]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namei.c
ext4: fix a doubled word "need" in a comment
[people/ms/linux.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134
135 result = audit_reusename(filename);
136 if (result)
137 return result;
138
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
142
143 /*
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
146 */
147 kname = (char *)result->iname;
148 result->name = kname;
149
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 if (unlikely(len < 0)) {
152 __putname(result);
153 return ERR_PTR(len);
154 }
155
156 /*
157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 * separate struct filename so we can dedicate the entire
159 * names_cache allocation for the pathname, and re-do the copy from
160 * userland.
161 */
162 if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 const size_t size = offsetof(struct filename, iname[1]);
164 kname = (char *)result;
165
166 /*
167 * size is chosen that way we to guarantee that
168 * result->iname[0] is within the same object and that
169 * kname can't be equal to result->iname, no matter what.
170 */
171 result = kzalloc(size, GFP_KERNEL);
172 if (unlikely(!result)) {
173 __putname(kname);
174 return ERR_PTR(-ENOMEM);
175 }
176 result->name = kname;
177 len = strncpy_from_user(kname, filename, PATH_MAX);
178 if (unlikely(len < 0)) {
179 __putname(kname);
180 kfree(result);
181 return ERR_PTR(len);
182 }
183 if (unlikely(len == PATH_MAX)) {
184 __putname(kname);
185 kfree(result);
186 return ERR_PTR(-ENAMETOOLONG);
187 }
188 }
189
190 result->refcnt = 1;
191 /* The empty path is special. */
192 if (unlikely(!len)) {
193 if (empty)
194 *empty = 1;
195 if (!(flags & LOOKUP_EMPTY)) {
196 putname(result);
197 return ERR_PTR(-ENOENT);
198 }
199 }
200
201 result->uptr = filename;
202 result->aname = NULL;
203 audit_getname(result);
204 return result;
205 }
206
207 struct filename *
208 getname_uflags(const char __user *filename, int uflags)
209 {
210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211
212 return getname_flags(filename, flags, NULL);
213 }
214
215 struct filename *
216 getname(const char __user * filename)
217 {
218 return getname_flags(filename, 0, NULL);
219 }
220
221 struct filename *
222 getname_kernel(const char * filename)
223 {
224 struct filename *result;
225 int len = strlen(filename) + 1;
226
227 result = __getname();
228 if (unlikely(!result))
229 return ERR_PTR(-ENOMEM);
230
231 if (len <= EMBEDDED_NAME_MAX) {
232 result->name = (char *)result->iname;
233 } else if (len <= PATH_MAX) {
234 const size_t size = offsetof(struct filename, iname[1]);
235 struct filename *tmp;
236
237 tmp = kmalloc(size, GFP_KERNEL);
238 if (unlikely(!tmp)) {
239 __putname(result);
240 return ERR_PTR(-ENOMEM);
241 }
242 tmp->name = (char *)result;
243 result = tmp;
244 } else {
245 __putname(result);
246 return ERR_PTR(-ENAMETOOLONG);
247 }
248 memcpy((char *)result->name, filename, len);
249 result->uptr = NULL;
250 result->aname = NULL;
251 result->refcnt = 1;
252 audit_getname(result);
253
254 return result;
255 }
256
257 void putname(struct filename *name)
258 {
259 if (IS_ERR(name))
260 return;
261
262 BUG_ON(name->refcnt <= 0);
263
264 if (--name->refcnt > 0)
265 return;
266
267 if (name->name != name->iname) {
268 __putname(name->name);
269 kfree(name);
270 } else
271 __putname(name);
272 }
273
274 /**
275 * check_acl - perform ACL permission checking
276 * @mnt_userns: user namespace of the mount the inode was found from
277 * @inode: inode to check permissions on
278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
279 *
280 * This function performs the ACL permission checking. Since this function
281 * retrieve POSIX acls it needs to know whether it is called from a blocking or
282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
283 *
284 * If the inode has been found through an idmapped mount the user namespace of
285 * the vfsmount must be passed through @mnt_userns. This function will then take
286 * care to map the inode according to @mnt_userns before checking permissions.
287 * On non-idmapped mounts or if permission checking is to be performed on the
288 * raw inode simply passs init_user_ns.
289 */
290 static int check_acl(struct user_namespace *mnt_userns,
291 struct inode *inode, int mask)
292 {
293 #ifdef CONFIG_FS_POSIX_ACL
294 struct posix_acl *acl;
295
296 if (mask & MAY_NOT_BLOCK) {
297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
298 if (!acl)
299 return -EAGAIN;
300 /* no ->get_acl() calls in RCU mode... */
301 if (is_uncached_acl(acl))
302 return -ECHILD;
303 return posix_acl_permission(mnt_userns, inode, acl, mask);
304 }
305
306 acl = get_acl(inode, ACL_TYPE_ACCESS);
307 if (IS_ERR(acl))
308 return PTR_ERR(acl);
309 if (acl) {
310 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
311 posix_acl_release(acl);
312 return error;
313 }
314 #endif
315
316 return -EAGAIN;
317 }
318
319 /**
320 * acl_permission_check - perform basic UNIX permission checking
321 * @mnt_userns: user namespace of the mount the inode was found from
322 * @inode: inode to check permissions on
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
324 *
325 * This function performs the basic UNIX permission checking. Since this
326 * function may retrieve POSIX acls it needs to know whether it is called from a
327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
328 *
329 * If the inode has been found through an idmapped mount the user namespace of
330 * the vfsmount must be passed through @mnt_userns. This function will then take
331 * care to map the inode according to @mnt_userns before checking permissions.
332 * On non-idmapped mounts or if permission checking is to be performed on the
333 * raw inode simply passs init_user_ns.
334 */
335 static int acl_permission_check(struct user_namespace *mnt_userns,
336 struct inode *inode, int mask)
337 {
338 unsigned int mode = inode->i_mode;
339 kuid_t i_uid;
340
341 /* Are we the owner? If so, ACL's don't matter */
342 i_uid = i_uid_into_mnt(mnt_userns, inode);
343 if (likely(uid_eq(current_fsuid(), i_uid))) {
344 mask &= 7;
345 mode >>= 6;
346 return (mask & ~mode) ? -EACCES : 0;
347 }
348
349 /* Do we have ACL's? */
350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
351 int error = check_acl(mnt_userns, inode, mask);
352 if (error != -EAGAIN)
353 return error;
354 }
355
356 /* Only RWX matters for group/other mode bits */
357 mask &= 7;
358
359 /*
360 * Are the group permissions different from
361 * the other permissions in the bits we care
362 * about? Need to check group ownership if so.
363 */
364 if (mask & (mode ^ (mode >> 3))) {
365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
366 if (in_group_p(kgid))
367 mode >>= 3;
368 }
369
370 /* Bits in 'mode' clear that we require? */
371 return (mask & ~mode) ? -EACCES : 0;
372 }
373
374 /**
375 * generic_permission - check for access rights on a Posix-like filesystem
376 * @mnt_userns: user namespace of the mount the inode was found from
377 * @inode: inode to check access rights for
378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
379 * %MAY_NOT_BLOCK ...)
380 *
381 * Used to check for read/write/execute permissions on a file.
382 * We use "fsuid" for this, letting us set arbitrary permissions
383 * for filesystem access without changing the "normal" uids which
384 * are used for other things.
385 *
386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
387 * request cannot be satisfied (eg. requires blocking or too much complexity).
388 * It would then be called again in ref-walk mode.
389 *
390 * If the inode has been found through an idmapped mount the user namespace of
391 * the vfsmount must be passed through @mnt_userns. This function will then take
392 * care to map the inode according to @mnt_userns before checking permissions.
393 * On non-idmapped mounts or if permission checking is to be performed on the
394 * raw inode simply passs init_user_ns.
395 */
396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
397 int mask)
398 {
399 int ret;
400
401 /*
402 * Do the basic permission checks.
403 */
404 ret = acl_permission_check(mnt_userns, inode, mask);
405 if (ret != -EACCES)
406 return ret;
407
408 if (S_ISDIR(inode->i_mode)) {
409 /* DACs are overridable for directories */
410 if (!(mask & MAY_WRITE))
411 if (capable_wrt_inode_uidgid(mnt_userns, inode,
412 CAP_DAC_READ_SEARCH))
413 return 0;
414 if (capable_wrt_inode_uidgid(mnt_userns, inode,
415 CAP_DAC_OVERRIDE))
416 return 0;
417 return -EACCES;
418 }
419
420 /*
421 * Searching includes executable on directories, else just read.
422 */
423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
424 if (mask == MAY_READ)
425 if (capable_wrt_inode_uidgid(mnt_userns, inode,
426 CAP_DAC_READ_SEARCH))
427 return 0;
428 /*
429 * Read/write DACs are always overridable.
430 * Executable DACs are overridable when there is
431 * at least one exec bit set.
432 */
433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
434 if (capable_wrt_inode_uidgid(mnt_userns, inode,
435 CAP_DAC_OVERRIDE))
436 return 0;
437
438 return -EACCES;
439 }
440 EXPORT_SYMBOL(generic_permission);
441
442 /**
443 * do_inode_permission - UNIX permission checking
444 * @mnt_userns: user namespace of the mount the inode was found from
445 * @inode: inode to check permissions on
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
447 *
448 * We _really_ want to just do "generic_permission()" without
449 * even looking at the inode->i_op values. So we keep a cache
450 * flag in inode->i_opflags, that says "this has not special
451 * permission function, use the fast case".
452 */
453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
454 struct inode *inode, int mask)
455 {
456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
457 if (likely(inode->i_op->permission))
458 return inode->i_op->permission(mnt_userns, inode, mask);
459
460 /* This gets set once for the inode lifetime */
461 spin_lock(&inode->i_lock);
462 inode->i_opflags |= IOP_FASTPERM;
463 spin_unlock(&inode->i_lock);
464 }
465 return generic_permission(mnt_userns, inode, mask);
466 }
467
468 /**
469 * sb_permission - Check superblock-level permissions
470 * @sb: Superblock of inode to check permission on
471 * @inode: Inode to check permission on
472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
473 *
474 * Separate out file-system wide checks from inode-specific permission checks.
475 */
476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
477 {
478 if (unlikely(mask & MAY_WRITE)) {
479 umode_t mode = inode->i_mode;
480
481 /* Nobody gets write access to a read-only fs. */
482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
483 return -EROFS;
484 }
485 return 0;
486 }
487
488 /**
489 * inode_permission - Check for access rights to a given inode
490 * @mnt_userns: User namespace of the mount the inode was found from
491 * @inode: Inode to check permission on
492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
493 *
494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
495 * this, letting us set arbitrary permissions for filesystem access without
496 * changing the "normal" UIDs which are used for other things.
497 *
498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
499 */
500 int inode_permission(struct user_namespace *mnt_userns,
501 struct inode *inode, int mask)
502 {
503 int retval;
504
505 retval = sb_permission(inode->i_sb, inode, mask);
506 if (retval)
507 return retval;
508
509 if (unlikely(mask & MAY_WRITE)) {
510 /*
511 * Nobody gets write access to an immutable file.
512 */
513 if (IS_IMMUTABLE(inode))
514 return -EPERM;
515
516 /*
517 * Updating mtime will likely cause i_uid and i_gid to be
518 * written back improperly if their true value is unknown
519 * to the vfs.
520 */
521 if (HAS_UNMAPPED_ID(mnt_userns, inode))
522 return -EACCES;
523 }
524
525 retval = do_inode_permission(mnt_userns, inode, mask);
526 if (retval)
527 return retval;
528
529 retval = devcgroup_inode_permission(inode, mask);
530 if (retval)
531 return retval;
532
533 return security_inode_permission(inode, mask);
534 }
535 EXPORT_SYMBOL(inode_permission);
536
537 /**
538 * path_get - get a reference to a path
539 * @path: path to get the reference to
540 *
541 * Given a path increment the reference count to the dentry and the vfsmount.
542 */
543 void path_get(const struct path *path)
544 {
545 mntget(path->mnt);
546 dget(path->dentry);
547 }
548 EXPORT_SYMBOL(path_get);
549
550 /**
551 * path_put - put a reference to a path
552 * @path: path to put the reference to
553 *
554 * Given a path decrement the reference count to the dentry and the vfsmount.
555 */
556 void path_put(const struct path *path)
557 {
558 dput(path->dentry);
559 mntput(path->mnt);
560 }
561 EXPORT_SYMBOL(path_put);
562
563 #define EMBEDDED_LEVELS 2
564 struct nameidata {
565 struct path path;
566 struct qstr last;
567 struct path root;
568 struct inode *inode; /* path.dentry.d_inode */
569 unsigned int flags, state;
570 unsigned seq, m_seq, r_seq;
571 int last_type;
572 unsigned depth;
573 int total_link_count;
574 struct saved {
575 struct path link;
576 struct delayed_call done;
577 const char *name;
578 unsigned seq;
579 } *stack, internal[EMBEDDED_LEVELS];
580 struct filename *name;
581 struct nameidata *saved;
582 unsigned root_seq;
583 int dfd;
584 kuid_t dir_uid;
585 umode_t dir_mode;
586 } __randomize_layout;
587
588 #define ND_ROOT_PRESET 1
589 #define ND_ROOT_GRABBED 2
590 #define ND_JUMPED 4
591
592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
593 {
594 struct nameidata *old = current->nameidata;
595 p->stack = p->internal;
596 p->depth = 0;
597 p->dfd = dfd;
598 p->name = name;
599 p->path.mnt = NULL;
600 p->path.dentry = NULL;
601 p->total_link_count = old ? old->total_link_count : 0;
602 p->saved = old;
603 current->nameidata = p;
604 }
605
606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
607 const struct path *root)
608 {
609 __set_nameidata(p, dfd, name);
610 p->state = 0;
611 if (unlikely(root)) {
612 p->state = ND_ROOT_PRESET;
613 p->root = *root;
614 }
615 }
616
617 static void restore_nameidata(void)
618 {
619 struct nameidata *now = current->nameidata, *old = now->saved;
620
621 current->nameidata = old;
622 if (old)
623 old->total_link_count = now->total_link_count;
624 if (now->stack != now->internal)
625 kfree(now->stack);
626 }
627
628 static bool nd_alloc_stack(struct nameidata *nd)
629 {
630 struct saved *p;
631
632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
634 if (unlikely(!p))
635 return false;
636 memcpy(p, nd->internal, sizeof(nd->internal));
637 nd->stack = p;
638 return true;
639 }
640
641 /**
642 * path_connected - Verify that a dentry is below mnt.mnt_root
643 *
644 * Rename can sometimes move a file or directory outside of a bind
645 * mount, path_connected allows those cases to be detected.
646 */
647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 struct super_block *sb = mnt->mnt_sb;
650
651 /* Bind mounts can have disconnected paths */
652 if (mnt->mnt_root == sb->s_root)
653 return true;
654
655 return is_subdir(dentry, mnt->mnt_root);
656 }
657
658 static void drop_links(struct nameidata *nd)
659 {
660 int i = nd->depth;
661 while (i--) {
662 struct saved *last = nd->stack + i;
663 do_delayed_call(&last->done);
664 clear_delayed_call(&last->done);
665 }
666 }
667
668 static void terminate_walk(struct nameidata *nd)
669 {
670 drop_links(nd);
671 if (!(nd->flags & LOOKUP_RCU)) {
672 int i;
673 path_put(&nd->path);
674 for (i = 0; i < nd->depth; i++)
675 path_put(&nd->stack[i].link);
676 if (nd->state & ND_ROOT_GRABBED) {
677 path_put(&nd->root);
678 nd->state &= ~ND_ROOT_GRABBED;
679 }
680 } else {
681 nd->flags &= ~LOOKUP_RCU;
682 rcu_read_unlock();
683 }
684 nd->depth = 0;
685 nd->path.mnt = NULL;
686 nd->path.dentry = NULL;
687 }
688
689 /* path_put is needed afterwards regardless of success or failure */
690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
691 {
692 int res = __legitimize_mnt(path->mnt, mseq);
693 if (unlikely(res)) {
694 if (res > 0)
695 path->mnt = NULL;
696 path->dentry = NULL;
697 return false;
698 }
699 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
700 path->dentry = NULL;
701 return false;
702 }
703 return !read_seqcount_retry(&path->dentry->d_seq, seq);
704 }
705
706 static inline bool legitimize_path(struct nameidata *nd,
707 struct path *path, unsigned seq)
708 {
709 return __legitimize_path(path, seq, nd->m_seq);
710 }
711
712 static bool legitimize_links(struct nameidata *nd)
713 {
714 int i;
715 if (unlikely(nd->flags & LOOKUP_CACHED)) {
716 drop_links(nd);
717 nd->depth = 0;
718 return false;
719 }
720 for (i = 0; i < nd->depth; i++) {
721 struct saved *last = nd->stack + i;
722 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
723 drop_links(nd);
724 nd->depth = i + 1;
725 return false;
726 }
727 }
728 return true;
729 }
730
731 static bool legitimize_root(struct nameidata *nd)
732 {
733 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
734 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
735 return true;
736 nd->state |= ND_ROOT_GRABBED;
737 return legitimize_path(nd, &nd->root, nd->root_seq);
738 }
739
740 /*
741 * Path walking has 2 modes, rcu-walk and ref-walk (see
742 * Documentation/filesystems/path-lookup.txt). In situations when we can't
743 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
744 * normal reference counts on dentries and vfsmounts to transition to ref-walk
745 * mode. Refcounts are grabbed at the last known good point before rcu-walk
746 * got stuck, so ref-walk may continue from there. If this is not successful
747 * (eg. a seqcount has changed), then failure is returned and it's up to caller
748 * to restart the path walk from the beginning in ref-walk mode.
749 */
750
751 /**
752 * try_to_unlazy - try to switch to ref-walk mode.
753 * @nd: nameidata pathwalk data
754 * Returns: true on success, false on failure
755 *
756 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
757 * for ref-walk mode.
758 * Must be called from rcu-walk context.
759 * Nothing should touch nameidata between try_to_unlazy() failure and
760 * terminate_walk().
761 */
762 static bool try_to_unlazy(struct nameidata *nd)
763 {
764 struct dentry *parent = nd->path.dentry;
765
766 BUG_ON(!(nd->flags & LOOKUP_RCU));
767
768 nd->flags &= ~LOOKUP_RCU;
769 if (unlikely(!legitimize_links(nd)))
770 goto out1;
771 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
772 goto out;
773 if (unlikely(!legitimize_root(nd)))
774 goto out;
775 rcu_read_unlock();
776 BUG_ON(nd->inode != parent->d_inode);
777 return true;
778
779 out1:
780 nd->path.mnt = NULL;
781 nd->path.dentry = NULL;
782 out:
783 rcu_read_unlock();
784 return false;
785 }
786
787 /**
788 * try_to_unlazy_next - try to switch to ref-walk mode.
789 * @nd: nameidata pathwalk data
790 * @dentry: next dentry to step into
791 * @seq: seq number to check @dentry against
792 * Returns: true on success, false on failure
793 *
794 * Similar to try_to_unlazy(), but here we have the next dentry already
795 * picked by rcu-walk and want to legitimize that in addition to the current
796 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
797 * Nothing should touch nameidata between try_to_unlazy_next() failure and
798 * terminate_walk().
799 */
800 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
801 {
802 BUG_ON(!(nd->flags & LOOKUP_RCU));
803
804 nd->flags &= ~LOOKUP_RCU;
805 if (unlikely(!legitimize_links(nd)))
806 goto out2;
807 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
808 goto out2;
809 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
810 goto out1;
811
812 /*
813 * We need to move both the parent and the dentry from the RCU domain
814 * to be properly refcounted. And the sequence number in the dentry
815 * validates *both* dentry counters, since we checked the sequence
816 * number of the parent after we got the child sequence number. So we
817 * know the parent must still be valid if the child sequence number is
818 */
819 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
820 goto out;
821 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
822 goto out_dput;
823 /*
824 * Sequence counts matched. Now make sure that the root is
825 * still valid and get it if required.
826 */
827 if (unlikely(!legitimize_root(nd)))
828 goto out_dput;
829 rcu_read_unlock();
830 return true;
831
832 out2:
833 nd->path.mnt = NULL;
834 out1:
835 nd->path.dentry = NULL;
836 out:
837 rcu_read_unlock();
838 return false;
839 out_dput:
840 rcu_read_unlock();
841 dput(dentry);
842 return false;
843 }
844
845 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
846 {
847 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
848 return dentry->d_op->d_revalidate(dentry, flags);
849 else
850 return 1;
851 }
852
853 /**
854 * complete_walk - successful completion of path walk
855 * @nd: pointer nameidata
856 *
857 * If we had been in RCU mode, drop out of it and legitimize nd->path.
858 * Revalidate the final result, unless we'd already done that during
859 * the path walk or the filesystem doesn't ask for it. Return 0 on
860 * success, -error on failure. In case of failure caller does not
861 * need to drop nd->path.
862 */
863 static int complete_walk(struct nameidata *nd)
864 {
865 struct dentry *dentry = nd->path.dentry;
866 int status;
867
868 if (nd->flags & LOOKUP_RCU) {
869 /*
870 * We don't want to zero nd->root for scoped-lookups or
871 * externally-managed nd->root.
872 */
873 if (!(nd->state & ND_ROOT_PRESET))
874 if (!(nd->flags & LOOKUP_IS_SCOPED))
875 nd->root.mnt = NULL;
876 nd->flags &= ~LOOKUP_CACHED;
877 if (!try_to_unlazy(nd))
878 return -ECHILD;
879 }
880
881 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
882 /*
883 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
884 * ever step outside the root during lookup" and should already
885 * be guaranteed by the rest of namei, we want to avoid a namei
886 * BUG resulting in userspace being given a path that was not
887 * scoped within the root at some point during the lookup.
888 *
889 * So, do a final sanity-check to make sure that in the
890 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
891 * we won't silently return an fd completely outside of the
892 * requested root to userspace.
893 *
894 * Userspace could move the path outside the root after this
895 * check, but as discussed elsewhere this is not a concern (the
896 * resolved file was inside the root at some point).
897 */
898 if (!path_is_under(&nd->path, &nd->root))
899 return -EXDEV;
900 }
901
902 if (likely(!(nd->state & ND_JUMPED)))
903 return 0;
904
905 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
906 return 0;
907
908 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
909 if (status > 0)
910 return 0;
911
912 if (!status)
913 status = -ESTALE;
914
915 return status;
916 }
917
918 static int set_root(struct nameidata *nd)
919 {
920 struct fs_struct *fs = current->fs;
921
922 /*
923 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
924 * still have to ensure it doesn't happen because it will cause a breakout
925 * from the dirfd.
926 */
927 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
928 return -ENOTRECOVERABLE;
929
930 if (nd->flags & LOOKUP_RCU) {
931 unsigned seq;
932
933 do {
934 seq = read_seqcount_begin(&fs->seq);
935 nd->root = fs->root;
936 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
937 } while (read_seqcount_retry(&fs->seq, seq));
938 } else {
939 get_fs_root(fs, &nd->root);
940 nd->state |= ND_ROOT_GRABBED;
941 }
942 return 0;
943 }
944
945 static int nd_jump_root(struct nameidata *nd)
946 {
947 if (unlikely(nd->flags & LOOKUP_BENEATH))
948 return -EXDEV;
949 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
950 /* Absolute path arguments to path_init() are allowed. */
951 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
952 return -EXDEV;
953 }
954 if (!nd->root.mnt) {
955 int error = set_root(nd);
956 if (error)
957 return error;
958 }
959 if (nd->flags & LOOKUP_RCU) {
960 struct dentry *d;
961 nd->path = nd->root;
962 d = nd->path.dentry;
963 nd->inode = d->d_inode;
964 nd->seq = nd->root_seq;
965 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
966 return -ECHILD;
967 } else {
968 path_put(&nd->path);
969 nd->path = nd->root;
970 path_get(&nd->path);
971 nd->inode = nd->path.dentry->d_inode;
972 }
973 nd->state |= ND_JUMPED;
974 return 0;
975 }
976
977 /*
978 * Helper to directly jump to a known parsed path from ->get_link,
979 * caller must have taken a reference to path beforehand.
980 */
981 int nd_jump_link(struct path *path)
982 {
983 int error = -ELOOP;
984 struct nameidata *nd = current->nameidata;
985
986 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
987 goto err;
988
989 error = -EXDEV;
990 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
991 if (nd->path.mnt != path->mnt)
992 goto err;
993 }
994 /* Not currently safe for scoped-lookups. */
995 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
996 goto err;
997
998 path_put(&nd->path);
999 nd->path = *path;
1000 nd->inode = nd->path.dentry->d_inode;
1001 nd->state |= ND_JUMPED;
1002 return 0;
1003
1004 err:
1005 path_put(path);
1006 return error;
1007 }
1008
1009 static inline void put_link(struct nameidata *nd)
1010 {
1011 struct saved *last = nd->stack + --nd->depth;
1012 do_delayed_call(&last->done);
1013 if (!(nd->flags & LOOKUP_RCU))
1014 path_put(&last->link);
1015 }
1016
1017 static int sysctl_protected_symlinks __read_mostly;
1018 static int sysctl_protected_hardlinks __read_mostly;
1019 static int sysctl_protected_fifos __read_mostly;
1020 static int sysctl_protected_regular __read_mostly;
1021
1022 #ifdef CONFIG_SYSCTL
1023 static struct ctl_table namei_sysctls[] = {
1024 {
1025 .procname = "protected_symlinks",
1026 .data = &sysctl_protected_symlinks,
1027 .maxlen = sizeof(int),
1028 .mode = 0644,
1029 .proc_handler = proc_dointvec_minmax,
1030 .extra1 = SYSCTL_ZERO,
1031 .extra2 = SYSCTL_ONE,
1032 },
1033 {
1034 .procname = "protected_hardlinks",
1035 .data = &sysctl_protected_hardlinks,
1036 .maxlen = sizeof(int),
1037 .mode = 0644,
1038 .proc_handler = proc_dointvec_minmax,
1039 .extra1 = SYSCTL_ZERO,
1040 .extra2 = SYSCTL_ONE,
1041 },
1042 {
1043 .procname = "protected_fifos",
1044 .data = &sysctl_protected_fifos,
1045 .maxlen = sizeof(int),
1046 .mode = 0644,
1047 .proc_handler = proc_dointvec_minmax,
1048 .extra1 = SYSCTL_ZERO,
1049 .extra2 = SYSCTL_TWO,
1050 },
1051 {
1052 .procname = "protected_regular",
1053 .data = &sysctl_protected_regular,
1054 .maxlen = sizeof(int),
1055 .mode = 0644,
1056 .proc_handler = proc_dointvec_minmax,
1057 .extra1 = SYSCTL_ZERO,
1058 .extra2 = SYSCTL_TWO,
1059 },
1060 { }
1061 };
1062
1063 static int __init init_fs_namei_sysctls(void)
1064 {
1065 register_sysctl_init("fs", namei_sysctls);
1066 return 0;
1067 }
1068 fs_initcall(init_fs_namei_sysctls);
1069
1070 #endif /* CONFIG_SYSCTL */
1071
1072 /**
1073 * may_follow_link - Check symlink following for unsafe situations
1074 * @nd: nameidata pathwalk data
1075 *
1076 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1077 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1078 * in a sticky world-writable directory. This is to protect privileged
1079 * processes from failing races against path names that may change out
1080 * from under them by way of other users creating malicious symlinks.
1081 * It will permit symlinks to be followed only when outside a sticky
1082 * world-writable directory, or when the uid of the symlink and follower
1083 * match, or when the directory owner matches the symlink's owner.
1084 *
1085 * Returns 0 if following the symlink is allowed, -ve on error.
1086 */
1087 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1088 {
1089 struct user_namespace *mnt_userns;
1090 kuid_t i_uid;
1091
1092 if (!sysctl_protected_symlinks)
1093 return 0;
1094
1095 mnt_userns = mnt_user_ns(nd->path.mnt);
1096 i_uid = i_uid_into_mnt(mnt_userns, inode);
1097 /* Allowed if owner and follower match. */
1098 if (uid_eq(current_cred()->fsuid, i_uid))
1099 return 0;
1100
1101 /* Allowed if parent directory not sticky and world-writable. */
1102 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1103 return 0;
1104
1105 /* Allowed if parent directory and link owner match. */
1106 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1107 return 0;
1108
1109 if (nd->flags & LOOKUP_RCU)
1110 return -ECHILD;
1111
1112 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1113 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1114 return -EACCES;
1115 }
1116
1117 /**
1118 * safe_hardlink_source - Check for safe hardlink conditions
1119 * @mnt_userns: user namespace of the mount the inode was found from
1120 * @inode: the source inode to hardlink from
1121 *
1122 * Return false if at least one of the following conditions:
1123 * - inode is not a regular file
1124 * - inode is setuid
1125 * - inode is setgid and group-exec
1126 * - access failure for read and write
1127 *
1128 * Otherwise returns true.
1129 */
1130 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1131 struct inode *inode)
1132 {
1133 umode_t mode = inode->i_mode;
1134
1135 /* Special files should not get pinned to the filesystem. */
1136 if (!S_ISREG(mode))
1137 return false;
1138
1139 /* Setuid files should not get pinned to the filesystem. */
1140 if (mode & S_ISUID)
1141 return false;
1142
1143 /* Executable setgid files should not get pinned to the filesystem. */
1144 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1145 return false;
1146
1147 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1148 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1149 return false;
1150
1151 return true;
1152 }
1153
1154 /**
1155 * may_linkat - Check permissions for creating a hardlink
1156 * @mnt_userns: user namespace of the mount the inode was found from
1157 * @link: the source to hardlink from
1158 *
1159 * Block hardlink when all of:
1160 * - sysctl_protected_hardlinks enabled
1161 * - fsuid does not match inode
1162 * - hardlink source is unsafe (see safe_hardlink_source() above)
1163 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1164 *
1165 * If the inode has been found through an idmapped mount the user namespace of
1166 * the vfsmount must be passed through @mnt_userns. This function will then take
1167 * care to map the inode according to @mnt_userns before checking permissions.
1168 * On non-idmapped mounts or if permission checking is to be performed on the
1169 * raw inode simply passs init_user_ns.
1170 *
1171 * Returns 0 if successful, -ve on error.
1172 */
1173 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1174 {
1175 struct inode *inode = link->dentry->d_inode;
1176
1177 /* Inode writeback is not safe when the uid or gid are invalid. */
1178 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1179 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1180 return -EOVERFLOW;
1181
1182 if (!sysctl_protected_hardlinks)
1183 return 0;
1184
1185 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1186 * otherwise, it must be a safe source.
1187 */
1188 if (safe_hardlink_source(mnt_userns, inode) ||
1189 inode_owner_or_capable(mnt_userns, inode))
1190 return 0;
1191
1192 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1193 return -EPERM;
1194 }
1195
1196 /**
1197 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1198 * should be allowed, or not, on files that already
1199 * exist.
1200 * @mnt_userns: user namespace of the mount the inode was found from
1201 * @nd: nameidata pathwalk data
1202 * @inode: the inode of the file to open
1203 *
1204 * Block an O_CREAT open of a FIFO (or a regular file) when:
1205 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1206 * - the file already exists
1207 * - we are in a sticky directory
1208 * - we don't own the file
1209 * - the owner of the directory doesn't own the file
1210 * - the directory is world writable
1211 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1212 * the directory doesn't have to be world writable: being group writable will
1213 * be enough.
1214 *
1215 * If the inode has been found through an idmapped mount the user namespace of
1216 * the vfsmount must be passed through @mnt_userns. This function will then take
1217 * care to map the inode according to @mnt_userns before checking permissions.
1218 * On non-idmapped mounts or if permission checking is to be performed on the
1219 * raw inode simply passs init_user_ns.
1220 *
1221 * Returns 0 if the open is allowed, -ve on error.
1222 */
1223 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1224 struct nameidata *nd, struct inode *const inode)
1225 {
1226 umode_t dir_mode = nd->dir_mode;
1227 kuid_t dir_uid = nd->dir_uid;
1228
1229 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1230 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1231 likely(!(dir_mode & S_ISVTX)) ||
1232 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1233 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1234 return 0;
1235
1236 if (likely(dir_mode & 0002) ||
1237 (dir_mode & 0020 &&
1238 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1239 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1240 const char *operation = S_ISFIFO(inode->i_mode) ?
1241 "sticky_create_fifo" :
1242 "sticky_create_regular";
1243 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1244 return -EACCES;
1245 }
1246 return 0;
1247 }
1248
1249 /*
1250 * follow_up - Find the mountpoint of path's vfsmount
1251 *
1252 * Given a path, find the mountpoint of its source file system.
1253 * Replace @path with the path of the mountpoint in the parent mount.
1254 * Up is towards /.
1255 *
1256 * Return 1 if we went up a level and 0 if we were already at the
1257 * root.
1258 */
1259 int follow_up(struct path *path)
1260 {
1261 struct mount *mnt = real_mount(path->mnt);
1262 struct mount *parent;
1263 struct dentry *mountpoint;
1264
1265 read_seqlock_excl(&mount_lock);
1266 parent = mnt->mnt_parent;
1267 if (parent == mnt) {
1268 read_sequnlock_excl(&mount_lock);
1269 return 0;
1270 }
1271 mntget(&parent->mnt);
1272 mountpoint = dget(mnt->mnt_mountpoint);
1273 read_sequnlock_excl(&mount_lock);
1274 dput(path->dentry);
1275 path->dentry = mountpoint;
1276 mntput(path->mnt);
1277 path->mnt = &parent->mnt;
1278 return 1;
1279 }
1280 EXPORT_SYMBOL(follow_up);
1281
1282 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1283 struct path *path, unsigned *seqp)
1284 {
1285 while (mnt_has_parent(m)) {
1286 struct dentry *mountpoint = m->mnt_mountpoint;
1287
1288 m = m->mnt_parent;
1289 if (unlikely(root->dentry == mountpoint &&
1290 root->mnt == &m->mnt))
1291 break;
1292 if (mountpoint != m->mnt.mnt_root) {
1293 path->mnt = &m->mnt;
1294 path->dentry = mountpoint;
1295 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1296 return true;
1297 }
1298 }
1299 return false;
1300 }
1301
1302 static bool choose_mountpoint(struct mount *m, const struct path *root,
1303 struct path *path)
1304 {
1305 bool found;
1306
1307 rcu_read_lock();
1308 while (1) {
1309 unsigned seq, mseq = read_seqbegin(&mount_lock);
1310
1311 found = choose_mountpoint_rcu(m, root, path, &seq);
1312 if (unlikely(!found)) {
1313 if (!read_seqretry(&mount_lock, mseq))
1314 break;
1315 } else {
1316 if (likely(__legitimize_path(path, seq, mseq)))
1317 break;
1318 rcu_read_unlock();
1319 path_put(path);
1320 rcu_read_lock();
1321 }
1322 }
1323 rcu_read_unlock();
1324 return found;
1325 }
1326
1327 /*
1328 * Perform an automount
1329 * - return -EISDIR to tell follow_managed() to stop and return the path we
1330 * were called with.
1331 */
1332 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1333 {
1334 struct dentry *dentry = path->dentry;
1335
1336 /* We don't want to mount if someone's just doing a stat -
1337 * unless they're stat'ing a directory and appended a '/' to
1338 * the name.
1339 *
1340 * We do, however, want to mount if someone wants to open or
1341 * create a file of any type under the mountpoint, wants to
1342 * traverse through the mountpoint or wants to open the
1343 * mounted directory. Also, autofs may mark negative dentries
1344 * as being automount points. These will need the attentions
1345 * of the daemon to instantiate them before they can be used.
1346 */
1347 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1348 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1349 dentry->d_inode)
1350 return -EISDIR;
1351
1352 if (count && (*count)++ >= MAXSYMLINKS)
1353 return -ELOOP;
1354
1355 return finish_automount(dentry->d_op->d_automount(path), path);
1356 }
1357
1358 /*
1359 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1360 * dentries are pinned but not locked here, so negative dentry can go
1361 * positive right under us. Use of smp_load_acquire() provides a barrier
1362 * sufficient for ->d_inode and ->d_flags consistency.
1363 */
1364 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1365 int *count, unsigned lookup_flags)
1366 {
1367 struct vfsmount *mnt = path->mnt;
1368 bool need_mntput = false;
1369 int ret = 0;
1370
1371 while (flags & DCACHE_MANAGED_DENTRY) {
1372 /* Allow the filesystem to manage the transit without i_mutex
1373 * being held. */
1374 if (flags & DCACHE_MANAGE_TRANSIT) {
1375 ret = path->dentry->d_op->d_manage(path, false);
1376 flags = smp_load_acquire(&path->dentry->d_flags);
1377 if (ret < 0)
1378 break;
1379 }
1380
1381 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1382 struct vfsmount *mounted = lookup_mnt(path);
1383 if (mounted) { // ... in our namespace
1384 dput(path->dentry);
1385 if (need_mntput)
1386 mntput(path->mnt);
1387 path->mnt = mounted;
1388 path->dentry = dget(mounted->mnt_root);
1389 // here we know it's positive
1390 flags = path->dentry->d_flags;
1391 need_mntput = true;
1392 continue;
1393 }
1394 }
1395
1396 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1397 break;
1398
1399 // uncovered automount point
1400 ret = follow_automount(path, count, lookup_flags);
1401 flags = smp_load_acquire(&path->dentry->d_flags);
1402 if (ret < 0)
1403 break;
1404 }
1405
1406 if (ret == -EISDIR)
1407 ret = 0;
1408 // possible if you race with several mount --move
1409 if (need_mntput && path->mnt == mnt)
1410 mntput(path->mnt);
1411 if (!ret && unlikely(d_flags_negative(flags)))
1412 ret = -ENOENT;
1413 *jumped = need_mntput;
1414 return ret;
1415 }
1416
1417 static inline int traverse_mounts(struct path *path, bool *jumped,
1418 int *count, unsigned lookup_flags)
1419 {
1420 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1421
1422 /* fastpath */
1423 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1424 *jumped = false;
1425 if (unlikely(d_flags_negative(flags)))
1426 return -ENOENT;
1427 return 0;
1428 }
1429 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1430 }
1431
1432 int follow_down_one(struct path *path)
1433 {
1434 struct vfsmount *mounted;
1435
1436 mounted = lookup_mnt(path);
1437 if (mounted) {
1438 dput(path->dentry);
1439 mntput(path->mnt);
1440 path->mnt = mounted;
1441 path->dentry = dget(mounted->mnt_root);
1442 return 1;
1443 }
1444 return 0;
1445 }
1446 EXPORT_SYMBOL(follow_down_one);
1447
1448 /*
1449 * Follow down to the covering mount currently visible to userspace. At each
1450 * point, the filesystem owning that dentry may be queried as to whether the
1451 * caller is permitted to proceed or not.
1452 */
1453 int follow_down(struct path *path)
1454 {
1455 struct vfsmount *mnt = path->mnt;
1456 bool jumped;
1457 int ret = traverse_mounts(path, &jumped, NULL, 0);
1458
1459 if (path->mnt != mnt)
1460 mntput(mnt);
1461 return ret;
1462 }
1463 EXPORT_SYMBOL(follow_down);
1464
1465 /*
1466 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1467 * we meet a managed dentry that would need blocking.
1468 */
1469 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1470 struct inode **inode, unsigned *seqp)
1471 {
1472 struct dentry *dentry = path->dentry;
1473 unsigned int flags = dentry->d_flags;
1474
1475 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1476 return true;
1477
1478 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1479 return false;
1480
1481 for (;;) {
1482 /*
1483 * Don't forget we might have a non-mountpoint managed dentry
1484 * that wants to block transit.
1485 */
1486 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1487 int res = dentry->d_op->d_manage(path, true);
1488 if (res)
1489 return res == -EISDIR;
1490 flags = dentry->d_flags;
1491 }
1492
1493 if (flags & DCACHE_MOUNTED) {
1494 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1495 if (mounted) {
1496 path->mnt = &mounted->mnt;
1497 dentry = path->dentry = mounted->mnt.mnt_root;
1498 nd->state |= ND_JUMPED;
1499 *seqp = read_seqcount_begin(&dentry->d_seq);
1500 *inode = dentry->d_inode;
1501 /*
1502 * We don't need to re-check ->d_seq after this
1503 * ->d_inode read - there will be an RCU delay
1504 * between mount hash removal and ->mnt_root
1505 * becoming unpinned.
1506 */
1507 flags = dentry->d_flags;
1508 continue;
1509 }
1510 if (read_seqretry(&mount_lock, nd->m_seq))
1511 return false;
1512 }
1513 return !(flags & DCACHE_NEED_AUTOMOUNT);
1514 }
1515 }
1516
1517 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1518 struct path *path, struct inode **inode,
1519 unsigned int *seqp)
1520 {
1521 bool jumped;
1522 int ret;
1523
1524 path->mnt = nd->path.mnt;
1525 path->dentry = dentry;
1526 if (nd->flags & LOOKUP_RCU) {
1527 unsigned int seq = *seqp;
1528 if (unlikely(!*inode))
1529 return -ENOENT;
1530 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1531 return 0;
1532 if (!try_to_unlazy_next(nd, dentry, seq))
1533 return -ECHILD;
1534 // *path might've been clobbered by __follow_mount_rcu()
1535 path->mnt = nd->path.mnt;
1536 path->dentry = dentry;
1537 }
1538 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1539 if (jumped) {
1540 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1541 ret = -EXDEV;
1542 else
1543 nd->state |= ND_JUMPED;
1544 }
1545 if (unlikely(ret)) {
1546 dput(path->dentry);
1547 if (path->mnt != nd->path.mnt)
1548 mntput(path->mnt);
1549 } else {
1550 *inode = d_backing_inode(path->dentry);
1551 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1552 }
1553 return ret;
1554 }
1555
1556 /*
1557 * This looks up the name in dcache and possibly revalidates the found dentry.
1558 * NULL is returned if the dentry does not exist in the cache.
1559 */
1560 static struct dentry *lookup_dcache(const struct qstr *name,
1561 struct dentry *dir,
1562 unsigned int flags)
1563 {
1564 struct dentry *dentry = d_lookup(dir, name);
1565 if (dentry) {
1566 int error = d_revalidate(dentry, flags);
1567 if (unlikely(error <= 0)) {
1568 if (!error)
1569 d_invalidate(dentry);
1570 dput(dentry);
1571 return ERR_PTR(error);
1572 }
1573 }
1574 return dentry;
1575 }
1576
1577 /*
1578 * Parent directory has inode locked exclusive. This is one
1579 * and only case when ->lookup() gets called on non in-lookup
1580 * dentries - as the matter of fact, this only gets called
1581 * when directory is guaranteed to have no in-lookup children
1582 * at all.
1583 */
1584 static struct dentry *__lookup_hash(const struct qstr *name,
1585 struct dentry *base, unsigned int flags)
1586 {
1587 struct dentry *dentry = lookup_dcache(name, base, flags);
1588 struct dentry *old;
1589 struct inode *dir = base->d_inode;
1590
1591 if (dentry)
1592 return dentry;
1593
1594 /* Don't create child dentry for a dead directory. */
1595 if (unlikely(IS_DEADDIR(dir)))
1596 return ERR_PTR(-ENOENT);
1597
1598 dentry = d_alloc(base, name);
1599 if (unlikely(!dentry))
1600 return ERR_PTR(-ENOMEM);
1601
1602 old = dir->i_op->lookup(dir, dentry, flags);
1603 if (unlikely(old)) {
1604 dput(dentry);
1605 dentry = old;
1606 }
1607 return dentry;
1608 }
1609
1610 static struct dentry *lookup_fast(struct nameidata *nd,
1611 struct inode **inode,
1612 unsigned *seqp)
1613 {
1614 struct dentry *dentry, *parent = nd->path.dentry;
1615 int status = 1;
1616
1617 /*
1618 * Rename seqlock is not required here because in the off chance
1619 * of a false negative due to a concurrent rename, the caller is
1620 * going to fall back to non-racy lookup.
1621 */
1622 if (nd->flags & LOOKUP_RCU) {
1623 unsigned seq;
1624 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1625 if (unlikely(!dentry)) {
1626 if (!try_to_unlazy(nd))
1627 return ERR_PTR(-ECHILD);
1628 return NULL;
1629 }
1630
1631 /*
1632 * This sequence count validates that the inode matches
1633 * the dentry name information from lookup.
1634 */
1635 *inode = d_backing_inode(dentry);
1636 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1637 return ERR_PTR(-ECHILD);
1638
1639 /*
1640 * This sequence count validates that the parent had no
1641 * changes while we did the lookup of the dentry above.
1642 *
1643 * The memory barrier in read_seqcount_begin of child is
1644 * enough, we can use __read_seqcount_retry here.
1645 */
1646 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1647 return ERR_PTR(-ECHILD);
1648
1649 *seqp = seq;
1650 status = d_revalidate(dentry, nd->flags);
1651 if (likely(status > 0))
1652 return dentry;
1653 if (!try_to_unlazy_next(nd, dentry, seq))
1654 return ERR_PTR(-ECHILD);
1655 if (status == -ECHILD)
1656 /* we'd been told to redo it in non-rcu mode */
1657 status = d_revalidate(dentry, nd->flags);
1658 } else {
1659 dentry = __d_lookup(parent, &nd->last);
1660 if (unlikely(!dentry))
1661 return NULL;
1662 status = d_revalidate(dentry, nd->flags);
1663 }
1664 if (unlikely(status <= 0)) {
1665 if (!status)
1666 d_invalidate(dentry);
1667 dput(dentry);
1668 return ERR_PTR(status);
1669 }
1670 return dentry;
1671 }
1672
1673 /* Fast lookup failed, do it the slow way */
1674 static struct dentry *__lookup_slow(const struct qstr *name,
1675 struct dentry *dir,
1676 unsigned int flags)
1677 {
1678 struct dentry *dentry, *old;
1679 struct inode *inode = dir->d_inode;
1680 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1681
1682 /* Don't go there if it's already dead */
1683 if (unlikely(IS_DEADDIR(inode)))
1684 return ERR_PTR(-ENOENT);
1685 again:
1686 dentry = d_alloc_parallel(dir, name, &wq);
1687 if (IS_ERR(dentry))
1688 return dentry;
1689 if (unlikely(!d_in_lookup(dentry))) {
1690 int error = d_revalidate(dentry, flags);
1691 if (unlikely(error <= 0)) {
1692 if (!error) {
1693 d_invalidate(dentry);
1694 dput(dentry);
1695 goto again;
1696 }
1697 dput(dentry);
1698 dentry = ERR_PTR(error);
1699 }
1700 } else {
1701 old = inode->i_op->lookup(inode, dentry, flags);
1702 d_lookup_done(dentry);
1703 if (unlikely(old)) {
1704 dput(dentry);
1705 dentry = old;
1706 }
1707 }
1708 return dentry;
1709 }
1710
1711 static struct dentry *lookup_slow(const struct qstr *name,
1712 struct dentry *dir,
1713 unsigned int flags)
1714 {
1715 struct inode *inode = dir->d_inode;
1716 struct dentry *res;
1717 inode_lock_shared(inode);
1718 res = __lookup_slow(name, dir, flags);
1719 inode_unlock_shared(inode);
1720 return res;
1721 }
1722
1723 static inline int may_lookup(struct user_namespace *mnt_userns,
1724 struct nameidata *nd)
1725 {
1726 if (nd->flags & LOOKUP_RCU) {
1727 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1728 if (err != -ECHILD || !try_to_unlazy(nd))
1729 return err;
1730 }
1731 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1732 }
1733
1734 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1735 {
1736 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1737 return -ELOOP;
1738
1739 if (likely(nd->depth != EMBEDDED_LEVELS))
1740 return 0;
1741 if (likely(nd->stack != nd->internal))
1742 return 0;
1743 if (likely(nd_alloc_stack(nd)))
1744 return 0;
1745
1746 if (nd->flags & LOOKUP_RCU) {
1747 // we need to grab link before we do unlazy. And we can't skip
1748 // unlazy even if we fail to grab the link - cleanup needs it
1749 bool grabbed_link = legitimize_path(nd, link, seq);
1750
1751 if (!try_to_unlazy(nd) || !grabbed_link)
1752 return -ECHILD;
1753
1754 if (nd_alloc_stack(nd))
1755 return 0;
1756 }
1757 return -ENOMEM;
1758 }
1759
1760 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1761
1762 static const char *pick_link(struct nameidata *nd, struct path *link,
1763 struct inode *inode, unsigned seq, int flags)
1764 {
1765 struct saved *last;
1766 const char *res;
1767 int error = reserve_stack(nd, link, seq);
1768
1769 if (unlikely(error)) {
1770 if (!(nd->flags & LOOKUP_RCU))
1771 path_put(link);
1772 return ERR_PTR(error);
1773 }
1774 last = nd->stack + nd->depth++;
1775 last->link = *link;
1776 clear_delayed_call(&last->done);
1777 last->seq = seq;
1778
1779 if (flags & WALK_TRAILING) {
1780 error = may_follow_link(nd, inode);
1781 if (unlikely(error))
1782 return ERR_PTR(error);
1783 }
1784
1785 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1786 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1787 return ERR_PTR(-ELOOP);
1788
1789 if (!(nd->flags & LOOKUP_RCU)) {
1790 touch_atime(&last->link);
1791 cond_resched();
1792 } else if (atime_needs_update(&last->link, inode)) {
1793 if (!try_to_unlazy(nd))
1794 return ERR_PTR(-ECHILD);
1795 touch_atime(&last->link);
1796 }
1797
1798 error = security_inode_follow_link(link->dentry, inode,
1799 nd->flags & LOOKUP_RCU);
1800 if (unlikely(error))
1801 return ERR_PTR(error);
1802
1803 res = READ_ONCE(inode->i_link);
1804 if (!res) {
1805 const char * (*get)(struct dentry *, struct inode *,
1806 struct delayed_call *);
1807 get = inode->i_op->get_link;
1808 if (nd->flags & LOOKUP_RCU) {
1809 res = get(NULL, inode, &last->done);
1810 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1811 res = get(link->dentry, inode, &last->done);
1812 } else {
1813 res = get(link->dentry, inode, &last->done);
1814 }
1815 if (!res)
1816 goto all_done;
1817 if (IS_ERR(res))
1818 return res;
1819 }
1820 if (*res == '/') {
1821 error = nd_jump_root(nd);
1822 if (unlikely(error))
1823 return ERR_PTR(error);
1824 while (unlikely(*++res == '/'))
1825 ;
1826 }
1827 if (*res)
1828 return res;
1829 all_done: // pure jump
1830 put_link(nd);
1831 return NULL;
1832 }
1833
1834 /*
1835 * Do we need to follow links? We _really_ want to be able
1836 * to do this check without having to look at inode->i_op,
1837 * so we keep a cache of "no, this doesn't need follow_link"
1838 * for the common case.
1839 */
1840 static const char *step_into(struct nameidata *nd, int flags,
1841 struct dentry *dentry, struct inode *inode, unsigned seq)
1842 {
1843 struct path path;
1844 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1845
1846 if (err < 0)
1847 return ERR_PTR(err);
1848 if (likely(!d_is_symlink(path.dentry)) ||
1849 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1850 (flags & WALK_NOFOLLOW)) {
1851 /* not a symlink or should not follow */
1852 if (!(nd->flags & LOOKUP_RCU)) {
1853 dput(nd->path.dentry);
1854 if (nd->path.mnt != path.mnt)
1855 mntput(nd->path.mnt);
1856 }
1857 nd->path = path;
1858 nd->inode = inode;
1859 nd->seq = seq;
1860 return NULL;
1861 }
1862 if (nd->flags & LOOKUP_RCU) {
1863 /* make sure that d_is_symlink above matches inode */
1864 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1865 return ERR_PTR(-ECHILD);
1866 } else {
1867 if (path.mnt == nd->path.mnt)
1868 mntget(path.mnt);
1869 }
1870 return pick_link(nd, &path, inode, seq, flags);
1871 }
1872
1873 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1874 struct inode **inodep,
1875 unsigned *seqp)
1876 {
1877 struct dentry *parent, *old;
1878
1879 if (path_equal(&nd->path, &nd->root))
1880 goto in_root;
1881 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1882 struct path path;
1883 unsigned seq;
1884 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1885 &nd->root, &path, &seq))
1886 goto in_root;
1887 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1888 return ERR_PTR(-ECHILD);
1889 nd->path = path;
1890 nd->inode = path.dentry->d_inode;
1891 nd->seq = seq;
1892 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1893 return ERR_PTR(-ECHILD);
1894 /* we know that mountpoint was pinned */
1895 }
1896 old = nd->path.dentry;
1897 parent = old->d_parent;
1898 *inodep = parent->d_inode;
1899 *seqp = read_seqcount_begin(&parent->d_seq);
1900 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1901 return ERR_PTR(-ECHILD);
1902 if (unlikely(!path_connected(nd->path.mnt, parent)))
1903 return ERR_PTR(-ECHILD);
1904 return parent;
1905 in_root:
1906 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1907 return ERR_PTR(-ECHILD);
1908 if (unlikely(nd->flags & LOOKUP_BENEATH))
1909 return ERR_PTR(-ECHILD);
1910 return NULL;
1911 }
1912
1913 static struct dentry *follow_dotdot(struct nameidata *nd,
1914 struct inode **inodep,
1915 unsigned *seqp)
1916 {
1917 struct dentry *parent;
1918
1919 if (path_equal(&nd->path, &nd->root))
1920 goto in_root;
1921 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1922 struct path path;
1923
1924 if (!choose_mountpoint(real_mount(nd->path.mnt),
1925 &nd->root, &path))
1926 goto in_root;
1927 path_put(&nd->path);
1928 nd->path = path;
1929 nd->inode = path.dentry->d_inode;
1930 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1931 return ERR_PTR(-EXDEV);
1932 }
1933 /* rare case of legitimate dget_parent()... */
1934 parent = dget_parent(nd->path.dentry);
1935 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1936 dput(parent);
1937 return ERR_PTR(-ENOENT);
1938 }
1939 *seqp = 0;
1940 *inodep = parent->d_inode;
1941 return parent;
1942
1943 in_root:
1944 if (unlikely(nd->flags & LOOKUP_BENEATH))
1945 return ERR_PTR(-EXDEV);
1946 dget(nd->path.dentry);
1947 return NULL;
1948 }
1949
1950 static const char *handle_dots(struct nameidata *nd, int type)
1951 {
1952 if (type == LAST_DOTDOT) {
1953 const char *error = NULL;
1954 struct dentry *parent;
1955 struct inode *inode;
1956 unsigned seq;
1957
1958 if (!nd->root.mnt) {
1959 error = ERR_PTR(set_root(nd));
1960 if (error)
1961 return error;
1962 }
1963 if (nd->flags & LOOKUP_RCU)
1964 parent = follow_dotdot_rcu(nd, &inode, &seq);
1965 else
1966 parent = follow_dotdot(nd, &inode, &seq);
1967 if (IS_ERR(parent))
1968 return ERR_CAST(parent);
1969 if (unlikely(!parent))
1970 error = step_into(nd, WALK_NOFOLLOW,
1971 nd->path.dentry, nd->inode, nd->seq);
1972 else
1973 error = step_into(nd, WALK_NOFOLLOW,
1974 parent, inode, seq);
1975 if (unlikely(error))
1976 return error;
1977
1978 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1979 /*
1980 * If there was a racing rename or mount along our
1981 * path, then we can't be sure that ".." hasn't jumped
1982 * above nd->root (and so userspace should retry or use
1983 * some fallback).
1984 */
1985 smp_rmb();
1986 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1987 return ERR_PTR(-EAGAIN);
1988 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1989 return ERR_PTR(-EAGAIN);
1990 }
1991 }
1992 return NULL;
1993 }
1994
1995 static const char *walk_component(struct nameidata *nd, int flags)
1996 {
1997 struct dentry *dentry;
1998 struct inode *inode;
1999 unsigned seq;
2000 /*
2001 * "." and ".." are special - ".." especially so because it has
2002 * to be able to know about the current root directory and
2003 * parent relationships.
2004 */
2005 if (unlikely(nd->last_type != LAST_NORM)) {
2006 if (!(flags & WALK_MORE) && nd->depth)
2007 put_link(nd);
2008 return handle_dots(nd, nd->last_type);
2009 }
2010 dentry = lookup_fast(nd, &inode, &seq);
2011 if (IS_ERR(dentry))
2012 return ERR_CAST(dentry);
2013 if (unlikely(!dentry)) {
2014 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2015 if (IS_ERR(dentry))
2016 return ERR_CAST(dentry);
2017 }
2018 if (!(flags & WALK_MORE) && nd->depth)
2019 put_link(nd);
2020 return step_into(nd, flags, dentry, inode, seq);
2021 }
2022
2023 /*
2024 * We can do the critical dentry name comparison and hashing
2025 * operations one word at a time, but we are limited to:
2026 *
2027 * - Architectures with fast unaligned word accesses. We could
2028 * do a "get_unaligned()" if this helps and is sufficiently
2029 * fast.
2030 *
2031 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2032 * do not trap on the (extremely unlikely) case of a page
2033 * crossing operation.
2034 *
2035 * - Furthermore, we need an efficient 64-bit compile for the
2036 * 64-bit case in order to generate the "number of bytes in
2037 * the final mask". Again, that could be replaced with a
2038 * efficient population count instruction or similar.
2039 */
2040 #ifdef CONFIG_DCACHE_WORD_ACCESS
2041
2042 #include <asm/word-at-a-time.h>
2043
2044 #ifdef HASH_MIX
2045
2046 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2047
2048 #elif defined(CONFIG_64BIT)
2049 /*
2050 * Register pressure in the mixing function is an issue, particularly
2051 * on 32-bit x86, but almost any function requires one state value and
2052 * one temporary. Instead, use a function designed for two state values
2053 * and no temporaries.
2054 *
2055 * This function cannot create a collision in only two iterations, so
2056 * we have two iterations to achieve avalanche. In those two iterations,
2057 * we have six layers of mixing, which is enough to spread one bit's
2058 * influence out to 2^6 = 64 state bits.
2059 *
2060 * Rotate constants are scored by considering either 64 one-bit input
2061 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2062 * probability of that delta causing a change to each of the 128 output
2063 * bits, using a sample of random initial states.
2064 *
2065 * The Shannon entropy of the computed probabilities is then summed
2066 * to produce a score. Ideally, any input change has a 50% chance of
2067 * toggling any given output bit.
2068 *
2069 * Mixing scores (in bits) for (12,45):
2070 * Input delta: 1-bit 2-bit
2071 * 1 round: 713.3 42542.6
2072 * 2 rounds: 2753.7 140389.8
2073 * 3 rounds: 5954.1 233458.2
2074 * 4 rounds: 7862.6 256672.2
2075 * Perfect: 8192 258048
2076 * (64*128) (64*63/2 * 128)
2077 */
2078 #define HASH_MIX(x, y, a) \
2079 ( x ^= (a), \
2080 y ^= x, x = rol64(x,12),\
2081 x += y, y = rol64(y,45),\
2082 y *= 9 )
2083
2084 /*
2085 * Fold two longs into one 32-bit hash value. This must be fast, but
2086 * latency isn't quite as critical, as there is a fair bit of additional
2087 * work done before the hash value is used.
2088 */
2089 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2090 {
2091 y ^= x * GOLDEN_RATIO_64;
2092 y *= GOLDEN_RATIO_64;
2093 return y >> 32;
2094 }
2095
2096 #else /* 32-bit case */
2097
2098 /*
2099 * Mixing scores (in bits) for (7,20):
2100 * Input delta: 1-bit 2-bit
2101 * 1 round: 330.3 9201.6
2102 * 2 rounds: 1246.4 25475.4
2103 * 3 rounds: 1907.1 31295.1
2104 * 4 rounds: 2042.3 31718.6
2105 * Perfect: 2048 31744
2106 * (32*64) (32*31/2 * 64)
2107 */
2108 #define HASH_MIX(x, y, a) \
2109 ( x ^= (a), \
2110 y ^= x, x = rol32(x, 7),\
2111 x += y, y = rol32(y,20),\
2112 y *= 9 )
2113
2114 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2115 {
2116 /* Use arch-optimized multiply if one exists */
2117 return __hash_32(y ^ __hash_32(x));
2118 }
2119
2120 #endif
2121
2122 /*
2123 * Return the hash of a string of known length. This is carfully
2124 * designed to match hash_name(), which is the more critical function.
2125 * In particular, we must end by hashing a final word containing 0..7
2126 * payload bytes, to match the way that hash_name() iterates until it
2127 * finds the delimiter after the name.
2128 */
2129 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2130 {
2131 unsigned long a, x = 0, y = (unsigned long)salt;
2132
2133 for (;;) {
2134 if (!len)
2135 goto done;
2136 a = load_unaligned_zeropad(name);
2137 if (len < sizeof(unsigned long))
2138 break;
2139 HASH_MIX(x, y, a);
2140 name += sizeof(unsigned long);
2141 len -= sizeof(unsigned long);
2142 }
2143 x ^= a & bytemask_from_count(len);
2144 done:
2145 return fold_hash(x, y);
2146 }
2147 EXPORT_SYMBOL(full_name_hash);
2148
2149 /* Return the "hash_len" (hash and length) of a null-terminated string */
2150 u64 hashlen_string(const void *salt, const char *name)
2151 {
2152 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2153 unsigned long adata, mask, len;
2154 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2155
2156 len = 0;
2157 goto inside;
2158
2159 do {
2160 HASH_MIX(x, y, a);
2161 len += sizeof(unsigned long);
2162 inside:
2163 a = load_unaligned_zeropad(name+len);
2164 } while (!has_zero(a, &adata, &constants));
2165
2166 adata = prep_zero_mask(a, adata, &constants);
2167 mask = create_zero_mask(adata);
2168 x ^= a & zero_bytemask(mask);
2169
2170 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2171 }
2172 EXPORT_SYMBOL(hashlen_string);
2173
2174 /*
2175 * Calculate the length and hash of the path component, and
2176 * return the "hash_len" as the result.
2177 */
2178 static inline u64 hash_name(const void *salt, const char *name)
2179 {
2180 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2181 unsigned long adata, bdata, mask, len;
2182 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2183
2184 len = 0;
2185 goto inside;
2186
2187 do {
2188 HASH_MIX(x, y, a);
2189 len += sizeof(unsigned long);
2190 inside:
2191 a = load_unaligned_zeropad(name+len);
2192 b = a ^ REPEAT_BYTE('/');
2193 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2194
2195 adata = prep_zero_mask(a, adata, &constants);
2196 bdata = prep_zero_mask(b, bdata, &constants);
2197 mask = create_zero_mask(adata | bdata);
2198 x ^= a & zero_bytemask(mask);
2199
2200 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2201 }
2202
2203 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2204
2205 /* Return the hash of a string of known length */
2206 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2207 {
2208 unsigned long hash = init_name_hash(salt);
2209 while (len--)
2210 hash = partial_name_hash((unsigned char)*name++, hash);
2211 return end_name_hash(hash);
2212 }
2213 EXPORT_SYMBOL(full_name_hash);
2214
2215 /* Return the "hash_len" (hash and length) of a null-terminated string */
2216 u64 hashlen_string(const void *salt, const char *name)
2217 {
2218 unsigned long hash = init_name_hash(salt);
2219 unsigned long len = 0, c;
2220
2221 c = (unsigned char)*name;
2222 while (c) {
2223 len++;
2224 hash = partial_name_hash(c, hash);
2225 c = (unsigned char)name[len];
2226 }
2227 return hashlen_create(end_name_hash(hash), len);
2228 }
2229 EXPORT_SYMBOL(hashlen_string);
2230
2231 /*
2232 * We know there's a real path component here of at least
2233 * one character.
2234 */
2235 static inline u64 hash_name(const void *salt, const char *name)
2236 {
2237 unsigned long hash = init_name_hash(salt);
2238 unsigned long len = 0, c;
2239
2240 c = (unsigned char)*name;
2241 do {
2242 len++;
2243 hash = partial_name_hash(c, hash);
2244 c = (unsigned char)name[len];
2245 } while (c && c != '/');
2246 return hashlen_create(end_name_hash(hash), len);
2247 }
2248
2249 #endif
2250
2251 /*
2252 * Name resolution.
2253 * This is the basic name resolution function, turning a pathname into
2254 * the final dentry. We expect 'base' to be positive and a directory.
2255 *
2256 * Returns 0 and nd will have valid dentry and mnt on success.
2257 * Returns error and drops reference to input namei data on failure.
2258 */
2259 static int link_path_walk(const char *name, struct nameidata *nd)
2260 {
2261 int depth = 0; // depth <= nd->depth
2262 int err;
2263
2264 nd->last_type = LAST_ROOT;
2265 nd->flags |= LOOKUP_PARENT;
2266 if (IS_ERR(name))
2267 return PTR_ERR(name);
2268 while (*name=='/')
2269 name++;
2270 if (!*name) {
2271 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2272 return 0;
2273 }
2274
2275 /* At this point we know we have a real path component. */
2276 for(;;) {
2277 struct user_namespace *mnt_userns;
2278 const char *link;
2279 u64 hash_len;
2280 int type;
2281
2282 mnt_userns = mnt_user_ns(nd->path.mnt);
2283 err = may_lookup(mnt_userns, nd);
2284 if (err)
2285 return err;
2286
2287 hash_len = hash_name(nd->path.dentry, name);
2288
2289 type = LAST_NORM;
2290 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2291 case 2:
2292 if (name[1] == '.') {
2293 type = LAST_DOTDOT;
2294 nd->state |= ND_JUMPED;
2295 }
2296 break;
2297 case 1:
2298 type = LAST_DOT;
2299 }
2300 if (likely(type == LAST_NORM)) {
2301 struct dentry *parent = nd->path.dentry;
2302 nd->state &= ~ND_JUMPED;
2303 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2304 struct qstr this = { { .hash_len = hash_len }, .name = name };
2305 err = parent->d_op->d_hash(parent, &this);
2306 if (err < 0)
2307 return err;
2308 hash_len = this.hash_len;
2309 name = this.name;
2310 }
2311 }
2312
2313 nd->last.hash_len = hash_len;
2314 nd->last.name = name;
2315 nd->last_type = type;
2316
2317 name += hashlen_len(hash_len);
2318 if (!*name)
2319 goto OK;
2320 /*
2321 * If it wasn't NUL, we know it was '/'. Skip that
2322 * slash, and continue until no more slashes.
2323 */
2324 do {
2325 name++;
2326 } while (unlikely(*name == '/'));
2327 if (unlikely(!*name)) {
2328 OK:
2329 /* pathname or trailing symlink, done */
2330 if (!depth) {
2331 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2332 nd->dir_mode = nd->inode->i_mode;
2333 nd->flags &= ~LOOKUP_PARENT;
2334 return 0;
2335 }
2336 /* last component of nested symlink */
2337 name = nd->stack[--depth].name;
2338 link = walk_component(nd, 0);
2339 } else {
2340 /* not the last component */
2341 link = walk_component(nd, WALK_MORE);
2342 }
2343 if (unlikely(link)) {
2344 if (IS_ERR(link))
2345 return PTR_ERR(link);
2346 /* a symlink to follow */
2347 nd->stack[depth++].name = name;
2348 name = link;
2349 continue;
2350 }
2351 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2352 if (nd->flags & LOOKUP_RCU) {
2353 if (!try_to_unlazy(nd))
2354 return -ECHILD;
2355 }
2356 return -ENOTDIR;
2357 }
2358 }
2359 }
2360
2361 /* must be paired with terminate_walk() */
2362 static const char *path_init(struct nameidata *nd, unsigned flags)
2363 {
2364 int error;
2365 const char *s = nd->name->name;
2366
2367 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2368 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2369 return ERR_PTR(-EAGAIN);
2370
2371 if (!*s)
2372 flags &= ~LOOKUP_RCU;
2373 if (flags & LOOKUP_RCU)
2374 rcu_read_lock();
2375
2376 nd->flags = flags;
2377 nd->state |= ND_JUMPED;
2378
2379 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2380 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2381 smp_rmb();
2382
2383 if (nd->state & ND_ROOT_PRESET) {
2384 struct dentry *root = nd->root.dentry;
2385 struct inode *inode = root->d_inode;
2386 if (*s && unlikely(!d_can_lookup(root)))
2387 return ERR_PTR(-ENOTDIR);
2388 nd->path = nd->root;
2389 nd->inode = inode;
2390 if (flags & LOOKUP_RCU) {
2391 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2392 nd->root_seq = nd->seq;
2393 } else {
2394 path_get(&nd->path);
2395 }
2396 return s;
2397 }
2398
2399 nd->root.mnt = NULL;
2400
2401 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2402 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2403 error = nd_jump_root(nd);
2404 if (unlikely(error))
2405 return ERR_PTR(error);
2406 return s;
2407 }
2408
2409 /* Relative pathname -- get the starting-point it is relative to. */
2410 if (nd->dfd == AT_FDCWD) {
2411 if (flags & LOOKUP_RCU) {
2412 struct fs_struct *fs = current->fs;
2413 unsigned seq;
2414
2415 do {
2416 seq = read_seqcount_begin(&fs->seq);
2417 nd->path = fs->pwd;
2418 nd->inode = nd->path.dentry->d_inode;
2419 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2420 } while (read_seqcount_retry(&fs->seq, seq));
2421 } else {
2422 get_fs_pwd(current->fs, &nd->path);
2423 nd->inode = nd->path.dentry->d_inode;
2424 }
2425 } else {
2426 /* Caller must check execute permissions on the starting path component */
2427 struct fd f = fdget_raw(nd->dfd);
2428 struct dentry *dentry;
2429
2430 if (!f.file)
2431 return ERR_PTR(-EBADF);
2432
2433 dentry = f.file->f_path.dentry;
2434
2435 if (*s && unlikely(!d_can_lookup(dentry))) {
2436 fdput(f);
2437 return ERR_PTR(-ENOTDIR);
2438 }
2439
2440 nd->path = f.file->f_path;
2441 if (flags & LOOKUP_RCU) {
2442 nd->inode = nd->path.dentry->d_inode;
2443 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2444 } else {
2445 path_get(&nd->path);
2446 nd->inode = nd->path.dentry->d_inode;
2447 }
2448 fdput(f);
2449 }
2450
2451 /* For scoped-lookups we need to set the root to the dirfd as well. */
2452 if (flags & LOOKUP_IS_SCOPED) {
2453 nd->root = nd->path;
2454 if (flags & LOOKUP_RCU) {
2455 nd->root_seq = nd->seq;
2456 } else {
2457 path_get(&nd->root);
2458 nd->state |= ND_ROOT_GRABBED;
2459 }
2460 }
2461 return s;
2462 }
2463
2464 static inline const char *lookup_last(struct nameidata *nd)
2465 {
2466 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2467 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2468
2469 return walk_component(nd, WALK_TRAILING);
2470 }
2471
2472 static int handle_lookup_down(struct nameidata *nd)
2473 {
2474 if (!(nd->flags & LOOKUP_RCU))
2475 dget(nd->path.dentry);
2476 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2477 nd->path.dentry, nd->inode, nd->seq));
2478 }
2479
2480 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2481 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2482 {
2483 const char *s = path_init(nd, flags);
2484 int err;
2485
2486 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2487 err = handle_lookup_down(nd);
2488 if (unlikely(err < 0))
2489 s = ERR_PTR(err);
2490 }
2491
2492 while (!(err = link_path_walk(s, nd)) &&
2493 (s = lookup_last(nd)) != NULL)
2494 ;
2495 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2496 err = handle_lookup_down(nd);
2497 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2498 }
2499 if (!err)
2500 err = complete_walk(nd);
2501
2502 if (!err && nd->flags & LOOKUP_DIRECTORY)
2503 if (!d_can_lookup(nd->path.dentry))
2504 err = -ENOTDIR;
2505 if (!err) {
2506 *path = nd->path;
2507 nd->path.mnt = NULL;
2508 nd->path.dentry = NULL;
2509 }
2510 terminate_walk(nd);
2511 return err;
2512 }
2513
2514 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2515 struct path *path, struct path *root)
2516 {
2517 int retval;
2518 struct nameidata nd;
2519 if (IS_ERR(name))
2520 return PTR_ERR(name);
2521 set_nameidata(&nd, dfd, name, root);
2522 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2523 if (unlikely(retval == -ECHILD))
2524 retval = path_lookupat(&nd, flags, path);
2525 if (unlikely(retval == -ESTALE))
2526 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2527
2528 if (likely(!retval))
2529 audit_inode(name, path->dentry,
2530 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2531 restore_nameidata();
2532 return retval;
2533 }
2534
2535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2536 static int path_parentat(struct nameidata *nd, unsigned flags,
2537 struct path *parent)
2538 {
2539 const char *s = path_init(nd, flags);
2540 int err = link_path_walk(s, nd);
2541 if (!err)
2542 err = complete_walk(nd);
2543 if (!err) {
2544 *parent = nd->path;
2545 nd->path.mnt = NULL;
2546 nd->path.dentry = NULL;
2547 }
2548 terminate_walk(nd);
2549 return err;
2550 }
2551
2552 /* Note: this does not consume "name" */
2553 static int filename_parentat(int dfd, struct filename *name,
2554 unsigned int flags, struct path *parent,
2555 struct qstr *last, int *type)
2556 {
2557 int retval;
2558 struct nameidata nd;
2559
2560 if (IS_ERR(name))
2561 return PTR_ERR(name);
2562 set_nameidata(&nd, dfd, name, NULL);
2563 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2564 if (unlikely(retval == -ECHILD))
2565 retval = path_parentat(&nd, flags, parent);
2566 if (unlikely(retval == -ESTALE))
2567 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2568 if (likely(!retval)) {
2569 *last = nd.last;
2570 *type = nd.last_type;
2571 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2572 }
2573 restore_nameidata();
2574 return retval;
2575 }
2576
2577 /* does lookup, returns the object with parent locked */
2578 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2579 {
2580 struct dentry *d;
2581 struct qstr last;
2582 int type, error;
2583
2584 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2585 if (error)
2586 return ERR_PTR(error);
2587 if (unlikely(type != LAST_NORM)) {
2588 path_put(path);
2589 return ERR_PTR(-EINVAL);
2590 }
2591 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2592 d = __lookup_hash(&last, path->dentry, 0);
2593 if (IS_ERR(d)) {
2594 inode_unlock(path->dentry->d_inode);
2595 path_put(path);
2596 }
2597 return d;
2598 }
2599
2600 struct dentry *kern_path_locked(const char *name, struct path *path)
2601 {
2602 struct filename *filename = getname_kernel(name);
2603 struct dentry *res = __kern_path_locked(filename, path);
2604
2605 putname(filename);
2606 return res;
2607 }
2608
2609 int kern_path(const char *name, unsigned int flags, struct path *path)
2610 {
2611 struct filename *filename = getname_kernel(name);
2612 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2613
2614 putname(filename);
2615 return ret;
2616
2617 }
2618 EXPORT_SYMBOL(kern_path);
2619
2620 /**
2621 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2622 * @dentry: pointer to dentry of the base directory
2623 * @mnt: pointer to vfs mount of the base directory
2624 * @name: pointer to file name
2625 * @flags: lookup flags
2626 * @path: pointer to struct path to fill
2627 */
2628 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2629 const char *name, unsigned int flags,
2630 struct path *path)
2631 {
2632 struct filename *filename;
2633 struct path root = {.mnt = mnt, .dentry = dentry};
2634 int ret;
2635
2636 filename = getname_kernel(name);
2637 /* the first argument of filename_lookup() is ignored with root */
2638 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2639 putname(filename);
2640 return ret;
2641 }
2642 EXPORT_SYMBOL(vfs_path_lookup);
2643
2644 static int lookup_one_common(struct user_namespace *mnt_userns,
2645 const char *name, struct dentry *base, int len,
2646 struct qstr *this)
2647 {
2648 this->name = name;
2649 this->len = len;
2650 this->hash = full_name_hash(base, name, len);
2651 if (!len)
2652 return -EACCES;
2653
2654 if (unlikely(name[0] == '.')) {
2655 if (len < 2 || (len == 2 && name[1] == '.'))
2656 return -EACCES;
2657 }
2658
2659 while (len--) {
2660 unsigned int c = *(const unsigned char *)name++;
2661 if (c == '/' || c == '\0')
2662 return -EACCES;
2663 }
2664 /*
2665 * See if the low-level filesystem might want
2666 * to use its own hash..
2667 */
2668 if (base->d_flags & DCACHE_OP_HASH) {
2669 int err = base->d_op->d_hash(base, this);
2670 if (err < 0)
2671 return err;
2672 }
2673
2674 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2675 }
2676
2677 /**
2678 * try_lookup_one_len - filesystem helper to lookup single pathname component
2679 * @name: pathname component to lookup
2680 * @base: base directory to lookup from
2681 * @len: maximum length @len should be interpreted to
2682 *
2683 * Look up a dentry by name in the dcache, returning NULL if it does not
2684 * currently exist. The function does not try to create a dentry.
2685 *
2686 * Note that this routine is purely a helper for filesystem usage and should
2687 * not be called by generic code.
2688 *
2689 * The caller must hold base->i_mutex.
2690 */
2691 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2692 {
2693 struct qstr this;
2694 int err;
2695
2696 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2697
2698 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2699 if (err)
2700 return ERR_PTR(err);
2701
2702 return lookup_dcache(&this, base, 0);
2703 }
2704 EXPORT_SYMBOL(try_lookup_one_len);
2705
2706 /**
2707 * lookup_one_len - filesystem helper to lookup single pathname component
2708 * @name: pathname component to lookup
2709 * @base: base directory to lookup from
2710 * @len: maximum length @len should be interpreted to
2711 *
2712 * Note that this routine is purely a helper for filesystem usage and should
2713 * not be called by generic code.
2714 *
2715 * The caller must hold base->i_mutex.
2716 */
2717 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2718 {
2719 struct dentry *dentry;
2720 struct qstr this;
2721 int err;
2722
2723 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2724
2725 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2726 if (err)
2727 return ERR_PTR(err);
2728
2729 dentry = lookup_dcache(&this, base, 0);
2730 return dentry ? dentry : __lookup_slow(&this, base, 0);
2731 }
2732 EXPORT_SYMBOL(lookup_one_len);
2733
2734 /**
2735 * lookup_one - filesystem helper to lookup single pathname component
2736 * @mnt_userns: user namespace of the mount the lookup is performed from
2737 * @name: pathname component to lookup
2738 * @base: base directory to lookup from
2739 * @len: maximum length @len should be interpreted to
2740 *
2741 * Note that this routine is purely a helper for filesystem usage and should
2742 * not be called by generic code.
2743 *
2744 * The caller must hold base->i_mutex.
2745 */
2746 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2747 struct dentry *base, int len)
2748 {
2749 struct dentry *dentry;
2750 struct qstr this;
2751 int err;
2752
2753 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2754
2755 err = lookup_one_common(mnt_userns, name, base, len, &this);
2756 if (err)
2757 return ERR_PTR(err);
2758
2759 dentry = lookup_dcache(&this, base, 0);
2760 return dentry ? dentry : __lookup_slow(&this, base, 0);
2761 }
2762 EXPORT_SYMBOL(lookup_one);
2763
2764 /**
2765 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2766 * @mnt_userns: idmapping of the mount the lookup is performed from
2767 * @name: pathname component to lookup
2768 * @base: base directory to lookup from
2769 * @len: maximum length @len should be interpreted to
2770 *
2771 * Note that this routine is purely a helper for filesystem usage and should
2772 * not be called by generic code.
2773 *
2774 * Unlike lookup_one_len, it should be called without the parent
2775 * i_mutex held, and will take the i_mutex itself if necessary.
2776 */
2777 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2778 const char *name, struct dentry *base,
2779 int len)
2780 {
2781 struct qstr this;
2782 int err;
2783 struct dentry *ret;
2784
2785 err = lookup_one_common(mnt_userns, name, base, len, &this);
2786 if (err)
2787 return ERR_PTR(err);
2788
2789 ret = lookup_dcache(&this, base, 0);
2790 if (!ret)
2791 ret = lookup_slow(&this, base, 0);
2792 return ret;
2793 }
2794 EXPORT_SYMBOL(lookup_one_unlocked);
2795
2796 /**
2797 * lookup_one_positive_unlocked - filesystem helper to lookup single
2798 * pathname component
2799 * @mnt_userns: idmapping of the mount the lookup is performed from
2800 * @name: pathname component to lookup
2801 * @base: base directory to lookup from
2802 * @len: maximum length @len should be interpreted to
2803 *
2804 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2805 * known positive or ERR_PTR(). This is what most of the users want.
2806 *
2807 * Note that pinned negative with unlocked parent _can_ become positive at any
2808 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2809 * positives have >d_inode stable, so this one avoids such problems.
2810 *
2811 * Note that this routine is purely a helper for filesystem usage and should
2812 * not be called by generic code.
2813 *
2814 * The helper should be called without i_mutex held.
2815 */
2816 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2817 const char *name,
2818 struct dentry *base, int len)
2819 {
2820 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2821
2822 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2823 dput(ret);
2824 ret = ERR_PTR(-ENOENT);
2825 }
2826 return ret;
2827 }
2828 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2829
2830 /**
2831 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2832 * @name: pathname component to lookup
2833 * @base: base directory to lookup from
2834 * @len: maximum length @len should be interpreted to
2835 *
2836 * Note that this routine is purely a helper for filesystem usage and should
2837 * not be called by generic code.
2838 *
2839 * Unlike lookup_one_len, it should be called without the parent
2840 * i_mutex held, and will take the i_mutex itself if necessary.
2841 */
2842 struct dentry *lookup_one_len_unlocked(const char *name,
2843 struct dentry *base, int len)
2844 {
2845 return lookup_one_unlocked(&init_user_ns, name, base, len);
2846 }
2847 EXPORT_SYMBOL(lookup_one_len_unlocked);
2848
2849 /*
2850 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2851 * on negatives. Returns known positive or ERR_PTR(); that's what
2852 * most of the users want. Note that pinned negative with unlocked parent
2853 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2854 * need to be very careful; pinned positives have ->d_inode stable, so
2855 * this one avoids such problems.
2856 */
2857 struct dentry *lookup_positive_unlocked(const char *name,
2858 struct dentry *base, int len)
2859 {
2860 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2861 }
2862 EXPORT_SYMBOL(lookup_positive_unlocked);
2863
2864 #ifdef CONFIG_UNIX98_PTYS
2865 int path_pts(struct path *path)
2866 {
2867 /* Find something mounted on "pts" in the same directory as
2868 * the input path.
2869 */
2870 struct dentry *parent = dget_parent(path->dentry);
2871 struct dentry *child;
2872 struct qstr this = QSTR_INIT("pts", 3);
2873
2874 if (unlikely(!path_connected(path->mnt, parent))) {
2875 dput(parent);
2876 return -ENOENT;
2877 }
2878 dput(path->dentry);
2879 path->dentry = parent;
2880 child = d_hash_and_lookup(parent, &this);
2881 if (!child)
2882 return -ENOENT;
2883
2884 path->dentry = child;
2885 dput(parent);
2886 follow_down(path);
2887 return 0;
2888 }
2889 #endif
2890
2891 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2892 struct path *path, int *empty)
2893 {
2894 struct filename *filename = getname_flags(name, flags, empty);
2895 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2896
2897 putname(filename);
2898 return ret;
2899 }
2900 EXPORT_SYMBOL(user_path_at_empty);
2901
2902 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2903 struct inode *inode)
2904 {
2905 kuid_t fsuid = current_fsuid();
2906
2907 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2908 return 0;
2909 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2910 return 0;
2911 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2912 }
2913 EXPORT_SYMBOL(__check_sticky);
2914
2915 /*
2916 * Check whether we can remove a link victim from directory dir, check
2917 * whether the type of victim is right.
2918 * 1. We can't do it if dir is read-only (done in permission())
2919 * 2. We should have write and exec permissions on dir
2920 * 3. We can't remove anything from append-only dir
2921 * 4. We can't do anything with immutable dir (done in permission())
2922 * 5. If the sticky bit on dir is set we should either
2923 * a. be owner of dir, or
2924 * b. be owner of victim, or
2925 * c. have CAP_FOWNER capability
2926 * 6. If the victim is append-only or immutable we can't do antyhing with
2927 * links pointing to it.
2928 * 7. If the victim has an unknown uid or gid we can't change the inode.
2929 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2930 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2931 * 10. We can't remove a root or mountpoint.
2932 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2933 * nfs_async_unlink().
2934 */
2935 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2936 struct dentry *victim, bool isdir)
2937 {
2938 struct inode *inode = d_backing_inode(victim);
2939 int error;
2940
2941 if (d_is_negative(victim))
2942 return -ENOENT;
2943 BUG_ON(!inode);
2944
2945 BUG_ON(victim->d_parent->d_inode != dir);
2946
2947 /* Inode writeback is not safe when the uid or gid are invalid. */
2948 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2949 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2950 return -EOVERFLOW;
2951
2952 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2953
2954 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2955 if (error)
2956 return error;
2957 if (IS_APPEND(dir))
2958 return -EPERM;
2959
2960 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2961 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2962 HAS_UNMAPPED_ID(mnt_userns, inode))
2963 return -EPERM;
2964 if (isdir) {
2965 if (!d_is_dir(victim))
2966 return -ENOTDIR;
2967 if (IS_ROOT(victim))
2968 return -EBUSY;
2969 } else if (d_is_dir(victim))
2970 return -EISDIR;
2971 if (IS_DEADDIR(dir))
2972 return -ENOENT;
2973 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2974 return -EBUSY;
2975 return 0;
2976 }
2977
2978 /* Check whether we can create an object with dentry child in directory
2979 * dir.
2980 * 1. We can't do it if child already exists (open has special treatment for
2981 * this case, but since we are inlined it's OK)
2982 * 2. We can't do it if dir is read-only (done in permission())
2983 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2984 * 4. We should have write and exec permissions on dir
2985 * 5. We can't do it if dir is immutable (done in permission())
2986 */
2987 static inline int may_create(struct user_namespace *mnt_userns,
2988 struct inode *dir, struct dentry *child)
2989 {
2990 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2991 if (child->d_inode)
2992 return -EEXIST;
2993 if (IS_DEADDIR(dir))
2994 return -ENOENT;
2995 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2996 return -EOVERFLOW;
2997
2998 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2999 }
3000
3001 /*
3002 * p1 and p2 should be directories on the same fs.
3003 */
3004 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3005 {
3006 struct dentry *p;
3007
3008 if (p1 == p2) {
3009 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3010 return NULL;
3011 }
3012
3013 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3014
3015 p = d_ancestor(p2, p1);
3016 if (p) {
3017 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3018 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3019 return p;
3020 }
3021
3022 p = d_ancestor(p1, p2);
3023 if (p) {
3024 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3025 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3026 return p;
3027 }
3028
3029 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3030 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3031 return NULL;
3032 }
3033 EXPORT_SYMBOL(lock_rename);
3034
3035 void unlock_rename(struct dentry *p1, struct dentry *p2)
3036 {
3037 inode_unlock(p1->d_inode);
3038 if (p1 != p2) {
3039 inode_unlock(p2->d_inode);
3040 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3041 }
3042 }
3043 EXPORT_SYMBOL(unlock_rename);
3044
3045 /**
3046 * vfs_create - create new file
3047 * @mnt_userns: user namespace of the mount the inode was found from
3048 * @dir: inode of @dentry
3049 * @dentry: pointer to dentry of the base directory
3050 * @mode: mode of the new file
3051 * @want_excl: whether the file must not yet exist
3052 *
3053 * Create a new file.
3054 *
3055 * If the inode has been found through an idmapped mount the user namespace of
3056 * the vfsmount must be passed through @mnt_userns. This function will then take
3057 * care to map the inode according to @mnt_userns before checking permissions.
3058 * On non-idmapped mounts or if permission checking is to be performed on the
3059 * raw inode simply passs init_user_ns.
3060 */
3061 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3062 struct dentry *dentry, umode_t mode, bool want_excl)
3063 {
3064 int error = may_create(mnt_userns, dir, dentry);
3065 if (error)
3066 return error;
3067
3068 if (!dir->i_op->create)
3069 return -EACCES; /* shouldn't it be ENOSYS? */
3070 mode &= S_IALLUGO;
3071 mode |= S_IFREG;
3072 error = security_inode_create(dir, dentry, mode);
3073 if (error)
3074 return error;
3075 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3076 if (!error)
3077 fsnotify_create(dir, dentry);
3078 return error;
3079 }
3080 EXPORT_SYMBOL(vfs_create);
3081
3082 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3083 int (*f)(struct dentry *, umode_t, void *),
3084 void *arg)
3085 {
3086 struct inode *dir = dentry->d_parent->d_inode;
3087 int error = may_create(&init_user_ns, dir, dentry);
3088 if (error)
3089 return error;
3090
3091 mode &= S_IALLUGO;
3092 mode |= S_IFREG;
3093 error = security_inode_create(dir, dentry, mode);
3094 if (error)
3095 return error;
3096 error = f(dentry, mode, arg);
3097 if (!error)
3098 fsnotify_create(dir, dentry);
3099 return error;
3100 }
3101 EXPORT_SYMBOL(vfs_mkobj);
3102
3103 bool may_open_dev(const struct path *path)
3104 {
3105 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3106 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3107 }
3108
3109 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3110 int acc_mode, int flag)
3111 {
3112 struct dentry *dentry = path->dentry;
3113 struct inode *inode = dentry->d_inode;
3114 int error;
3115
3116 if (!inode)
3117 return -ENOENT;
3118
3119 switch (inode->i_mode & S_IFMT) {
3120 case S_IFLNK:
3121 return -ELOOP;
3122 case S_IFDIR:
3123 if (acc_mode & MAY_WRITE)
3124 return -EISDIR;
3125 if (acc_mode & MAY_EXEC)
3126 return -EACCES;
3127 break;
3128 case S_IFBLK:
3129 case S_IFCHR:
3130 if (!may_open_dev(path))
3131 return -EACCES;
3132 fallthrough;
3133 case S_IFIFO:
3134 case S_IFSOCK:
3135 if (acc_mode & MAY_EXEC)
3136 return -EACCES;
3137 flag &= ~O_TRUNC;
3138 break;
3139 case S_IFREG:
3140 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3141 return -EACCES;
3142 break;
3143 }
3144
3145 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3146 if (error)
3147 return error;
3148
3149 /*
3150 * An append-only file must be opened in append mode for writing.
3151 */
3152 if (IS_APPEND(inode)) {
3153 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3154 return -EPERM;
3155 if (flag & O_TRUNC)
3156 return -EPERM;
3157 }
3158
3159 /* O_NOATIME can only be set by the owner or superuser */
3160 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3161 return -EPERM;
3162
3163 return 0;
3164 }
3165
3166 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3167 {
3168 const struct path *path = &filp->f_path;
3169 struct inode *inode = path->dentry->d_inode;
3170 int error = get_write_access(inode);
3171 if (error)
3172 return error;
3173
3174 error = security_path_truncate(path);
3175 if (!error) {
3176 error = do_truncate(mnt_userns, path->dentry, 0,
3177 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3178 filp);
3179 }
3180 put_write_access(inode);
3181 return error;
3182 }
3183
3184 static inline int open_to_namei_flags(int flag)
3185 {
3186 if ((flag & O_ACCMODE) == 3)
3187 flag--;
3188 return flag;
3189 }
3190
3191 static int may_o_create(struct user_namespace *mnt_userns,
3192 const struct path *dir, struct dentry *dentry,
3193 umode_t mode)
3194 {
3195 int error = security_path_mknod(dir, dentry, mode, 0);
3196 if (error)
3197 return error;
3198
3199 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3200 return -EOVERFLOW;
3201
3202 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3203 MAY_WRITE | MAY_EXEC);
3204 if (error)
3205 return error;
3206
3207 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3208 }
3209
3210 /*
3211 * Attempt to atomically look up, create and open a file from a negative
3212 * dentry.
3213 *
3214 * Returns 0 if successful. The file will have been created and attached to
3215 * @file by the filesystem calling finish_open().
3216 *
3217 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3218 * be set. The caller will need to perform the open themselves. @path will
3219 * have been updated to point to the new dentry. This may be negative.
3220 *
3221 * Returns an error code otherwise.
3222 */
3223 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3224 struct file *file,
3225 int open_flag, umode_t mode)
3226 {
3227 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3228 struct inode *dir = nd->path.dentry->d_inode;
3229 int error;
3230
3231 if (nd->flags & LOOKUP_DIRECTORY)
3232 open_flag |= O_DIRECTORY;
3233
3234 file->f_path.dentry = DENTRY_NOT_SET;
3235 file->f_path.mnt = nd->path.mnt;
3236 error = dir->i_op->atomic_open(dir, dentry, file,
3237 open_to_namei_flags(open_flag), mode);
3238 d_lookup_done(dentry);
3239 if (!error) {
3240 if (file->f_mode & FMODE_OPENED) {
3241 if (unlikely(dentry != file->f_path.dentry)) {
3242 dput(dentry);
3243 dentry = dget(file->f_path.dentry);
3244 }
3245 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3246 error = -EIO;
3247 } else {
3248 if (file->f_path.dentry) {
3249 dput(dentry);
3250 dentry = file->f_path.dentry;
3251 }
3252 if (unlikely(d_is_negative(dentry)))
3253 error = -ENOENT;
3254 }
3255 }
3256 if (error) {
3257 dput(dentry);
3258 dentry = ERR_PTR(error);
3259 }
3260 return dentry;
3261 }
3262
3263 /*
3264 * Look up and maybe create and open the last component.
3265 *
3266 * Must be called with parent locked (exclusive in O_CREAT case).
3267 *
3268 * Returns 0 on success, that is, if
3269 * the file was successfully atomically created (if necessary) and opened, or
3270 * the file was not completely opened at this time, though lookups and
3271 * creations were performed.
3272 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3273 * In the latter case dentry returned in @path might be negative if O_CREAT
3274 * hadn't been specified.
3275 *
3276 * An error code is returned on failure.
3277 */
3278 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3279 const struct open_flags *op,
3280 bool got_write)
3281 {
3282 struct user_namespace *mnt_userns;
3283 struct dentry *dir = nd->path.dentry;
3284 struct inode *dir_inode = dir->d_inode;
3285 int open_flag = op->open_flag;
3286 struct dentry *dentry;
3287 int error, create_error = 0;
3288 umode_t mode = op->mode;
3289 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3290
3291 if (unlikely(IS_DEADDIR(dir_inode)))
3292 return ERR_PTR(-ENOENT);
3293
3294 file->f_mode &= ~FMODE_CREATED;
3295 dentry = d_lookup(dir, &nd->last);
3296 for (;;) {
3297 if (!dentry) {
3298 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3299 if (IS_ERR(dentry))
3300 return dentry;
3301 }
3302 if (d_in_lookup(dentry))
3303 break;
3304
3305 error = d_revalidate(dentry, nd->flags);
3306 if (likely(error > 0))
3307 break;
3308 if (error)
3309 goto out_dput;
3310 d_invalidate(dentry);
3311 dput(dentry);
3312 dentry = NULL;
3313 }
3314 if (dentry->d_inode) {
3315 /* Cached positive dentry: will open in f_op->open */
3316 return dentry;
3317 }
3318
3319 /*
3320 * Checking write permission is tricky, bacuse we don't know if we are
3321 * going to actually need it: O_CREAT opens should work as long as the
3322 * file exists. But checking existence breaks atomicity. The trick is
3323 * to check access and if not granted clear O_CREAT from the flags.
3324 *
3325 * Another problem is returing the "right" error value (e.g. for an
3326 * O_EXCL open we want to return EEXIST not EROFS).
3327 */
3328 if (unlikely(!got_write))
3329 open_flag &= ~O_TRUNC;
3330 mnt_userns = mnt_user_ns(nd->path.mnt);
3331 if (open_flag & O_CREAT) {
3332 if (open_flag & O_EXCL)
3333 open_flag &= ~O_TRUNC;
3334 if (!IS_POSIXACL(dir->d_inode))
3335 mode &= ~current_umask();
3336 if (likely(got_write))
3337 create_error = may_o_create(mnt_userns, &nd->path,
3338 dentry, mode);
3339 else
3340 create_error = -EROFS;
3341 }
3342 if (create_error)
3343 open_flag &= ~O_CREAT;
3344 if (dir_inode->i_op->atomic_open) {
3345 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3346 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3347 dentry = ERR_PTR(create_error);
3348 return dentry;
3349 }
3350
3351 if (d_in_lookup(dentry)) {
3352 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3353 nd->flags);
3354 d_lookup_done(dentry);
3355 if (unlikely(res)) {
3356 if (IS_ERR(res)) {
3357 error = PTR_ERR(res);
3358 goto out_dput;
3359 }
3360 dput(dentry);
3361 dentry = res;
3362 }
3363 }
3364
3365 /* Negative dentry, just create the file */
3366 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3367 file->f_mode |= FMODE_CREATED;
3368 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3369 if (!dir_inode->i_op->create) {
3370 error = -EACCES;
3371 goto out_dput;
3372 }
3373
3374 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3375 mode, open_flag & O_EXCL);
3376 if (error)
3377 goto out_dput;
3378 }
3379 if (unlikely(create_error) && !dentry->d_inode) {
3380 error = create_error;
3381 goto out_dput;
3382 }
3383 return dentry;
3384
3385 out_dput:
3386 dput(dentry);
3387 return ERR_PTR(error);
3388 }
3389
3390 static const char *open_last_lookups(struct nameidata *nd,
3391 struct file *file, const struct open_flags *op)
3392 {
3393 struct dentry *dir = nd->path.dentry;
3394 int open_flag = op->open_flag;
3395 bool got_write = false;
3396 unsigned seq;
3397 struct inode *inode;
3398 struct dentry *dentry;
3399 const char *res;
3400
3401 nd->flags |= op->intent;
3402
3403 if (nd->last_type != LAST_NORM) {
3404 if (nd->depth)
3405 put_link(nd);
3406 return handle_dots(nd, nd->last_type);
3407 }
3408
3409 if (!(open_flag & O_CREAT)) {
3410 if (nd->last.name[nd->last.len])
3411 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3412 /* we _can_ be in RCU mode here */
3413 dentry = lookup_fast(nd, &inode, &seq);
3414 if (IS_ERR(dentry))
3415 return ERR_CAST(dentry);
3416 if (likely(dentry))
3417 goto finish_lookup;
3418
3419 BUG_ON(nd->flags & LOOKUP_RCU);
3420 } else {
3421 /* create side of things */
3422 if (nd->flags & LOOKUP_RCU) {
3423 if (!try_to_unlazy(nd))
3424 return ERR_PTR(-ECHILD);
3425 }
3426 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3427 /* trailing slashes? */
3428 if (unlikely(nd->last.name[nd->last.len]))
3429 return ERR_PTR(-EISDIR);
3430 }
3431
3432 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3433 got_write = !mnt_want_write(nd->path.mnt);
3434 /*
3435 * do _not_ fail yet - we might not need that or fail with
3436 * a different error; let lookup_open() decide; we'll be
3437 * dropping this one anyway.
3438 */
3439 }
3440 if (open_flag & O_CREAT)
3441 inode_lock(dir->d_inode);
3442 else
3443 inode_lock_shared(dir->d_inode);
3444 dentry = lookup_open(nd, file, op, got_write);
3445 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3446 fsnotify_create(dir->d_inode, dentry);
3447 if (open_flag & O_CREAT)
3448 inode_unlock(dir->d_inode);
3449 else
3450 inode_unlock_shared(dir->d_inode);
3451
3452 if (got_write)
3453 mnt_drop_write(nd->path.mnt);
3454
3455 if (IS_ERR(dentry))
3456 return ERR_CAST(dentry);
3457
3458 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3459 dput(nd->path.dentry);
3460 nd->path.dentry = dentry;
3461 return NULL;
3462 }
3463
3464 finish_lookup:
3465 if (nd->depth)
3466 put_link(nd);
3467 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3468 if (unlikely(res))
3469 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3470 return res;
3471 }
3472
3473 /*
3474 * Handle the last step of open()
3475 */
3476 static int do_open(struct nameidata *nd,
3477 struct file *file, const struct open_flags *op)
3478 {
3479 struct user_namespace *mnt_userns;
3480 int open_flag = op->open_flag;
3481 bool do_truncate;
3482 int acc_mode;
3483 int error;
3484
3485 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3486 error = complete_walk(nd);
3487 if (error)
3488 return error;
3489 }
3490 if (!(file->f_mode & FMODE_CREATED))
3491 audit_inode(nd->name, nd->path.dentry, 0);
3492 mnt_userns = mnt_user_ns(nd->path.mnt);
3493 if (open_flag & O_CREAT) {
3494 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3495 return -EEXIST;
3496 if (d_is_dir(nd->path.dentry))
3497 return -EISDIR;
3498 error = may_create_in_sticky(mnt_userns, nd,
3499 d_backing_inode(nd->path.dentry));
3500 if (unlikely(error))
3501 return error;
3502 }
3503 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3504 return -ENOTDIR;
3505
3506 do_truncate = false;
3507 acc_mode = op->acc_mode;
3508 if (file->f_mode & FMODE_CREATED) {
3509 /* Don't check for write permission, don't truncate */
3510 open_flag &= ~O_TRUNC;
3511 acc_mode = 0;
3512 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3513 error = mnt_want_write(nd->path.mnt);
3514 if (error)
3515 return error;
3516 do_truncate = true;
3517 }
3518 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3519 if (!error && !(file->f_mode & FMODE_OPENED))
3520 error = vfs_open(&nd->path, file);
3521 if (!error)
3522 error = ima_file_check(file, op->acc_mode);
3523 if (!error && do_truncate)
3524 error = handle_truncate(mnt_userns, file);
3525 if (unlikely(error > 0)) {
3526 WARN_ON(1);
3527 error = -EINVAL;
3528 }
3529 if (do_truncate)
3530 mnt_drop_write(nd->path.mnt);
3531 return error;
3532 }
3533
3534 /**
3535 * vfs_tmpfile - create tmpfile
3536 * @mnt_userns: user namespace of the mount the inode was found from
3537 * @dentry: pointer to dentry of the base directory
3538 * @mode: mode of the new tmpfile
3539 * @open_flag: flags
3540 *
3541 * Create a temporary file.
3542 *
3543 * If the inode has been found through an idmapped mount the user namespace of
3544 * the vfsmount must be passed through @mnt_userns. This function will then take
3545 * care to map the inode according to @mnt_userns before checking permissions.
3546 * On non-idmapped mounts or if permission checking is to be performed on the
3547 * raw inode simply passs init_user_ns.
3548 */
3549 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3550 struct dentry *dentry, umode_t mode, int open_flag)
3551 {
3552 struct dentry *child = NULL;
3553 struct inode *dir = dentry->d_inode;
3554 struct inode *inode;
3555 int error;
3556
3557 /* we want directory to be writable */
3558 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3559 if (error)
3560 goto out_err;
3561 error = -EOPNOTSUPP;
3562 if (!dir->i_op->tmpfile)
3563 goto out_err;
3564 error = -ENOMEM;
3565 child = d_alloc(dentry, &slash_name);
3566 if (unlikely(!child))
3567 goto out_err;
3568 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3569 if (error)
3570 goto out_err;
3571 error = -ENOENT;
3572 inode = child->d_inode;
3573 if (unlikely(!inode))
3574 goto out_err;
3575 if (!(open_flag & O_EXCL)) {
3576 spin_lock(&inode->i_lock);
3577 inode->i_state |= I_LINKABLE;
3578 spin_unlock(&inode->i_lock);
3579 }
3580 ima_post_create_tmpfile(mnt_userns, inode);
3581 return child;
3582
3583 out_err:
3584 dput(child);
3585 return ERR_PTR(error);
3586 }
3587 EXPORT_SYMBOL(vfs_tmpfile);
3588
3589 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3590 const struct open_flags *op,
3591 struct file *file)
3592 {
3593 struct user_namespace *mnt_userns;
3594 struct dentry *child;
3595 struct path path;
3596 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3597 if (unlikely(error))
3598 return error;
3599 error = mnt_want_write(path.mnt);
3600 if (unlikely(error))
3601 goto out;
3602 mnt_userns = mnt_user_ns(path.mnt);
3603 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3604 error = PTR_ERR(child);
3605 if (IS_ERR(child))
3606 goto out2;
3607 dput(path.dentry);
3608 path.dentry = child;
3609 audit_inode(nd->name, child, 0);
3610 /* Don't check for other permissions, the inode was just created */
3611 error = may_open(mnt_userns, &path, 0, op->open_flag);
3612 if (!error)
3613 error = vfs_open(&path, file);
3614 out2:
3615 mnt_drop_write(path.mnt);
3616 out:
3617 path_put(&path);
3618 return error;
3619 }
3620
3621 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3622 {
3623 struct path path;
3624 int error = path_lookupat(nd, flags, &path);
3625 if (!error) {
3626 audit_inode(nd->name, path.dentry, 0);
3627 error = vfs_open(&path, file);
3628 path_put(&path);
3629 }
3630 return error;
3631 }
3632
3633 static struct file *path_openat(struct nameidata *nd,
3634 const struct open_flags *op, unsigned flags)
3635 {
3636 struct file *file;
3637 int error;
3638
3639 file = alloc_empty_file(op->open_flag, current_cred());
3640 if (IS_ERR(file))
3641 return file;
3642
3643 if (unlikely(file->f_flags & __O_TMPFILE)) {
3644 error = do_tmpfile(nd, flags, op, file);
3645 } else if (unlikely(file->f_flags & O_PATH)) {
3646 error = do_o_path(nd, flags, file);
3647 } else {
3648 const char *s = path_init(nd, flags);
3649 while (!(error = link_path_walk(s, nd)) &&
3650 (s = open_last_lookups(nd, file, op)) != NULL)
3651 ;
3652 if (!error)
3653 error = do_open(nd, file, op);
3654 terminate_walk(nd);
3655 }
3656 if (likely(!error)) {
3657 if (likely(file->f_mode & FMODE_OPENED))
3658 return file;
3659 WARN_ON(1);
3660 error = -EINVAL;
3661 }
3662 fput(file);
3663 if (error == -EOPENSTALE) {
3664 if (flags & LOOKUP_RCU)
3665 error = -ECHILD;
3666 else
3667 error = -ESTALE;
3668 }
3669 return ERR_PTR(error);
3670 }
3671
3672 struct file *do_filp_open(int dfd, struct filename *pathname,
3673 const struct open_flags *op)
3674 {
3675 struct nameidata nd;
3676 int flags = op->lookup_flags;
3677 struct file *filp;
3678
3679 set_nameidata(&nd, dfd, pathname, NULL);
3680 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3681 if (unlikely(filp == ERR_PTR(-ECHILD)))
3682 filp = path_openat(&nd, op, flags);
3683 if (unlikely(filp == ERR_PTR(-ESTALE)))
3684 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3685 restore_nameidata();
3686 return filp;
3687 }
3688
3689 struct file *do_file_open_root(const struct path *root,
3690 const char *name, const struct open_flags *op)
3691 {
3692 struct nameidata nd;
3693 struct file *file;
3694 struct filename *filename;
3695 int flags = op->lookup_flags;
3696
3697 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3698 return ERR_PTR(-ELOOP);
3699
3700 filename = getname_kernel(name);
3701 if (IS_ERR(filename))
3702 return ERR_CAST(filename);
3703
3704 set_nameidata(&nd, -1, filename, root);
3705 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3706 if (unlikely(file == ERR_PTR(-ECHILD)))
3707 file = path_openat(&nd, op, flags);
3708 if (unlikely(file == ERR_PTR(-ESTALE)))
3709 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3710 restore_nameidata();
3711 putname(filename);
3712 return file;
3713 }
3714
3715 static struct dentry *filename_create(int dfd, struct filename *name,
3716 struct path *path, unsigned int lookup_flags)
3717 {
3718 struct dentry *dentry = ERR_PTR(-EEXIST);
3719 struct qstr last;
3720 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3721 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3722 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3723 int type;
3724 int err2;
3725 int error;
3726
3727 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3728 if (error)
3729 return ERR_PTR(error);
3730
3731 /*
3732 * Yucky last component or no last component at all?
3733 * (foo/., foo/.., /////)
3734 */
3735 if (unlikely(type != LAST_NORM))
3736 goto out;
3737
3738 /* don't fail immediately if it's r/o, at least try to report other errors */
3739 err2 = mnt_want_write(path->mnt);
3740 /*
3741 * Do the final lookup. Suppress 'create' if there is a trailing
3742 * '/', and a directory wasn't requested.
3743 */
3744 if (last.name[last.len] && !want_dir)
3745 create_flags = 0;
3746 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3747 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3748 if (IS_ERR(dentry))
3749 goto unlock;
3750
3751 error = -EEXIST;
3752 if (d_is_positive(dentry))
3753 goto fail;
3754
3755 /*
3756 * Special case - lookup gave negative, but... we had foo/bar/
3757 * From the vfs_mknod() POV we just have a negative dentry -
3758 * all is fine. Let's be bastards - you had / on the end, you've
3759 * been asking for (non-existent) directory. -ENOENT for you.
3760 */
3761 if (unlikely(!create_flags)) {
3762 error = -ENOENT;
3763 goto fail;
3764 }
3765 if (unlikely(err2)) {
3766 error = err2;
3767 goto fail;
3768 }
3769 return dentry;
3770 fail:
3771 dput(dentry);
3772 dentry = ERR_PTR(error);
3773 unlock:
3774 inode_unlock(path->dentry->d_inode);
3775 if (!err2)
3776 mnt_drop_write(path->mnt);
3777 out:
3778 path_put(path);
3779 return dentry;
3780 }
3781
3782 struct dentry *kern_path_create(int dfd, const char *pathname,
3783 struct path *path, unsigned int lookup_flags)
3784 {
3785 struct filename *filename = getname_kernel(pathname);
3786 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3787
3788 putname(filename);
3789 return res;
3790 }
3791 EXPORT_SYMBOL(kern_path_create);
3792
3793 void done_path_create(struct path *path, struct dentry *dentry)
3794 {
3795 dput(dentry);
3796 inode_unlock(path->dentry->d_inode);
3797 mnt_drop_write(path->mnt);
3798 path_put(path);
3799 }
3800 EXPORT_SYMBOL(done_path_create);
3801
3802 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3803 struct path *path, unsigned int lookup_flags)
3804 {
3805 struct filename *filename = getname(pathname);
3806 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3807
3808 putname(filename);
3809 return res;
3810 }
3811 EXPORT_SYMBOL(user_path_create);
3812
3813 /**
3814 * vfs_mknod - create device node or file
3815 * @mnt_userns: user namespace of the mount the inode was found from
3816 * @dir: inode of @dentry
3817 * @dentry: pointer to dentry of the base directory
3818 * @mode: mode of the new device node or file
3819 * @dev: device number of device to create
3820 *
3821 * Create a device node or file.
3822 *
3823 * If the inode has been found through an idmapped mount the user namespace of
3824 * the vfsmount must be passed through @mnt_userns. This function will then take
3825 * care to map the inode according to @mnt_userns before checking permissions.
3826 * On non-idmapped mounts or if permission checking is to be performed on the
3827 * raw inode simply passs init_user_ns.
3828 */
3829 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3830 struct dentry *dentry, umode_t mode, dev_t dev)
3831 {
3832 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3833 int error = may_create(mnt_userns, dir, dentry);
3834
3835 if (error)
3836 return error;
3837
3838 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3839 !capable(CAP_MKNOD))
3840 return -EPERM;
3841
3842 if (!dir->i_op->mknod)
3843 return -EPERM;
3844
3845 error = devcgroup_inode_mknod(mode, dev);
3846 if (error)
3847 return error;
3848
3849 error = security_inode_mknod(dir, dentry, mode, dev);
3850 if (error)
3851 return error;
3852
3853 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3854 if (!error)
3855 fsnotify_create(dir, dentry);
3856 return error;
3857 }
3858 EXPORT_SYMBOL(vfs_mknod);
3859
3860 static int may_mknod(umode_t mode)
3861 {
3862 switch (mode & S_IFMT) {
3863 case S_IFREG:
3864 case S_IFCHR:
3865 case S_IFBLK:
3866 case S_IFIFO:
3867 case S_IFSOCK:
3868 case 0: /* zero mode translates to S_IFREG */
3869 return 0;
3870 case S_IFDIR:
3871 return -EPERM;
3872 default:
3873 return -EINVAL;
3874 }
3875 }
3876
3877 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3878 unsigned int dev)
3879 {
3880 struct user_namespace *mnt_userns;
3881 struct dentry *dentry;
3882 struct path path;
3883 int error;
3884 unsigned int lookup_flags = 0;
3885
3886 error = may_mknod(mode);
3887 if (error)
3888 goto out1;
3889 retry:
3890 dentry = filename_create(dfd, name, &path, lookup_flags);
3891 error = PTR_ERR(dentry);
3892 if (IS_ERR(dentry))
3893 goto out1;
3894
3895 if (!IS_POSIXACL(path.dentry->d_inode))
3896 mode &= ~current_umask();
3897 error = security_path_mknod(&path, dentry, mode, dev);
3898 if (error)
3899 goto out2;
3900
3901 mnt_userns = mnt_user_ns(path.mnt);
3902 switch (mode & S_IFMT) {
3903 case 0: case S_IFREG:
3904 error = vfs_create(mnt_userns, path.dentry->d_inode,
3905 dentry, mode, true);
3906 if (!error)
3907 ima_post_path_mknod(mnt_userns, dentry);
3908 break;
3909 case S_IFCHR: case S_IFBLK:
3910 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3911 dentry, mode, new_decode_dev(dev));
3912 break;
3913 case S_IFIFO: case S_IFSOCK:
3914 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3915 dentry, mode, 0);
3916 break;
3917 }
3918 out2:
3919 done_path_create(&path, dentry);
3920 if (retry_estale(error, lookup_flags)) {
3921 lookup_flags |= LOOKUP_REVAL;
3922 goto retry;
3923 }
3924 out1:
3925 putname(name);
3926 return error;
3927 }
3928
3929 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3930 unsigned int, dev)
3931 {
3932 return do_mknodat(dfd, getname(filename), mode, dev);
3933 }
3934
3935 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3936 {
3937 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3938 }
3939
3940 /**
3941 * vfs_mkdir - create directory
3942 * @mnt_userns: user namespace of the mount the inode was found from
3943 * @dir: inode of @dentry
3944 * @dentry: pointer to dentry of the base directory
3945 * @mode: mode of the new directory
3946 *
3947 * Create a directory.
3948 *
3949 * If the inode has been found through an idmapped mount the user namespace of
3950 * the vfsmount must be passed through @mnt_userns. This function will then take
3951 * care to map the inode according to @mnt_userns before checking permissions.
3952 * On non-idmapped mounts or if permission checking is to be performed on the
3953 * raw inode simply passs init_user_ns.
3954 */
3955 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3956 struct dentry *dentry, umode_t mode)
3957 {
3958 int error = may_create(mnt_userns, dir, dentry);
3959 unsigned max_links = dir->i_sb->s_max_links;
3960
3961 if (error)
3962 return error;
3963
3964 if (!dir->i_op->mkdir)
3965 return -EPERM;
3966
3967 mode &= (S_IRWXUGO|S_ISVTX);
3968 error = security_inode_mkdir(dir, dentry, mode);
3969 if (error)
3970 return error;
3971
3972 if (max_links && dir->i_nlink >= max_links)
3973 return -EMLINK;
3974
3975 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3976 if (!error)
3977 fsnotify_mkdir(dir, dentry);
3978 return error;
3979 }
3980 EXPORT_SYMBOL(vfs_mkdir);
3981
3982 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3983 {
3984 struct dentry *dentry;
3985 struct path path;
3986 int error;
3987 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3988
3989 retry:
3990 dentry = filename_create(dfd, name, &path, lookup_flags);
3991 error = PTR_ERR(dentry);
3992 if (IS_ERR(dentry))
3993 goto out_putname;
3994
3995 if (!IS_POSIXACL(path.dentry->d_inode))
3996 mode &= ~current_umask();
3997 error = security_path_mkdir(&path, dentry, mode);
3998 if (!error) {
3999 struct user_namespace *mnt_userns;
4000 mnt_userns = mnt_user_ns(path.mnt);
4001 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4002 mode);
4003 }
4004 done_path_create(&path, dentry);
4005 if (retry_estale(error, lookup_flags)) {
4006 lookup_flags |= LOOKUP_REVAL;
4007 goto retry;
4008 }
4009 out_putname:
4010 putname(name);
4011 return error;
4012 }
4013
4014 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4015 {
4016 return do_mkdirat(dfd, getname(pathname), mode);
4017 }
4018
4019 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4020 {
4021 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4022 }
4023
4024 /**
4025 * vfs_rmdir - remove directory
4026 * @mnt_userns: user namespace of the mount the inode was found from
4027 * @dir: inode of @dentry
4028 * @dentry: pointer to dentry of the base directory
4029 *
4030 * Remove a directory.
4031 *
4032 * If the inode has been found through an idmapped mount the user namespace of
4033 * the vfsmount must be passed through @mnt_userns. This function will then take
4034 * care to map the inode according to @mnt_userns before checking permissions.
4035 * On non-idmapped mounts or if permission checking is to be performed on the
4036 * raw inode simply passs init_user_ns.
4037 */
4038 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4039 struct dentry *dentry)
4040 {
4041 int error = may_delete(mnt_userns, dir, dentry, 1);
4042
4043 if (error)
4044 return error;
4045
4046 if (!dir->i_op->rmdir)
4047 return -EPERM;
4048
4049 dget(dentry);
4050 inode_lock(dentry->d_inode);
4051
4052 error = -EBUSY;
4053 if (is_local_mountpoint(dentry) ||
4054 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4055 goto out;
4056
4057 error = security_inode_rmdir(dir, dentry);
4058 if (error)
4059 goto out;
4060
4061 error = dir->i_op->rmdir(dir, dentry);
4062 if (error)
4063 goto out;
4064
4065 shrink_dcache_parent(dentry);
4066 dentry->d_inode->i_flags |= S_DEAD;
4067 dont_mount(dentry);
4068 detach_mounts(dentry);
4069
4070 out:
4071 inode_unlock(dentry->d_inode);
4072 dput(dentry);
4073 if (!error)
4074 d_delete_notify(dir, dentry);
4075 return error;
4076 }
4077 EXPORT_SYMBOL(vfs_rmdir);
4078
4079 int do_rmdir(int dfd, struct filename *name)
4080 {
4081 struct user_namespace *mnt_userns;
4082 int error;
4083 struct dentry *dentry;
4084 struct path path;
4085 struct qstr last;
4086 int type;
4087 unsigned int lookup_flags = 0;
4088 retry:
4089 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4090 if (error)
4091 goto exit1;
4092
4093 switch (type) {
4094 case LAST_DOTDOT:
4095 error = -ENOTEMPTY;
4096 goto exit2;
4097 case LAST_DOT:
4098 error = -EINVAL;
4099 goto exit2;
4100 case LAST_ROOT:
4101 error = -EBUSY;
4102 goto exit2;
4103 }
4104
4105 error = mnt_want_write(path.mnt);
4106 if (error)
4107 goto exit2;
4108
4109 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4110 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4111 error = PTR_ERR(dentry);
4112 if (IS_ERR(dentry))
4113 goto exit3;
4114 if (!dentry->d_inode) {
4115 error = -ENOENT;
4116 goto exit4;
4117 }
4118 error = security_path_rmdir(&path, dentry);
4119 if (error)
4120 goto exit4;
4121 mnt_userns = mnt_user_ns(path.mnt);
4122 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4123 exit4:
4124 dput(dentry);
4125 exit3:
4126 inode_unlock(path.dentry->d_inode);
4127 mnt_drop_write(path.mnt);
4128 exit2:
4129 path_put(&path);
4130 if (retry_estale(error, lookup_flags)) {
4131 lookup_flags |= LOOKUP_REVAL;
4132 goto retry;
4133 }
4134 exit1:
4135 putname(name);
4136 return error;
4137 }
4138
4139 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4140 {
4141 return do_rmdir(AT_FDCWD, getname(pathname));
4142 }
4143
4144 /**
4145 * vfs_unlink - unlink a filesystem object
4146 * @mnt_userns: user namespace of the mount the inode was found from
4147 * @dir: parent directory
4148 * @dentry: victim
4149 * @delegated_inode: returns victim inode, if the inode is delegated.
4150 *
4151 * The caller must hold dir->i_mutex.
4152 *
4153 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4154 * return a reference to the inode in delegated_inode. The caller
4155 * should then break the delegation on that inode and retry. Because
4156 * breaking a delegation may take a long time, the caller should drop
4157 * dir->i_mutex before doing so.
4158 *
4159 * Alternatively, a caller may pass NULL for delegated_inode. This may
4160 * be appropriate for callers that expect the underlying filesystem not
4161 * to be NFS exported.
4162 *
4163 * If the inode has been found through an idmapped mount the user namespace of
4164 * the vfsmount must be passed through @mnt_userns. This function will then take
4165 * care to map the inode according to @mnt_userns before checking permissions.
4166 * On non-idmapped mounts or if permission checking is to be performed on the
4167 * raw inode simply passs init_user_ns.
4168 */
4169 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4170 struct dentry *dentry, struct inode **delegated_inode)
4171 {
4172 struct inode *target = dentry->d_inode;
4173 int error = may_delete(mnt_userns, dir, dentry, 0);
4174
4175 if (error)
4176 return error;
4177
4178 if (!dir->i_op->unlink)
4179 return -EPERM;
4180
4181 inode_lock(target);
4182 if (IS_SWAPFILE(target))
4183 error = -EPERM;
4184 else if (is_local_mountpoint(dentry))
4185 error = -EBUSY;
4186 else {
4187 error = security_inode_unlink(dir, dentry);
4188 if (!error) {
4189 error = try_break_deleg(target, delegated_inode);
4190 if (error)
4191 goto out;
4192 error = dir->i_op->unlink(dir, dentry);
4193 if (!error) {
4194 dont_mount(dentry);
4195 detach_mounts(dentry);
4196 }
4197 }
4198 }
4199 out:
4200 inode_unlock(target);
4201
4202 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4203 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4204 fsnotify_unlink(dir, dentry);
4205 } else if (!error) {
4206 fsnotify_link_count(target);
4207 d_delete_notify(dir, dentry);
4208 }
4209
4210 return error;
4211 }
4212 EXPORT_SYMBOL(vfs_unlink);
4213
4214 /*
4215 * Make sure that the actual truncation of the file will occur outside its
4216 * directory's i_mutex. Truncate can take a long time if there is a lot of
4217 * writeout happening, and we don't want to prevent access to the directory
4218 * while waiting on the I/O.
4219 */
4220 int do_unlinkat(int dfd, struct filename *name)
4221 {
4222 int error;
4223 struct dentry *dentry;
4224 struct path path;
4225 struct qstr last;
4226 int type;
4227 struct inode *inode = NULL;
4228 struct inode *delegated_inode = NULL;
4229 unsigned int lookup_flags = 0;
4230 retry:
4231 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4232 if (error)
4233 goto exit1;
4234
4235 error = -EISDIR;
4236 if (type != LAST_NORM)
4237 goto exit2;
4238
4239 error = mnt_want_write(path.mnt);
4240 if (error)
4241 goto exit2;
4242 retry_deleg:
4243 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4244 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4245 error = PTR_ERR(dentry);
4246 if (!IS_ERR(dentry)) {
4247 struct user_namespace *mnt_userns;
4248
4249 /* Why not before? Because we want correct error value */
4250 if (last.name[last.len])
4251 goto slashes;
4252 inode = dentry->d_inode;
4253 if (d_is_negative(dentry))
4254 goto slashes;
4255 ihold(inode);
4256 error = security_path_unlink(&path, dentry);
4257 if (error)
4258 goto exit3;
4259 mnt_userns = mnt_user_ns(path.mnt);
4260 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4261 &delegated_inode);
4262 exit3:
4263 dput(dentry);
4264 }
4265 inode_unlock(path.dentry->d_inode);
4266 if (inode)
4267 iput(inode); /* truncate the inode here */
4268 inode = NULL;
4269 if (delegated_inode) {
4270 error = break_deleg_wait(&delegated_inode);
4271 if (!error)
4272 goto retry_deleg;
4273 }
4274 mnt_drop_write(path.mnt);
4275 exit2:
4276 path_put(&path);
4277 if (retry_estale(error, lookup_flags)) {
4278 lookup_flags |= LOOKUP_REVAL;
4279 inode = NULL;
4280 goto retry;
4281 }
4282 exit1:
4283 putname(name);
4284 return error;
4285
4286 slashes:
4287 if (d_is_negative(dentry))
4288 error = -ENOENT;
4289 else if (d_is_dir(dentry))
4290 error = -EISDIR;
4291 else
4292 error = -ENOTDIR;
4293 goto exit3;
4294 }
4295
4296 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4297 {
4298 if ((flag & ~AT_REMOVEDIR) != 0)
4299 return -EINVAL;
4300
4301 if (flag & AT_REMOVEDIR)
4302 return do_rmdir(dfd, getname(pathname));
4303 return do_unlinkat(dfd, getname(pathname));
4304 }
4305
4306 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4307 {
4308 return do_unlinkat(AT_FDCWD, getname(pathname));
4309 }
4310
4311 /**
4312 * vfs_symlink - create symlink
4313 * @mnt_userns: user namespace of the mount the inode was found from
4314 * @dir: inode of @dentry
4315 * @dentry: pointer to dentry of the base directory
4316 * @oldname: name of the file to link to
4317 *
4318 * Create a symlink.
4319 *
4320 * If the inode has been found through an idmapped mount the user namespace of
4321 * the vfsmount must be passed through @mnt_userns. This function will then take
4322 * care to map the inode according to @mnt_userns before checking permissions.
4323 * On non-idmapped mounts or if permission checking is to be performed on the
4324 * raw inode simply passs init_user_ns.
4325 */
4326 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4327 struct dentry *dentry, const char *oldname)
4328 {
4329 int error = may_create(mnt_userns, dir, dentry);
4330
4331 if (error)
4332 return error;
4333
4334 if (!dir->i_op->symlink)
4335 return -EPERM;
4336
4337 error = security_inode_symlink(dir, dentry, oldname);
4338 if (error)
4339 return error;
4340
4341 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4342 if (!error)
4343 fsnotify_create(dir, dentry);
4344 return error;
4345 }
4346 EXPORT_SYMBOL(vfs_symlink);
4347
4348 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4349 {
4350 int error;
4351 struct dentry *dentry;
4352 struct path path;
4353 unsigned int lookup_flags = 0;
4354
4355 if (IS_ERR(from)) {
4356 error = PTR_ERR(from);
4357 goto out_putnames;
4358 }
4359 retry:
4360 dentry = filename_create(newdfd, to, &path, lookup_flags);
4361 error = PTR_ERR(dentry);
4362 if (IS_ERR(dentry))
4363 goto out_putnames;
4364
4365 error = security_path_symlink(&path, dentry, from->name);
4366 if (!error) {
4367 struct user_namespace *mnt_userns;
4368
4369 mnt_userns = mnt_user_ns(path.mnt);
4370 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4371 from->name);
4372 }
4373 done_path_create(&path, dentry);
4374 if (retry_estale(error, lookup_flags)) {
4375 lookup_flags |= LOOKUP_REVAL;
4376 goto retry;
4377 }
4378 out_putnames:
4379 putname(to);
4380 putname(from);
4381 return error;
4382 }
4383
4384 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4385 int, newdfd, const char __user *, newname)
4386 {
4387 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4388 }
4389
4390 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4391 {
4392 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4393 }
4394
4395 /**
4396 * vfs_link - create a new link
4397 * @old_dentry: object to be linked
4398 * @mnt_userns: the user namespace of the mount
4399 * @dir: new parent
4400 * @new_dentry: where to create the new link
4401 * @delegated_inode: returns inode needing a delegation break
4402 *
4403 * The caller must hold dir->i_mutex
4404 *
4405 * If vfs_link discovers a delegation on the to-be-linked file in need
4406 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4407 * inode in delegated_inode. The caller should then break the delegation
4408 * and retry. Because breaking a delegation may take a long time, the
4409 * caller should drop the i_mutex before doing so.
4410 *
4411 * Alternatively, a caller may pass NULL for delegated_inode. This may
4412 * be appropriate for callers that expect the underlying filesystem not
4413 * to be NFS exported.
4414 *
4415 * If the inode has been found through an idmapped mount the user namespace of
4416 * the vfsmount must be passed through @mnt_userns. This function will then take
4417 * care to map the inode according to @mnt_userns before checking permissions.
4418 * On non-idmapped mounts or if permission checking is to be performed on the
4419 * raw inode simply passs init_user_ns.
4420 */
4421 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4422 struct inode *dir, struct dentry *new_dentry,
4423 struct inode **delegated_inode)
4424 {
4425 struct inode *inode = old_dentry->d_inode;
4426 unsigned max_links = dir->i_sb->s_max_links;
4427 int error;
4428
4429 if (!inode)
4430 return -ENOENT;
4431
4432 error = may_create(mnt_userns, dir, new_dentry);
4433 if (error)
4434 return error;
4435
4436 if (dir->i_sb != inode->i_sb)
4437 return -EXDEV;
4438
4439 /*
4440 * A link to an append-only or immutable file cannot be created.
4441 */
4442 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4443 return -EPERM;
4444 /*
4445 * Updating the link count will likely cause i_uid and i_gid to
4446 * be writen back improperly if their true value is unknown to
4447 * the vfs.
4448 */
4449 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4450 return -EPERM;
4451 if (!dir->i_op->link)
4452 return -EPERM;
4453 if (S_ISDIR(inode->i_mode))
4454 return -EPERM;
4455
4456 error = security_inode_link(old_dentry, dir, new_dentry);
4457 if (error)
4458 return error;
4459
4460 inode_lock(inode);
4461 /* Make sure we don't allow creating hardlink to an unlinked file */
4462 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4463 error = -ENOENT;
4464 else if (max_links && inode->i_nlink >= max_links)
4465 error = -EMLINK;
4466 else {
4467 error = try_break_deleg(inode, delegated_inode);
4468 if (!error)
4469 error = dir->i_op->link(old_dentry, dir, new_dentry);
4470 }
4471
4472 if (!error && (inode->i_state & I_LINKABLE)) {
4473 spin_lock(&inode->i_lock);
4474 inode->i_state &= ~I_LINKABLE;
4475 spin_unlock(&inode->i_lock);
4476 }
4477 inode_unlock(inode);
4478 if (!error)
4479 fsnotify_link(dir, inode, new_dentry);
4480 return error;
4481 }
4482 EXPORT_SYMBOL(vfs_link);
4483
4484 /*
4485 * Hardlinks are often used in delicate situations. We avoid
4486 * security-related surprises by not following symlinks on the
4487 * newname. --KAB
4488 *
4489 * We don't follow them on the oldname either to be compatible
4490 * with linux 2.0, and to avoid hard-linking to directories
4491 * and other special files. --ADM
4492 */
4493 int do_linkat(int olddfd, struct filename *old, int newdfd,
4494 struct filename *new, int flags)
4495 {
4496 struct user_namespace *mnt_userns;
4497 struct dentry *new_dentry;
4498 struct path old_path, new_path;
4499 struct inode *delegated_inode = NULL;
4500 int how = 0;
4501 int error;
4502
4503 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4504 error = -EINVAL;
4505 goto out_putnames;
4506 }
4507 /*
4508 * To use null names we require CAP_DAC_READ_SEARCH
4509 * This ensures that not everyone will be able to create
4510 * handlink using the passed filedescriptor.
4511 */
4512 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4513 error = -ENOENT;
4514 goto out_putnames;
4515 }
4516
4517 if (flags & AT_SYMLINK_FOLLOW)
4518 how |= LOOKUP_FOLLOW;
4519 retry:
4520 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4521 if (error)
4522 goto out_putnames;
4523
4524 new_dentry = filename_create(newdfd, new, &new_path,
4525 (how & LOOKUP_REVAL));
4526 error = PTR_ERR(new_dentry);
4527 if (IS_ERR(new_dentry))
4528 goto out_putpath;
4529
4530 error = -EXDEV;
4531 if (old_path.mnt != new_path.mnt)
4532 goto out_dput;
4533 mnt_userns = mnt_user_ns(new_path.mnt);
4534 error = may_linkat(mnt_userns, &old_path);
4535 if (unlikely(error))
4536 goto out_dput;
4537 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4538 if (error)
4539 goto out_dput;
4540 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4541 new_dentry, &delegated_inode);
4542 out_dput:
4543 done_path_create(&new_path, new_dentry);
4544 if (delegated_inode) {
4545 error = break_deleg_wait(&delegated_inode);
4546 if (!error) {
4547 path_put(&old_path);
4548 goto retry;
4549 }
4550 }
4551 if (retry_estale(error, how)) {
4552 path_put(&old_path);
4553 how |= LOOKUP_REVAL;
4554 goto retry;
4555 }
4556 out_putpath:
4557 path_put(&old_path);
4558 out_putnames:
4559 putname(old);
4560 putname(new);
4561
4562 return error;
4563 }
4564
4565 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4566 int, newdfd, const char __user *, newname, int, flags)
4567 {
4568 return do_linkat(olddfd, getname_uflags(oldname, flags),
4569 newdfd, getname(newname), flags);
4570 }
4571
4572 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4573 {
4574 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4575 }
4576
4577 /**
4578 * vfs_rename - rename a filesystem object
4579 * @rd: pointer to &struct renamedata info
4580 *
4581 * The caller must hold multiple mutexes--see lock_rename()).
4582 *
4583 * If vfs_rename discovers a delegation in need of breaking at either
4584 * the source or destination, it will return -EWOULDBLOCK and return a
4585 * reference to the inode in delegated_inode. The caller should then
4586 * break the delegation and retry. Because breaking a delegation may
4587 * take a long time, the caller should drop all locks before doing
4588 * so.
4589 *
4590 * Alternatively, a caller may pass NULL for delegated_inode. This may
4591 * be appropriate for callers that expect the underlying filesystem not
4592 * to be NFS exported.
4593 *
4594 * The worst of all namespace operations - renaming directory. "Perverted"
4595 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4596 * Problems:
4597 *
4598 * a) we can get into loop creation.
4599 * b) race potential - two innocent renames can create a loop together.
4600 * That's where 4.4 screws up. Current fix: serialization on
4601 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4602 * story.
4603 * c) we have to lock _four_ objects - parents and victim (if it exists),
4604 * and source (if it is not a directory).
4605 * And that - after we got ->i_mutex on parents (until then we don't know
4606 * whether the target exists). Solution: try to be smart with locking
4607 * order for inodes. We rely on the fact that tree topology may change
4608 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4609 * move will be locked. Thus we can rank directories by the tree
4610 * (ancestors first) and rank all non-directories after them.
4611 * That works since everybody except rename does "lock parent, lookup,
4612 * lock child" and rename is under ->s_vfs_rename_mutex.
4613 * HOWEVER, it relies on the assumption that any object with ->lookup()
4614 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4615 * we'd better make sure that there's no link(2) for them.
4616 * d) conversion from fhandle to dentry may come in the wrong moment - when
4617 * we are removing the target. Solution: we will have to grab ->i_mutex
4618 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4619 * ->i_mutex on parents, which works but leads to some truly excessive
4620 * locking].
4621 */
4622 int vfs_rename(struct renamedata *rd)
4623 {
4624 int error;
4625 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4626 struct dentry *old_dentry = rd->old_dentry;
4627 struct dentry *new_dentry = rd->new_dentry;
4628 struct inode **delegated_inode = rd->delegated_inode;
4629 unsigned int flags = rd->flags;
4630 bool is_dir = d_is_dir(old_dentry);
4631 struct inode *source = old_dentry->d_inode;
4632 struct inode *target = new_dentry->d_inode;
4633 bool new_is_dir = false;
4634 unsigned max_links = new_dir->i_sb->s_max_links;
4635 struct name_snapshot old_name;
4636
4637 if (source == target)
4638 return 0;
4639
4640 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4641 if (error)
4642 return error;
4643
4644 if (!target) {
4645 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4646 } else {
4647 new_is_dir = d_is_dir(new_dentry);
4648
4649 if (!(flags & RENAME_EXCHANGE))
4650 error = may_delete(rd->new_mnt_userns, new_dir,
4651 new_dentry, is_dir);
4652 else
4653 error = may_delete(rd->new_mnt_userns, new_dir,
4654 new_dentry, new_is_dir);
4655 }
4656 if (error)
4657 return error;
4658
4659 if (!old_dir->i_op->rename)
4660 return -EPERM;
4661
4662 /*
4663 * If we are going to change the parent - check write permissions,
4664 * we'll need to flip '..'.
4665 */
4666 if (new_dir != old_dir) {
4667 if (is_dir) {
4668 error = inode_permission(rd->old_mnt_userns, source,
4669 MAY_WRITE);
4670 if (error)
4671 return error;
4672 }
4673 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4674 error = inode_permission(rd->new_mnt_userns, target,
4675 MAY_WRITE);
4676 if (error)
4677 return error;
4678 }
4679 }
4680
4681 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4682 flags);
4683 if (error)
4684 return error;
4685
4686 take_dentry_name_snapshot(&old_name, old_dentry);
4687 dget(new_dentry);
4688 if (!is_dir || (flags & RENAME_EXCHANGE))
4689 lock_two_nondirectories(source, target);
4690 else if (target)
4691 inode_lock(target);
4692
4693 error = -EPERM;
4694 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4695 goto out;
4696
4697 error = -EBUSY;
4698 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4699 goto out;
4700
4701 if (max_links && new_dir != old_dir) {
4702 error = -EMLINK;
4703 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4704 goto out;
4705 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4706 old_dir->i_nlink >= max_links)
4707 goto out;
4708 }
4709 if (!is_dir) {
4710 error = try_break_deleg(source, delegated_inode);
4711 if (error)
4712 goto out;
4713 }
4714 if (target && !new_is_dir) {
4715 error = try_break_deleg(target, delegated_inode);
4716 if (error)
4717 goto out;
4718 }
4719 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4720 new_dir, new_dentry, flags);
4721 if (error)
4722 goto out;
4723
4724 if (!(flags & RENAME_EXCHANGE) && target) {
4725 if (is_dir) {
4726 shrink_dcache_parent(new_dentry);
4727 target->i_flags |= S_DEAD;
4728 }
4729 dont_mount(new_dentry);
4730 detach_mounts(new_dentry);
4731 }
4732 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4733 if (!(flags & RENAME_EXCHANGE))
4734 d_move(old_dentry, new_dentry);
4735 else
4736 d_exchange(old_dentry, new_dentry);
4737 }
4738 out:
4739 if (!is_dir || (flags & RENAME_EXCHANGE))
4740 unlock_two_nondirectories(source, target);
4741 else if (target)
4742 inode_unlock(target);
4743 dput(new_dentry);
4744 if (!error) {
4745 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4746 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4747 if (flags & RENAME_EXCHANGE) {
4748 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4749 new_is_dir, NULL, new_dentry);
4750 }
4751 }
4752 release_dentry_name_snapshot(&old_name);
4753
4754 return error;
4755 }
4756 EXPORT_SYMBOL(vfs_rename);
4757
4758 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4759 struct filename *to, unsigned int flags)
4760 {
4761 struct renamedata rd;
4762 struct dentry *old_dentry, *new_dentry;
4763 struct dentry *trap;
4764 struct path old_path, new_path;
4765 struct qstr old_last, new_last;
4766 int old_type, new_type;
4767 struct inode *delegated_inode = NULL;
4768 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4769 bool should_retry = false;
4770 int error = -EINVAL;
4771
4772 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4773 goto put_names;
4774
4775 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4776 (flags & RENAME_EXCHANGE))
4777 goto put_names;
4778
4779 if (flags & RENAME_EXCHANGE)
4780 target_flags = 0;
4781
4782 retry:
4783 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4784 &old_last, &old_type);
4785 if (error)
4786 goto put_names;
4787
4788 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4789 &new_type);
4790 if (error)
4791 goto exit1;
4792
4793 error = -EXDEV;
4794 if (old_path.mnt != new_path.mnt)
4795 goto exit2;
4796
4797 error = -EBUSY;
4798 if (old_type != LAST_NORM)
4799 goto exit2;
4800
4801 if (flags & RENAME_NOREPLACE)
4802 error = -EEXIST;
4803 if (new_type != LAST_NORM)
4804 goto exit2;
4805
4806 error = mnt_want_write(old_path.mnt);
4807 if (error)
4808 goto exit2;
4809
4810 retry_deleg:
4811 trap = lock_rename(new_path.dentry, old_path.dentry);
4812
4813 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4814 error = PTR_ERR(old_dentry);
4815 if (IS_ERR(old_dentry))
4816 goto exit3;
4817 /* source must exist */
4818 error = -ENOENT;
4819 if (d_is_negative(old_dentry))
4820 goto exit4;
4821 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4822 error = PTR_ERR(new_dentry);
4823 if (IS_ERR(new_dentry))
4824 goto exit4;
4825 error = -EEXIST;
4826 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4827 goto exit5;
4828 if (flags & RENAME_EXCHANGE) {
4829 error = -ENOENT;
4830 if (d_is_negative(new_dentry))
4831 goto exit5;
4832
4833 if (!d_is_dir(new_dentry)) {
4834 error = -ENOTDIR;
4835 if (new_last.name[new_last.len])
4836 goto exit5;
4837 }
4838 }
4839 /* unless the source is a directory trailing slashes give -ENOTDIR */
4840 if (!d_is_dir(old_dentry)) {
4841 error = -ENOTDIR;
4842 if (old_last.name[old_last.len])
4843 goto exit5;
4844 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4845 goto exit5;
4846 }
4847 /* source should not be ancestor of target */
4848 error = -EINVAL;
4849 if (old_dentry == trap)
4850 goto exit5;
4851 /* target should not be an ancestor of source */
4852 if (!(flags & RENAME_EXCHANGE))
4853 error = -ENOTEMPTY;
4854 if (new_dentry == trap)
4855 goto exit5;
4856
4857 error = security_path_rename(&old_path, old_dentry,
4858 &new_path, new_dentry, flags);
4859 if (error)
4860 goto exit5;
4861
4862 rd.old_dir = old_path.dentry->d_inode;
4863 rd.old_dentry = old_dentry;
4864 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4865 rd.new_dir = new_path.dentry->d_inode;
4866 rd.new_dentry = new_dentry;
4867 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4868 rd.delegated_inode = &delegated_inode;
4869 rd.flags = flags;
4870 error = vfs_rename(&rd);
4871 exit5:
4872 dput(new_dentry);
4873 exit4:
4874 dput(old_dentry);
4875 exit3:
4876 unlock_rename(new_path.dentry, old_path.dentry);
4877 if (delegated_inode) {
4878 error = break_deleg_wait(&delegated_inode);
4879 if (!error)
4880 goto retry_deleg;
4881 }
4882 mnt_drop_write(old_path.mnt);
4883 exit2:
4884 if (retry_estale(error, lookup_flags))
4885 should_retry = true;
4886 path_put(&new_path);
4887 exit1:
4888 path_put(&old_path);
4889 if (should_retry) {
4890 should_retry = false;
4891 lookup_flags |= LOOKUP_REVAL;
4892 goto retry;
4893 }
4894 put_names:
4895 putname(from);
4896 putname(to);
4897 return error;
4898 }
4899
4900 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4901 int, newdfd, const char __user *, newname, unsigned int, flags)
4902 {
4903 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4904 flags);
4905 }
4906
4907 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4908 int, newdfd, const char __user *, newname)
4909 {
4910 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4911 0);
4912 }
4913
4914 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4915 {
4916 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4917 getname(newname), 0);
4918 }
4919
4920 int readlink_copy(char __user *buffer, int buflen, const char *link)
4921 {
4922 int len = PTR_ERR(link);
4923 if (IS_ERR(link))
4924 goto out;
4925
4926 len = strlen(link);
4927 if (len > (unsigned) buflen)
4928 len = buflen;
4929 if (copy_to_user(buffer, link, len))
4930 len = -EFAULT;
4931 out:
4932 return len;
4933 }
4934
4935 /**
4936 * vfs_readlink - copy symlink body into userspace buffer
4937 * @dentry: dentry on which to get symbolic link
4938 * @buffer: user memory pointer
4939 * @buflen: size of buffer
4940 *
4941 * Does not touch atime. That's up to the caller if necessary
4942 *
4943 * Does not call security hook.
4944 */
4945 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4946 {
4947 struct inode *inode = d_inode(dentry);
4948 DEFINE_DELAYED_CALL(done);
4949 const char *link;
4950 int res;
4951
4952 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4953 if (unlikely(inode->i_op->readlink))
4954 return inode->i_op->readlink(dentry, buffer, buflen);
4955
4956 if (!d_is_symlink(dentry))
4957 return -EINVAL;
4958
4959 spin_lock(&inode->i_lock);
4960 inode->i_opflags |= IOP_DEFAULT_READLINK;
4961 spin_unlock(&inode->i_lock);
4962 }
4963
4964 link = READ_ONCE(inode->i_link);
4965 if (!link) {
4966 link = inode->i_op->get_link(dentry, inode, &done);
4967 if (IS_ERR(link))
4968 return PTR_ERR(link);
4969 }
4970 res = readlink_copy(buffer, buflen, link);
4971 do_delayed_call(&done);
4972 return res;
4973 }
4974 EXPORT_SYMBOL(vfs_readlink);
4975
4976 /**
4977 * vfs_get_link - get symlink body
4978 * @dentry: dentry on which to get symbolic link
4979 * @done: caller needs to free returned data with this
4980 *
4981 * Calls security hook and i_op->get_link() on the supplied inode.
4982 *
4983 * It does not touch atime. That's up to the caller if necessary.
4984 *
4985 * Does not work on "special" symlinks like /proc/$$/fd/N
4986 */
4987 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4988 {
4989 const char *res = ERR_PTR(-EINVAL);
4990 struct inode *inode = d_inode(dentry);
4991
4992 if (d_is_symlink(dentry)) {
4993 res = ERR_PTR(security_inode_readlink(dentry));
4994 if (!res)
4995 res = inode->i_op->get_link(dentry, inode, done);
4996 }
4997 return res;
4998 }
4999 EXPORT_SYMBOL(vfs_get_link);
5000
5001 /* get the link contents into pagecache */
5002 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5003 struct delayed_call *callback)
5004 {
5005 char *kaddr;
5006 struct page *page;
5007 struct address_space *mapping = inode->i_mapping;
5008
5009 if (!dentry) {
5010 page = find_get_page(mapping, 0);
5011 if (!page)
5012 return ERR_PTR(-ECHILD);
5013 if (!PageUptodate(page)) {
5014 put_page(page);
5015 return ERR_PTR(-ECHILD);
5016 }
5017 } else {
5018 page = read_mapping_page(mapping, 0, NULL);
5019 if (IS_ERR(page))
5020 return (char*)page;
5021 }
5022 set_delayed_call(callback, page_put_link, page);
5023 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5024 kaddr = page_address(page);
5025 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5026 return kaddr;
5027 }
5028
5029 EXPORT_SYMBOL(page_get_link);
5030
5031 void page_put_link(void *arg)
5032 {
5033 put_page(arg);
5034 }
5035 EXPORT_SYMBOL(page_put_link);
5036
5037 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5038 {
5039 DEFINE_DELAYED_CALL(done);
5040 int res = readlink_copy(buffer, buflen,
5041 page_get_link(dentry, d_inode(dentry),
5042 &done));
5043 do_delayed_call(&done);
5044 return res;
5045 }
5046 EXPORT_SYMBOL(page_readlink);
5047
5048 int page_symlink(struct inode *inode, const char *symname, int len)
5049 {
5050 struct address_space *mapping = inode->i_mapping;
5051 const struct address_space_operations *aops = mapping->a_ops;
5052 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5053 struct page *page;
5054 void *fsdata;
5055 int err;
5056 unsigned int flags;
5057
5058 retry:
5059 if (nofs)
5060 flags = memalloc_nofs_save();
5061 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5062 if (nofs)
5063 memalloc_nofs_restore(flags);
5064 if (err)
5065 goto fail;
5066
5067 memcpy(page_address(page), symname, len-1);
5068
5069 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5070 page, fsdata);
5071 if (err < 0)
5072 goto fail;
5073 if (err < len-1)
5074 goto retry;
5075
5076 mark_inode_dirty(inode);
5077 return 0;
5078 fail:
5079 return err;
5080 }
5081 EXPORT_SYMBOL(page_symlink);
5082
5083 const struct inode_operations page_symlink_inode_operations = {
5084 .get_link = page_get_link,
5085 };
5086 EXPORT_SYMBOL(page_symlink_inode_operations);