]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/jffs2/fs.c
Linux-2.6.12-rc2
[thirdparty/linux.git] / fs / jffs2 / fs.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: fs.c,v 1.51 2004/11/28 12:19:37 dedekind Exp $
11 *
12 */
13
14 #include <linux/version.h>
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/list.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/pagemap.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/vfs.h>
25 #include <linux/crc32.h>
26 #include "nodelist.h"
27
28 static int jffs2_flash_setup(struct jffs2_sb_info *c);
29
30 static int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
31 {
32 struct jffs2_full_dnode *old_metadata, *new_metadata;
33 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
34 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
35 struct jffs2_raw_inode *ri;
36 unsigned short dev;
37 unsigned char *mdata = NULL;
38 int mdatalen = 0;
39 unsigned int ivalid;
40 uint32_t phys_ofs, alloclen;
41 int ret;
42 D1(printk(KERN_DEBUG "jffs2_setattr(): ino #%lu\n", inode->i_ino));
43 ret = inode_change_ok(inode, iattr);
44 if (ret)
45 return ret;
46
47 /* Special cases - we don't want more than one data node
48 for these types on the medium at any time. So setattr
49 must read the original data associated with the node
50 (i.e. the device numbers or the target name) and write
51 it out again with the appropriate data attached */
52 if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
53 /* For these, we don't actually need to read the old node */
54 dev = old_encode_dev(inode->i_rdev);
55 mdata = (char *)&dev;
56 mdatalen = sizeof(dev);
57 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen));
58 } else if (S_ISLNK(inode->i_mode)) {
59 mdatalen = f->metadata->size;
60 mdata = kmalloc(f->metadata->size, GFP_USER);
61 if (!mdata)
62 return -ENOMEM;
63 ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
64 if (ret) {
65 kfree(mdata);
66 return ret;
67 }
68 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen));
69 }
70
71 ri = jffs2_alloc_raw_inode();
72 if (!ri) {
73 if (S_ISLNK(inode->i_mode))
74 kfree(mdata);
75 return -ENOMEM;
76 }
77
78 ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &phys_ofs, &alloclen, ALLOC_NORMAL);
79 if (ret) {
80 jffs2_free_raw_inode(ri);
81 if (S_ISLNK(inode->i_mode & S_IFMT))
82 kfree(mdata);
83 return ret;
84 }
85 down(&f->sem);
86 ivalid = iattr->ia_valid;
87
88 ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
89 ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
90 ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
91 ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
92
93 ri->ino = cpu_to_je32(inode->i_ino);
94 ri->version = cpu_to_je32(++f->highest_version);
95
96 ri->uid = cpu_to_je16((ivalid & ATTR_UID)?iattr->ia_uid:inode->i_uid);
97 ri->gid = cpu_to_je16((ivalid & ATTR_GID)?iattr->ia_gid:inode->i_gid);
98
99 if (ivalid & ATTR_MODE)
100 if (iattr->ia_mode & S_ISGID &&
101 !in_group_p(je16_to_cpu(ri->gid)) && !capable(CAP_FSETID))
102 ri->mode = cpu_to_jemode(iattr->ia_mode & ~S_ISGID);
103 else
104 ri->mode = cpu_to_jemode(iattr->ia_mode);
105 else
106 ri->mode = cpu_to_jemode(inode->i_mode);
107
108
109 ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
110 ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
111 ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
112 ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
113
114 ri->offset = cpu_to_je32(0);
115 ri->csize = ri->dsize = cpu_to_je32(mdatalen);
116 ri->compr = JFFS2_COMPR_NONE;
117 if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
118 /* It's an extension. Make it a hole node */
119 ri->compr = JFFS2_COMPR_ZERO;
120 ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
121 ri->offset = cpu_to_je32(inode->i_size);
122 }
123 ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
124 if (mdatalen)
125 ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
126 else
127 ri->data_crc = cpu_to_je32(0);
128
129 new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, phys_ofs, ALLOC_NORMAL);
130 if (S_ISLNK(inode->i_mode))
131 kfree(mdata);
132
133 if (IS_ERR(new_metadata)) {
134 jffs2_complete_reservation(c);
135 jffs2_free_raw_inode(ri);
136 up(&f->sem);
137 return PTR_ERR(new_metadata);
138 }
139 /* It worked. Update the inode */
140 inode->i_atime = ITIME(je32_to_cpu(ri->atime));
141 inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
142 inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
143 inode->i_mode = jemode_to_cpu(ri->mode);
144 inode->i_uid = je16_to_cpu(ri->uid);
145 inode->i_gid = je16_to_cpu(ri->gid);
146
147
148 old_metadata = f->metadata;
149
150 if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
151 jffs2_truncate_fraglist (c, &f->fragtree, iattr->ia_size);
152
153 if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
154 jffs2_add_full_dnode_to_inode(c, f, new_metadata);
155 inode->i_size = iattr->ia_size;
156 f->metadata = NULL;
157 } else {
158 f->metadata = new_metadata;
159 }
160 if (old_metadata) {
161 jffs2_mark_node_obsolete(c, old_metadata->raw);
162 jffs2_free_full_dnode(old_metadata);
163 }
164 jffs2_free_raw_inode(ri);
165
166 up(&f->sem);
167 jffs2_complete_reservation(c);
168
169 /* We have to do the vmtruncate() without f->sem held, since
170 some pages may be locked and waiting for it in readpage().
171 We are protected from a simultaneous write() extending i_size
172 back past iattr->ia_size, because do_truncate() holds the
173 generic inode semaphore. */
174 if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
175 vmtruncate(inode, iattr->ia_size);
176
177 return 0;
178 }
179
180 int jffs2_setattr(struct dentry *dentry, struct iattr *iattr)
181 {
182 return jffs2_do_setattr(dentry->d_inode, iattr);
183 }
184
185 int jffs2_statfs(struct super_block *sb, struct kstatfs *buf)
186 {
187 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
188 unsigned long avail;
189
190 buf->f_type = JFFS2_SUPER_MAGIC;
191 buf->f_bsize = 1 << PAGE_SHIFT;
192 buf->f_blocks = c->flash_size >> PAGE_SHIFT;
193 buf->f_files = 0;
194 buf->f_ffree = 0;
195 buf->f_namelen = JFFS2_MAX_NAME_LEN;
196
197 spin_lock(&c->erase_completion_lock);
198
199 avail = c->dirty_size + c->free_size;
200 if (avail > c->sector_size * c->resv_blocks_write)
201 avail -= c->sector_size * c->resv_blocks_write;
202 else
203 avail = 0;
204
205 buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
206
207 D2(jffs2_dump_block_lists(c));
208
209 spin_unlock(&c->erase_completion_lock);
210
211 return 0;
212 }
213
214
215 void jffs2_clear_inode (struct inode *inode)
216 {
217 /* We can forget about this inode for now - drop all
218 * the nodelists associated with it, etc.
219 */
220 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
221 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
222
223 D1(printk(KERN_DEBUG "jffs2_clear_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode));
224
225 jffs2_do_clear_inode(c, f);
226 }
227
228 void jffs2_read_inode (struct inode *inode)
229 {
230 struct jffs2_inode_info *f;
231 struct jffs2_sb_info *c;
232 struct jffs2_raw_inode latest_node;
233 int ret;
234
235 D1(printk(KERN_DEBUG "jffs2_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
236
237 f = JFFS2_INODE_INFO(inode);
238 c = JFFS2_SB_INFO(inode->i_sb);
239
240 jffs2_init_inode_info(f);
241
242 ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
243
244 if (ret) {
245 make_bad_inode(inode);
246 up(&f->sem);
247 return;
248 }
249 inode->i_mode = jemode_to_cpu(latest_node.mode);
250 inode->i_uid = je16_to_cpu(latest_node.uid);
251 inode->i_gid = je16_to_cpu(latest_node.gid);
252 inode->i_size = je32_to_cpu(latest_node.isize);
253 inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
254 inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
255 inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
256
257 inode->i_nlink = f->inocache->nlink;
258
259 inode->i_blksize = PAGE_SIZE;
260 inode->i_blocks = (inode->i_size + 511) >> 9;
261
262 switch (inode->i_mode & S_IFMT) {
263 jint16_t rdev;
264
265 case S_IFLNK:
266 inode->i_op = &jffs2_symlink_inode_operations;
267 break;
268
269 case S_IFDIR:
270 {
271 struct jffs2_full_dirent *fd;
272
273 for (fd=f->dents; fd; fd = fd->next) {
274 if (fd->type == DT_DIR && fd->ino)
275 inode->i_nlink++;
276 }
277 /* and '..' */
278 inode->i_nlink++;
279 /* Root dir gets i_nlink 3 for some reason */
280 if (inode->i_ino == 1)
281 inode->i_nlink++;
282
283 inode->i_op = &jffs2_dir_inode_operations;
284 inode->i_fop = &jffs2_dir_operations;
285 break;
286 }
287 case S_IFREG:
288 inode->i_op = &jffs2_file_inode_operations;
289 inode->i_fop = &jffs2_file_operations;
290 inode->i_mapping->a_ops = &jffs2_file_address_operations;
291 inode->i_mapping->nrpages = 0;
292 break;
293
294 case S_IFBLK:
295 case S_IFCHR:
296 /* Read the device numbers from the media */
297 D1(printk(KERN_DEBUG "Reading device numbers from flash\n"));
298 if (jffs2_read_dnode(c, f, f->metadata, (char *)&rdev, 0, sizeof(rdev)) < 0) {
299 /* Eep */
300 printk(KERN_NOTICE "Read device numbers for inode %lu failed\n", (unsigned long)inode->i_ino);
301 up(&f->sem);
302 jffs2_do_clear_inode(c, f);
303 make_bad_inode(inode);
304 return;
305 }
306
307 case S_IFSOCK:
308 case S_IFIFO:
309 inode->i_op = &jffs2_file_inode_operations;
310 init_special_inode(inode, inode->i_mode,
311 old_decode_dev((je16_to_cpu(rdev))));
312 break;
313
314 default:
315 printk(KERN_WARNING "jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode->i_mode, (unsigned long)inode->i_ino);
316 }
317
318 up(&f->sem);
319
320 D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n"));
321 }
322
323 void jffs2_dirty_inode(struct inode *inode)
324 {
325 struct iattr iattr;
326
327 if (!(inode->i_state & I_DIRTY_DATASYNC)) {
328 D2(printk(KERN_DEBUG "jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode->i_ino));
329 return;
330 }
331
332 D1(printk(KERN_DEBUG "jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode->i_ino));
333
334 iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
335 iattr.ia_mode = inode->i_mode;
336 iattr.ia_uid = inode->i_uid;
337 iattr.ia_gid = inode->i_gid;
338 iattr.ia_atime = inode->i_atime;
339 iattr.ia_mtime = inode->i_mtime;
340 iattr.ia_ctime = inode->i_ctime;
341
342 jffs2_do_setattr(inode, &iattr);
343 }
344
345 int jffs2_remount_fs (struct super_block *sb, int *flags, char *data)
346 {
347 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
348
349 if (c->flags & JFFS2_SB_FLAG_RO && !(sb->s_flags & MS_RDONLY))
350 return -EROFS;
351
352 /* We stop if it was running, then restart if it needs to.
353 This also catches the case where it was stopped and this
354 is just a remount to restart it.
355 Flush the writebuffer, if neccecary, else we loose it */
356 if (!(sb->s_flags & MS_RDONLY)) {
357 jffs2_stop_garbage_collect_thread(c);
358 down(&c->alloc_sem);
359 jffs2_flush_wbuf_pad(c);
360 up(&c->alloc_sem);
361 }
362
363 if (!(*flags & MS_RDONLY))
364 jffs2_start_garbage_collect_thread(c);
365
366 *flags |= MS_NOATIME;
367
368 return 0;
369 }
370
371 void jffs2_write_super (struct super_block *sb)
372 {
373 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
374 sb->s_dirt = 0;
375
376 if (sb->s_flags & MS_RDONLY)
377 return;
378
379 D1(printk(KERN_DEBUG "jffs2_write_super()\n"));
380 jffs2_garbage_collect_trigger(c);
381 jffs2_erase_pending_blocks(c, 0);
382 jffs2_flush_wbuf_gc(c, 0);
383 }
384
385
386 /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
387 fill in the raw_inode while you're at it. */
388 struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri)
389 {
390 struct inode *inode;
391 struct super_block *sb = dir_i->i_sb;
392 struct jffs2_sb_info *c;
393 struct jffs2_inode_info *f;
394 int ret;
395
396 D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode));
397
398 c = JFFS2_SB_INFO(sb);
399
400 inode = new_inode(sb);
401
402 if (!inode)
403 return ERR_PTR(-ENOMEM);
404
405 f = JFFS2_INODE_INFO(inode);
406 jffs2_init_inode_info(f);
407
408 memset(ri, 0, sizeof(*ri));
409 /* Set OS-specific defaults for new inodes */
410 ri->uid = cpu_to_je16(current->fsuid);
411
412 if (dir_i->i_mode & S_ISGID) {
413 ri->gid = cpu_to_je16(dir_i->i_gid);
414 if (S_ISDIR(mode))
415 mode |= S_ISGID;
416 } else {
417 ri->gid = cpu_to_je16(current->fsgid);
418 }
419 ri->mode = cpu_to_jemode(mode);
420 ret = jffs2_do_new_inode (c, f, mode, ri);
421 if (ret) {
422 make_bad_inode(inode);
423 iput(inode);
424 return ERR_PTR(ret);
425 }
426 inode->i_nlink = 1;
427 inode->i_ino = je32_to_cpu(ri->ino);
428 inode->i_mode = jemode_to_cpu(ri->mode);
429 inode->i_gid = je16_to_cpu(ri->gid);
430 inode->i_uid = je16_to_cpu(ri->uid);
431 inode->i_atime = inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
432 ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
433
434 inode->i_blksize = PAGE_SIZE;
435 inode->i_blocks = 0;
436 inode->i_size = 0;
437
438 insert_inode_hash(inode);
439
440 return inode;
441 }
442
443
444 int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
445 {
446 struct jffs2_sb_info *c;
447 struct inode *root_i;
448 int ret;
449 size_t blocks;
450
451 c = JFFS2_SB_INFO(sb);
452
453 #ifndef CONFIG_JFFS2_FS_NAND
454 if (c->mtd->type == MTD_NANDFLASH) {
455 printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
456 return -EINVAL;
457 }
458 #endif
459
460 c->flash_size = c->mtd->size;
461
462 /*
463 * Check, if we have to concatenate physical blocks to larger virtual blocks
464 * to reduce the memorysize for c->blocks. (kmalloc allows max. 128K allocation)
465 */
466 c->sector_size = c->mtd->erasesize;
467 blocks = c->flash_size / c->sector_size;
468 if (!(c->mtd->flags & MTD_NO_VIRTBLOCKS)) {
469 while ((blocks * sizeof (struct jffs2_eraseblock)) > (128 * 1024)) {
470 blocks >>= 1;
471 c->sector_size <<= 1;
472 }
473 }
474
475 /*
476 * Size alignment check
477 */
478 if ((c->sector_size * blocks) != c->flash_size) {
479 c->flash_size = c->sector_size * blocks;
480 printk(KERN_INFO "jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
481 c->flash_size / 1024);
482 }
483
484 if (c->sector_size != c->mtd->erasesize)
485 printk(KERN_INFO "jffs2: Erase block size too small (%dKiB). Using virtual blocks size (%dKiB) instead\n",
486 c->mtd->erasesize / 1024, c->sector_size / 1024);
487
488 if (c->flash_size < 5*c->sector_size) {
489 printk(KERN_ERR "jffs2: Too few erase blocks (%d)\n", c->flash_size / c->sector_size);
490 return -EINVAL;
491 }
492
493 c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
494 /* Joern -- stick alignment for weird 8-byte-page flash here */
495
496 /* NAND (or other bizarre) flash... do setup accordingly */
497 ret = jffs2_flash_setup(c);
498 if (ret)
499 return ret;
500
501 c->inocache_list = kmalloc(INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
502 if (!c->inocache_list) {
503 ret = -ENOMEM;
504 goto out_wbuf;
505 }
506 memset(c->inocache_list, 0, INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *));
507
508 if ((ret = jffs2_do_mount_fs(c)))
509 goto out_inohash;
510
511 ret = -EINVAL;
512
513 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): Getting root inode\n"));
514 root_i = iget(sb, 1);
515 if (is_bad_inode(root_i)) {
516 D1(printk(KERN_WARNING "get root inode failed\n"));
517 goto out_nodes;
518 }
519
520 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): d_alloc_root()\n"));
521 sb->s_root = d_alloc_root(root_i);
522 if (!sb->s_root)
523 goto out_root_i;
524
525 #if LINUX_VERSION_CODE >= 0x20403
526 sb->s_maxbytes = 0xFFFFFFFF;
527 #endif
528 sb->s_blocksize = PAGE_CACHE_SIZE;
529 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
530 sb->s_magic = JFFS2_SUPER_MAGIC;
531 if (!(sb->s_flags & MS_RDONLY))
532 jffs2_start_garbage_collect_thread(c);
533 return 0;
534
535 out_root_i:
536 iput(root_i);
537 out_nodes:
538 jffs2_free_ino_caches(c);
539 jffs2_free_raw_node_refs(c);
540 if (c->mtd->flags & MTD_NO_VIRTBLOCKS)
541 vfree(c->blocks);
542 else
543 kfree(c->blocks);
544 out_inohash:
545 kfree(c->inocache_list);
546 out_wbuf:
547 jffs2_flash_cleanup(c);
548
549 return ret;
550 }
551
552 void jffs2_gc_release_inode(struct jffs2_sb_info *c,
553 struct jffs2_inode_info *f)
554 {
555 iput(OFNI_EDONI_2SFFJ(f));
556 }
557
558 struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
559 int inum, int nlink)
560 {
561 struct inode *inode;
562 struct jffs2_inode_cache *ic;
563 if (!nlink) {
564 /* The inode has zero nlink but its nodes weren't yet marked
565 obsolete. This has to be because we're still waiting for
566 the final (close() and) iput() to happen.
567
568 There's a possibility that the final iput() could have
569 happened while we were contemplating. In order to ensure
570 that we don't cause a new read_inode() (which would fail)
571 for the inode in question, we use ilookup() in this case
572 instead of iget().
573
574 The nlink can't _become_ zero at this point because we're
575 holding the alloc_sem, and jffs2_do_unlink() would also
576 need that while decrementing nlink on any inode.
577 */
578 inode = ilookup(OFNI_BS_2SFFJ(c), inum);
579 if (!inode) {
580 D1(printk(KERN_DEBUG "ilookup() failed for ino #%u; inode is probably deleted.\n",
581 inum));
582
583 spin_lock(&c->inocache_lock);
584 ic = jffs2_get_ino_cache(c, inum);
585 if (!ic) {
586 D1(printk(KERN_DEBUG "Inode cache for ino #%u is gone.\n", inum));
587 spin_unlock(&c->inocache_lock);
588 return NULL;
589 }
590 if (ic->state != INO_STATE_CHECKEDABSENT) {
591 /* Wait for progress. Don't just loop */
592 D1(printk(KERN_DEBUG "Waiting for ino #%u in state %d\n",
593 ic->ino, ic->state));
594 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
595 } else {
596 spin_unlock(&c->inocache_lock);
597 }
598
599 return NULL;
600 }
601 } else {
602 /* Inode has links to it still; they're not going away because
603 jffs2_do_unlink() would need the alloc_sem and we have it.
604 Just iget() it, and if read_inode() is necessary that's OK.
605 */
606 inode = iget(OFNI_BS_2SFFJ(c), inum);
607 if (!inode)
608 return ERR_PTR(-ENOMEM);
609 }
610 if (is_bad_inode(inode)) {
611 printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u. nlink %d\n",
612 inum, nlink);
613 /* NB. This will happen again. We need to do something appropriate here. */
614 iput(inode);
615 return ERR_PTR(-EIO);
616 }
617
618 return JFFS2_INODE_INFO(inode);
619 }
620
621 unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info *c,
622 struct jffs2_inode_info *f,
623 unsigned long offset,
624 unsigned long *priv)
625 {
626 struct inode *inode = OFNI_EDONI_2SFFJ(f);
627 struct page *pg;
628
629 pg = read_cache_page(inode->i_mapping, offset >> PAGE_CACHE_SHIFT,
630 (void *)jffs2_do_readpage_unlock, inode);
631 if (IS_ERR(pg))
632 return (void *)pg;
633
634 *priv = (unsigned long)pg;
635 return kmap(pg);
636 }
637
638 void jffs2_gc_release_page(struct jffs2_sb_info *c,
639 unsigned char *ptr,
640 unsigned long *priv)
641 {
642 struct page *pg = (void *)*priv;
643
644 kunmap(pg);
645 page_cache_release(pg);
646 }
647
648 static int jffs2_flash_setup(struct jffs2_sb_info *c) {
649 int ret = 0;
650
651 if (jffs2_cleanmarker_oob(c)) {
652 /* NAND flash... do setup accordingly */
653 ret = jffs2_nand_flash_setup(c);
654 if (ret)
655 return ret;
656 }
657
658 /* add setups for other bizarre flashes here... */
659 if (jffs2_nor_ecc(c)) {
660 ret = jffs2_nor_ecc_flash_setup(c);
661 if (ret)
662 return ret;
663 }
664 return ret;
665 }
666
667 void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
668
669 if (jffs2_cleanmarker_oob(c)) {
670 jffs2_nand_flash_cleanup(c);
671 }
672
673 /* add cleanups for other bizarre flashes here... */
674 if (jffs2_nor_ecc(c)) {
675 jffs2_nor_ecc_flash_cleanup(c);
676 }
677 }