]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/libfs.c
0d14ae808fcfdb314af5b95ccabec10f1dac8c15
[thirdparty/linux.git] / fs / libfs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27
28 #include <linux/uaccess.h>
29
30 #include "internal.h"
31
32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35 {
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42
43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54
55 /*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
67 };
68 EXPORT_SYMBOL(simple_dentry_operations);
69
70 /*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
73 */
74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 {
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
80 d_add(dentry, NULL);
81 return NULL;
82 }
83 EXPORT_SYMBOL(simple_lookup);
84
85 int dcache_dir_open(struct inode *inode, struct file *file)
86 {
87 file->private_data = d_alloc_cursor(file->f_path.dentry);
88
89 return file->private_data ? 0 : -ENOMEM;
90 }
91 EXPORT_SYMBOL(dcache_dir_open);
92
93 int dcache_dir_close(struct inode *inode, struct file *file)
94 {
95 dput(file->private_data);
96 return 0;
97 }
98 EXPORT_SYMBOL(dcache_dir_close);
99
100 /* parent is locked at least shared */
101 /*
102 * Returns an element of siblings' list.
103 * We are looking for <count>th positive after <p>; if
104 * found, dentry is grabbed and returned to caller.
105 * If no such element exists, NULL is returned.
106 */
107 static struct dentry *scan_positives(struct dentry *cursor,
108 struct hlist_node **p,
109 loff_t count,
110 struct dentry *last)
111 {
112 struct dentry *dentry = cursor->d_parent, *found = NULL;
113
114 spin_lock(&dentry->d_lock);
115 while (*p) {
116 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117 p = &d->d_sib.next;
118 // we must at least skip cursors, to avoid livelocks
119 if (d->d_flags & DCACHE_DENTRY_CURSOR)
120 continue;
121 if (simple_positive(d) && !--count) {
122 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123 if (simple_positive(d))
124 found = dget_dlock(d);
125 spin_unlock(&d->d_lock);
126 if (likely(found))
127 break;
128 count = 1;
129 }
130 if (need_resched()) {
131 if (!hlist_unhashed(&cursor->d_sib))
132 __hlist_del(&cursor->d_sib);
133 hlist_add_behind(&cursor->d_sib, &d->d_sib);
134 p = &cursor->d_sib.next;
135 spin_unlock(&dentry->d_lock);
136 cond_resched();
137 spin_lock(&dentry->d_lock);
138 }
139 }
140 spin_unlock(&dentry->d_lock);
141 dput(last);
142 return found;
143 }
144
145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146 {
147 struct dentry *dentry = file->f_path.dentry;
148 switch (whence) {
149 case 1:
150 offset += file->f_pos;
151 fallthrough;
152 case 0:
153 if (offset >= 0)
154 break;
155 fallthrough;
156 default:
157 return -EINVAL;
158 }
159 if (offset != file->f_pos) {
160 struct dentry *cursor = file->private_data;
161 struct dentry *to = NULL;
162
163 inode_lock_shared(dentry->d_inode);
164
165 if (offset > 2)
166 to = scan_positives(cursor, &dentry->d_children.first,
167 offset - 2, NULL);
168 spin_lock(&dentry->d_lock);
169 hlist_del_init(&cursor->d_sib);
170 if (to)
171 hlist_add_behind(&cursor->d_sib, &to->d_sib);
172 spin_unlock(&dentry->d_lock);
173 dput(to);
174
175 file->f_pos = offset;
176
177 inode_unlock_shared(dentry->d_inode);
178 }
179 return offset;
180 }
181 EXPORT_SYMBOL(dcache_dir_lseek);
182
183 /*
184 * Directory is locked and all positive dentries in it are safe, since
185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
186 * both impossible due to the lock on directory.
187 */
188
189 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 {
191 struct dentry *dentry = file->f_path.dentry;
192 struct dentry *cursor = file->private_data;
193 struct dentry *next = NULL;
194 struct hlist_node **p;
195
196 if (!dir_emit_dots(file, ctx))
197 return 0;
198
199 if (ctx->pos == 2)
200 p = &dentry->d_children.first;
201 else
202 p = &cursor->d_sib.next;
203
204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206 d_inode(next)->i_ino,
207 fs_umode_to_dtype(d_inode(next)->i_mode)))
208 break;
209 ctx->pos++;
210 p = &next->d_sib.next;
211 }
212 spin_lock(&dentry->d_lock);
213 hlist_del_init(&cursor->d_sib);
214 if (next)
215 hlist_add_before(&cursor->d_sib, &next->d_sib);
216 spin_unlock(&dentry->d_lock);
217 dput(next);
218
219 return 0;
220 }
221 EXPORT_SYMBOL(dcache_readdir);
222
223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224 {
225 return -EISDIR;
226 }
227 EXPORT_SYMBOL(generic_read_dir);
228
229 const struct file_operations simple_dir_operations = {
230 .open = dcache_dir_open,
231 .release = dcache_dir_close,
232 .llseek = dcache_dir_lseek,
233 .read = generic_read_dir,
234 .iterate_shared = dcache_readdir,
235 .fsync = noop_fsync,
236 };
237 EXPORT_SYMBOL(simple_dir_operations);
238
239 const struct inode_operations simple_dir_inode_operations = {
240 .lookup = simple_lookup,
241 };
242 EXPORT_SYMBOL(simple_dir_inode_operations);
243
244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */
245 enum {
246 DIR_OFFSET_MIN = 2,
247 };
248
249 static void offset_set(struct dentry *dentry, long offset)
250 {
251 dentry->d_fsdata = (void *)offset;
252 }
253
254 static long dentry2offset(struct dentry *dentry)
255 {
256 return (long)dentry->d_fsdata;
257 }
258
259 static struct lock_class_key simple_offset_lock_class;
260
261 /**
262 * simple_offset_init - initialize an offset_ctx
263 * @octx: directory offset map to be initialized
264 *
265 */
266 void simple_offset_init(struct offset_ctx *octx)
267 {
268 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
269 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
270 octx->next_offset = DIR_OFFSET_MIN;
271 }
272
273 /**
274 * simple_offset_add - Add an entry to a directory's offset map
275 * @octx: directory offset ctx to be updated
276 * @dentry: new dentry being added
277 *
278 * Returns zero on success. @octx and the dentry's offset are updated.
279 * Otherwise, a negative errno value is returned.
280 */
281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
282 {
283 unsigned long offset;
284 int ret;
285
286 if (dentry2offset(dentry) != 0)
287 return -EBUSY;
288
289 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
290 LONG_MAX, &octx->next_offset, GFP_KERNEL);
291 if (ret < 0)
292 return ret;
293
294 offset_set(dentry, offset);
295 return 0;
296 }
297
298 /**
299 * simple_offset_remove - Remove an entry to a directory's offset map
300 * @octx: directory offset ctx to be updated
301 * @dentry: dentry being removed
302 *
303 */
304 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
305 {
306 long offset;
307
308 offset = dentry2offset(dentry);
309 if (offset == 0)
310 return;
311
312 mtree_erase(&octx->mt, offset);
313 offset_set(dentry, 0);
314 }
315
316 /**
317 * simple_offset_empty - Check if a dentry can be unlinked
318 * @dentry: dentry to be tested
319 *
320 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
321 */
322 int simple_offset_empty(struct dentry *dentry)
323 {
324 struct inode *inode = d_inode(dentry);
325 struct offset_ctx *octx;
326 struct dentry *child;
327 unsigned long index;
328 int ret = 1;
329
330 if (!inode || !S_ISDIR(inode->i_mode))
331 return ret;
332
333 index = DIR_OFFSET_MIN;
334 octx = inode->i_op->get_offset_ctx(inode);
335 mt_for_each(&octx->mt, child, index, LONG_MAX) {
336 spin_lock(&child->d_lock);
337 if (simple_positive(child)) {
338 spin_unlock(&child->d_lock);
339 ret = 0;
340 break;
341 }
342 spin_unlock(&child->d_lock);
343 }
344
345 return ret;
346 }
347
348 /**
349 * simple_offset_rename_exchange - exchange rename with directory offsets
350 * @old_dir: parent of dentry being moved
351 * @old_dentry: dentry being moved
352 * @new_dir: destination parent
353 * @new_dentry: destination dentry
354 *
355 * Returns zero on success. Otherwise a negative errno is returned and the
356 * rename is rolled back.
357 */
358 int simple_offset_rename_exchange(struct inode *old_dir,
359 struct dentry *old_dentry,
360 struct inode *new_dir,
361 struct dentry *new_dentry)
362 {
363 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
364 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
365 long old_index = dentry2offset(old_dentry);
366 long new_index = dentry2offset(new_dentry);
367 int ret;
368
369 simple_offset_remove(old_ctx, old_dentry);
370 simple_offset_remove(new_ctx, new_dentry);
371
372 ret = simple_offset_add(new_ctx, old_dentry);
373 if (ret)
374 goto out_restore;
375
376 ret = simple_offset_add(old_ctx, new_dentry);
377 if (ret) {
378 simple_offset_remove(new_ctx, old_dentry);
379 goto out_restore;
380 }
381
382 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
383 if (ret) {
384 simple_offset_remove(new_ctx, old_dentry);
385 simple_offset_remove(old_ctx, new_dentry);
386 goto out_restore;
387 }
388 return 0;
389
390 out_restore:
391 offset_set(old_dentry, old_index);
392 mtree_store(&old_ctx->mt, old_index, old_dentry, GFP_KERNEL);
393 offset_set(new_dentry, new_index);
394 mtree_store(&new_ctx->mt, new_index, new_dentry, GFP_KERNEL);
395 return ret;
396 }
397
398 /**
399 * simple_offset_destroy - Release offset map
400 * @octx: directory offset ctx that is about to be destroyed
401 *
402 * During fs teardown (eg. umount), a directory's offset map might still
403 * contain entries. xa_destroy() cleans out anything that remains.
404 */
405 void simple_offset_destroy(struct offset_ctx *octx)
406 {
407 mtree_destroy(&octx->mt);
408 }
409
410 /**
411 * offset_dir_llseek - Advance the read position of a directory descriptor
412 * @file: an open directory whose position is to be updated
413 * @offset: a byte offset
414 * @whence: enumerator describing the starting position for this update
415 *
416 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
417 *
418 * Returns the updated read position if successful; otherwise a
419 * negative errno is returned and the read position remains unchanged.
420 */
421 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
422 {
423 switch (whence) {
424 case SEEK_CUR:
425 offset += file->f_pos;
426 fallthrough;
427 case SEEK_SET:
428 if (offset >= 0)
429 break;
430 fallthrough;
431 default:
432 return -EINVAL;
433 }
434
435 /* In this case, ->private_data is protected by f_pos_lock */
436 file->private_data = NULL;
437 return vfs_setpos(file, offset, LONG_MAX);
438 }
439
440 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
441 {
442 MA_STATE(mas, &octx->mt, offset, offset);
443 struct dentry *child, *found = NULL;
444
445 rcu_read_lock();
446 child = mas_find(&mas, LONG_MAX);
447 if (!child)
448 goto out;
449 spin_lock(&child->d_lock);
450 if (simple_positive(child))
451 found = dget_dlock(child);
452 spin_unlock(&child->d_lock);
453 out:
454 rcu_read_unlock();
455 return found;
456 }
457
458 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
459 {
460 struct inode *inode = d_inode(dentry);
461 long offset = dentry2offset(dentry);
462
463 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
464 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
465 }
466
467 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
468 {
469 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
470 struct dentry *dentry;
471
472 while (true) {
473 dentry = offset_find_next(octx, ctx->pos);
474 if (!dentry)
475 return ERR_PTR(-ENOENT);
476
477 if (!offset_dir_emit(ctx, dentry)) {
478 dput(dentry);
479 break;
480 }
481
482 ctx->pos = dentry2offset(dentry) + 1;
483 dput(dentry);
484 }
485 return NULL;
486 }
487
488 /**
489 * offset_readdir - Emit entries starting at offset @ctx->pos
490 * @file: an open directory to iterate over
491 * @ctx: directory iteration context
492 *
493 * Caller must hold @file's i_rwsem to prevent insertion or removal of
494 * entries during this call.
495 *
496 * On entry, @ctx->pos contains an offset that represents the first entry
497 * to be read from the directory.
498 *
499 * The operation continues until there are no more entries to read, or
500 * until the ctx->actor indicates there is no more space in the caller's
501 * output buffer.
502 *
503 * On return, @ctx->pos contains an offset that will read the next entry
504 * in this directory when offset_readdir() is called again with @ctx.
505 *
506 * Return values:
507 * %0 - Complete
508 */
509 static int offset_readdir(struct file *file, struct dir_context *ctx)
510 {
511 struct dentry *dir = file->f_path.dentry;
512
513 lockdep_assert_held(&d_inode(dir)->i_rwsem);
514
515 if (!dir_emit_dots(file, ctx))
516 return 0;
517
518 /* In this case, ->private_data is protected by f_pos_lock */
519 if (ctx->pos == DIR_OFFSET_MIN)
520 file->private_data = NULL;
521 else if (file->private_data == ERR_PTR(-ENOENT))
522 return 0;
523 file->private_data = offset_iterate_dir(d_inode(dir), ctx);
524 return 0;
525 }
526
527 const struct file_operations simple_offset_dir_operations = {
528 .llseek = offset_dir_llseek,
529 .iterate_shared = offset_readdir,
530 .read = generic_read_dir,
531 .fsync = noop_fsync,
532 };
533
534 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
535 {
536 struct dentry *child = NULL, *d;
537
538 spin_lock(&parent->d_lock);
539 d = prev ? d_next_sibling(prev) : d_first_child(parent);
540 hlist_for_each_entry_from(d, d_sib) {
541 if (simple_positive(d)) {
542 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
543 if (simple_positive(d))
544 child = dget_dlock(d);
545 spin_unlock(&d->d_lock);
546 if (likely(child))
547 break;
548 }
549 }
550 spin_unlock(&parent->d_lock);
551 dput(prev);
552 return child;
553 }
554
555 void simple_recursive_removal(struct dentry *dentry,
556 void (*callback)(struct dentry *))
557 {
558 struct dentry *this = dget(dentry);
559 while (true) {
560 struct dentry *victim = NULL, *child;
561 struct inode *inode = this->d_inode;
562
563 inode_lock(inode);
564 if (d_is_dir(this))
565 inode->i_flags |= S_DEAD;
566 while ((child = find_next_child(this, victim)) == NULL) {
567 // kill and ascend
568 // update metadata while it's still locked
569 inode_set_ctime_current(inode);
570 clear_nlink(inode);
571 inode_unlock(inode);
572 victim = this;
573 this = this->d_parent;
574 inode = this->d_inode;
575 inode_lock(inode);
576 if (simple_positive(victim)) {
577 d_invalidate(victim); // avoid lost mounts
578 if (d_is_dir(victim))
579 fsnotify_rmdir(inode, victim);
580 else
581 fsnotify_unlink(inode, victim);
582 if (callback)
583 callback(victim);
584 dput(victim); // unpin it
585 }
586 if (victim == dentry) {
587 inode_set_mtime_to_ts(inode,
588 inode_set_ctime_current(inode));
589 if (d_is_dir(dentry))
590 drop_nlink(inode);
591 inode_unlock(inode);
592 dput(dentry);
593 return;
594 }
595 }
596 inode_unlock(inode);
597 this = child;
598 }
599 }
600 EXPORT_SYMBOL(simple_recursive_removal);
601
602 static const struct super_operations simple_super_operations = {
603 .statfs = simple_statfs,
604 };
605
606 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
607 {
608 struct pseudo_fs_context *ctx = fc->fs_private;
609 struct inode *root;
610
611 s->s_maxbytes = MAX_LFS_FILESIZE;
612 s->s_blocksize = PAGE_SIZE;
613 s->s_blocksize_bits = PAGE_SHIFT;
614 s->s_magic = ctx->magic;
615 s->s_op = ctx->ops ?: &simple_super_operations;
616 s->s_xattr = ctx->xattr;
617 s->s_time_gran = 1;
618 root = new_inode(s);
619 if (!root)
620 return -ENOMEM;
621
622 /*
623 * since this is the first inode, make it number 1. New inodes created
624 * after this must take care not to collide with it (by passing
625 * max_reserved of 1 to iunique).
626 */
627 root->i_ino = 1;
628 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
629 simple_inode_init_ts(root);
630 s->s_root = d_make_root(root);
631 if (!s->s_root)
632 return -ENOMEM;
633 s->s_d_op = ctx->dops;
634 return 0;
635 }
636
637 static int pseudo_fs_get_tree(struct fs_context *fc)
638 {
639 return get_tree_nodev(fc, pseudo_fs_fill_super);
640 }
641
642 static void pseudo_fs_free(struct fs_context *fc)
643 {
644 kfree(fc->fs_private);
645 }
646
647 static const struct fs_context_operations pseudo_fs_context_ops = {
648 .free = pseudo_fs_free,
649 .get_tree = pseudo_fs_get_tree,
650 };
651
652 /*
653 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
654 * will never be mountable)
655 */
656 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
657 unsigned long magic)
658 {
659 struct pseudo_fs_context *ctx;
660
661 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
662 if (likely(ctx)) {
663 ctx->magic = magic;
664 fc->fs_private = ctx;
665 fc->ops = &pseudo_fs_context_ops;
666 fc->sb_flags |= SB_NOUSER;
667 fc->global = true;
668 }
669 return ctx;
670 }
671 EXPORT_SYMBOL(init_pseudo);
672
673 int simple_open(struct inode *inode, struct file *file)
674 {
675 if (inode->i_private)
676 file->private_data = inode->i_private;
677 return 0;
678 }
679 EXPORT_SYMBOL(simple_open);
680
681 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
682 {
683 struct inode *inode = d_inode(old_dentry);
684
685 inode_set_mtime_to_ts(dir,
686 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
687 inc_nlink(inode);
688 ihold(inode);
689 dget(dentry);
690 d_instantiate(dentry, inode);
691 return 0;
692 }
693 EXPORT_SYMBOL(simple_link);
694
695 int simple_empty(struct dentry *dentry)
696 {
697 struct dentry *child;
698 int ret = 0;
699
700 spin_lock(&dentry->d_lock);
701 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
702 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
703 if (simple_positive(child)) {
704 spin_unlock(&child->d_lock);
705 goto out;
706 }
707 spin_unlock(&child->d_lock);
708 }
709 ret = 1;
710 out:
711 spin_unlock(&dentry->d_lock);
712 return ret;
713 }
714 EXPORT_SYMBOL(simple_empty);
715
716 int simple_unlink(struct inode *dir, struct dentry *dentry)
717 {
718 struct inode *inode = d_inode(dentry);
719
720 inode_set_mtime_to_ts(dir,
721 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
722 drop_nlink(inode);
723 dput(dentry);
724 return 0;
725 }
726 EXPORT_SYMBOL(simple_unlink);
727
728 int simple_rmdir(struct inode *dir, struct dentry *dentry)
729 {
730 if (!simple_empty(dentry))
731 return -ENOTEMPTY;
732
733 drop_nlink(d_inode(dentry));
734 simple_unlink(dir, dentry);
735 drop_nlink(dir);
736 return 0;
737 }
738 EXPORT_SYMBOL(simple_rmdir);
739
740 /**
741 * simple_rename_timestamp - update the various inode timestamps for rename
742 * @old_dir: old parent directory
743 * @old_dentry: dentry that is being renamed
744 * @new_dir: new parent directory
745 * @new_dentry: target for rename
746 *
747 * POSIX mandates that the old and new parent directories have their ctime and
748 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
749 * their ctime updated.
750 */
751 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
752 struct inode *new_dir, struct dentry *new_dentry)
753 {
754 struct inode *newino = d_inode(new_dentry);
755
756 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
757 if (new_dir != old_dir)
758 inode_set_mtime_to_ts(new_dir,
759 inode_set_ctime_current(new_dir));
760 inode_set_ctime_current(d_inode(old_dentry));
761 if (newino)
762 inode_set_ctime_current(newino);
763 }
764 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
765
766 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
767 struct inode *new_dir, struct dentry *new_dentry)
768 {
769 bool old_is_dir = d_is_dir(old_dentry);
770 bool new_is_dir = d_is_dir(new_dentry);
771
772 if (old_dir != new_dir && old_is_dir != new_is_dir) {
773 if (old_is_dir) {
774 drop_nlink(old_dir);
775 inc_nlink(new_dir);
776 } else {
777 drop_nlink(new_dir);
778 inc_nlink(old_dir);
779 }
780 }
781 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(simple_rename_exchange);
785
786 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
787 struct dentry *old_dentry, struct inode *new_dir,
788 struct dentry *new_dentry, unsigned int flags)
789 {
790 int they_are_dirs = d_is_dir(old_dentry);
791
792 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
793 return -EINVAL;
794
795 if (flags & RENAME_EXCHANGE)
796 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
797
798 if (!simple_empty(new_dentry))
799 return -ENOTEMPTY;
800
801 if (d_really_is_positive(new_dentry)) {
802 simple_unlink(new_dir, new_dentry);
803 if (they_are_dirs) {
804 drop_nlink(d_inode(new_dentry));
805 drop_nlink(old_dir);
806 }
807 } else if (they_are_dirs) {
808 drop_nlink(old_dir);
809 inc_nlink(new_dir);
810 }
811
812 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
813 return 0;
814 }
815 EXPORT_SYMBOL(simple_rename);
816
817 /**
818 * simple_setattr - setattr for simple filesystem
819 * @idmap: idmap of the target mount
820 * @dentry: dentry
821 * @iattr: iattr structure
822 *
823 * Returns 0 on success, -error on failure.
824 *
825 * simple_setattr is a simple ->setattr implementation without a proper
826 * implementation of size changes.
827 *
828 * It can either be used for in-memory filesystems or special files
829 * on simple regular filesystems. Anything that needs to change on-disk
830 * or wire state on size changes needs its own setattr method.
831 */
832 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
833 struct iattr *iattr)
834 {
835 struct inode *inode = d_inode(dentry);
836 int error;
837
838 error = setattr_prepare(idmap, dentry, iattr);
839 if (error)
840 return error;
841
842 if (iattr->ia_valid & ATTR_SIZE)
843 truncate_setsize(inode, iattr->ia_size);
844 setattr_copy(idmap, inode, iattr);
845 mark_inode_dirty(inode);
846 return 0;
847 }
848 EXPORT_SYMBOL(simple_setattr);
849
850 static int simple_read_folio(struct file *file, struct folio *folio)
851 {
852 folio_zero_range(folio, 0, folio_size(folio));
853 flush_dcache_folio(folio);
854 folio_mark_uptodate(folio);
855 folio_unlock(folio);
856 return 0;
857 }
858
859 int simple_write_begin(struct file *file, struct address_space *mapping,
860 loff_t pos, unsigned len,
861 struct page **pagep, void **fsdata)
862 {
863 struct folio *folio;
864
865 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
866 mapping_gfp_mask(mapping));
867 if (IS_ERR(folio))
868 return PTR_ERR(folio);
869
870 *pagep = &folio->page;
871
872 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
873 size_t from = offset_in_folio(folio, pos);
874
875 folio_zero_segments(folio, 0, from,
876 from + len, folio_size(folio));
877 }
878 return 0;
879 }
880 EXPORT_SYMBOL(simple_write_begin);
881
882 /**
883 * simple_write_end - .write_end helper for non-block-device FSes
884 * @file: See .write_end of address_space_operations
885 * @mapping: "
886 * @pos: "
887 * @len: "
888 * @copied: "
889 * @page: "
890 * @fsdata: "
891 *
892 * simple_write_end does the minimum needed for updating a page after writing is
893 * done. It has the same API signature as the .write_end of
894 * address_space_operations vector. So it can just be set onto .write_end for
895 * FSes that don't need any other processing. i_mutex is assumed to be held.
896 * Block based filesystems should use generic_write_end().
897 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
898 * is not called, so a filesystem that actually does store data in .write_inode
899 * should extend on what's done here with a call to mark_inode_dirty() in the
900 * case that i_size has changed.
901 *
902 * Use *ONLY* with simple_read_folio()
903 */
904 static int simple_write_end(struct file *file, struct address_space *mapping,
905 loff_t pos, unsigned len, unsigned copied,
906 struct page *page, void *fsdata)
907 {
908 struct folio *folio = page_folio(page);
909 struct inode *inode = folio->mapping->host;
910 loff_t last_pos = pos + copied;
911
912 /* zero the stale part of the folio if we did a short copy */
913 if (!folio_test_uptodate(folio)) {
914 if (copied < len) {
915 size_t from = offset_in_folio(folio, pos);
916
917 folio_zero_range(folio, from + copied, len - copied);
918 }
919 folio_mark_uptodate(folio);
920 }
921 /*
922 * No need to use i_size_read() here, the i_size
923 * cannot change under us because we hold the i_mutex.
924 */
925 if (last_pos > inode->i_size)
926 i_size_write(inode, last_pos);
927
928 folio_mark_dirty(folio);
929 folio_unlock(folio);
930 folio_put(folio);
931
932 return copied;
933 }
934
935 /*
936 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
937 */
938 const struct address_space_operations ram_aops = {
939 .read_folio = simple_read_folio,
940 .write_begin = simple_write_begin,
941 .write_end = simple_write_end,
942 .dirty_folio = noop_dirty_folio,
943 };
944 EXPORT_SYMBOL(ram_aops);
945
946 /*
947 * the inodes created here are not hashed. If you use iunique to generate
948 * unique inode values later for this filesystem, then you must take care
949 * to pass it an appropriate max_reserved value to avoid collisions.
950 */
951 int simple_fill_super(struct super_block *s, unsigned long magic,
952 const struct tree_descr *files)
953 {
954 struct inode *inode;
955 struct dentry *dentry;
956 int i;
957
958 s->s_blocksize = PAGE_SIZE;
959 s->s_blocksize_bits = PAGE_SHIFT;
960 s->s_magic = magic;
961 s->s_op = &simple_super_operations;
962 s->s_time_gran = 1;
963
964 inode = new_inode(s);
965 if (!inode)
966 return -ENOMEM;
967 /*
968 * because the root inode is 1, the files array must not contain an
969 * entry at index 1
970 */
971 inode->i_ino = 1;
972 inode->i_mode = S_IFDIR | 0755;
973 simple_inode_init_ts(inode);
974 inode->i_op = &simple_dir_inode_operations;
975 inode->i_fop = &simple_dir_operations;
976 set_nlink(inode, 2);
977 s->s_root = d_make_root(inode);
978 if (!s->s_root)
979 return -ENOMEM;
980 for (i = 0; !files->name || files->name[0]; i++, files++) {
981 if (!files->name)
982 continue;
983
984 /* warn if it tries to conflict with the root inode */
985 if (unlikely(i == 1))
986 printk(KERN_WARNING "%s: %s passed in a files array"
987 "with an index of 1!\n", __func__,
988 s->s_type->name);
989
990 dentry = d_alloc_name(s->s_root, files->name);
991 if (!dentry)
992 return -ENOMEM;
993 inode = new_inode(s);
994 if (!inode) {
995 dput(dentry);
996 return -ENOMEM;
997 }
998 inode->i_mode = S_IFREG | files->mode;
999 simple_inode_init_ts(inode);
1000 inode->i_fop = files->ops;
1001 inode->i_ino = i;
1002 d_add(dentry, inode);
1003 }
1004 return 0;
1005 }
1006 EXPORT_SYMBOL(simple_fill_super);
1007
1008 static DEFINE_SPINLOCK(pin_fs_lock);
1009
1010 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1011 {
1012 struct vfsmount *mnt = NULL;
1013 spin_lock(&pin_fs_lock);
1014 if (unlikely(!*mount)) {
1015 spin_unlock(&pin_fs_lock);
1016 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1017 if (IS_ERR(mnt))
1018 return PTR_ERR(mnt);
1019 spin_lock(&pin_fs_lock);
1020 if (!*mount)
1021 *mount = mnt;
1022 }
1023 mntget(*mount);
1024 ++*count;
1025 spin_unlock(&pin_fs_lock);
1026 mntput(mnt);
1027 return 0;
1028 }
1029 EXPORT_SYMBOL(simple_pin_fs);
1030
1031 void simple_release_fs(struct vfsmount **mount, int *count)
1032 {
1033 struct vfsmount *mnt;
1034 spin_lock(&pin_fs_lock);
1035 mnt = *mount;
1036 if (!--*count)
1037 *mount = NULL;
1038 spin_unlock(&pin_fs_lock);
1039 mntput(mnt);
1040 }
1041 EXPORT_SYMBOL(simple_release_fs);
1042
1043 /**
1044 * simple_read_from_buffer - copy data from the buffer to user space
1045 * @to: the user space buffer to read to
1046 * @count: the maximum number of bytes to read
1047 * @ppos: the current position in the buffer
1048 * @from: the buffer to read from
1049 * @available: the size of the buffer
1050 *
1051 * The simple_read_from_buffer() function reads up to @count bytes from the
1052 * buffer @from at offset @ppos into the user space address starting at @to.
1053 *
1054 * On success, the number of bytes read is returned and the offset @ppos is
1055 * advanced by this number, or negative value is returned on error.
1056 **/
1057 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1058 const void *from, size_t available)
1059 {
1060 loff_t pos = *ppos;
1061 size_t ret;
1062
1063 if (pos < 0)
1064 return -EINVAL;
1065 if (pos >= available || !count)
1066 return 0;
1067 if (count > available - pos)
1068 count = available - pos;
1069 ret = copy_to_user(to, from + pos, count);
1070 if (ret == count)
1071 return -EFAULT;
1072 count -= ret;
1073 *ppos = pos + count;
1074 return count;
1075 }
1076 EXPORT_SYMBOL(simple_read_from_buffer);
1077
1078 /**
1079 * simple_write_to_buffer - copy data from user space to the buffer
1080 * @to: the buffer to write to
1081 * @available: the size of the buffer
1082 * @ppos: the current position in the buffer
1083 * @from: the user space buffer to read from
1084 * @count: the maximum number of bytes to read
1085 *
1086 * The simple_write_to_buffer() function reads up to @count bytes from the user
1087 * space address starting at @from into the buffer @to at offset @ppos.
1088 *
1089 * On success, the number of bytes written is returned and the offset @ppos is
1090 * advanced by this number, or negative value is returned on error.
1091 **/
1092 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1093 const void __user *from, size_t count)
1094 {
1095 loff_t pos = *ppos;
1096 size_t res;
1097
1098 if (pos < 0)
1099 return -EINVAL;
1100 if (pos >= available || !count)
1101 return 0;
1102 if (count > available - pos)
1103 count = available - pos;
1104 res = copy_from_user(to + pos, from, count);
1105 if (res == count)
1106 return -EFAULT;
1107 count -= res;
1108 *ppos = pos + count;
1109 return count;
1110 }
1111 EXPORT_SYMBOL(simple_write_to_buffer);
1112
1113 /**
1114 * memory_read_from_buffer - copy data from the buffer
1115 * @to: the kernel space buffer to read to
1116 * @count: the maximum number of bytes to read
1117 * @ppos: the current position in the buffer
1118 * @from: the buffer to read from
1119 * @available: the size of the buffer
1120 *
1121 * The memory_read_from_buffer() function reads up to @count bytes from the
1122 * buffer @from at offset @ppos into the kernel space address starting at @to.
1123 *
1124 * On success, the number of bytes read is returned and the offset @ppos is
1125 * advanced by this number, or negative value is returned on error.
1126 **/
1127 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1128 const void *from, size_t available)
1129 {
1130 loff_t pos = *ppos;
1131
1132 if (pos < 0)
1133 return -EINVAL;
1134 if (pos >= available)
1135 return 0;
1136 if (count > available - pos)
1137 count = available - pos;
1138 memcpy(to, from + pos, count);
1139 *ppos = pos + count;
1140
1141 return count;
1142 }
1143 EXPORT_SYMBOL(memory_read_from_buffer);
1144
1145 /*
1146 * Transaction based IO.
1147 * The file expects a single write which triggers the transaction, and then
1148 * possibly a read which collects the result - which is stored in a
1149 * file-local buffer.
1150 */
1151
1152 void simple_transaction_set(struct file *file, size_t n)
1153 {
1154 struct simple_transaction_argresp *ar = file->private_data;
1155
1156 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1157
1158 /*
1159 * The barrier ensures that ar->size will really remain zero until
1160 * ar->data is ready for reading.
1161 */
1162 smp_mb();
1163 ar->size = n;
1164 }
1165 EXPORT_SYMBOL(simple_transaction_set);
1166
1167 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1168 {
1169 struct simple_transaction_argresp *ar;
1170 static DEFINE_SPINLOCK(simple_transaction_lock);
1171
1172 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1173 return ERR_PTR(-EFBIG);
1174
1175 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1176 if (!ar)
1177 return ERR_PTR(-ENOMEM);
1178
1179 spin_lock(&simple_transaction_lock);
1180
1181 /* only one write allowed per open */
1182 if (file->private_data) {
1183 spin_unlock(&simple_transaction_lock);
1184 free_page((unsigned long)ar);
1185 return ERR_PTR(-EBUSY);
1186 }
1187
1188 file->private_data = ar;
1189
1190 spin_unlock(&simple_transaction_lock);
1191
1192 if (copy_from_user(ar->data, buf, size))
1193 return ERR_PTR(-EFAULT);
1194
1195 return ar->data;
1196 }
1197 EXPORT_SYMBOL(simple_transaction_get);
1198
1199 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1200 {
1201 struct simple_transaction_argresp *ar = file->private_data;
1202
1203 if (!ar)
1204 return 0;
1205 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1206 }
1207 EXPORT_SYMBOL(simple_transaction_read);
1208
1209 int simple_transaction_release(struct inode *inode, struct file *file)
1210 {
1211 free_page((unsigned long)file->private_data);
1212 return 0;
1213 }
1214 EXPORT_SYMBOL(simple_transaction_release);
1215
1216 /* Simple attribute files */
1217
1218 struct simple_attr {
1219 int (*get)(void *, u64 *);
1220 int (*set)(void *, u64);
1221 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1222 char set_buf[24];
1223 void *data;
1224 const char *fmt; /* format for read operation */
1225 struct mutex mutex; /* protects access to these buffers */
1226 };
1227
1228 /* simple_attr_open is called by an actual attribute open file operation
1229 * to set the attribute specific access operations. */
1230 int simple_attr_open(struct inode *inode, struct file *file,
1231 int (*get)(void *, u64 *), int (*set)(void *, u64),
1232 const char *fmt)
1233 {
1234 struct simple_attr *attr;
1235
1236 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1237 if (!attr)
1238 return -ENOMEM;
1239
1240 attr->get = get;
1241 attr->set = set;
1242 attr->data = inode->i_private;
1243 attr->fmt = fmt;
1244 mutex_init(&attr->mutex);
1245
1246 file->private_data = attr;
1247
1248 return nonseekable_open(inode, file);
1249 }
1250 EXPORT_SYMBOL_GPL(simple_attr_open);
1251
1252 int simple_attr_release(struct inode *inode, struct file *file)
1253 {
1254 kfree(file->private_data);
1255 return 0;
1256 }
1257 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1258
1259 /* read from the buffer that is filled with the get function */
1260 ssize_t simple_attr_read(struct file *file, char __user *buf,
1261 size_t len, loff_t *ppos)
1262 {
1263 struct simple_attr *attr;
1264 size_t size;
1265 ssize_t ret;
1266
1267 attr = file->private_data;
1268
1269 if (!attr->get)
1270 return -EACCES;
1271
1272 ret = mutex_lock_interruptible(&attr->mutex);
1273 if (ret)
1274 return ret;
1275
1276 if (*ppos && attr->get_buf[0]) {
1277 /* continued read */
1278 size = strlen(attr->get_buf);
1279 } else {
1280 /* first read */
1281 u64 val;
1282 ret = attr->get(attr->data, &val);
1283 if (ret)
1284 goto out;
1285
1286 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1287 attr->fmt, (unsigned long long)val);
1288 }
1289
1290 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1291 out:
1292 mutex_unlock(&attr->mutex);
1293 return ret;
1294 }
1295 EXPORT_SYMBOL_GPL(simple_attr_read);
1296
1297 /* interpret the buffer as a number to call the set function with */
1298 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1299 size_t len, loff_t *ppos, bool is_signed)
1300 {
1301 struct simple_attr *attr;
1302 unsigned long long val;
1303 size_t size;
1304 ssize_t ret;
1305
1306 attr = file->private_data;
1307 if (!attr->set)
1308 return -EACCES;
1309
1310 ret = mutex_lock_interruptible(&attr->mutex);
1311 if (ret)
1312 return ret;
1313
1314 ret = -EFAULT;
1315 size = min(sizeof(attr->set_buf) - 1, len);
1316 if (copy_from_user(attr->set_buf, buf, size))
1317 goto out;
1318
1319 attr->set_buf[size] = '\0';
1320 if (is_signed)
1321 ret = kstrtoll(attr->set_buf, 0, &val);
1322 else
1323 ret = kstrtoull(attr->set_buf, 0, &val);
1324 if (ret)
1325 goto out;
1326 ret = attr->set(attr->data, val);
1327 if (ret == 0)
1328 ret = len; /* on success, claim we got the whole input */
1329 out:
1330 mutex_unlock(&attr->mutex);
1331 return ret;
1332 }
1333
1334 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1335 size_t len, loff_t *ppos)
1336 {
1337 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1338 }
1339 EXPORT_SYMBOL_GPL(simple_attr_write);
1340
1341 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1342 size_t len, loff_t *ppos)
1343 {
1344 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1345 }
1346 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1347
1348 /**
1349 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1350 * @inode: the object to encode
1351 * @fh: where to store the file handle fragment
1352 * @max_len: maximum length to store there (in 4 byte units)
1353 * @parent: parent directory inode, if wanted
1354 *
1355 * This generic encode_fh function assumes that the 32 inode number
1356 * is suitable for locating an inode, and that the generation number
1357 * can be used to check that it is still valid. It places them in the
1358 * filehandle fragment where export_decode_fh expects to find them.
1359 */
1360 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1361 struct inode *parent)
1362 {
1363 struct fid *fid = (void *)fh;
1364 int len = *max_len;
1365 int type = FILEID_INO32_GEN;
1366
1367 if (parent && (len < 4)) {
1368 *max_len = 4;
1369 return FILEID_INVALID;
1370 } else if (len < 2) {
1371 *max_len = 2;
1372 return FILEID_INVALID;
1373 }
1374
1375 len = 2;
1376 fid->i32.ino = inode->i_ino;
1377 fid->i32.gen = inode->i_generation;
1378 if (parent) {
1379 fid->i32.parent_ino = parent->i_ino;
1380 fid->i32.parent_gen = parent->i_generation;
1381 len = 4;
1382 type = FILEID_INO32_GEN_PARENT;
1383 }
1384 *max_len = len;
1385 return type;
1386 }
1387 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1388
1389 /**
1390 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1391 * @sb: filesystem to do the file handle conversion on
1392 * @fid: file handle to convert
1393 * @fh_len: length of the file handle in bytes
1394 * @fh_type: type of file handle
1395 * @get_inode: filesystem callback to retrieve inode
1396 *
1397 * This function decodes @fid as long as it has one of the well-known
1398 * Linux filehandle types and calls @get_inode on it to retrieve the
1399 * inode for the object specified in the file handle.
1400 */
1401 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1402 int fh_len, int fh_type, struct inode *(*get_inode)
1403 (struct super_block *sb, u64 ino, u32 gen))
1404 {
1405 struct inode *inode = NULL;
1406
1407 if (fh_len < 2)
1408 return NULL;
1409
1410 switch (fh_type) {
1411 case FILEID_INO32_GEN:
1412 case FILEID_INO32_GEN_PARENT:
1413 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1414 break;
1415 }
1416
1417 return d_obtain_alias(inode);
1418 }
1419 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1420
1421 /**
1422 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1423 * @sb: filesystem to do the file handle conversion on
1424 * @fid: file handle to convert
1425 * @fh_len: length of the file handle in bytes
1426 * @fh_type: type of file handle
1427 * @get_inode: filesystem callback to retrieve inode
1428 *
1429 * This function decodes @fid as long as it has one of the well-known
1430 * Linux filehandle types and calls @get_inode on it to retrieve the
1431 * inode for the _parent_ object specified in the file handle if it
1432 * is specified in the file handle, or NULL otherwise.
1433 */
1434 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1435 int fh_len, int fh_type, struct inode *(*get_inode)
1436 (struct super_block *sb, u64 ino, u32 gen))
1437 {
1438 struct inode *inode = NULL;
1439
1440 if (fh_len <= 2)
1441 return NULL;
1442
1443 switch (fh_type) {
1444 case FILEID_INO32_GEN_PARENT:
1445 inode = get_inode(sb, fid->i32.parent_ino,
1446 (fh_len > 3 ? fid->i32.parent_gen : 0));
1447 break;
1448 }
1449
1450 return d_obtain_alias(inode);
1451 }
1452 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1453
1454 /**
1455 * __generic_file_fsync - generic fsync implementation for simple filesystems
1456 *
1457 * @file: file to synchronize
1458 * @start: start offset in bytes
1459 * @end: end offset in bytes (inclusive)
1460 * @datasync: only synchronize essential metadata if true
1461 *
1462 * This is a generic implementation of the fsync method for simple
1463 * filesystems which track all non-inode metadata in the buffers list
1464 * hanging off the address_space structure.
1465 */
1466 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1467 int datasync)
1468 {
1469 struct inode *inode = file->f_mapping->host;
1470 int err;
1471 int ret;
1472
1473 err = file_write_and_wait_range(file, start, end);
1474 if (err)
1475 return err;
1476
1477 inode_lock(inode);
1478 ret = sync_mapping_buffers(inode->i_mapping);
1479 if (!(inode->i_state & I_DIRTY_ALL))
1480 goto out;
1481 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1482 goto out;
1483
1484 err = sync_inode_metadata(inode, 1);
1485 if (ret == 0)
1486 ret = err;
1487
1488 out:
1489 inode_unlock(inode);
1490 /* check and advance again to catch errors after syncing out buffers */
1491 err = file_check_and_advance_wb_err(file);
1492 if (ret == 0)
1493 ret = err;
1494 return ret;
1495 }
1496 EXPORT_SYMBOL(__generic_file_fsync);
1497
1498 /**
1499 * generic_file_fsync - generic fsync implementation for simple filesystems
1500 * with flush
1501 * @file: file to synchronize
1502 * @start: start offset in bytes
1503 * @end: end offset in bytes (inclusive)
1504 * @datasync: only synchronize essential metadata if true
1505 *
1506 */
1507
1508 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1509 int datasync)
1510 {
1511 struct inode *inode = file->f_mapping->host;
1512 int err;
1513
1514 err = __generic_file_fsync(file, start, end, datasync);
1515 if (err)
1516 return err;
1517 return blkdev_issue_flush(inode->i_sb->s_bdev);
1518 }
1519 EXPORT_SYMBOL(generic_file_fsync);
1520
1521 /**
1522 * generic_check_addressable - Check addressability of file system
1523 * @blocksize_bits: log of file system block size
1524 * @num_blocks: number of blocks in file system
1525 *
1526 * Determine whether a file system with @num_blocks blocks (and a
1527 * block size of 2**@blocksize_bits) is addressable by the sector_t
1528 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1529 */
1530 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1531 {
1532 u64 last_fs_block = num_blocks - 1;
1533 u64 last_fs_page =
1534 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1535
1536 if (unlikely(num_blocks == 0))
1537 return 0;
1538
1539 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1540 return -EINVAL;
1541
1542 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1543 (last_fs_page > (pgoff_t)(~0ULL))) {
1544 return -EFBIG;
1545 }
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(generic_check_addressable);
1549
1550 /*
1551 * No-op implementation of ->fsync for in-memory filesystems.
1552 */
1553 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1554 {
1555 return 0;
1556 }
1557 EXPORT_SYMBOL(noop_fsync);
1558
1559 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1560 {
1561 /*
1562 * iomap based filesystems support direct I/O without need for
1563 * this callback. However, it still needs to be set in
1564 * inode->a_ops so that open/fcntl know that direct I/O is
1565 * generally supported.
1566 */
1567 return -EINVAL;
1568 }
1569 EXPORT_SYMBOL_GPL(noop_direct_IO);
1570
1571 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1572 void kfree_link(void *p)
1573 {
1574 kfree(p);
1575 }
1576 EXPORT_SYMBOL(kfree_link);
1577
1578 struct inode *alloc_anon_inode(struct super_block *s)
1579 {
1580 static const struct address_space_operations anon_aops = {
1581 .dirty_folio = noop_dirty_folio,
1582 };
1583 struct inode *inode = new_inode_pseudo(s);
1584
1585 if (!inode)
1586 return ERR_PTR(-ENOMEM);
1587
1588 inode->i_ino = get_next_ino();
1589 inode->i_mapping->a_ops = &anon_aops;
1590
1591 /*
1592 * Mark the inode dirty from the very beginning,
1593 * that way it will never be moved to the dirty
1594 * list because mark_inode_dirty() will think
1595 * that it already _is_ on the dirty list.
1596 */
1597 inode->i_state = I_DIRTY;
1598 inode->i_mode = S_IRUSR | S_IWUSR;
1599 inode->i_uid = current_fsuid();
1600 inode->i_gid = current_fsgid();
1601 inode->i_flags |= S_PRIVATE;
1602 simple_inode_init_ts(inode);
1603 return inode;
1604 }
1605 EXPORT_SYMBOL(alloc_anon_inode);
1606
1607 /**
1608 * simple_nosetlease - generic helper for prohibiting leases
1609 * @filp: file pointer
1610 * @arg: type of lease to obtain
1611 * @flp: new lease supplied for insertion
1612 * @priv: private data for lm_setup operation
1613 *
1614 * Generic helper for filesystems that do not wish to allow leases to be set.
1615 * All arguments are ignored and it just returns -EINVAL.
1616 */
1617 int
1618 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1619 void **priv)
1620 {
1621 return -EINVAL;
1622 }
1623 EXPORT_SYMBOL(simple_nosetlease);
1624
1625 /**
1626 * simple_get_link - generic helper to get the target of "fast" symlinks
1627 * @dentry: not used here
1628 * @inode: the symlink inode
1629 * @done: not used here
1630 *
1631 * Generic helper for filesystems to use for symlink inodes where a pointer to
1632 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1633 * since as an optimization the path lookup code uses any non-NULL ->i_link
1634 * directly, without calling ->get_link(). But ->get_link() still must be set,
1635 * to mark the inode_operations as being for a symlink.
1636 *
1637 * Return: the symlink target
1638 */
1639 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1640 struct delayed_call *done)
1641 {
1642 return inode->i_link;
1643 }
1644 EXPORT_SYMBOL(simple_get_link);
1645
1646 const struct inode_operations simple_symlink_inode_operations = {
1647 .get_link = simple_get_link,
1648 };
1649 EXPORT_SYMBOL(simple_symlink_inode_operations);
1650
1651 /*
1652 * Operations for a permanently empty directory.
1653 */
1654 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1655 {
1656 return ERR_PTR(-ENOENT);
1657 }
1658
1659 static int empty_dir_getattr(struct mnt_idmap *idmap,
1660 const struct path *path, struct kstat *stat,
1661 u32 request_mask, unsigned int query_flags)
1662 {
1663 struct inode *inode = d_inode(path->dentry);
1664 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1665 return 0;
1666 }
1667
1668 static int empty_dir_setattr(struct mnt_idmap *idmap,
1669 struct dentry *dentry, struct iattr *attr)
1670 {
1671 return -EPERM;
1672 }
1673
1674 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1675 {
1676 return -EOPNOTSUPP;
1677 }
1678
1679 static const struct inode_operations empty_dir_inode_operations = {
1680 .lookup = empty_dir_lookup,
1681 .permission = generic_permission,
1682 .setattr = empty_dir_setattr,
1683 .getattr = empty_dir_getattr,
1684 .listxattr = empty_dir_listxattr,
1685 };
1686
1687 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1688 {
1689 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1690 return generic_file_llseek_size(file, offset, whence, 2, 2);
1691 }
1692
1693 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1694 {
1695 dir_emit_dots(file, ctx);
1696 return 0;
1697 }
1698
1699 static const struct file_operations empty_dir_operations = {
1700 .llseek = empty_dir_llseek,
1701 .read = generic_read_dir,
1702 .iterate_shared = empty_dir_readdir,
1703 .fsync = noop_fsync,
1704 };
1705
1706
1707 void make_empty_dir_inode(struct inode *inode)
1708 {
1709 set_nlink(inode, 2);
1710 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1711 inode->i_uid = GLOBAL_ROOT_UID;
1712 inode->i_gid = GLOBAL_ROOT_GID;
1713 inode->i_rdev = 0;
1714 inode->i_size = 0;
1715 inode->i_blkbits = PAGE_SHIFT;
1716 inode->i_blocks = 0;
1717
1718 inode->i_op = &empty_dir_inode_operations;
1719 inode->i_opflags &= ~IOP_XATTR;
1720 inode->i_fop = &empty_dir_operations;
1721 }
1722
1723 bool is_empty_dir_inode(struct inode *inode)
1724 {
1725 return (inode->i_fop == &empty_dir_operations) &&
1726 (inode->i_op == &empty_dir_inode_operations);
1727 }
1728
1729 #if IS_ENABLED(CONFIG_UNICODE)
1730 /**
1731 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1732 * @dentry: dentry whose name we are checking against
1733 * @len: len of name of dentry
1734 * @str: str pointer to name of dentry
1735 * @name: Name to compare against
1736 *
1737 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1738 */
1739 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1740 const char *str, const struct qstr *name)
1741 {
1742 const struct dentry *parent;
1743 const struct inode *dir;
1744 char strbuf[DNAME_INLINE_LEN];
1745 struct qstr qstr;
1746
1747 /*
1748 * Attempt a case-sensitive match first. It is cheaper and
1749 * should cover most lookups, including all the sane
1750 * applications that expect a case-sensitive filesystem.
1751 *
1752 * This comparison is safe under RCU because the caller
1753 * guarantees the consistency between str and len. See
1754 * __d_lookup_rcu_op_compare() for details.
1755 */
1756 if (len == name->len && !memcmp(str, name->name, len))
1757 return 0;
1758
1759 parent = READ_ONCE(dentry->d_parent);
1760 dir = READ_ONCE(parent->d_inode);
1761 if (!dir || !IS_CASEFOLDED(dir))
1762 return 1;
1763
1764 /*
1765 * If the dentry name is stored in-line, then it may be concurrently
1766 * modified by a rename. If this happens, the VFS will eventually retry
1767 * the lookup, so it doesn't matter what ->d_compare() returns.
1768 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1769 * string. Therefore, we have to copy the name into a temporary buffer.
1770 */
1771 if (len <= DNAME_INLINE_LEN - 1) {
1772 memcpy(strbuf, str, len);
1773 strbuf[len] = 0;
1774 str = strbuf;
1775 /* prevent compiler from optimizing out the temporary buffer */
1776 barrier();
1777 }
1778 qstr.len = len;
1779 qstr.name = str;
1780
1781 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1782 }
1783
1784 /**
1785 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1786 * @dentry: dentry of the parent directory
1787 * @str: qstr of name whose hash we should fill in
1788 *
1789 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1790 */
1791 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1792 {
1793 const struct inode *dir = READ_ONCE(dentry->d_inode);
1794 struct super_block *sb = dentry->d_sb;
1795 const struct unicode_map *um = sb->s_encoding;
1796 int ret;
1797
1798 if (!dir || !IS_CASEFOLDED(dir))
1799 return 0;
1800
1801 ret = utf8_casefold_hash(um, dentry, str);
1802 if (ret < 0 && sb_has_strict_encoding(sb))
1803 return -EINVAL;
1804 return 0;
1805 }
1806
1807 static const struct dentry_operations generic_ci_dentry_ops = {
1808 .d_hash = generic_ci_d_hash,
1809 .d_compare = generic_ci_d_compare,
1810 #ifdef CONFIG_FS_ENCRYPTION
1811 .d_revalidate = fscrypt_d_revalidate,
1812 #endif
1813 };
1814 #endif
1815
1816 #ifdef CONFIG_FS_ENCRYPTION
1817 static const struct dentry_operations generic_encrypted_dentry_ops = {
1818 .d_revalidate = fscrypt_d_revalidate,
1819 };
1820 #endif
1821
1822 /**
1823 * generic_set_sb_d_ops - helper for choosing the set of
1824 * filesystem-wide dentry operations for the enabled features
1825 * @sb: superblock to be configured
1826 *
1827 * Filesystems supporting casefolding and/or fscrypt can call this
1828 * helper at mount-time to configure sb->s_d_op to best set of dentry
1829 * operations required for the enabled features. The helper must be
1830 * called after these have been configured, but before the root dentry
1831 * is created.
1832 */
1833 void generic_set_sb_d_ops(struct super_block *sb)
1834 {
1835 #if IS_ENABLED(CONFIG_UNICODE)
1836 if (sb->s_encoding) {
1837 sb->s_d_op = &generic_ci_dentry_ops;
1838 return;
1839 }
1840 #endif
1841 #ifdef CONFIG_FS_ENCRYPTION
1842 if (sb->s_cop) {
1843 sb->s_d_op = &generic_encrypted_dentry_ops;
1844 return;
1845 }
1846 #endif
1847 }
1848 EXPORT_SYMBOL(generic_set_sb_d_ops);
1849
1850 /**
1851 * inode_maybe_inc_iversion - increments i_version
1852 * @inode: inode with the i_version that should be updated
1853 * @force: increment the counter even if it's not necessary?
1854 *
1855 * Every time the inode is modified, the i_version field must be seen to have
1856 * changed by any observer.
1857 *
1858 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1859 * the value, and clear the queried flag.
1860 *
1861 * In the common case where neither is set, then we can return "false" without
1862 * updating i_version.
1863 *
1864 * If this function returns false, and no other metadata has changed, then we
1865 * can avoid logging the metadata.
1866 */
1867 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1868 {
1869 u64 cur, new;
1870
1871 /*
1872 * The i_version field is not strictly ordered with any other inode
1873 * information, but the legacy inode_inc_iversion code used a spinlock
1874 * to serialize increments.
1875 *
1876 * Here, we add full memory barriers to ensure that any de-facto
1877 * ordering with other info is preserved.
1878 *
1879 * This barrier pairs with the barrier in inode_query_iversion()
1880 */
1881 smp_mb();
1882 cur = inode_peek_iversion_raw(inode);
1883 do {
1884 /* If flag is clear then we needn't do anything */
1885 if (!force && !(cur & I_VERSION_QUERIED))
1886 return false;
1887
1888 /* Since lowest bit is flag, add 2 to avoid it */
1889 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1890 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1891 return true;
1892 }
1893 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1894
1895 /**
1896 * inode_query_iversion - read i_version for later use
1897 * @inode: inode from which i_version should be read
1898 *
1899 * Read the inode i_version counter. This should be used by callers that wish
1900 * to store the returned i_version for later comparison. This will guarantee
1901 * that a later query of the i_version will result in a different value if
1902 * anything has changed.
1903 *
1904 * In this implementation, we fetch the current value, set the QUERIED flag and
1905 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1906 * that fails, we try again with the newly fetched value from the cmpxchg.
1907 */
1908 u64 inode_query_iversion(struct inode *inode)
1909 {
1910 u64 cur, new;
1911
1912 cur = inode_peek_iversion_raw(inode);
1913 do {
1914 /* If flag is already set, then no need to swap */
1915 if (cur & I_VERSION_QUERIED) {
1916 /*
1917 * This barrier (and the implicit barrier in the
1918 * cmpxchg below) pairs with the barrier in
1919 * inode_maybe_inc_iversion().
1920 */
1921 smp_mb();
1922 break;
1923 }
1924
1925 new = cur | I_VERSION_QUERIED;
1926 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1927 return cur >> I_VERSION_QUERIED_SHIFT;
1928 }
1929 EXPORT_SYMBOL(inode_query_iversion);
1930
1931 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1932 ssize_t direct_written, ssize_t buffered_written)
1933 {
1934 struct address_space *mapping = iocb->ki_filp->f_mapping;
1935 loff_t pos = iocb->ki_pos - buffered_written;
1936 loff_t end = iocb->ki_pos - 1;
1937 int err;
1938
1939 /*
1940 * If the buffered write fallback returned an error, we want to return
1941 * the number of bytes which were written by direct I/O, or the error
1942 * code if that was zero.
1943 *
1944 * Note that this differs from normal direct-io semantics, which will
1945 * return -EFOO even if some bytes were written.
1946 */
1947 if (unlikely(buffered_written < 0)) {
1948 if (direct_written)
1949 return direct_written;
1950 return buffered_written;
1951 }
1952
1953 /*
1954 * We need to ensure that the page cache pages are written to disk and
1955 * invalidated to preserve the expected O_DIRECT semantics.
1956 */
1957 err = filemap_write_and_wait_range(mapping, pos, end);
1958 if (err < 0) {
1959 /*
1960 * We don't know how much we wrote, so just return the number of
1961 * bytes which were direct-written
1962 */
1963 iocb->ki_pos -= buffered_written;
1964 if (direct_written)
1965 return direct_written;
1966 return err;
1967 }
1968 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1969 return direct_written + buffered_written;
1970 }
1971 EXPORT_SYMBOL_GPL(direct_write_fallback);
1972
1973 /**
1974 * simple_inode_init_ts - initialize the timestamps for a new inode
1975 * @inode: inode to be initialized
1976 *
1977 * When a new inode is created, most filesystems set the timestamps to the
1978 * current time. Add a helper to do this.
1979 */
1980 struct timespec64 simple_inode_init_ts(struct inode *inode)
1981 {
1982 struct timespec64 ts = inode_set_ctime_current(inode);
1983
1984 inode_set_atime_to_ts(inode, ts);
1985 inode_set_mtime_to_ts(inode, ts);
1986 return ts;
1987 }
1988 EXPORT_SYMBOL(simple_inode_init_ts);
1989
1990 static inline struct dentry *get_stashed_dentry(struct dentry *stashed)
1991 {
1992 struct dentry *dentry;
1993
1994 guard(rcu)();
1995 dentry = READ_ONCE(stashed);
1996 if (!dentry)
1997 return NULL;
1998 if (!lockref_get_not_dead(&dentry->d_lockref))
1999 return NULL;
2000 return dentry;
2001 }
2002
2003 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2004 unsigned long ino,
2005 struct super_block *sb,
2006 void *data)
2007 {
2008 struct dentry *dentry;
2009 struct inode *inode;
2010 const struct stashed_operations *sops = sb->s_fs_info;
2011
2012 dentry = d_alloc_anon(sb);
2013 if (!dentry)
2014 return ERR_PTR(-ENOMEM);
2015
2016 inode = new_inode_pseudo(sb);
2017 if (!inode) {
2018 dput(dentry);
2019 return ERR_PTR(-ENOMEM);
2020 }
2021
2022 inode->i_ino = ino;
2023 inode->i_flags |= S_IMMUTABLE;
2024 inode->i_mode = S_IFREG;
2025 simple_inode_init_ts(inode);
2026 sops->init_inode(inode, data);
2027
2028 /* Notice when this is changed. */
2029 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2030 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2031
2032 /* Store address of location where dentry's supposed to be stashed. */
2033 dentry->d_fsdata = stashed;
2034
2035 /* @data is now owned by the fs */
2036 d_instantiate(dentry, inode);
2037 return dentry;
2038 }
2039
2040 static struct dentry *stash_dentry(struct dentry **stashed,
2041 struct dentry *dentry)
2042 {
2043 guard(rcu)();
2044 for (;;) {
2045 struct dentry *old;
2046
2047 /* Assume any old dentry was cleared out. */
2048 old = cmpxchg(stashed, NULL, dentry);
2049 if (likely(!old))
2050 return dentry;
2051
2052 /* Check if somebody else installed a reusable dentry. */
2053 if (lockref_get_not_dead(&old->d_lockref))
2054 return old;
2055
2056 /* There's an old dead dentry there, try to take it over. */
2057 if (likely(try_cmpxchg(stashed, &old, dentry)))
2058 return dentry;
2059 }
2060 }
2061
2062 /**
2063 * path_from_stashed - create path from stashed or new dentry
2064 * @stashed: where to retrieve or stash dentry
2065 * @ino: inode number to use
2066 * @mnt: mnt of the filesystems to use
2067 * @data: data to store in inode->i_private
2068 * @path: path to create
2069 *
2070 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2071 * is still valid then it will be reused. If the dentry isn't able the function
2072 * will allocate a new dentry and inode. It will then check again whether it
2073 * can reuse an existing dentry in case one has been added in the meantime or
2074 * update @stashed with the newly added dentry.
2075 *
2076 * Special-purpose helper for nsfs and pidfs.
2077 *
2078 * Return: On success zero and on failure a negative error is returned.
2079 */
2080 int path_from_stashed(struct dentry **stashed, unsigned long ino,
2081 struct vfsmount *mnt, void *data, struct path *path)
2082 {
2083 struct dentry *dentry;
2084 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2085
2086 /* See if dentry can be reused. */
2087 path->dentry = get_stashed_dentry(*stashed);
2088 if (path->dentry) {
2089 sops->put_data(data);
2090 goto out_path;
2091 }
2092
2093 /* Allocate a new dentry. */
2094 dentry = prepare_anon_dentry(stashed, ino, mnt->mnt_sb, data);
2095 if (IS_ERR(dentry)) {
2096 sops->put_data(data);
2097 return PTR_ERR(dentry);
2098 }
2099
2100 /* Added a new dentry. @data is now owned by the filesystem. */
2101 path->dentry = stash_dentry(stashed, dentry);
2102 if (path->dentry != dentry)
2103 dput(dentry);
2104
2105 out_path:
2106 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2107 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2108 path->mnt = mntget(mnt);
2109 return 0;
2110 }
2111
2112 void stashed_dentry_prune(struct dentry *dentry)
2113 {
2114 struct dentry **stashed = dentry->d_fsdata;
2115 struct inode *inode = d_inode(dentry);
2116
2117 if (WARN_ON_ONCE(!stashed))
2118 return;
2119
2120 if (!inode)
2121 return;
2122
2123 /*
2124 * Only replace our own @dentry as someone else might've
2125 * already cleared out @dentry and stashed their own
2126 * dentry in there.
2127 */
2128 cmpxchg(stashed, dentry, NULL);
2129 }