]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/mpage.c
net: rds: force to destroy connection if t_sock is NULL in rds_tcp_kill_sock().
[people/arne_f/kernel.git] / fs / mpage.c
1 /*
2 * fs/mpage.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
8 *
9 * 15May2002 Andrew Morton
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33
34 /*
35 * I/O completion handler for multipage BIOs.
36 *
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_page().
40 *
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
45 */
46 static void mpage_end_io(struct bio *bio)
47 {
48 struct bio_vec *bv;
49 int i;
50
51 bio_for_each_segment_all(bv, bio, i) {
52 struct page *page = bv->bv_page;
53 page_endio(page, op_is_write(bio_op(bio)), bio->bi_error);
54 }
55
56 bio_put(bio);
57 }
58
59 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
60 {
61 bio->bi_end_io = mpage_end_io;
62 bio_set_op_attrs(bio, op, op_flags);
63 guard_bio_eod(op, bio);
64 submit_bio(bio);
65 return NULL;
66 }
67
68 static struct bio *
69 mpage_alloc(struct block_device *bdev,
70 sector_t first_sector, int nr_vecs,
71 gfp_t gfp_flags)
72 {
73 struct bio *bio;
74
75 /* Restrict the given (page cache) mask for slab allocations */
76 gfp_flags &= GFP_KERNEL;
77 bio = bio_alloc(gfp_flags, nr_vecs);
78
79 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
80 while (!bio && (nr_vecs /= 2))
81 bio = bio_alloc(gfp_flags, nr_vecs);
82 }
83
84 if (bio) {
85 bio->bi_bdev = bdev;
86 bio->bi_iter.bi_sector = first_sector;
87 }
88 return bio;
89 }
90
91 /*
92 * support function for mpage_readpages. The fs supplied get_block might
93 * return an up to date buffer. This is used to map that buffer into
94 * the page, which allows readpage to avoid triggering a duplicate call
95 * to get_block.
96 *
97 * The idea is to avoid adding buffers to pages that don't already have
98 * them. So when the buffer is up to date and the page size == block size,
99 * this marks the page up to date instead of adding new buffers.
100 */
101 static void
102 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
103 {
104 struct inode *inode = page->mapping->host;
105 struct buffer_head *page_bh, *head;
106 int block = 0;
107
108 if (!page_has_buffers(page)) {
109 /*
110 * don't make any buffers if there is only one buffer on
111 * the page and the page just needs to be set up to date
112 */
113 if (inode->i_blkbits == PAGE_SHIFT &&
114 buffer_uptodate(bh)) {
115 SetPageUptodate(page);
116 return;
117 }
118 create_empty_buffers(page, i_blocksize(inode), 0);
119 }
120 head = page_buffers(page);
121 page_bh = head;
122 do {
123 if (block == page_block) {
124 page_bh->b_state = bh->b_state;
125 page_bh->b_bdev = bh->b_bdev;
126 page_bh->b_blocknr = bh->b_blocknr;
127 break;
128 }
129 page_bh = page_bh->b_this_page;
130 block++;
131 } while (page_bh != head);
132 }
133
134 /*
135 * This is the worker routine which does all the work of mapping the disk
136 * blocks and constructs largest possible bios, submits them for IO if the
137 * blocks are not contiguous on the disk.
138 *
139 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
140 * represent the validity of its disk mapping and to decide when to do the next
141 * get_block() call.
142 */
143 static struct bio *
144 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
145 sector_t *last_block_in_bio, struct buffer_head *map_bh,
146 unsigned long *first_logical_block, get_block_t get_block,
147 gfp_t gfp)
148 {
149 struct inode *inode = page->mapping->host;
150 const unsigned blkbits = inode->i_blkbits;
151 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
152 const unsigned blocksize = 1 << blkbits;
153 sector_t block_in_file;
154 sector_t last_block;
155 sector_t last_block_in_file;
156 sector_t blocks[MAX_BUF_PER_PAGE];
157 unsigned page_block;
158 unsigned first_hole = blocks_per_page;
159 struct block_device *bdev = NULL;
160 int length;
161 int fully_mapped = 1;
162 unsigned nblocks;
163 unsigned relative_block;
164
165 if (page_has_buffers(page))
166 goto confused;
167
168 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
169 last_block = block_in_file + nr_pages * blocks_per_page;
170 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
171 if (last_block > last_block_in_file)
172 last_block = last_block_in_file;
173 page_block = 0;
174
175 /*
176 * Map blocks using the result from the previous get_blocks call first.
177 */
178 nblocks = map_bh->b_size >> blkbits;
179 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
180 block_in_file < (*first_logical_block + nblocks)) {
181 unsigned map_offset = block_in_file - *first_logical_block;
182 unsigned last = nblocks - map_offset;
183
184 for (relative_block = 0; ; relative_block++) {
185 if (relative_block == last) {
186 clear_buffer_mapped(map_bh);
187 break;
188 }
189 if (page_block == blocks_per_page)
190 break;
191 blocks[page_block] = map_bh->b_blocknr + map_offset +
192 relative_block;
193 page_block++;
194 block_in_file++;
195 }
196 bdev = map_bh->b_bdev;
197 }
198
199 /*
200 * Then do more get_blocks calls until we are done with this page.
201 */
202 map_bh->b_page = page;
203 while (page_block < blocks_per_page) {
204 map_bh->b_state = 0;
205 map_bh->b_size = 0;
206
207 if (block_in_file < last_block) {
208 map_bh->b_size = (last_block-block_in_file) << blkbits;
209 if (get_block(inode, block_in_file, map_bh, 0))
210 goto confused;
211 *first_logical_block = block_in_file;
212 }
213
214 if (!buffer_mapped(map_bh)) {
215 fully_mapped = 0;
216 if (first_hole == blocks_per_page)
217 first_hole = page_block;
218 page_block++;
219 block_in_file++;
220 continue;
221 }
222
223 /* some filesystems will copy data into the page during
224 * the get_block call, in which case we don't want to
225 * read it again. map_buffer_to_page copies the data
226 * we just collected from get_block into the page's buffers
227 * so readpage doesn't have to repeat the get_block call
228 */
229 if (buffer_uptodate(map_bh)) {
230 map_buffer_to_page(page, map_bh, page_block);
231 goto confused;
232 }
233
234 if (first_hole != blocks_per_page)
235 goto confused; /* hole -> non-hole */
236
237 /* Contiguous blocks? */
238 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
239 goto confused;
240 nblocks = map_bh->b_size >> blkbits;
241 for (relative_block = 0; ; relative_block++) {
242 if (relative_block == nblocks) {
243 clear_buffer_mapped(map_bh);
244 break;
245 } else if (page_block == blocks_per_page)
246 break;
247 blocks[page_block] = map_bh->b_blocknr+relative_block;
248 page_block++;
249 block_in_file++;
250 }
251 bdev = map_bh->b_bdev;
252 }
253
254 if (first_hole != blocks_per_page) {
255 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
256 if (first_hole == 0) {
257 SetPageUptodate(page);
258 unlock_page(page);
259 goto out;
260 }
261 } else if (fully_mapped) {
262 SetPageMappedToDisk(page);
263 }
264
265 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
266 cleancache_get_page(page) == 0) {
267 SetPageUptodate(page);
268 goto confused;
269 }
270
271 /*
272 * This page will go to BIO. Do we need to send this BIO off first?
273 */
274 if (bio && (*last_block_in_bio != blocks[0] - 1))
275 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
276
277 alloc_new:
278 if (bio == NULL) {
279 if (first_hole == blocks_per_page) {
280 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
281 page))
282 goto out;
283 }
284 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
285 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
286 if (bio == NULL)
287 goto confused;
288 }
289
290 length = first_hole << blkbits;
291 if (bio_add_page(bio, page, length, 0) < length) {
292 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
293 goto alloc_new;
294 }
295
296 relative_block = block_in_file - *first_logical_block;
297 nblocks = map_bh->b_size >> blkbits;
298 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
299 (first_hole != blocks_per_page))
300 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
301 else
302 *last_block_in_bio = blocks[blocks_per_page - 1];
303 out:
304 return bio;
305
306 confused:
307 if (bio)
308 bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
309 if (!PageUptodate(page))
310 block_read_full_page(page, get_block);
311 else
312 unlock_page(page);
313 goto out;
314 }
315
316 /**
317 * mpage_readpages - populate an address space with some pages & start reads against them
318 * @mapping: the address_space
319 * @pages: The address of a list_head which contains the target pages. These
320 * pages have their ->index populated and are otherwise uninitialised.
321 * The page at @pages->prev has the lowest file offset, and reads should be
322 * issued in @pages->prev to @pages->next order.
323 * @nr_pages: The number of pages at *@pages
324 * @get_block: The filesystem's block mapper function.
325 *
326 * This function walks the pages and the blocks within each page, building and
327 * emitting large BIOs.
328 *
329 * If anything unusual happens, such as:
330 *
331 * - encountering a page which has buffers
332 * - encountering a page which has a non-hole after a hole
333 * - encountering a page with non-contiguous blocks
334 *
335 * then this code just gives up and calls the buffer_head-based read function.
336 * It does handle a page which has holes at the end - that is a common case:
337 * the end-of-file on blocksize < PAGE_SIZE setups.
338 *
339 * BH_Boundary explanation:
340 *
341 * There is a problem. The mpage read code assembles several pages, gets all
342 * their disk mappings, and then submits them all. That's fine, but obtaining
343 * the disk mappings may require I/O. Reads of indirect blocks, for example.
344 *
345 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
346 * submitted in the following order:
347 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
348 *
349 * because the indirect block has to be read to get the mappings of blocks
350 * 13,14,15,16. Obviously, this impacts performance.
351 *
352 * So what we do it to allow the filesystem's get_block() function to set
353 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
354 * after this one will require I/O against a block which is probably close to
355 * this one. So you should push what I/O you have currently accumulated.
356 *
357 * This all causes the disk requests to be issued in the correct order.
358 */
359 int
360 mpage_readpages(struct address_space *mapping, struct list_head *pages,
361 unsigned nr_pages, get_block_t get_block)
362 {
363 struct bio *bio = NULL;
364 unsigned page_idx;
365 sector_t last_block_in_bio = 0;
366 struct buffer_head map_bh;
367 unsigned long first_logical_block = 0;
368 gfp_t gfp = readahead_gfp_mask(mapping);
369
370 map_bh.b_state = 0;
371 map_bh.b_size = 0;
372 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
373 struct page *page = lru_to_page(pages);
374
375 prefetchw(&page->flags);
376 list_del(&page->lru);
377 if (!add_to_page_cache_lru(page, mapping,
378 page->index,
379 gfp)) {
380 bio = do_mpage_readpage(bio, page,
381 nr_pages - page_idx,
382 &last_block_in_bio, &map_bh,
383 &first_logical_block,
384 get_block, gfp);
385 }
386 put_page(page);
387 }
388 BUG_ON(!list_empty(pages));
389 if (bio)
390 mpage_bio_submit(REQ_OP_READ, 0, bio);
391 return 0;
392 }
393 EXPORT_SYMBOL(mpage_readpages);
394
395 /*
396 * This isn't called much at all
397 */
398 int mpage_readpage(struct page *page, get_block_t get_block)
399 {
400 struct bio *bio = NULL;
401 sector_t last_block_in_bio = 0;
402 struct buffer_head map_bh;
403 unsigned long first_logical_block = 0;
404 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
405
406 map_bh.b_state = 0;
407 map_bh.b_size = 0;
408 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
409 &map_bh, &first_logical_block, get_block, gfp);
410 if (bio)
411 mpage_bio_submit(REQ_OP_READ, 0, bio);
412 return 0;
413 }
414 EXPORT_SYMBOL(mpage_readpage);
415
416 /*
417 * Writing is not so simple.
418 *
419 * If the page has buffers then they will be used for obtaining the disk
420 * mapping. We only support pages which are fully mapped-and-dirty, with a
421 * special case for pages which are unmapped at the end: end-of-file.
422 *
423 * If the page has no buffers (preferred) then the page is mapped here.
424 *
425 * If all blocks are found to be contiguous then the page can go into the
426 * BIO. Otherwise fall back to the mapping's writepage().
427 *
428 * FIXME: This code wants an estimate of how many pages are still to be
429 * written, so it can intelligently allocate a suitably-sized BIO. For now,
430 * just allocate full-size (16-page) BIOs.
431 */
432
433 struct mpage_data {
434 struct bio *bio;
435 sector_t last_block_in_bio;
436 get_block_t *get_block;
437 unsigned use_writepage;
438 };
439
440 /*
441 * We have our BIO, so we can now mark the buffers clean. Make
442 * sure to only clean buffers which we know we'll be writing.
443 */
444 static void clean_buffers(struct page *page, unsigned first_unmapped)
445 {
446 unsigned buffer_counter = 0;
447 struct buffer_head *bh, *head;
448 if (!page_has_buffers(page))
449 return;
450 head = page_buffers(page);
451 bh = head;
452
453 do {
454 if (buffer_counter++ == first_unmapped)
455 break;
456 clear_buffer_dirty(bh);
457 bh = bh->b_this_page;
458 } while (bh != head);
459
460 /*
461 * we cannot drop the bh if the page is not uptodate or a concurrent
462 * readpage would fail to serialize with the bh and it would read from
463 * disk before we reach the platter.
464 */
465 if (buffer_heads_over_limit && PageUptodate(page))
466 try_to_free_buffers(page);
467 }
468
469 /*
470 * For situations where we want to clean all buffers attached to a page.
471 * We don't need to calculate how many buffers are attached to the page,
472 * we just need to specify a number larger than the maximum number of buffers.
473 */
474 void clean_page_buffers(struct page *page)
475 {
476 clean_buffers(page, ~0U);
477 }
478
479 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
480 void *data)
481 {
482 struct mpage_data *mpd = data;
483 struct bio *bio = mpd->bio;
484 struct address_space *mapping = page->mapping;
485 struct inode *inode = page->mapping->host;
486 const unsigned blkbits = inode->i_blkbits;
487 unsigned long end_index;
488 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
489 sector_t last_block;
490 sector_t block_in_file;
491 sector_t blocks[MAX_BUF_PER_PAGE];
492 unsigned page_block;
493 unsigned first_unmapped = blocks_per_page;
494 struct block_device *bdev = NULL;
495 int boundary = 0;
496 sector_t boundary_block = 0;
497 struct block_device *boundary_bdev = NULL;
498 int length;
499 struct buffer_head map_bh;
500 loff_t i_size = i_size_read(inode);
501 int ret = 0;
502 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
503
504 if (page_has_buffers(page)) {
505 struct buffer_head *head = page_buffers(page);
506 struct buffer_head *bh = head;
507
508 /* If they're all mapped and dirty, do it */
509 page_block = 0;
510 do {
511 BUG_ON(buffer_locked(bh));
512 if (!buffer_mapped(bh)) {
513 /*
514 * unmapped dirty buffers are created by
515 * __set_page_dirty_buffers -> mmapped data
516 */
517 if (buffer_dirty(bh))
518 goto confused;
519 if (first_unmapped == blocks_per_page)
520 first_unmapped = page_block;
521 continue;
522 }
523
524 if (first_unmapped != blocks_per_page)
525 goto confused; /* hole -> non-hole */
526
527 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
528 goto confused;
529 if (page_block) {
530 if (bh->b_blocknr != blocks[page_block-1] + 1)
531 goto confused;
532 }
533 blocks[page_block++] = bh->b_blocknr;
534 boundary = buffer_boundary(bh);
535 if (boundary) {
536 boundary_block = bh->b_blocknr;
537 boundary_bdev = bh->b_bdev;
538 }
539 bdev = bh->b_bdev;
540 } while ((bh = bh->b_this_page) != head);
541
542 if (first_unmapped)
543 goto page_is_mapped;
544
545 /*
546 * Page has buffers, but they are all unmapped. The page was
547 * created by pagein or read over a hole which was handled by
548 * block_read_full_page(). If this address_space is also
549 * using mpage_readpages then this can rarely happen.
550 */
551 goto confused;
552 }
553
554 /*
555 * The page has no buffers: map it to disk
556 */
557 BUG_ON(!PageUptodate(page));
558 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
559 last_block = (i_size - 1) >> blkbits;
560 map_bh.b_page = page;
561 for (page_block = 0; page_block < blocks_per_page; ) {
562
563 map_bh.b_state = 0;
564 map_bh.b_size = 1 << blkbits;
565 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
566 goto confused;
567 if (buffer_new(&map_bh))
568 unmap_underlying_metadata(map_bh.b_bdev,
569 map_bh.b_blocknr);
570 if (buffer_boundary(&map_bh)) {
571 boundary_block = map_bh.b_blocknr;
572 boundary_bdev = map_bh.b_bdev;
573 }
574 if (page_block) {
575 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
576 goto confused;
577 }
578 blocks[page_block++] = map_bh.b_blocknr;
579 boundary = buffer_boundary(&map_bh);
580 bdev = map_bh.b_bdev;
581 if (block_in_file == last_block)
582 break;
583 block_in_file++;
584 }
585 BUG_ON(page_block == 0);
586
587 first_unmapped = page_block;
588
589 page_is_mapped:
590 end_index = i_size >> PAGE_SHIFT;
591 if (page->index >= end_index) {
592 /*
593 * The page straddles i_size. It must be zeroed out on each
594 * and every writepage invocation because it may be mmapped.
595 * "A file is mapped in multiples of the page size. For a file
596 * that is not a multiple of the page size, the remaining memory
597 * is zeroed when mapped, and writes to that region are not
598 * written out to the file."
599 */
600 unsigned offset = i_size & (PAGE_SIZE - 1);
601
602 if (page->index > end_index || !offset)
603 goto confused;
604 zero_user_segment(page, offset, PAGE_SIZE);
605 }
606
607 /*
608 * This page will go to BIO. Do we need to send this BIO off first?
609 */
610 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
611 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
612
613 alloc_new:
614 if (bio == NULL) {
615 if (first_unmapped == blocks_per_page) {
616 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
617 page, wbc))
618 goto out;
619 }
620 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
621 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
622 if (bio == NULL)
623 goto confused;
624
625 wbc_init_bio(wbc, bio);
626 }
627
628 /*
629 * Must try to add the page before marking the buffer clean or
630 * the confused fail path above (OOM) will be very confused when
631 * it finds all bh marked clean (i.e. it will not write anything)
632 */
633 wbc_account_io(wbc, page, PAGE_SIZE);
634 length = first_unmapped << blkbits;
635 if (bio_add_page(bio, page, length, 0) < length) {
636 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
637 goto alloc_new;
638 }
639
640 clean_buffers(page, first_unmapped);
641
642 BUG_ON(PageWriteback(page));
643 set_page_writeback(page);
644 unlock_page(page);
645 if (boundary || (first_unmapped != blocks_per_page)) {
646 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
647 if (boundary_block) {
648 write_boundary_block(boundary_bdev,
649 boundary_block, 1 << blkbits);
650 }
651 } else {
652 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
653 }
654 goto out;
655
656 confused:
657 if (bio)
658 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
659
660 if (mpd->use_writepage) {
661 ret = mapping->a_ops->writepage(page, wbc);
662 } else {
663 ret = -EAGAIN;
664 goto out;
665 }
666 /*
667 * The caller has a ref on the inode, so *mapping is stable
668 */
669 mapping_set_error(mapping, ret);
670 out:
671 mpd->bio = bio;
672 return ret;
673 }
674
675 /**
676 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
677 * @mapping: address space structure to write
678 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
679 * @get_block: the filesystem's block mapper function.
680 * If this is NULL then use a_ops->writepage. Otherwise, go
681 * direct-to-BIO.
682 *
683 * This is a library function, which implements the writepages()
684 * address_space_operation.
685 *
686 * If a page is already under I/O, generic_writepages() skips it, even
687 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
688 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
689 * and msync() need to guarantee that all the data which was dirty at the time
690 * the call was made get new I/O started against them. If wbc->sync_mode is
691 * WB_SYNC_ALL then we were called for data integrity and we must wait for
692 * existing IO to complete.
693 */
694 int
695 mpage_writepages(struct address_space *mapping,
696 struct writeback_control *wbc, get_block_t get_block)
697 {
698 struct blk_plug plug;
699 int ret;
700
701 blk_start_plug(&plug);
702
703 if (!get_block)
704 ret = generic_writepages(mapping, wbc);
705 else {
706 struct mpage_data mpd = {
707 .bio = NULL,
708 .last_block_in_bio = 0,
709 .get_block = get_block,
710 .use_writepage = 1,
711 };
712
713 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
714 if (mpd.bio) {
715 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
716 WRITE_SYNC : 0);
717 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
718 }
719 }
720 blk_finish_plug(&plug);
721 return ret;
722 }
723 EXPORT_SYMBOL(mpage_writepages);
724
725 int mpage_writepage(struct page *page, get_block_t get_block,
726 struct writeback_control *wbc)
727 {
728 struct mpage_data mpd = {
729 .bio = NULL,
730 .last_block_in_bio = 0,
731 .get_block = get_block,
732 .use_writepage = 0,
733 };
734 int ret = __mpage_writepage(page, wbc, &mpd);
735 if (mpd.bio) {
736 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
737 WRITE_SYNC : 0);
738 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
739 }
740 return ret;
741 }
742 EXPORT_SYMBOL(mpage_writepage);