]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/jbd2/transaction.c
9a835da3dda9d6bc8a980f2b818b3fcaecb71738
[thirdparty/kernel/stable.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33
34 #include <trace/events/jbd2.h>
35
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42 J_ASSERT(!transaction_cache);
43 transaction_cache = kmem_cache_create("jbd2_transaction_s",
44 sizeof(transaction_t),
45 0,
46 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47 NULL);
48 if (transaction_cache)
49 return 0;
50 return -ENOMEM;
51 }
52
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55 if (transaction_cache) {
56 kmem_cache_destroy(transaction_cache);
57 transaction_cache = NULL;
58 }
59 }
60
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64 return;
65 kmem_cache_free(transaction_cache, transaction);
66 }
67
68 /*
69 * jbd2_get_transaction: obtain a new transaction_t object.
70 *
71 * Simply allocate and initialise a new transaction. Create it in
72 * RUNNING state and add it to the current journal (which should not
73 * have an existing running transaction: we only make a new transaction
74 * once we have started to commit the old one).
75 *
76 * Preconditions:
77 * The journal MUST be locked. We don't perform atomic mallocs on the
78 * new transaction and we can't block without protecting against other
79 * processes trying to touch the journal while it is in transition.
80 *
81 */
82
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86 transaction->t_journal = journal;
87 transaction->t_state = T_RUNNING;
88 transaction->t_start_time = ktime_get();
89 transaction->t_tid = journal->j_transaction_sequence++;
90 transaction->t_expires = jiffies + journal->j_commit_interval;
91 spin_lock_init(&transaction->t_handle_lock);
92 atomic_set(&transaction->t_updates, 0);
93 atomic_set(&transaction->t_outstanding_credits,
94 atomic_read(&journal->j_reserved_credits));
95 atomic_set(&transaction->t_handle_count, 0);
96 INIT_LIST_HEAD(&transaction->t_inode_list);
97 INIT_LIST_HEAD(&transaction->t_private_list);
98
99 /* Set up the commit timer for the new transaction. */
100 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101 add_timer(&journal->j_commit_timer);
102
103 J_ASSERT(journal->j_running_transaction == NULL);
104 journal->j_running_transaction = transaction;
105 transaction->t_max_wait = 0;
106 transaction->t_start = jiffies;
107 transaction->t_requested = 0;
108
109 return transaction;
110 }
111
112 /*
113 * Handle management.
114 *
115 * A handle_t is an object which represents a single atomic update to a
116 * filesystem, and which tracks all of the modifications which form part
117 * of that one update.
118 */
119
120 /*
121 * Update transaction's maximum wait time, if debugging is enabled.
122 *
123 * In order for t_max_wait to be reliable, it must be protected by a
124 * lock. But doing so will mean that start_this_handle() can not be
125 * run in parallel on SMP systems, which limits our scalability. So
126 * unless debugging is enabled, we no longer update t_max_wait, which
127 * means that maximum wait time reported by the jbd2_run_stats
128 * tracepoint will always be zero.
129 */
130 static inline void update_t_max_wait(transaction_t *transaction,
131 unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134 if (jbd2_journal_enable_debug &&
135 time_after(transaction->t_start, ts)) {
136 ts = jbd2_time_diff(ts, transaction->t_start);
137 spin_lock(&transaction->t_handle_lock);
138 if (ts > transaction->t_max_wait)
139 transaction->t_max_wait = ts;
140 spin_unlock(&transaction->t_handle_lock);
141 }
142 #endif
143 }
144
145 /*
146 * Wait until running transaction passes T_LOCKED state. Also starts the commit
147 * if needed. The function expects running transaction to exist and releases
148 * j_state_lock.
149 */
150 static void wait_transaction_locked(journal_t *journal)
151 __releases(journal->j_state_lock)
152 {
153 DEFINE_WAIT(wait);
154 int need_to_start;
155 tid_t tid = journal->j_running_transaction->t_tid;
156
157 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158 TASK_UNINTERRUPTIBLE);
159 need_to_start = !tid_geq(journal->j_commit_request, tid);
160 read_unlock(&journal->j_state_lock);
161 if (need_to_start)
162 jbd2_log_start_commit(journal, tid);
163 jbd2_might_wait_for_commit(journal);
164 schedule();
165 finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170 atomic_sub(blocks, &journal->j_reserved_credits);
171 wake_up(&journal->j_wait_reserved);
172 }
173
174 /*
175 * Wait until we can add credits for handle to the running transaction. Called
176 * with j_state_lock held for reading. Returns 0 if handle joined the running
177 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178 * caller must retry.
179 */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181 int rsv_blocks)
182 {
183 transaction_t *t = journal->j_running_transaction;
184 int needed;
185 int total = blocks + rsv_blocks;
186
187 /*
188 * If the current transaction is locked down for commit, wait
189 * for the lock to be released.
190 */
191 if (t->t_state == T_LOCKED) {
192 wait_transaction_locked(journal);
193 return 1;
194 }
195
196 /*
197 * If there is not enough space left in the log to write all
198 * potential buffers requested by this operation, we need to
199 * stall pending a log checkpoint to free some more log space.
200 */
201 needed = atomic_add_return(total, &t->t_outstanding_credits);
202 if (needed > journal->j_max_transaction_buffers) {
203 /*
204 * If the current transaction is already too large,
205 * then start to commit it: we can then go back and
206 * attach this handle to a new transaction.
207 */
208 atomic_sub(total, &t->t_outstanding_credits);
209
210 /*
211 * Is the number of reserved credits in the current transaction too
212 * big to fit this handle? Wait until reserved credits are freed.
213 */
214 if (atomic_read(&journal->j_reserved_credits) + total >
215 journal->j_max_transaction_buffers) {
216 read_unlock(&journal->j_state_lock);
217 jbd2_might_wait_for_commit(journal);
218 wait_event(journal->j_wait_reserved,
219 atomic_read(&journal->j_reserved_credits) + total <=
220 journal->j_max_transaction_buffers);
221 return 1;
222 }
223
224 wait_transaction_locked(journal);
225 return 1;
226 }
227
228 /*
229 * The commit code assumes that it can get enough log space
230 * without forcing a checkpoint. This is *critical* for
231 * correctness: a checkpoint of a buffer which is also
232 * associated with a committing transaction creates a deadlock,
233 * so commit simply cannot force through checkpoints.
234 *
235 * We must therefore ensure the necessary space in the journal
236 * *before* starting to dirty potentially checkpointed buffers
237 * in the new transaction.
238 */
239 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240 atomic_sub(total, &t->t_outstanding_credits);
241 read_unlock(&journal->j_state_lock);
242 jbd2_might_wait_for_commit(journal);
243 write_lock(&journal->j_state_lock);
244 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245 __jbd2_log_wait_for_space(journal);
246 write_unlock(&journal->j_state_lock);
247 return 1;
248 }
249
250 /* No reservation? We are done... */
251 if (!rsv_blocks)
252 return 0;
253
254 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255 /* We allow at most half of a transaction to be reserved */
256 if (needed > journal->j_max_transaction_buffers / 2) {
257 sub_reserved_credits(journal, rsv_blocks);
258 atomic_sub(total, &t->t_outstanding_credits);
259 read_unlock(&journal->j_state_lock);
260 jbd2_might_wait_for_commit(journal);
261 wait_event(journal->j_wait_reserved,
262 atomic_read(&journal->j_reserved_credits) + rsv_blocks
263 <= journal->j_max_transaction_buffers / 2);
264 return 1;
265 }
266 return 0;
267 }
268
269 /*
270 * start_this_handle: Given a handle, deal with any locking or stalling
271 * needed to make sure that there is enough journal space for the handle
272 * to begin. Attach the handle to a transaction and set up the
273 * transaction's buffer credits.
274 */
275
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277 gfp_t gfp_mask)
278 {
279 transaction_t *transaction, *new_transaction = NULL;
280 int blocks = handle->h_buffer_credits;
281 int rsv_blocks = 0;
282 unsigned long ts = jiffies;
283
284 if (handle->h_rsv_handle)
285 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
287 /*
288 * Limit the number of reserved credits to 1/2 of maximum transaction
289 * size and limit the number of total credits to not exceed maximum
290 * transaction size per operation.
291 */
292 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294 printk(KERN_ERR "JBD2: %s wants too many credits "
295 "credits:%d rsv_credits:%d max:%d\n",
296 current->comm, blocks, rsv_blocks,
297 journal->j_max_transaction_buffers);
298 WARN_ON(1);
299 return -ENOSPC;
300 }
301
302 alloc_transaction:
303 if (!journal->j_running_transaction) {
304 /*
305 * If __GFP_FS is not present, then we may be being called from
306 * inside the fs writeback layer, so we MUST NOT fail.
307 */
308 if ((gfp_mask & __GFP_FS) == 0)
309 gfp_mask |= __GFP_NOFAIL;
310 new_transaction = kmem_cache_zalloc(transaction_cache,
311 gfp_mask);
312 if (!new_transaction)
313 return -ENOMEM;
314 }
315
316 jbd_debug(3, "New handle %p going live.\n", handle);
317
318 /*
319 * We need to hold j_state_lock until t_updates has been incremented,
320 * for proper journal barrier handling
321 */
322 repeat:
323 read_lock(&journal->j_state_lock);
324 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325 if (is_journal_aborted(journal) ||
326 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327 read_unlock(&journal->j_state_lock);
328 jbd2_journal_free_transaction(new_transaction);
329 return -EROFS;
330 }
331
332 /*
333 * Wait on the journal's transaction barrier if necessary. Specifically
334 * we allow reserved handles to proceed because otherwise commit could
335 * deadlock on page writeback not being able to complete.
336 */
337 if (!handle->h_reserved && journal->j_barrier_count) {
338 read_unlock(&journal->j_state_lock);
339 wait_event(journal->j_wait_transaction_locked,
340 journal->j_barrier_count == 0);
341 goto repeat;
342 }
343
344 if (!journal->j_running_transaction) {
345 read_unlock(&journal->j_state_lock);
346 if (!new_transaction)
347 goto alloc_transaction;
348 write_lock(&journal->j_state_lock);
349 if (!journal->j_running_transaction &&
350 (handle->h_reserved || !journal->j_barrier_count)) {
351 jbd2_get_transaction(journal, new_transaction);
352 new_transaction = NULL;
353 }
354 write_unlock(&journal->j_state_lock);
355 goto repeat;
356 }
357
358 transaction = journal->j_running_transaction;
359
360 if (!handle->h_reserved) {
361 /* We may have dropped j_state_lock - restart in that case */
362 if (add_transaction_credits(journal, blocks, rsv_blocks))
363 goto repeat;
364 } else {
365 /*
366 * We have handle reserved so we are allowed to join T_LOCKED
367 * transaction and we don't have to check for transaction size
368 * and journal space.
369 */
370 sub_reserved_credits(journal, blocks);
371 handle->h_reserved = 0;
372 }
373
374 /* OK, account for the buffers that this operation expects to
375 * use and add the handle to the running transaction.
376 */
377 update_t_max_wait(transaction, ts);
378 handle->h_transaction = transaction;
379 handle->h_requested_credits = blocks;
380 handle->h_start_jiffies = jiffies;
381 atomic_inc(&transaction->t_updates);
382 atomic_inc(&transaction->t_handle_count);
383 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384 handle, blocks,
385 atomic_read(&transaction->t_outstanding_credits),
386 jbd2_log_space_left(journal));
387 read_unlock(&journal->j_state_lock);
388 current->journal_info = handle;
389
390 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391 jbd2_journal_free_transaction(new_transaction);
392 /*
393 * Ensure that no allocations done while the transaction is open are
394 * going to recurse back to the fs layer.
395 */
396 handle->saved_alloc_context = memalloc_nofs_save();
397 return 0;
398 }
399
400 /* Allocate a new handle. This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404 if (!handle)
405 return NULL;
406 handle->h_buffer_credits = nblocks;
407 handle->h_ref = 1;
408
409 return handle;
410 }
411
412 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
413 gfp_t gfp_mask, unsigned int type,
414 unsigned int line_no)
415 {
416 handle_t *handle = journal_current_handle();
417 int err;
418
419 if (!journal)
420 return ERR_PTR(-EROFS);
421
422 if (handle) {
423 J_ASSERT(handle->h_transaction->t_journal == journal);
424 handle->h_ref++;
425 return handle;
426 }
427
428 handle = new_handle(nblocks);
429 if (!handle)
430 return ERR_PTR(-ENOMEM);
431 if (rsv_blocks) {
432 handle_t *rsv_handle;
433
434 rsv_handle = new_handle(rsv_blocks);
435 if (!rsv_handle) {
436 jbd2_free_handle(handle);
437 return ERR_PTR(-ENOMEM);
438 }
439 rsv_handle->h_reserved = 1;
440 rsv_handle->h_journal = journal;
441 handle->h_rsv_handle = rsv_handle;
442 }
443
444 err = start_this_handle(journal, handle, gfp_mask);
445 if (err < 0) {
446 if (handle->h_rsv_handle)
447 jbd2_free_handle(handle->h_rsv_handle);
448 jbd2_free_handle(handle);
449 return ERR_PTR(err);
450 }
451 handle->h_type = type;
452 handle->h_line_no = line_no;
453 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
454 handle->h_transaction->t_tid, type,
455 line_no, nblocks);
456
457 return handle;
458 }
459 EXPORT_SYMBOL(jbd2__journal_start);
460
461
462 /**
463 * handle_t *jbd2_journal_start() - Obtain a new handle.
464 * @journal: Journal to start transaction on.
465 * @nblocks: number of block buffer we might modify
466 *
467 * We make sure that the transaction can guarantee at least nblocks of
468 * modified buffers in the log. We block until the log can guarantee
469 * that much space. Additionally, if rsv_blocks > 0, we also create another
470 * handle with rsv_blocks reserved blocks in the journal. This handle is
471 * is stored in h_rsv_handle. It is not attached to any particular transaction
472 * and thus doesn't block transaction commit. If the caller uses this reserved
473 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
474 * on the parent handle will dispose the reserved one. Reserved handle has to
475 * be converted to a normal handle using jbd2_journal_start_reserved() before
476 * it can be used.
477 *
478 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
479 * on failure.
480 */
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489 journal_t *journal = handle->h_journal;
490
491 WARN_ON(!handle->h_reserved);
492 sub_reserved_credits(journal, handle->h_buffer_credits);
493 jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497 /**
498 * int jbd2_journal_start_reserved() - start reserved handle
499 * @handle: handle to start
500 * @type: for handle statistics
501 * @line_no: for handle statistics
502 *
503 * Start handle that has been previously reserved with jbd2_journal_reserve().
504 * This attaches @handle to the running transaction (or creates one if there's
505 * not transaction running). Unlike jbd2_journal_start() this function cannot
506 * block on journal commit, checkpointing, or similar stuff. It can block on
507 * memory allocation or frozen journal though.
508 *
509 * Return 0 on success, non-zero on error - handle is freed in that case.
510 */
511 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
512 unsigned int line_no)
513 {
514 journal_t *journal = handle->h_journal;
515 int ret = -EIO;
516
517 if (WARN_ON(!handle->h_reserved)) {
518 /* Someone passed in normal handle? Just stop it. */
519 jbd2_journal_stop(handle);
520 return ret;
521 }
522 /*
523 * Usefulness of mixing of reserved and unreserved handles is
524 * questionable. So far nobody seems to need it so just error out.
525 */
526 if (WARN_ON(current->journal_info)) {
527 jbd2_journal_free_reserved(handle);
528 return ret;
529 }
530
531 handle->h_journal = NULL;
532 /*
533 * GFP_NOFS is here because callers are likely from writeback or
534 * similarly constrained call sites
535 */
536 ret = start_this_handle(journal, handle, GFP_NOFS);
537 if (ret < 0) {
538 handle->h_journal = journal;
539 jbd2_journal_free_reserved(handle);
540 return ret;
541 }
542 handle->h_type = type;
543 handle->h_line_no = line_no;
544 return 0;
545 }
546 EXPORT_SYMBOL(jbd2_journal_start_reserved);
547
548 /**
549 * int jbd2_journal_extend() - extend buffer credits.
550 * @handle: handle to 'extend'
551 * @nblocks: nr blocks to try to extend by.
552 *
553 * Some transactions, such as large extends and truncates, can be done
554 * atomically all at once or in several stages. The operation requests
555 * a credit for a number of buffer modifications in advance, but can
556 * extend its credit if it needs more.
557 *
558 * jbd2_journal_extend tries to give the running handle more buffer credits.
559 * It does not guarantee that allocation - this is a best-effort only.
560 * The calling process MUST be able to deal cleanly with a failure to
561 * extend here.
562 *
563 * Return 0 on success, non-zero on failure.
564 *
565 * return code < 0 implies an error
566 * return code > 0 implies normal transaction-full status.
567 */
568 int jbd2_journal_extend(handle_t *handle, int nblocks)
569 {
570 transaction_t *transaction = handle->h_transaction;
571 journal_t *journal;
572 int result;
573 int wanted;
574
575 if (is_handle_aborted(handle))
576 return -EROFS;
577 journal = transaction->t_journal;
578
579 result = 1;
580
581 read_lock(&journal->j_state_lock);
582
583 /* Don't extend a locked-down transaction! */
584 if (transaction->t_state != T_RUNNING) {
585 jbd_debug(3, "denied handle %p %d blocks: "
586 "transaction not running\n", handle, nblocks);
587 goto error_out;
588 }
589
590 spin_lock(&transaction->t_handle_lock);
591 wanted = atomic_add_return(nblocks,
592 &transaction->t_outstanding_credits);
593
594 if (wanted > journal->j_max_transaction_buffers) {
595 jbd_debug(3, "denied handle %p %d blocks: "
596 "transaction too large\n", handle, nblocks);
597 atomic_sub(nblocks, &transaction->t_outstanding_credits);
598 goto unlock;
599 }
600
601 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
602 jbd2_log_space_left(journal)) {
603 jbd_debug(3, "denied handle %p %d blocks: "
604 "insufficient log space\n", handle, nblocks);
605 atomic_sub(nblocks, &transaction->t_outstanding_credits);
606 goto unlock;
607 }
608
609 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
610 transaction->t_tid,
611 handle->h_type, handle->h_line_no,
612 handle->h_buffer_credits,
613 nblocks);
614
615 handle->h_buffer_credits += nblocks;
616 handle->h_requested_credits += nblocks;
617 result = 0;
618
619 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
620 unlock:
621 spin_unlock(&transaction->t_handle_lock);
622 error_out:
623 read_unlock(&journal->j_state_lock);
624 return result;
625 }
626
627
628 /**
629 * int jbd2_journal_restart() - restart a handle .
630 * @handle: handle to restart
631 * @nblocks: nr credits requested
632 * @gfp_mask: memory allocation flags (for start_this_handle)
633 *
634 * Restart a handle for a multi-transaction filesystem
635 * operation.
636 *
637 * If the jbd2_journal_extend() call above fails to grant new buffer credits
638 * to a running handle, a call to jbd2_journal_restart will commit the
639 * handle's transaction so far and reattach the handle to a new
640 * transaction capable of guaranteeing the requested number of
641 * credits. We preserve reserved handle if there's any attached to the
642 * passed in handle.
643 */
644 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
645 {
646 transaction_t *transaction = handle->h_transaction;
647 journal_t *journal;
648 tid_t tid;
649 int need_to_start, ret;
650
651 /* If we've had an abort of any type, don't even think about
652 * actually doing the restart! */
653 if (is_handle_aborted(handle))
654 return 0;
655 journal = transaction->t_journal;
656
657 /*
658 * First unlink the handle from its current transaction, and start the
659 * commit on that.
660 */
661 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
662 J_ASSERT(journal_current_handle() == handle);
663
664 read_lock(&journal->j_state_lock);
665 spin_lock(&transaction->t_handle_lock);
666 atomic_sub(handle->h_buffer_credits,
667 &transaction->t_outstanding_credits);
668 if (handle->h_rsv_handle) {
669 sub_reserved_credits(journal,
670 handle->h_rsv_handle->h_buffer_credits);
671 }
672 if (atomic_dec_and_test(&transaction->t_updates))
673 wake_up(&journal->j_wait_updates);
674 tid = transaction->t_tid;
675 spin_unlock(&transaction->t_handle_lock);
676 handle->h_transaction = NULL;
677 current->journal_info = NULL;
678
679 jbd_debug(2, "restarting handle %p\n", handle);
680 need_to_start = !tid_geq(journal->j_commit_request, tid);
681 read_unlock(&journal->j_state_lock);
682 if (need_to_start)
683 jbd2_log_start_commit(journal, tid);
684
685 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
686 handle->h_buffer_credits = nblocks;
687 /*
688 * Restore the original nofs context because the journal restart
689 * is basically the same thing as journal stop and start.
690 * start_this_handle will start a new nofs context.
691 */
692 memalloc_nofs_restore(handle->saved_alloc_context);
693 ret = start_this_handle(journal, handle, gfp_mask);
694 return ret;
695 }
696 EXPORT_SYMBOL(jbd2__journal_restart);
697
698
699 int jbd2_journal_restart(handle_t *handle, int nblocks)
700 {
701 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
702 }
703 EXPORT_SYMBOL(jbd2_journal_restart);
704
705 /**
706 * void jbd2_journal_lock_updates () - establish a transaction barrier.
707 * @journal: Journal to establish a barrier on.
708 *
709 * This locks out any further updates from being started, and blocks
710 * until all existing updates have completed, returning only once the
711 * journal is in a quiescent state with no updates running.
712 *
713 * The journal lock should not be held on entry.
714 */
715 void jbd2_journal_lock_updates(journal_t *journal)
716 {
717 DEFINE_WAIT(wait);
718
719 jbd2_might_wait_for_commit(journal);
720
721 write_lock(&journal->j_state_lock);
722 ++journal->j_barrier_count;
723
724 /* Wait until there are no reserved handles */
725 if (atomic_read(&journal->j_reserved_credits)) {
726 write_unlock(&journal->j_state_lock);
727 wait_event(journal->j_wait_reserved,
728 atomic_read(&journal->j_reserved_credits) == 0);
729 write_lock(&journal->j_state_lock);
730 }
731
732 /* Wait until there are no running updates */
733 while (1) {
734 transaction_t *transaction = journal->j_running_transaction;
735
736 if (!transaction)
737 break;
738
739 spin_lock(&transaction->t_handle_lock);
740 prepare_to_wait(&journal->j_wait_updates, &wait,
741 TASK_UNINTERRUPTIBLE);
742 if (!atomic_read(&transaction->t_updates)) {
743 spin_unlock(&transaction->t_handle_lock);
744 finish_wait(&journal->j_wait_updates, &wait);
745 break;
746 }
747 spin_unlock(&transaction->t_handle_lock);
748 write_unlock(&journal->j_state_lock);
749 schedule();
750 finish_wait(&journal->j_wait_updates, &wait);
751 write_lock(&journal->j_state_lock);
752 }
753 write_unlock(&journal->j_state_lock);
754
755 /*
756 * We have now established a barrier against other normal updates, but
757 * we also need to barrier against other jbd2_journal_lock_updates() calls
758 * to make sure that we serialise special journal-locked operations
759 * too.
760 */
761 mutex_lock(&journal->j_barrier);
762 }
763
764 /**
765 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
766 * @journal: Journal to release the barrier on.
767 *
768 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
769 *
770 * Should be called without the journal lock held.
771 */
772 void jbd2_journal_unlock_updates (journal_t *journal)
773 {
774 J_ASSERT(journal->j_barrier_count != 0);
775
776 mutex_unlock(&journal->j_barrier);
777 write_lock(&journal->j_state_lock);
778 --journal->j_barrier_count;
779 write_unlock(&journal->j_state_lock);
780 wake_up(&journal->j_wait_transaction_locked);
781 }
782
783 static void warn_dirty_buffer(struct buffer_head *bh)
784 {
785 printk(KERN_WARNING
786 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
787 "There's a risk of filesystem corruption in case of system "
788 "crash.\n",
789 bh->b_bdev, (unsigned long long)bh->b_blocknr);
790 }
791
792 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
793 static void jbd2_freeze_jh_data(struct journal_head *jh)
794 {
795 struct page *page;
796 int offset;
797 char *source;
798 struct buffer_head *bh = jh2bh(jh);
799
800 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
801 page = bh->b_page;
802 offset = offset_in_page(bh->b_data);
803 source = kmap_atomic(page);
804 /* Fire data frozen trigger just before we copy the data */
805 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
806 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
807 kunmap_atomic(source);
808
809 /*
810 * Now that the frozen data is saved off, we need to store any matching
811 * triggers.
812 */
813 jh->b_frozen_triggers = jh->b_triggers;
814 }
815
816 /*
817 * If the buffer is already part of the current transaction, then there
818 * is nothing we need to do. If it is already part of a prior
819 * transaction which we are still committing to disk, then we need to
820 * make sure that we do not overwrite the old copy: we do copy-out to
821 * preserve the copy going to disk. We also account the buffer against
822 * the handle's metadata buffer credits (unless the buffer is already
823 * part of the transaction, that is).
824 *
825 */
826 static int
827 do_get_write_access(handle_t *handle, struct journal_head *jh,
828 int force_copy)
829 {
830 struct buffer_head *bh;
831 transaction_t *transaction = handle->h_transaction;
832 journal_t *journal;
833 int error;
834 char *frozen_buffer = NULL;
835 unsigned long start_lock, time_lock;
836
837 if (is_handle_aborted(handle))
838 return -EROFS;
839 journal = transaction->t_journal;
840
841 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
842
843 JBUFFER_TRACE(jh, "entry");
844 repeat:
845 bh = jh2bh(jh);
846
847 /* @@@ Need to check for errors here at some point. */
848
849 start_lock = jiffies;
850 lock_buffer(bh);
851 jbd_lock_bh_state(bh);
852
853 /* If it takes too long to lock the buffer, trace it */
854 time_lock = jbd2_time_diff(start_lock, jiffies);
855 if (time_lock > HZ/10)
856 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
857 jiffies_to_msecs(time_lock));
858
859 /* We now hold the buffer lock so it is safe to query the buffer
860 * state. Is the buffer dirty?
861 *
862 * If so, there are two possibilities. The buffer may be
863 * non-journaled, and undergoing a quite legitimate writeback.
864 * Otherwise, it is journaled, and we don't expect dirty buffers
865 * in that state (the buffers should be marked JBD_Dirty
866 * instead.) So either the IO is being done under our own
867 * control and this is a bug, or it's a third party IO such as
868 * dump(8) (which may leave the buffer scheduled for read ---
869 * ie. locked but not dirty) or tune2fs (which may actually have
870 * the buffer dirtied, ugh.) */
871
872 if (buffer_dirty(bh)) {
873 /*
874 * First question: is this buffer already part of the current
875 * transaction or the existing committing transaction?
876 */
877 if (jh->b_transaction) {
878 J_ASSERT_JH(jh,
879 jh->b_transaction == transaction ||
880 jh->b_transaction ==
881 journal->j_committing_transaction);
882 if (jh->b_next_transaction)
883 J_ASSERT_JH(jh, jh->b_next_transaction ==
884 transaction);
885 warn_dirty_buffer(bh);
886 }
887 /*
888 * In any case we need to clean the dirty flag and we must
889 * do it under the buffer lock to be sure we don't race
890 * with running write-out.
891 */
892 JBUFFER_TRACE(jh, "Journalling dirty buffer");
893 clear_buffer_dirty(bh);
894 set_buffer_jbddirty(bh);
895 }
896
897 unlock_buffer(bh);
898
899 error = -EROFS;
900 if (is_handle_aborted(handle)) {
901 jbd_unlock_bh_state(bh);
902 goto out;
903 }
904 error = 0;
905
906 /*
907 * The buffer is already part of this transaction if b_transaction or
908 * b_next_transaction points to it
909 */
910 if (jh->b_transaction == transaction ||
911 jh->b_next_transaction == transaction)
912 goto done;
913
914 /*
915 * this is the first time this transaction is touching this buffer,
916 * reset the modified flag
917 */
918 jh->b_modified = 0;
919
920 /*
921 * If the buffer is not journaled right now, we need to make sure it
922 * doesn't get written to disk before the caller actually commits the
923 * new data
924 */
925 if (!jh->b_transaction) {
926 JBUFFER_TRACE(jh, "no transaction");
927 J_ASSERT_JH(jh, !jh->b_next_transaction);
928 JBUFFER_TRACE(jh, "file as BJ_Reserved");
929 /*
930 * Make sure all stores to jh (b_modified, b_frozen_data) are
931 * visible before attaching it to the running transaction.
932 * Paired with barrier in jbd2_write_access_granted()
933 */
934 smp_wmb();
935 spin_lock(&journal->j_list_lock);
936 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
937 spin_unlock(&journal->j_list_lock);
938 goto done;
939 }
940 /*
941 * If there is already a copy-out version of this buffer, then we don't
942 * need to make another one
943 */
944 if (jh->b_frozen_data) {
945 JBUFFER_TRACE(jh, "has frozen data");
946 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947 goto attach_next;
948 }
949
950 JBUFFER_TRACE(jh, "owned by older transaction");
951 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
952 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
953
954 /*
955 * There is one case we have to be very careful about. If the
956 * committing transaction is currently writing this buffer out to disk
957 * and has NOT made a copy-out, then we cannot modify the buffer
958 * contents at all right now. The essence of copy-out is that it is
959 * the extra copy, not the primary copy, which gets journaled. If the
960 * primary copy is already going to disk then we cannot do copy-out
961 * here.
962 */
963 if (buffer_shadow(bh)) {
964 JBUFFER_TRACE(jh, "on shadow: sleep");
965 jbd_unlock_bh_state(bh);
966 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
967 goto repeat;
968 }
969
970 /*
971 * Only do the copy if the currently-owning transaction still needs it.
972 * If buffer isn't on BJ_Metadata list, the committing transaction is
973 * past that stage (here we use the fact that BH_Shadow is set under
974 * bh_state lock together with refiling to BJ_Shadow list and at this
975 * point we know the buffer doesn't have BH_Shadow set).
976 *
977 * Subtle point, though: if this is a get_undo_access, then we will be
978 * relying on the frozen_data to contain the new value of the
979 * committed_data record after the transaction, so we HAVE to force the
980 * frozen_data copy in that case.
981 */
982 if (jh->b_jlist == BJ_Metadata || force_copy) {
983 JBUFFER_TRACE(jh, "generate frozen data");
984 if (!frozen_buffer) {
985 JBUFFER_TRACE(jh, "allocate memory for buffer");
986 jbd_unlock_bh_state(bh);
987 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
988 GFP_NOFS | __GFP_NOFAIL);
989 goto repeat;
990 }
991 jh->b_frozen_data = frozen_buffer;
992 frozen_buffer = NULL;
993 jbd2_freeze_jh_data(jh);
994 }
995 attach_next:
996 /*
997 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
998 * before attaching it to the running transaction. Paired with barrier
999 * in jbd2_write_access_granted()
1000 */
1001 smp_wmb();
1002 jh->b_next_transaction = transaction;
1003
1004 done:
1005 jbd_unlock_bh_state(bh);
1006
1007 /*
1008 * If we are about to journal a buffer, then any revoke pending on it is
1009 * no longer valid
1010 */
1011 jbd2_journal_cancel_revoke(handle, jh);
1012
1013 out:
1014 if (unlikely(frozen_buffer)) /* It's usually NULL */
1015 jbd2_free(frozen_buffer, bh->b_size);
1016
1017 JBUFFER_TRACE(jh, "exit");
1018 return error;
1019 }
1020
1021 /* Fast check whether buffer is already attached to the required transaction */
1022 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1023 bool undo)
1024 {
1025 struct journal_head *jh;
1026 bool ret = false;
1027
1028 /* Dirty buffers require special handling... */
1029 if (buffer_dirty(bh))
1030 return false;
1031
1032 /*
1033 * RCU protects us from dereferencing freed pages. So the checks we do
1034 * are guaranteed not to oops. However the jh slab object can get freed
1035 * & reallocated while we work with it. So we have to be careful. When
1036 * we see jh attached to the running transaction, we know it must stay
1037 * so until the transaction is committed. Thus jh won't be freed and
1038 * will be attached to the same bh while we run. However it can
1039 * happen jh gets freed, reallocated, and attached to the transaction
1040 * just after we get pointer to it from bh. So we have to be careful
1041 * and recheck jh still belongs to our bh before we return success.
1042 */
1043 rcu_read_lock();
1044 if (!buffer_jbd(bh))
1045 goto out;
1046 /* This should be bh2jh() but that doesn't work with inline functions */
1047 jh = READ_ONCE(bh->b_private);
1048 if (!jh)
1049 goto out;
1050 /* For undo access buffer must have data copied */
1051 if (undo && !jh->b_committed_data)
1052 goto out;
1053 if (jh->b_transaction != handle->h_transaction &&
1054 jh->b_next_transaction != handle->h_transaction)
1055 goto out;
1056 /*
1057 * There are two reasons for the barrier here:
1058 * 1) Make sure to fetch b_bh after we did previous checks so that we
1059 * detect when jh went through free, realloc, attach to transaction
1060 * while we were checking. Paired with implicit barrier in that path.
1061 * 2) So that access to bh done after jbd2_write_access_granted()
1062 * doesn't get reordered and see inconsistent state of concurrent
1063 * do_get_write_access().
1064 */
1065 smp_mb();
1066 if (unlikely(jh->b_bh != bh))
1067 goto out;
1068 ret = true;
1069 out:
1070 rcu_read_unlock();
1071 return ret;
1072 }
1073
1074 /**
1075 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1076 * @handle: transaction to add buffer modifications to
1077 * @bh: bh to be used for metadata writes
1078 *
1079 * Returns: error code or 0 on success.
1080 *
1081 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1082 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1083 */
1084
1085 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1086 {
1087 struct journal_head *jh;
1088 int rc;
1089
1090 if (jbd2_write_access_granted(handle, bh, false))
1091 return 0;
1092
1093 jh = jbd2_journal_add_journal_head(bh);
1094 /* We do not want to get caught playing with fields which the
1095 * log thread also manipulates. Make sure that the buffer
1096 * completes any outstanding IO before proceeding. */
1097 rc = do_get_write_access(handle, jh, 0);
1098 jbd2_journal_put_journal_head(jh);
1099 return rc;
1100 }
1101
1102
1103 /*
1104 * When the user wants to journal a newly created buffer_head
1105 * (ie. getblk() returned a new buffer and we are going to populate it
1106 * manually rather than reading off disk), then we need to keep the
1107 * buffer_head locked until it has been completely filled with new
1108 * data. In this case, we should be able to make the assertion that
1109 * the bh is not already part of an existing transaction.
1110 *
1111 * The buffer should already be locked by the caller by this point.
1112 * There is no lock ranking violation: it was a newly created,
1113 * unlocked buffer beforehand. */
1114
1115 /**
1116 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1117 * @handle: transaction to new buffer to
1118 * @bh: new buffer.
1119 *
1120 * Call this if you create a new bh.
1121 */
1122 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1123 {
1124 transaction_t *transaction = handle->h_transaction;
1125 journal_t *journal;
1126 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1127 int err;
1128
1129 jbd_debug(5, "journal_head %p\n", jh);
1130 err = -EROFS;
1131 if (is_handle_aborted(handle))
1132 goto out;
1133 journal = transaction->t_journal;
1134 err = 0;
1135
1136 JBUFFER_TRACE(jh, "entry");
1137 /*
1138 * The buffer may already belong to this transaction due to pre-zeroing
1139 * in the filesystem's new_block code. It may also be on the previous,
1140 * committing transaction's lists, but it HAS to be in Forget state in
1141 * that case: the transaction must have deleted the buffer for it to be
1142 * reused here.
1143 */
1144 jbd_lock_bh_state(bh);
1145 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1146 jh->b_transaction == NULL ||
1147 (jh->b_transaction == journal->j_committing_transaction &&
1148 jh->b_jlist == BJ_Forget)));
1149
1150 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1151 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1152
1153 if (jh->b_transaction == NULL) {
1154 /*
1155 * Previous jbd2_journal_forget() could have left the buffer
1156 * with jbddirty bit set because it was being committed. When
1157 * the commit finished, we've filed the buffer for
1158 * checkpointing and marked it dirty. Now we are reallocating
1159 * the buffer so the transaction freeing it must have
1160 * committed and so it's safe to clear the dirty bit.
1161 */
1162 clear_buffer_dirty(jh2bh(jh));
1163 /* first access by this transaction */
1164 jh->b_modified = 0;
1165
1166 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1167 spin_lock(&journal->j_list_lock);
1168 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1169 spin_unlock(&journal->j_list_lock);
1170 } else if (jh->b_transaction == journal->j_committing_transaction) {
1171 /* first access by this transaction */
1172 jh->b_modified = 0;
1173
1174 JBUFFER_TRACE(jh, "set next transaction");
1175 spin_lock(&journal->j_list_lock);
1176 jh->b_next_transaction = transaction;
1177 spin_unlock(&journal->j_list_lock);
1178 }
1179 jbd_unlock_bh_state(bh);
1180
1181 /*
1182 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1183 * blocks which contain freed but then revoked metadata. We need
1184 * to cancel the revoke in case we end up freeing it yet again
1185 * and the reallocating as data - this would cause a second revoke,
1186 * which hits an assertion error.
1187 */
1188 JBUFFER_TRACE(jh, "cancelling revoke");
1189 jbd2_journal_cancel_revoke(handle, jh);
1190 out:
1191 jbd2_journal_put_journal_head(jh);
1192 return err;
1193 }
1194
1195 /**
1196 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1197 * non-rewindable consequences
1198 * @handle: transaction
1199 * @bh: buffer to undo
1200 *
1201 * Sometimes there is a need to distinguish between metadata which has
1202 * been committed to disk and that which has not. The ext3fs code uses
1203 * this for freeing and allocating space, we have to make sure that we
1204 * do not reuse freed space until the deallocation has been committed,
1205 * since if we overwrote that space we would make the delete
1206 * un-rewindable in case of a crash.
1207 *
1208 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1209 * buffer for parts of non-rewindable operations such as delete
1210 * operations on the bitmaps. The journaling code must keep a copy of
1211 * the buffer's contents prior to the undo_access call until such time
1212 * as we know that the buffer has definitely been committed to disk.
1213 *
1214 * We never need to know which transaction the committed data is part
1215 * of, buffers touched here are guaranteed to be dirtied later and so
1216 * will be committed to a new transaction in due course, at which point
1217 * we can discard the old committed data pointer.
1218 *
1219 * Returns error number or 0 on success.
1220 */
1221 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1222 {
1223 int err;
1224 struct journal_head *jh;
1225 char *committed_data = NULL;
1226
1227 JBUFFER_TRACE(jh, "entry");
1228 if (jbd2_write_access_granted(handle, bh, true))
1229 return 0;
1230
1231 jh = jbd2_journal_add_journal_head(bh);
1232 /*
1233 * Do this first --- it can drop the journal lock, so we want to
1234 * make sure that obtaining the committed_data is done
1235 * atomically wrt. completion of any outstanding commits.
1236 */
1237 err = do_get_write_access(handle, jh, 1);
1238 if (err)
1239 goto out;
1240
1241 repeat:
1242 if (!jh->b_committed_data)
1243 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1244 GFP_NOFS|__GFP_NOFAIL);
1245
1246 jbd_lock_bh_state(bh);
1247 if (!jh->b_committed_data) {
1248 /* Copy out the current buffer contents into the
1249 * preserved, committed copy. */
1250 JBUFFER_TRACE(jh, "generate b_committed data");
1251 if (!committed_data) {
1252 jbd_unlock_bh_state(bh);
1253 goto repeat;
1254 }
1255
1256 jh->b_committed_data = committed_data;
1257 committed_data = NULL;
1258 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1259 }
1260 jbd_unlock_bh_state(bh);
1261 out:
1262 jbd2_journal_put_journal_head(jh);
1263 if (unlikely(committed_data))
1264 jbd2_free(committed_data, bh->b_size);
1265 return err;
1266 }
1267
1268 /**
1269 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1270 * @bh: buffer to trigger on
1271 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1272 *
1273 * Set any triggers on this journal_head. This is always safe, because
1274 * triggers for a committing buffer will be saved off, and triggers for
1275 * a running transaction will match the buffer in that transaction.
1276 *
1277 * Call with NULL to clear the triggers.
1278 */
1279 void jbd2_journal_set_triggers(struct buffer_head *bh,
1280 struct jbd2_buffer_trigger_type *type)
1281 {
1282 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1283
1284 if (WARN_ON(!jh))
1285 return;
1286 jh->b_triggers = type;
1287 jbd2_journal_put_journal_head(jh);
1288 }
1289
1290 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1291 struct jbd2_buffer_trigger_type *triggers)
1292 {
1293 struct buffer_head *bh = jh2bh(jh);
1294
1295 if (!triggers || !triggers->t_frozen)
1296 return;
1297
1298 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1299 }
1300
1301 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1302 struct jbd2_buffer_trigger_type *triggers)
1303 {
1304 if (!triggers || !triggers->t_abort)
1305 return;
1306
1307 triggers->t_abort(triggers, jh2bh(jh));
1308 }
1309
1310 /**
1311 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1312 * @handle: transaction to add buffer to.
1313 * @bh: buffer to mark
1314 *
1315 * mark dirty metadata which needs to be journaled as part of the current
1316 * transaction.
1317 *
1318 * The buffer must have previously had jbd2_journal_get_write_access()
1319 * called so that it has a valid journal_head attached to the buffer
1320 * head.
1321 *
1322 * The buffer is placed on the transaction's metadata list and is marked
1323 * as belonging to the transaction.
1324 *
1325 * Returns error number or 0 on success.
1326 *
1327 * Special care needs to be taken if the buffer already belongs to the
1328 * current committing transaction (in which case we should have frozen
1329 * data present for that commit). In that case, we don't relink the
1330 * buffer: that only gets done when the old transaction finally
1331 * completes its commit.
1332 */
1333 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1334 {
1335 transaction_t *transaction = handle->h_transaction;
1336 journal_t *journal;
1337 struct journal_head *jh;
1338 int ret = 0;
1339
1340 if (is_handle_aborted(handle))
1341 return -EROFS;
1342 if (!buffer_jbd(bh)) {
1343 ret = -EUCLEAN;
1344 goto out;
1345 }
1346 /*
1347 * We don't grab jh reference here since the buffer must be part
1348 * of the running transaction.
1349 */
1350 jh = bh2jh(bh);
1351 /*
1352 * This and the following assertions are unreliable since we may see jh
1353 * in inconsistent state unless we grab bh_state lock. But this is
1354 * crucial to catch bugs so let's do a reliable check until the
1355 * lockless handling is fully proven.
1356 */
1357 if (jh->b_transaction != transaction &&
1358 jh->b_next_transaction != transaction) {
1359 jbd_lock_bh_state(bh);
1360 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1361 jh->b_next_transaction == transaction);
1362 jbd_unlock_bh_state(bh);
1363 }
1364 if (jh->b_modified == 1) {
1365 /* If it's in our transaction it must be in BJ_Metadata list. */
1366 if (jh->b_transaction == transaction &&
1367 jh->b_jlist != BJ_Metadata) {
1368 jbd_lock_bh_state(bh);
1369 if (jh->b_transaction == transaction &&
1370 jh->b_jlist != BJ_Metadata)
1371 pr_err("JBD2: assertion failure: h_type=%u "
1372 "h_line_no=%u block_no=%llu jlist=%u\n",
1373 handle->h_type, handle->h_line_no,
1374 (unsigned long long) bh->b_blocknr,
1375 jh->b_jlist);
1376 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1377 jh->b_jlist == BJ_Metadata);
1378 jbd_unlock_bh_state(bh);
1379 }
1380 goto out;
1381 }
1382
1383 journal = transaction->t_journal;
1384 jbd_debug(5, "journal_head %p\n", jh);
1385 JBUFFER_TRACE(jh, "entry");
1386
1387 jbd_lock_bh_state(bh);
1388
1389 if (jh->b_modified == 0) {
1390 /*
1391 * This buffer's got modified and becoming part
1392 * of the transaction. This needs to be done
1393 * once a transaction -bzzz
1394 */
1395 if (handle->h_buffer_credits <= 0) {
1396 ret = -ENOSPC;
1397 goto out_unlock_bh;
1398 }
1399 jh->b_modified = 1;
1400 handle->h_buffer_credits--;
1401 }
1402
1403 /*
1404 * fastpath, to avoid expensive locking. If this buffer is already
1405 * on the running transaction's metadata list there is nothing to do.
1406 * Nobody can take it off again because there is a handle open.
1407 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1408 * result in this test being false, so we go in and take the locks.
1409 */
1410 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1411 JBUFFER_TRACE(jh, "fastpath");
1412 if (unlikely(jh->b_transaction !=
1413 journal->j_running_transaction)) {
1414 printk(KERN_ERR "JBD2: %s: "
1415 "jh->b_transaction (%llu, %p, %u) != "
1416 "journal->j_running_transaction (%p, %u)\n",
1417 journal->j_devname,
1418 (unsigned long long) bh->b_blocknr,
1419 jh->b_transaction,
1420 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1421 journal->j_running_transaction,
1422 journal->j_running_transaction ?
1423 journal->j_running_transaction->t_tid : 0);
1424 ret = -EINVAL;
1425 }
1426 goto out_unlock_bh;
1427 }
1428
1429 set_buffer_jbddirty(bh);
1430
1431 /*
1432 * Metadata already on the current transaction list doesn't
1433 * need to be filed. Metadata on another transaction's list must
1434 * be committing, and will be refiled once the commit completes:
1435 * leave it alone for now.
1436 */
1437 if (jh->b_transaction != transaction) {
1438 JBUFFER_TRACE(jh, "already on other transaction");
1439 if (unlikely(((jh->b_transaction !=
1440 journal->j_committing_transaction)) ||
1441 (jh->b_next_transaction != transaction))) {
1442 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1443 "bad jh for block %llu: "
1444 "transaction (%p, %u), "
1445 "jh->b_transaction (%p, %u), "
1446 "jh->b_next_transaction (%p, %u), jlist %u\n",
1447 journal->j_devname,
1448 (unsigned long long) bh->b_blocknr,
1449 transaction, transaction->t_tid,
1450 jh->b_transaction,
1451 jh->b_transaction ?
1452 jh->b_transaction->t_tid : 0,
1453 jh->b_next_transaction,
1454 jh->b_next_transaction ?
1455 jh->b_next_transaction->t_tid : 0,
1456 jh->b_jlist);
1457 WARN_ON(1);
1458 ret = -EINVAL;
1459 }
1460 /* And this case is illegal: we can't reuse another
1461 * transaction's data buffer, ever. */
1462 goto out_unlock_bh;
1463 }
1464
1465 /* That test should have eliminated the following case: */
1466 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1467
1468 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1469 spin_lock(&journal->j_list_lock);
1470 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1471 spin_unlock(&journal->j_list_lock);
1472 out_unlock_bh:
1473 jbd_unlock_bh_state(bh);
1474 out:
1475 JBUFFER_TRACE(jh, "exit");
1476 return ret;
1477 }
1478
1479 /**
1480 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1481 * @handle: transaction handle
1482 * @bh: bh to 'forget'
1483 *
1484 * We can only do the bforget if there are no commits pending against the
1485 * buffer. If the buffer is dirty in the current running transaction we
1486 * can safely unlink it.
1487 *
1488 * bh may not be a journalled buffer at all - it may be a non-JBD
1489 * buffer which came off the hashtable. Check for this.
1490 *
1491 * Decrements bh->b_count by one.
1492 *
1493 * Allow this call even if the handle has aborted --- it may be part of
1494 * the caller's cleanup after an abort.
1495 */
1496 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1497 {
1498 transaction_t *transaction = handle->h_transaction;
1499 journal_t *journal;
1500 struct journal_head *jh;
1501 int drop_reserve = 0;
1502 int err = 0;
1503 int was_modified = 0;
1504
1505 if (is_handle_aborted(handle))
1506 return -EROFS;
1507 journal = transaction->t_journal;
1508
1509 BUFFER_TRACE(bh, "entry");
1510
1511 jbd_lock_bh_state(bh);
1512
1513 if (!buffer_jbd(bh))
1514 goto not_jbd;
1515 jh = bh2jh(bh);
1516
1517 /* Critical error: attempting to delete a bitmap buffer, maybe?
1518 * Don't do any jbd operations, and return an error. */
1519 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1520 "inconsistent data on disk")) {
1521 err = -EIO;
1522 goto not_jbd;
1523 }
1524
1525 /* keep track of whether or not this transaction modified us */
1526 was_modified = jh->b_modified;
1527
1528 /*
1529 * The buffer's going from the transaction, we must drop
1530 * all references -bzzz
1531 */
1532 jh->b_modified = 0;
1533
1534 if (jh->b_transaction == transaction) {
1535 J_ASSERT_JH(jh, !jh->b_frozen_data);
1536
1537 /* If we are forgetting a buffer which is already part
1538 * of this transaction, then we can just drop it from
1539 * the transaction immediately. */
1540 clear_buffer_dirty(bh);
1541 clear_buffer_jbddirty(bh);
1542
1543 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1544
1545 /*
1546 * we only want to drop a reference if this transaction
1547 * modified the buffer
1548 */
1549 if (was_modified)
1550 drop_reserve = 1;
1551
1552 /*
1553 * We are no longer going to journal this buffer.
1554 * However, the commit of this transaction is still
1555 * important to the buffer: the delete that we are now
1556 * processing might obsolete an old log entry, so by
1557 * committing, we can satisfy the buffer's checkpoint.
1558 *
1559 * So, if we have a checkpoint on the buffer, we should
1560 * now refile the buffer on our BJ_Forget list so that
1561 * we know to remove the checkpoint after we commit.
1562 */
1563
1564 spin_lock(&journal->j_list_lock);
1565 if (jh->b_cp_transaction) {
1566 __jbd2_journal_temp_unlink_buffer(jh);
1567 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1568 } else {
1569 __jbd2_journal_unfile_buffer(jh);
1570 if (!buffer_jbd(bh)) {
1571 spin_unlock(&journal->j_list_lock);
1572 jbd_unlock_bh_state(bh);
1573 __bforget(bh);
1574 goto drop;
1575 }
1576 }
1577 spin_unlock(&journal->j_list_lock);
1578 } else if (jh->b_transaction) {
1579 J_ASSERT_JH(jh, (jh->b_transaction ==
1580 journal->j_committing_transaction));
1581 /* However, if the buffer is still owned by a prior
1582 * (committing) transaction, we can't drop it yet... */
1583 JBUFFER_TRACE(jh, "belongs to older transaction");
1584 /* ... but we CAN drop it from the new transaction through
1585 * marking the buffer as freed and set j_next_transaction to
1586 * the new transaction, so that not only the commit code
1587 * knows it should clear dirty bits when it is done with the
1588 * buffer, but also the buffer can be checkpointed only
1589 * after the new transaction commits. */
1590
1591 set_buffer_freed(bh);
1592
1593 if (!jh->b_next_transaction) {
1594 spin_lock(&journal->j_list_lock);
1595 jh->b_next_transaction = transaction;
1596 spin_unlock(&journal->j_list_lock);
1597 } else {
1598 J_ASSERT(jh->b_next_transaction == transaction);
1599
1600 /*
1601 * only drop a reference if this transaction modified
1602 * the buffer
1603 */
1604 if (was_modified)
1605 drop_reserve = 1;
1606 }
1607 }
1608
1609 not_jbd:
1610 jbd_unlock_bh_state(bh);
1611 __brelse(bh);
1612 drop:
1613 if (drop_reserve) {
1614 /* no need to reserve log space for this block -bzzz */
1615 handle->h_buffer_credits++;
1616 }
1617 return err;
1618 }
1619
1620 /**
1621 * int jbd2_journal_stop() - complete a transaction
1622 * @handle: transaction to complete.
1623 *
1624 * All done for a particular handle.
1625 *
1626 * There is not much action needed here. We just return any remaining
1627 * buffer credits to the transaction and remove the handle. The only
1628 * complication is that we need to start a commit operation if the
1629 * filesystem is marked for synchronous update.
1630 *
1631 * jbd2_journal_stop itself will not usually return an error, but it may
1632 * do so in unusual circumstances. In particular, expect it to
1633 * return -EIO if a jbd2_journal_abort has been executed since the
1634 * transaction began.
1635 */
1636 int jbd2_journal_stop(handle_t *handle)
1637 {
1638 transaction_t *transaction = handle->h_transaction;
1639 journal_t *journal;
1640 int err = 0, wait_for_commit = 0;
1641 tid_t tid;
1642 pid_t pid;
1643
1644 if (!transaction) {
1645 /*
1646 * Handle is already detached from the transaction so
1647 * there is nothing to do other than decrease a refcount,
1648 * or free the handle if refcount drops to zero
1649 */
1650 if (--handle->h_ref > 0) {
1651 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1652 handle->h_ref);
1653 return err;
1654 } else {
1655 if (handle->h_rsv_handle)
1656 jbd2_free_handle(handle->h_rsv_handle);
1657 goto free_and_exit;
1658 }
1659 }
1660 journal = transaction->t_journal;
1661
1662 J_ASSERT(journal_current_handle() == handle);
1663
1664 if (is_handle_aborted(handle))
1665 err = -EIO;
1666 else
1667 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1668
1669 if (--handle->h_ref > 0) {
1670 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1671 handle->h_ref);
1672 return err;
1673 }
1674
1675 jbd_debug(4, "Handle %p going down\n", handle);
1676 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1677 transaction->t_tid,
1678 handle->h_type, handle->h_line_no,
1679 jiffies - handle->h_start_jiffies,
1680 handle->h_sync, handle->h_requested_credits,
1681 (handle->h_requested_credits -
1682 handle->h_buffer_credits));
1683
1684 /*
1685 * Implement synchronous transaction batching. If the handle
1686 * was synchronous, don't force a commit immediately. Let's
1687 * yield and let another thread piggyback onto this
1688 * transaction. Keep doing that while new threads continue to
1689 * arrive. It doesn't cost much - we're about to run a commit
1690 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1691 * operations by 30x or more...
1692 *
1693 * We try and optimize the sleep time against what the
1694 * underlying disk can do, instead of having a static sleep
1695 * time. This is useful for the case where our storage is so
1696 * fast that it is more optimal to go ahead and force a flush
1697 * and wait for the transaction to be committed than it is to
1698 * wait for an arbitrary amount of time for new writers to
1699 * join the transaction. We achieve this by measuring how
1700 * long it takes to commit a transaction, and compare it with
1701 * how long this transaction has been running, and if run time
1702 * < commit time then we sleep for the delta and commit. This
1703 * greatly helps super fast disks that would see slowdowns as
1704 * more threads started doing fsyncs.
1705 *
1706 * But don't do this if this process was the most recent one
1707 * to perform a synchronous write. We do this to detect the
1708 * case where a single process is doing a stream of sync
1709 * writes. No point in waiting for joiners in that case.
1710 *
1711 * Setting max_batch_time to 0 disables this completely.
1712 */
1713 pid = current->pid;
1714 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1715 journal->j_max_batch_time) {
1716 u64 commit_time, trans_time;
1717
1718 journal->j_last_sync_writer = pid;
1719
1720 read_lock(&journal->j_state_lock);
1721 commit_time = journal->j_average_commit_time;
1722 read_unlock(&journal->j_state_lock);
1723
1724 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1725 transaction->t_start_time));
1726
1727 commit_time = max_t(u64, commit_time,
1728 1000*journal->j_min_batch_time);
1729 commit_time = min_t(u64, commit_time,
1730 1000*journal->j_max_batch_time);
1731
1732 if (trans_time < commit_time) {
1733 ktime_t expires = ktime_add_ns(ktime_get(),
1734 commit_time);
1735 set_current_state(TASK_UNINTERRUPTIBLE);
1736 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1737 }
1738 }
1739
1740 if (handle->h_sync)
1741 transaction->t_synchronous_commit = 1;
1742 current->journal_info = NULL;
1743 atomic_sub(handle->h_buffer_credits,
1744 &transaction->t_outstanding_credits);
1745
1746 /*
1747 * If the handle is marked SYNC, we need to set another commit
1748 * going! We also want to force a commit if the current
1749 * transaction is occupying too much of the log, or if the
1750 * transaction is too old now.
1751 */
1752 if (handle->h_sync ||
1753 (atomic_read(&transaction->t_outstanding_credits) >
1754 journal->j_max_transaction_buffers) ||
1755 time_after_eq(jiffies, transaction->t_expires)) {
1756 /* Do this even for aborted journals: an abort still
1757 * completes the commit thread, it just doesn't write
1758 * anything to disk. */
1759
1760 jbd_debug(2, "transaction too old, requesting commit for "
1761 "handle %p\n", handle);
1762 /* This is non-blocking */
1763 jbd2_log_start_commit(journal, transaction->t_tid);
1764
1765 /*
1766 * Special case: JBD2_SYNC synchronous updates require us
1767 * to wait for the commit to complete.
1768 */
1769 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1770 wait_for_commit = 1;
1771 }
1772
1773 /*
1774 * Once we drop t_updates, if it goes to zero the transaction
1775 * could start committing on us and eventually disappear. So
1776 * once we do this, we must not dereference transaction
1777 * pointer again.
1778 */
1779 tid = transaction->t_tid;
1780 if (atomic_dec_and_test(&transaction->t_updates)) {
1781 wake_up(&journal->j_wait_updates);
1782 if (journal->j_barrier_count)
1783 wake_up(&journal->j_wait_transaction_locked);
1784 }
1785
1786 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1787
1788 if (wait_for_commit)
1789 err = jbd2_log_wait_commit(journal, tid);
1790
1791 if (handle->h_rsv_handle)
1792 jbd2_journal_free_reserved(handle->h_rsv_handle);
1793 free_and_exit:
1794 /*
1795 * Scope of the GFP_NOFS context is over here and so we can restore the
1796 * original alloc context.
1797 */
1798 memalloc_nofs_restore(handle->saved_alloc_context);
1799 jbd2_free_handle(handle);
1800 return err;
1801 }
1802
1803 /*
1804 *
1805 * List management code snippets: various functions for manipulating the
1806 * transaction buffer lists.
1807 *
1808 */
1809
1810 /*
1811 * Append a buffer to a transaction list, given the transaction's list head
1812 * pointer.
1813 *
1814 * j_list_lock is held.
1815 *
1816 * jbd_lock_bh_state(jh2bh(jh)) is held.
1817 */
1818
1819 static inline void
1820 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1821 {
1822 if (!*list) {
1823 jh->b_tnext = jh->b_tprev = jh;
1824 *list = jh;
1825 } else {
1826 /* Insert at the tail of the list to preserve order */
1827 struct journal_head *first = *list, *last = first->b_tprev;
1828 jh->b_tprev = last;
1829 jh->b_tnext = first;
1830 last->b_tnext = first->b_tprev = jh;
1831 }
1832 }
1833
1834 /*
1835 * Remove a buffer from a transaction list, given the transaction's list
1836 * head pointer.
1837 *
1838 * Called with j_list_lock held, and the journal may not be locked.
1839 *
1840 * jbd_lock_bh_state(jh2bh(jh)) is held.
1841 */
1842
1843 static inline void
1844 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1845 {
1846 if (*list == jh) {
1847 *list = jh->b_tnext;
1848 if (*list == jh)
1849 *list = NULL;
1850 }
1851 jh->b_tprev->b_tnext = jh->b_tnext;
1852 jh->b_tnext->b_tprev = jh->b_tprev;
1853 }
1854
1855 /*
1856 * Remove a buffer from the appropriate transaction list.
1857 *
1858 * Note that this function can *change* the value of
1859 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1860 * t_reserved_list. If the caller is holding onto a copy of one of these
1861 * pointers, it could go bad. Generally the caller needs to re-read the
1862 * pointer from the transaction_t.
1863 *
1864 * Called under j_list_lock.
1865 */
1866 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1867 {
1868 struct journal_head **list = NULL;
1869 transaction_t *transaction;
1870 struct buffer_head *bh = jh2bh(jh);
1871
1872 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1873 transaction = jh->b_transaction;
1874 if (transaction)
1875 assert_spin_locked(&transaction->t_journal->j_list_lock);
1876
1877 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1878 if (jh->b_jlist != BJ_None)
1879 J_ASSERT_JH(jh, transaction != NULL);
1880
1881 switch (jh->b_jlist) {
1882 case BJ_None:
1883 return;
1884 case BJ_Metadata:
1885 transaction->t_nr_buffers--;
1886 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1887 list = &transaction->t_buffers;
1888 break;
1889 case BJ_Forget:
1890 list = &transaction->t_forget;
1891 break;
1892 case BJ_Shadow:
1893 list = &transaction->t_shadow_list;
1894 break;
1895 case BJ_Reserved:
1896 list = &transaction->t_reserved_list;
1897 break;
1898 }
1899
1900 __blist_del_buffer(list, jh);
1901 jh->b_jlist = BJ_None;
1902 if (transaction && is_journal_aborted(transaction->t_journal))
1903 clear_buffer_jbddirty(bh);
1904 else if (test_clear_buffer_jbddirty(bh))
1905 mark_buffer_dirty(bh); /* Expose it to the VM */
1906 }
1907
1908 /*
1909 * Remove buffer from all transactions.
1910 *
1911 * Called with bh_state lock and j_list_lock
1912 *
1913 * jh and bh may be already freed when this function returns.
1914 */
1915 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1916 {
1917 __jbd2_journal_temp_unlink_buffer(jh);
1918 jh->b_transaction = NULL;
1919 jbd2_journal_put_journal_head(jh);
1920 }
1921
1922 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1923 {
1924 struct buffer_head *bh = jh2bh(jh);
1925
1926 /* Get reference so that buffer cannot be freed before we unlock it */
1927 get_bh(bh);
1928 jbd_lock_bh_state(bh);
1929 spin_lock(&journal->j_list_lock);
1930 __jbd2_journal_unfile_buffer(jh);
1931 spin_unlock(&journal->j_list_lock);
1932 jbd_unlock_bh_state(bh);
1933 __brelse(bh);
1934 }
1935
1936 /*
1937 * Called from jbd2_journal_try_to_free_buffers().
1938 *
1939 * Called under jbd_lock_bh_state(bh)
1940 */
1941 static void
1942 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1943 {
1944 struct journal_head *jh;
1945
1946 jh = bh2jh(bh);
1947
1948 if (buffer_locked(bh) || buffer_dirty(bh))
1949 goto out;
1950
1951 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1952 goto out;
1953
1954 spin_lock(&journal->j_list_lock);
1955 if (jh->b_cp_transaction != NULL) {
1956 /* written-back checkpointed metadata buffer */
1957 JBUFFER_TRACE(jh, "remove from checkpoint list");
1958 __jbd2_journal_remove_checkpoint(jh);
1959 }
1960 spin_unlock(&journal->j_list_lock);
1961 out:
1962 return;
1963 }
1964
1965 /**
1966 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1967 * @journal: journal for operation
1968 * @page: to try and free
1969 * @gfp_mask: we use the mask to detect how hard should we try to release
1970 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1971 * code to release the buffers.
1972 *
1973 *
1974 * For all the buffers on this page,
1975 * if they are fully written out ordered data, move them onto BUF_CLEAN
1976 * so try_to_free_buffers() can reap them.
1977 *
1978 * This function returns non-zero if we wish try_to_free_buffers()
1979 * to be called. We do this if the page is releasable by try_to_free_buffers().
1980 * We also do it if the page has locked or dirty buffers and the caller wants
1981 * us to perform sync or async writeout.
1982 *
1983 * This complicates JBD locking somewhat. We aren't protected by the
1984 * BKL here. We wish to remove the buffer from its committing or
1985 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1986 *
1987 * This may *change* the value of transaction_t->t_datalist, so anyone
1988 * who looks at t_datalist needs to lock against this function.
1989 *
1990 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1991 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1992 * will come out of the lock with the buffer dirty, which makes it
1993 * ineligible for release here.
1994 *
1995 * Who else is affected by this? hmm... Really the only contender
1996 * is do_get_write_access() - it could be looking at the buffer while
1997 * journal_try_to_free_buffer() is changing its state. But that
1998 * cannot happen because we never reallocate freed data as metadata
1999 * while the data is part of a transaction. Yes?
2000 *
2001 * Return 0 on failure, 1 on success
2002 */
2003 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2004 struct page *page, gfp_t gfp_mask)
2005 {
2006 struct buffer_head *head;
2007 struct buffer_head *bh;
2008 int ret = 0;
2009
2010 J_ASSERT(PageLocked(page));
2011
2012 head = page_buffers(page);
2013 bh = head;
2014 do {
2015 struct journal_head *jh;
2016
2017 /*
2018 * We take our own ref against the journal_head here to avoid
2019 * having to add tons of locking around each instance of
2020 * jbd2_journal_put_journal_head().
2021 */
2022 jh = jbd2_journal_grab_journal_head(bh);
2023 if (!jh)
2024 continue;
2025
2026 jbd_lock_bh_state(bh);
2027 __journal_try_to_free_buffer(journal, bh);
2028 jbd2_journal_put_journal_head(jh);
2029 jbd_unlock_bh_state(bh);
2030 if (buffer_jbd(bh))
2031 goto busy;
2032 } while ((bh = bh->b_this_page) != head);
2033
2034 ret = try_to_free_buffers(page);
2035
2036 busy:
2037 return ret;
2038 }
2039
2040 /*
2041 * This buffer is no longer needed. If it is on an older transaction's
2042 * checkpoint list we need to record it on this transaction's forget list
2043 * to pin this buffer (and hence its checkpointing transaction) down until
2044 * this transaction commits. If the buffer isn't on a checkpoint list, we
2045 * release it.
2046 * Returns non-zero if JBD no longer has an interest in the buffer.
2047 *
2048 * Called under j_list_lock.
2049 *
2050 * Called under jbd_lock_bh_state(bh).
2051 */
2052 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2053 {
2054 int may_free = 1;
2055 struct buffer_head *bh = jh2bh(jh);
2056
2057 if (jh->b_cp_transaction) {
2058 JBUFFER_TRACE(jh, "on running+cp transaction");
2059 __jbd2_journal_temp_unlink_buffer(jh);
2060 /*
2061 * We don't want to write the buffer anymore, clear the
2062 * bit so that we don't confuse checks in
2063 * __journal_file_buffer
2064 */
2065 clear_buffer_dirty(bh);
2066 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2067 may_free = 0;
2068 } else {
2069 JBUFFER_TRACE(jh, "on running transaction");
2070 __jbd2_journal_unfile_buffer(jh);
2071 }
2072 return may_free;
2073 }
2074
2075 /*
2076 * jbd2_journal_invalidatepage
2077 *
2078 * This code is tricky. It has a number of cases to deal with.
2079 *
2080 * There are two invariants which this code relies on:
2081 *
2082 * i_size must be updated on disk before we start calling invalidatepage on the
2083 * data.
2084 *
2085 * This is done in ext3 by defining an ext3_setattr method which
2086 * updates i_size before truncate gets going. By maintaining this
2087 * invariant, we can be sure that it is safe to throw away any buffers
2088 * attached to the current transaction: once the transaction commits,
2089 * we know that the data will not be needed.
2090 *
2091 * Note however that we can *not* throw away data belonging to the
2092 * previous, committing transaction!
2093 *
2094 * Any disk blocks which *are* part of the previous, committing
2095 * transaction (and which therefore cannot be discarded immediately) are
2096 * not going to be reused in the new running transaction
2097 *
2098 * The bitmap committed_data images guarantee this: any block which is
2099 * allocated in one transaction and removed in the next will be marked
2100 * as in-use in the committed_data bitmap, so cannot be reused until
2101 * the next transaction to delete the block commits. This means that
2102 * leaving committing buffers dirty is quite safe: the disk blocks
2103 * cannot be reallocated to a different file and so buffer aliasing is
2104 * not possible.
2105 *
2106 *
2107 * The above applies mainly to ordered data mode. In writeback mode we
2108 * don't make guarantees about the order in which data hits disk --- in
2109 * particular we don't guarantee that new dirty data is flushed before
2110 * transaction commit --- so it is always safe just to discard data
2111 * immediately in that mode. --sct
2112 */
2113
2114 /*
2115 * The journal_unmap_buffer helper function returns zero if the buffer
2116 * concerned remains pinned as an anonymous buffer belonging to an older
2117 * transaction.
2118 *
2119 * We're outside-transaction here. Either or both of j_running_transaction
2120 * and j_committing_transaction may be NULL.
2121 */
2122 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2123 int partial_page)
2124 {
2125 transaction_t *transaction;
2126 struct journal_head *jh;
2127 int may_free = 1;
2128
2129 BUFFER_TRACE(bh, "entry");
2130
2131 /*
2132 * It is safe to proceed here without the j_list_lock because the
2133 * buffers cannot be stolen by try_to_free_buffers as long as we are
2134 * holding the page lock. --sct
2135 */
2136
2137 if (!buffer_jbd(bh))
2138 goto zap_buffer_unlocked;
2139
2140 /* OK, we have data buffer in journaled mode */
2141 write_lock(&journal->j_state_lock);
2142 jbd_lock_bh_state(bh);
2143 spin_lock(&journal->j_list_lock);
2144
2145 jh = jbd2_journal_grab_journal_head(bh);
2146 if (!jh)
2147 goto zap_buffer_no_jh;
2148
2149 /*
2150 * We cannot remove the buffer from checkpoint lists until the
2151 * transaction adding inode to orphan list (let's call it T)
2152 * is committed. Otherwise if the transaction changing the
2153 * buffer would be cleaned from the journal before T is
2154 * committed, a crash will cause that the correct contents of
2155 * the buffer will be lost. On the other hand we have to
2156 * clear the buffer dirty bit at latest at the moment when the
2157 * transaction marking the buffer as freed in the filesystem
2158 * structures is committed because from that moment on the
2159 * block can be reallocated and used by a different page.
2160 * Since the block hasn't been freed yet but the inode has
2161 * already been added to orphan list, it is safe for us to add
2162 * the buffer to BJ_Forget list of the newest transaction.
2163 *
2164 * Also we have to clear buffer_mapped flag of a truncated buffer
2165 * because the buffer_head may be attached to the page straddling
2166 * i_size (can happen only when blocksize < pagesize) and thus the
2167 * buffer_head can be reused when the file is extended again. So we end
2168 * up keeping around invalidated buffers attached to transactions'
2169 * BJ_Forget list just to stop checkpointing code from cleaning up
2170 * the transaction this buffer was modified in.
2171 */
2172 transaction = jh->b_transaction;
2173 if (transaction == NULL) {
2174 /* First case: not on any transaction. If it
2175 * has no checkpoint link, then we can zap it:
2176 * it's a writeback-mode buffer so we don't care
2177 * if it hits disk safely. */
2178 if (!jh->b_cp_transaction) {
2179 JBUFFER_TRACE(jh, "not on any transaction: zap");
2180 goto zap_buffer;
2181 }
2182
2183 if (!buffer_dirty(bh)) {
2184 /* bdflush has written it. We can drop it now */
2185 __jbd2_journal_remove_checkpoint(jh);
2186 goto zap_buffer;
2187 }
2188
2189 /* OK, it must be in the journal but still not
2190 * written fully to disk: it's metadata or
2191 * journaled data... */
2192
2193 if (journal->j_running_transaction) {
2194 /* ... and once the current transaction has
2195 * committed, the buffer won't be needed any
2196 * longer. */
2197 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2198 may_free = __dispose_buffer(jh,
2199 journal->j_running_transaction);
2200 goto zap_buffer;
2201 } else {
2202 /* There is no currently-running transaction. So the
2203 * orphan record which we wrote for this file must have
2204 * passed into commit. We must attach this buffer to
2205 * the committing transaction, if it exists. */
2206 if (journal->j_committing_transaction) {
2207 JBUFFER_TRACE(jh, "give to committing trans");
2208 may_free = __dispose_buffer(jh,
2209 journal->j_committing_transaction);
2210 goto zap_buffer;
2211 } else {
2212 /* The orphan record's transaction has
2213 * committed. We can cleanse this buffer */
2214 clear_buffer_jbddirty(bh);
2215 __jbd2_journal_remove_checkpoint(jh);
2216 goto zap_buffer;
2217 }
2218 }
2219 } else if (transaction == journal->j_committing_transaction) {
2220 JBUFFER_TRACE(jh, "on committing transaction");
2221 /*
2222 * The buffer is committing, we simply cannot touch
2223 * it. If the page is straddling i_size we have to wait
2224 * for commit and try again.
2225 */
2226 if (partial_page) {
2227 jbd2_journal_put_journal_head(jh);
2228 spin_unlock(&journal->j_list_lock);
2229 jbd_unlock_bh_state(bh);
2230 write_unlock(&journal->j_state_lock);
2231 return -EBUSY;
2232 }
2233 /*
2234 * OK, buffer won't be reachable after truncate. We just set
2235 * j_next_transaction to the running transaction (if there is
2236 * one) and mark buffer as freed so that commit code knows it
2237 * should clear dirty bits when it is done with the buffer.
2238 */
2239 set_buffer_freed(bh);
2240 if (journal->j_running_transaction && buffer_jbddirty(bh))
2241 jh->b_next_transaction = journal->j_running_transaction;
2242 jbd2_journal_put_journal_head(jh);
2243 spin_unlock(&journal->j_list_lock);
2244 jbd_unlock_bh_state(bh);
2245 write_unlock(&journal->j_state_lock);
2246 return 0;
2247 } else {
2248 /* Good, the buffer belongs to the running transaction.
2249 * We are writing our own transaction's data, not any
2250 * previous one's, so it is safe to throw it away
2251 * (remember that we expect the filesystem to have set
2252 * i_size already for this truncate so recovery will not
2253 * expose the disk blocks we are discarding here.) */
2254 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2255 JBUFFER_TRACE(jh, "on running transaction");
2256 may_free = __dispose_buffer(jh, transaction);
2257 }
2258
2259 zap_buffer:
2260 /*
2261 * This is tricky. Although the buffer is truncated, it may be reused
2262 * if blocksize < pagesize and it is attached to the page straddling
2263 * EOF. Since the buffer might have been added to BJ_Forget list of the
2264 * running transaction, journal_get_write_access() won't clear
2265 * b_modified and credit accounting gets confused. So clear b_modified
2266 * here.
2267 */
2268 jh->b_modified = 0;
2269 jbd2_journal_put_journal_head(jh);
2270 zap_buffer_no_jh:
2271 spin_unlock(&journal->j_list_lock);
2272 jbd_unlock_bh_state(bh);
2273 write_unlock(&journal->j_state_lock);
2274 zap_buffer_unlocked:
2275 clear_buffer_dirty(bh);
2276 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2277 clear_buffer_mapped(bh);
2278 clear_buffer_req(bh);
2279 clear_buffer_new(bh);
2280 clear_buffer_delay(bh);
2281 clear_buffer_unwritten(bh);
2282 bh->b_bdev = NULL;
2283 return may_free;
2284 }
2285
2286 /**
2287 * void jbd2_journal_invalidatepage()
2288 * @journal: journal to use for flush...
2289 * @page: page to flush
2290 * @offset: start of the range to invalidate
2291 * @length: length of the range to invalidate
2292 *
2293 * Reap page buffers containing data after in the specified range in page.
2294 * Can return -EBUSY if buffers are part of the committing transaction and
2295 * the page is straddling i_size. Caller then has to wait for current commit
2296 * and try again.
2297 */
2298 int jbd2_journal_invalidatepage(journal_t *journal,
2299 struct page *page,
2300 unsigned int offset,
2301 unsigned int length)
2302 {
2303 struct buffer_head *head, *bh, *next;
2304 unsigned int stop = offset + length;
2305 unsigned int curr_off = 0;
2306 int partial_page = (offset || length < PAGE_SIZE);
2307 int may_free = 1;
2308 int ret = 0;
2309
2310 if (!PageLocked(page))
2311 BUG();
2312 if (!page_has_buffers(page))
2313 return 0;
2314
2315 BUG_ON(stop > PAGE_SIZE || stop < length);
2316
2317 /* We will potentially be playing with lists other than just the
2318 * data lists (especially for journaled data mode), so be
2319 * cautious in our locking. */
2320
2321 head = bh = page_buffers(page);
2322 do {
2323 unsigned int next_off = curr_off + bh->b_size;
2324 next = bh->b_this_page;
2325
2326 if (next_off > stop)
2327 return 0;
2328
2329 if (offset <= curr_off) {
2330 /* This block is wholly outside the truncation point */
2331 lock_buffer(bh);
2332 ret = journal_unmap_buffer(journal, bh, partial_page);
2333 unlock_buffer(bh);
2334 if (ret < 0)
2335 return ret;
2336 may_free &= ret;
2337 }
2338 curr_off = next_off;
2339 bh = next;
2340
2341 } while (bh != head);
2342
2343 if (!partial_page) {
2344 if (may_free && try_to_free_buffers(page))
2345 J_ASSERT(!page_has_buffers(page));
2346 }
2347 return 0;
2348 }
2349
2350 /*
2351 * File a buffer on the given transaction list.
2352 */
2353 void __jbd2_journal_file_buffer(struct journal_head *jh,
2354 transaction_t *transaction, int jlist)
2355 {
2356 struct journal_head **list = NULL;
2357 int was_dirty = 0;
2358 struct buffer_head *bh = jh2bh(jh);
2359
2360 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2361 assert_spin_locked(&transaction->t_journal->j_list_lock);
2362
2363 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2364 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2365 jh->b_transaction == NULL);
2366
2367 if (jh->b_transaction && jh->b_jlist == jlist)
2368 return;
2369
2370 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2371 jlist == BJ_Shadow || jlist == BJ_Forget) {
2372 /*
2373 * For metadata buffers, we track dirty bit in buffer_jbddirty
2374 * instead of buffer_dirty. We should not see a dirty bit set
2375 * here because we clear it in do_get_write_access but e.g.
2376 * tune2fs can modify the sb and set the dirty bit at any time
2377 * so we try to gracefully handle that.
2378 */
2379 if (buffer_dirty(bh))
2380 warn_dirty_buffer(bh);
2381 if (test_clear_buffer_dirty(bh) ||
2382 test_clear_buffer_jbddirty(bh))
2383 was_dirty = 1;
2384 }
2385
2386 if (jh->b_transaction)
2387 __jbd2_journal_temp_unlink_buffer(jh);
2388 else
2389 jbd2_journal_grab_journal_head(bh);
2390 jh->b_transaction = transaction;
2391
2392 switch (jlist) {
2393 case BJ_None:
2394 J_ASSERT_JH(jh, !jh->b_committed_data);
2395 J_ASSERT_JH(jh, !jh->b_frozen_data);
2396 return;
2397 case BJ_Metadata:
2398 transaction->t_nr_buffers++;
2399 list = &transaction->t_buffers;
2400 break;
2401 case BJ_Forget:
2402 list = &transaction->t_forget;
2403 break;
2404 case BJ_Shadow:
2405 list = &transaction->t_shadow_list;
2406 break;
2407 case BJ_Reserved:
2408 list = &transaction->t_reserved_list;
2409 break;
2410 }
2411
2412 __blist_add_buffer(list, jh);
2413 jh->b_jlist = jlist;
2414
2415 if (was_dirty)
2416 set_buffer_jbddirty(bh);
2417 }
2418
2419 void jbd2_journal_file_buffer(struct journal_head *jh,
2420 transaction_t *transaction, int jlist)
2421 {
2422 jbd_lock_bh_state(jh2bh(jh));
2423 spin_lock(&transaction->t_journal->j_list_lock);
2424 __jbd2_journal_file_buffer(jh, transaction, jlist);
2425 spin_unlock(&transaction->t_journal->j_list_lock);
2426 jbd_unlock_bh_state(jh2bh(jh));
2427 }
2428
2429 /*
2430 * Remove a buffer from its current buffer list in preparation for
2431 * dropping it from its current transaction entirely. If the buffer has
2432 * already started to be used by a subsequent transaction, refile the
2433 * buffer on that transaction's metadata list.
2434 *
2435 * Called under j_list_lock
2436 * Called under jbd_lock_bh_state(jh2bh(jh))
2437 *
2438 * jh and bh may be already free when this function returns
2439 */
2440 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2441 {
2442 int was_dirty, jlist;
2443 struct buffer_head *bh = jh2bh(jh);
2444
2445 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2446 if (jh->b_transaction)
2447 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2448
2449 /* If the buffer is now unused, just drop it. */
2450 if (jh->b_next_transaction == NULL) {
2451 __jbd2_journal_unfile_buffer(jh);
2452 return;
2453 }
2454
2455 /*
2456 * It has been modified by a later transaction: add it to the new
2457 * transaction's metadata list.
2458 */
2459
2460 was_dirty = test_clear_buffer_jbddirty(bh);
2461 __jbd2_journal_temp_unlink_buffer(jh);
2462 /*
2463 * We set b_transaction here because b_next_transaction will inherit
2464 * our jh reference and thus __jbd2_journal_file_buffer() must not
2465 * take a new one.
2466 */
2467 jh->b_transaction = jh->b_next_transaction;
2468 jh->b_next_transaction = NULL;
2469 if (buffer_freed(bh))
2470 jlist = BJ_Forget;
2471 else if (jh->b_modified)
2472 jlist = BJ_Metadata;
2473 else
2474 jlist = BJ_Reserved;
2475 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2476 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2477
2478 if (was_dirty)
2479 set_buffer_jbddirty(bh);
2480 }
2481
2482 /*
2483 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2484 * bh reference so that we can safely unlock bh.
2485 *
2486 * The jh and bh may be freed by this call.
2487 */
2488 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2489 {
2490 struct buffer_head *bh = jh2bh(jh);
2491
2492 /* Get reference so that buffer cannot be freed before we unlock it */
2493 get_bh(bh);
2494 jbd_lock_bh_state(bh);
2495 spin_lock(&journal->j_list_lock);
2496 __jbd2_journal_refile_buffer(jh);
2497 jbd_unlock_bh_state(bh);
2498 spin_unlock(&journal->j_list_lock);
2499 __brelse(bh);
2500 }
2501
2502 /*
2503 * File inode in the inode list of the handle's transaction
2504 */
2505 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2506 unsigned long flags)
2507 {
2508 transaction_t *transaction = handle->h_transaction;
2509 journal_t *journal;
2510
2511 if (is_handle_aborted(handle))
2512 return -EROFS;
2513 journal = transaction->t_journal;
2514
2515 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2516 transaction->t_tid);
2517
2518 /*
2519 * First check whether inode isn't already on the transaction's
2520 * lists without taking the lock. Note that this check is safe
2521 * without the lock as we cannot race with somebody removing inode
2522 * from the transaction. The reason is that we remove inode from the
2523 * transaction only in journal_release_jbd_inode() and when we commit
2524 * the transaction. We are guarded from the first case by holding
2525 * a reference to the inode. We are safe against the second case
2526 * because if jinode->i_transaction == transaction, commit code
2527 * cannot touch the transaction because we hold reference to it,
2528 * and if jinode->i_next_transaction == transaction, commit code
2529 * will only file the inode where we want it.
2530 */
2531 if ((jinode->i_transaction == transaction ||
2532 jinode->i_next_transaction == transaction) &&
2533 (jinode->i_flags & flags) == flags)
2534 return 0;
2535
2536 spin_lock(&journal->j_list_lock);
2537 jinode->i_flags |= flags;
2538 /* Is inode already attached where we need it? */
2539 if (jinode->i_transaction == transaction ||
2540 jinode->i_next_transaction == transaction)
2541 goto done;
2542
2543 /*
2544 * We only ever set this variable to 1 so the test is safe. Since
2545 * t_need_data_flush is likely to be set, we do the test to save some
2546 * cacheline bouncing
2547 */
2548 if (!transaction->t_need_data_flush)
2549 transaction->t_need_data_flush = 1;
2550 /* On some different transaction's list - should be
2551 * the committing one */
2552 if (jinode->i_transaction) {
2553 J_ASSERT(jinode->i_next_transaction == NULL);
2554 J_ASSERT(jinode->i_transaction ==
2555 journal->j_committing_transaction);
2556 jinode->i_next_transaction = transaction;
2557 goto done;
2558 }
2559 /* Not on any transaction list... */
2560 J_ASSERT(!jinode->i_next_transaction);
2561 jinode->i_transaction = transaction;
2562 list_add(&jinode->i_list, &transaction->t_inode_list);
2563 done:
2564 spin_unlock(&journal->j_list_lock);
2565
2566 return 0;
2567 }
2568
2569 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2570 {
2571 return jbd2_journal_file_inode(handle, jinode,
2572 JI_WRITE_DATA | JI_WAIT_DATA);
2573 }
2574
2575 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2576 {
2577 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2578 }
2579
2580 /*
2581 * File truncate and transaction commit interact with each other in a
2582 * non-trivial way. If a transaction writing data block A is
2583 * committing, we cannot discard the data by truncate until we have
2584 * written them. Otherwise if we crashed after the transaction with
2585 * write has committed but before the transaction with truncate has
2586 * committed, we could see stale data in block A. This function is a
2587 * helper to solve this problem. It starts writeout of the truncated
2588 * part in case it is in the committing transaction.
2589 *
2590 * Filesystem code must call this function when inode is journaled in
2591 * ordered mode before truncation happens and after the inode has been
2592 * placed on orphan list with the new inode size. The second condition
2593 * avoids the race that someone writes new data and we start
2594 * committing the transaction after this function has been called but
2595 * before a transaction for truncate is started (and furthermore it
2596 * allows us to optimize the case where the addition to orphan list
2597 * happens in the same transaction as write --- we don't have to write
2598 * any data in such case).
2599 */
2600 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2601 struct jbd2_inode *jinode,
2602 loff_t new_size)
2603 {
2604 transaction_t *inode_trans, *commit_trans;
2605 int ret = 0;
2606
2607 /* This is a quick check to avoid locking if not necessary */
2608 if (!jinode->i_transaction)
2609 goto out;
2610 /* Locks are here just to force reading of recent values, it is
2611 * enough that the transaction was not committing before we started
2612 * a transaction adding the inode to orphan list */
2613 read_lock(&journal->j_state_lock);
2614 commit_trans = journal->j_committing_transaction;
2615 read_unlock(&journal->j_state_lock);
2616 spin_lock(&journal->j_list_lock);
2617 inode_trans = jinode->i_transaction;
2618 spin_unlock(&journal->j_list_lock);
2619 if (inode_trans == commit_trans) {
2620 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2621 new_size, LLONG_MAX);
2622 if (ret)
2623 jbd2_journal_abort(journal, ret);
2624 }
2625 out:
2626 return ret;
2627 }