 }
720
721 /* Return 1 when transaction with given tid has already committed. */
722 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
723 {
724 int ret = 1;
725
726 read_lock(&journal->j_state_lock);
727 if (journal->j_running_transaction &&
728 journal->j_running_transaction->t_tid == tid)
729 ret = 0;
730 if (journal->j_committing_transaction &&
731 journal->j_committing_transaction->t_tid == tid)
732 ret = 0;
733 read_unlock(&journal->j_state_lock);
734 return ret;
735 }
736 EXPORT_SYMBOL(jbd2_transaction_committed);
737
738 /*
739 * When this function returns the transaction corresponding to tid
740 * will be completed. If the transaction has currently running, start
741 * committing that transaction before waiting for it to complete. If
742 * the transaction id is stale, it is by definition already completed,
743 * so just return SUCCESS.
744 */
745 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
746 {
747 int need_to_wait = 1;
748
749 read_lock(&journal->j_state_lock);
750 if (journal->j_running_transaction &&
751 journal->j_running_transaction->t_tid == tid) {
752 if (journal->j_commit_request != tid) {
753 /* transaction not yet started, so request it */
754 read_unlock(&journal->j_state_lock);
755 jbd2_log_start_commit(journal, tid);
756 goto wait_commit;
757 }
758 } else if (!(journal->j_committing_transaction &&
759 journal->j_committing_transaction->t_tid == tid))
760 need_to_wait = 0;
761 read_unlock(&journal->j_state_lock);
762 if (!need_to_wait)
763 return 0;
764 wait_commit:
765 return jbd2_log_wait_commit(journal, tid);
766 }
767 EXPORT_SYMBOL(jbd2_complete_transaction);
768
769 /*
770 * Log buffer allocation routines:
771 */
772
773 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
774 {
775 unsigned long blocknr;
776
777 write_lock(&journal->j_state_lock);
778 J_ASSERT(journal->j_free > 1);
779
780 blocknr = journal->j_head;
781 journal->j_head++;
782 journal->j_free--;
783 if (journal->j_head == journal->j_last)
784 journal->j_head = journal->j_first;
785 write_unlock(&journal->j_state_lock);
786 return jbd2_journal_bmap(journal, blocknr, retp);
787 }
788
789 /*
790 * Conversion of logical to physical block numbers for the journal
791 *
792 * On external journals the journal blocks are identity-mapped, so
793 * this is a no-op. If needed, we can use j_blk_offset - everything is
794 * ready.
795 */
796 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
797 unsigned long long *retp)
798 {
799 int err = 0;
800 unsigned long long ret;
801
802 if (journal->j_inode) {
803 ret = bmap(journal->j_inode, blocknr);
804 if (ret)
805 *retp = ret;
806 else {
807 printk(KERN_ALERT "%s: journal block not found "
808 "at offset %lu on %s\n",
809 __func__, blocknr, journal->j_devname);
810 err = -EIO;
811 __journal_abort_soft(journal, err);
812 }
813 } else {
814 *retp = blocknr; /* +journal->j_blk_offset */
815 }
816 return err;
817 }
818
819 /*
820 * We play buffer_head aliasing tricks to write data/metadata blocks to
821 * the journal without copying their contents, but for journal
822 * descriptor blocks we do need to generate bona fide buffers.
823 *
824 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826 * But we don't bother doing that, so there will be coherency problems with
827 * mmaps of blockdevs which hold live JBD-controlled filesystems.
828 */
829 struct buffer_head *
830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
831 {
832 journal_t *journal = transaction->t_journal;
833 struct buffer_head *bh;
834 unsigned long long blocknr;
835 journal_header_t *header;
836 int err;
837
838 err = jbd2_journal_next_log_block(journal, &blocknr);
839
840 if (err)
841 return NULL;
842
843 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844 if (!bh)
845 return NULL;
846 lock_buffer(bh);
847 memset(bh->b_data, 0, journal->j_blocksize);
848 header = (journal_header_t *)bh->b_data;
849 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
850 header->h_blocktype = cpu_to_be32(type);
851 header->h_sequence = cpu_to_be32(transaction->t_tid);
852 set_buffer_uptodate(bh);
853 unlock_buffer(bh);
854 BUFFER_TRACE(bh, "return this buffer");
855 return bh;
856 }
857
858 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
859 {
860 struct jbd2_journal_block_tail *tail;
861 __u32 csum;
862
863 if (!jbd2_journal_has_csum_v2or3(j))
864 return;
865
866 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
867 sizeof(struct jbd2_journal_block_tail));
868 tail->t_checksum = 0;
869 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
870 tail->t_checksum = cpu_to_be32(csum);
871 }
872
873 /*
874 * Return tid of the oldest transaction in the journal and block in the journal
875 * where the transaction starts.
876 *
877 * If the journal is now empty, return which will be the next transaction ID
878 * we will write and where will that transaction start.
879 *
880 * The return value is 0 if journal tail cannot be pushed any further, 1 if
881 * it can.
882 */
883 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
884 unsigned long *block)
885 {
886 transaction_t *transaction;
887 int ret;
888
889 read_lock(&journal->j_state_lock);
890 spin_lock(&journal->j_list_lock);
891 transaction = journal->j_checkpoint_transactions;
892 if (transaction) {
893 *tid = transaction->t_tid;
894 *block = transaction->t_log_start;
895 } else if ((transaction = journal->j_committing_transaction) != NULL) {
896 *tid = transaction->t_tid;
897 *block = transaction->t_log_start;
898 } else if ((transaction = journal->j_running_transaction) != NULL) {
899 *tid = transaction->t_tid;
900 *block = journal->j_head;
901 } else {
902 *tid = journal->j_transaction_sequence;
903 *block = journal->j_head;
904 }
905 ret = tid_gt(*tid, journal->j_tail_sequence);
906 spin_unlock(&journal->j_list_lock);
907 read_unlock(&journal->j_state_lock);
908
909 return ret;
910 }
911
912 /*
913 * Update information in journal structure and in on disk journal superblock
914 * about log tail. This function does not check whether information passed in
915 * really pushes log tail further. It's responsibility of the caller to make
916 * sure provided log tail information is valid (e.g. by holding
917 * j_checkpoint_mutex all the time between computing log tail and calling this
918 * function as is the case with jbd2_cleanup_journal_tail()).
919 *
920 * Requires j_checkpoint_mutex
921 */
922 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
923 {
924 unsigned long freed;
925 int ret;
926
927 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
928
929 /*
930 * We cannot afford for write to remain in drive's caches since as
931 * soon as we update j_tail, next transaction can start reusing journal
932 * space and if we lose sb update during power failure we'd replay
933 * old transaction with possibly newly overwritten data.
934 */
935 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
936 REQ_SYNC | REQ_FUA);
937 if (ret)
938 goto out;
939
940 write_lock(&journal->j_state_lock);
941 freed = block - journal->j_tail;
942 if (block < journal->j_tail)
943 freed += journal->j_last - journal->j_first;
944
945 trace_jbd2_update_log_tail(journal, tid, block, freed);
946 jbd_debug(1,
947 "Cleaning journal tail from %d to %d (offset %lu), "
948 "freeing %lu\n",
949 journal->j_tail_sequence, tid, block, freed);
950
951 journal->j_free += freed;
952 journal->j_tail_sequence = tid;
953 journal->j_tail = block;
954 write_unlock(&journal->j_state_lock);
955
956 out:
957 return ret;
958 }
959
960 /*
961 * This is a variation of __jbd2_update_log_tail which checks for validity of
962 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
963 * with other threads updating log tail.
964 */
965 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
966 {
967 mutex_lock_io(&journal->j_checkpoint_mutex);
968 if (tid_gt(tid, journal->j_tail_sequence))
969 __jbd2_update_log_tail(journal, tid, block);
970 mutex_unlock(&journal->j_checkpoint_mutex);
971 }
972
973 struct jbd2_stats_proc_session {
974 journal_t *journal;
975 struct transaction_stats_s *stats;
976 int start;
977 int max;
978 };
979
980 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
981 {
982 return *pos ? NULL : SEQ_START_TOKEN;
983 }
984
985 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
986 {
987 return NULL;
988 }
989
990 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
991 {
992 struct jbd2_stats_proc_session *s = seq->private;
993
994 if (v != SEQ_START_TOKEN)
995 return 0;
996 seq_printf(seq, "%lu transactions (%lu requested), "
997 "each up to %u blocks\n",
998 s->stats->ts_tid, s->stats->ts_requested,
999 s->journal->j_max_transaction_buffers);
1000 if (s->stats->ts_tid == 0)
1001 return 0;
1002 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1003 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1004 seq_printf(seq, " %ums request delay\n",
1005 (s->stats->ts_requested == 0) ? 0 :
1006 jiffies_to_msecs(s->stats->run.rs_request_delay /
1007 s->stats->ts_requested));
1008 seq_printf(seq, " %ums running transaction\n",
1009 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1010 seq_printf(seq, " %ums transaction was being locked\n",
1011 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1012 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1013 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1014 seq_printf(seq, " %ums logging transaction\n",
1015 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1016 seq_printf(seq, " %lluus average transaction commit time\n",
1017 div_u64(s->journal->j_average_commit_time, 1000));
1018 seq_printf(seq, " %lu handles per transaction\n",
1019 s->stats->run.rs_handle_count / s->stats->ts_tid);
1020 seq_printf(seq, " %lu blocks per transaction\n",
1021 s->stats->run.rs_blocks / s->stats->ts_tid);
1022 seq_printf(seq, " %lu logged blocks per transaction\n",
1023 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1024 return 0;
1025 }
1026
1027 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1028 {
1029 }
1030
1031 static const struct seq_operations jbd2_seq_info_ops = {
1032 .start = jbd2_seq_info_start,
1033 .next = jbd2_seq_info_next,
1034 .stop = jbd2_seq_info_stop,
1035 .show = jbd2_seq_info_show,
1036 };
1037
1038 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1039 {
1040 journal_t *journal = PDE_DATA(inode);
1041 struct jbd2_stats_proc_session *s;
1042 int rc, size;
1043
1044 s = kmalloc(sizeof(*s), GFP_KERNEL);
1045 if (s == NULL)
1046 return -ENOMEM;
1047 size = sizeof(struct transaction_stats_s);
1048 s->stats = kmalloc(size, GFP_KERNEL);
1049 if (s->stats == NULL) {
1050 kfree(s);
1051 return -ENOMEM;
1052 }
1053 spin_lock(&journal->j_history_lock);
1054 memcpy(s->stats, &journal->j_stats, size);
1055 s->journal = journal;
1056 spin_unlock(&journal->j_history_lock);
1057
1058 rc = seq_open(file, &jbd2_seq_info_ops);
1059 if (rc == 0) {
1060 struct seq_file *m = file->private_data;
1061 m->private = s;
1062 } else {
1063 kfree(s->stats);
1064 kfree(s);
1065 }
1066 return rc;
1067
1068 }
1069
1070 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1071 {
1072 struct seq_file *seq = file->private_data;
1073 struct jbd2_stats_proc_session *s = seq->private;
1074 kfree(s->stats);
1075 kfree(s);
1076 return seq_release(inode, file);
1077 }
1078
1079 static const struct file_operations jbd2_seq_info_fops = {
1080 .owner = THIS_MODULE,
1081 .open = jbd2_seq_info_open,
1082 .read = seq_read,
1083 .llseek = seq_lseek,
1084 .release = jbd2_seq_info_release,
1085 };
1086
1087 static struct proc_dir_entry *proc_jbd2_stats;
1088
1089 static void jbd2_stats_proc_init(journal_t *journal)
1090 {
1091 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1092 if (journal->j_proc_entry) {
1093 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1094 &jbd2_seq_info_fops, journal);
1095 }
1096 }
1097
1098 static void jbd2_stats_proc_exit(journal_t *journal)
1099 {
1100 remove_proc_entry("info", journal->j_proc_entry);
1101 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1102 }
1103
1104 /*
1105 * Management for journal control blocks: functions to create and
1106 * destroy journal_t structures, and to initialise and read existing
1107 * journal blocks from disk. */
1108
1109 /* First: create and setup a journal_t object in memory. We initialise
1110 * very few fields yet: that has to wait until we have created the
1111 * journal structures from from scratch, or loaded them from disk. */
1112
1113 static journal_t *journal_init_common(struct block_device *bdev,
1114 struct block_device *fs_dev,
1115 unsigned long long start, int len, int blocksize)
1116 {
1117 static struct lock_class_key jbd2_trans_commit_key;
1118 journal_t *journal;
1119 int err;
1120 struct buffer_head *bh;
1121 int n;
1122
1123 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1124 if (!journal)
1125 return NULL;
1126
1127 init_waitqueue_head(&journal->j_wait_transaction_locked);
1128 init_waitqueue_head(&journal->j_wait_done_commit);
1129 init_waitqueue_head(&journal->j_wait_commit);
1130 init_waitqueue_head(&journal->j_wait_updates);
1131 init_waitqueue_head(&journal->j_wait_reserved);
1132 mutex_init(&journal->j_barrier);
1133 mutex_init(&journal->j_checkpoint_mutex);
1134 spin_lock_init(&journal->j_revoke_lock);
1135 spin_lock_init(&journal->j_list_lock);
1136 rwlock_init(&journal->j_state_lock);
1137
1138 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1139 journal->j_min_batch_time = 0;
1140 journal->j_max_batch_time = 15000; /* 15ms */
1141 atomic_set(&journal->j_reserved_credits, 0);
1142
1143 /* The journal is marked for error until we succeed with recovery! */
1144 journal->j_flags = JBD2_ABORT;
1145
1146 /* Set up a default-sized revoke table for the new mount. */
1147 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1148 if (err)
1149 goto err_cleanup;
1150
1151 spin_lock_init(&journal->j_history_lock);
1152
1153 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1154 &jbd2_trans_commit_key, 0);
1155
1156 /* journal descriptor can store up to n blocks -bzzz */
1157 journal->j_blocksize = blocksize;
1158 journal->j_dev = bdev;
1159 journal->j_fs_dev = fs_dev;
1160 journal->j_blk_offset = start;
1161 journal->j_maxlen = len;
1162 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163 journal->j_wbufsize = n;
1164 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1165 GFP_KERNEL);
1166 if (!journal->j_wbuf)
1167 goto err_cleanup;
1168
1169 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1170 if (!bh) {
1171 pr_err("%s: Cannot get buffer for journal superblock\n",
1172 __func__);
1173 goto err_cleanup;
1174 }
1175 journal->j_sb_buffer = bh;
1176 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177
1178 return journal;
1179
1180 err_cleanup:
1181 kfree(journal->j_wbuf);
1182 jbd2_journal_destroy_revoke(journal);
1183 kfree(journal);
1184 return NULL;
1185 }
1186
1187 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1188 *
1189 * Create a journal structure assigned some fixed set of disk blocks to
1190 * the journal. We don't actually touch those disk blocks yet, but we
1191 * need to set up all of the mapping information to tell the journaling
1192 * system where the journal blocks are.
1193 *
1194 */
1195
1196 /**
1197 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1198 * @bdev: Block device on which to create the journal
1199 * @fs_dev: Device which hold journalled filesystem for this journal.
1200 * @start: Block nr Start of journal.
1201 * @len: Length of the journal in blocks.
1202 * @blocksize: blocksize of journalling device
1203 *
1204 * Returns: a newly created journal_t *
1205 *
1206 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1207 * range of blocks on an arbitrary block device.
1208 *
1209 */
1210 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1211 struct block_device *fs_dev,
1212 unsigned long long start, int len, int blocksize)
1213 {
1214 journal_t *journal;
1215
1216 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1217 if (!journal)
1218 return NULL;
1219
1220 bdevname(journal->j_dev, journal->j_devname);
1221 strreplace(journal->j_devname, '/', '!');
1222 jbd2_stats_proc_init(journal);
1223
1224 return journal;
1225 }
1226
1227 /**
1228 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1229 * @inode: An inode to create the journal in
1230 *
1231 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1232 * the journal. The inode must exist already, must support bmap() and
1233 * must have all data blocks preallocated.
1234 */
1235 journal_t *jbd2_journal_init_inode(struct inode *inode)
1236 {
1237 journal_t *journal;
1238 char *p;
1239 unsigned long long blocknr;
1240
1241 blocknr = bmap(inode, 0);
1242 if (!blocknr) {
1243 pr_err("%s: Cannot locate journal superblock\n",
1244 __func__);
1245 return NULL;
1246 }
1247
1248 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1249 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1250 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1251
1252 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1253 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1254 inode->i_sb->s_blocksize);
1255 if (!journal)
1256 return NULL;
1257
1258 journal->j_inode = inode;
1259 bdevname(journal->j_dev, journal->j_devname);
1260 p = strreplace(journal->j_devname, '/', '!');
1261 sprintf(p, "-%lu", journal->j_inode->i_ino);
1262 jbd2_stats_proc_init(journal);
1263
1264 return journal;
1265 }
1266
1267 /*
1268 * If the journal init or create aborts, we need to mark the journal
1269 * superblock as being NULL to prevent the journal destroy from writing
1270 * back a bogus superblock.
1271 */
1272 static void journal_fail_superblock (journal_t *journal)
1273 {
1274 struct buffer_head *bh = journal->j_sb_buffer;
1275 brelse(bh);
1276 journal->j_sb_buffer = NULL;
1277 }
1278
1279 /*
1280 * Given a journal_t structure, initialise the various fields for
1281 * startup of a new journaling session. We use this both when creating
1282 * a journal, and after recovering an old journal to reset it for
1283 * subsequent use.
1284 */
1285
1286 static int journal_reset(journal_t *journal)
1287 {
1288 journal_superblock_t *sb = journal->j_superblock;
1289 unsigned long long first, last;
1290
1291 first = be32_to_cpu(sb->s_first);
1292 last = be32_to_cpu(sb->s_maxlen);
1293 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1294 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1295 first, last);
1296 journal_fail_superblock(journal);
1297 return -EINVAL;
1298 }
1299
1300 journal->j_first = first;
1301 journal->j_last = last;
1302
1303 journal->j_head = first;
1304 journal->j_tail = first;
1305 journal->j_free = last - first;
1306
1307 journal->j_tail_sequence = journal->j_transaction_sequence;
1308 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1309 journal->j_commit_request = journal->j_commit_sequence;
1310
1311 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1312
1313 /*
1314 * As a special case, if the on-disk copy is already marked as needing
1315 * no recovery (s_start == 0), then we can safely defer the superblock
1316 * update until the next commit by setting JBD2_FLUSHED. This avoids
1317 * attempting a write to a potential-readonly device.
1318 */
1319 if (sb->s_start == 0) {
1320 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1321 "(start %ld, seq %d, errno %d)\n",
1322 journal->j_tail, journal->j_tail_sequence,
1323 journal->j_errno);
1324 journal->j_flags |= JBD2_FLUSHED;
1325 } else {
1326 /* Lock here to make assertions happy... */
1327 mutex_lock_io(&journal->j_checkpoint_mutex);
1328 /*
1329 * Update log tail information. We use REQ_FUA since new
1330 * transaction will start reusing journal space and so we
1331 * must make sure information about current log tail is on
1332 * disk before that.
1333 */
1334 jbd2_journal_update_sb_log_tail(journal,
1335 journal->j_tail_sequence,
1336 journal->j_tail,
1337 REQ_SYNC | REQ_FUA);
1338 mutex_unlock(&journal->j_checkpoint_mutex);
1339 }
1340 return jbd2_journal_start_thread(journal);
1341 }
1342
1343 /*
1344 * This function expects that the caller will have locked the journal
1345 * buffer head, and will return with it unlocked
1346 */
1347 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1348 {
1349 struct buffer_head *bh = journal->j_sb_buffer;
1350 journal_superblock_t *sb = journal->j_superblock;
1351 int ret;
1352
1353 /* Buffer got discarded which means block device got invalidated */
1354 if (!buffer_mapped(bh))
1355 return -EIO;
1356
1357 trace_jbd2_write_superblock(journal, write_flags);
1358 if (!(journal->j_flags & JBD2_BARRIER))
1359 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1360 if (buffer_write_io_error(bh)) {
1361 /*
1362 * Oh, dear. A previous attempt to write the journal
1363 * superblock failed. This could happen because the
1364 * USB device was yanked out. Or it could happen to
1365 * be a transient write error and maybe the block will
1366 * be remapped. Nothing we can do but to retry the
1367 * write and hope for the best.
1368 */
1369 printk(KERN_ERR "JBD2: previous I/O error detected "
1370 "for journal superblock update for %s.\n",
1371 journal->j_devname);
1372 clear_buffer_write_io_error(bh);
1373 set_buffer_uptodate(bh);
1374 }
1375 if (jbd2_journal_has_csum_v2or3(journal))
1376 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1377 get_bh(bh);
1378 bh->b_end_io = end_buffer_write_sync;
1379 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1380 wait_on_buffer(bh);
1381 if (buffer_write_io_error(bh)) {
1382 clear_buffer_write_io_error(bh);
1383 set_buffer_uptodate(bh);
1384 ret = -EIO;
1385 }
1386 if (ret) {
1387 printk(KERN_ERR "JBD2: Error %d detected when updating "
1388 "journal superblock for %s.\n", ret,
1389 journal->j_devname);
1390 jbd2_journal_abort(journal, ret);
1391 }
1392
1393 return ret;
1394 }
1395
1396 /**
1397 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1398 * @journal: The journal to update.
1399 * @tail_tid: TID of the new transaction at the tail of the log
1400 * @tail_block: The first block of the transaction at the tail of the log
1401 * @write_op: With which operation should we write the journal sb
1402 *
1403 * Update a journal's superblock information about log tail and write it to
1404 * disk, waiting for the IO to complete.
1405 */
1406 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1407 unsigned long tail_block, int write_op)
1408 {
1409 journal_superblock_t *sb = journal->j_superblock;
1410 int ret;
1411
1412 if (is_journal_aborted(journal))
1413 return -EIO;
1414
1415 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1416 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1417 tail_block, tail_tid);
1418
1419 lock_buffer(journal->j_sb_buffer);
1420 sb->s_sequence = cpu_to_be32(tail_tid);
1421 sb->s_start = cpu_to_be32(tail_block);
1422
1423 ret = jbd2_write_superblock(journal, write_op);
1424 if (ret)
1425 goto out;
1426
1427 /* Log is no longer empty */
1428 write_lock(&journal->j_state_lock);
1429 WARN_ON(!sb->s_sequence);
1430 journal->j_flags &= ~JBD2_FLUSHED;
1431 write_unlock(&journal->j_state_lock);
1432
1433 out:
1434 return ret;
1435 }
1436
1437 /**
1438 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1439 * @journal: The journal to update.
1440 * @write_op: With which operation should we write the journal sb
1441 *
1442 * Update a journal's dynamic superblock fields to show that journal is empty.
1443 * Write updated superblock to disk waiting for IO to complete.
1444 */
1445 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1446 {
1447 journal_superblock_t *sb = journal->j_superblock;
1448
1449 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1450 lock_buffer(journal->j_sb_buffer);
1451 if (sb->s_start == 0) { /* Is it already empty? */
1452 unlock_buffer(journal->j_sb_buffer);
1453 return;
1454 }
1455
1456 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1457 journal->j_tail_sequence);
1458
1459 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1460 sb->s_start = cpu_to_be32(0);
1461
1462 jbd2_write_superblock(journal, write_op);
1463
1464 /* Log is no longer empty */
1465 write_lock(&journal->j_state_lock);
1466 journal->j_flags |= JBD2_FLUSHED;
1467 write_unlock(&journal->j_state_lock);
1468 }
1469
1470
1471 /**
1472 * jbd2_journal_update_sb_errno() - Update error in the journal.
1473 * @journal: The journal to update.
1474 *
1475 * Update a journal's errno. Write updated superblock to disk waiting for IO
1476 * to complete.
1477 */
1478 void jbd2_journal_update_sb_errno(journal_t *journal)
1479 {
1480 journal_superblock_t *sb = journal->j_superblock;
1481 int errcode;
1482
1483 lock_buffer(journal->j_sb_buffer);
1484 errcode = journal->j_errno;
1485 if (errcode == -ESHUTDOWN)
1486 errcode = 0;
1487 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1488 sb->s_errno = cpu_to_be32(errcode);
1489
1490 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1491 }
1492 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1493
1494 /*
1495 * Read the superblock for a given journal, performing initial
1496 * validation of the format.
1497 */
1498 static int journal_get_superblock(journal_t *journal)
1499 {
1500 struct buffer_head *bh;
1501 journal_superblock_t *sb;
1502 int err = -EIO;
1503
1504 bh = journal->j_sb_buffer;
1505
1506 J_ASSERT(bh != NULL);
1507 if (!buffer_uptodate(bh)) {
1508 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1509 wait_on_buffer(bh);
1510 if (!buffer_uptodate(bh)) {
1511 printk(KERN_ERR
1512 "JBD2: IO error reading journal superblock\n");
1513 goto out;
1514 }
1515 }
1516
1517 if (buffer_verified(bh))
1518 return 0;
1519
1520 sb = journal->j_superblock;
1521
1522 err = -EINVAL;
1523
1524 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1525 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1526 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1527 goto out;
1528 }
1529
1530 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1531 case JBD2_SUPERBLOCK_V1:
1532 journal->j_format_version = 1;
1533 break;
1534 case JBD2_SUPERBLOCK_V2:
1535 journal->j_format_version = 2;
1536 break;
1537 default:
1538 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1539 goto out;
1540 }
1541
1542 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1543 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1544 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1545 printk(KERN_WARNING "JBD2: journal file too short\n");
1546 goto out;
1547 }
1548
1549 if (be32_to_cpu(sb->s_first) == 0 ||
1550 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1551 printk(KERN_WARNING
1552 "JBD2: Invalid start block of journal: %u\n",
1553 be32_to_cpu(sb->s_first));
1554 goto out;
1555 }
1556
1557 if (jbd2_has_feature_csum2(journal) &&
1558 jbd2_has_feature_csum3(journal)) {
1559 /* Can't have checksum v2 and v3 at the same time! */
1560 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1561 "at the same time!\n");
1562 goto out;
1563 }
1564
1565 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1566 jbd2_has_feature_checksum(journal)) {
1567 /* Can't have checksum v1 and v2 on at the same time! */
1568 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1569 "at the same time!\n");
1570 goto out;
1571 }
1572
1573 if (!jbd2_verify_csum_type(journal, sb)) {
1574 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1575 goto out;
1576 }
1577
1578 /* Load the checksum driver */
1579 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1580 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1581 if (IS_ERR(journal->j_chksum_driver)) {
1582 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1583 err = PTR_ERR(journal->j_chksum_driver);
1584 journal->j_chksum_driver = NULL;
1585 goto out;
1586 }
1587 }
1588
1589 if (jbd2_journal_has_csum_v2or3(journal)) {
1590 /* Check superblock checksum */
1591 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1592 printk(KERN_ERR "JBD2: journal checksum error\n");
1593 err = -EFSBADCRC;
1594 goto out;
1595 }
1596
1597 /* Precompute checksum seed for all metadata */
1598 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1599 sizeof(sb->s_uuid));
1600 }
1601
1602 set_buffer_verified(bh);
1603
1604 return 0;
1605
1606 out:
1607 journal_fail_superblock(journal);
1608 return err;
1609 }
1610
1611 /*
1612 * Load the on-disk journal superblock and read the key fields into the
1613 * journal_t.
1614 */
1615
1616 static int load_superblock(journal_t *journal)
1617 {
1618 int err;
1619 journal_superblock_t *sb;
1620
1621 err = journal_get_superblock(journal);
1622 if (err)
1623 return err;
1624
1625 sb = journal->j_superblock;
1626
1627 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1628 journal->j_tail = be32_to_cpu(sb->s_start);
1629 journal->j_first = be32_to_cpu(sb->s_first);
1630 journal->j_last = be32_to_cpu(sb->s_maxlen);
1631 journal->j_errno = be32_to_cpu(sb->s_errno);
1632
1633 return 0;
1634 }
1635
1636
1637 /**
1638 * int jbd2_journal_load() - Read journal from disk.
1639 * @journal: Journal to act on.
1640 *
1641 * Given a journal_t structure which tells us which disk blocks contain
1642 * a journal, read the journal from disk to initialise the in-memory
1643 * structures.
1644 */
1645 int jbd2_journal_load(journal_t *journal)
1646 {
1647 int err;
1648 journal_superblock_t *sb;
1649
1650 err = load_superblock(journal);
1651 if (err)
1652 return err;
1653
1654 sb = journal->j_superblock;
1655 /* If this is a V2 superblock, then we have to check the
1656 * features flags on it. */
1657
1658 if (journal->j_format_version >= 2) {
1659 if ((sb->s_feature_ro_compat &
1660 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1661 (sb->s_feature_incompat &
1662 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1663 printk(KERN_WARNING
1664 "JBD2: Unrecognised features on journal\n");
1665 return -EINVAL;
1666 }
1667 }
1668
1669 /*
1670 * Create a slab for this blocksize
1671 */
1672 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1673 if (err)
1674 return err;
1675
1676 /* Let the recovery code check whether it needs to recover any
1677 * data from the journal. */
1678 if (jbd2_journal_recover(journal))
1679 goto recovery_error;
1680
1681 if (journal->j_failed_commit) {
1682 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1683 "is corrupt.\n", journal->j_failed_commit,
1684 journal->j_devname);
1685 return -EFSCORRUPTED;
1686 }
1687
1688 /* OK, we've finished with the dynamic journal bits:
1689 * reinitialise the dynamic contents of the superblock in memory
1690 * and reset them on disk. */
1691 if (journal_reset(journal))
1692 goto recovery_error;
1693
1694 journal->j_flags &= ~JBD2_ABORT;
1695 journal->j_flags |= JBD2_LOADED;
1696 return 0;
1697
1698 recovery_error:
1699 printk(KERN_WARNING "JBD2: recovery failed\n");
1700 return -EIO;
1701 }
1702
1703 /**
1704 * void jbd2_journal_destroy() - Release a journal_t structure.
1705 * @journal: Journal to act on.
1706 *
1707 * Release a journal_t structure once it is no longer in use by the
1708 * journaled object.
1709 * Return <0 if we couldn't clean up the journal.
1710 */
1711 int jbd2_journal_destroy(journal_t *journal)
1712 {
1713 int err = 0;
1714
1715 /* Wait for the commit thread to wake up and die. */
1716 journal_kill_thread(journal);
1717
1718 /* Force a final log commit */
1719 if (journal->j_running_transaction)
1720 jbd2_journal_commit_transaction(journal);
1721
1722 /* Force any old transactions to disk */
1723
1724 /* Totally anal locking here... */
1725 spin_lock(&journal->j_list_lock);
1726 while (journal->j_checkpoint_transactions != NULL) {
1727 spin_unlock(&journal->j_list_lock);
1728 mutex_lock_io(&journal->j_checkpoint_mutex);
1729 err = jbd2_log_do_checkpoint(journal);
1730 mutex_unlock(&journal->j_checkpoint_mutex);
1731 /*
1732 * If checkpointing failed, just free the buffers to avoid
1733 * looping forever
1734 */
1735 if (err) {
1736 jbd2_journal_destroy_checkpoint(journal);
1737 spin_lock(&journal->j_list_lock);
1738 break;
1739 }
1740 spin_lock(&journal->j_list_lock);
1741 }
1742
1743 J_ASSERT(journal->j_running_transaction == NULL);
1744 J_ASSERT(journal->j_committing_transaction == NULL);
1745 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1746 spin_unlock(&journal->j_list_lock);
1747
1748 if (journal->j_sb_buffer) {
1749 if (!is_journal_aborted(journal)) {
1750 mutex_lock_io(&journal->j_checkpoint_mutex);
1751
1752 write_lock(&journal->j_state_lock);
1753 journal->j_tail_sequence =
1754 ++journal->j_transaction_sequence;
1755 write_unlock(&journal->j_state_lock);
1756
1757 jbd2_mark_journal_empty(journal,
1758 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1759 mutex_unlock(&journal->j_checkpoint_mutex);
1760 } else
1761 err = -EIO;
1762 brelse(journal->j_sb_buffer);
1763 }
1764
1765 if (journal->j_proc_entry)
1766 jbd2_stats_proc_exit(journal);
1767 iput(journal->j_inode);
1768 if (journal->j_revoke)
1769 jbd2_journal_destroy_revoke(journal);
1770 if (journal->j_chksum_driver)
1771 crypto_free_shash(journal->j_chksum_driver);
1772 kfree(journal->j_wbuf);
1773 kfree(journal);
1774
1775 return err;
1776 }
1777
1778
1779 /**
1780 *int jbd2_journal_check_used_features () - Check if features specified are used.
1781 * @journal: Journal to check.
1782 * @compat: bitmask of compatible features
1783 * @ro: bitmask of features that force read-only mount
1784 * @incompat: bitmask of incompatible features
1785 *
1786 * Check whether the journal uses all of a given set of
1787 * features. Return true (non-zero) if it does.
1788 **/
1789
1790 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1791 unsigned long ro, unsigned long incompat)
1792 {
1793 journal_superblock_t *sb;
1794
1795 if (!compat && !ro && !incompat)
1796 return 1;
1797 /* Load journal superblock if it is not loaded yet. */
1798 if (journal->j_format_version == 0 &&
1799 journal_get_superblock(journal) != 0)
1800 return 0;
1801 if (journal->j_format_version == 1)
1802 return 0;
1803
1804 sb = journal->j_superblock;
1805
1806 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1807 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1808 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1809 return 1;
1810
1811 return 0;
1812 }
1813
1814 /**
1815 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1816 * @journal: Journal to check.
1817 * @compat: bitmask of compatible features
1818 * @ro: bitmask of features that force read-only mount
1819 * @incompat: bitmask of incompatible features
1820 *
1821 * Check whether the journaling code supports the use of
1822 * all of a given set of features on this journal. Return true
1823 * (non-zero) if it can. */
1824
1825 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1826 unsigned long ro, unsigned long incompat)
1827 {
1828 if (!compat && !ro && !incompat)
1829 return 1;
1830
1831 /* We can support any known requested features iff the
1832 * superblock is in version 2. Otherwise we fail to support any
1833 * extended sb features. */
1834
1835 if (journal->j_format_version != 2)
1836 return 0;
1837
1838 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1839 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1840 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1841 return 1;
1842
1843 return 0;
1844 }
1845
1846 /**
1847 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1848 * @journal: Journal to act on.
1849 * @compat: bitmask of compatible features
1850 * @ro: bitmask of features that force read-only mount
1851 * @incompat: bitmask of incompatible features
1852 *
1853 * Mark a given journal feature as present on the
1854 * superblock. Returns true if the requested features could be set.
1855 *
1856 */
1857
1858 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1859 unsigned long ro, unsigned long incompat)
1860 {
1861 #define INCOMPAT_FEATURE_ON(f) \
1862 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1863 #define COMPAT_FEATURE_ON(f) \
1864 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1865 journal_superblock_t *sb;
1866
1867 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1868 return 1;
1869
1870 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1871 return 0;
1872
1873 /* If enabling v2 checksums, turn on v3 instead */
1874 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1875 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1876 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1877 }
1878
1879 /* Asking for checksumming v3 and v1? Only give them v3. */
1880 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1881 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1882 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1883
1884 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1885 compat, ro, incompat);
1886
1887 sb = journal->j_superblock;
1888
1889 /* Load the checksum driver if necessary */
1890 if ((journal->j_chksum_driver == NULL) &&
1891 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1892 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1893 if (IS_ERR(journal->j_chksum_driver)) {
1894 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1895 journal->j_chksum_driver = NULL;
1896 return 0;
1897 }
1898 /* Precompute checksum seed for all metadata */
1899 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1900 sizeof(sb->s_uuid));
1901 }
1902
1903 lock_buffer(journal->j_sb_buffer);
1904
1905 /* If enabling v3 checksums, update superblock */
1906 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1907 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1908 sb->s_feature_compat &=
1909 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1910 }
1911
1912 /* If enabling v1 checksums, downgrade superblock */
1913 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1914 sb->s_feature_incompat &=
1915 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1916 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1917
1918 sb->s_feature_compat |= cpu_to_be32(compat);
1919 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1920 sb->s_feature_incompat |= cpu_to_be32(incompat);
1921 unlock_buffer(journal->j_sb_buffer);
1922
1923 return 1;
1924 #undef COMPAT_FEATURE_ON
1925 #undef INCOMPAT_FEATURE_ON
1926 }
1927
1928 /*
1929 * jbd2_journal_clear_features () - Clear a given journal feature in the
1930 * superblock
1931 * @journal: Journal to act on.
1932 * @compat: bitmask of compatible features
1933 * @ro: bitmask of features that force read-only mount
1934 * @incompat: bitmask of incompatible features
1935 *
1936 * Clear a given journal feature as present on the
1937 * superblock.
1938 */
1939 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1940 unsigned long ro, unsigned long incompat)
1941 {
1942 journal_superblock_t *sb;
1943
1944 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1945 compat, ro, incompat);
1946
1947 sb = journal->j_superblock;
1948
1949 sb->s_feature_compat &= ~cpu_to_be32(compat);
1950 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1951 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1952 }
1953 EXPORT_SYMBOL(jbd2_journal_clear_features);
1954
1955 /**
1956 * int jbd2_journal_flush () - Flush journal
1957 * @journal: Journal to act on.
1958 *
1959 * Flush all data for a given journal to disk and empty the journal.
1960 * Filesystems can use this when remounting readonly to ensure that
1961 * recovery does not need to happen on remount.
1962 */
1963
1964 int jbd2_journal_flush(journal_t *journal)
1965 {
1966 int err = 0;
1967 transaction_t *transaction = NULL;
1968
1969 write_lock(&journal->j_state_lock);
1970
1971 /* Force everything buffered to the log... */
1972 if (journal->j_running_transaction) {
1973 transaction = journal->j_running_transaction;
1974 __jbd2_log_start_commit(journal, transaction->t_tid);
1975 } else if (journal->j_committing_transaction)
1976 transaction = journal->j_committing_transaction;
1977
1978 /* Wait for the log commit to complete... */
1979 if (transaction) {
1980 tid_t tid = transaction->t_tid;
1981
1982 write_unlock(&journal->j_state_lock);
1983 jbd2_log_wait_commit(journal, tid);
1984 } else {
1985 write_unlock(&journal->j_state_lock);
1986 }
1987
1988 /* ...and flush everything in the log out to disk. */
1989 spin_lock(&journal->j_list_lock);
1990 while (!err && journal->j_checkpoint_transactions != NULL) {
1991 spin_unlock(&journal->j_list_lock);
1992 mutex_lock_io(&journal->j_checkpoint_mutex);
1993 err = jbd2_log_do_checkpoint(journal);
1994 mutex_unlock(&journal->j_checkpoint_mutex);
1995 spin_lock(&journal->j_list_lock);
1996 }
1997 spin_unlock(&journal->j_list_lock);
1998
1999 if (is_journal_aborted(journal))
2000 return -EIO;
2001
2002 mutex_lock_io(&journal->j_checkpoint_mutex);
2003 if (!err) {
2004 err = jbd2_cleanup_journal_tail(journal);
2005 if (err < 0) {
2006 mutex_unlock(&journal->j_checkpoint_mutex);
2007 goto out;
2008 }
2009 err = 0;
2010 }
2011
2012 /* Finally, mark the journal as really needing no recovery.
2013 * This sets s_start==0 in the underlying superblock, which is
2014 * the magic code for a fully-recovered superblock. Any future
2015 * commits of data to the journal will restore the current
2016 * s_start value. */
2017 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2018 mutex_unlock(&journal->j_checkpoint_mutex);
2019 write_lock(&journal->j_state_lock);
2020 J_ASSERT(!journal->j_running_transaction);
2021 J_ASSERT(!journal->j_committing_transaction);
2022 J_ASSERT(!journal->j_checkpoint_transactions);
2023 J_ASSERT(journal->j_head == journal->j_tail);
2024 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2025 write_unlock(&journal->j_state_lock);
2026 out:
2027 return err;
2028 }
2029
2030 /**
2031 * int jbd2_journal_wipe() - Wipe journal contents
2032 * @journal: Journal to act on.
2033 * @write: flag (see below)
2034 *
2035 * Wipe out all of the contents of a journal, safely. This will produce
2036 * a warning if the journal contains any valid recovery information.
2037 * Must be called between journal_init_*() and jbd2_journal_load().
2038 *
2039 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2040 * we merely suppress recovery.
2041 */
2042
2043 int jbd2_journal_wipe(journal_t *journal, int write)
2044 {
2045 int err = 0;
2046
2047 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2048
2049 err = load_superblock(journal);
2050 if (err)
2051 return err;
2052
2053 if (!journal->j_tail)
2054 goto no_recovery;
2055
2056 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2057 write ? "Clearing" : "Ignoring");
2058
2059 err = jbd2_journal_skip_recovery(journal);
2060 if (write) {
2061 /* Lock to make assertions happy... */
2062 mutex_lock_io(&journal->j_checkpoint_mutex);
2063 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2064 mutex_unlock(&journal->j_checkpoint_mutex);
2065 }
2066
2067 no_recovery:
2068 return err;
2069 }
2070
2071 /*
2072 * Journal abort has very specific semantics, which we describe
2073 * for journal abort.
2074 *
2075 * Two internal functions, which provide abort to the jbd layer
2076 * itself are here.
2077 */
2078
2079 /*
2080 * Quick version for internal journal use (doesn't lock the journal).
2081 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2082 * and don't attempt to make any other journal updates.
2083 */
2084 void __jbd2_journal_abort_hard(journal_t *journal)
2085 {
2086 transaction_t *transaction;
2087
2088 if (journal->j_flags & JBD2_ABORT)
2089 return;
2090
2091 printk(KERN_ERR "Aborting journal on device %s.\n",
2092 journal->j_devname);
2093
2094 write_lock(&journal->j_state_lock);
2095 journal->j_flags |= JBD2_ABORT;
2096 transaction = journal->j_running_transaction;
2097 if (transaction)
2098 __jbd2_log_start_commit(journal, transaction->t_tid);
2099 write_unlock(&journal->j_state_lock);
2100 }
2101
2102 /* Soft abort: record the abort error status in the journal superblock,
2103 * but don't do any other IO. */
2104 static void __journal_abort_soft (journal_t *journal, int errno)
2105 {
2106 int old_errno;
2107
2108 write_lock(&journal->j_state_lock);
2109 old_errno = journal->j_errno;
2110 if (!journal->j_errno || errno == -ESHUTDOWN)
2111 journal->j_errno = errno;
2112
2113 if (journal->j_flags & JBD2_ABORT) {
2114 write_unlock(&journal->j_state_lock);
2115 if (!old_errno && old_errno != -ESHUTDOWN &&
2116 errno == -ESHUTDOWN)
2117 jbd2_journal_update_sb_errno(journal);
2118 return;
2119 }
2120 write_unlock(&journal->j_state_lock);
2121
2122 __jbd2_journal_abort_hard(journal);
2123
2124 if (errno) {
2125 jbd2_journal_update_sb_errno(journal);
2126 write_lock(&journal->j_state_lock);
2127 journal->j_flags |= JBD2_REC_ERR;
2128 write_unlock(&journal->j_state_lock);
2129 }
2130 }
2131
2132 /**
2133 * void jbd2_journal_abort () - Shutdown the journal immediately.
2134 * @journal: the journal to shutdown.
2135 * @errno: an error number to record in the journal indicating
2136 * the reason for the shutdown.
2137 *
2138 * Perform a complete, immediate shutdown of the ENTIRE
2139 * journal (not of a single transaction). This operation cannot be
2140 * undone without closing and reopening the journal.
2141 *
2142 * The jbd2_journal_abort function is intended to support higher level error
2143 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2144 * mode.
2145 *
2146 * Journal abort has very specific semantics. Any existing dirty,
2147 * unjournaled buffers in the main filesystem will still be written to
2148 * disk by bdflush, but the journaling mechanism will be suspended
2149 * immediately and no further transaction commits will be honoured.
2150 *
2151 * Any dirty, journaled buffers will be written back to disk without
2152 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2153 * filesystem, but we _do_ attempt to leave as much data as possible
2154 * behind for fsck to use for cleanup.
2155 *
2156 * Any attempt to get a new transaction handle on a journal which is in
2157 * ABORT state will just result in an -EROFS error return. A
2158 * jbd2_journal_stop on an existing handle will return -EIO if we have
2159 * entered abort state during the update.
2160 *
2161 * Recursive transactions are not disturbed by journal abort until the
2162 * final jbd2_journal_stop, which will receive the -EIO error.
2163 *
2164 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2165 * which will be recorded (if possible) in the journal superblock. This
2166 * allows a client to record failure conditions in the middle of a
2167 * transaction without having to complete the transaction to record the
2168 * failure to disk. ext3_error, for example, now uses this
2169 * functionality.
2170 *
2171 * Errors which originate from within the journaling layer will NOT
2172 * supply an errno; a null errno implies that absolutely no further
2173 * writes are done to the journal (unless there are any already in
2174 * progress).
2175 *
2176 */
2177
2178 void jbd2_journal_abort(journal_t *journal, int errno)
2179 {
2180 __journal_abort_soft(journal, errno);
2181 }
2182
2183 /**
2184 * int jbd2_journal_errno () - returns the journal's error state.
2185 * @journal: journal to examine.
2186 *
2187 * This is the errno number set with jbd2_journal_abort(), the last
2188 * time the journal was mounted - if the journal was stopped
2189 * without calling abort this will be 0.
2190 *
2191 * If the journal has been aborted on this mount time -EROFS will
2192 * be returned.
2193 */
2194 int jbd2_journal_errno(journal_t *journal)
2195 {
2196 int err;
2197
2198 read_lock(&journal->j_state_lock);
2199 if (journal->j_flags & JBD2_ABORT)
2200 err = -EROFS;
2201 else
2202 err = journal->j_errno;
2203 read_unlock(&journal->j_state_lock);
2204 return err;
2205 }
2206
2207 /**
2208 * int jbd2_journal_clear_err () - clears the journal's error state
2209 * @journal: journal to act on.
2210 *
2211 * An error must be cleared or acked to take a FS out of readonly
2212 * mode.
2213 */
2214 int jbd2_journal_clear_err(journal_t *journal)
2215 {
2216 int err = 0;
2217
2218 write_lock(&journal->j_state_lock);
2219 if (journal->j_flags & JBD2_ABORT)
2220 err = -EROFS;
2221 else
2222 journal->j_errno = 0;
2223 write_unlock(&journal->j_state_lock);
2224 return err;
2225 }
2226
2227 /**
2228 * void jbd2_journal_ack_err() - Ack journal err.
2229 * @journal: journal to act on.
2230 *
2231 * An error must be cleared or acked to take a FS out of readonly
2232 * mode.
2233 */
2234 void jbd2_journal_ack_err(journal_t *journal)
2235 {
2236 write_lock(&journal->j_state_lock);
2237 if (journal->j_errno)
2238 journal->j_flags |= JBD2_ACK_ERR;
2239 write_unlock(&journal->j_state_lock);
2240 }
2241
2242 int jbd2_journal_blocks_per_page(struct inode *inode)
2243 {
2244 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2245 }
2246
2247 /*
2248 * helper functions to deal with 32 or 64bit block numbers.
2249 */
2250 size_t journal_tag_bytes(journal_t *journal)
2251 {
2252 size_t sz;
2253
2254 if (jbd2_has_feature_csum3(journal))
2255 return sizeof(journal_block_tag3_t);
2256
2257 sz = sizeof(journal_block_tag_t);
2258
2259 if (jbd2_has_feature_csum2(journal))
2260 sz += sizeof(__u16);
2261
2262 if (jbd2_has_feature_64bit(journal))
2263 return sz;
2264 else
2265 return sz - sizeof(__u32);
2266 }
2267
2268 /*
2269 * JBD memory management
2270 *
2271 * These functions are used to allocate block-sized chunks of memory
2272 * used for making copies of buffer_head data. Very often it will be
2273 * page-sized chunks of data, but sometimes it will be in
2274 * sub-page-size chunks. (For example, 16k pages on Power systems
2275 * with a 4k block file system.) For blocks smaller than a page, we
2276 * use a SLAB allocator. There are slab caches for each block size,
2277 * which are allocated at mount time, if necessary, and we only free
2278 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2279 * this reason we don't need to a mutex to protect access to
2280 * jbd2_slab[] allocating or releasing memory; only in
2281 * jbd2_journal_create_slab().
2282 */
2283 #define JBD2_MAX_SLABS 8
2284 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2285
2286 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2287 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2288 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2289 };
2290
2291
2292 static void jbd2_journal_destroy_slabs(void)
2293 {
2294 int i;
2295
2296 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2297 kmem_cache_destroy(jbd2_slab[i]);
2298 jbd2_slab[i] = NULL;
2299 }
2300 }
2301
2302 static int jbd2_journal_create_slab(size_t size)
2303 {
2304 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2305 int i = order_base_2(size) - 10;
2306 size_t slab_size;
2307
2308 if (size == PAGE_SIZE)
2309 return 0;
2310
2311 if (i >= JBD2_MAX_SLABS)
2312 return -EINVAL;
2313
2314 if (unlikely(i < 0))
2315 i = 0;
2316 mutex_lock(&jbd2_slab_create_mutex);
2317 if (jbd2_slab[i]) {
2318 mutex_unlock(&jbd2_slab_create_mutex);
2319 return 0; /* Already created */
2320 }
2321
2322 slab_size = 1 << (i+10);
2323 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2324 slab_size, 0, NULL);
2325 mutex_unlock(&jbd2_slab_create_mutex);
2326 if (!jbd2_slab[i]) {
2327 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2328 return -ENOMEM;
2329 }
2330 return 0;
2331 }
2332
2333 static struct kmem_cache *get_slab(size_t size)
2334 {
2335 int i = order_base_2(size) - 10;
2336
2337 BUG_ON(i >= JBD2_MAX_SLABS);
2338 if (unlikely(i < 0))
2339 i = 0;
2340 BUG_ON(jbd2_slab[i] == NULL);
2341 return jbd2_slab[i];
2342 }
2343
2344 void *jbd2_alloc(size_t size, gfp_t flags)
2345 {
2346 void *ptr;
2347
2348 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2349
2350 if (size < PAGE_SIZE)
2351 ptr = kmem_cache_alloc(get_slab(size), flags);
2352 else
2353 ptr = (void *)__get_free_pages(flags, get_order(size));
2354
2355 /* Check alignment; SLUB has gotten this wrong in the past,
2356 * and this can lead to user data corruption! */
2357 BUG_ON(((unsigned long) ptr) & (size-1));
2358
2359 return ptr;
2360 }
2361
2362 void jbd2_free(void *ptr, size_t size)
2363 {
2364 if (size < PAGE_SIZE)
2365 kmem_cache_free(get_slab(size), ptr);
2366 else
2367 free_pages((unsigned long)ptr, get_order(size));
2368 };
2369
2370 /*
2371 * Journal_head storage management
2372 */
2373 static struct kmem_cache *jbd2_journal_head_cache;
2374 #ifdef CONFIG_JBD2_DEBUG
2375 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2376 #endif
2377
2378 static int jbd2_journal_init_journal_head_cache(void)
2379 {
2380 int retval;
2381
2382 J_ASSERT(jbd2_journal_head_cache == NULL);
2383 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2384 sizeof(struct journal_head),
2385 0, /* offset */
2386 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2387 NULL); /* ctor */
2388 retval = 0;
2389 if (!jbd2_journal_head_cache) {
2390 retval = -ENOMEM;
2391 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2392 }
2393 return retval;
2394 }
2395
2396 static void jbd2_journal_destroy_journal_head_cache(void)
2397 {
2398 kmem_cache_destroy(jbd2_journal_head_cache);
2399 jbd2_journal_head_cache = NULL;
2400 }
2401
2402 /*
2403 * journal_head splicing and dicing
2404 */
2405 static struct journal_head *journal_alloc_journal_head(void)
2406 {
2407 struct journal_head *ret;
2408
2409 #ifdef CONFIG_JBD2_DEBUG
2410 atomic_inc(&nr_journal_heads);
2411 #endif
2412 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2413 if (!ret) {
2414 jbd_debug(1, "out of memory for journal_head\n");
2415 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2416 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2417 GFP_NOFS | __GFP_NOFAIL);
2418 }
2419 return ret;
2420 }
2421
2422 static void journal_free_journal_head(struct journal_head *jh)
2423 {
2424 #ifdef CONFIG_JBD2_DEBUG
2425 atomic_dec(&nr_journal_heads);
2426 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2427 #endif
2428 kmem_cache_free(jbd2_journal_head_cache, jh);
2429 }
2430
2431 /*
2432 * A journal_head is attached to a buffer_head whenever JBD has an
2433 * interest in the buffer.
2434 *
2435 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2436 * is set. This bit is tested in core kernel code where we need to take
2437 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2438 * there.
2439 *
2440 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2441 *
2442 * When a buffer has its BH_JBD bit set it is immune from being released by
2443 * core kernel code, mainly via ->b_count.
2444 *
2445 * A journal_head is detached from its buffer_head when the journal_head's
2446 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2447 * transaction (b_cp_transaction) hold their references to b_jcount.
2448 *
2449 * Various places in the kernel want to attach a journal_head to a buffer_head
2450 * _before_ attaching the journal_head to a transaction. To protect the
2451 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2452 * journal_head's b_jcount refcount by one. The caller must call
2453 * jbd2_journal_put_journal_head() to undo this.
2454 *
2455 * So the typical usage would be:
2456 *
2457 * (Attach a journal_head if needed. Increments b_jcount)
2458 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2459 * ...
2460 * (Get another reference for transaction)
2461 * jbd2_journal_grab_journal_head(bh);
2462 * jh->b_transaction = xxx;
2463 * (Put original reference)
2464 * jbd2_journal_put_journal_head(jh);
2465 */
2466
2467 /*
2468 * Give a buffer_head a journal_head.
2469 *
2470 * May sleep.
2471 */
2472 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2473 {
2474 struct journal_head *jh;
2475 struct journal_head *new_jh = NULL;
2476
2477 repeat:
2478 if (!buffer_jbd(bh))
2479 new_jh = journal_alloc_journal_head();
2480
2481 jbd_lock_bh_journal_head(bh);
2482 if (buffer_jbd(bh)) {
2483 jh = bh2jh(bh);
2484 } else {
2485 J_ASSERT_BH(bh,
2486 (atomic_read(&bh->b_count) > 0) ||
2487 (bh->b_page && bh->b_page->mapping));
2488
2489 if (!new_jh) {
2490 jbd_unlock_bh_journal_head(bh);
2491 goto repeat;
2492 }
2493
2494 jh = new_jh;
2495 new_jh = NULL; /* We consumed it */
2496 set_buffer_jbd(bh);
2497 bh->b_private = jh;
2498 jh->b_bh = bh;
2499 get_bh(bh);
2500 BUFFER_TRACE(bh, "added journal_head");
2501 }
2502 jh->b_jcount++;
2503 jbd_unlock_bh_journal_head(bh);
2504 if (new_jh)
2505 journal_free_journal_head(new_jh);
2506 return bh->b_private;
2507 }
2508
2509 /*
2510 * Grab a ref against this buffer_head's journal_head. If it ended up not
2511 * having a journal_head, return NULL
2512 */
2513 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2514 {
2515 struct journal_head *jh = NULL;
2516
2517 jbd_lock_bh_journal_head(bh);
2518 if (buffer_jbd(bh)) {
2519 jh = bh2jh(bh);
2520 jh->b_jcount++;
2521 }
2522 jbd_unlock_bh_journal_head(bh);
2523 return jh;
2524 }
2525
2526 static void __journal_remove_journal_head(struct buffer_head *bh)
2527 {
2528 struct journal_head *jh = bh2jh(bh);
2529
2530 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2531 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2532 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2533 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2534 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2535 J_ASSERT_BH(bh, buffer_jbd(bh));
2536 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2537 BUFFER_TRACE(bh, "remove journal_head");
2538 if (jh->b_frozen_data) {
2539 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2540 jbd2_free(jh->b_frozen_data, bh->b_size);
2541 }
2542 if (jh->b_committed_data) {
2543 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2544 jbd2_free(jh->b_committed_data, bh->b_size);
2545 }
2546 bh->b_private = NULL;
2547 jh->b_bh = NULL; /* debug, really */
2548 clear_buffer_jbd(bh);
2549 journal_free_journal_head(jh);
2550 }
2551
2552 /*
2553 * Drop a reference on the passed journal_head. If it fell to zero then
2554 * release the journal_head from the buffer_head.
2555 */
2556 void jbd2_journal_put_journal_head(struct journal_head *jh)
2557 {
2558 struct buffer_head *bh = jh2bh(jh);
2559
2560 jbd_lock_bh_journal_head(bh);
2561 J_ASSERT_JH(jh, jh->b_jcount > 0);
2562 --jh->b_jcount;
2563 if (!jh->b_jcount) {
2564 __journal_remove_journal_head(bh);
2565 jbd_unlock_bh_journal_head(bh);
2566 __brelse(bh);
2567 } else
2568 jbd_unlock_bh_journal_head(bh);
2569 }
2570
2571 /*
2572 * Initialize jbd inode head
2573 */
2574 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2575 {
2576 jinode->i_transaction = NULL;
2577 jinode->i_next_transaction = NULL;
2578 jinode->i_vfs_inode = inode;
2579 jinode->i_flags = 0;
2580 INIT_LIST_HEAD(&jinode->i_list);
2581 }
2582
2583 /*
2584 * Function to be called before we start removing inode from memory (i.e.,
2585 * clear_inode() is a fine place to be called from). It removes inode from
2586 * transaction's lists.
2587 */
2588 void jbd2_journal_release_jbd_inode(journal_t *journal,
2589 struct jbd2_inode *jinode)
2590 {
2591 if (!journal)
2592 return;
2593 restart:
2594 spin_lock(&journal->j_list_lock);
2595 /* Is commit writing out inode - we have to wait */
2596 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2597 wait_queue_head_t *wq;
2598 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2599 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2600 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2601 spin_unlock(&journal->j_list_lock);
2602 schedule();
2603 finish_wait(wq, &wait.wq_entry);
2604 goto restart;
2605 }
2606
2607 if (jinode->i_transaction) {
2608 list_del(&jinode->i_list);
2609 jinode->i_transaction = NULL;
2610 }
2611 spin_unlock(&journal->j_list_lock);
2612 }
2613
2614
2615 #ifdef CONFIG_PROC_FS
2616
2617 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2618
2619 static void __init jbd2_create_jbd_stats_proc_entry(void)
2620 {
2621 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2622 }
2623
2624 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2625 {
2626 if (proc_jbd2_stats)
2627 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2628 }
2629
2630 #else
2631
2632 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2633 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2634
2635 #endif
2636
2637 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2638
2639 static int __init jbd2_journal_init_handle_cache(void)
2640 {
2641 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2642 if (jbd2_handle_cache == NULL) {
2643 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2644 return -ENOMEM;
2645 }
2646 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2647 if (jbd2_inode_cache == NULL) {
2648 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2649 kmem_cache_destroy(jbd2_handle_cache);
2650 return -ENOMEM;
2651 }
2652 return 0;
2653 }
2654
2655 static void jbd2_journal_destroy_handle_cache(void)
2656 {
2657 kmem_cache_destroy(jbd2_handle_cache);
2658 jbd2_handle_cache = NULL;
2659 kmem_cache_destroy(jbd2_inode_cache);
2660 jbd2_inode_cache = NULL;
2661 }
2662
2663 /*
2664 * Module startup and shutdown
2665 */
2666
2667 static int __init journal_init_caches(void)
2668 {
2669 int ret;
2670
2671 ret = jbd2_journal_init_revoke_caches();
2672 if (ret == 0)
2673 ret = jbd2_journal_init_journal_head_cache();
2674 if (ret == 0)
2675 ret = jbd2_journal_init_handle_cache();
2676 if (ret == 0)
2677 ret = jbd2_journal_init_transaction_cache();
2678 return ret;
2679 }
2680
2681 static void jbd2_journal_destroy_caches(void)
2682 {
2683 jbd2_journal_destroy_revoke_caches();
2684 jbd2_journal_destroy_journal_head_cache();
2685 jbd2_journal_destroy_handle_cache();
2686 jbd2_journal_destroy_transaction_cache();
2687 jbd2_journal_destroy_slabs();
2688 }
2689
2690 static int __init journal_init(void)
2691 {
2692 int ret;
2693
2694 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2695
2696 ret = journal_init_caches();
2697 if (ret == 0) {
2698 jbd2_create_jbd_stats_proc_entry();
2699 } else {
2700 jbd2_journal_destroy_caches();
2701 }
2702 return ret;
2703 }
2704
2705 static void __exit journal_exit(void)
2706 {
2707 #ifdef CONFIG_JBD2_DEBUG
2708 int n = atomic_read(&nr_journal_heads);
2709 if (n)
2710 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2711 #endif
2712 jbd2_remove_jbd_stats_proc_entry();
2713 jbd2_journal_destroy_caches();
2714 }
2715
2716 MODULE_LICENSE("GPL");
2717 module_init(journal_init);
2718 module_exit(journal_exit);
2719